Computer Engineering 2015
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

An Accelerator based on the p-VEX Processor:
an Exploration using OpenCL

Hugo van der Wijst

Abstract

In recent years the use of co-processors to accelerate specific tasks is becoming more common.
To simplify the use of these accelerators in software, the OpenCL framework has been developed.
This framework provides programs a cross-platform interface for using accelerators.

The p-VEX processor is a run-time reconfigurable VLIW processor. It allows run-time switching
of configurations, executing a large amount of contexts with low issue-width or a low amount
of contexts with high issue-width.

This thesis investigates if the p-VEX processor can be competitively used as an accelerator using
OpenCL. To answer this question, a design and implementation is made of such an accelerator.
By measuring the speed of various components of this implementation, a model is created for
the run-time of a kernel. Using this model, a projection is made of the execution time on an
accelerator produced as an ASIC.

For the implementation of the accelerator, the p-VEX processor is instantiated on an FPGA and
connected to the host using the PCI Express bus. A Linux kernel driver has been developed
to provide interfaces for user space applications to communicate with the accelerator. These
interfaces are used to implement a new device-layer for the pocl OpenCL framework.

By modeling the execution time, three major contributing factors to the execution time were
found: the data transfer throughput, the kernel compile time, and the kernel execution time.
It is projected that an accelerator based on the pVEX processor, using similar production
technologies and without architectural changes, can achieve 1.2 to 0.11 times the performance
of a modern GPU.

CE-MS-2015-11

5
TUDelft

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

An Accelerator based on the p-VEX Processor: an
Exploration using OpenCL

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Hugo van der Wijst
born in The Hague, The Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

An Accelerator based on the p-VEX Processor: an
Exploration using OpenCL

by Hugo van der Wijst

Abstract

In recent years the use of co-processors to accelerate specific tasks is becoming more common.
To simplify the use of these accelerators in software, the OpenCL framework has been developed.
This framework provides programs a cross-platform interface for using accelerators.

The pVEX processor is a run-time reconfigurable VLIW processor. It allows run-time switch-
ing of configurations, executing a large amount of contexts with low issue-width or a low amount
of contexts with high issue-width.

This thesis investigates if the p-VEX processor can be competitively used as an accelerator
using OpenCL. To answer this question, a design and implementation is made of such an acceler-
ator. By measuring the speed of various components of this implementation, a model is created
for the run-time of a kernel. Using this model, a projection is made of the execution time on an
accelerator produced as an ASIC.

For the implementation of the accelerator, the p-VEX processor is instantiated on an FPGA
and connected to the host using the PCI Express bus. A Linux kernel driver has been developed
to provide interfaces for user space applications to communicate with the accelerator. These
interfaces are used to implement a new device-layer for the pocl OpenCL framework.

By modeling the execution time, three major contributing factors to the execution time were
found: the data transfer throughput, the kernel compile time, and the kernel execution time. It is
projected that an accelerator based on the p-VEX processor, using similar production technologies
and without architectural changes, can achieve 1.2 to 0.11 times the performance of a modern

GPU.

Laboratory : Computer Engineering
Codenumber : CE-MS-2015-11

Committee Members

Advisor: dr ir. Stephan Wong, CE, TU Delft
Chairperson: dr ir. Stephan Wong, CE, TU Delft
Member: dr. ir. Johan Pouwelse, PDS, TU Delft

Member: dr. ir. Arjan van Genderen, CE, TU Delft

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures ix
List of Tables xi
List of Acronyms xiii
Acknowledgements XV
1 Introduction 1
1.1 Context e 1
1.2 Motivation e e e e 2
1.3 Problem statement, methodology, and goals 2
1.4 Organization 3

2 Background 5
2.1 pVEX processor)
2.1.1 Hardwaredesign 6

2.1.2 Toolchaln e 7

2.2 OpenCL e 9
2.3 PCIEXpress. o o i i e e e 11
2.4 Conclusion e e 12

3 Concept 13
3.1 Systemdesign 13
3.2 OpenCL runtime ittt e e 14
3.2.1 Available implementations 14

3.2.2 poclextensions e 15

3.3 Accelerator platform 16
3.4 Host PCleinterface e 17
3.5 Conclusion e e 18

4 Implementation 21
4.1 Accelerator implementation 21
4.1.1 PCleendpoint e 21

4.1.2 DMA engine 22

4.1.3 C2S and S2C interfaces 22

4.1.4 Register interfaceo 24

4.2 Host interface 25
4.2.1 =xdma kernel driver o 26

4.2.2 rvex kernel driver 27

4.3 pocl device-layer implementation L.

4.3.1 Work-group functionso oL
4.3.2 Kernel signature transformation
4.3.3 Argument list o
4.3.4 Execution Context
4.3.5 On-devicesetup e
4.3.6 Generate machine code
4.3.7 Manage execution oo
4.4 Conclusion

5 Experiments
Methodology

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

6 Discussion

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7 Conclusion

Setup

Communication e

Cache miss e

Kernel execution time

Compile time

Full program execution Lo

Compiler comparison L

5.8.1
5.8.2

Powerstone benchmark suite
Performance on kernel

Conclusion s

Execution speed

Concurrently executing kernel instances

Data transfero

Compile time e

Total speedup analysis

Performance projection and comparison

Conclusion s

7.1 Summary e

7.2 Main contributions

7.3 Future Work

7.3.1 Implementation enhancements

7.3.2 Research opportunities
Bibliography

A Kernel source code

vi

37
37
38
38
41
42
43
44
45
46
49
50

53
53
95
95
56
56
o7
60

63
63
66
67
67
68

71

73

B CoSy compiler back end for VEX 75

B.1 Register File 75
B.2 Scheduling 75
B.3 Instruction lowering L 78
B.4 Calling convention L e 78
B.5 Stack layout 79
B.6 Variadic functions 80

vii

viii

List of Figures

2.1
2.2

2.3
2.4
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

6.1
6.2

6.3

Al
A2

B.1
B.2
B.3
B4
B.5
B.6

Overview of the GRLIB platform with pVEX 7
Overview of the steps performed to translate a program consisting of a

single source code file into machine code. 0L 8
OpenCL kernel 9
An example of a 2-dimensional index space 10
Example PCI Express topology 12
System overview 13
Subcomponents of the pocl OpenCL implementation 15
Overview of the additions to the platform 16
Overview of software on hosto L. 18
State diagram of C2S component oL 23
Sequence diagram of a read request L. 24
State diagram of S2C component 24
Sequence diagram of a write request 25
Transformation of signature by pocl framework. 30
Memory layout of kernel arguments 32
Structure of the execution context 33
Signature of work-group loader function. 33

Throughput over PCle for different transfer sizes, using the cdev interface 40

Transfer speed versus size when transferring a single packet over PCle . 41
Speedup of benchmarks compiled with different compilers, relative to

HP compiler 48
Speedup of total execution time on benchmark kernel 57
Projection of total execution time speedup when produced on same tech-

nology as the Core 2 Duo E8500 processor. 59
Projection of total execution time speedup when produced on same tech-

nology as the Core i7 920 processor. 59
Original convolution kernel 0oL 73
Optimized convolution kernel 74
Register definitions o oo 76
Definition of register setso o oL 76
Scheduler configuration 7
abs_int rule lowering oL L oo 78
Layout of a stack frame, 80
Definitions of variadic functions in stdarg.h 81

X

List of Tables

3.1

3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5

5.6

5.7
5.8
5.9
5.10
5.11
5.12
5.13

5.14
5.15

5.16

6.1
6.2

B.1

Overview of open-source OpenCL implementations and their supported

accelerator devices Lo 14
Run control signals oL 17
Supported PCle configurations by Virtex-6 21
Device specific registers L 26
Representation of kernel elements in sysfs filesystem 28

Performance factors that influence execution stages of an OpenCL program 37

Throughput over PCle, using the cdev interface 39
Transfer time and speed for different packet sizes over PCle 40
Read and write characteristics per operation 42
Execution time and percentage of stalled time of original kernel using

pVEX and host CPU L o 42
Execution time and percentage of stalled time of optimized kernel using

pVEX and host CPU 43
Compilation and link times for OpenCL kernel 44
Expected time of steps in benchmark OpenCL program 45
Predicted and measured performance on the accelerator 46
Predicted and measured performance on the CPU of the reference platform 46
Compiler simulation failures 47
Fastest execution time of a benchmark per compiler 48
Compiler configurations not included in kernel execution time measure-

ments 49

Fastest execution time of all optimization levels on the optimized kernel 50
Slowdown of a kernel compiled with an issue-width of 2 relative to a

kernel with an issue-width of 8 50
Overview of measurement results 51
Production processes of devices tested by Komatsuet al. 58
Techniques to improve factors that influence the execution time 61
Calling convention rules L L Lo oo 79

X1

xii

List of Acronyms

AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface
ASIC application-specific integrated circuit
BAR Base Address Register

C2S Card to System

cdev character device

CPU central processing unit

DMA Direct Memory Access

FPGA field-programmable gate array
GPU graphics processing unit

HDL Hardware Description Language
IC instruction bundle count

ILP instruction-level parallelism

CPI cycles per instruction

IR Intermediate Representation

ISA Instruction Set Architecture
OpenCL Open Computing Language
PC Program Counter

PCI Peripheral Component Interconnect
PCIe PCI Express

pocl Portable Computing Language
RAM Random Access Memory

S2C System to Card

VEX VLIW Example

VLIW Very Long Instruction Word
XDMA Xilinx DMA

xiii

Xiv

Acknowledgements

Developing this work has been a longer journey than I had anticipated. I would like
to thank a number of people for their continued help and support during the last 14
months.

First of all I would like to thank my supervisor, Stephan Wong, for his guidance.
Though few in number, our meetings forced me several times to adjust my goals, settling
for more reasonable targets. I would also like to thank the PhD candidates Joost and
Anthony, who were always available for a chat about the problem I was facing at that
moment.

A lot of thanks goes to my fellow master students: Klaas, for helping me remember
that I should take a break every few hours; Jens, for the opportunities to think and
discuss different problems than the ones I was facing; and Jeroen, for rewriting the core,
making all our lives easier.

A special thanks goes to Maarten, for going through the pain of proofreading a draft
of this work. Our weekly lunches forced me to explain my research to somebody not
intimate with the subject, while learning first hand how unclear such explanations are.

Finally, I would like to thank my parents, who are always interested in whatever I
have to tell.

Hugo van der Wijst
Delft, The Netherlands
November 23, 2015

p.q%

xvi

Introduction

This thesis describes the design and implementation of an OpenCL accelerator based on
the p-VEX processor. This chapter provides an introduction to the problem. It starts
with the context in which this work originated. Subsequently, the motivation for an
accelerator based on the pVEX processor will be discussed. This is followed by the
problem statement that is researched in the thesis. The methodology to analyze the
problem statement and the goals of the thesis are discussed. Finally, the outline of the
rest of the work is given.

1.1 Context

Since the early 1990s, 3D graphics accelerators have become mainstream in common com-
puters. These separate processors could perform 3D operations faster than the central
processing unit (CPU), allowing for richer 3D environments and more CPU time for other
program logic. With the addition of programmable shaders, these graphics processing
units (GPUs) became usable as more generic accelerators in the mid 2000s[1]. Manufac-
turers of GPUs embraced this new market and launched models specially designed to be
used as accelerator.

The use of GPUs as accelerators illustrates the rise of the heterogeneous computing
model, in which different types of processors are used in a system. In a typical heteroge-
neous computer there is one main program that divides the input into small work-items.
Small programs called kernels need to be executed on each of these work-items, after
which the work-items are combined into the output. Kernels are often run on only
one type of processor, as the performance of a kernel differs for the different types of
processor.

The increase in the use of heterogeneous computing has been especially visible in the
High Performance Computing community. Today, many of the fastest super computers
use two or more types of computing devices [2]. With the advent of CUDA and later
OpenCL, accelerators are starting to be used in commercial applications|3][4].

In 2008 the Computer Engineering group of the TU Delft started working on a
flexible and parameterized processor, the pVEX[5]. This processor was designed to
be used in a heterogeneous computing environment, as a coprocessor in a MOLEN][6]
machine. Since its original implementation, the p-VEX has since been extended multiple
times[7][8]. It currently supports run-time reconfiguration of the issue-width, balancing
between running multiple threads with a low issue-width or less threads with a higher
issue-width. A more extended discussion of the p-VEX can be found in Section 2.1.

2 CHAPTER 1. INTRODUCTION

1.2 Motivation

The reconfigurable nature of the p-VEX processor makes it an interesting architecture
for an accelerator device. Accelerators based on GPUs are mainly optimized for vector
calculations with a small amount of divergent branches. This use case can be performed
relatively well by the pVEX as it has a Very Long Instruction Word (VLIW) architecture,
being able to execute up to 8 instructions per cycle.

GPUs perform poorly on kernel instances with a large amount of divergent branches.
By reconfiguring the p-VEX processor as four 2-issue cores, a p-VEX-based accelerator
can also perform well for these types of kernels.

Using the p-VEX as an accelerator gives rise to all kinds of new research questions,
such as how to determine the best processor configuration based on a kernel and how to
schedule different kernels. In order to enable this research, first an accelerator based on
the pVEX processor needs to be designed.

1.3 Problem statement, methodology, and goals

Currently on of the most popular cross-platform and cross-device heterogeneous com-
puting framework is Open Computing Language (OpenCL). This framework supports
modern GPUs and CPUs, among other devices. Support for OpenCL is required for a
quick adoption of a new accelerator. In this thesis, we investigate the performance that
an accelerator based on the p-VEX processor can achieve using the OpenCL framework.
The problem statement of this thesis is:

In the OpenCL environment, can the p-VEX be competitively used as an acceler-
ator?

To answer this question, we first need to identify and measure the components that
influence the performance of an accelerator. In order to perform these measurements,
an accelerator platform using the p-VEX processor is made. This platform consists of an
acceleration device, a communication mechanism between the acceleration device and
the host, and a software library to interface with the acceleration device. Using the
measured performance of the components, a model is made for the total execution time
of a kernel. This model is subsequently validated.

To summarize, the main goals of this thesis are:

1. Designing and implementing a platform to use the p-VEX processor as an acceler-
ator. Such a concept should consist of:

e An acceleration device based on the p-VEX processor.
e A communication mechanism between the acceleration device and the host.
e An acceleration library to allow programs to use the accelerator.

2. Determining the performance of the different components of the acceleration plat-
form.

3. Creating and validate a model of the total execution time of a kernel.

1.4. ORGANIZATION 3

1.4 Organization

The rest of this thesis is organized as follows.

Chapter 2 provides background information on the technologies used in the rest of
this thesis. It starts with an overview of the p-VEX project, describing both the hardware
design and the available toolchain. Subsequently, the OpenCL framework is discussed,
followed by a short description of the PCI Express bus.

Chapter 3 details the conceptual design of the system. First the proposed overall
design is discussed. Next several different implementation for the OpenCL runtime
are evaluated and an implementation is chosen. The additions necessary to support the
accelerator in this runtime are discussed subsequently. This is followed by a presentation
of the architecture of the accelerator device based on the pVEX processor. Finally,
the design of the software needed on the host to perform the communication with the
accelerator is discussed.

Chapter 4 provides a description of the implementation. It starts with the implemen-
tation of the PCI Express communication on the accelerator. This consists of the DMA
interface and the register interface. The Linux drivers that allow user space programs
to communicate with the accelerator are discussed next. The chapter concludes with a
description of the p-VEX back end of the OpenCL run time.

Chapter 5 explains the measurements performed to answer the research question.
First the methodology and setup of the tests are detailed. Subsequently, the results
for the communication throughput and latency, cache misses, compile time, and kernel
execution time will be given. Based on these results a model for the full execution time
will be proposed and validated. Finally, the available compilers will be benchmarked to
explore the improvement potential in that area.

The found results are discussed in Chapter 6. It starts with a discussion of possible
techniques to improve each of the factors identified in the model. This is followed by
an analysis of the effect of improving these factors on the total speedup. Finally, a
projection of the performance of the accelerator when implemented as an ASIC is made.
These projected performance values are compared against both the reference platform
and modern GPUs.

Concluding the thesis, Chapter 7 summarizes the previous chapters, lists the main
contributions, and gives suggestions for future work.

CHAPTER 1. INTRODUCTION

Background

In the previous chapter we described the reason to design an accelerator based on the
pVEX processor. This chapter provides background information on the technologies
used in the rest of the thesis.

First we give a short summary of the history of the p-VEX project, followed by an
overview of the current design of the p-VEX. Subsequently we detail the available tool
chain for the p-VEX, focusing mostly on the available compilers. We continue with an
overview of OpenCL, a platform for heterogeneous computing, and finish with a short
description of the PCI Express bus.

2.1 p-VEX processor

The p-VEX is a processor designed around the VEX Instruction Set Architecture (ISA).
VEX belongs to the category of Very Long Instruction Word (VLIW) ISAs. In a VLIW
architecture, a processor executes multiple instructions in parallel. Which instructions
are executed in parallel is decided during compilation by the compiler. The group of
instructions that get executed in a cycle is called an (instruction) bundle.

Not all instructions can be executed in the same cycle. There are two reasons why
instructions can not be scheduled in the same bundle: architectural restrictions and data
dependencies. The architecture defines how many instructions of a certain type can be
executed per cycle. Most architectures for example have fewer load-store units than
arithmetic units, so only a limited amount of load or store instructions can be executed
per bundle. Data dependencies exist between two instructions when the result of the first
instruction is used by the second. Two instructions that have a data dependency can not
be placed in the same cycle, as the result of the first is only available in the next cycle.
The amount of instructions that can be executed per cycle is called the instruction-level
parallelism (ILP).

The design of VLIW Ezample (VEX) allows variation of multiple parameters without
changing the ISA[9]. It was designed for educational purposes, allowing students to
explore the design space of a VLIW ISA. The VEX ISA is based on the Lx ISA[10],
which is used by the ST200 processor family from STmicroelectronics.

In the original p-VEX design by Van As, the following parameters could be changed
at design time[5]:

o [ssue-width
e Number of ALU units
e Number of MUL units

e Number of general purpose registers (up to 64)

6 CHAPTER 2. BACKGROUND

e Number of branch registers (up to 8)
e Accessibility of functional units per lane
e Width of memory buses

Being able to change parameters at design time allows for optimizing the design of
a processor for a specific application. While this is useful when only applications with a
similar resource usage are run on the processor, often multiple applications with different
usage patterns need to be executed. Having a fixed issue-width can cause programs with
high ILP to run less quickly than is possible, while resources are not being used when
program with low ILP are run.

To solve the problem of running programs with varying ILP efficiently, the p-VEX has
been modified to support dynamically reconfiguring the issue-width of the core[7]. In this
design the issue-width can be changed at run-time, switching between either multiple
concurrently running contexts with a low issue-width or few contexts with high issue-
width. The current version of the p-VEX supports up to four cores with issue-widths
ranging from 2 to 8.

2.1.1 Hardware design

During development, the p-VEX processor is being instantiated on a field-programmable
gate array (FPGA). An FPGA is a chip that consists of many small programmable
logic blocks that can be connected in different ways. A designer can specify the behavior
of the chip, which is often done using a Hardware Description Language (HDL). A
synthesizer program turns this specification into an FPGA configuration file. Using this
configuration file the FPGA can be reconfigured. The quick reconfiguration time and
recent increases in clock speed and amount of available programmable logic blocks makes
FPGASs highly suitable for the prototyping of logic designs.

The p-VEX processor currently supports instantiation on the Xilinx ML605 platform,
which contains a Virtex-6 FPGA. There are two different configurations of the processor
for this platform: a stand-alone version and a version using GRLIB. The stand-alone
version does not have any external dependencies and implements its memory in block
RAMs on the FPGA. The other version uses the GRLIB IP library' to give the pVEX
processor access to the DDR3 memory on the ML605.

