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Abstract

Energy-harvesting devices have enabled Internet of Things applications that
were impossible before. One core challenge of battery-less sensors that operate
intermittently is reliable timekeeping. State-of-the-art low-power real-time clocks
suffer from long start-up times (order of seconds) and have low timekeeping
granularity (tens of milliseconds at best), often not matching timing requirements
of devices that experience numerous power outages per second. Our key insight is
that time can be inferred by measuring alternative physical phenomena, like the
discharge of a simple RC circuit, and that timekeeping energy cost and accuracy
can be modulated depending on the run-time requirements. We achieve these
goals with a multi-tier timekeeping architecture, named Cascaded Hierarchical
Remanence Timekeeper (CHRT), featuring an array of different RC circuits to
be used for dynamic timekeeping requirements. The CHRT and its accompanying
software interface are embedded into a fresh battery-less wireless sensing platform,
called Botoks, capable of tracking time across power failures. Low start-up time
(max 4 ms), high resolution (up to 1 ms) and run-time reconfigurability are the
key features of our timekeeping platform. The timekeeper can be used in a
wide range of applications but to demonstrate its usefulness, we developed two
battery-less applications that require accurate notion of time: a bicycle analytics
tool—where the CHRT is used to track time between revolutions of a bicycle
wheel, and a wireless sensing—where the CHRT enables radio synchronization
between two intermittently-powered sensors.
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Chapter 1

Introduction

The continued miniaturization of energy harvesting technology and the increase in
computing efficiency has unlocked new application areas where untethered, nearly
invisible devices can operate (sense, learn, infer, communicate) in perpetuity. To
operate in perpetuity requires the removal of batteries from previously battery
powered applications. Removing this main form of energy storage does impose a
challenge to fully utilize the tiny amount of available harvested energy. Harvested
energy is volatile in nature due to ever changing environmental conditions,
meaning that devices relying on harvested energy as their main energy source
almost certiantly experience power failures during operation. More importantly,
these power failures can be frequent and difficult to predict. How to still make
progress and maintain memory consistency on intermittently executing devices
has been at the forefront of intermittent computing research [16, 33].

Software-based solutions have tried to mitigate the shortcomings of intermit-
tent operation either by instrumenting programs with checkpoints [43, 2, 8],
or by rewriting applications using task-based programming models [17, 54, 35].
Hardware and platform approaches have focused on reducing the cost of check-
pointing [20], managing energy more efficiently to reduce power failures and
increase event detection [14, 15, 8], and getting a rough estimation of time
elapsed between power failures [42, 18].

Sense Compute Compute Transmit Transmit

Off time (how long?) Off time (how long?)

Turn off threshold

Turn on threshold
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y

Figure 1.1: Energy-harvesting battery-less sensors operate intermit-
tently, with execution broken up by power failures of unpredictable
duration. These off times are hard to measure with existing time-
keepers such as real-time clocks.
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Although in the intermittent computing domain tremendous progress has been
made, reliable infrastructure-less deployment of intermittently-powered sensors
remains challenging due to the lack of one fundamental feature, robust timekeep-
ing. The ability to keep track of time undergirds a multitude of computing and
networking primitives such as synchronization and networking, data collection,
real-time operation, and security.

1.1 Problem Statement

Having access to an accurate, continuous notion of time has always been taken
for granted in embedded system development. Timeouts and timestamps are
the backbone of embedded applications, particularly those targeting sensing,
communication and actuation. The intermittent operation of ultra-low-energy
battery-less devices makes it impossible to track time solely relying on on-chip
digital timers, as they are not available during a power outage. Even dedicated
ultra-low-power real-time clocks are not a good fit for intermittent operation,
as they require very long start-up times1 and a high initial energy deposit after
each power outage.

Importantly, real-time clocks and other embedded systems timekeeping stand-
ards are statically provisioned with energy, usually conservatively to allow for
the longest possible outage likely to be encountered. The problem with this
approach is that the timekeeper’s energy buffer (usually, its internal capacitor) is
always over-provisioned to measure the longest outage, even if short outages are
the common occurrence. This notion of over-provisioned timekeepers is summed
up in a key insight:

Why would we provision a timekeeper to last ten hours when we
only need to time an outage of a few seconds?

As of now, it is impossible to dynamically set timekeeping granularity, energy
cost, and start-up time of an embedded timekeeper. Exploiting reconfigurability
in software for intermittently-powered runtimes would be aided by a flexible time-
keeper. Having power-failure-resilient and adaptive timekeeping would enable
new applications, including reliable intermittently-powered radio communication
(since intermittently-powered embedded nodes require methods for synchronizing
local clocks to align wake-up times), timestamped data collection and real-time
scheduling.

1.2 Contributions

This work seeks to provide hardware and software kernel support to enable
continuous timekeeping that is resilient against repeated power failures incurred
by battery-less devices operating intermittently and adaptive to the dynamic
constraints of intermittent computing. The hardware layer is inspired by the
concept of remanence timekeepers [42, 18, 10] to keep track of time even when
the device is depleted of energy. Remanence timekeepers work by discharging a
small capacitor over a large resistor during execution and off-time, and measuring

1For instance, more than a second for Abracon AB18X5 [38] ultra-low-power real-time
clock.
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the voltage once power returns to estimate the time elapsed between two reboots.
However, as the measured time increases, the resolution of the remanence
timekeeper decreases (due to the exponential energy decay of an RC circuit),
making it difficult to design a timekeeper that has millisecond resolution and
multi-second longevity. Our observation is that cascading multiple of these cheap
RC circuits of different sizes together, arranged hierarchically, can result in
both high resolution and long timekeeping range, with low energy cost, low
cold-boot time, and small area. The software layer abstracts the remanence
timekeepers and makes them ready to use by any existing or future runtime
for intermittently-powered sensor nodes. The contributions of this work are as
follows:

1. Timekeeping architecture resilient to power failures. We present a timekeep-
ing architecture, denoted as Cascaded Hierarchical Remanence Timekeeper
(CHRT), that enables continuous tracking of time across repeated power
failures. With the CHRT, multiple cascaded remanence timekeepers (each
with different capacitors sizes) enable any software runtime supporting
battery-less (and intermittent) operation to select desired timekeeping
resolution and range.

2. Runtime CHRT support. A kernel software module accompanies our
CHRT architecture to abstract its complexity and to expose a simple and
effective API to the programmer. The hardware abstraction layer provides
accurate millisecond-scale timekeeping information, and minimizes energy
consumption of the CHRT based on run-time energy harvesting conditions.

3. Battery-less timekeeping sensor. With the aim to allow developers to
experiment with the CHRT and its kernel module, we design and build a
hardware platform named Botoks2, featuring an energy harvester, a CHRT
and an ultra-low-power active radio (see Figure 5.1) ready to be used to
prototype complete timekeeping battery-less applications.

