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LIST OF SYMBOLS

£{t)

g(t)

o

vector of parameter aj in mathematical model for the

spacecraft attitude dynamics

parameter in vector a'j

function of time, Eq. (1)

fit measure, Eq. (8)

function of time minimizing expression (9)

inertia dyadic

data point countj; wvector component count

parameter count

quaternion parameter count

torque on satellite due to permanent magnet

torque on satellite due to damping rods

torque on satellite due to gravity gradient

inertial torque, Eq. (2)

number of data points in a sequence of data points
order of derivative, Eqe. (7)

smoothness measure, Eq. (7)

time

time at first data point of a sequence of data points
time at last data point of a sequence of data points
time at i-th data point of a sequence of data points
quaternion parameter vector

k=th component of u

measurement at i—th data point of a sequence of data points




w angular velocity vector (body-fixed co-ordinate system)

Wy i-th component of w
(') first derivative with respect to time
() second derivative with respect to time

N.B.: Symbols occurring in appendices are explained in the

text of the appendices.

The following three Cartesian co—ordinate systems are used:

- a geocentric, earth-fixed system (fixed with respect to the
rotating Earth)

- a geocentric, inertially fixed system (fixed with respect to the
stars)

— a spacecraft centered, body-fixed system (fixed with respect to
the moving spacecraft).

The precise definition of each of these three co—ordinate systems

is not needed in this report. The reader is referred to reference 7

for the many details.



INTRODUCTION

In this study the validity of a new algorithm for the estimation
of parameters related to spacecraft torques is analyzed. The algorithm
is based on reduction of measured data by numerical differentiation
using smoothing splines. Measured data of the ESRO 1A "Aurorae" space-
craft are used.

The algorithm was proposed by.Fraiture (Ref. 1) and elaborated
by Schmidtbauer (Ref. 2).

In general, parameter estimation techniques are time consuming
computational processes when during the minimization the differential
equations for the attitude motion have to be repeatedly integrated
numerically., In principle it is possible, however, to replace the
numerical integrations by numerical differentiations of measured data,
and to use the differential equations (containing the parameters) as
they stand to obtain a best fit between measurements and mathematical

model. This approach may be expected to be potentially more economical,

Stable and efficient algorithms for numerical differentiation have
been developed in recent years. The present study investigates the
potential of such differentiation algorithms using ESRO 1A spacecraft
data as input. It is found that such algorithms may be efficient

numerical tools in parameter estimation studies.

MEASUREMENTS

The ESRO-IA spacecraft was launched on 4 October 1968 into a
near-earth polar orbit (perigee 259 km, apogee 1535 km). It had passive
magnetic stabilization with two strong ferromagnets aligning the space-
crafts z-axis along the earth magnetic field lines. The z-axis oscillated
around these lines with a period of 6 to 12 minutes. The oscillations
were damped by a set of highly permeable magnetic rods (hysteresis
damping).




The direction to the sun in a spacecraft-fixed co-ordinate
system was measured with five digital two-slit solar sensors
covering all possible view angles, The direction and magnitude of
the earth magnetic field vector were measured with four magneto
meters covering angles of at least 22° between the spacecraft's
z-axis and the earth magnetic field lines, The directions of these
two vectors were measured with a total error of at most + 0.50

(solar sensors) and 4 1.5  (magneto meters).

The measured solar angles and magnetic field vectors were
sampled every 6.4 %econds, transmitted to the ground and recorded
on so-called Archive tapes, together with information about the

spacecraft position and the time of sampling.

The measurements are grouped in so-called apogee passes. FEach pass
comprises 300 to 600 measurements covering one third to two thirds

of a complete orbit of the satellite (orbit period about 100 minutes).

A discussion of the selection of passes in this study is
presented in appendix A, Twenty two passes out of a sample of 130
passes were found to satisfy the quality criteria of the measured

data and are available for use in computations,

FORMULATION OF VALIDITY TEST

The preliminary study of Schmidtbauer (Ref, 2) permitted the
conclusion that it is possible to estimate parameters that occur in
the equations describing the attitude motion of the ESRO IA space-
craft,

In order to realize this a mathematical model for the spacecraft
attitude motion, a smoothing differentiation algorithm and a para-
meter estimation technique (for parameters in the mathematical model)

have to be combined in one algorithm, The concepts of this algorithm
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are presented in sections 3,1 through 3.4, Section 3,5 contains a
description of an algorithm for checking the results of parameter
estimation by integration., A summary of the validation test is

given in section 3.6.
Mathematical model for spacecraft motion

The attitude behaviour of the spacecraft is analyzed with the
Euler vector equation (in a body-fixed co-ordinate system):

Ly = I.0 + w2 (I,w) = inertial torque (1)

where LM

i

=L ; 2
LMZ+IM3 i (2)

]

torque on the satellite due to the permanent magnets;

torque on the satellite due to the damping rods;

1]

gravity gradient torgue;

S

spacecrafts inertia dyadic;

e
I

angular velocity vector,

and where the dot denotes differentiation with respect to time, The
equation relates angular velocities and accelerations to the torques
exerted on the spacecraft. In order to be able to disregard aero-
dynamic effects only orbit parts at altitudes above 700 km have been
considered (Appendix G2),

Models for the inertia dyadic and the exerted torques may be
found in reference 2, The vector equation (1) and (2) contain five
parameters of which the magnitude is not accurately known. These
parameters have to be estimated. The parameters occur in the

functional forms:

H
1l

I(a2) (3)
=Ly (apy a5 3)) (4)

: 1

=
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LM2 (35) (5)
LM3 (1(a,)) (6)

The precise form of the equations is given in reference 2,

equations (4.2), (4.5), (4.22) and (4.27).