The GRLIB library supports multiple FPGA boards and provides implementations
of many different peripherals. It is developed by Cobham Gaisler AB and serves as a
platform for the LEONS3 processor core. The peripherals and processor cores are con-
nected through the Advanced High-performance Bus (AHB), a version of the Advanced
Microcontroller Bus Architecture (AMBA) interconnect bus designed by ARM. Both
commercial and GPL licensed versions of the library are available.

An overview of the p-VEX processor platform using the GRLIB library can be found
in Figure 2.1. The p-VEX processor core is connected to the main GRLIB bus through a
bus bridge that translates p-VEX bus requests and responses to AMBA bus requests and

ntellectual Property library: In the context of an FPGA, an IP library often refers to a collection
of HDL descriptions of components.

2.1. pVEX PROCESSOR 7

ML605
Virtex-6 AMBA bus
DDR3 memory | pVEX
RAM) controller core

U
UART
+~ USB

i)

Figure 2.1: Overview of the GRLIB platform with p-VEX

responses. The memory controller is provided by the GRLIB platform. A UART debug
block connected to the AMBA bus allows uploading and debugging programs running
on the core. The UART debug block is part of the p-VEX project.

2.1.2 Tool chain

There exists a rich tool chain for the compilation and debugging of programs on the
pVEX processor. We will first provide an overview of the general compilation process
of a program. Subsequently, the available compilers will be discussed, followed by a
description of the other available tools.

The process to get from high level source code in a C-like language to machine
code consists of several steps, as is depicted in Figure 2.2. The first step is compiling
the source code files to assembly, which is a human readable version of machine code.
Next, an assembler program translates the assembly file into an object file containing
machine code and meta data. Since a program can consist of multiple source code files
that reference methods or data declared in each other, a single object file might not
be a complete representation of a program. Combining all the object files into a single
executable is done by the linker.

In most C implementations some set-up work has to be performed before the main
function is called. This work is performed by the _start routine, often located in a
_start.s assembly file. On most platforms this file is provided by the linker.

Compiler A compiler translates source code files to assembly. This paragraph lists
the different compilers that are available for the p-VEX processor.

The first compiler for the VEX ISA has been developed by Hewlett-Packard[11]. This
proprietary compiler supports changing many different parameters of the target, and is

8 CHAPTER 2. BACKGROUND

source code file (.c) assembly file (.s)
object file (.0) @
_start.o @

_start.s

program binary

legend

file Q action

Figure 2.2: Overview of the steps performed to translate a program consisting of a single
source code file into machine code.

used to analyze the design space offered by the VEX ISA.

The ST-200 microcontroller family by STMicroelectronics uses the Lx ISA. For
this family, STmicroelectroncis developed an open-source compiler based on the Open64
compiler[12]. As the VEX ISA is based on Lx, a fork of that compiler has been made to
target the p-VEX processor.

In 2012 IBM created a GCC back end for the VEX ISA, and in 2014 an LLVM
back end has been created by Daverveldt[13]. Because of interest from the Computer
Engineering group, a code generator for the CoSy compiler framework has been created.
A detailed description of this code generator can be found in Appendix B.

Other tools In addition to a compiler, several other tools are needed to program and
use the p-VEX. For programming, an assembler and linker complete the generation of
machine code. For debugging, an ISA simulator and debugger for the p-VEX exist.

STmicroelectronics added support for the Lr architecture to the GNU assembler and
linker, which are a part of the GNU binutils project. The GNU assembler and linker
are the de facto standard tools used on most UNIX systems. The p-VEX assembler and
linker are based on the GNU binutils work done by STmicroelectronics[12].

For debugging purposes, STmicroelectronics developed an ISA simulator for the Lr
architecture. A modified version of that simulator called xstsim supports the VEX
architecture.

2.2. OPENCL 9

__kernel void (__constante int *a, int b, __global int *c) {
size_t i = get_global_id(0);
cli] = al[i] * b;

}

Figure 2.3: OpenCL kernel. This kernel performs an element-wise multiplication of a
vector a and an integer b, storing the result in vector c. The function get_global_id
returns the global ID of the current work-item.

Interfacing with in instantiated p-VEX core can be done using the debug interface.
This interface consists of a debug server (rvsrv), a debug client (rvd), and a trace
interface client (rvtrace). The debug server communicates over USB with the UART
debug interface on the core. The debug client allows reading and writing from and to
memory and registers, uploading programs and controlling the execution of the core.
With the trace interface, jumps and writes to general purpose registers and memory
can be logged to analyze execution. Communication between rvsrv and the clients is
implemented over TCP /IP, allowing the server and the clients to run on different systems.

2.2 OpenCL

In this thesis an accelerator is designed that can be used with the Open Computing Lan-
guage (OpenCL). OpenCL[14] is a platform-independent framework for heterogeneous
computing. It is based on kernels that are compiled at run-time for the accelerators
available in the system. It has originally been developed by Apple in 2008, and has since
been adopted by the majority of the industry. It is currently being developed by the
Khronos Group.

OpenCL distinguishes between a host program and one or multiple kernels. The host
program is executed by the user and runs on the central processing unit (CPU) of the
computing device. The kernels are functions that execute on an OpenCL device. It is
the responsibility of the host program to manage the execution of the kernels.

An OpenCL kernel is written in the OpenCL C programming language, which is a
subset of the ISO C99 language with several extensions. See Figure 2.3 for an example
of an OpenCL kernel. To allow the kernels to work on every device, they are distributed
in source form with the program. During execution of the host program, the kernels are
compiled for the specific device that they are requested to be run on.

The goal of OpenCL is to facilitate parallel programming. This is done by specifying
an index space when queuing a kernel for execution. For each index in the index space,
a kernel instance will be run. Such a kernel instance is called a work-item. The index
space of the work-items can have up to three dimensions. All work-items are provided
with the same arguments; the index of a work-item can be used to determine what work
has to be performed.

Multiple work-items can be combined into a work-group, allowing for more coarse-
grained control. The index space of the work-groups has the same dimension as the
work-items. All of the work-items in a work-group are executed concurrently.

Figure 2.4 contains an example of a 2-dimensional index space. The space consists of

10 CHAPTER 2. BACKGROUND

work-group size S,

’ work-group (w, , wy)

NDRange size G

y

work-item

(wx— Sx+sx+F)(wy Sy+sy+F }) e

(5x: sy) =(0,0)

work-item
(1 W, SX+sX+FX, wy— sy"‘sy'*Fy)

(S sy) =(5y-1,0)

. s work-group size Sy

work-item
(wx Sx+sX+Fx, wy— Sy+sy+F})

(Sx» sy) =(0, Sy-t)

work-item
(wx— Sx-hi‘x-\‘-Fx. wy Sy+sy+F})

5+ Sy = (S 1. 81)

I]
I 1

NDRange size G,

Figure 2.4: An example of a 2-dimensional index space (from [14])

G, by G, work-items. In this example there are nine work-groups, each containing S,
by S, items. Each work-group has an ID, (w,,w,), and each work-item has both a local
and a global ID. Global offsets F, and Fy can be used to give an offset to the global ID
of a work-item.

In the OpenCL C language there are four types of address spaces for variables:
private, global, constant, and local. The private address space is used for all vari-
ables that can only be accessed by one work-item. Variables in the global address space
can be accessed by all kernel instances, independent of the work-group they are in. This
is the address space where buffers are located. The constant address space is for data
that can be accessed by multiple different kernel instances, but is not writable. Finally,
the local address space is shared between kernel instances within a work-group. Variables
in the local address space are only allowed as arguments to a kernel or when declared in
a kernel, but not in a non-kernel function.

A typical OpenCL program has to perform several steps to execute a kernel on an
accelerator. It first needs to query the available devices and select the ones it wants to
use. Subsequently, all OpenCL C language files required to build the kernel need to be
loaded with the c1CreateProgramWithSource function. The program should then be
build by calling the c1BuildProgram function.

Actions on a device are stored in a command queue, which is created by
the clCreateCommandQueue function. The clEnqueueWriteBuffer function will
upload buffers to the accelerator. To execute a range of kernel instances, the
clEnqueueNDRangeKernel function is used. Finally, results are read using the
clEnqueueReadBuffer function.

There are several other heterogeneous programming specifications such as CUDA,
OpenACC and OpenHMPP. Most of these specifications target a specific device at com-

2.3. PCI EXPRESS 11

pile time (OpenACC, OpenHMPP). While CUDA targets multiple devices, these are all
NVIDIA graphics cards. As the CUDA framework is not open, it is not possible to add
support for other devices.

2.3 PCI Express

The accelerator created in this thesis uses the PCI Express (PCle) bus to communicate
with the host. PCle is an interconnect used in many modern PCs and servers. It is the
successor of the Peripheral Component Interconnect (PCI) bus, and shares many of its
concepts. In this section a brief overview of the PCle design will be given. For a more
extensive introduction, see [15].

There are currently three versions of the PCle bus. All versions are backward and
forward compatible with devices made for other versions. A device can have between
1 and 16 lanes, each lane allowing for simultaneous transmission and retrieval of one
byte stream. With PCle version 1 the theoretical bandwidth is 250 MB/s per lane per
direction. This bandwidth has increased to 984.6 MB/s per lane per direction in version
3 [16].

A PCle bus consists of a network of switches and devices. A device can have different
functions, that can be addressed separately. Every device function can initiate a transfer
to every other device function. Transfers consist of one or more packets, routed by the
switches to the receiver. Different classes of packets can be assigned, allowing for traffic
shaping.

An example PCle topology can be seen in Figure 2.5. The PCle root complex
connects the CPU and memory of the system to the PCle bus. This allows CPU memory
requests to be handled by a device on the PCle bus. It also allows devices access to the
system memory without involving the CPU. This principle is called Direct Memory
Access (DMA).

From the software perspective, the PCle bus is an extension of the PCI bus. It
recognizes four types of communication: configuration space requests, memory requests,
I/0 requests and messages. Every device function has a configuration space of 256 to
4096 bytes (256 bytes in PCI). Registers in the configuration space are 4-bytes and
can be read or written one at a time. Memory requests allow variable length reads and
writes, up to 4096 bytes. I/O requests are meant for reads and writes to I/O registers.
The size of these requests is limited to 4-byte reads or writes. Messages are used for
several different functions, such as interrupts and power management.

The configuration space of a PCle device contains the device functions and multiple
configuration parameters for each function. One of these parameters is the size of a
region in the host memory space that is mapped to the device function. The location of
this region is written to the Base Address Register (BAR). Any read or write requests to
that memory region will be turned into memory requests and send to the correct device.

12 CHAPTER 2. BACKGROUND

O
CPU

PCI Express PGl Express KL—I;J
Endpoint Memor
Root emory

PCI Expressto | PC! Express Complex

PCI Bridge

PCI Express

PCI/PCI_X =]
| —
| —

oty

PCI Express PCI Express
Switch
PCI Express PCI Express

Legacy Legacy PCI Express PCI Express
Endpoint Endpoint Endpoint Endpoint

Figure 2.5: Example PCI Express topology (from [15])

2.4 Conclusion

This chapter presents the different technologies necessary to understand the rest of the
thesis. It starts with an overview of the p-VEX processor, which is a processor with
a run-time reconfigurable issue-width and core count. p-VEX processors are currently
instantiated as a soft-core on an FPGA. The GRLIB IP library is used to provide access
to DDR3 Random Access Memory (RAM) on the Xilinx ML605 platform. A rich tool
chain is available for the p-VEX processor. It consists of multiple compilers, a port of
the GNU binutils project, and debugging tools.

As the created accelerator uses the OpenCL framework, a short introduction to
the OpenCL framework is given. This technology defines a framework for programs to
execute kernels on multiple compute units. These kernels are shipped as source code and
compiled by the framework implementation for the correct architecture. Several other
compute related technologies are also mentioned.

Finally, a short overview of the functioning of the PCle bus is given. This bus
provides a high-speed interconnect between peripherals and the CPU. It allows mapping
parts of the system memory range to a device for direct access by the CPU. Additionally,
devices can perform DMA by accessing system memory without involving the CPU.

Concept

This chapter details the conceptual choices for the OpenCL implementation that has
been made. First the overall system design is discussed. Subsequently, several different
implementation for the OpenCL runtime are evaluated and an implementation is chosen.
The additions necessary to support the accelerator in this runtime are discussed next.
This is followed by a presentation of the architecture of the accelerator device based on
the p-VEX processor. Finally, the design of the software needed on the host to perform
the communication with the accelerator is discussed.

3.1 System design

An overview of the system in which the p-VEX is going to be integrated can be found
in Figure 3.1. The system consists of a central processing unit (CPU), main memory,
a southbridge and a PCI Express (PCle) bus, which are connected through the north-
bridge. The PCle bus connects multiple different devices with the CPU and the main
memory. The accelerator with p-VEX processor will be instantiated on the Virtex-6
field-programmable gate array (FPGA). This FPGA is located on the ML605 platform,
which is connected to the PCle bus.

The PCIe bus and the main memory are both connected to the northbridge. This
allows PCle memory requests to access the memory without involving the CPU, enabling
Direct Memory Access (DMA). Additionally, the CPU can directly communicate with a
PCle device function by performing memory read and writes to the memory at the Base
Address Register (BAR). These accesses will be translated by the northbridge and sent
as memory request packets to the correct device.

There are two processors in this system that can be controlled by the user: the CPU

cru| |RAM]
northbridge | southbridge
PCI Express ml605

SATA USB

GPU Virtex-6

Figure 3.1: System overview

13

14 CHAPTER 3. CONCEPT

Project Supported accelerator devices
Beignet[18] Intel GPUs

Clover|[19] AMD and NVIDIA GPUs
FreeOCL[20] Host CPU

pocl[21] Host CPU, extendible

Table 3.1: Overview of open-source OpenCL implementations and their supported ac-
celerator devices

and the p-VEX soft core located on the Virtex-6 FPGA. Consequently, there are two
locations code can be executed. In the remainder of this thesis, the CPU will be referred
to as the host, while the accelerator is often referred to as the device.

3.2 OpenCL runtime

An OpenCL implementation consists of several components. First of all there are two
Application Programming Interfaces (APIs): the OpenCL runtime APT and the OpenCL
C language API. The runtime API is the interface that the program uses to compile,
load and run kernels and buffers on the device. The kernels are written in OpenCL C,
which has several built-in functions. These built-in functions make up the OpenCL C
API.

As the kernels need to be build locally, an OpenCL C compiler is needed. Depending
on the device, other parts of the compiler tool chain such as assemblers and linkers might
be needed. The final part of an OpenCL implementation is a communication system with
the device. This system should be able to initialize, start and stop the device.

There are many existing OpenCL implementations, both open-source and propri-
etary. Because the OpenCL specification is quite large and to avoid duplicating effort,
it was decided to not start a new implementation from scratch.

For an overview of the features of the OpenCL framework, see Stone, Gohora and
Shi [17], for the precise definition see the specification itself[14].

3.2.1 Available implementations

There are several different OpenCL implementations available. These implementations
can be divided in open source and proprietary implementations. As the goal is to add a
new target to the implementation, only open source implementations are considered.
There are currently four open source OpenCL implementations: Beignet[18],
Clover[19], FreeOCL[20] and Portable Computing Language (pocl)[21]. An overview of
the accelerator devices that these implementations support can be found in Table 3.1.
As a basis for the p-VEX OpenCL back end, using Beignet and Clover would require
a lot of work as they are tightly coupled with the rest of the Linux graphics stack. This
leaves two implementations that could be extended: FreeOCL and pocl. FreeOCL aims
to support multiple different compilers while supporting only one accelerator device: the
host CPU. pocl is designed for use with one compiler framework but with multiple

3.2. OPENCL RUNTIME 15

Host-device
interface .
Host layer Y Device layer

OpenCL Platform layer
implementation Device

queries
OpenCL Runtime
implementation Threading Kernel

implementation launching

OpenCL Compiler
implementation Code generation

Clang: Generic
(;)apnegnu(;Lgec built-in function colaLe\/gﬂen
support implementations

Hand-optimized
Work-group function built-in function
generation LLVM passes overrides

Other
code gen

Figure 3.2: Subcomponents of the pocl OpenCL implementation (from [22])

different devices as accelerators. As we want to add a new accelerator, we chose to
extend the pocl implementation.

3.2.2 pocl extensions

The pocl OpenCL implementation is divided into a host layer and a device layer[22], see
Figure 3.2. The host layer encompasses all the device independent functions required for
an OpenCL implementation. This includes an OpenCL C language compiler and generic
optimization passes. The device layer is contains all device specific functionality, and
can be seen as a hardware abstraction layer.

pocl uses the Clang compiler front end to compile the OpenCL C language files.
This compiler generates LLVM Intermediate Representation (IR) instead of machine
code. This IR is architecture-independent, allowing reuse of compiler front ends and
optimization passes. Several back ends are available to translate the IR to architecture
specific assembly.

The device layer contains several components that need to be implemented to add a
new device target. To determine how many available devices the OpenCL implementa-
tion can access, the layer contains a device query component. The device layer is also
responsible for the generation of the machine code to execute on the device. This ma-
chine code should be generated from the IR that the host layer delivers, combined with
the built-in OpenCL C language functions. Finally, the device layer has to be able to
manage the device, implementing data transfer, setup and execution control.

As pocl uses LLVM, the p-VEX back end for this compiler developed by Daverveldt
[13] is used to compile from the LLVM IR to VEX assembly. For the other tools needed
to translate the assembly to machine code, the programs from the binutils project are
used.

16 CHAPTER 3. CONCEPT
ML605
Virtex-6 AMBA bus

DDR3 memory ‘ pVEX

RAM d controller ﬂ ﬂ core
28 | S2C | register |
ﬂ‘ H‘interface

}””7]51\7/12& engine |

|:| existing component 1

Figure 3.3: Overview of the additions to the platform

|
' new component

Faddegon|[23] and ACE have worked on a bridge between LLVM IR and CoSy’s IR:
LLVM-TURBO. This new technology allows passes and code generators developed for the
CoSy compiler framework to be used with LLVM front end tools. A development version
of this technology will be used with the created CoSy code generator (see Appendix B)
to evaluate its performance with pocl.

3.3 Accelerator platform

The accelerator is built on the Xilinx ML605 platform. The p-VEX processor is instan-
tiated as a soft core on the Xilinx Virtex-6 FPGA located on that platform. Because a
large amount of data will need to be stored on the accelerator, access to the Random
Access Memory (RAM) on the ML605 is necessary. Therefore, the GRLIB configuration
of the p-VEX processor will be extended. To allow communication between the host and
the accelerator, the PCle bus is used. The ML605 is designed as a PCle extension card
and has 512MB DDR3 RAM. The PCle endpoint support up to 8 lanes for PCle version
1 and 4 lanes for PCle version 2.

The necessary additions to the p-VEX GRLIB platform can be seen in Figure 3.3.
For the DMA engine an IP core from Northwest Logic is used[24]. This core is retrieved
from the Virtex-6 FPGA Connectivity Targeted Reference Design[25].

There are three interfaces that this DMA core exposes: a Card to System (C2S)
interface, a System to Card (S2C) interface and a register interface. The S2C and C2S
interfaces are used for DMA transfers to and from the card respectively. The register
interface is used to implement application specific registers accessible using memory

3.4. HOST PCIE! INTERFACE 17

name type description
run input Enables or disables execution of a context.
reset input To reset the state of a context.

resetVector input The value that the Program Counter (PC)
should be set to during a reset.

irq input Request an external interrupt to be triggered.

irqID input The interrupt argument of the triggered inter-
rupt.

done output Set high if the core has executed the STOP in-
struction.

idle output High if the core is currently executing. The core
can be running and idle when it is done.

irqAck output High when a requested interrupt is triggered.