The timekeeping architecture embedded in Botoks is first characterized inde-
pendently, and then evaluated inside two case-study applications, emphasizing
the importance of timestamps and network synchronization.

2Phonetic transcription of BTKS: Battery-less Timekeeping Sensor.
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Chapter 2

Related Work

Numerous papers in intermittent computing have promised to revolutionize the
use of small sensing devices for diversity of application. We place CHRT (and
Botoks) in the context of the state of the art.

2.1 Battery-less Systems and Sensing

Batteries [41] are an obstacle for long-term embedded sensing. In response to
this challenge many battery-less sensing platforms have been proposed in the
last decade, which we summarized in Table 2.1. Botoks does not require central
coordination and an energy provision point, contrary to e.g. backscatter-based
nodes [48] or visible light nodes [19]. While some works, rightfully, propose
to reconsider the use of batteries in certain sensing applications [30], the huge
environmental, maintenance and cost burden of battery-based sensing (that is
the battery itself ) still remains, Many unforeseen applications could be enabled
by leaving the battery behind.

Platforms such as Capybara and Flicker [8, 15], both implement different
methods of distributing the harvested energy throughout the system: either by
a run-time configurable energy storage architecture that can adapt to the applic-
ation, or by utilizing a localized energy storage approach, where each module
has its own energy storage. These platforms both navigate the trade-off space

Platform Intermitt.-safe Infrastr.-
independent

Time-aware

Hamilton [31] 7 3 7
WISP [48] 3 7 7

BLISP [21] 3 7 7
Capybara [8] 3 3 7

Flicker [15] 3 3 7
Botoks 3 3 3

Table 2.1: Comparison of selected low-power sensing platforms of the
past two decades. Botoks, and its timekeeper (CHRT), are resilient to
intermittent operation, and do not depend on external infrastructure.
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between responsiveness and energy efficiency. Whilst both platforms integrate a
wireless radio, methods for accurate timekeeping through power failures remain
unexplored. Without an external synchronization signal, timekeeping is required
to synchronize two intermittent nodes for wireless communication, hence [39]
concludes the need for a embedded device such as Botoks that is powered by
energy harvesting and facilitates ultra-low power communication.

2.2 Battery-less Timekeeping

The foundational work is [18] where two timekeeping techniques, TARDIS
and CusTARD, were proposed to keep track of time across power failures in
battery-less platforms. Both approaches exploit the decay of charge in physical
components, SRAM and a capacitor respectively, by comparing a region in
SRAM after waking up from power failure to a reference pattern, TARDIS
measures the decay and hence time between power failures. However, this
method yields poor accuracy and has a high memory overhead. CusTARD,
that is also a foundation of Mayfly [17], has all the limitations of capacitive
timekeepers listed in Section 4.1. A similar discussion on Mayfly’s timekeeping
limitations was presented in [11]. Expanding on capacitive timekeepers, [10]
introduced a hierarchy of capacitive timekeepers, still suffering however from the
same drawbacks as a single capacitive timekeeper as mentioned in Section 4.1.

2.3 Programming Models

Many programming models for intermittenly-powered sensors have been proposed
in the past. These can be grouped into checkpoint-based systems—the recent
ones being [37, 36], or task-based systems—the recent ones being [54, 35]. None
of the checkpoint-based programming models (and very few task-based ones)
support time-sensitive data processing. CHRT language constructs enables
time-sensitive intermittent computation and sensing. CHRT can be integrated
into any runtime: task- or checkpoint-based.

2.4 Tools for Battery-less System Development

Over the years several advancements have been made to simplify development of
battery-less devices. One of the issues faced is repeatability of energy harvesting
conditions during measurements. Small changes to energy harvesting measure-
ments, such as the angle of the device to the energy source or environmental
changes, can lead to large variations in the amount of energy harvested. To
combat this challenge, emulators/recorders of energy harvesting sources have
been developed to aid in the repeatability of measurements [13, 12]. Debugging
of intermittent applications also is non-trivial since with every power failure
microcontrollers (including their onboard debugger) are reset. A traditional
approach would be to add additional communication from the device under
test to verify if progress is made and to assert conditions of interest. This
however influences the measurements not only in execution time but also in
power consumption. Tools for debugging intermittent devices such as EDB [6]

6



assist by freezing the energy source and resuming after the debugging operations
have completed.

2.5 Energy Harvesting Sensor Networks and Net-
work Time Synchronization

Since the publication of [10, 18], which is foundational for the work presented
here, no new relevant publications have been published on the topic of energy
harvesting sensor networks and network time synchronization. Therefore, we
kindly refer to [10, Section 5.1.2 and 5.2] for in-depth discussion on this topic.
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Chapter 3

Motivation

Ultra-tiny Internet of Things (IoT) devices without batteries present intriguing
possibilities for a more sustainable and lower-maintenance computational fabric,
with application domains previously considered unfeasible becoming more at-
tainable (like micro-satellites [8], deep-tissue micro-implants [34], and massive
scale agriculture via augmented insects [29]).

3.1 Intermittent Operation

Battery-less systems are usually powered by ambient energy and operate intermit-
tently [16, 33, 47], as shown in Figure 1.1. The core of the research in recent years
was devoted to the design of efficient runtimes ensuring correctness of computa-
tion and memory consistency despite power failures [54, 36, 20, 35, 7, 43, 37]. For
embedded devices engaging with real-time constraints and sensor data, efficient
computation is only one of multiple necessary capabilities. Today, building and
deploying untethered, battery-less IoT devices is challenging because timekeeping
resilient to power failures is imprecise, inaccurate, and statically provisioned. In
the absence of an external synchronization signal (e.g., coming from a controlled
light source, or from an RF signal generator), accurate timekeeping support for
intermittently-powered devices proves crucial.

Start-up time Current
RTC Model Resol. Nominal Worst draw

NXP PCF85263A [46] 10 ms 200 ms 2 s 320 nA
Abracon AB18X 5 [38] 10 ms 900 ms 21.5 s 55 nA

ST M41T62 [49] 10 ms <1000 ms 1 s 350 nA
Maxim DS139X [28] 10 ms <1000 ms N/A 500 nA

Table 3.1: Comparison of selected ultra-low-power RTCs. Note that
all commercial off-the-shelf RTCs have large start-up times and do
not support one millisecond resolution.
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3.2 Timekeeping through Power Failures

Existing low-power timekeeping solutions present challenges for intermittent
operation: either they are not designed for fast restarting and short execution
bursts—like real-time clocks—or they rely on signals coming from external
infrastructure or the ambient, like light- or RF-based synchronization archi-
tectures [53, 19]. Real-time clocks (RTCs) rarely time sub-second intervals,
and critically have excessively long cold-boot times (tens of seconds for some
low power models if power fails, as in Table 3.1). This excessive boot time is
tolerable for the battery-powered devices RTCs were made for, where power
failures were rare and failure time generally short, while operation time after
failure was orders of magnitude longer. RTC developers traded off cold-boot
time for lower power operation and smaller footprint. This trade-off, however,
is detrimental for intermittently-powered devices, where power-down failures
are usually longer than operational time. These devices lose power even tens of
times per second [43, 52], meaning that an RTC on an intermittently-powered
device could still be in a cold-boot state when the energy runs out, wasting
energy and losing timekeeping accuracy. In addition to cold-boot problems, on-
reboot SPI/I2C configuration of these devices wastes valuable energy and time.
Network-level sources of time, or sensed signals like visible light communication,
power line noise [32], or RF carrier are not always viable, as these sources are
not guaranteed to be present in a particular deployment and are susceptible to
noise or interference.

