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Incomplete Gamma Kernels: Generalizing Locally
Optimal Projection Operators
Patrick Stotko , Michael Weinmann , and Reinhard Klein

Abstract—We present incomplete gamma kernels, a generaliza-
tion of Locally Optimal Projection (LOP) operators. In particular,
we reveal the relation of the classical localizedL1 estimator, used in
the LOP operator for point cloud denoising, to the common Mean
Shift framework via a novel kernel. Furthermore, we generalize
this result to a whole family of kernels that are built upon the
incomplete gamma function and each represents a localized Lp

estimator. By deriving various properties of the kernel family con-
cerning distributional, Mean Shift induced, and other aspects such
as strict positive definiteness, we obtain a deeper understanding
of the operator’s projection behavior. From these theoretical in-
sights, we illustrate several applications ranging from an improved
Weighted LOP (WLOP) density weighting scheme and a more
accurate Continuous LOP (CLOP) kernel approximation to the
definition of a novel set of robust loss functions. These incomplete
gamma losses include the Gaussian and LOP loss as special cases
and can be applied to various tasks including normal filtering.
Furthermore, we show that the novel kernels can be included as
priors into neural networks. We demonstrate the effects of each
application in a range of quantitative and qualitative experiments
that highlight the benefits induced by our modifications.

Index Terms—Kernels, Locally Optimal Projection, Mean Shift,
point clouds, point cloud denoising, projection operators, robust
loss functions, surface reconstruction, theory.

I. INTRODUCTION

D IGITAL 3D scene models have become a crucial prereq-
uisite for numerous applications in entertainment, adver-

tisement, design, architecture, autonomous systems, and cultural
heritage. In this context, the accurate digitization of real-world
objects and scenes is of great relevance and offers new oppor-
tunities regarding a variety of tasks including AR/VR-based
inspection and collecting realistic training data for tasks in
robotics, autonomous driving, aerial or satellite surveys. Aside
from professional scanning campaigns with expensive laser
scanning equipment, there has also been an increasing trend

Manuscript received 4 May 2022; revised 2 November 2023; accepted 19 De-
cember 2023. Date of publication 4 January 2024; date of current version 7 May
2024. This work was supported in part by the DFG projects KL 1142/11-2 (DFG
Research Unit FOR 2535 Anticipating Human Behavior) and NFDI4Culture
(DFG Project) under Grant 441958017. Recommended for acceptance by C.S.
Ong. (Corresponding author: Patrick Stotko.)

Patrick Stotko and Reinhard Klein are with the Institute of Computer Science
II – Visual Computing, University of Bonn, 53115 Bonn, Germany (e-mail:
stotko@cs.uni-bonn.de; rk@cs.uni-bonn.de).

Michael Weinmann is with the Department of Intelligent Systems,
Delft University of Technology, 2628 XE Delft, The Netherlands (e-mail:
m.weinmann@tudelft.nl).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2024.3349967, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2024.3349967

towards more practical scene capture with consumer-grade hard-
ware such as passive purely image-based scene scanning using
Structure-from-Motion and Multi-view Stereo approaches, or
with respective cheaper active time-of-flight depth sensors that
have meanwhile even been integrated into numerous mobile
devices. However, the use of passive scene scanning or active
scanning based on cheap hardware with low sensor quality
and low sensor resolution induces noise in the capture process
and thereby results in noisy point clouds and a low number of
points that might not preserve finer geometric details, which,
in turn, may lead to artifacts in the registration and subsequent
surface reconstruction procedures. Furthermore, the limited ac-
cessibility of capture conditions as well as occlusions induce
holes and highly irregular samplings and distributions of the
captured data. These challenges result in an increasing interest
in robust filtering techniques that are capable of handling noise,
outliers, registration artifacts, as well as irregularly-sampled
and missing data and can provide a clean, denoised, and uni-
formly resampled point cloud suitable for high-fidelity surface
reconstruction.

Among others, the Locally Optimal Projection (LOP) oper-
ator [1] has gained a lot of attention in recent years due to its
benefit of not relying on a well-defined surface parametrization
or a piecewise planar approximation and, meanwhile, there has
been a whole series of further extensions of this approach [2], [3],
[4], [5]. Furthermore, many learning-based approaches also aim
at projecting the noisy data onto a (latent) denoised manifold [6],
[7]. Therefore, investigations towards the unification of tradi-
tional approaches with their respective regularization techniques
might be of great relevance for future learning-based approaches
as well. Even further, traditional techniques, and particularly
those approaches that incorporate probabilistic modeling of the
data such as the density-based Mean Shift clustering method [8],
[9], [10], become more and more relevant in modern deep
learning methods. Besides their application to structure the
latent space representation of the data within encoder-decoder
approaches [11], there is even a direct relation between the Mean
Shift approach and denoising autoencoders [12]. In particular,
as the output of an optimal denoising autoencoder corresponds
to the local mean of the true data density [13], the autoencoder
loss can be interpreted as a Mean Shift vector [12]. However,
to the best of our knowledge, this observation has not yet been
explored in the context of point cloud denoising. Hence, relating
traditional concepts to modern deep learning methods might not
only lead to a more explainable behavior of the latter but also
allow increasing the resulting performance. In turn, this relies
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Fig. 1. Relation between LOP and Mean Shift in the example of the 2D Fish model. Minimizing the localized L1 attraction energy with the Gaussian kernel
KGaussian (left) results in the same trajectory q(t) as applying Mean Shift on a global kernel density estimate with the kernel KLOP (right).

on the better understanding of the relationship between previous
(traditional) techniques.

In this paper, we investigate the theoretical relationship of
projection-based point cloud denoising approaches with their
respective properties and show that these are unified within the
common probabilistic Mean Shift framework. In particular, the
key contributions of our work are:
� We reveal the relation of the classical localized L1 estima-

tor used in LOP to the Mean Shift framework via a novel
kernelKLOP and introduce the family of incomplete gamma
kernels KΓ as a generalization of this result where each
kernel represents a localizedLp estimator (see Section III).

� We derive various properties of the kernel family con-
cerning distributional, Mean Shift induced, and other as-
pects such as strict positive definiteness to obtain a deeper
understanding of the operator’s projection behavior (see
Section IV).

� We demonstrate that leveraging the derived theoretical in-
sights enables several applications including an improved
Weighted LOP (WLOP) density weighting scheme, a more
accurate Continuous LOP (CLOP) kernel approximation,
the derivation of incomplete gamma losses, a set of novel
robust loss functions, as well as neural network priors (see
Section V).

In our evaluation, we demonstrate the benefits induced by our
modifications in a range of quantitative and qualitative experi-
ments. Furthermore, the theoretical insights of our investigations
with their proven effect may be of great relevance also for
future learning-based approaches. The source code is available
at https://github.com/stotko/incomplete-gamma-kernels.

II. RELATED WORK

In the following, we provide a review of geometric and
learning-based denoising approaches. Furthermore, we also re-
view seminal work regarding the theory and application of the
Mean Shift framework due to its relationship to LOP approaches
that we will demonstrate later.

A. Geometric Denoising Approaches

Following early approaches such as the local fitting of tan-
gent planes [14] or using radial basis functions [15], respective

developments particularly focused on projection-based meth-
ods, sparsity-based methods and non-local methods.