Table 3.2: Run control signals

requests.

The S2C and C2S interfaces will be connected to the Advanced Microcontroller Bus
Architecture (AMBA) bus. This bus also connects to the RAM and the pVEX core.
DMA transactions can thus be used both to read and write to the memory and to the
pVEX configuration registers. As DMA transfers are performed by the C2S and S2C
engines, they can be executed independently from programs running on the p-VEX core.
All DMA transactions will be initiated by the host; no interface is made available for
the device to start a transfer.

The register interface will be connected to the run control interface of the core. This
run control interface consists of several signals per context, these are listed in Table 3.2.
Accesses to the register interface have no latency as no bus requests are necessary to
handle them.

3.4 Host PCle interface

For the OpenCL program to communicate with the accelerator, it needs access to the
PClIe bus. As it should not be required to run an OpenCL program in elevated mode,
a separate component needs to handle the communication with the accelerator. This is
achieved by creating a Linux driver that handles the communication between the PCle
subsystem and the pocl library.

An overview of the host software stack can be found in Figure 3.4. The program
communicates with the host layer of pocl. The host layer uses the external Clang com-
ponent to compile kernels to LLVM IR, and delegates device specific requests to the
pVEX device layer. This device layer will use the VEX LLVM back end to translate the
IR representation of a kernel to assembly. This assembly will be assembled and linked
using the binutils programs.

Communication with the p-VEX core is handled by two Linux kernel drivers. The
Xilinx DMA (xdma) driver performs the initialization of the PCle subsystem in the Linux

18 CHAPTER 3. CONCEPT

program
pocl

host layer
/ LLVM VEX back end |
’ pVEX device layer }<—>{ VEX assembler ‘

VEX linker

user space
——————— ——————————————————————— sysfsf----------ccoo-
kernel space

rvex driver

xdma driver

’ PCle subsystem ‘

Figure 3.4: Overview of software on the host. Arrows point from the component initiating
communication to the component that responds.

kernel and handles DMA transfers to and from the Northwest DMA engine. The rvex
Linux driver provides a convenient interface for user space programs, allowing transfers
to memory and register accesses. It uses the xdma driver to communicate with the core.

The rvex Linux driver provides two different interfaces to user space: a character
device (cdev) interface and a sysfs interface. The character device gives user space
programs a direct way to access the memory space on the board. It creates a file in
the /dev/ directory. Reads and writes to this file are handled by performing DMA
transactions to the ML605.

The sysfs interface is used to access core and context registers and the run control
signals. Each register and signal will be represented as a separate file in a subdirectory
located in the /sys directory. A read or write to such a file will be handled by either a
performing a request to the DMA register interface or by performing a DMA transaction.

3.5 Conclusion

This chapter presents the concept for the OpenCL accelerator implementation. It starts
by giving an overview of the entire system, followed by descriptions of the components:
the OpenCL runtime, the accelerator platform, and the communication interface.

As OpenCL runtime the open-source implementation pocl is chosen, as it is specif-
ically designed to be used with architecturally different accelerators. To add support
for the p-VEX based accelerator, a new device-layer is added to pocl. To compile the

3.5. CONCLUSION 19

LLVM IR to VEX assembly, the LLVM back end developed by Daverveldt will be used.
Additionally, an evaluation version of the LLVM-TURBO technology will be evaluated
for use with pocl.

The Xilinx ML605 platform will be used for the accelerator. The p-VEX processor
will use the GRLIB configuration, as it provides a memory controller. To implement
DMA transactions an IP core by Northwest Logic is used. This DMA interface gives
the PC access to the bus connecting the core to the memory and other peripherals. A
second interface using PCle registers is available to control and monitor the execution
of contexts on the core.

On the host the Xilinx DMA driver is used to handle DMA transactions. This
driver is used by a new driver (rvex) that provides user space applications an interface
to interact with the core. Access to the accelerator memory is given using a character
device, while registers and execution control signals are available over the sysfs interface.

20

CHAPTER 3. CONCEPT

Implementation

In the previous chapter the conceptual design of the accelerator was discussed. This
chapter describes its implementation. First, the implementation of the PCle commu-
nication on the accelerator is described. This consists of the DMA interface and the
register interface. The Linux drivers that allow user space programs to communicate
with the accelerator are discussed next. Finally, the p-VEX back end of the OpenCL
runtime is detailed.

4.1 Accelerator implementation

The PCI Ezpress (PCle) interface of the accelerator consists of a PCle endpoint, a Direct
Memory Access (DMA) engine, a Card to System (C2S) and System to Card (S2C)
interface, and a register interface (see Figure 3.3). The C2S and S2C interfaces connect
the DMA engine with the Advanced Microcontroller Bus Architecture (AMBA) bus,
allowing DMA transfers to memory. The register interface implements several device
specific registers for controlling the p-VEX core and specifying the design configuration.

This section starts with the chosen configuration of the PCle endpoint and DMA
engine. Subsequently, the implementation of the C2S and S2C interfaces are discussed.
The section finishes with a description of the register interface.

4.1.1 PCle endpoint

The PCle endpoint is generated by the Xilinx CORE Generator System. The supported
PCle configurations of the Virtex-6 field-programmable gate array (FPGA) can be found
in Table 4.1. During implementation it was found that routing a design with any con-
figuration other than the 4-lane version 1 configuration often fails.

The theoretical throughput of a 4-lane version 1 configuration is 1 GB/s in both
transmit and receive direction. This is 7 times slower than the maximum throughput of
the AMBA bus connecting the DMA interface with the memory, which is 143 MB/s. No
problems are therefore expected from using the 4-lane version 1 PCle configuration.

Version Lanes Bandwidth (in each direction)

1 4 1GB/s
1 8 2GB/s
2 4 2GB/s

Table 4.1: Supported PCle configurations by Virtex-6

21

22 CHAPTER 4. IMPLEMENTATION

4.1.2 DMA engine

The DMA engine from Northwest Logic supports both addressed and streaming data
transfers. As is implied by the name, an addressed transfer indicates the address on
the device where data should be written to or read from. When the device consumes or
produces a stream of data, addresses are not needed and streaming data transfers can
be used.

For streaming transfers, the device waits until data is available from the host. Re-
ceived data is processed and if a result is available, it is sent to the host. In this use case,
the host determines when data is send to the device, and the device determines when it
sends data to the host.

Addressed data transfers are designed as a separate layer on top of the streaming
data transfers. When performing addressed transfers, the host controls when and what
data is transfered. To initiate a transfer, the host sends an “addressed packet” containing
the type, the start address, and length of the request. For writes the host appends the
data that needs to be written, while for reads it expects the device to send the requested
data.

As accesses on the AMBA bus are addressed, the DMA engine was configured to use
addressed transfers.

4.1.3 C2S and S2C interfaces

The C2S and S2C interfaces connect the AMBA bus with the DMA engine. The C2S
interface handles read requests from the host while the S2C handles write requests.

The C2S and S2C components are connected to the AMBA bus using p-VEX buses.
This is done as the p-VEX bus is less complex and provides the necessary functionality.
The bus bridge between the p-VEX bus and the AMBA bus is an existing component in
the p-VEX project.

The DMA engine runs at 125 MHz. As the rest of the core runs at 37.5 MHz, the
requested or provided data has to cross clock domains. This is done by a clock domain
crossing for the p-VEX bus, which is also a part of the p-VEX project. For both the C2S
and S2C components, a crossing is placed between the component and the bus bridge to
the AMBA bus.

The C2S and S2C interfaces from the DMA engine transfer 64-bit words per request.
Because the p-VEX bus has a width of 32-bits, every DMA request requires two p-VEX
bus accesses.

For a detailed overview of the interface the DMA engine, see the manual distributed
with the Xilinx ML605 reference design[25].

C2S Figure 4.1 shows the state diagram of the C2S component. The component starts
in the wait_pkt state, where it waits for an addressed packet. This addressed packet
specifies the location of the data and the amount of bytes to read.

When an addressed packet is available, as indicated by the apkt_req signal, the
component goes into the read_low state. In this state the first 32 bits are requested
over the p-VEX bus. When the bus acknowledges the request and provides the requested

4.1. ACCELERATOR IMPLEMENTATION 23

apkt-req =1 bus.ack = 1 Abent > 4
wait : bent < apkt_bent [pead read

pkt low high

bus.ack =1
bent >0
Adstrdy =1

s bent < bent — 8

bent =0 Adstrdy =1 send

data

Figure 4.1: State diagram of C2S component. State transitions only occur on the rising
edge of the clock.

data, the component moves to the next state. This next state is either the read high
state if more than 4 bytes needed to be read, or otherwise the send_data state.

In the read_high state the C2S component reads the second 32-bit word. When the
data is received over the p-VEX bus, the component moves to the send _data state.

In the send_data state the data read in the previous states is provided to the DMA
engine. After the DMA engine acknowledges the receipt using the dst_rdy signal, the
component moves to the next state. This is either the read low state if there are more
bytes to read in this transaction, or the wait_pkt state otherwise.

An overview of the interaction between the different components is shown in a se-
quence diagram in Figure 4.2. The DMA engine initiates the transfer by providing an
addressed packet. The C2S component then starts to perform read requests and pro-
vides the DMA engine with data packets to transmit. With the last data packet, the
end-of-packet (eop) flag is set to one, indicating to the DMA engine that the packet is
complete.

S2C A state diagram for the S2C component can be found in Figure 4.3. This diagram
resembles the state diagram for the C2S component (Figure 4.1), but there are some
differences. As the S2C component is used for writing data to the local bus, it has to
wait for that data to be available from the DMA engine. When the data is available, it
is written most significant byte first in up to two writes.

A difference between the S2C component compared to the C2S component is that
not all writes are allowed. The memory on the ML605 requires writes to be aligned, and
disallows 3-byte writes. To guard against bus faults due to these illegal memory accesses,
such write requests are ignored. The host driver is expected to transform unaligned write
requests into multiple aligned requests.

The interaction of the S2C component is shown in Figure 4.4. In contrast to the

24 CHAPTER 4. IMPLEMENTATION

DMA engine C2S AMBA bus
[]apkt_req : bent «— 12
read
ack
9%t
read
_ack
src_rdy : eop < 0
dst_rdy
read
| ack
src_rdy : eop < 1
dst_rdy

Figure 4.2: Sequence diagram of a read request.

bus.ack =1 ANbent < 4

apkt_req =1
wait = : bent < apkt_bent [yait srerdy =1 write

-
pkt data low

bus.ack =1 A bent > 4
bus.ack =1 s bent <+ bent — 4
A bent > 4
s bent + bent — 4

write

bus.ack N bent < 4 high

Figure 4.3: State diagram of the S2C component. State transitions only occur on the
rising edge of the clock.

C2S component, the S2C component only performs actions when data is provided by
the DMA engine.

4.1.4 Register interface

The register interface allows quick configuration and status retrieval of the device. The
DMA engine implements a 64 kilobyte Base Address Register (BAR). Accesses to the

4.2. HOST INTERFACE 25

DMA engine S2C AHB
[]apkt_req : bent < 16
write
ack
oo A5
write
ack
oo 9%
dst_rdy
src_rdy
write
ack
oo A%
write
ack
oo A%
dst_rdy

Figure 4.4: Sequence diagram of a write request.

registers are performed by memory read and write requests to that BAR range.

The first 32 kilobytes of the BAR are used by the DMA engine for registers to control
the working of the DMA. The next 32 kilobytes are available for device specific registers
and are used to control the p-VEX.

For the pVEX eight device registers have been implemented (Table 4.2). Three
registers are constant and indicate the version of the interface, the amount of cores on
the device, and the amount of contexts in a core. The other 5 registers are used for the
run control signals as described in Table 3.2.

The run, idle, done, and reset registers are 64 bits long. Each bit in the register
encodes the signal for the respective context: bit 0 for context 0, bit 1 for context 1,
etc. Every context has its own reset_vector register, which indicates the value of the
Program Counter (PC) after a reset. This register is a 64 bits long, as that leads to
a simpler implementation. As the address space of the p-VEX processor is 32 bits, the
upper 32 bits of the reset_vector register are ignored.

4.2 Host interface

The interface between user space programs on the host and the accelerator PCle interface
is implemented by the xdma and rvex kernel driver (see Figure 3.4 in Chapter 3). The
xdma driver initializes the PCle subsystem of the Linux kernel, configures the DMA

26 CHAPTER 4. IMPLEMENTATION

address register size access
0x8000 iface_version 64 R
0x8008 no_contexts 32 R
0x800C no_cores 32 R
0x9000 run 64 R/W
0x9008 idle 64 R
0x9010 done 64 R
0x9018 reset 64 R/W

0x9200 - 0x93F8 reset_vector 64 R/W

Table 4.2: Device specific registers

engine, and handles DMA transfers. The rvex driver creates two interfaces for user
space programs to communicate with core: a sysfs interface and a character device
interface. It translates accelerator specific requests into xdma function calls.

4.2.1 xdma kernel driver

The xdma driver is developed by Xilinx and is distributed as part of the Virtex-6 Targeted
Reference Design[25]. This driver was modified to make it 64-bit compatible, to allow
addressed packets, and to allow a read DMA transfer.

In the supplied xdma driver the assumption was used that a host pointer fits in a
32-bit pointer. As the virtual address range the kernel allocates memory in uses the
entire available address range, addresses allocated by a 64-bit kernel often don’t fit in a
32-bit pointer. Casting such a 64-bit pointer to a 32-bit value and back to a pointer will
result in a different value. While the driver would compile for a 64-bit machine, running
it on such a machine immediately crashes the operating system as incorrect memory
values are being used. This was fixed by using the correct platform-independent types
for pointer values. As the DMA engine assumes that pointers are 32-bit, the physical
addresses of allocated memory are forced to the 32-bit range with the pci_set_dma mask
function.

The reference design with which the xdma engine was supplied uses a streaming
application. Because this does not require support for addressed packets, supplying an
address for the card to indicate where to store the data was not implemented. To add
addressed packet support, an additional DMA register had to be populated with the
requested card address.

Another consequence of the design for streaming purposes was the lack of a host
initiated DMA read transfer. In the streaming application, the host initiates DMA
writes, while the device initiates the transfer back to the host when it is done processing
data.

The pVEX OpenCL back end needs to be able to initiate read requests from the
accelerator memory, so this feature was added to the xdma engine. To allow the targeted
reference design applications to continue functioning, the xdma driver can be used in
both a streaming and an addressed mode. In the streaming mode the card initiates
transfers from the card to the system, and in the addressed mode the hosts initiates

4.2. HOST INTERFACE 27

these transfers.

4.2.2 rvex kernel driver

User space applications communicating with the accelerator need to perform two types
of read and write requests: to memory and to registers. Requests to memory can start
at any address in the address space and have a length determined by the user space
application. Conversely, requests to a specific register will always be to the same address
and of the same length.

Two different interfaces are used for these different types of requests. Memory trans-
fers are handled by a character device interface, while register transfers are handle by a
sysfs interface.

Character device interface A character device (cdev) in the Linux kernel is a de-
vice on which single byte reads and writes are possible. Such a character device is an
abstracted view of a device, and does not necessarily represent all the functionality of a
physical device.

A character device consists of a special file in the /dev directory. In case of the rvex
driver this file is called fpga0. Standard UNIX file operations like open, close, read,
write, and seek are implemented for the device. The open and close operations check
if the user is allowed access to the device and respectively initialize or clean up necessary
resources. The seek operation is used to set the memory location where the read and
write operations should start.

Only the read and write operations need to communicate with the board. To
implement these operations, DMA transfers are initiated. The calling process is blocked
waiting for the transfer to complete.

DMA transfers read or write directly to the AMBA bus on the FPGA. This makes
both the ML605 RAM and bus accessible p-VEX registers available through the cdev
interface. It does require the user space application to know the memory layout on the
platform.

sysfs interface The sysfs interface provides easy access to the PCle registers of the
accelerator. This interface is needed as these registers are not accessible through the
AMBA bus. To provide more convenient access, the sysfs interface is also used to access
the bus accessible p-VEX registers.

sysfs is a virtual filesystem in Linux mounted at /sys. It offers a method for kernel
code to communicate different types of information to user space[26]. This is done by
mapping kernel objects, attributes of these objects, and relationships between objects
to respectively directories, files and symbolic links (see Table 4.3). User space programs
can discover the devices and attributes by walking the directory tree. Reading attributes
is done by reading the associated file; writing to that file will set the attribute when
supported.

The rvex driver creates 3 types of devices with different attributes to model the
accelerator: fpga devices, core devices and context devices.

28 CHAPTER 4. IMPLEMENTATION

kernel element sysfs representation

kernel object device
object attribute file
object relationship link

Table 4.3: Representation of kernel elements in sysfs filesystem

An accelerator is represented by a fpga device. As the memory is shared with all
cores on the accelerator, the fpga device contains a link to the character device. The
fpga device can have one or multiple core devices, that each can contain several context
devices.

When the rvex driver gets started, it reads the no_cores and no_contexts PCle
registers to determine the amount of devices to create. These registers are not accessible
to user space programs, but the information can be deduced by counting the amount of
created devices.

The run control registers are attributes of the context devices. Reading a file asso-
ciated with a binary register will give a 0 or 1 depending on the status of the register.
If the register is writable, writing a 0 to the file will clear the correct bit in the register
and writing a non-zero integer will set that bit. The reset_vector file reflects the 32-bit
value of the reset vector register associated with the context the file is in.

The p-VEX core exposes multiple registers to control the way it functions. Accessing
these registers from a user space application can be necessary to, for example, measure
the performance of executed programs. As these registers are accessible over the AMBA
bus, performing a DMA transfer to the correct address will read or write the register.
This can be achieved by a user space program through the character device interface,
though that requires knowledge of the size and memory locations of the registers.

To provide an easy interface to these registers in the p-VEX core, analogous attributes
have been added to the core and context devices. A read or write command to the
sysfs file will be fulfilled by a DMA transaction to the correct memory address.

Access to the general purpose registers of a p-VEX context is implemented in a special
way. When reading the gpregs file of a context, the values of all 64 registers are returned
separated by spaces. When writing a series of space separated values is expected. The
first of these values should be an offset; every following value is written to the next
general purpose register, starting at that offset.

As the run control registers are accessed using memory requests on the PCle bus, they
can be performed relatively quick. Accesses to the other registers are implemented by
performing DMA transfers, which require several memory requests and are thus slower.

The sysfs files are normally only accessible by the root user. To allow user space
programs to access these files, several rules are added for the udev device manager|[27].
These rules will change the group attribute of the files to the rvex group. Any program
run by a user in the rvex group can then access the sysfs files.

4.3. POCL DEVICE-LAYER IMPLEMENTATION 29

4.3 pocl device-layer implementation

A new pVEX device-layer has been added to the Portable Computing Language (pocl)
framework. This layer has to perform the following functions: query devices, man-
age memory, transfer data, generate machine code, and manage execution. The im-
plementation of the first three functions is straightforward and will be discussed first.
Subsequently, a short overview is given of the techniques used by pocl to implement
work-groups and the local address space. Finally, the generation of machine code and
management of execution will be detailed.

Query devices To query the amount of available devices, the p-VEX device-layer scans
the amount of fpga devices in the rvex class on sysfs using libudev. This allows adding
multiple accelerators to a system, each being used by a different program.

Manage memory The management of the memory of the accelerator is done by the
device-layer on the host. As a kernel instance can not dynamically allocate memory, the
amount of memory that needs to be reserved is known before an instance is executed.

The pVEX device-layer uses the Bufalloc memory allocator that is included in
pocl. This allocator is designed for typical OpenCL workloads and uses a simple first fit
algorithm to find free space[22]. As only one OpenCL program can use the device at the
same time, the entire memory of the ML605 card is available to the allocator.