3.3 Remanence Timekeepers

The most promising attempt at intermittency-safe, infrastructure-free local
timekeeping was remanence timekeepers, introduced in Mayfly [17]. A remanence
timekeeper is essentially a capacitor discharging through a resistor (RC circuit),
whose voltage level is sampled on reboot to get an estimate of the time that has
elapsed while the device was powered off. As the voltage decay can be easily
modeled and can happen while the MCU is off, the timekeeping accuracy was
good enough to enable real-time sensing. Hierarchical remanence timekeepers
[10] add multiple individual remenance timekeepers together to enable multiple
separate timing ranges.

3.3.1 Trade-Offs

To use a hierarchical remanence timekeeper, the developer is presented with a
complex trade-off space between application timing requirements, resolution,
and energy available. Tuning the size of capacitor and resistor of a remanence
timekeeper is the primary means of controlling the trade-off between timekeeping
resolution, range and energy consumption. For instance, larger capacitors
take longer to discharge over the same-sized resistor, which means that longer
outages can be timed (Figure 3.1a). However, charging a larger capacitor costs
more energy at each reboot and more time to charge (Figure 3.1b) and reduces
the resolution of measurements because the discharging profile is less steep as
compared to smaller capacitors (i.e., the change in voltage is indistinguishable for
a 12-bit analog-to-digital-converter). It becomes arduous to find a configuration

10
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Figure 3.1: Partial design space for Remanence Timekeepers.

that can satisfy different needs of an application, balancing and anticipating all
these trade-offs at design time.

3.3.2 Timekeeping Rigidity

Beyond the physical constraints, dynamic application behaviors with time-
varying timekeeping requirements mean that a single or hierarchy of remanence
timekeepers tuned to a specific outage length is not useful for outages of a
varying length. For example, energy harvesting conditions can quickly change,
as a result, a single remanence timekeeper that is sized to time outages measured
in milliseconds with high precision cannot give any idea of the passing of time
at the minute level. Time accuracy, resolution, and precision requirements are
application-dependent and dynamic. Static remanence timekeepers are too rigid
to be useful.

3.3.3 Cost, Size and Complexity

Despite the large trade-off space, remanence timekeepers offer attractive benefits
due to simplicity of the circuit, allowing for ultra small size and cost. While most
RTCs can be upwards of one US dollar even at scale, the discrete components of
a remanence timekeeper can be purchased for less than a penny, and even less
when built into a modern CMOS process.
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Chapter 4

Design

In light of the shortcomings of single remanence timekeepers and RTCs, this
work argues for a different approach where multiple remanence timekeepers
of increasing capacitance are chained together in hardware. Depleted tiers
automatically activate the next smallest tier. For short time intervals the
smaller tiers provide higher resolution and consume less energy, while the larger
energy-expensive tiers time longer intervals. From this key idea, we explore
the complex design space of multi-tier remanence timekeeping with the CHRT,
an intermittency-safe timekeeping architecture, and build Botoks, an energy-
harvesting device with an on-board CHRT. The benefits of using multiple tiers
are summarized below.

Consistent Time Resolution. Compared to single-tier designs, the cascaded
multi-tier timekeeper does not suffer from loss of resolution as the discharge
curve flattens, meaning that high resolution can still be leveraged after long
outages.

Reduced Boot Time/Energy. Boot time for the CHRT is bounded only by
the size of the capacitor, unlike for RTCs, where the capacitor must be filled,
then the RTC must stabilize, then the RTC registers must be configured. With
nearly-instant boot-up and energy only dedicated to timekeeping, the CHRT
enables timekeeping through short outages.

Lower Energy Consumption. RTCs and single remanence timekeepers are
provisioned with a specific amount of energy at design time, tuned to the best
guess of the maximum power failure time. A CHRT can be provisioned at
runtime so that the smallest tier that can time the likely length of the next
outage is used. In this way the device avoids wasting energy on charging up
unnecessarily large capacitors for timing short outages.

Overall Goals. Compared to existing low-power platforms, as in Table 2.1,
Botoks features intermittency-safe, infrastructure-independent timekeeping, ef-
fectively enabling time-critical intermittent applications. Botoks embeds an
ultra-low-power radio as well, ready to be used in combination with CHRT for
infrastructure-less intermittent networking applications.

The primary goal of this work is infrastructure-free, high-resolution and high-
accuracy timekeeping for intermittently-powered devices. To ensure applicability
to a broad range of applications, we develop a software layer around the hard-

13
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int	data[10];
sample_sensor(data);
set_expire(data,	50);

if	(!expired(data))	{
	

				send(data,	10);
	

}

After some
reboots

CHRTEnergy harvester Radio

Communication
stack

Timekeeping subsystemIntermittency
management CHRT SW

interface
MCU
timer

Figure 4.1: Botoks high-level architecture. The runtime kernel keeps
track of time using the CHRT. Applications are instrumented with
CHRT functions to infer on the elapsed time despite power outages.

ware architecture and platform. This allows developers to use the timekeeping
functionality without having to delve into the underlying physics of capacitor
discharge. This hardware abstraction software layer allows for integration into
any intermittency-management runtime like InK [54] or Chinchilla [36]. In
Section 4.1 and Section 5.2 we delve into the design aspects of the timekeeping
hardware and its accompanying software support, respectively. Both hard-
ware and software layer are integrated into Botoks, as portrayed in Figure 4.1
and described in Section 5, which will be used to evaluate our design (refer
to Section 6).

In summary, our goals are:

(1) enable accurate and consistent timekeeping,

(2) allow runtime provisioning of CHRT tiers to enable energy savings, and

(3) provide software constructs for easy usage of the timekeeper in any runtime
system.
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the timekeepers; CSi: charge signal of tier i; Ai: voltage sampling
point of tier i; DSi: discharge signal of tier i; CEN: cascaded mode
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4.1 CHRT: Hierarchical Timekeeping

The limitations of modern ultra-low-power timekeepers for battery-less and
intermittently-powered systems listed in Section 3 motivate our new timekeeping
architecture. The main idea is to combine multiple capacitive timekeepers of
different sizes into a Cascaded Hierarchical Remanence Timekeeper (CHRT).
The various tiers of the CHRT can be used to minimize cold-boot time and
energy consumption, and maximize resolution and timekeeping range at run-time.
The tiers are linked together in hardware, from smallest to largest, so that a
depleted tier can automatically activate the next tier, therefore increasing the
total timing range, whilst maintaining the best possible resolution. For short
time intervals, the smaller tiers provide higher resolution and consume less energy.
The larger tiers are used to time longer intervals, but have lower resolution and
need more charging energy. To be able to use the CHRT, the cascaded tiers have
to be pre-charged at each reboot. Our hardware abstraction layer, described in
Section 5.2, can be configured to minimize energy consumption depending on
the needs of an application and the expectations of energy availability of the
environment by specifying how many tiers should be pre-charged at each reboot.