Projection-Based Methods: These approaches rely on the
assumption of an underlying smooth surface and the projection
of noisy data points onto the estimated local surface. For this pur-
pose, respective approaches apply moving least squares (MLS)
based methods [16], [17], [18], [19], robust principal component
analysis (RPCA) [20] and moving robust principal component
analysis (MRPCA) [21], or locally optimal projection based
operators where the LOP operator [1] has been extended in terms
of Weighted LOP (WLOP) [2], Feature LOP (FLOP) [3], Contin-
uous LOP (CLOP) [5], Edge-Aware Resampling (EAR) [4] and
a Gaussian mixture model inspired projection operator [22]. The
latter has been demonstrated to be capable of resampling point
clouds while preserving features due to the additional guidance
of filtered normals.

Sparsity-Based Methods: This class of approaches relies on
the assumption that objects can be represented in terms of
piecewise smooth surfaces with sparse features. Respective
denoising techniques include L0-norm [23], [24] and L1-norm
minimization [21], [25], [26], sparse dictionary learning [27]
as well as patch-based or feature-based graph Laplacian reg-
ularization [28], [29], [30], graph-based point cloud denois-
ing based on jointly leveraging geometry and color informa-
tion [31], guided filtering based on normal information fol-
lowed by a L1-medial skeleton extraction to get the sharp
structure of the surface [32] as well as leveraging gravitational
feature functions [33]. In the context of denoising dynamic
point clouds, Hu et al. [34] explored the temporal coherence
of spatio-temporal graphs with respect to the underlying sur-
face, where a respective manifold-to-manifold distance has
been introduced. Furthermore, data-driven exemplar priors have
been used for surface reconstruction [35], where the sparsity
of local shapes from a collection of 3D objects has been
explored.

Non-Local Methods: In contrast to the previous classes, these
approaches rely on the assumption that geometric statistics
are (approximately) shared by certain surface patches of a 3D
model, i.e. local surface denoising is conducted based on col-
lected neighborhoods with similar geometry [36], [37], [38],
[39]. However, the definition of a suitable metric as well as
the regular representation of local surface structures remain

https://github.com/stotko/incomplete-gamma-kernels
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challenging. Furthermore, density-based point cloud denoising
has been approached by first applying particle-swarm based
optimization for kernel density estimation followed by a Mean
Shift clustering-based outlier removal and a final bilateral mesh
filtering [40].

B. Learning-Based Denoising Approaches

Recent works more and more leverage deep learning for point
cloud denoising as well as surface reconstruction from point
clouds. Examples include approaches for point cloud consoli-
dation and resampling such as PointNet [41], PointNet++ [42],
patch-based progressive point cloud upsampling [43] as well as
the unification of the considerations of densifying, denoising
and completing point clouds [44]. Other approaches followed
the principles of initially projecting the points onto coarse-
level local reference planes and applying a subsequent refine-
ment [45] or the initial removal of outliers before conduct-
ing the denoising [46]. Further approaches include edge-aware
point cloud consolidation [47], adversarial defense [48], graph-
convolutional methods [49], unsupervised approaches such as
Total Denoising [50], gradient field based denoising [51], [52],
[53], differentiable approaches [54], [55], [56] as well as mani-
fold learning based on encoder-decoder architectures [6], [7].
Non-local self-similarities have also been considered to de-
fine neural self-priors that capture geometric repetitions [57],
capture semantically related non-local features [58], or apply
self-correction by allowing the model to capture structural and
contextual information from initially disorganized parts [59].
Furthermore, normalizing flows have been applied to the learn
the distribution of noisy points and disentangle noise from
the latent space [60]. In addition, the feature-aware recurrent
point cloud denoising network (RePCD-Net) [61] combines a
recurrent network architecture for noise removal with multi-
scale feature aggregation and propagation and a feature-aware
Chamfer distance loss.

C. Mean Shift Approaches

The Mean Shift approach [8] is a well-studied local mode-
seeking method with diverse applications including data clus-
tering [9], [10], [62], [63], image filtering [10], segmenta-
tion [10], [64], denoising [12], [65], and object tracking [64].
Tremendous effort has been spent to study its convergence
behavior [9], [10], [66], [67], [68], [69] which culminated in a
rigorous set of properties proven by Yamasaki and Tanaka [70].
Recently, Mean Shift clustering has also been applied in the
latent space of neural encoder-decoder approaches to achieve
a better structured data representation [11]. Furthermore, the
connection between the Mean Shift approach and denoising
autoencoders [71] has been revealed by Bigdeli et al. [12], who
leveraged the observation that the output of an optimal denoising
autoencoder (DAE) is a local mean of the true data density [13]
to show that that the autoencoder loss is a Mean Shift vector
and to use the respective magnitude to define a prior for image
restoration.

III. BACKGROUND

Before deriving our proposed kernel family as a generalization
of LOP in the context of Mean Shift, we first provide a brief
introduction into the concepts of both approaches.

A. Mean Shift

The basic objective of Mean Shift [8] is to find the modes
of a probabilistic distribution f which has been observed by a
(sparse) set of points P = {pi ∈ R

d} in a d-dimensional vector
space. Due to this abstract formulation, it has been applied to
various computer vision problems by choosing an appropriate
application-specific feature space, e.g. the L∗u∗v∗ color space
for image filtering or segmentation [10]. In order to analyze the
unknown distribution f at any point q ∈ R

d, it is modeled by a
kernel density estimate:

f̂P,K (q) =
1

|P|hd

∑
i

K(pi−q
h ) (1)

Here, h denotes the kernel window size and K a kernel that is
non-negative (K(x) ≥ 0), normalized (

∫
Rd K(x) dx = 1), and

radially symmetric (K(x) = cK k(‖x‖2)). The 1-dimensional
function k defined in the symmetry constraint, where cK denotes
a normalization constant, is called the kernel profile of K and
plays an important role in the analysis of Mean Shift [70].
Furthermore, the gradient of the kernel density estimate

∇f̂P,K (q) =
2

|P|hd+2

cK
cG

∑
i

G(pi−q
h ) (pi − q) (2)

can be derived using the kernel G(x) = cG g(‖x‖2) with
the normalization constant cG and its corresponding profile
g(x) = − d

dxk(x). Based on these two functions, the main com-
ponent of the algorithm for finding the modes is the Mean Shift
vector [10]

mP,G(q) =
h2

2

cG
cK

∇f̂P,K(q)

f̂P,G(q)
=

∑
i G(

pi−q
h ) (pi − q)∑

i G(
pi−q
h )

(3)

which describes the gradient vector normalized with respect to
the kernel G. In particular, it directly determines the updated
point at each time step t by the corresponding fixed-point it-
eration q(t+1) = q(t) +mP,G(q

(t)) which performs gradient
ascent on the kernel density estimate f̂P,K .