Transfer data Transferring data is done using the cdev interface of the rvex Linux
driver. When the device-layer is initialized, the associated sysfs rvex device is stored.
The associated character device is then used for read and write transfers.

Read and write requests are performed using the POSIX functions read and write.
To set the location in memory where the data should be written, the 1seek function is
used. These functions are preferred over the standard C file functions defined in stdio.h,
as the C functions have internal buffers.

In order to explain the generation of the machine code and management of the ex-
ecution some additional information on the design of pocl is needed. In the following
sections work-group functions, kernel signature transformation, argument lists, execu-
tion contexts, and the on-device setup will be discussed. Afterward, the machine code
generation and execution management will be detailed.

4.3.1 Work-group functions

From the perspective of the programmer, all kernel instances in a work-group are exe-
cuted concurrently. Instances in the same work-group can communicate with each other
using local variables and wait on each other using barriers. A seemingly straightforward
implementation would execute all work-groups in parallel. This becomes complicated
and expensive when there are more instances in a work-group than the amount of com-
pute units, as that would require scheduling and context-switching.

30 CHAPTER 4. IMPLEMENTATION

kernel void k(global int *glob_pointer, global image2d img,
local int *local_pointer, long 1) {
local int a;

void k(global int* glob_pointer, global image2d img,
local int* local_pointer, long 1, local int* a, pocl_context* pctxt);

Figure 4.5: Transformation of signature by pocl framework.

In pocl, all kernel instances in a work-group are combined into a single instance,
called a work-group function. pocl creates loops over all work-group items in “all parallel
regions”, regions between barriers. For more information on the generation of work-group
functions, see [22].

One of the main benefits of this technique is that a device can simply run work-
group functions in parallel without having to implement shared memory and barriers,
significantly simplifying the design of an accelerator. A large drawback is that a new
work-group functions needs to be compiled for different work-group sizes. As the work-
group size is only known when the kernel is enqueued, first-time execution of a kernel
with a not yet used configuration might take multiple times longer than expected.

4.3.2 Kernel signature transformation

A kernel instance has two extra types of input in addition to its explicit arguments:
variables declared in the local address space and the execution context. In pocl, these
inputs are passed to the kernel function as extra arguments. This section describes this
technique.

There are two types of variables that can be declared in the local address space.
If a kernel argument is a pointer to a local variable, all kernel instances in the same
work-group should get a pointer to the same variable. Variables declared on the stack
and marked as local should also be shared among instances in the same work-group.

pocl adds an extra pass over the LLVM Intermediate Representation (IR) to extract
local variables and add them as arguments to the kernel function. To illustrate the trans-
formations that are performed, see the function definition and signature in Figure 4.5.
A pointer to the local variable a has been appended to the arguments of the kernel. On
execution, the framework will provide instances in the same work-group a pointer to the
same variable.

The execution context describes the configuration of the index space and the
index of the kernel instance. The kernel can access this information using the
work-item functions: get_global_id, get_global_size, get_group.id, get_local_id,
get_local_size, get_num groups, and get_work_dim.

pocl adds a pointer to a pocl_context structure as the final argument to every kernel.
This structure encodes the execution context and is used to implement the work-item
functions.

4.3. POCL DEVICE-LAYER IMPLEMENTATION 31

4.3.3 Argument list

Before execution of the kernel, the arguments and local variables need to be copied to
the device. To accomplish this, a region of memory is allocated to store these arguments.
This region is called the argument list. The argument list consists of three parts: a list
of pointers to the original arguments, a list of pointers to local variables declared in the
kernel, and a buffer where the actual arguments are stored (the argument buffer).

Figure 4.6 contains an illustration of the argument list layout for the kernel defined
in Figure 4.5. The first four entries are pointers to the location of the original four
arguments. Of these, the first points to a buffer allocated by a previous c1CreateBuffer
call. This buffer is managed separately and should outlive the function. The image buffer
itself is also managed separately and not located in the argument buffer. To correctly
access the image2d object some metadata is needed though. This data is stored in a
dev_image_t structure located on the argument buffer and contains a pointer to the
image buffer.

Both the data pointed to by the local int* argument and the value of the long
argument are stored in the argument buffer. The amount of memory to reserve for
the third argument, the local int*, is determined by the application by calling the
clSetKernelArg function. For Figure 4.6 the size of the argument is set to sizeof (int)
* 4.

The local int variable a declared on the stack in Figure 4.5 will also be allocated
in the argument buffer. As all kernel instances in the same work-group will be added to
the same work-group function, each instance has access to the local data.

4.3.4 Execution Context

The structure of the execution context can be found in Listing 4.7. It consists of the
following variables:

e work_dim: The amount of dimensions of the index space. A value between 1 and
3.

e num groups: The number of work-groups of this execution, for each dimension.
e group_id: The identifier of the currently executing work-group function.
e global offset: The offset at which global identifier start.

When the work-group functions are generated, the work-group local identifier is
stored in a variable. The global identifier for a dimension 0 < d < 3 is given by
group_id[d] - num_groups|d] + local_id[d]| 4+ global_offset[d].

4.3.5 On-device setup

Before the kernel function can be called, the correct arguments need to be loaded. This is
done by the work-group loader, of which the signature can be found in Listing 4.8. This
loader reads the kernel function arguments from the argument list and calls the kernel.

32 CHAPTER 4. IMPLEMENTATION

args

Figure 4.6: Memory layout of kernel arguments

As the amount and type of arguments differs between kernels, a special work-group
loader is generated for each kernel.

The entry point of the program loaded onto the device is the _start procedure.
This small procedure written in assembly initializes the start pointer, loads the correct

4.3. POCL DEVICE-LAYER IMPLEMENTATION 33

struct {
uint32_t work_dim;
uint32_t num_groups[3];
uint32_t group_id[3];
uint32_t global_offset[3];
};

Figure 4.7: Structure of the execution context

void k_workgroup_fast(void *arg_list, pocl_context *ctxt);

Figure 4.8: Signature of work-group loader function.

addresses of the argument list and execution context and calls the work-group loader.
When the work-group loader returns the execution is halted, allowing the host to detect
that the kernel is done.

In the current implementation of the device-layer, the addresses of the argument list
and the execution context are stored in the first eight bytes of the kernel binary. This
implementation requires multiple instances that are run concurrently to have a separate
copy of the machine code in memory. When pointers to the argument list and execution
context are passed in available scratchpad registers, a single version of the machine code
can be used.

4.3.6 Generate machine code

Generating executable machine code for the p-VEX consists of two main phases: code
generation and linking. The first step generates machine code from the LLVM IR, the
second sets all global memory references to the correct value. This section explains the
compile steps taken by pocl and the p-VEX device-layer.

In OpenCL, the kernel source code is specified to the framework using the
clCreateProgramWithSource function. This source code is build upon a call to the
clBuildProgram function. At this point, pocl will use Clang to compile the source code
to LLVM IR. Extraction of local variables and transformation of the arguments is done
when the c1CreateKernel function is called. The machine code can only be generated
when the clEnqueueNDRangeKernel is executed, as only at that moment the work-item
size is known and the work-group function is generated.

To create machine code from the work-group function, first the LLVM VEX back
end is executed. This will generate assembly code from the LLVM IR in which the
work-group function is defined. Next, the assembly is turned into an object file by the
assembler program. The _start.s file containing the entry point for the device is also
assembled into an object file. Both object files are then linked together to create the
machine code.

At the previous link step, the location in memory of the program is not yet known.
This is required as the LLVM VEX back end currently does not support position-
independent code generation and the p-VEX processor does not have a memory manage-
ment unit. The location of the machine code in memory is known just before execution,

34 CHAPTER 4. IMPLEMENTATION

when it is allocated. Before the code is transfered to the memory of the accelerator, the
linker is run a final time to correctly set the memory location.

As described in Section 3.2, a development version of LLVM-TURBO has been eval-
uated for use as an LLVM back end. Because LLVM-TURBO is still in development,
not all LLVM IR constructs are currently supported. As some of these unsupported
constructs are used by pocl, the CoSy developed VEX back end could unfortunately not
be used with the pocl p-VEX device-layer.

4.3.7 Manage execution

Before execution of kernel instances can start, the device needs to be prepared. Prepa-
ration consists of the following steps:

1. allocating memory for the argument list and the execution context
2. transferring the argument list to device memory

3. allocating memory for the kernel machine code

4. linking the kernel machine code to its final location

5. setting memory addresses of the argument list and execution context at start of
kernel binary

6. transferring kernel binary to device memory

Special care has to be taken when the argument list and execution context are con-
structed. While the p-VEX processor is big-endian, the used host is little-endian. Any
internal data needs to be converted to big-endian before it is transfered to the device.

The execution of the pVEX processor is managed with the run control registers.
After transferring the kernel binary to device memory, the reset_vector register is set
to the address of the _start procedure. Before execution of each work-group function,
the context is reset and the correct group identifier is set in the execution context. Next
the context is allowed to run by setting the run signal to 1. To check if the execution is
finished, the done signal is polled.

4.4 Conclusion

This chapter details the implementation of the p-VEX accelerator using OpenCL. It
starts by describing the implementation of the PCle interface on the accelerator platform,
followed by the implementation of that interface on the host platform. Finally, the
implementation of the p-VEX device-layer in pocl is explained.

For the p-VEX interface, the PCle endpoint generated by the Xilinx CORE Generator
System was used. Two components have been designed to interface between the DMA
engine and the AMBA bus: one for transfers from the host to the accelerator and one
for transfers from the accelerator to the host. Several execution control signals are

4.4. CONCLUSION 35

connected to the register interface of the DMA engine, allowing quick control of the
pVEX processors on the accelerator.

For the host the xdma kernel driver is used to interface with the DMA engine on the
FPGA. The original driver only supports 32-bit kernels and is designed for streaming
applications. It has been modified to support 64-bit machines and support the addressed
transfers needed by the accelerator.

A new kernel driver called rvex is developed to interface between the xdma driver and
user space. To interface with the memory, a character device is created. File operations
on this character device are translated to operations on the memory of the accelerator.
Registers of the p-VEX processor on the accelerator are made available using the sysfs
interface.

To add support for the p-VEX accelerator in pocl a new device-layer has been created.
This device-layer defines device-specific functionality for the accelerator. The following
functionality is implemented: querying the amount of devices, managing the memory of
the device, transferring data to and from the device, generating machine code for the
device and managing the execution of the device.

36

CHAPTER 4. IMPLEMENTATION

Experiments

This chapter describes the experiments performed to answer the research question. The
goal is to create and validate a model of the run time of the accelerator on an example
problem.

First the methodology and setup of the tests will be detailed. Subsequently, the
results for the communication throughput and latency, cache misses, compile time, and
kernel execution time will be given. Based on these results a model for the full execution
time will be proposed and validated. Finally, the available compilers will be benchmarked
to explore the improvement potential in that area.

5.1 Methodology

The performance of the accelerator depends on multiple factors. The identification of
these factors is done by analyzing the different stages in the execution of an OpenCL
program. For each stage, the performance factors are determined. Each of the factors
differing between device-layers is measured separately. Based on these measurements, a
total run-time of the program is predicted and validated.

To determine the relevant performance factors, seven execution stages of an OpenCL
program are considered. An overview of these stages and the identified influencing factors
is listed in Table 5.1. Each of these will now be shortly discussed.

The performance of the first three stages is mostly determined by the pocl framework.
As the framework consists of many different parts, these parts can be listed individually.
Stage 1 uses the generic probing and selecting API, and is the same for all accelerators.
As stage 2 compiles the OpenCL files to LLVM Intermediate Representation (IR), its

OpenCL execution stage Performance factors

1) Query and select accelerators Framework efficiency

2) Compile program OpenCL files Clang execution speed

3) Compile specific kernel LLVM VEX back end execution speed

4) Copy input data to device memory Communication bus throughput, device and

host memory throughput
5) Setup device for running kernel Communication bus latency and throughput
6) Run kernel Device clock frequency, device memory
throughput and latency, compiled code quality
7) Copy result data to host memory Communication bus throughput, device and
host memory throughput

Table 5.1: Performance factors that influence execution stages of an OpenCL program

37

38 CHAPTER 5. EXPERIMENTS

performance is determined by the execution speed of the Clang compiler. Stage 3 runs
the LLVM VEX back end to generate machine code from the IR, so its performance is
directly caused by the performance of the LLVM back end.

As most kernels require input data and create output data, copying data to and from
the accelerator is an important part of the execution of an OpenCL program. This is
done not only in stages 4 and 7, but also when copying the kernel machine code to the
device in stage 5. The speed of copying is mostly determined by the throughput of the
communication bus and the throughput of the host and device memory. As the data to
be copied is normally large, latency is not a very large factor in the copy speed.

Apart from copying the machine code, several other operations have to be performed
when setting up the device in stage 5. The program counter has to be pointing to the
start of the kernel, and the correct parameters need to be passed to the kernel. This
process requires several bus transfers between the accelerator and the host. Here, the
latency of the communication bus between the host and the accelerator might have an
influence.

Finally and obviously, the execution speed of the kernel on the accelerator is an
important factor in the performance of the complete program. This execution speed is
determined by architectural features such as the clock frequency of the accelerator, its
memory throughput and latency, and cache misses. It is also impacted by the quality of
the machine code generated by the compiler.

5.2 Setup

The performance of the accelerator is evaluated relative to the execution speed of running
the kernel on the host central processing unit (CPU). Where possible, tests are executed
on both the host CPU using the pocl basic device-layer and on the accelerator using the
pocl pVEX device-layer.

The tests are run on a desktop machine with a dual core Intel Core 2 Duo E8500
Wolfdale processor with a maximum clock frequency of 3.16 GHz and 4 GB of DDR3
SDRAM. The desktop was running Ubuntu 14.10 64-bit with Linux kernel 3.16.

The accelerator is implemented on a Xilinx Virtex-6 FPGA on the Xilinx ML605
platform, which has 512 MB of DDR3 SDRAM. It contains one p-VEX processor. This
processor has four contexts and can run up to four 2-issue threads, two 4-issue threads
or one 8-issue thread. The processor is clocked at 37.5 MHz, as is the AMBA bus
connecting the processor, the Direct Memory Access (DMA) engine and the memory.
The accelerator contains a 1kB data cache and an 8 kB instruction cache.

All experiments are run 5 times and the average of these 5 runs is taken. Where
possible, experiments are run without the X.Org Server enabled to reduce the amount
of context switches.

5.3 Communication

Communication throughput between the accelerator and the host over the PCI FEu-
press (PCle) bus was measured by performing read and write requests of various sizes.

5.3. COMMUNICATION 39

Throughput (MB/s)
Size Reading Writing

128 kB 6.58 10.59
256 kB 7.86 14.37
512 kB 8.87 17.24
1 MB 9.33 19.46
2 MB 9.61 20.75
4 MB 9.75 21.57
8 MB 9.83 22.06
16 MB 9.86 22.24
32 MB 9.84 22.41
64 MB 9.88 22.45

Table 5.2: Throughput over PCle, using the cdev interface

The time it took to read or write was measured using the shell command time. The com-
mand for reading is then time head -c $s /dev/fpgal0 > /dev/null, and for writing
time head -c $s /dev/zero > /dev/fpgal, where $s is the size to read or write.

The measured throughput over the PCle bus can be found in Table 5.2 and Figure 5.1.
For large transfer sizes, the communication system achieves a bandwidth of 9.88 MB/s
when reading and 22.45 MB/s when writing. The exact cause for the 2.3 times lower
performance for reads relative to writes is not known. The likely problem is that due
to the low frequency of the communication bus with the memory, data buffered from a
previous read request is removed before the next request arives. This requires every read
request to perform a complete memory access, leading to a large performance penalty.
Writes are cached in the memory controller when received, so the rest of the system does
not need to wait for the memory write to be completed.

To have an indication of the overhead of the rvex kernel module, the transfer times
for different packet sizes are measured (see Table 5.3 and Figure 5.2). These times are
measured from the moment the transfer is initiated by the host till the moment the card
generates an interrupt indicating the completion of the transfer. As transfers larger than
4 kilobytes are split into smaller transfers by the driver, the measurements have been
made for packets with a size up to 4096 bytes.

For reads of packet sizes up to 8 bytes, the transfer time is around 6.5 us to 6.9 ps.
As the throughput for large packets achieves more than 12 MB/s, the actual transfer of
8 bytes takes around 0.6 ps. This suggests a read latency of approximately 6 ps.

When looking at the transfer speed for writes, we see a linear relation between the
size of a packet and its transfer speed. This relation holds for packets smaller than 1024
bytes, the speed for larger packets decreases. This suggests that there is a write buffer in
the memory subsystem that can store approximately 1024 bytes. When four 1024 byte
transfers are initiated at the same time, the transfers together complete in 135ns. This
is slightly slower than one 4096 byte transfer, as we expect due to the increased overhead
associated with four transfers over one transfer.

The achieved throughput of 109 MB/s is close to 143 MB/s, the theoretical limit of
the AMBA bus connecting the PCle interface with the memory controller. This indicates

40 CHAPTER 5. EXPERIMENTS

@20

aa)]

\2/ —o— read

”;é 15 1 —m— write

&

2
5 - ‘ ‘ : >
$@§$$&&&@&
N A NS R

transfer size (byte)

Figure 5.1: Throughput over PCle for different transfer sizes, using the cdev interface

Reading Writing
Size (bytes) Time (ns) Speed (MB/s) Time (ns) Speed (MB/s)
1 6663.0 0.15 9722.2 0.10
2 6928.2 0.29 6090.0 0.33
4 6565.0 0.61 6034.6 0.66
8 6481.4 1.23 8744.0 0.91
16 9093.4 1.76 6271.6 2.55
32 9903.6 3.23 8004.0 4.00
64 11523.8 5.55 7319.6 8.74
128 23117.8 5.54 9037.8 14.16
256 32253.2 7.94 9485.0 26.99
512 53541.0 9.56 9261.2 55.28
1024 93673.0 10.93 9373.2 109.25
2048 175779.4 11.65 33719.8 60.74
4096 337953.0 12.12 115533.6 35.45

Table 5.3: Transfer time and speed for different packet sizes over PCle

that the PCle and DMA interfaces can handle up to 109 MB/s per second, and that the
limiting factor for the throughput on large packet sizes is the memory subsystem on the
accelerator.

Given the measured PCle transfer time of 12 MB/s for reading and 35 MB/s for
writing 4 kB packets, we can determine the overhead of the Linux kernel driver interface.
The overhead for reading is 18.5% and for writing is 40%.

5.4. CACHE MISS 41

100 ¢

—_
[e)

transfer speed (MB/s)

1 416 64 256 1,024 4,09
packet size (byte)

Figure 5.2: Transfer speed versus size when transferring a single packet over PCle

5.4 Cache miss

Accessing the memory is an expensive operation on modern architectures[28]. To miti-
gate this problem, the accelerator has an instruction and data cache between the memory
and the p-VEX processor. A memory access to cached data or instructions can be per-
formed in a single cycle. Data or instructions not in the cache need to be retrieved from
RAM, taking many cycles.

To measure the performance hit of a cache miss, an OpenCL kernel was written that
would do one million 4-byte memory reads or writes. A cache miss on read was ensured
by incrementing the address by 4 bytes after each read, as a cache-line in the cache
configuration of the accelerator is only 4-bytes long. Because the data cache has only
256 cache lines, each read will be a cache miss. To reduce the amount of cycles spent on
non-memory operations, 50 memory operations are performed per loop iteration.

A memory write will always be written to both the cache and the memory. As there
is a write buffer in the p-VEX core, multiple writes have to be performed in consecutive
cycles to measure the maximum latency of a write. Performing 50 consecutive writes
per loop will reduce the effect of this write buffer, giving a good worst case estimate.