4.1.1 CHRT Circuit

A schematic of the CHRT circuit is shown in Figure 4.2 (only the first two tiers
and the last tier are shown). The stable charging voltage VCH is provided by a
ultra low power regulator, not shown in the figure. The switches allow the MCU
to recharge the capacitors and then to let them discharge through the resistor.
The comparator is used to trigger the various stages of the cascade, i.e., a CHRT
tier is activated when the voltage across the preceding tier drops below the
reference of the comparator (VR). The control signal CEN can be used to bypass
the cascaded behavior and use any of the tiers as an independent timekeeper,
providing more flexibility in function. Using the tiers independently, programmers
can map tiers to particular functions based on the timing granularity required.

4.1.2 CHRT Range Heuristics

To determine the number of CHRT tiers and their size, timekeeping requirements
need to be extracted. These range heuristics can be partially inferred from the
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application itself. If data is of no use 10 seconds after it was gathered, then
there is little reason to have a timekeeper that can capture periods longer than
10 seconds. Application code for embedded systems is usually full of timing
requirements baked into the program. Often these are explicit: many task-based
programming models have data timing requirements stored on the edges of the
task graph [17]. We also imagine that empirical programming methods could
use annotations or assertions to define the timekeeping requirements. Beyond
application information, such requirements could be extracted from predictions
about the environment. For particularly energy sparse-environments, larger tiers
may be required to sustain through interruptions.

Once the time requirements have been extracted (for example, expiration time
of data, synchronization granularity of communication), one can decide on the
number of tiers and their size by examining the total range required, and the
granularity. Since each tier can only cover a portion of the final timing range,
we can use simple RC calculations to find these ranges.

Tier’s Range. The maximum time interval that a timekeeping tier can measure
is limited by the minimum required separation between the final time steps
as the capacitor’s discharge curve flattens. This minimum separation should
be smaller than or equal to the difference in voltage Vx − Vy at the final time
step ∆ty = ∆tx + δt, assuming Vx and Vy are associated to ∆tx and ∆ty, and
the capacitor is charged to V0, equal to the reference voltage of the ADC. The
authors of [10] defined this minimum required separation as

Vx − Vy ≥ K
V0

2N
, (4.1)

where at least K ADC steps with a N -bit ADC of separation is maintained at
the final time step. Larger values of K increase robustness against noise but
decrease the maximum time interval. To find the maximum time interval of a
timekeeping tier at a resolution of δt, authors of [10] derived

∆ty ≤ RC ln

(
2N

K

(
exp

(
δt

RC

)
− 1

))
, ∆tmax, (4.2)

by applying the simple RC discharge model t = −RC ln(V/V0), to (4.1) where
∆tmax is the maximum time a tier can measure, R is the discharge resistor and
C being the capacitor charged to V0 during operation.

Constants N and K are system specific, dependent on the chosen ADC and
system noise. In general, R is always desired to be as large as possible to
maximize ∆tmax for the same C, leakage through switches of the CHRT and
system noise are the main limiting factors to R. Hence we assume a constant R.
For a required resolution δt, C can be increased until the desired maximum time
interval requirement ∆t is reached. Whilst capacitance C increases, the cut-off
voltage at ∆tmax also increases. Since all energy still contained in the capacitor
after the cut-off point is wasted, an increase in capacitance might result in a
slightly larger maximum time interval but at the consequence of large amounts
of wasted energy.

To combat this, we introduce an additional constraint

100 exp

(−2∆tmax

RC

)
≤ H, (4.3)
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where H denotes the percentage of wasted power, limiting the amount of wasted
energy.

Equation (4.2) with constraint (4.3) can be used to obtain the maximum
timing interval of an arbitrary tier. A negative value means that the specific RC
circuit cannot be used with a resolution δt.

Number of Tiers. Most applications have a variety of accuracy and timing
interval requirements, for example, in a critical software section a data sample
might expire within a few milliseconds, non critical data samples with 100 ms
and the output might be timestamped with the accuracy of one second. This
requires a range of different tiers to maintain the accuracy restrictions. Given a
set of timekeeping requirements either extracted from program code or given by
the developer, expressed in terms of resolution and maximum time-able interval,
expression (4.2) with constraint (4.3) can be used multiple times to compute
the number of CHRT tiers required and their size. Equally configured tiers can
also be duplicated and cascaded, increasing the total time-able interval without
reducing the resolution due to a larger capacitance. However, we note that
for many applications the default configuration used in Botoks is likely to be
suitable (refer to Section 5). This configuration allows for timing outages up to
100 s and has resolution up to a single millisecond.

Tier Selection Heuristic. From earlier sections we know that we can compute
the maximum time interval of a single tier but to turn a resolution requirement
δt and a maximum time interval requirement ∆t into a configuration of tiers we
require

f(δt,∆t)→ (C,K,∆τ), (4.4)

where the outputs of f(δt,∆t) are the tier’s capacitance C, the number of
required equally sized tiers K and the tier’s total timing interval ∆τ .

The outputs of 4.4 are determined by iteratively increasing C in (4.2) until
either the required ∆t is reached or constraint (4.3) limits the output, at which
point we create multiple identical tiers by d∆t

∆τ e, resulting in the number of
equally sized tiers1 K.

Now considering a list ofN timing requirements, defined as E = {ρ1, ρ2, . . . , ρN},
where ρi = (δti,∆ti) sorted by smallest accuracy first, overlapping requirements
are removed and σ is defined as the total timing interval of all tiers. Algorithm
1 can be used to compute a list of suggested tiers S = {γ1, γ2, . . . , γM} that
satisfies the list of requirements E.

1A full implementation of (4.4) and Algorithm 1, is provided in the Botoks source mater-
ial [1], published upon acceptance of the paper derived from this thesis.
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Algorithm 1 Heuristic for CHRT tier selection based on user requirements

Input: E: Array of requirements
Output: S: CHRT configuration with capacitance C for each tier γ
1: S := []
2: M := 0
3: σ := 0
4: for all ρi ∈ E do
5: if ∆ti > σ then
6: (C,K,∆τ) := f(ρi)
7: if ∆τ ≤ 0 then
8: return Failure {Impossible requirements}
9: end if

10: for j := 1 to K do
11: S[M ] := C
12: M := M + 1
13: end for
14: σ := σ + ∆τ
15: end if
16: end for
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Chapter 5

Implementation

This section lists and briefly discusses the parameters we used for the imple-
mentation of CHRT hardware and software, and describes in more detail the
components of the integrated Botoks demonstration platform.