B. Locally Optimal Projection

Unlike approaches that are based on the probabilistic concept
of Mean Shift to tackle various different computer vision tasks,
the problem of denoising point clouds has also been of great
relevance for the computer graphics community. Many advanced
solutions have been independently developed there, especially
methods leveraging the robust L1 median. To efficiently com-
pute the unique global solution in these median-based formu-
lations, the iterative Weiszfeld algorithm [72] has become a
popular and commonly used choice. Specifically, it also marks
the foundation of LOP [1] as a robust localized 3D projection
operator. Given a set of noisy 3D target points P = {pi ∈ R

3}
sampled from a smooth surface S , the task here consists in



4078 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 6, JUNE 2024

projecting and uniformly distributing an independent set of 3D
points Q = {qj ∈ R

3} onto the unknown surface S which is
defined by the observations P only. This can be expressed in
terms of an energy formulation

E(Q) =
∑
j

ELOP(qj) + Erep(qj) (4)

based on an attraction and a repulsion term

ELOP(qj) =
∑
i

θ(‖pi − q
(t)
j ‖) ‖pi − qj‖ (5)

Erep(qj) = λj

∑
i,i �=j

θ(‖q(t)
i − q

(t)
j ‖) η(‖q(t)

i − qj‖) (6)

where θ(x) = e−x2/(h/4)2 denotes a compact localization kernel
and η a decreasing regularization function penalizing small
distances between projection points to ensure a uniform dis-
tribution of the projected points. Common choices of η include
the originally proposed function ηLOP(x) = 1/(3x3) [1] as well
as the less rapidly decreasing function ηWLOP(x) = −x [2].
Both energy terms are balanced by weights λj which are cho-
sen such that they only depend on a single, global parameter
μ ∈ [0, 1/2). Based on the Weiszfeld algorithm, the solution to
this optimization problem can be obtained by the fixed-point
iteration

q
(t+1)
j =

∑
i α(‖pi − q

(t)
j ‖)pi∑

i α(‖pi − q
(t)
j ‖)

+ μ

∑
i,i�=j β(‖q(t)

i − q
(t)
j ‖) (q(t)

j − q
(t)
i )∑

i,i�=j β(‖q(t)
i − q

(t)
j ‖)

(7)

with kernels α(x) = θ(x)/x and β(x) = θ(x)/x | d
dxη(x)|.

C. Generalization via Incomplete Gamma Kernels

Although Mean Shift and Locally Optimal Projection have
been separately developed from different contexts and mathe-
matical concepts with the aim of solving a distinct problem,
we can link both approaches by rewriting the update step
in (7):

q
(t+1)
j = q

(t)
j +mP,GLOP(q

(t)
j )− μmQ(t)

j ,Grep
(q

(t)
j ) (8)

This reveals that the LOP operator is a combination of two Mean
Shift steps in the 3D space: 1) a standard Mean Shift with respect
to the target set P and GLOP being the normalized kernel α; and
2) a reverse applied Blurring Mean Shift [9] where the Mean
Shift vector is instead subtracted and computed from the shifted
and, in turn, blurred source set Q(t)

j = Q(t) \{q(t)
j } as well as

from the kernel Grep corresponding to the normalized kernel β.
Therefore, we can interpret the localized L1 attraction energy
minimization with a Gaussian kernel in (5) as a maximization
of a global kernel density estimate (1) with respect to a dif-
ferent kernel KLOP. An example of this relation is shown in
Fig. 1.

To derive KLOP as part of a novel kernel family KΓ for the
general case of the R

d space, we consider the 1-dimensional
profile of the involved kernel GLOP, i.e. α in (7), which re-
sembles a gamma distribution fΓ(x | a, b) ∝ xa−1 e−x/b with
support x ∈ (0,∞) and parameters a > 0, b > 0. The pro-
file of the actual kernel then resembles the distribution
F̄Γ(x | a, b) ∝ Γ(a, x/b) which is the complementary CDF
of fΓ and based on the upper incomplete gamma function
Γ(a, x) =

∫∞
x ta−1 e−t dt. Therefore, the d-dimensional kernel

has the general form KΓ(x | a, b) = cKΓ
Γ(a, ‖x‖2/b).

Since we also need to compute the respective normalization
constant cKΓ

, we switch the integration domain to spherical
coordinates and substitute s = r2/b:

1

cKΓ

=

∫
Rd

Γ(a, ‖x‖2
b ) dx =

∫
Ω

∫ ∞

0

Γ(a, r2

b ) r
d−1 dr dΩ

=
b

d
2

2

[∫
Ω

dΩ

] [∫ ∞

0

Γ(a, s) s
d
2−1 ds

]
(9)

Due to radial symmetry, both integrals can be solved
independently. The former one describes the surface
area of the d-dimensional unit sphere Ω and has the
closed form

∫
Ω dΩ = 2πd/2/Γ(d/2). Using the relation∫∞

0 Γ(a, x)xb−1 dx = Γ(a+ b)/b [73], we get an expression
for the latter one in terms of the ordinary gamma
function. We can also apply the recursive relation of
the gamma function Γ(a+ 1) = aΓ(a) and conclude that
1/cKΓ

= (πb)d/2 Γ(d/2 + a)/Γ(d/2 + 1).
Finally, we change the parametrization by setting

a = p/2, b = 2σ2 to obtain the final kernel:

KΓ(x | p, σ2) =
1

(2πσ2)
d
2

Γ(d+2
2 )

Γ(d+p
2 )

Γ(p2 ,
‖x‖2
2σ2 ) (10)

These incomplete gamma kernels span a family of Mean Shift
kernels corresponding to Lp estimators of the attraction energy
localized by a Gaussian kernel. An important special case of this
family is the LOP kernel for which we choose p = 1, σ2 = 1/32
and apply the identity Γ(1/2, x) =

√
π erfc(

√
x) to

get

KLOP(x) =
4d

π
d−1
2

Γ(d+2
2 )

Γ(d+1
2 )

erfc(4 ‖x‖) (11)

where erfc denotes the complementary error function. Another
special case is the corresponding Gaussian kernel KGaussian ob-
tained by setting p = 2 which is a common choice in Mean Shift
and has been extensively analyzed as the localized L2 estimator
of the geometric mean. Fig. 2 shows an interpolation between
these kernels by varying the p-norm.

IV. KERNEL PROPERTIES

In the following, we derive several theoretical properties
of the family of incomplete gamma kernels in R

d which are
summarized in Table I and later leveraged in the applications
(see Section V).
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Fig. 2. Interpolation between 2D incomplete gamma kernels KΓ with varying p ∈ [1, 2] and fixed σ2 = 1/32. Each kernel corresponds to a localized attraction
energy minimization with the respective p-norm.

TABLE I
PROPERTIES OF INCOMPLETE GAMMA KERNELS KΓ(x | p, σ2) IN Rd FOR

p > 0

A. Characteristic Function and Fourier Transform

Feature preservation is a highly relevant aspect in the de-
velopment of denoising approaches (see Fig. 4) and will later
be taken into account in the definition of density weighting
schemes (see Section V-A), loss functions (see Section V-C),
and neural network priors (see Section V-D). In order to gain a
deeper understanding of the proposed kernel family KΓ in this
context, we are interested in its characteristic function ϕΓ(ω)
which can also be interpreted as the Fourier transform F of KΓ

at the angular frequency ω ∈ R
d.

First, we can apply the relation between the d-dimensional
Fourier transform of a radially symmetric function f(x) in
terms of the Hankel transform of order d/2− 1 of the func-
tion ‖x‖d/2−1 f(‖x‖) [74] to reduce the dimensionality of the
integral to the radial component

ϕΓ(ω)=F [KΓ

(
x | p, σ2

)
](ω)=

∫
Rd

KΓ(x | p, σ2) ei〈ω |x〉 dx

=cKΓ

(2π)
d
2

‖ω‖ d
2−1

∫ ∞

0

Γ(p2 ,
r2

2σ2 ) J d
2−1 (‖ω‖ r) r d

2 dr

(12)

where Jq(x) denotes the Bessel function of the first kind of order
q. This integral has the closed-form solution (see the Appendix,
available online, for a more detailed derivation):

cKΓ

(2π)
d
2

‖ω‖ d
2−1

∫ ∞

0

Γ(p2 ,
r2

2σ2 ) J d
2−1 (‖ω‖ r) r d

2 dr

Fig. 3. Comparison of LOP and Gaussian kernels in spatial and frequency
domain. Filtering with the LOP kernel KLOP better preserves higher frequency
information.