Using performance counters in the p-VEX, the total amount of cycles spent executing
and the amount of stalled cycles have been measured. As can be seen in Table 5.4, a
cache miss when reading stalls the core for 8 cycles. That the amount of executed cycles
per read is slightly higher than 9 cycles is caused by loop overhead and sub-optimal
scheduling. A write stalls the context 2.92 cycles. As writes are buffered, the actual stall
is probably 3 cycles long, but the first write of the loop is buffered.

42 CHAPTER 5. EXPERIMENTS

Time (ns) Cycles Cycles stalled
Load 243.1 9.11 8.0
Store 106.8 4.01 2.92

Table 5.4: Read and write characteristics per operation

Time (ms) % stalled
Processed images rvex basic rvex basic
14174 79.15 214 57.8
28346 157.95 214 57.6
42518 236.00 21.4 57.6
56690 314.60 214 57.6
70862 392.22 214 57.6
85035 468.87 214 57.5
99207 547.39 214 57.5
113379 625.75 214 57.5

0~ 3Tk W

Table 5.5: Execution time and percentage of stalled time of original kernel using p-VEX
and host CPU

5.5 Kernel execution time

To measure the kernel execution time, an edge detection algorithm has been used. This
algorithm performs a convolution on an image with a 3 by 3 pixel convolution matrix.
The amount of images the edge-detection algorithm is run on is varied from 1 to 8 images,
each with a dimension of 640 x 480 pixels. The code for the OpenCL kernel used can be
found in Listing A.1 in Appendix A.

The execution time and percentage of stalled cycles during execution are listed in
Table 5.5. As can be seen the accelerator is about 180 times slower than the host CPU.
This is quite a bit more than expected from the clock speed difference alone, as the host
CPU is clocked 84.4 times higher than the p-VEX processor on the accelerator.

While analyzing the generated assembly of the kernel, it was noted that it contained
a lot of branches. This is caused by the use of the read_imagei and write_imagei
methods. These methods can deal with different image types and check validity of the
arguments. This functionality results in multiple branches, which significantly impact the
instruction-level parallelism (ILP) and make techniques like loop unrolling less efficient.

To reduce the dependence on the compiler and kernel library quality, an optimized
version of the kernel was tested (Listing A.2 in Appendix A). In this version, the knowl-
edge of the structure of the image is used to directly access the pixel color values. The
Clang front end is also asked to unroll the convolution loops using the unroll pragma.
The front end can unroll these loops as the kernel sizes are known after function inlining.
This unroll feature is not part of the OpenCL standard.

The measurement results for this kernel can be found in Table 5.6. The optimizations
lead to a speedup of 9.3 on the accelerator and between the 4.4 and 5.0 on the host CPU.
That difference in speedup can be explained by the increase in ILP that the compiler

5.6. COMPILE TIME 43

Time (ms) % stalled
Processed images rvex basic rvex basic
1 1520 17.84 26.7 43.8

3040 32.60 26.7 43.7
4560 47.73 26.7 43.9
6083 64.42 26.7 43.9
7604 79.39 26.7 44.0
9125 95.28 26.7 44.1
10646 110.44 26.7 44.1
12166 126.62 26.7 44.1

CO N O UL i W N

Table 5.6: Execution time and percentage of stalled time of optimized kernel using p-VEX
and host CPU

can identify due to the reduced amount of branches in the new kernel and the unrolling
of the convolution loop. As the super scaler architecture of the host CPU could already
detect part of this ILP, its speedup is less than the speedup of the accelerator.

On the optimized kernel, the execution speed difference between the host CPU and
the p-VEX has come closer to the expected speed based on clock frequency. The slowdown
ranges from 85 times when processing one image to 96 times when processing eight
images. The fact that the relative amount of stalled cycles has increased on the p-VEX
can be explained by the reduction in overall executed instructions. As the amount of
memory accesses doesn’t decrease as much as the execution time, the relative amount of
stalled cycles increases.

5.6 Compile time

As an OpenCL kernel is supplied as a source code string, it needs to be compiled to
machine code before it can be executed. This step has to be done once, as the resulting
machine code doesn’t change unless the source code changes. Compiled binaries are
cached by the framework, so the execution time is normally only effected during the first
run of a program.

In pocl the compilation is separated in three steps: compilation to IR, generation
of the work-group function, and instruction generation. While the IR should ideally be
platform independent, certain language features differ per platform and result in different
representations. Therefore, a separate IR file is generated for each platform. When the
program requests a kernel to be created, pocl generates a work-group function for that
kernel. This function handles the passing of arguments to the kernel and is the entry
point of the kernel program on the device. Finally, the generated code IR is lowered to
machine instructions and assembled.

Kernels compiled using the basic device-layer, which are run on the host processor,
are compiled as position independent code. This allows them to run correctly irrespective
of the memory location the instructions are loaded to. Because the LLVM VEX back end
does not support generation of position independent code, an extra link step has to be

44 CHAPTER 5. EXPERIMENTS

pVEX
compile work-group function instr. gen. link total
1746.4 ms 2129.3 ms 754.8 ms 28.8 ms 4659.4 ms
basic
compile work-group function instr. gen. total
2820.6 ms 2357.2 ms 302.4 ms 5480.2 ms

Table 5.7: Compilation and link times for OpenCL kernel

performed before loading the machine code. During this link step global memory offsets
are calculated. Linking a kernel for the p-VEX has to be done before every upload, as
only then the location of the machine code in memory is known.

Table 5.7 contains the compile and link times of the optimized edge-detection filter
kernel. Compiling the kernel for the x64 architecture used by the host takes over a
second longer than the compilation for the p-VEX. This suggests that the x64 back end
performs more optimizations than the p-VEX back end.

5.7 Full program execution

Using the previous measurements of factors that influence the performance of an OpenCL
program, a model is constructed to predict the execution time of a complete OpenCL pro-
gram. This program performs an edge-detection algorithm (Figure A.2 in Appendix A)
on a set of images, where each image has a dimension of 640 by 480 pixels. The program
performs the following steps:

1. Load images from disk.

2. Select OpenCL device.

3. Transfer original images as image array to device.
4. Build kernel.

5. Setup device to run kernel.

6. Run kernel on images.

7. Transfer result images from device.

8. Store result images on disk.

Steps that can result in a different execution time between the p-VEX and the basic
pocl device-layers are steps 3-7. As the images have 4 bytes per pixel and a dimension
of 640 by 480 pixels, the size of one image is 1200 kB. The size of the generated machine
code for the pVEX kernel is 6.5 kB.

5.8. COMPILER COMPARISON 45

Time (ms)
Step pVEX Host
Transfer original images to device 59.5
Build kernel 4659.4 5480.2
Setup device to run kernel 29.6
Run kernel on images 1520.8 15.8

Transfer result images from device 121.3

Table 5.8: Expected time of steps in benchmark OpenCL program

This gives an expected transfer time of 59.5ms per image to the accelerator and
121.3 ms per image from the accelerator. As was measured, generating the kernel binary
takes 4659.4ms and is only incurred the first time the program is executed. Setting
up the kernel requires the linking and uploading of the kernel machine code. Linking
the machine code takes 28.8 ms. The machine code is 6.5kB, so the upload including
overhead is expected to take approximately 0.8 ms. Finally, the kernel execution takes
1520.8 ms per image. An overview of these values can be found in Table 5.8.

These values give an expected execution time in milliseconds using the p-VEX device-
layer for steps 3-7 of

29.6 4+ 4659.4c + 1701.6x

where x is the amount of images and ¢ is 1 if the kernel is not cached and 0 otherwise.

For the basic device-layer, we assume that transfers are practically instant. Kernel
compilation takes 5480.2 ms and execution takes on average 15.8 ms per image. The
expected execution time is thus 5480.2¢ + 15.8x. According to these models, the p-VEX
is 107 times slower per image than the host.

Table 5.9 list the expected and measured total execution times for the accelerator.
The faster execution of the accelerator compared to the expected execution suggests that
some parameters are chosen too conservatively. The larger deviations in the uncached
benchmarks might be caused by file system or other operating system caches. The
maximum deviation between the expected and measured results stays within 4%.

The expected and measured execution times for the reference platform are listed in
Table 5.10. It is clear that at least one factor that influences the execution time is not
taken into account. This discrepancy has not been fully investigated, possible causes are
the copying of the images or the loading of the shared library containing the kernel.

5.8 Compiler comparison

The execution time of the OpenCL kernels is determined for a large part by the quality
of the compiler. The less efficient the assembly is the compiler generates, the more
performant the accelerator has to be to reach the same execution time.

In this section an evaluation of the performance of the current compiler technology
for the VEX is made. The five available compilers will be tested on both a broader
benchmark suite (Powerstone) and the evaluation kernel discussed in Section 5.5. The
first test is performed on a simulator, while the benchmark of the evaluation kernel is

46 CHAPTER 5. EXPERIMENTS

pVEX
cached uncached
images expected measured difference expected measured difference
1 1731.2 1709.0 -22.2 6390.6 6349.1 -41.5
2 3432.8 3408.1 -24.7 8092.2 8055.1 -37.1
3 5134.4 5112.6 -21.8 9793.8 9469.0 -324.8
4 6836.0 6808.1 -27.9 11495.4 11455.0 -40.4
5 8537.6 8509.9 -27.7 13197.0 13150.0 -47.0
6 10239.2 10205.7 -33.5 14898.6 14566.3 -332.3
7 11940.8 11900.3 -40.5 16600.2 16501.4 -98.8
8 13642.4 13595.7 -46.7 18301.8 18178.3 -123.5
Table 5.9: Predicted and measured performance on the accelerator
basic
uncached cached
images expected measured difference expected measured difference
1 15.8 29.5 13.7 5496.0 5515.5 19.5
2 31.6 494 17.8 5511.8 5541.4 29.6
3 474 65.4 18.0 5527.6 5558.5 30.9
4 63.2 82.7 19.5 5543.4 5574.7 31.3
5 79.0 98.9 19.9 5559.2 5586.7 27.5
6 94.8 117.0 22.2 5575.0 5605.0 30.0
7 110.6 133.0 22.4 5590.8 5624.6 33.8
8 126.4 151.0 24.6 5606.6 5636.2 29.6

Table 5.10: Predicted and measured performance on the CPU of the reference platform

performed on a synthesized design. To evaluate the ILP detection of the compilers, the
evaluation kernel will also be tested in 2-issue mode.

5.8.1 Powerstone benchmark suite

To validate the performance of the VEX compiler created with CoSy (see Appendix B), a
performance comparison of the available compilers has been made. A subset of the Pow-
erstone benchmark suite[29] was used for this analysis. This suite consists of programs
containing kernels of embedded applications from multiple domains. Only benchmarks
using integer arithmetic have been tested, benchmarks using floating point numbers have
not been included as the p-VEX does not have a floating point unit.

Some modifications have been made to the Powerstone benchmark programs. Several
Powerstone benchmarks are platform dependent as they make assumptions on the size
of integer types. These benchmarks have been rewritten to use platform independent
types. The notification of the success of a benchmark has also been changed. The
original benchmarks print a string to the standard output indicating if the result of the
computation was correct. This has been changed to returning specific values on success

5.8. COMPILER COMPARISON 47

compiler benchmark optimization level fault

GCC adpcm 0 incorrect result
bent 0 failed to finish
blit 0 incorrect result
engine 0 memory error
g3fax 0 incorrect result
jpeg 0 data error
v42 0 failed to finish

LLVM g3fax 1-3 failed to finish
pocsag 1-3 failed to finish

Open64 crc all incorrect result
engine all illegal instruction
jpeg 1 failed to finish
pocsag all incorrect result

Table 5.11: Compiler simulation failures

or failure.

The performance of the compiled benchmarks were measured by simulating execution
on the xstsim simulator from STmicroelectronics. After execution the result value in
register $r0.3 is checked to ensure that the program was executed correctly. If the
execution was correct, the amount of executed instruction bundles as reported by xstsim
is recorded. The simulation is expected to complete within one minute, otherwise it is
marked as “failed to finish”.

All available VEX compilers are included in the comparison: HP, GCC, Open64,
LLVM, CoSy and LLVM-TURBO. A binary is compiled for every supported optimization
level of each compiler. The compilers were generating code for a 4-way core. To compare
the compilers, the lowest amount of executed bundles was taken for each compiler from
all optimization levels. This approach was used as more aggressive optimizations enable
at higher optimization levels might reduce performance.

There were four reasons that measurements failed: incorrect results, failing to fin-
ish, memory errors and illegal instructions. The first two failures are often caused by
scheduling bugs where delays between instructions with data dependencies are not cor-
rectly handled. These bugs can also lead to incorrect memory offsets, resulting in memory
errors. The Open64 compiler uses an extended VEX ISA, producing several instructions
that are not in the original Instruction Set Architecture (ISA). While these instructions
are not supported by the xstsim simulator, the p-VEX processor does support them.

An overview of simulation failures can be found in Table 5.11. The failures of GCC
and LLVM have been found to be caused by compiler bugs. Not all failures of programs
compiled by Open64 have been analyzed, but at least some are caused by unsupported
instructions.

The best execution time of compiled benchmarks per compiler can be found in Ta-
ble 5.12. An overview of the execution time of the compilers relative to the execution
time of the HP compiler can be found in Figure 5.3. In this overview, configurations
where a compiler failed on the higher optimization levels are not included. Still, slow-

48 CHAPTER 5. EXPERIMENTS

CoSy GCC HP LLVM LLVM-TURBO Open64
adpcm 17826 20361 21368 23816 21127 22719
bent 1872 4574 1868 4616 5793 2548
blit 12178 15188 11614 17152 10440 6628
cre 9897 12904 12721 9152 11405
engine 1524837 508942 626215 446250 1764676
g3fax 698351 596062 472715 2182275 643269 459719
ipeg 1739315 1656048 1364382 1631745 2044126 1318880
pocsag 30283 25852 15721 27202
uchqsort 371677 272487 185897 269167 359636 274619
v42 2548684 2012647 1647725 2007788 2334386 2278508

Table 5.12: Fastest execution time of a benchmark per compiler

BCoSy 0GCC [OLLVM-TURBO B8LLVM B0pen64

Speedup vs. HP

—_
[\)

— o

[mun]

=

|

E

I

| x]

—

[rrrorrrrn

0

k

[

| R |

—

===

/=

——

|nnnnn]

| weswewsswws |

[EEEEEENEEEN]

e

| |

———

|EEEEEE]

| —

0.75 1

0.5 +
X N2
K S D
o 5
S

Figure 5.3: Speedup of benchmarks compiled with different compilers, relative to HP
compiler. Results for the g3fax and pocsag benchmarks compiled with the LLVM com-
piler and the crc, engine, and pocsag benchmarks compiled with the Open64 compiler
are not included.

downs of more than 1.5 occur with multiple compiler-benchmark configurations and only
12 of the 45 tested configurations are faster than the HP compiler. The bad performance
of the CoSy back end based compilers on the engine benchmark is caused by inefficient
division code. The causes for differences between compilers in the other benchmarks are
currently not known and require more analysis.

5.8. COMPILER COMPARISON 49

compiler optimization level fault

CoSy 0,1 failed to finish

LLVM-TURBO 1 failed to finish

LLVM 0-2 failed to finish
4 incorrect result

Table 5.13: Compiler configurations not included in kernel execution time measurements

5.8.2 Performance on kernel

By comparing the performance of compilers on the Powerstone benchmark suite, it was
found that there is large variation in the execution time of code generated by different
compilers. In this section the impact of the compiler on the execution time of an OpenCL
kernel is explored. This is done by compiling the kernel with all available compilers and
analyzing the execution time.

The program that is used as a benchmark is based on the optimized kernel used in
Section 5.5. This kernel is rewritten to be ANSI C compliant, allowing all compilers to
process it. All functions needed by the kernel are included in the same source code file as
the kernel, allowing the compilers to perform optimizations across functions. The main
method and image data are located in separate source files so the compiler can’t make
assumptions on that data. As input data one of the 640 by 480 images is used that was
also used when measuring the run-time of the OpenCL kernel. This image is added to
the program as a constant variable, to make the binary self-contained.

The produced binaries are executed on a pVEX soft core running on the ML605
platform. The p-VEX is configured in 8-way mode. To validate the correctness of the
generated code a version of the benchmark program is used that checks the output of
the kernel against a correct output. Programs taking longer than 5 minutes to complete
or producing incorrect results are excluded from the results. The final measurements are
performed with the output check disabled. Each measurement is performed five times
and the average of these measurements is used.

Table 5.13 lists the configurations that where excluded from the measurements. Low
optimization levels that fail to finish do not necessarily indicate a compiler bug. This is
not the case for the incorrect result of the LLVM compiled binary, which is caused by a
compiler bug.

The total amount of executed cycles and bundles can be found in Table 5.14. The
most striking result is the really bad performance of CoSy and LLVM-TURBO, which
both use the same VEX code generator. This bad performance is caused by the two
modulo instructions in the inner loop of the convolution:

(x - filter_size / 2 + filterX + imageWidth) ’ imageWidth;
(y - filter_size / 2 + filterY + imageHeight) J, imageHeight;

int imageX
int imageY

On lower optimization levels, the modulo operations are implemented as function
calls, resulting in very low ILP. On higher optimization levels CoSy uses the fact that the
right hand side of the modulo is a constant to generate code that should be significantly
faster. This is not the case as that optimization uses operations on 64-bit values, which

50 CHAPTER 5. EXPERIMENTS

CoSy GCC HP LIVM LLVM-TURBO Open64
bundle count (x10%) 815.4 403.7 282.9 172.0 1065.3 67.0
cycle count (x106) 1152.0 428.1 343.5 198.6 2265.7 81.7

Table 5.14: Fastest execution time of all optimization levels on the optimized kernel

CoSy HP LLVM-TURBO Open64
slowdown 1.09 1.38 1.21 1.66

Table 5.15: Slowdown of a kernel compiled with an issue-width of 2 relative to a kernel
with an issue-width of 8

are also implemented as function calls.

Performance differences between the other compilers are also large: the second
fastest compiler (LLVM) generates code that is 2.4 times as slow as the fastest com-
piler (Open64). As the LLVM VEX back end is used by the pocl device layer, these
results indicate that there is a lot of room for performance improvements by enhancing
the LLVM compiler.

Impact of issue-width As a final test the impact of changing the issue-width of a
kernel is explored. This is done by compiling the same kernel from the previous test
for an issue-width of 2 instead of 8. As the GCC back end does not support a different
issue-width than 8 and the code generated by the LLVM back end is incorrect, these
compilers are not included in the results.

The slowdown of the kernel in a 2-issue configuration relative to an 8-issue config-
uration can be found in Table 5.15. The large slowdown of the kernel by the Open64
compiler suggests that that compiler is able to achieve a relatively high level of ILP. This
would also explain the good performance of that compiler relative to the other compilers.

The slowdown is significantly smaller than the reduction in issue-width; a four-time
reduction in issue-width leads to a slowdown of 9% to 66%. Although there is no data
for the slowdown with the LLVM back end, the slowdown from the HP compiler can
be used as an estimate. Running 4 kernels per p-VEX processor in a 4 times 2-issue
configuration on the accelerator should thus result in an approximately 2.9 times higher
throughput in executed instances.

5.9 Conclusion

This chapter describes measurements done to determine the performance of the cur-
rent implementation of the accelerator, and the contribution of different factors to this
performance. First the different performance factors are identified. Subsequently, the
factors that differer between device-layers are measured independently. Using the mea-
surements, a model of the expected run time of a benchmark kernel is formulated and
validated. Finally, the impact of the compiler on the run time is analyzed by comparing
the available compilers.