5.1 CHRT Platform

The four-tier CHRT was implemented

(1) as a system peripheral integrated into Botoks, built with off-the shelf SMD
components (see Figure 5.1),

(2) as a stand-alone development module, featuring the same components as
on Botoks (see Figure 5.2), and

(3) as an integrated version.

5.1.1 CHRT Tier Settings

Following the practical guidelines given in Section 4.1.2, we implemented an
instance of CHRT targeting a variety of general timekeeping requirements found
in sensing and real time devices. To begin with, the value of the discharge
resistor was fixed at 22 MΩ for all the tiers, as such resistors are cheap (less
than a tenth of a USD cent per unit) and guarantee a good balance between
long discharge time of the RC circuit, leakages and electrical noise. Larger
resistors would allow for even wider timekeeping ranges, but the incurred noise
would become detrimental to the accuracy and the precision of the CHRT. To
support a wide range of applications we set the following list of requirements
E = {(0.001, 0.1) , (0.01, 1) , (0.1, 10) , (1, 100)} (refer to Section 4.1.2 for the
explanation of this list). With Algorithm 1 we computed the number of required
tiers and their configuration. Matching the ouput of the algorithm, we chose
to cascade four tiers of increasing size: C1 = 2.2 nF, C2 = 22 nF, C3 = 220 nF
and C4 = 2200 nF. The best time resolution achievable with such configuration
is 1 ms, when using the smallest tier, which is guaranteed for capturing time
intervals up to 100 ms. The longest measurable interval is 100 s, obtained using
the largest tier, for which a resolution of 1 s is guaranteed.
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Figure 5.1: Botoks platform. The front (left) contains radio, antenna,
solar panel and MCU. On the back side (right) is the Cascaded Hier-
archical Remanence Timekeeper. The board dimensions are 1”×1”.

5.1.2 CHRT with SMD Components

As proof of concept, we built the CHRT with off the shelf components on a custom
PCB. Other than the four RC circuits, the CHRT includes other important
components. TS3A4751 [26] switches are used to gate power to the capacitors
and prevent back feeding to the MCU during power failure. Ultra-low-power
D-type Flip Flops (SN74AUP2G79 [24]) protect the CHRT control signals after
the MCU dies. To achieve cascaded discharging of the tiers, TLV3691 [25]
comparators enable discharging of the next tier when the capacitor voltage of
the current tier drops below the voltage at the maximum time interval of the
tier, we selected 0.15V as a threshold for each tier. The chosen MCU integrates
1.2V, 2.0V and 2.5V reference voltage options for the ADC peripheral. Since the

required energy to charge the capacitor scales quadratically with voltage (CV
2

2 ),
the lowest reference voltage (1.2V) is selected. Then by charging the capacitors
to 1.2V the full ADC range is utilized. However, lower reference voltages reduce
the separation between ADC steps making the system more susceptible to noise.

5.1.3 CHRT Integrated Design

The proof-of-concept PCB is not what we envision will be eventually deployed in
the battery-free IoT, an integrated circuit design scales better and is more cost
effective in volume. We have also implemented the CHRT in a TSMC 0.18 µm
mixed-signal process [51], and simulated the circuit with Cadence Virtuoso [3]
in order to extract power consumption estimates of the integrated version of our
architecture. The integrated design is significantly lower power and ultra tiny,
enabling integration alongside battery-less enabled microcontrollers for low cost
instead of expensive crystal centered RTCs. We report the power consumption
numbers in Section 6.3.
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Figure 5.2: Botoks hardware modules, including distinct development
platforms for working with the CHRT (right), and ultra-low-power ra-
dio (left). These hardware options provide multiple ways to integrate
timekeeping into emerging battery-less applications.

5.1.4 Botoks Platform

Our battery-less sensor, Botoks, is meant to be used as a complete development
board to evaluate and experiment with the CHRT, therefore it also includes
an ultra-low-power MCU, an energy harvester and an ultra-low-power radio.
Specifically, the device is centered on a Texas Instruments ultra-low-power
FRAM-enabled MSP430FR5994 microcontroller [27], with 256 kByte FRAM
and 8 kByte SRAM. By default, energy is harvested via the small solar cell
on the back of the PCB, and is routed into the 100 µF main storage capacitor.
A MIC841 [22] comparator with hysteresis lets the MCU turn on only when
sufficient charge is available. The ultra-low-power active radio transceiver is built
around the Microsemi ZL70550 [9] chip (as of time of writing, the lowest power
868 MHz radio transceiver available) and a monopole antenna. The complete
fabricated device is shown in Figure 5.1. We expect this platform to enable other
researchers and practicioners interested in battery-free devices.

5.1.5 Botoks Development Modules

Unlike the fully integrated Botoks platform, we also designed separate hardware
modules for both the CHRT and ultra-low-power radio. These modules, depic-
ted in Figure 5.2, are useful for experimenting with our hardware integrated
into Botoks on a breadboard or other prototyping setup. The CHRT module
integrates both cascaded and non-cascaded hierarchical timekeepers, in addition
to debugging features such as jumpers to enable or disable individual tiers.

5.1.6 Software

The code of the CHRT software layer described in Section 5.2 is split into two
sub-components, namely a platform-independent layer and a port layer, to give
the option to port our software module to other embedded MCU architectures.
Our port is written for the target MCU, that is, MSP430FR5994. In addition
to the CHRT abstraction layer, we also implemented the necessary drivers to
use the ZL70550 [9] radio transceiver. All the code is written in C and can be
compiled with the MSP430 GCC compiler [23].
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5.2 CHRT Software Layer

The CHRT architecture presented in Section 4.1 is complemented by a software
layer, whose aim is twofold:

(1) make the best usage of the available tiers to maximize energy efficiency
and timekeeping resolution and range, and

(2) abstract the complexity of the CHRT to provide a user-friendly API.

More specifically, the software layer exposes

(1) a raw interface, which can be used to directly request the CHRT hardware
to charge the tiers and retrieve elapsed time on reboot, and

(2) a high-level interface, which uses the CHRT in combination with a digital
timer to provide higher-level functionalities, like timestamp generation and
data expiration.

Additionally, the API is responsible for a one-time factory circuit calibration
that has to be performed before using the CHRT, as it is typical for RTCs and
other integrated circuits.

5.2.1 CHRT Hardware Abstraction Layer

The raw CHRT interface is a hardware abstraction layer (HAL) of the underlying
timekeeping hardware functionality, to be used for low-level control of the CHRT.
It is mostly intended as a building block for more advanced timekeeping duties
to be exposed by the runtime or kernel that has knowledge of the user tasks
and operations, but can be used at the application level as well by the user.
Upon reboot, the runtime calls a function to retrieve the time elapsed since the
previous reboot, and then another function to recharge the tiers. The HAL does
not have the goal to make the CHRT fully invisible to its user (for instance, the
recharging procedure has to be explicitly called). The intermittency-management
kernel (like InK [54] or Chinchilla [36]) can use the raw API to define its custom
timekeeping functions, or just pass the high-level CHRT interface up to the
application layer.