= cKΓ
(2πσ2)

d
2
Γ(d+p

2 )

Γ(d+2
2 )

1F1(
d+p
2 , d+2

2 ,−σ2‖ω‖2
2 )

= 1F1(
d+p
2 , d+2

2 ,−σ2‖ω‖2
2 ) (13)

Therefore, the characteristic function of the incomplete gamma
kernel can be written in terms of the confluent hypergeometric
function of the first kind1F1. Fig. 3 shows a comparison between
the Gaussian kernel (p = 2) and the LOP kernel (p = 1) both in
spatial and in frequency domain.

If we consider the special case 1F1(a, a, x) = ex, we can
observe that this result is consistent with the Fourier transform
of the Gaussian kernel. Furthermore as d → ∞, the entire family
of localized Lp kernel estimators converges to the L2 estimator
since distances become increasingly similar in higher dimen-
sions due to the curse of dimensionality.

B. Moment-Generating Function

Another closely related and useful quantity to consider is
the moment-generating function MΓ of the kernel KΓ which
can be used to compute its mean vector μΓ ∈ R

d and its
covariance matrix ΣΓ ∈ R

d×d. Especially the insights about
the magnitude of ΣΓ are crucial to define consistent density
weights (see Section V-A) and an accurate CLOP approximation
(see Section V-B). Although there is a direct connection to the
characteristic function in terms of

MΓ(ω) = ϕΓ(−iω) = 1F1(
d+p
2 , d+2

2 , σ2‖ω‖2
2 ) (14)

it does not necessarily exist in general, so we have to prove this
property for all ω ∈ R

d. For this purpose, we repeatedly apply
the comparison theorem of calculus to derive finite bounds of the
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integral. We first observe that MΓ(ω) > 0 since the integrand
consisting of KΓ and an exponential term is positive. To obtain
an upper bound of MΓ, we switch to spherical coordinates
and bound cos(∠(ω,x)) ≤ 1, where ∠(ω,x) denotes the angle
between ω and x, to decouple the radial component from the
angular one:

MΓ(ω) =

∫
Rd

KΓ(x | p, σ2) e〈ω|x〉 dx

= cKΓ

∫
Ω

∫ ∞

0

Γ(p2 ,
r2

2σ2 ) r
d−1 e‖ω‖r cos(∠(ω,x)) dr dΩ

≤ c1

∫ ∞

0

Γ(p2 ,
r2

2σ2 ) r
d−1 e‖ω‖r dr (15)

For brevity, we put finite terms into constants ci. Next, we
combine the two individual upper bounds

Γ(a, x) ≤
{
a xa−1 e−x, a ∈ [1,∞), x ∈ [a,∞) [75]
xa−1 e−x, a ∈ (0, 1], x ∈ (0,∞) (partial int.)

(16)

and apply them after splitting the integral at r0 = max(1, p/2).
Furthermore, we simplify the expression by completing the
square in the exponential term:

c1

∫ ∞

0

Γ(p2 ,
r2

2σ2 ) r
d−1 e‖ω‖r dr

≤ c1 c2 + c1

∫ ∞

r0

r0 (
r2

2σ2 )
p
2−1 e−

r2

2σ2 rd−1 e‖ω‖r dr

= c1 c2 + c1 c3

∫ ∞

r0

rp+d−3 e−
(r−σ2‖ω‖)2

2σ2 dr (17)

Since r ∈ [1,∞), the remaining polynomial can be bound by
a higher order k = max(0, �p+ d− 3�) ∈ N0. Therefore, this
integral describes the (incomplete) k-th raw moment of a 1D
normal distribution and is finite for any k ∈ N0 which, in turn,
proves that MΓ(ω) < ∞ exists.

1) Mean: We can now use the moment-generating function
MΓ to directly compute all raw moments of the kernel KΓ

by evaluating the respective derivative at ω = 0. For the mean
vector μΓ ∈ R

d of KΓ, we consider the first-order derivative

∂

∂ω
MΓ(ω) = d+p

d+2 σ
2
1F1(

d+p+2
2 , d+4

2 , σ2‖ω‖2
2 )ω (18)

and getμΓ = ∂
∂ωMΓ(0) = 0 as the expected result for a radially

symmetric kernel.
2) Covariance: Similarly, we compute the second-order

derivative

∂2

∂ω ∂ωT
MΓ(ω) = d+p

d+2 σ
2
[
1F1(

d+p+2
2 , d+4

2 , σ2‖ω‖2
2 ) I

+ d+p+2
d+4 σ2

1F1(
d+p+4

2 , d+6
2 , σ2‖ω‖2

2 )ωωT
]

(19)

and obtain the covariance matrix ΣΓ ∈ R
d×d of the kernel

KΓ using the first-order and second-order raw moments as
ΣΓ = ∂2

∂ω ∂ωTMΓ(0)− μΓμ
T
Γ = [(d+ p)/(d+ 2)]σ2 I.

C. Mean Shift Properties

In addition to the distribution-specific properties above, we
can get further insights into the kernel family by exploiting the
comprehensive theory that has been developed for the Mean
Shift algorithm [70]. This requires proving several additional
properties including that the kernel KΓ is bounded and analytic
and that its profile kΓ is differentiable, strictly decreasing, and
convex.

1) Differentiability, Monotonicity and Convexity: In order to
show that the profile is strictly decreasing, we consider its first-
order derivative

d

dx
kΓ(x | p, σ2)=

d

dx
Γ(p2 ,

x
2σ2 )=−( 1

2σ2 )
p
2 x

p
2−1 e−

x
2σ2 (20)

which is defined for all x ∈ (0,∞) as well as for x = 0 if
p ∈ [2,∞). Since the involved polynomial and exponential
terms are always positive, it follows that the derivative must
be negative, that is d

dxkΓ(x | p, σ2) < 0, and the profile strictly
decreasing.

Similarly, we see that the second-order derivative is given by

d2

dx2
kΓ(x | p, σ2) =

d

dx
kΓ(x | p, σ2)

[ p
2 − 1

x
− 1

2σ2

]
(21)

where, in order to ensure that d2

dx2 kΓ(x | p, σ2) > 0, the latter
term must be non-positive which is equivalent to the condition
x ≥ (p− 2)σ2. Since this should hold for all x ∈ (0,∞), con-
vexity is only guaranteed for kernels with p ∈ (0, 2] which, in
particular, includes the Gaussian kernel (p = 2) as well as the
LOP kernel (p = 1).

2) Boundedness and Analyticity: Instead of showing the
properties of boundedness and analyticity for the kernel KΓ

itself, it is sufficient to show them for its profile kΓ. Since kΓ
is non-negative and monotonically decreasing, we only have to
consider the case x = 0. For this value, Γ(a, x) reduces to the
gamma function Γ(a) which is finite for a > 0. Furthermore,
analyticity directly follows from the fact that Γ(a, x) is holo-
morphic in x ∈ (0,∞) for any fixed a > 0.