5.9. CONCLUSION 51

Measurement Result
PCle read throughput 9.88 MB/s
PCle write throughput 22.45MB/s
Cache miss time (read) 243.1ns
Cache miss time (write) 106.8 ns
Kernel execution time 1520 ms
Compile time (total) 4659.4 ms

8-issue to 2-issue slowdown 1.09 to 1.66

Table 5.16: Overview of measurement results

The performance of the following components have been measured: PCle throughput
and latency with and without driver overhead, cache miss latencies, compilation time
and kernel execution time (see Table 5.16). Where applicable similar measurements have
been performed on the host CPU. Using these measurements a parameterized function is
made to predict the execution time of the full program. This prediction is then validated
by comparing it to the measured execution time. For the accelerator the prediction was
found to be 95% accurate.

According to the proposed model of the execution time, there are three factors that
influence the performance of the OpenCL implementation: the kernel execution time,
the data transfer time and the compilation time. The kernel execution time was found
to be 107 times slower per work-item on the p-VEX relative to the reference platform.

To analyze the influence of the compiler on the execution speed of its generated
binaries, all available compilers for VEX were compared in two benchmarks. The first
comparison uses the Powerstone benchmark suite. The large variation in the results
indicates that the quality of the compiler has a large influence on the execution speed of
the resulting program.

A second comparison is performed with the kernel used for the performance mea-
surements of the accelerator. While the LLVM compiler was found to have the second
best performance, the fastest compiler (Open64) was still 2.4 times faster than LLVM.
Changing the configuration of the kernel from being compiled for an 8-issue processor to
a 2-issue processor reduces the performance by 9% to 66%. Given that there are enough
kernel instances to run, an accelerator running four 2-issue kernels in parallel could get
a speedup of its overall execution time of 2.9.

52

CHAPTER 5. EXPERIMENTS

Discussion

According to the measurements performed in the previous chapter, the developed accel-
erator is 107 times slower than the reference platform. This chapter discusses possible
techniques to improve each of the factors identified in the model: the execution speed,
the data transfer throughput and the compile time. Next, the effect of improving these
factors on the total speedup is analyzed. Finally, a projection of the performance of the
accelerator when implemented as an ASIC is made. These projected performance values
are compared against both the reference platform and modern GPUs.

6.1 Execution speed

The performance of the p-VEX OpenCL accelerator is mostly limited by the execution
speed of the kernel; one instance of the benchmark kernel took on average 15.8 ms on
the host CPU and 1520.8 ms on the p-VEX. To attain performance parity on per kernel
execution, the p-VEX processor needs to achieve a speed-up of 96 times. The time it
takes to execute a program is given by the following equation [28]:

memory stall clock cycles

execution time = IC x (CPI +) X clock cycle time

nstruction
To lower the execution time of a program each of the variables in the equation can be
reduced: the amount of instruction bundles needed to complete the program (instruction
bundle count or IC), the amount of cycles executed per instruction (CPI), the amount
of cycles stalled for memory, and the clock cycle time.

Reduce instruction bundle count One strategy to reduce the execution time of a
program is to reduce the amount of instruction bundles needed to execute the program.
This reduction can be achieved by improving the compiler, improving the kernel library,
or by adding more specialized instructions.

By comparing the available compilers in Section 5.8 it was found that the Open64
compiler achieves a 2.4 times speedup over the LLVM compiler on the benchmark kernel.
In other benchmarks the LLVM VEX showed large variations in its performance: it
was the quickest in two benchmarks but between 11% and 147% slower on the others.
While these are only a limited set of data points, it indicates that there is a room for
improvement in the compiler currently used by the Portable Computing Language (pocl)
device-layer.

Another way to reduce the IC is by optimizing the kernel library code. As described
in Section 5.5, at least some of the library functions callable by an OpenCL kernel are
implemented inefficiently. This was found to be the case for the functions used to read
or write pixels to images. One way to optimize the generated code for these functions

93

54 CHAPTER 6. DISCUSSION

is by creating optimization passes in the compiler to remove checks known to be correct
at compile-time.

The final way to reduce the IC is by adding extra instructions to the VEX Instruction
Set Architecture (ISA). If these instructions can perform operations with a single instruc-
tion that would otherwise require multiple instructions, the total amount of instruction
bundles needed is reduced. Adding such instructions will require compiler or library
changes so kernels are generated that will use the new instructions.

Reduce cycles per instruction There are two factors that influence the amount of
cycles per instruction: the amount of scheduled instructions per bundle and the delay
of an instruction before its result can be used. Increasing the amount of instruction per
bundle would decrease the CPI, as executing a bundle takes one clock cycle!. This can
be done by optimizing the compiler to create higher instruction-level parallelism (ILP).

In Section 5.8.2 the slowdown found between a kernel compiled in a 2-issue configu-
ration and an 8-issue configuration indicates that the found ILP is quite low. While this
might be partly a property of the tested kernel, the variation in slowdown between the
different compilers indicate that there is ILP not found by all compilers.

Alternatively, the CPI can be reduced by modifying the core to reduce the delays
required between instructions. No analysis has been made of the reduction that can be
achieved with this technique.

Reduce memory stall cycles Memory stalls occur when there is a read from a non-
cached address or when a write is performed before the previous write is finished. The
amount of cycles that the memory is stalled can be reduced by either increasing the
cache and write buffer size or by reducing the memory latency.

In Section 5.4 it was found that a read cache miss takes 243.1 ns and a write when
the write buffer is full takes 106.8 ns. A DDR3-1333 memory with CL and RCD timings
9 has a memory access time of at least trop + tor = 27 ns [30]. The found latencies are
several times higher than than these numbers, suggesting that more performance should
be possible with the same memory. No measurements have been performed to determine
what the cause is of the difference between the measured and the expected results.

Reduce clock cycle time As one bundle can be executed each cycle, reducing the
time of a clock cycle will increase the amount of bundles and thus instructions executed
per second. Instead of clock cycle time often the term for the inverse is used: the clock
frequency.

On the optimized kernel, the p-VEX processor is on average 96 times slower than
the host CPU (see Section 5.5). This is 88% slower per clock cycle when correcting for
the difference in clock frequency. Simply increasing the clock frequency of the pVEX
processor by 96 times to 3.6 GHz will not result in performance parity though.

When the clock frequency is increased, and thus the clock cycle time is reduced, the
time it takes to perform a memory access does not change. Increasing the clock frequency
will thus lead to an increase of the amount of stall clock cycles per instruction. Without

'Except on a memory stall or a pipeline stall due to a branch.

6.2. CONCURRENTLY EXECUTING KERNEL INSTANCES 55

a decrease in the amount of stalled memory cycles, it is not possible to get the execution
time of the p-VEX processor on the example kernel to match the time of the host central
processing unit (CPU).

The maximum achievable clock frequency is determined by the longest signal path in
the hardware design. If a signal change can not reach its destination register before the
end of the cycle, an incorrect value is stored in the register and will propagate through
the design. Shortening the longest signal path can be done by optimizing the placement
and routing, potentially by changing the schematic design. Alternatively, a different
lithography process with a smaller transistor size can be used for production. As the
transistors can be placed closer together, the length of the signal paths decreases and
the clock frequency can be increased.

6.2 Concurrently executing kernel instances

An alternative to decreasing the execution time of a kernel instance is to increase the
amount of instances running simultaneously. As OpenCL is designed to be used for
applications with high data parallelism, increasing the amount of instances being able
to execute in parallel should lead to a near-linear speedup.

The simplest way to increase the amount of concurrently executing kernels is by com-
piling the kernel in a 2-issue configuration and running four 2-issue instances on a p-VEX
core. From the comparison between 2-issue and 8-issue kernels made in Section 5.8.2 it
follows that the execution time of four 2-issue instances run in parallel is lower than the
four 8-issue instances run sequentially.

If enough transistors are available on a die, an accelerator can be made that contains
multiple p-VEX processors. Each of these processors can run up to 4 kernel instances
independently of each other. In such an architecture the size and location of caches
becomes even more important, as otherwise the bus to the memory becomes a bottleneck.

6.3 Data transfer

When the execution time of the kernel instances is reduced, the data transfer time
over the PCI Express (PCle) bus will become a larger part of the total execution time.
Reducing this transfer time will be required to achieve performance parity with the host
CPU. On the current design, transferring one image to and from the p-VEX takes 181 ms,
giving a throughput of 12.9 MB/s (see Section 5.3). This transfer takes in the order of a
millisecond on the host.

The maximum memory throughput on the ML605 is currently limited by the memory
subsystem. The AMBA bus connecting the PCle bus with the memory system runs at
37.5 MHz and can transfer 4 bytes per cycle, giving a maximum throughput of 143 MB/s.
Transfer times approaching this maximum throughput were measured, indicating that
the throughput is limited by the memory subsystem. As the DDR3 SDRAM on the
ML605 should be able to achieve bandwidths in the order of gigabytes per second on
sequential accesses, the observed performance is probably caused by an incorrect config-
uration. For a throughput larger than 143 MB/s, the frequency of the AMBA bus needs

56 CHAPTER 6. DISCUSSION

to be increased.

The accelerator uses a version one PCle link in with 4 lanes. The maximum through-
put of such a link is 1 GB/s for transmit and 1 GB/s for receiving. If required, higher
throughput is available by using more lanes or newer PCle versions. The latest gener-
ation PCle, version 3, enables a maximum throughput of 31.51 GB/s in each direction
when configured with 16 lanes[16].

6.4 Compile time

The last factor that determines the total execution time of the program is the time it
takes to compile the kernels. On the benchmark kernel, the compilation steps take 4.7
seconds (see Section 5.6).

While the compile time can become large when many kernels are used, the resulting
binaries are cached. The overhead is therefore only incurred on installation or first run
of the program on a system. In a normal OpenCL program, a single kernel is run many
times. When the compile time of a kernel is amortized over the number of times the
kernel is run, the impact of the compile time will be small.

For some applications, the impact of compiling the kernels the first time the program
is executed might be to big. In that case the kernels can be compiled ahead of time, for
instance during start-up of the program or during installation. If all targeted devices are
known during development, compiled versions of the kernels can also be shipped with
the program.

6.5 Total speedup analysis

As was noted by Amdahl[31], if the execution time of a program consists of several
different factors, increasing the performance of only one of the factors will result in a
sub-linear increase of the total performance. To analyze this effect on the model for the
full program execution time proposed in Section 5.7, an exploration of the search space
has been made. This exploration analyzes the attainable total speedup (S;) by varying
the frequency speedup (Sy), data transfer speedup (Sg) and memory stall cycle reduction
(Sm)-

The results of this exploration can be found in Figure 6.1. In this exploration the
upper limit of Sy is chosen at 100, giving 3.75 GHz. Only improving the frequency will
result in nearly no improvement for Sy > 10. The maximum total speedup achievable
by only changing S is 2.90.

Data transfer speedup values of 3, 10, and 100 have been tried. Only the configuration
with Sg = 100 is shown in the figure, as all other values are to close to the S, = Sg =1
configuration. By changing both S; and Sy, a maximal theoretical total speedup is
achievable of 4.17.

Finally, two reduction values have been considered for the time spent when stalled
waiting for memory: S, =4 and S, = 9. These speedups are based on the theoretical
maximum performance of the DDR3 SDRAM memory, and shouldn’t require adding
more caches. From Figure 6.1 it can be seen that reducing the amount of memory stall

6.6. PERFORMANCE PROJECTION AND COMPARISON o7

Sy =9,S, = 100
25 |
S, =9,8=10
@ 20 |
&
= S = 4,8, = 100
2 15 S =9.51=13
& S, =4,8;=10
2
§ 10” Sm:47sd:3
Sm=9,5;=1
.| S =4.8; =1
=1,8; =100
§g:1,§g:1
O,,

10 20 30 40 50 60 70 80 90
frequency speedup (Sf)

Figure 6.1: Speedup of total execution time on benchmark kernel, for varying data
transfer rate increases and memory stall cycle decreases. Note that the lines for S, =
4,5, =100 and S,, = 9,5; = 3 are superimposed.

cycles has a large positive impact on the total performance. This is illustrated by the
Sm = 4,54 = 100 and S,, = 9,545 = 3 configurations. There, a 21/4 times reduction
in the amount of stall cycles leads to a similar total performance behavior as the 331/3
times speedup in transfer time.

6.6 Performance projection and comparison

In the previous sections techniques were discussed to increase the performance of the
overall program. This was done by influencing five different factors: instruction bundle
count, cycles per instruction, memory stall cycles, clock frequency and the amount of
cores. In this section a projection is made of the attainable speedup by implementing the
accelerator on an application-specific integrated circuit (ASIC) using a modern fabrica-
tion process. This projection is then compared to modern CPUs and graphics processing
units (GPUs).

In the previous section an exploration of the total performance behavior was made
by improving the clock frequency, the data transfer throughput, and the amount of
memory stall cycles. For the coming discussion, a reduction in the amount of stall cycles
of between 4 < S,,, <9 is used.

To create a projection of the amount of cores that fit on a die, an estimate of the area
of the p-VEX processor on a die is needed. To get an approximation of this area, the area
of the ST200-STB1 processor is used. This 4-issue Very Long Instruction Word (VLIW)

58 CHAPTER 6. DISCUSSION

manufacturer device node (nm) die size (mm?)
AMD Radeon HD5870 [36] 10 334
Intel i7 920 [37] 45 263
NVIDIA Tesla C1060 [38][39] 55 470

Table 6.1: Production processes of devices tested by Komatsu et al.

processor is based on the VEX ISA, has two 32kB data and instruction caches and has
a clock frequency of 300 MHz. According to [32], this processor has a core of 5mm? and
is produced on 250 nm. While not explicitly mentioned, it is implicated that the two
32kB caches together are also 5 mm?.

It is assumed that the area of a component on a die shrinks quadratically with the

size of a transistor.

Comparison with reference platform The CPU used in the reference platform is
the Intel Core 2 Duo E8500 Wolfdale. This processor is produced on 45nm and has a
die area of 107mm?[33]. Using the RAMspeed benchmark[34], a sustained sequential
memory throughput of 2.4 GB has been measured. This gives a data transfer speedup
of S; = 200.

On 45 nm the pVEX processor with two 32kB caches would use an area of approx-
imately 0.3mm?. If the same die area is available as is used by an E8500, 200 pVEX
cores could be placed. This would leave 47 mm? for extra caches, a PCle interface, a
memory controller, and an interconnect.

Given the step in production technology, it is assumed that the p-VEX processor
can run at 300 MHz. This would mean a speedup of 8 over the clock frequency of the
prototype, giving an expected total speedup per core of 7.0 to 9.2.

Executing kernel instances on 200 cores will result in memory contention and other
overhead. For this discussion we will assume this overhead to be somewhere from 0%
to 100%. The total speedup of a 200 core accelerator with a similar production process
as the Intel E8500 would than be 5.1-10% < S; < 8.1-10?% for S, = 4 and 6.2 - 10% <
S; < 9.3-102 for S,, = 9. Relative to the reference platform, that would be a speedup
of 54 < S; <84 for S,, =4 and 6.4 < S; < 9.7 for S,, = 9.

An additional speedup can be achieved by moving to a four times 2-issue configuration
for each p-VEX processor. With the found 2.9 times speedup, relative to the reference
the total speedup would be between 10 and 15. The speedup for different overhead values
can be found in Figure 6.2.

Comparison with GPUs The currently most used OpenCL accelerators are GPUs.
To get an indication of the potential of an accelerator using the p-VEX processor, the
projected performance is compared with two modern GPUs.

Komatsu et al.[35] compared an Intel Core i7 920 CPU with two GPUs: the NVIDIA
Tesla C1060 and the AMD Radeon HD5870. In their tests they found the sustained
performance of the GPUs to be between 20 - 183 times higher than the CPU. The
production features of these devices can be found in Table 6.1.

6.6. PERFORMANCE PROJECTION AND COMPARISON 99

14+
)
= 13 ¢
4
g
o, 12 ¢
w0
= Sm =9
S 11+
10 L Sm =4

0 20 40 60 80 100
overhead (%)

Figure 6.2: Projection of total execution time speedup when produced on same technol-
ogy as the Core 2 Duo E8500 processor.

25 %
24 |
23 1
22 1
21
20 1
19 ¢
18 ¢
17 ¢
16 |
15 ¢
14 ¢ ; 1 1 1 >

total speedup (.S¢)

Sm =4
0 20 40 60 80 100
overhead (%)

Figure 6.3: Projection of total execution time speedup when produced on same technol-
ogy as the Core i7 920 processor.

According to [40], the Intel Core 17 920 is 2.2 times faster than the Intel Core 2 Duo
E8500. Both devices are produced on the same node and the die size increased 2.5 times
from the E8500 to the 920. As this die size increase is close to the speed increase, it is
assumed that the execution speedup values found in the previous comparison will also
hold against the Core i7 when produced on that process.

In their paper, Komatsu et al.[35] indicate that the memory bandwidth of the Core
i7 is 25.6 GB/s. As it is not clear if this is a theoretical or measured bandwidth, half of
that value is used for this projection, giving a data transfer speedup of Sy = 1000.

Assuming that the overhead will stay below 10%, the accelerator would be between
1.2 times faster and 8.8 times slower than the measured GPUs. The speedup results
relative to the Core i7 can be found in Figure 6.3.

60 CHAPTER 6. DISCUSSION

GPUs have multiple processing units that are controlled by a single Program Counter
(PC). Branches are handled by disabling processing units on which the instructions
should not be executed. Conversely, the p-VEX processor has a separate PC for each
context. It is therefore expected that many branch-heavy kernels execute faster on an
accelerator based on the p-VEX processor then on a GPU.

For the projections no major architectural changes have been assumed. With such
changes, further improvements might be possible. There are several improvements that
can be made to the memory architecture, such as increasing the amount of cache, in-
creasing the size of cache lines, adding multiple levels of cache, or creating use managed
local memories. These changes should reduce the amount of cache misses, resulting in a
reduced memory stall time. Increases in clock frequency can be achieved by creating a
deeper pipeline.

Above projections are made the results of one benchmark and several assumptions
and extrapolations. As motivated, the type of kernel instance can have a large impact on
the performance of an accelerator. Further research is needed to analyze how different
types of kernels perform on a p-VEX accelerator and to validate the projections.

6.7 Conclusion

This chapter discusses the measurement results of Chapter 5. First, the factors that
influence the performance according to the found model are analyzed. Subsequently, the
effect of improving these factors on the total speedup is analyzed. Finally, a projection
of the performance of the accelerator when implemented as an ASIC is made. These
projected performance values are compared against both the reference platform and
modern GPUs.

There are four factors that influence the execution time of a single kernel: the amount
of instruction bundles needed to complete the program, the amount of cycles executed
per instruction, the amount of memory stall cycles, and the clock cycle time. An overview
of the different techniques that can be used to improve the execution time can be found
in Table 6.2.

Reducing the amount of instruction bundles needed to complete the program can
be achieved by improving the compiler, improving the kernel library, or by adding spe-
cialized instructions. The amount of cycles executed per instruction can be reduced by
optimizing the ILP detection of compilers or by reducing the required delay between
instructions. Improving the amount of cycles spent on memory stalls can be done by
changing the cache architecture or by reducing the memory access latency. To reduce
the clock cycle time the longest signal path needs to be shortened. This can be achieved
by optimizing the placement and routing, changing the processor design or moving to a
lithography process with smaller transistor sizes.

As an alternative to decreasing the execution time of kernel instances, multiple in-
stances can be run concurrently. This can be achieved by configuring the p-VEX processor
in a four times 2-issue configuration or by placing multiple cores on the accelerator.

Data transfers throughput of the current design is 12.1 MB/s. Measurements suggest
that this throughput is limited by the performance of the memory controller. For a
throughput larger than 150 MB/s, the frequency of the memory bus needs to be increased.