Elapsed Time Retrieval. Upon reboot, chrt get time() must be called to
get the elapsed time of the power failure that was just recovered from. This
function returns a 16-bit unsigned integer representing the elapsed time, and
a scaling factor. The scaling factor times the elapsed time gives a time value
in milliseconds, thus the scaling factor is larger than one, only in case of time
intervals larger than (216 − 1) ms.

Dynamic Tier Recharge. After retrieving elapsed time, chrt charge() must
be invoked to recharge the CHRT tiers. This function provides a means to specify
how many tiers are charged on each reboot, to reduce energy consumption and
cold-boot time while still preserving the required timekeeping resolution and
range. This function is useful for setting the dynamism of tier recharge to
adapt the timekeeping energy expended based on application or environmental
properties. Programmers and intermittent kernel designers can choose to be
either conservative or adaptive with tier recharging.
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Adaptive timekeeper provisioning is useful when energy environments and
application behavior are somewhat predictable or continuous (for example, solar
environments). The basic idea of adaptive tier recharge is to choose only the
smallest tier that can still satisfy the timing requirements. Specifically, assume
that the CHRT is composed of M tiers γ1, γ2, . . . , γM , chosen as suggested in
Section 4.1.2, and that Ri =

[
tmin
i , tmax

i

)
is the optimal timekeeping range of

tier γi, again, determined as given in Section 4.1.2. We call target tier γx the
tier whose optimal timekeeping range Rx contains the elapsed time retrieved
on reboot. Suppose that the CHRT is configured to only charge one tier, the
target tier, on reboot. Then, if tier γx is charged on reboot j, and the time t
retrieved on reboot j + 1 is not in Rx, the target tier to be charged on reboot
j + 1 would be γx+1 (if it exists) in case t ≥ tmax

x , or γx−1 (if it exists) in case
t < tmin

x . The adaptive method saves energy since overcharging the timekeeper
when the kernel is only timing a short outage is wasteful.

When the reboot frequency is variable the kernel may choose to be conservative
in timekeeper provisioning (tier recharging), as retrieved times are more likely to
be outside the timekeeping range of the current target tier. For better robustness
against variable reboot frequency, the user can request the CHRT to charge more
than just the current target tier. Specifically, the two function parameters PL and
PR are used to tell the CHRT software layer to charge all tiers in [γx−PL

, γx+PR
],

given that γx is the current target tier. For instance, if PL = PR = 1, tiers
γx−1, γx and γx+1 would be recharged on reboot, and the discharge would start
from tier γx−1, and continue with the larger tiers in a cascaded fashion. The
parameters PL and PR control the trade-off between timekeeping robustness and
energy consumption, as charging more tiers requires more energy. In particular,
PR has a higher impact on energy consumption, due to larger tiers needing more
charging energy.

5.2.2 CHRT High-Level API

The CHRT HAL described previously exposes the most basic functions to control
the CHRT. The high-level CHRT interface enhances raw functionalities to provide
higher-level timekeeping tools to be used in real-world battery-less applications
for intermittent devices. Fundamentally, this is implemented combining CHRT
functionalities with an on-board MCU digital timer to maintain an always-
available system time. The system time is incremented at each reboot using the
raw chrt get time() function. When queried during on-time, the system time
is combined with timing information retrieved from the digital timer running
in the background. The system time is used to generate timestamps and to set
expiration timers for data and functions. Figure 5.3 demonstrates the usage of
this high-level API.

Timestamp Generation. The high-level API function get timestamp() uses
the aforementioned system time to generate a timestamp when the application
requires it. In particular, the returned timestamp is a 32-bit unsigned integer
representing system time in milliseconds. When get timestamp() is invoked,
the value of the MCU timer is added to the CHRT-powered system time to
return a fine-grained timing value that can then decorate data.

Expiration Timers. The high-level timekeeping interface exposes two more
functions to keep track of aging data, and discard it when it is deemed expired.
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void	compute()	{

		if	(!has_expired(data))	{

				process_data(data);

				next_task(send);

		}	else	{

				next_task(sense);

		}

}

void	send()	{

		if	(!has_expired(data))	{

				send(data,	timestamp);

				next_task(log);

		}	else	{

				next_task(sense);

		}

}

#define	EXP_MS	200

void	sense()	{

		sample_data(data);

		set_expiration(data,	EXP_MS);

		timestamp	=	get_timestamp();

		next_task(compute);

}

data has expired

Figure 5.3: Example usage of the high-level CHRT API. The program
is a typical sensing routine, and the API is used to specify that the
elapsed time between sensing and transmission of some data must
not exceed 200 ms of absolute time (on and off), as well as to get a
timestamp to be sent together with the data.

The function set expiration() can be used to set an expiration time for some
data, or for a complete function/task. The user passes a tag (of type void

pointer), representing the object (data or function pointer) to be assigned an
expiration time, and an exp time (of type uint32 t), to set an expiration time
in milliseconds. Then, the API function has expired() can be called, passing a
tag, to check at any point if some object has expired.

Timekeeping Subsystem. The high-level API can be integrated by a kernel
runtime to implement a full timekeeping subsystem for the application layer to
use. The runtime must only implement a timekeeper init() function to call
during initialization, where system time is updated (using chrt get time())
and the CHRT is recharged (with chrt charge()).

5.2.3 CHRT Software Calibration

Ideally, the RC circuit discharge model, t = −RC ln (V/V0), could be used to
estimate elapsed time, t. In actuality, capacitance C and resistance R never
match their nominal values, and other parasitic capacitors and resistors are
spread through the circuit. To resolve this issue, a software calibration routine,
to be performed before CHRT deployment, was devised and implemented, aiming
for a better precision and accuracy of the timekeeper.

The one-time calibration consists of two procedures: charge time calibration
and accuracy calibration.

Charge Calibration. First, charge time is calibrated. This is achieved by
repeatedly charging each tier with an increasing charge time until the ADC
saturates. This ensures the full ADC range is used and each tier is properly
charged to the reference voltage.