3) Consequences for the LOP Operator: The aforemen-
tioned properties have several direct implications [70] on the
behavior of the LOP operator (with zero repulsion) as well
as to Mean Shift applied with the incomplete gamma kernel
KΓ for p ∈ (0, 2]. With the exception of the finite set of target
points P where singularities are introduced in the kernel GΓ,
the following properties hold:

Non-Zero Gradient: The gradient of the kernel density esti-
mate ∇f̂P,KΓ

in (2) is non-zero outside the convex hull of the
target point set P . This implies that all solutions must lie within
the convex hull.

Plateau-Free Density: In addition to non-zero gradients, the
kernel density estimate on the set Rd \P has no plateaus. Since
the set of target points P is finite, we can extend this property
to the full space R

d.
Non-Decreasing Density Estimate: Another interesting subset

to consider is the improvement ball I(q(t)
j ) which denotes a

d-dimensional sphere centered at the point q(t)
j +mP,GΓ

(q
(t)
j )

with radius ‖mP,GΓ
(q

(t)
j )‖. In case of the LOP operator, it
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follows that all points x within the improvement ball have non-
decreasing kernel density estimates f̂P,KΓ

(x) ≥ f̂P,KΓ
(q

(t)
j ).

Convergence of Density Estimate Sequence: As a conse-
quence of the above property, the sequence of kernel density
estimates {f̂P,KΓ

(q(t))} obtained via the fixed-point iteration
q(t+1) = q(t) +mP,GΓ

(q(t)) is non-decreasing. Furthermore,
this sequence always converges.

Convergence of Mode Estimate Sequence: Finally, we can
conclude that the mode estimate sequence {q(t)} converges
to a single point. Depending on the window size h and the
distribution of the target points P , this solution could be either a
point p ∈ P due to the singularity (for very small window sizes)
or a different point p ∈ R

d \P in the corresponding convex hull
(for larger window sizes). While a proof for the convergence
of a modified version of LOP in R

d has only been shown very
recently [76], this provides an alternative way through the com-
prehensive Mean Shift theory which, though only considering
the attraction term, extends and generalizes to all kernels KΓ

with p ∈ (0, 2].

D. Further Properties

Besides the theoretical results concerning basic distribution-
related aspects as well as insights in the projection behavior
of LOP from the perspective of Mean Shift, we want to derive
further properties and, in particular, strict positive definiteness.
This opens up a broader set of applications beyond improved
density weights (see Section V-A) and may also be relevant, e.g.,
in the field of Gaussian Process Regression, which, however is
out of the scope of this work.

1) Complete Monotonicity: For this purpose, we show
that the kernel profile kΓ is completely monotonic, that is
(−1)n dn

dxn kΓ(x | p, σ2) ≥ 0 for all n ∈ N0 and x ∈ (0,∞).
From the derivation of the Mean Shift properties, we already
know that kΓ(x | p, σ2) > 0 and d

dxkΓ(x | p, σ2) < 0 holds for
all x ∈ (0,∞). Since xa with a ≤ 0 as well as e−x are both com-
pletely monotonic and the product of two completely monotonic
functions retains that property [77], we can conclude that this
also holds for kΓ(x | p, σ2) with p ∈ (0, 2].

2) Strict Positive Definiteness: A direct consequence of the
complete monotonicity of its profile is that the kernel KΓ is
a positive definite function. Furthermore, since the profile is
also not a constant function, KΓ must be even strictly postive
definite [78]. Therefore, for any set of distinct points P , the
matrix

C =
(
KΓ(pi − pj | p, σ2)

)
ij
∈ R

|P|×|P| (22)

is symmetric and positive definite for p ∈ (0, 2], so it can be
interpreted as a Gram matrix and any linear system with respect
to C has a unique solution which can be computed by, e.g.,
conjugate gradient solvers. This also directly extends to any
truncated version ofKΓ where the matrixC becomes sparse and
more efficient to solve as vanishing derivatives of the truncated
profile do not affect complete monotonicity.

V. APPLICATIONS

Besides the application of other localized Lp estimators for
point cloud denoising via the incomplete gamma kernels KΓ,
as shown in Fig. 4, we illustrate several further applications to
demonstrate the benefits of the theoretical results derived for the
kernel family.

A. WLOP Density Weights

In addition to a high robustness to noise, another crucial
requirement in point cloud denoising is a uniform distribution
of the denoised points. Although the introduction of an addi-
tional repulsion energy (6) mitigates the clustering effect of the
attraction term (5), the projection is still highly dependent on the
distribution of the target points P . This has been addressed in
WLOP [2] by computing weights vi for each target point pi and
v
(t)
j for each projection point q(t)

j as an additional regularization
based on the reciprocal and ordinary density value respectively
with the (unnormalized) localization kernel θ. However, our
derived theoretical properties reveal two major limitations of
this particular choice: 1) Although the Gaussian localization
kernel θ could be considered a reasonable approximation of the
actual kernel KLOP given in (11), it significantly differs in terms
of the frequency spectrum (see Section IV-A and Fig. 3) as well
as covariance (see Section IV-B) and leads to oversmoothing
of high-frequency density information and, hence, a lacking
preservation of fine-scale details; 2) taking the reciprocal to
invert the density of pi ignores the dependencies between the
weights which corresponds to the assumption of constant density
in a window of size h. In order to achieve a more accurate
normalization, we propose two novel weighting schemes.

Simple Scheme: A simple extension to the WLOP weights
keeps the assumption of the latter limitation and addresses only
the former one by applying the actual kernel KLOP, that is
estimating the weights

vi =
1

f̂P,KLOP(pi)
, v

(t)
j = f̂Q(t),KLOP

(q
(t)
j ) (23)

via the kernel density estimate (1) of the point clouds P and
Q(t) respectively. This scheme can be easily integrated into
existing applications of WLOP as it only involves a different
kernel function in the overall weight computation.

Full Scheme: To address both limitations, we consider the
kernel density estimate f̂P,KLOP with weights vi applied to each
term. We want to enforce constant density at the points pi which
can be formulated as a linear optimization problem in matrix
form:

1

|P|hd

(
KLOP(

pi−pj

h )
)
ij

(. . . , vi, . . . )
T = 1 (24)

This corresponds to radial basis function (RBF) interpolation
with a Gram matrix similar to (22) and we can obtain a unique so-
lution since KLOP is strictly positive definite (see Section IV-D).
Furthermore, we truncate the kernel at h/2 to drastically re-
duce the memory requirements of the matrix and use a sparse
conjugate gradient solver. In case of the projection points q(t)

j ,
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Fig. 4. Exemplary point cloud denoising of the Elephant model (302 458 points) with 30 WLOP [2] iterations (h = 6, μ = 0.4) for different incomplete gamma
kernels KΓ using varying p ∈ (0, 2] and fixed σ2 = 1/32. The model has been corrupted with σnoise = 0.3 (80% points) and σoutlier = 1.5 Gaussian noise (20%
points) respectively to account for both typical sensor noise and heavy outliers. Higher p-norms result in more regular but oversmoothed point distributions whereas
lower values better preserve features. Unit of h, σnoise, σoutlier: [% BB diagonal].

we consider the inverse of the matrix which leads to the same
weights as in the simple scheme.