6.7. CONCLUSION 61

Factor Improvement Technique
execution speed reduce IC - improve compiler
- optimize kernel library code
- extend ISA
reduce CPI - improve compiler ILP detection
- reduce instruction delays
reduce memory stall cycles - increase cache
- reduce memory access latencies
reduce clock cycle time - optimize processor design
- reduce transistor size
increase parallel execution - 4 X 2-issue instead of 1 x 8-issue
- multiple processors on an accelerator
data transfer increase data throughput - change memory subsystem configuration

- increase AMBA bus frequency
- change PCle configuration
compile time reduce compile time impact - compile ahead of time

Table 6.2: Techniques to improve factors that influence the execution time

While compiling the kernel takes several seconds, it needs to be done only once per
machine. As a kernel is normally run many times over the installed time of a program,
the amortized cost of compiling the kernel is very low.

An exploration has been made of the effect that improving the different factors of the
model has on the total speedup. In the exploration the effect of improving the frequency
was analyzed for data transfer speedups of 1, 3, 10, and 100, and memory stall cycle
reductions of 1, 4, and 9. It was found that if only the frequency is improved a maximal
total speedup of 2.90 can be achieved and if both the frequency and the data transfer is
improved the maximal total speedup is 4.17.

To compare a production version of the accelerator with current consumer products,
two projections have been made. For these projections, a reduction of 4 to 9 times for
the amount of memory stall cycles has been used. As approximation of the area used by
the p-VEX processor, the size of the ST200-STB1 is used. By correcting for the change
in production process, 200 p-VEX processors can be placed on an accelerator. With a
data transfer speedup of 200, the projected total speedup over the reference E8500 CPU
is 10 to 15. In comparison to GPUs, the projected speedup is between 1.2 times faster
and 8.8 times slower.

Due to architectural differences between an accelerator containing many p-VEX pro-
cessors and a GPU, kernels that contain many branches are expected to achieve better
performance on the p-VEX based accelerator. Further research is needed to determine
applications with these type of kernels. Another area for future research is the archi-
tecture of the accelerator; it is expected that improvements to the cache and pipeline
architecture can further improve the performance of the accelerator.

62

CHAPTER 6. DISCUSSION

Conclusion

7.1 Summary

Chapter 2 presents the different technologies necessary to understand the rest of the
thesis. It starts with an overview of the p-VEX processor, which is a processor with
a run-time reconfigurable issue-width and core count. p-VEX processors are currently
instantiated as a soft-core on a field-programmable gate array (FPGA). The GRLIB IP
library is used to provide access to DDR3 Random Access Memory (RAM) on the Xilinx
ML605 platform. A rich tool chain is available for the p-VEX processor. It consists of
multiple compilers, a port of the GNU binutils project, and debugging tools.

As the created accelerator uses the Open Computing Language (OpenCL) framework,
a short introduction to the OpenCL framework is given. This technology defines a
framework for programs to execute kernels on multiple compute units. These kernels are
shipped as source code and compiled by the framework implementation for the correct
architecture. Several other compute related technologies are also mentioned.

Finally, a short overview of the functioning of the PCI Ezpress (PCle) bus is given.
This bus provides a high-speed interconnect between peripherals and the central pro-
cessing unit (CPU). It allows mapping parts of the system memory range to a device
for direct access by the CPU. Additionally, devices can perform Direct Memory Ac-
cess (DMA) by accessing system memory without involving the CPU.

Chapter 3 presents the concept for the OpenCL accelerator implementation. It
starts by giving an overview of the entire system, followed by descriptions of the compo-
nents: the OpenCL runtime, the accelerator platform, and the communication interface.

As OpenCL runtime the open-source implementation Portable Computing Language
(pocl) is chosen, as it is specifically designed to be used with architecturally different
accelerators. To add support for the p-VEX based accelerator, a new device-layer is added
to pocl. To compile the LLVM Intermediate Representation (IR) to VEX assembly, the
LLVM back end developed by Daverveldt will be used. Additionally, an evaluation
version of the LLVM-TURBO technology will be evaluated for use with pocl.

The Xilinx ML605 platform will be used for the accelerator. The p-VEX processor
will use the GRLIB configuration, as it provides a memory controller. To implement
DMA transactions an IP core by Northwest Logic is used. This DMA interface gives the
Program Counter (PC) access to the bus connecting the core to the memory and other
peripherals. A second interface using PCle registers is available to control and monitor
the execution of contexts on the core.

On the host the Xilinx DMA driver is used to handle DMA transactions. This driver
is used by a new driver (rvex) that provides user space applications an interface to
interact with the core. Access to the accelerator memory is given using a character
device, while registers and execution control signals are available over the sysfs interface.

63

64 CHAPTER 7. CONCLUSION

Chapter 4 details the implementation of the p-VEX accelerator using OpenCL. It
starts by describing the implementation of the PCle interface on the accelerator platform,
followed by the implementation of that interface on the host platform. Finally, the
implementation of the p-VEX device-layer in pocl is explained.

For the pVEX interface, the PCle endpoint generated by the Xilinx CORE Gener-
ator System was used. Two components have been designed to interface between the
DMA engine and the Advanced Microcontroller Bus Architecture (AMBA) bus: one for
transfers from the host to the accelerator and one for transfers from the accelerator to
the host. Several execution control signals are connected to the register interface of the
DMA engine, allowing quick control of the p-VEX processors on the accelerator.

For the host the xdma kernel driver is used to interface with the DMA engine on the
FPGA. The original driver only supports 32-bit kernels and is designed for streaming
applications. It has been modified to support 64-bit machines and support the addressed
transfers needed by the accelerator.

A new kernel driver called rvex is developed to interface between the xdma driver and
user space. To interface with the memory, a character device is created. File operations
on this character device are translated to operations on the memory of the accelerator.
Registers of the p-VEX processor on the accelerator are made available using the sysfs
interface.

To add support for the p-VEX accelerator in pocl a new device-layer has been created.
This device-layer defines device-specific functionality for the accelerator. The following
functionality is implemented: querying the amount of devices, managing the memory of
the device, transferring data to and from the device, generating machine code for the
device and managing the execution of the device.

Chapter 5 describes measurements done to determine the performance of the cur-
rent implementation of the accelerator, and the contribution of different factors to this
performance. First the different performance factors are identified. Subsequently, the
factors that differer between device-layers are measured independently. Using the mea-
surements, a model of the expected run time of a benchmark kernel is formulated and
validated. Finally, the impact of the compiler on the run time is analyzed by comparing
the available compilers.

The performance of the following components have been measured: PCle throughput
and latency with and without driver overhead, cache miss latencies, compilation time
and kernel execution time. Where applicable similar measurements have been performed
on the host CPU. Using these measurements a parameterized function is made to predict
the execution time of the full program. This prediction is then validated by comparing
it to the measured execution time. For the accelerator the prediction was found to be
95% accurate.

According to the proposed model of the execution time, there are three factors that
influence the performance of the OpenCL implementation: the kernel execution time,
the data transfer time and the compilation time. The kernel execution time was found
to be 107 times slower per work-item on the p-VEX relative to the reference platform.

To analyze the influence of the compiler on the execution speed of its generated
binaries, all available compilers for VEX were compared in two benchmarks. The first
comparison uses the Powerstone benchmark suite. The large variation in the results

7.1. SUMMARY 65

indicates that the quality of the compiler has a large influence on the execution speed of
the resulting program.

A second comparison is performed with the kernel used for the performance mea-
surements of the accelerator. While the LLVM compiler was found to have the second
best performance, the fastest compiler (Open64) was still 2.4 times faster than LLVM.
Changing the configuration of the kernel from being compiled for an 8-issue processor to
a 2-issue processor reduces the performance by 9% to 66%. Given that there are enough
kernel instances to run, an accelerator running four 2-issue kernels in parallel could get
a speedup of its overall execution time of 2.9.

Chapter 6 discusses the measurement results of the previous chapter. First, the
factors that influence the performance according to the found model are analyzed. Sub-
sequently, the effect of improving these factors on the total speedup is analyzed. Finally,
a projection of the performance of the accelerator when implemented as an ASIC is made.
These projected performance values are compared against both the reference platform
and modern GPUs.

There are four factors that influence the execution time of a single kernel: the amount
of instruction bundles needed to complete the program, the amount of cycles executed
per instruction, the amount of memory stall cycles, and the clock cycle time.

Reducing the amount of instruction bundles needed to complete the program can
be achieved by improving the compiler, improving the kernel library, or by adding spe-
cialized instructions. The amount of cycles executed per instruction can be reduced by
optimizing the instruction-level parallelism (ILP) detection of compilers or by reduc-
ing the required delay between instructions. Improving the amount of cycles spent on
memory stalls can be done by changing the cache architecture or by reducing the mem-
ory access latency. To reduce the clock cycle time the longest signal path needs to be
shortened. This can be achieved by optimizing the placement and routing, changing the
processor design or moving to a lithography process with smaller transistor sizes.

As an alternative to decreasing the execution time of kernel instances, multiple in-
stances can be run concurrently. This can be achieved by configuring the p-VEX processor
in a four times 2-issue configuration or by placing multiple cores on the accelerator.

Data transfers throughput of the current design is 12.1 MB/s. Measurements suggest
that this throughput is limited by the performance of the memory controller. For a
throughput larger than 150 MB/s, the frequency of the memory bus needs to be increased.

While compiling the kernel takes several seconds, it needs to be done only once per
machine. As a kernel is normally run many times over the installed time of a program,
the amortized cost of compiling the kernel is very low.

An exploration has been made of the effect that improving the different factors of the
model has on the total speedup. In the exploration the effect of improving the frequency
was analyzed for data transfer speedups of 1, 3, 10, and 100, and memory stall cycle
reductions of 1, 4, and 9. It was found that if only the frequency is improved a maximal
total speedup of 2.90 can be achieved and if both the frequency and the data transfer is
improved the maximal total speedup is 4.17.

To compare a production version of the accelerator with current consumer products,
two projections have been made. For these projections, a reduction of 4 to 9 times for
the amount of memory stall cycles has been used. As approximation of the area used by

66 CHAPTER 7. CONCLUSION

the p-VEX processor, the size of the ST200-STB1 is used. By correcting for the change
in production process, 200 p-VEX processors can be placed on an accelerator. With a
data transfer speedup of 200, the projected total speedup over the reference E8500 CPU
is 10 to 15. In comparison to graphics processing units (GPUs), the projected speedup
is between 1.2 times faster and 8.8 times slower.

Due to architectural differences between an accelerator containing many p-VEX pro-
cessors and a GPU, kernels that contain many branches are expected to achieve better
performance on the p-VEX based accelerator. Further research is needed to determine
applications with these type of kernels. Another area for future research is the archi-
tecture of the accelerator; it is expected that improvements to the cache and pipeline
architecture can further improve the performance of the accelerator.

7.2 Main contributions
The problem statement of this thesis was:

In the OpenCL environment, can the p-VEX be competitively used as an acceler-
ator?

To answer this question, this thesis had three main goals:

1. Designing and implementing a platform to use the p-VEX processor as an acceler-
ator.

2. Determining the performance of the different components of the acceleration plat-
form.

3. Creating and validate a model of the total execution time of a kernel.

To reach the first goal, an accelerator using the p-VEX processor has been imple-
mented on the Xilinx ML605 platform. This accelerator communicates with the host
using PCle. Implementing OpenCL has been done by extending the pocl framework. A
new Linux driver has been developed to support the communication between the pocl
framework and the accelerator.

The performance of the p-VEX processor, communication system and OpenCL com-
piler have been evaluated. Based on these results a model has been created to predict
the total execution time of the reference program. Separately, a comparison of the avail-
able VEX compilers has been made to determine the influence of the compiler on the
execution time of a kernel.

Using the found model and compiler results, an analysis has been made of the per-
formance of the system on a benchmark application. It was found that the implemented
accelerator is two orders of magnitude slower than the reference platform. To answer
the research question, a projection has been made of the performance of a p-VEX based
accelerator when produced as an ASIC using modern techniques.

The following main contributions have been made:

7.3. FUTURE WORK 67

A PCle interface has been made between the p-VEX running on an ML605 and the
host PC.

A Linux kernel driver has been created to interface with the p-VEX core from user
space.

The pocl framework has been extended to support the p-VEX accelerator.

An analysis of the performance of the system has been performed.

Projections have been made to determine the competitiveness of a p-VEX based
accelerator.

Furthermore, some unrelated contributions to the p-VEX project have been made:

e An extension to the rvsrv debug tool has been created to allow debugging over
PCle.

e A CoSy based compiler for the p-VEX has been developed, see Appendix B.
e The LLVM back end for the p-VEX has been upgraded to LLVM 3.6.

e Implementations of several image related library functions in pocl have been added.

7.3 Future Work

The design of a p-VEX based accelerator offers multiple opportunities for future work.
These suggestions for future work are categorized in implementation enhancements and
research opportunities.

7.3.1 Implementation enhancements

The current system has only been tested with one ML605. While most of the interfaces
have been designed to support multiple p-VEX accelerator devices, some might have been
forgotten. More pressing is the lack of device locking: there is currently no mechanism
with which a device can be reserved for use by only one program.

The current version of pocl does not execute queued kernel instances in parallel with
the main program. It also does not support out-of-order execution of kernels on multiple
cores. These features are required for a multi-core p-VEX accelerator to offer competitive
performance compared to other OpenCL accelerators.

Not all features of OpenCL supported by pocl are implemented in the p-VEX back
end. This includes filling a certain memory range with a specific value, copying data on
the device, and mapping memory from the device to host memory. Operations as filling
and copying of data can be performed on the p-VEX device itself, reducing the amount
of PCle communication.

The Linux kernel driver currently supports only one pVEX accelerator. Adding
support for more devices would require redesigning the xdma driver. Ideally, the xdma
and rvex drivers are merged and a new device interface is automatically added when

68 CHAPTER 7. CONCLUSION

the correct PCle ID is detected. The rvex driver has been designed to facilitate this
merging.

There is currently no way for the kernel driver to query the size of the main memory
on the ML605. Adding this information to the PCle interface would allow having devices
with differing main memory sizes.

7.3.2 Research opportunities

In Chapter 6 a very coarse projection has been made of the performance of an ASIC
accelerator with p-VEX processors. A more in depth exploration of this design space is
needed to provide more accurate projections. Additionally, a survey of kernels could be
made that are branch-heavy and would thus benefit a p-VEX based accelerator.

On an accelerator with multiple cores, the efficient scheduling of kernel instances on
these cores becomes important. As cores on the p-VEX can be rescheduled, the expected
ILP of an instance can be used as a parameter for the scheduling. Furthermore, several
different kernels might be available for execution at the same time. As instances of
different kernel require different memory buffers to be available on the core, the transfer
time of these buffers is also a parameter for the scheduler.

OpenCL specifies work-groups, kernel instances that have access to the same local
memory and are modeled as running concurrently. In pocl, these instances are combined
into a single instance. By adding small local memories to each core, and running the
cores in a four times 2-issue configurations, running the work-group as four instances
might lead to higher performance.

Bibliography

1]

[10]

[11]

[12]

[13]

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming,” Parallel Computing, vol. 38, no. 8, pp. 391-407, 2012.

(2015, November) Top500 List - June 2015. TOP500.org. [Online]. Available:
http://www.top500.org/list /2015/06/

(2015, November) Applications Using OpenCL. Khronos Group. [Online|. Available:
https://www.khronos.org/opencl/resources/opencl-applications-using-opencl

(2015, November) CUDA — Applications — GeForce. NVIDIA Corporation. [On-
line]. Available: http://www.geforce.com/hardware/technology/cuda/applications

T. Van As, “p-VEX: A reconfigurable and extensible VLIW processor,” Master’s
thesis, TU Delft, Delft University of Technology, 2008.

G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “The Molen Media Processor: De-
sign and Evaluation,” in Proceedings of the International Workshop on Application
Specific Processors, WASP 2005, September 2005, pp. 26-33.

F. Anjam, “Run-time Adaptable VLIW Processors: Resources, Performance, Power
Consumption, and Reliability Trade-offs,” Ph.D. dissertation, 2013.

R. Seedorf, F. Anjam, A. Brandon, and S. Wong, “Design of a Pipelined and Param-
eterized VLIW Processor: p-VEX v. 2.0,” in HiPEAC Workshop on Reconfigurable
Computing (WRC), 2012.

J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers and Tools. FElsevier, 2005.

P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood, “Lx:
A Technology Platform for Customizable VLIW Embedded Processing,” in
Proceedings of the 27th Annual International Symposium on Computer Architecture,
ser. ISCA ’00. New York, NY, USA: ACM, 2000, pp. 203—213. [Online|. Available:
http://doi.acm.org/10.1145/339647.339682

(2015, October) HP Labs : Downloads: VEX. Hewlett-Packard Development
Company. [Online]. Available: http://www.hpl.hp.com/downloads/vex/

(2015, October) STLinux. STMicroelectronics. [Online]. Available: http:
//stlinux.com/

M. Daverveldt, “LLVM-based p-VEX compiler,” Master’s thesis, TU Delft, Delft
University of Technology, 2014.

69

http://www.top500.org/list/2015/06/
https://www.khronos.org/opencl/resources/opencl-applications-using-opencl
http://www.geforce.com/hardware/technology/cuda/applications
http://doi.acm.org/10.1145/339647.339682
http://www.hpl.hp.com/downloads/vex/
http://stlinux.com/
http://stlinux.com/

70

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[26]

[27]

[28]

The OpenCL Specification, Version 1.2, Khronos OpenCL Working Group,
Specification, Rev. 19, November 2012. [Online|. Available: https://www.khronos.
org/registry/cl/specs/opencl-1.2.pdf

A. Wilen, J. Schade, and R. Thornburg, Introduction to PCI Express. Intel Press
Santa Clara, 2003.

(2015, November) Frequently Asked Questions — PCI-SIG. PCI-SIG. [Online].
Available: https://pcisig.com/faq?field _category_value[|=pci_express_3.0&keys=

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems,” Computing in science
& engineering, vol. 12, mno. 1-3, pp. 66-73, 2010. [Online]. Available:
http://dx.doi.org/10.1109/MCSE.2010.69

(2015, October) Beignet. [Online]. Available: http://www.freedesktop.org/wiki/
Software/Beignet/

(2015, October) GalliumCompute. [Online]. Available: http://dri.freedesktop.org/
wiki/GalliumCompute/

(2015, October) zuzuf/freeocl. [Online|. Available: https://github.com/zuzuf/
freeocl

(2015, October) pocl - Portable Computing Language. [Online]. Available:
http://portablecl.org/

P. Jaaskeldinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A Performance-Portable OpenCL Implementation,”

International Journal of Parallel Programming, pp. 1-34, 2014. [Online|. Available:
http://dx.doi.org/10.1007/s10766-014-0320-y

M. Faddegon, “SSA Back-Translation: Faster Results with Edge Splitting and Post
Optimization,” Master’s thesis, TU Delft, Delft University of Technology, 2011.

(2015, October) DMA Back-End Core. Northwest Logic. [Online]. Available:
http://nwlogic.com/products/docs/DMA _Back-End_Core.pdf

(2015, October) Virtex-6 FGPA Connectivity Kit Documentation. Xilinx. [Online].
Available: http://www.xilinx.com/products/boards/v6conn /reference_designs.htm

P. Mochel, “The sysfs Filesystem,” in Linuz Symposium, 2005, pp. 313-326.

G. Kroah-Hartman, “udev—A Userspace Implementation of devfs,” in Proc. Linux
Symposium. Citeseer, 2003, pp. 263-271.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 5th ed. Morgan Kaufmann, 2012.