Accuracy Calibration. During accuracy calibration, all the tiers of the CHRT
are repeatedly charged and discharged, and their discharging profile is sampled
over time to obtain a realistic physical model for each tier. Unfortunately,
reality does not perfectly match the the RC circuit discharge model. Therefore,
the model is slightly altered by adding an offset G to compensate for slight
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inaccuracies such as imperfect charge time calibration. This results in

V = V0 exp

( −t
RC

)
+G⇒ t = −RC ln

(
V −G
V0

)
. (5.1)

By curve fitting the previously obtained realistic physical model to the model
of (5.1) using nonlinear least-squares, RC and G are obtained for each tier. Now
the interpolated version of the RC circuit discharge model can be computed at
run-time from (5.1) or by generating a lookup table and storing it in memory at
production time. At run-time, the voltage across the target tier is used to look
up or compute the corresponding elapsed time.
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Chapter 6

Evaluation

To quantify the performance of our system, we first characterize the behavior
of the CHRT in terms of accuracy, precision and power consumption. Then,
we evaluate it in the context of two case study applications implemented for
Botoks, to demonstrate the usefulness of a time-aware intermittently-powered
device. In summary, we found that the CHRT is accurate and precise at high
resolutions (1 ms) and for long ranges (hundreds of seconds), has two orders
of magnitude lower startup time than a RTC, and has an ultra low power
consumption, especially in the integrated design.

6.1 Experimental Setup

Botoks and its on-board CHRT were used throughout all the experiments. To
evaluate timing performance the platform was connected to a continuously-
powered microcontroller (a TI MSP430FR5994) that was used as a simulated
intermittent power source, in order to control power-on and power-off times.
For the case studies, solar, radio frequency and magnetic energy sources were
used, as detailed in Section 6.3.1 and Section 6.3.2. To sample digital and analog
traces, a Saleae Logic Pro 16 logic analyzer [45] was used. Finally, for power
consumption measurements the X-NUCLEO-LPM01A expansion board [50] was
used.

6.2 Evaluation Methodology

Our timekeeping architecture is benchmarked both on a fine-grained scale and on
an application scale. The fine-grained benchmarks targets performance metrics
such as timekeeping accuracy and precision, energy consumption and initialization
time. The case-study benchmarks (applications) showcase the performance of
the CHRT when used in real-world scenarios.

We build a bike speedometer using CHRT by capturing elapsed time between
consecutive events (revolutions of the wheel). For this type of applications,
timekeeping ability and accuracy is necessary to provide reliable readings of
the bike speed. However, the constraints on accuracy are not as tight as other
real-time systems. For this application we do not rely on the amount of incoming
energy to determine the speed such as [47]. The second application is a message
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Figure 6.1: CHRT average measured time for time measurements in
the intervals 1 ms to 100 ms (tier 0, resolution of 1 ms) and 1 s to 100 s
(tier 3, resolution of 1 s).

passing protocol that aligns radio communication of two intermittently-powered
devices. In this case, robust timekeeping is a stricter requirement, since active
radio transmission and reception consume a lot of energy, thus it is crucial for
networked nodes to know exactly when to turn on their radio to minimize packet
loss and energy waste.

6.3 CHRT Microbenchmark

In order to characterize the isolated performance of the CHRT, a Botoks node
was powered by a controlled source that was physically cutting power to the
node under test at predefined frequencies. All four tiers of the on-board CHRT
were tested extensively across various time ranges and at various resolutions.
The smallest tier (2.2 nF) was tested in the range 1 ms to 100 ms, with steps
equal to its resolution of 1 ms. Similarly, the other three tiers (22 nF, 220 nF
and 2200 nF) where tested in the ranges 10 ms to 1000 ms, 100 ms to 10 000 ms
and 1 s to 100 s, respectively, with steps equal to each tier’s resolution (10 ms,
100 ms and 1 s, respectively).

CHRT Accuracy. Figure 6.1 plots the accuracy of the smallest tier and the
largest tier of Botoks’s on-board CHRT. Figures 6.1a and 6.1b show the average
reported time of the two tiers, for their optimal timing ranges, where every data
point is the average of 10 measurements. The accuracy of a single-tier remanence
timekeeper (of 220 nF) is also plotted, to show the need for flexible cascaded
multi-tier remanence timekeepers. If the designer selects only a single tier a
compromise between resolution and timekeeping range is required. Single tiers
have poor results for time ranges longer than what the RC circuit can sustain
(the single-tier saturates to around 20 s when trying to capture time intervals
larger than that), therefore motivating our multi-tier CHRT.
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Figure 6.2: CHRT error distribution for time measurements in the
intervals 1 ms to 100 ms (tier 0, resolution of 1 ms) and 1 s to 100 s
(tier 3, resolution of 1 s).

Timekeeper Charge energy
(nJ)

Start-up time
(ms)

CHRT Tier 0 1.584 0.311
CHRT Tier 1 15.84 0.505
CHRT Tier 2 158.4 0.913
CHRT Tier 3 1584 2.344

CHRT Total 1759.8 4.07

Table 6.1: CHRT dynamic energy consumption, i.e. energy required
to charge each tier, and charging times. The CHRT has orders of
magnitude lower start-up time than any state-of-the-art RTC.

Error Distribution. The same raw measurements were used to generate
Figures 6.2a and 6.2b, in which the error distribution of the two tiers is shown.
As reported in the plot, the two tiers have a maximum absolute error equal to
their respective resolution, which is the case for the other two tiers as well. The
error distribution is well centered on zero, and it is very narrow, demonstrating
that the CHRT is accurate and precise at high resolutions (1 ms) and for long
ranges (hundreds of seconds). The error distribution of a single-tier remanence
timekeeper operating outside its optimal timekeeping range has a much higher
standard deviation, which is the reason why it was not plotted at all.

Energy Consumption. The static current consumption of the four-tier CHRT
amounts to 901 nA for the SMD version (the one embedded in Botoks), and
37.335 nA for the integrated version1, when powering the circuit at 2.2 V. We

1Integrated design: NAND gate, G, consumes 15 pA, comparator, M , 7.43 nA, and the
oscillator driving the comparator, S, 15 nA; all values were measured at 1 kHz oscillator
frequency. Therefore, for N -tier CHRT the total static current draw is (N − 1)× (G+M) + S.
Current draw of switches was below 15 nA and therefore removed from the calculation.
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Figure 6.3: Comparison between CHRT and two RTCs from Table 3.1
of the total energy required to time a period. The CHRT allows for
millisecond timing whilst requiring less or similar energy compared
to the lowest power RTC.

also list the amount of energy required to charge the tiers as reported in Table 6.1.
In Figure 6.3 the energy required to measure time is reported over the whole
time measurement range. CHRT not only measures with much higher accuracy
than state-of-the-art RTCs, but also the required energy to measure time is
comparable or lower, even disregarding configuration time of RTCs.

Initialization Time. Initializing the CHRT boils down to recharging the
depleted tiers. The start-up time for each of the tiers embedded in Botoks is
reported in Table 6.1. Even when all the four tiers have to be recharged, the
initialization time of the CHRT (≈4 ms) is orders of magnitude smaller than for
any available RTC (refer to Table 3.1).

Chip Area. The estimated footprint of the integrated four-tier CHRT is
less than 1 mm2 (excluding packaging), proving its suitability for ultra-small
embedded systems.