B. CLOP Kernel Approximation

While the major aspect of ensuring a uniform distribution of
the projected point set can be addressed with an appropriate
weighting as shown in Section V-A, obtaining these results
efficiently becomes challenging especially on large datasets
as all target points P will be taken into account for denois-
ing. For this purpose, CLOP [5] first computes a more com-
pact representation of the points P in terms of a smaller
set of normal distributions PN = {(wi,μi,Σi)} with weights
wi ∈ R, mean vectors μi ∈ R

3, and local covariance matrices
Σi ∈ R

3×3 and then extends the discrete attraction energy to
the continuous space. However, since the integral in the respec-
tive update step cannot be directly solved, the kernel α(‖x‖)
is approximated by a radially symmetric Gaussian mixture
model α̂(x) = (1/h)

∑3
k=1 ŵk ĉk N (x/h |0, σ̂2

k I) consisting
of three components with fitted parameters {(ŵk, σ̂k) ∈ R× R}
and dimension-dependent constants ĉk = |2πσ̂2

k I|1/2. In the
context of Mean Shift, this implies that the kernel GLOP is in
fact approximated which directly allows us to derive

K̂LOP(x) =

∑3
k=1 σ̂

2
k ŵk ĉk N(x |0, σ̂2

k I)∑3
k=1 σ̂

2
k ŵk ĉk

(25)

as an approximation of the kernel KLOP in R
d with the same set

of fitted parameters {(ŵk, σ̂k)}.
Kernel Fit: Finding the optimal parameter set is highly chal-

lenging due to the singularity of GLOP at x = 0 and, thereby,
the unbounded ratio between the smallest and largest sampling
value in the half-open fitting interval (0, 1] forh = 1. In contrast,
we directly optimize on the kernel KLOP which does not suffer
from these limitations. We fix the parameterw3 = 1 to constrain
the remaining degree of freedom and obtain the solution from
107 uniformly sampled points in the interval [0, 1] via the
Levenberg-Marquardt algorithm (see Table II). Although the
LOP operator is scale-invariant in terms of the kernel α, we
nevertheless estimate a global scaling factor for the weights ŵk

via Levenberg-Marquardt optimization in the interval (0.01, 1]
for a better comparability with CLOP.

TABLE II
PARAMETER SETS OF KERNEL APPROXIMATION K̂LOP

Consistent Fit: In addition to the derivation of the kernel
approximation K̂LOP, we can futher apply the insights about
the covariance of KLOP (see Section IV-B). From (25), we can
also see that the covariance matrix Σ̂LOP ∈ R

d×d of the approx-
imation consists of a convex combination of the parameters σ̂2

k:

Σ̂LOP =

∑3
k=1 ŵk σ̂

d+4
k∑3

k=1 ŵk σ̂
d+2
k

I (26)

In the limit d → ∞, this combination degenerates to
Σ̂LOP → maxk σ̂

2
k I which is similar to the maximum norm

L∞ being the limit of the Lp norms. Therefore, we
can enforce an additional consistency constraint in the
parameter optimization process by fixing the parameter
σ̂3 =

√
1/32 such that Σ̂LOP matches the expected covariance

ΣLOP = 1/32 [(d+ 1)/(d+ 2)] I → 1/32 I.

C. Robust Loss Functions

A closely related, yet slightly different task is mesh denoising
where the quality of the noisy vertex set (similar to point sets
in point cloud denoising) should be improved while preserving
the mesh connectivity and avoiding self-intersections of the
faces. Respective approaches tackle this problem in a two-stage
approach where the face normals are initially denoised and
subsequently used as a guidance in the second stage to consis-
tently adjust the vertex positions. Obtaining a reliable estimate
of a denoised normal n ∈ R

3 can be performed by leveraging
gradient descent or M-estimation from the broad field of robust
statistics [79] which is also related to the concept of anisotropic
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diffusion [80]. Here, the objective function

L(n) =
∑
i

ρ(‖ni − n‖) (27)

defined with a robust loss function ρ is considered and a
solution can be found based on the corresponding influ-
ence function Ψ(x) = d

dxρ(x) and anisotropic weight function
g̃(x) = Ψ(x)/x [81]:

n(t+1) =

∑
i g̃
(‖ni − n(t)‖) n(t)∥∥∑

i g̃
(‖ni − n(t)‖) n(t)

∥∥ (28)

This result is closely related to the derivation of Mean Shift and
shares many properties with it [10]. While the Gaussian loss is
a well-known choice in this context, we can generalize it to the
family of incomplete gamma losses along with the respective
influence and anisotropic weight functions and corresponding
frequency-related properties (see Section IV-A):

ρΓ(x | p, σ2) =
1

Γ(p2 )
γ(p2 ,

x2

2σ2 ) (29)

ΨΓ(x | p, σ2) =
2

(2σ2)
p
2 Γ(p2 )

|x|p−2 e−
x2

2σ2 x (30)

g̃Γ(x | p, σ2) =
2

(2σ2)
p
2 Γ(p2 )

|x|p−2 e−
x2

2σ2 (31)

Here, the losses ρΓ are built upon the lower incomplete
gamma function γ(a, x) =

∫ x

0 ta−1 e−t dt which is connected
to the upper incomplete gamma function via the relation
γ(a, x) + Γ(a, x) = Γ(a). By choosing p = 1 and applying the
identity γ(1/2, x) =

√
π erf(

√
x), we get the LOP loss

ρLOP(x |σ2) = erf( |x|√
2σ2

) (32)

where erf denotes the error function and is related to its
complementary counterpart via erfc(x) = 1− erf(x). Consid-
ering σ2 = 1/32, the relation g̃LOP(x | 1/32) ∝ gLOP(x

2) fur-
ther highlights the close similarity to Mean Shift. Due to the
broad applicability of the concepts of robust statistics [79], i.e.
the definition and optimization of loss functions, to traditional
approaches, machine learning, and many other fields such as
Mean Shift, our losses ρΓ may also be highly relevant for deep
learning techniques and extend previous generalizations [82].
Fig. 5 shows a comparison between the Gaussian M-estimator
(p = 2) and the LOP M-estimator (p = 1).

D. Neural Network Priors

In the context of learning-based point cloud denoising, many
approaches rely on clean groundtruth data in order to learn how
various types of synthetically generated noise such as Gaussian,
uniform, or simulated sensor noise can be effectively removed
from the given point set. However, they may not necessarily
generalize to real-world data exhibiting different possibly sys-
tematic yet unknown noise patterns and, hence, lead to less reli-
able and accurate results. For this purpose, TotalDenoising [50]
formulates the learning objective in an unsupervised manner,
which only requires noisy input data without further knowledge
about the noise itself or corresponding clean data. Given noisy

Fig. 5. Comparison of LOP and Gaussian M-estimators for σ2 = 1/2. Due to
the close relation to Mean Shift, these robust loss functions ρ do not only share
the shape of the corresponding kernels K but also have similar properties and
form localized versions of the common global L2 and L1 loss functions.

points p ∈ R
3, the parameters Θ of a neural network fΘ are

optimized such that the observations p are projected to the
unknown surface S represented by the distribution of modes
p(x | S). In particular, this can be formulated by the objective
function

L(Θ) = Ep∼p(x | S) Eq∼q(x |p) ρ(fΘ(p, q)) (33)

where ρ denotes a loss function, e.g. the commonly used L2 loss
or other choices such as robust losses (see Section V-C), and q
denotes the generated samples during training. Since any point
x ∈ S on the surface is a valid target onto which the noisy input
p can be projected, the unsupervised training procedure will not
converge to a unique solution. Thus, the prior distribution

q(x |p) = p(x | S) K(W (x− p)) (34)

regularizes this problem by convolving the distribution p(x | S)
with a smoothing kernel K and a diagonal weight matrix
W ∈ R

3×3 to favor the closest mode as the unique solution
for projection. This convolution-based regularization is similar
to the formulation of the kernel density estimate (1) in the
Mean Shift approach. Therefore, instead of using a Gaussian
kernel as in the original TotalDensoising approach, we can apply
the gained insights of our kernel family KΓ regarding feature
preservation (see Section IV-A and Fig. 3) and use the LOP
kernel KLOP given in (11) in the prior distribution.