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://pcisig.com/faq?field_category_value[]=pci_express_3.0&keys=
http://dx.doi.org/10.1109/MCSE.2010.69
http://www.freedesktop.org/wiki/Software/Beignet/
http://www.freedesktop.org/wiki/Software/Beignet/
http://dri.freedesktop.org/wiki/GalliumCompute/
http://dri.freedesktop.org/wiki/GalliumCompute/
https://github.com/zuzuf/freeocl
https://github.com/zuzuf/freeocl
http://portablecl.org/
http://dx.doi.org/10.1007/s10766-014-0320-y
http://nwlogic.com/products/docs/DMA_Back-End_Core.pdf
http://www.xilinx.com/products/boards/v6conn/reference_designs.htm

BIBLIOGRAPHY 71

[29]

[30]
31]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the Low-Power
MeCORE™ Architecture,” in Power Driven Microarchitecture Workshop. —Cite-
seer, 1998, pp. 145-150.

DDR8 SDRAM standard, JEDEC, Std., Rev. C, November 2008.

G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference. ACM, 1967, pp. 483-485.

P. Faraboschi and F. Homewood, “ST200: A VLIW Srchitecture for Media-Oriented
Applications,” in Microprocessor Forum, 2000, pp. 9-13.

(2015, October) Intel Core2 Duo Processor E8500 (6M Cache, 3.16 GHz, 1333 MHz
FSB) Specifications. Intel. [Online]. Available: http://ark.intel.com/products/
33911/

R. M. Hollander and P. V. Bolotoff. (2015, October) RAMspeed, a cache
and memory benchmark. Alasir. [Online]. Available: http://alasir.com/software/
ramspeed/

K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi, “Evalu-
ating Performance and Portability of OpenCL Programs,” in The fifth international
workshop on automatic performance tuning, 2010, p. 7.

(2015, October) List of AMD graphics processing units. Wikipedia. [Online].
Available: https://en.wikipedia.org/wiki/List_of _AMD_graphics_processing_units

(2015, October) Intel Core i7-920 Processor (8M Cache, 2.66 GHz, 4.80 GT/s
Intel QPI) Specifications. Intel. [Online]. Available: http://ark.intel.com/products/
37147/

(2015, October) List of Nvidia graphics processing units. Wikipedia. [Online].
Available: https://en.wikipedia.org/wiki/List_of _Nvidia_graphics_processing_units

(2015, October) GeForce 200 series. Wikipedia. [Online]. Available: https:
//en.wikipedia.org/wiki/GeForce_200_series

(2015, October) PassMark - CPU Performance Comparison. PassMark Soft-
ware. [Online|. Available: http://www.cpubenchmark.net/compare.php?cmp[]=5&
cmp(]=834

M. Alt, U. Amann, and H. van Someren, “CoSy Compiler Phase Embedding
with the CoSy Compiler Model,” in Compiler Construction, ser. Lecture Notes in
Computer Science, P. Fritzson, Ed. Springer Berlin Heidelberg, 1994, vol. 786,
pp. 278-293. [Online]. Available: http://dx.doi.org/10.1007/3-540-57877-3-19

http://ark.intel.com/products/33911/
http://ark.intel.com/products/33911/
http://alasir.com/software/ramspeed/
http://alasir.com/software/ramspeed/
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
http://ark.intel.com/products/37147/
http://ark.intel.com/products/37147/
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/GeForce_200_series
https://en.wikipedia.org/wiki/GeForce_200_series
http://www.cpubenchmark.net/compare.php?cmp[]=5&cmp[]=834
http://www.cpubenchmark.net/compare.php?cmp[]=5&cmp[]=834
http://dx.doi.org/10.1007/3-540-57877-3_19

72

BIBLIOGRAPHY

Kernel source code

#define imagelWidth 640
#define imageHeight 480

static void convolution (const image2d_array_t image,
image2d_array_t result, int index, constant int *filter,
const int filter_size) {
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;

for (int x = 0; x < imageWidth; x++) {
for (int y = 0; y < imageHeight; y++) {
int4 res_pixel = (int4) (0);

for(int filterX = 0; filterX < filter_size; filterX++) {
for(int filterY = 0; filterY < filter_size; filterY++) {
int imageX = (x - filter_size / 2 + filterX + imageWidth)
J, imageWidth;
int imageY = (y - filter_size / 2 + filterY + imageHeight)
% imageHeight;
const int4 coord = (int4) (imageX, imageY, index, 0);

const int4 src_pixel = read_imagei(image, sampler, coord);

res_pixel += (src_pixel * filter[filterX + filterY * filter_size])
/256;

//truncate values smaller than zero and larger than 255

res_pixel = clamp(res_pixel, 0, 255);

const int4 coord = (int4) (x, y, index, 0);
write_imagei(result, coord, res_pixel);

Figure A.1: Original convolution kernel

73

APPENDIX A. KERNEL SOURCE CODE

#define tmageWidth 640
#define imageHeight 480

static void convolution_opt (const image2d_array_t image,
image2d_array_t result, int img_index, constant int *filter,
const int filter_size) {
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;

global dev_image_t* image_dev = *(global dev_image_t**)ℑ
global dev_image_t* result_dev = *(global dev_image_t**)&result;
(uchar4*)image_dev->data;
(uchar4x*)result_dev->data;

uchar4 *img
uchar4 x*res

for (int x = 0; x < imageWidth; x++) {
for (int y = 0; y < imageHeight; y++) {
int4 res_pixel = (int4) (0);

#pragma unroll
for(int filterX = 0; filterX < filter_size; filterX++) {
#pragma unroll
for(int filterY = 0; filterY < filter_size; filterY++) {
int imageX = (x - filter_size / 2 + filterX + imageWidth)
/» imageWidth;
int imageY = (y - filter_size / 2 + filterY + imageHeight)
%, imageHeight;

int pixel_index = imageX + imageY*imageWidth
+ img_index * imageWidth * imageHeight;
int filter_index = filterX + filterY * filter_size;

const int4 src_pixel = convert_int4(img[pixel_index]);
res_pixel += (src_pixel * filter[filter_index])/256;

int pixel_index = imageX + imageY*imageWidth
+ img_index * imageWidth * imageHeight;

//truncate values smaller than zero and larger than 255

res_pixel = clamp(res_pixel, 0, 255);
res[pixel_index] = convert_uchar4(res_pixel);

Figure A.2: Optimized convolution kernel

CoSy compiler back end for
VEX

CoSy is a compiler development system developed by ACE Associated Compiler Experts.
It has an extendible intermediate representation and supports easy reordering and par-
allel execution of compiler phases[41]. The compiler phases, which are called engines
in CoSy, are written or generated by the user of the development system. The code to
manage data and start engines is generated by CoSy, based on specifications from the
user on how and when the engines should be executed.

A VEX code generator will be developed for CoSy. This code generator is based on
the sample code generator provided by CoSy.

B.1 Register File

The register file of the p-VEX consists of 64 general purpose registers of 32-bits, 8 branch
registers and a link register. The general purpose registers can be used as source and
destination for arithmetic operations. The branch registers are set by comparison in-
structions are consumed by branch instructions. The link register holds the address to
return to after a function call completes.

The register definitions can be found in Figure B.1. It adds an extra set of registers:
the double word registers (D3, D5, D7 and D9). These registers are composited of two
general purpose registers and are used when passing 64-bit function arguments. Also
note that RO is declared as constant as it is always equal to 0.

Several register sets are defined that are used in different contexts (see Figure B.2).
Note that R1 is not included in the set of general purpose registers, as it is used as the
stack pointer. Two disjunct sets are defined for the registers that are saved by the caller
and for those that are saved by the callee. Finally a rule is added to replace integer
constants of value 0 by accesses to register R0.

B.2 Scheduling

Each instruction in CoSy is part of a consumer class and producer class. The producer
class is propagated to the registers that are set by the instruction. The scheduler deter-
mines the minimum amount of cycles between two instructions based on the producer
and consumer class. These values are provided in the upper part of Figure B.3.

The default producer (DEFPROD) is used for most instructions, its produced values
can be consumed in the next cycle. Loads of general purpose registers and multiply
instructions (LOADPROD and MULPROD) have a delay of one cycle, while link register
loads (LDLPROD) have a delay of two cycles. Branch instructions have special delay

75

76 APPENDIX B. COSY COMPILER BACK END FOR VEX

REGISTER
// general-purpose registers
FOR i = 0..63 R[i],

// integer pair registers, used for function calling/returning
FOR i = 0..3 D[2*i+3],

// branch registers
FOR i = 0..7 B[i],

// link register
LO;

REGISTER COMPOSITION
FOR i = 0..3 dbl:D[2%i+3] <hi:R[2*i+3], lo:R[2*i+4]>;

REGISTER CONSTANT
// general purpose register 0 %s always 0
<R0O>;

Figure B.1: Register definitions

REGISTER SET
// Some register sets

gp_regs <RO,R2..R63>, // Don’t include R1
br_regs <BO..B7>,

dbl_regs <D3,D5,D7,D9>,

link_reg <LO>,

// see cgd/ccreg/target.c
abi_callee_changed <R2..R56, BO..B7, dbl_regs>,

// see cgd/stacklayout/target.c
abi_callee_saved <R57..R63,L0>,

// To make reads of the stack frame.
readSP <R1>,

// Registers available for the register allocator
avail <R2..R63, br_regs, dbl_regs, LO>;

Figure B.2: Definition of register sets

requirements; demanding a one cycle delay between instructions setting a branch register
and the branch itself.
To determine the amount of instructions that can be scheduled in the same cycle,

B.2. SCHEDULING 77

SCHEDULER
PRODUCER
DEFPROD, LOADPROD, LDLPROD, BREGPROD, MULPROD;
CONSUMER
DEFCONS, BRANCHCONS;

TRUE DEFCONS
DEFPROD 1,
LOADPROD 2
LDLPROD 3,
MULPROD 2;

TRUE BRANCHCONS:
BREGPROD 2,

MULPROD 2;

RESOURCES
alu<2>, mul<2>, 1ldstO, branchO, instr_width<2>;

TEMPLATES
DEFTMPL := instr_width
ALUTMPL := instr_width
MULTMPL := instr_width
LDSTTMPL := instr_width
BRANCHTMPL := instr_width

alu + mul + 1dstO + branchO;
alu;

mul;

1dstO;

branchO;

+ + + + o+

// Long immediates cost a syllable extra
ALU_LIMM_TMPL instr_width + ALUTMPL;
MUL_LIMM_TMPL instr_width + MULTMPL;

// LDST long immediates are placed in the branch slot
LDST_LIMM_TMPL := instr_width + LDSTTMPL;

Figure B.3: Scheduler configuration

resource information is provided in the lower part of Figure B.3. These resources provide
a model for the scheduler. The first four resources model the physical resources available
in the core: Arithmetic Logic Units (ALU), MULtilply units (MUL), LoaD STore units
(LDST) and branch units. The instruction width is also modeled as a resource.

Each instruction is part of a template, which defines the amount of resources the
instruction uses. As the VEX instruction set allows the immediate arguments of instruc-
tions to have a 32-bit size, larger arguments do not fit in the 32-bit instruction itself.
This is solved by storing the remainder of the instruction in an extra “long immediate”
instruction, which does not perform any actions itself. While the generation of these
long immediate instructions is performed by the assembler, the compiler has to take
them into account while scheduling as there is otherwise no space in the bundle.

For instructions with an immediate value known by the compiler the situation is easy.

78 APPENDIX B. COSY COMPILER BACK END FOR VEX

RULE [abs_int] o:mirAbs(rs:reg) -> rd:reg;

INTERFERE(rs, rd);

COST 10;

EXPAND {
gcg_create_sub(gcg_expand, rd, RegRO, rs);
gcg_create_max(gcg_expand, rd, rd, rs);

I

END

Figure B.4: abs_int rule lowering

By checking the size of the immediate value the instruction is assigned either its normal
template or its long immediate template (suffixed by -LIMM_TEMPL). If the compiler
does not know the value of the immediate, mostly when moving a label into a register,
it errs on the side of caution and reserves an extra instruction slot.

B.3 Instruction lowering

Instructions are lowered by implementing rules. Each rule consumes an IR instruction
and either expands into new instruction rules or directly emits assembly. Expanding into
instruction rules is preferred, as this allows instruction based scheduling.

An example of a rule is shown in Figure B.4. This rule expands the mirAbs IR
instruction into the VEX sub and max instructions. The INTERFERE property signals
the compiler that the source register rs and the destination register rd can not be the
same. The COST property assigns a weight to the rule, allowing the rule matcher to
select the matches that have the lowest weight.

B.4 Calling convention

A calling convention of an architecture defines where arguments and return values are
stored when a function is called. Arguments can be stored in registers or on the stack
and the return value is often stored in a register. The VEX calling conventions are
relatively straight forward: 32-bit or smaller arguments are stored in the registers R3 to
R10, 64-bit arguments in the register combinations R3-R4, R5-R6, R7-R8 and R9-R10.
Any arguments that don’t fit are stored on the stack. The return value is stored in the
R3 register when 32-bit or smaller, and otherwise in the registers R3 and R4.

Assignment of the calling convention registers in CoSy is handled by the ccreg engine.
Then engine works by a set of conditional rules. When the condition of a rule is true
and there is still a register free, that register is assigned as the location of the argument.
Otherwise the next rule is tried.

The rules for the VEX calling convention are shown in Table B.1. First integer values
of 32-bits or smaller are tried to be assigned. Then 64-bit integers, followed by pointers
which are 32-bit in the VEX architecture. If none of these rules can be applied, the
argument is stored on the stack.

B.5.

STACK LAYOUT 79

Rule name Condition argument location

int < 32-bit integer R3 ... R10

int64 64-bit integer R3-R4, R5-R6, R7-8, R9-10
ptr pointer R3 ... R10

stack true stack

Table B.1: Calling convention rules

B.5 Stack layout

The stack layout of the VEX architecture is partly defined by the specification[9]. The
important parts are that:

1.

2.

3.

Outgoing arguments that do not fit in registers are placed in the Outargs region,
which starts 16 bytes from the start of the frame.

A scratch area of 16 bytes is located at the start of the frame. This area can be
used by a called method.

Stack pointers should be 32-byte aligned, requiring all stack frames to be a multiple
of 32 bytes.

The stack layout as used by the CoSy compiler is shown in Figure B.5. From high
to low addresses, the following things are stored on the stack:

Variable argument storage: a 16 bytes area used to copy the R3 to R7 registers to
when this method has variable argument length. When the method has a static
argument length, this area has a size of 0 bytes.

Link register slot: 4-byte area to store the link register. When this method calls
another method, the link register will be overwritten. This slot can be used to
store the link register so it can be restored before returning from this method call.

Register save slots: area where registers can be saved. A method is allowed to
change certain registers without restoring those, requiring the calling method to
restore these registers after the call if required. Other registers need to be restored
by the method itself. The register save slots are used to store these registers.

Spill slots: When there are more registers required than there are physical registers,
some registers are temporarily stored on the stack. This process is called spilling.
The spill slots are used to store these spilled registers.

Local objects: Object allocated on the stack are placed in the local object slot.

Out arguments: Arguments to a method that do not fit in the registers are placed
in this slot. The offset between the start of these arguments and the stack pointer
is always fixed, so the called method knows where to find them.

Scratch area: The scratch area can be used by the called method and is always 16
bytes long.

80 APPENDIX B. COSY COMPILER BACK END FOR VEX

new SP

scratch area
(16 bytes)

vararg storage
(0 or 16 bytes)

oldSP ——F---------——— -~

scratch area
(16 bytes)

Figure B.5: Layout of a stack frame

The CoSy VEX generator does not use a frame pointer. It uses a fixed stack frame
size with which the stack pointer is subtracted in the function prologue and which is
added in the function epilogue. Adding frame pointers will be necessary to support
functionality like the alloca function.

B.6 Variadic functions

A variadic function is a function in C that can have a variable amount of argu-
ments. Probably the most well known is the printf function, with the signature int
printf (const char * format, ...). To access the arguments, the function uses the
va_start, va_arg and va_end macro’s. The va_start macro initializes a va_list argu-
ment to be used for argument list traversal. The next argument can be requested with
the va_arg macro and the va_end macro cleans up resources used by va_start.

In the function prologue of a function with a variable argument list, the registers R3

B.6. VARIADIC FUNCTIONS 81

#include <stdint.h>
typedef void *va_list;

#define __align(p, size) \
(void*) ((size) == 1 ? (uintptr_t)(p) : \
((size) == 2 ? (uintptr_t)(p) + 1 & "0zl : \
((size) <= 4 ? (uintptr_t)(p) + 3 & ~0z3 : \
(uintptr_t) (p) + 7 & ~0z7 \
)\
)\
)

extern void *__builtin_va_start(void);
#define va_start(ap, parmN) ((void) ((ap) =
#define va_arg(ap, type) \

_builtin_va_start()))

(x (\
(type *) (\
(ap) = (type *)__align(ap,sizeof(type)) + 1 \
) -1\
))
#define va_copy(dst, src) ((dst) = (src))
#define va_end(ap) ((void) 0)

#undef __align

Figure B.6: Definitions of variadic functions in stdarg.h

to R10 are copied to stack in the variable argument storage slot and the scratch area
slot of the previous stack frame. This results in a continues area of arguments, as the
out-going arguments, scratch area and variable argument storage slots are placed next
to each other. Reading the argument list is then implemented by incrementing a pointer
that points to the location of the next argument.

The va_start macro is implemented as a built-in function. This function determines
the offset of the start of the variable argument list, based on the function signature. All
other macros are implemented in C, as shown in Figure B.6.

82

APPENDIX B. COSY COMPILER BACK END FOR VEX

Biography

Hugo van der Wijst is a computer scientist with a strong interest
in computer architecture, embedded software, and software project
management. He started his studies in Computer Science at TU Delft
in 2008, receiving his Bachelor’s degree with Cum Laude distinction in
2012. In 2013 he continued his studies at TU Delft, working towards
a Master’s degree in Computer Engineering.

| From 2009 to 2011, Hugo was a part-time engineer at Formula
Student Team Delft. There, he worked on software for the data-acquisition system and
the electronic control unit of both the last combustion and first full-electric race car of
the team.

For the 2011-2012 competition year, he joined the board of the team as Chief Elec-
tronics. The car designed in that year reached second place at the Formula Student
competition in Silverstone, England and became the overall winner of the Formula Stu-
dent Electric competition in Hockenheim, Germany. In 2013, the car broke the Guinness
World Record for fastest 0-100 km/s acceleration of an electric car.

In 2013, Hugo performed an internship at Tesla Motors in Palo Alto. He will return
to Tesla Motors in a full-time position in 2016.

83

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Motivation
	Problem statement, methodology, and goals
	Organization

	Background
	-VEX processor
	Hardware design
	Tool chain

	OpenCL
	PCI Express
	Conclusion

	Concept
	System design
	OpenCL runtime
	Available implementations
	pocl extensions

	Accelerator platform
	Host PCIe interface
	Conclusion

	Implementation
	Accelerator implementation
	PCIe endpoint
	DMA engine
	C2S and S2C interfaces
	Register interface

	Host interface
	xdma kernel driver
	rvex kernel driver

	pocl device-layer implementation
	Work-group functions
	Kernel signature transformation
	Argument list
	Execution Context
	On-device setup
	Generate machine code
	Manage execution

	Conclusion

	Experiments
	Methodology
	Setup
	Communication
	Cache miss
	Kernel execution time
	Compile time
	Full program execution
	Compiler comparison
	Powerstone benchmark suite
	Performance on kernel

	Conclusion

	Discussion
	Execution speed
	Concurrently executing kernel instances
	Data transfer
	Compile time
	Total speedup analysis
	Performance projection and comparison
	Conclusion

	Conclusion
	Summary
	Main contributions
	Future Work
	Implementation enhancements
	Research opportunities

	Bibliography
	Kernel source code
	CoSy compiler back end for VEX
	Register File
	Scheduling
	Instruction lowering
	Calling convention
	Stack layout
	Variadic functions