6.3.1 Application 1: Bicycle Analytics

For the bike speedometer application, Botoks’s energy harvester was replaced
with an off-the-shelf magnetic energy harvester, extracted from a bike light [44],
to collect electro-magnetic energy induced by two magnets placed on the rear
wheel of a bike. The CHRT is used to time each revolution of the wheel, as
Botoks wakes up every time one of the magnets comes close to the harvester. The
stored energy is used to charge and sample the CHRT, send a packet containing
the calculated speed using Botoks’s ULP radio, and power the LEDs on the bike
light PCB for the remaining time.

Outcome. The run-time calculated speed, sent by Botoks over the radio and
collected by a continuously-powered basestation, was compared to the ground
truth, measured with a logic analyzer connected to Botoks’s power pin. As
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Figure 6.4: Calculated speed of the bicycle, in km/h, over a period of
60 s. The result obtained with Botoks and its embedded CHRT is
compared to the ground truth. As shown, the two smallest tiers of
the CHRT are dynamically used through the experiment.

shown in Figure 6.4, the speed estimated using the CHRT follows very closely
the expected result. The figure also shows which of the CHRT tiers is used
for different time ranges. Higher speeds, measured with the smallest tier, have
better resolution, resulting in a smoother curve in the graph. While the figure
only shows a single run lasting 60 s, the same experiment was run five times in
total, with a total average RMS error of 0.5 km/h.

6.3.2 Application 2: Intermittent Communication

The second embedded application uses the CHRT to align transmission and
reception schedules of two intermittently-powered wireless Botoks nodes commu-
nicating via active radios. We have established a point-to-point link with two
nodes powered by solar energy in one experiment, and radio-frequency energy
in another experiment. The solar energy was generated by two independent
light bulbs placed in two closed boxes and collected by Botoks’s solar panel.
The radio-frequency energy was provided by a Powercast transmitter [5] and
harvested by a Powercast receiver [4] connected to Botoks’s power supply (in
place of the solar cell).

In the application, the transmitting node would wake up to send one packet of
data, using its buffered energy, eventually incurring a power failure, proceeding
then to harvest energy and finally recharge and wake up again. Similarly, the
receiving node would wake up and start listening until receiving a packet, or
until a power outage. Each of the 20-Byte packets contained preamble, average
on time measured with the CHRT, a dummy payload and 16-b CRC, and was
sent at a data rate of 200 kb/s.

The baseline for the experiment is a scheme in which the receiver wakes
up and turns on its radio as soon as possible, trying to catch a packet sent
by the transmitter. This baseline is compared to the case in which a simple
CHRT-powered synchronization protocol allows the receiver to align its listening
activity to the transmitter. Specifically, the receiver uses the average transmission
period contained in each packet to alter its listening schedule and align to the
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TX RX TX RX
Lux RPS Lux RPS d RPS d RPS

S1 11k 6.6 33k 12.5 RF1 0.6m 12.5 0.6m 17.3
S2 26k 9.5 26k 9.6 RF2 0.8m 12.9 0.8m 16.4
S3 26k 10.4 11k 5.9 RF3 1m 11.6 1m 12.6

Table 6.2: Description of scenarios described in Figure 6.5. S1, S2,
and S3, refer to using solar as energy source and RF1, RF2, and
RF3 refer to radio-frequency energy harvesting. For solar energy
harvesting the amount of Lux is measured at the solar panel; for
radio-frequency energy harvesting the distance to the transmitter is
listed. RPS : reboots per second.
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Figure 6.5: Percentage of received packets for a point-to-point link
between two Botoks devices, measured in six different energy har-
vesting conditions described in Table 6.2. The percentage of packets
received using the CHRT-powered synchronization algorithm is com-
pared to the baseline case—with no synchronization. Note that for
S3 and RF3 the maximum packet reception available is 50 %, as the
receiving node does not have enough energy to wake up as fast as the
transmitting node.

transmitter.
Packet reception rates were measured for the non-synchronized baseline and

for the CHRT-powered synchronized protocol, for different energy harvesting
conditions, as summarized in Table 6.2. Each experiment was run for 10 min.

Outcome. As it stands out in Figure 6.5 showing the percentage of received
packets (the complementary of lost packets), our CHRT-based synchronization
algorithm yields an improvement over the non-synchronized message passing
scheme, resulting in a best-case increase in received packets of 3.77 times for
RF and 23.75 times for solar. Inspecting the difference between energy sources,
solar performed better than RF due to a more consistent wake-up period. The
Powercast transmitter transmits a ID every 10ms causing an inconsistent wake-up
period.

32



Chapter 7

Discussion and Future
Work

We discuss future directions enabled by Botoks and CHRT.

7.1 General Application to Embedded Systems

While the CHRT concept is particularly useful for intermittent computing, where
power failures and energy constraints force designers to rethink timekeeping;
CHRT is generally applicable to all embedded systems that need timekeeping
through power failures and are currently over-provisioned with an RTC. The
CHRT offers a modular, lower power, short startup time and energy saving
solution over RTCs.

7.2 Tool Support for CHRT

Beyond intermittently-powered networking, there is a dearth of tools for inter-
mittent computing past EDB [6] and Ekho [13]. As complexity increases of the
programming models, hardware, and runtime systems, the tradeoff space grows
larger. A tool for exploring the tradeoff space of CHRT would be useful for VLSI
design as well as prototyping with off-the-shelf components.

7.3 Complex Intermittently-powered Networks

Further exploration is needed on how to expand point-to-point Botoks link into
a full-fledged network (if the industry estimates on the proliferation of IoT are to
be believed [40]). To achieve this, coordinated compute, voting strategies, etc.,
must be made robust to intermittent power failures. That said, the techniques
shown here could form the basis for some of these protocols. Improvements to
our synchronization algorithm are required that integrate collisions and increase
time accuracy.
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7.4 Further Evaluation of CHRT

Naturally, we have not explored all possible corner cases of CHRT operation.
A crucial measurement considers CHRT use in varying temperatures. With
large variations in temperature, one approach could be to perform a one time
temperature calibration. This would consist of a normal calibration cycle but
at multiple temperatures. By storing the calibration results at the different
temperatures these different calibration constants can be selected at run time
by first measuring the temperature with the onboard temperature sensor and
then applying the correct set of calibration constants to still achieve the desired
accuracy over a wide temperature range.
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Chapter 8

Conclusions

We have presented a new battery-less timekeeping mechanism enabling reliable
batteryless sensing and computation, the Cascaded Hierarchical Remanence
Timekeeper (CHRT), and presented two application instantiations useful for
intermittent computing: time-critical sensing and intermittent communication.
The CHRT is based on the idea of a hierarchy of remanence timekeepers which
combine accuracy/resolution, have short cold-start, and allow timing long periods
of power failure. Combining the CHRT architecture into one hardware and
software platform we presented the design and implementation of Botoks—a
new batteryless sensor. With Botoks, and its accompanying CHRT, intermittent
computing can enter a new phase and explore new applications not possible so
far.
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