VI. EXPERIMENTAL RESULTS

In the following, we demonstrate the effectiveness of our
proposed extensions in Section V that are derived from the
theoretical properties of the kernel family (see Section IV).

A. Evaluation of WLOP Density Weights

In order to evaluate the performance of our density weighting
schemes defined in (23) and (24) (see Section V-A), we measured
the regularity of the point cloud Q after projection onto a highly
irregular target P [2]. For this purpose, we sampled 74 000
target points from a 3D surface patch inversely proportional to
the intensity of the mapped Bird image and took a random subset
of 3700 points for projection. Then, we applied 100 iterations of
the LOP operator as well as its weighted versions and computed
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Fig. 6. Kernel density estimate f̂ for h = 3 of a planar target surface patch P (74 000 points) that is sampled inversely proportional to the intensity of the Bird
image. The regularity σQ of any projected point set Q onto this target directly depends on the uniformity of f̂ . Whereas WLOP [2] and our simple weighting
scheme cannot fully remove high-frequency variations, our full weighting scheme leads to a significantly better normalization and more uniform density. Unit of
h: [%BB diagonal].

Fig. 7. RegularityσQ of the input subsetQ (3700 points) projected on a planar
target surface patch P (74 000 points) that is sampled inversely proportional
to the intensity of the Bird image. Due to the better density normalization,
our weighting schemes further improve the regularity across various combi-
nations of the window size h and the repulsion weight μ. Unit of h and σQ:
[% BB diagonal].

the regularity

σQ =

[
1

|Q|
∑
i

(
d(qi,Q\{qi})− d(qi,Q\{qi})

)2
] 1

2

(35)

which is defined as the standard deviation of the nearest neighbor
distances d(x,Y) = minj‖x− yj‖ within the point cloud Q.
Fig. 7 shows the quantitative results for 60×50 combinations of
h and μ. Throughout 76.7% of all combinations, our simple
weighting scheme (23) performs better than WLOP with a
slightly lower value of σQ on average. Our full scheme (24)
outperforms WLOP in 99.3% and the simple scheme in 98.7% of
all combinations, especially in configurations with low repulsion
weights μ ∈ [0, 0.2].

These improvements in point cloud regularity directly corre-
spond to a more evenly distributed density along the surface.
Fig. 6 depicts a comparison of 1000×1000 evenly sampled
density values on the respective 3D surface patch. Both WLOP

and our simple scheme (23) normalize the lower frequency com-
ponents of the density, but still retain high-frequency variations
due to the independent computation of each weight. On the other
hand, our full scheme (24) does not suffer from these artifacts
and only leads to underestimated densities at the boundary and
in sparsely sampled regions where the window size h is not
sufficiently large to bridge these gaps.

Since Mean Shift and, thereby, LOP and its variants are
scale-invariant with respect to a global normalization constant,

we computed the mean density f̂ for each weighting scheme
and used this value to normalize each density distribution for
a fair comparison. Whereas this value is close to one for both
of our schemes due to the correct handling of the normalization
constants, we can derive a theoretical estimate of this value for
WLOP

f̂WLOP ≈ 1

|P|h3
c
(d=3)
θ

c
(d=3)
LOP

c
(d=2)
LOP

c
(d=2)
θ

c
(d=3)
θ

= 2.396 (36)

which consists of three terms: 1) the normalization constant of
the kernel density estimate in (1); 2) the missing normaliza-
tion constant of the kernel θ; and 3) a dimension-dependent
correction factor. The last term models the different domains
from which the density is accumulated as we consider a surface
patch that corresponds to a 2D subspace embedded in the 3D
space. Therefore, the integration domain of the density differs
by one dimension which can be accounted for by the ratio of the
normalization constants of both the actual density kernel KLOP

as well as the chosen kernel θ for density weight computation.

B. Evaluation of CLOP Kernel Approximation

We evaluated the approximation error of our fitted parameter
set in Table II (see Section V-B) against the original one proposed
by CLOP [5]. First, we quantified systematic errors of the
kernel approximation K̂LOP by analyzing its standard deviation
‖Σ̂LOP‖1/2 defined by the square root of the magnitude of its
covariance matrix (26). Table III indicates that both CLOP and
our approximation underestimate the actual value ‖ΣLOP‖1/2
and that the bias increases in higher dimensions. Although these
errors are significantly lower for our approximation throughout
all dimensions, they may still be noticeable. Our consistent ap-
proximation always overestimates the actual standard deviation
and has a slightly higher error than the unconstrained variant in
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TABLE III
RATIO OF STANDARD DEVIATIONS ‖Σ̂LOP‖1/2/‖ΣLOP‖1/2 BETWEEN THE

KERNEL APPROXIMATIONS K̂LOP AND THE ORIGINAL KERNEL KLOP IN Rd

Fig. 8. Analysis of bias in the width of the kernel approximations K̂LOP to the
original kernel KLOP. A correction by scaling the parameters σ̂k with a global
factor 1/bopt lowers the error for CLOP [5]. Nevertheless, our approximation
still better follows KLOP with a significantly lower error and is almost unbiased
in the 1-dimensional case.

low dimensions up to d = 5. However, it becomes unbiased in
the limit d → ∞ and should be preferred in higher dimensions.
We also considered minimizing the L1 distance of the kernel
approximation K̂LOP (25) to the actual kernel KLOP (11) by
scaling the values σ̂k with correction factors 1/bopt to obtain
an improved set of parameters which is shown in Fig. 8. Here,
the error of our approximation is significantly lower than for
CLOP both before and after optimal correction. Furthermore,
the optimal scaling factors are similar to the ratios of the standard
deviation for d = 1.

In addition to the theoretical analysis of the kernel approxima-
tions, we also measured the reconstruction error when replacing
the actual kernel in the update step (7) of the projection with
the respective approximation. For this purpose, we chose the
Block model and uniformly sampled 50 000 target points P
and 25 000 projection points Q respectively. We applied 100
iterations of WLOP as a smoothing operator with a large window
size of h = 25 percent of the bounding box diagonal of P and
a repulsion weight μ = 0.4. Then, we measured the distance of
each point to the (triangulated) surface of the reference point
cloud as well as the mean point-surface distance

dsurface(X ,Y) =
1

|X |
∑
i

min
j

d(xi, t(yj)) (37)

where t(yj) denotes the j-th triangle of Y . Fig. 9 shows the
results of this point cloud smoothing operation. Whereas the

Fig. 9. Bias of the kernel approximations K̂LOP when applying WLOP [2] to
smooth the Block model (25 000 points) with the window size h = 25. Whereas
the CLOP [5] approximation introduces systematic errors at the edges due to
the bias in the width, our variant closely resembles the behavior of the original
kernel KLOP. Unit: [% BB diagonal].

CLOP approximation introduces higher errors at the edges of the
sampled model due to the significantly underestimated standard
deviation of the kernel, our approximation does not suffer from
these artifacts.

C. Evaluation of Robust Loss Functions

We tested the LOP M-estimator with the corresponding loss
ρLOP (32) against other popular choices, i.e. L2, L1, and Gaus-
sian M-estimators, for normal filtering in the context of mesh
denoising based on the iterative update step in (28) (see Sec-
tion V-C). For this, we used the Gargoyle (86 311 vertices,
172 610 faces) and Box (70 134 vertices, 140 259 faces) models
and corrupted the vertices in random directions by 0.25 le uni-
form noise where le denotes the average face edge length. Then,
we applied 50 iterations of normal filtering with σ = 0.3 for
each face normal n within its geometric neighborhood of size
r = 1.5 le, that is all normals whose face centers are traversable
along the surface within a ball of size r. To avoid the singularity
of the L1 and LOP losses at x = 0, we only considered the
neighboring face normals in the initial iteration and used all
normals subsequently. For the second stage of the mesh denois-
ing framework, we used the vertex update by Zhang et al. [83]
with their default parameters of 20 iterations and w = 0.001
which avoids the triangle flipping problem. We evaluated the
reconstruction error by the mean angular distance

dangle(X ,Y) =
1

|X |
∑
i

[
360

2π
arccos(〈n (xi) |n (yi)〉)

]
(38)

to the face normals of the ground truth mesh. Figs. 10 and 11
show comparisons between the L2, L1, Gaussian, and LOP loss.
Whereas the L2 loss leads to a very smooth surface, its L1

counterpart is less sensitive to large normal variations within
the local neighborhood and better preserves features. However,
sharp edges cannot be reconstructed since all collected normals
are considered in a global fashion. The Gaussian and LOP loss
functions can be viewed as localized versions of the former
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Fig. 10. Mesh denoising of the Gargoyle model (86 311 vertices, 172 610 faces) corrupted with 0.25 le uniform noise. Although the mean angular distance dangle
is slightly higher for the LOP loss ρLOP, features and finer details are better preserved. Unit: [◦].

Fig. 11. Mesh denoising of the Box model (70 134 vertices, 140 259 faces) corrupted with 0.25 le uniform noise. Filtering with the LOP loss ρLOP results in the
lowest mean angular distance dangle and reconstructs fine details best. Unit: [◦].

losses and do not suffer from this limitation. Finer details being
at a similar scale as the applied noise are hard to reconstruct
and mostly smoothed out by all variants, but can be partially
recovered by the LOP loss.

D. Evaluation of Neural Network Priors

We tested the application of different neural network priors
for unsupervised point cloud denoising (see Section V-D). For
this purpose, we used the reference implementation of TotalDe-
noising [50] and trained the method in an unsupervised manner
on the real-world large-scale Paris-rue-Madame dataset [84],
which was captured by a LiDAR sensor and has no groundtruth
data available. In particular, we employed the same training
procedure and default parameter set in all cases, that is the
scaling parameter α = 0.5 as well as the standard deviation
σ = 0.5657 for the kernel in the prior (34), and only replaced
the Gaussian kernel by the LOP kernel. Finally, we used the
trained models to denoise the test split of the dataset. Fig. 12
shows a comparison between the Gaussian and LOP kernel
priors. While the LiDAR noise is reliably removed from the test
datasets for both kernels, filtering with the Gaussian kernel leads
to significant oversmoothing of smaller features and, in addition,
to a noticable shrinkage of the point cloud. Furthermore, holes
may be introduced at sharp features like edges since the Gaussian
prior tends to move nearby points into clusters apart from these
features. In contrast to this, the LOP kernel with equal standard
deviation σ preserves higher frequency information and, in
turn, sharp features without introducing holes. The shrinkage
effect also is greatly mitigated which becomes apparent at thin
structures, like the sash bars in the windows, where the width is

significantly better preserved and closely matches the expected
width from the input data.

In addition to these qualitative results, we also performed
a quantitative comparison between recent learning-based ap-
proaches. For a fair comparison, we only considered unsuper-
vised methods, that is TotalDenoising (TD) [50] with the original
Gaussian kernel prior as well as with our LOP kernel prior, and
Score-based denoising [51] which, although being supervised,
also supports training in an unsupervised manner. We used the
ModelNet40 dataset [85] provided by TD [50] that consists of 15
collected object classes with 5 training meshes and 2 test meshes
per class, from which point clouds were sampled using Poisson
disk sampling and corrupted by Gaussian noise with standard
deviations of σnoise = 0.5, 1, 1.5 percent of the bounding box
diagonal. After training all methods with default parameters on
this dataset, we applied them to denoise the test data using 1, 4, 7
iterations with TD and1, 1, 2 iterations with Score-based denois-
ing respectively for the different noise levels. We measured the
performance with the commonly used Chamfer distance

dCD(X ,Y) =
1

|X |
∑
i

d(xi,Y)2 +
1

|Y|
∑
i

d(yi,X )2 (39)

where d(xi,Y) = minj‖xi − yj‖ denotes the nearest neighbor
distance of xi to the point cloud Y as well as with the
point-to-mesh distance

dP2M(X ,Y) =
1

|X |
∑
i

min
j

d(xi, t(yj))
2

+
1

|Y|
∑
j

min
i

d(xi, t(yj))
2 (40)
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Fig. 12. Point cloud denoising of the Paris-rue-Madame dataset with TotalDe-
noising [50] for the Gaussian and LOP kernels as neural network priors. Perform-
ing the unsupervised training with the LOP prior better preserves features and
edges and leads to significantly less oversmoothing and shrinkage. Furthermore,
using the LOP prior also better handles the systematic pattern induced by the
scanning process.

TABLE IV
COMPARISON BETWEEN UNSUPERVISED LEARNING-BASED POINT CLOUD

DENOISING METHODS

where d(xi, t(yj)) is the distance of xi to the triangle t(yj) as
in (37). Table IV shows the results of all methods averaged over
the test data. At the low noise level σnoise = 0.5, Score-based
denoising achieves slightly better results than TotalDenoising
where the performance is very similar between the Gaussian and
the LOP kernel prior. On the other hand, applying the LOP kernel
prior significantly increases the robustness of TotalDenoising

at higher noise levels and also outperforms all other approaches
with respect to both the Chamfer and the point-to-mesh
distance.

VII. CONCLUSION

We presented incomplete gamma kernels, a novel family of
kernels generalizing LOP operators. By revisiting the classical
localized L1 estimator used in LOP, we revealed its relation
to the Mean Shift framework via a novel kernel KLOP and
generalized this result to arbitrary localized Lp estimators. We
derived several theoretical properties of the kernel family KΓ

concerning distributional, Mean Shift induced, and other aspects
such as strict positive definiteness to obtain a deeper understand-
ing of the operator’s projection behavior. Furthermore, we illus-
trated several applications including an improved WLOP density
weighting scheme, a more accurate kernel approximation for
CLOP, incomplete gamma losses ρΓ as a novel set of robust loss
functions, as well as better neural network priors and confirmed
their effectiveness in a variety of quantitative and qualitative
experiments. We expect that building upon the insights provided
by our work will be beneficial for future developments on point
cloud denoising as well as in many other related fields, including
applications beyond pure denoising.
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