" As the orientation of two of the principal inertia axes is
not accurately known, a rotation parameter a, is introduced in
order to permit the estimation of the orientation, The magnetic
dipole moment vector of the permanent magnets is parametrized by
2 (for magnitude) and 23y 2, (allowing for small misalignment with
respect to the nominal oriemtation). The magnitude of the magnetic
damping is determined by a parameter a5. The hysteresis rods also
decrease the effective magnitude of the magnetic dipole moment of
the permanent magnets; in reference 2 it has been assumed that the

parameter a can be used to account for this effect.

Data processing and numerical differentiation

Input to the parameter optimization are angular velocities and
accelerations, earth magnetic field strengths and the spacecraft
orientations in a geocentric inertial co-ordinate system, These
data are computed from the measurements of a pass using a technique

proposed by Fraiture (Ref, 1).

The following measured data are available at the data points
of a pass (at time intervals of 6.4 seconds):
- direction to the sun

earth magnetic field vector } in body-fixed co-ordinate system;

time (time of day, day, year);

position (in earth-fixed co-ordinate system).

The last two quantities are used to calculate at each data point:
- a model direction to the sun } in a geocentric inertial

a model earth magnetic field vector ) co-ordinate system,

A comparison at each data point between measured and model
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vector for the sun direction and the earth magnetic field allows
the determination of the attitude of the spacecraft in the geocentric

inertial co-ordinate system at each data point,

The output of the data processing is a sequence of data points
with:
- the measured earth magnetic field vector (in body-fixed
co-ordinates);
- the time;
- quaternion parameters w_, k = 1(1)4, specifying the measured space-
craft attitude, 1)

The angular velocities w and angular accelerations ® at the

data points are computed from this output by numerically differentiating

the quaternion parameters twice with respect to time and applying the

transformation (E1) of Appendix E.

The differentiation of the quaternion parameters constitutes
a critical part in the entire computation process because the para-
meters are contaminated with noise due to measurement errors,

Smoothing is necessary to cope with this noise,

The numerical differentiation is accomplished with an algorithm
using the smoothing spline function theory proposed by Anselone and
Laurent (Ref, 4).

1) Quaternion parameters can be used to describe the rotation of
a co-ordinate system to a new orientation, For details about

their theory and use see e,g. references 1 and 3,
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In this algorithm a balance is made between a smoothness measure

of a function, f(t), defined by:

t

/ (q)(t) at, (7)

By

(q 1 order of the derivative) and a fit measure of that function

to a given set of points (ti, yi):

= 2

F =Z {f(ti) - 3’1} (8)

i=1

Anselone and Laurent prove that the problem of minimizing (for a

given fixed value of the parameter p) the expression

S + pF (9)

by varying f£(t) (within a certain given class of functions) has

as a solution a unique function g(t), provided the end conditions

g(qL g(q+1) = ... =0 at t=t, and t=t (10)

are satisfied.

Some details of the application of this algorithm are given

in appendix B. In the computations g was given the values 2 and 3,

Parameter estimation

The parameters aj,j = 1(1)5, in the mathematical model for the
spacecraft attitude dynamics are estimated by a least squares method
based on equations (1) and (2). These equations are satisfied if the

Buclidian norm

“{LMI (al’az’aB) ! LM2 (a5) + LM3 (1(2,)) } —{ I(a,) . 0+
+ox(1(ay) . @}
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of the vector inside the n signs is zero.
For each pass available the parameters aj are estimated by

minimiging the sum of the squared norms at the data points:

E=ZZ(“FM1+IM2+IM3}~{IJ>+m*(Lw%”92 (12)

i=1

i = 1(1)n : data point count
This expression turns out to be non-quadratic in the para-

meters aj.

From the results of reference 2 it is clear that the minimum
is poorly defined. It was therefore decided to replace the minimi-
zation algorithm of reference 2 by that of Fletcher (Ref, 5), and
to solve the systems of linear equations in Fletcher's iteration
technique by methods that are capable to recognize and handle ill-
conditioned and singular systems of linear equations (Ref, 6).

Details of the minimization technique are given in appendix C,

The program system for parameter estimation

For the purpose of the parameter estimation a system of five
computer programs was developed and used, Two programs are used for
data collection from Archive tapes and for further data manipulation,
Three separate programs are used for numerical differentiation,
parameter optimization and plotting of numerically differentiated
data,

The programs accept as input the measured data of a pass and
a few parameters needed for control of the computations, The output
consists of:

— estimates of the parameters aj;
- residual torque (LM + LM + LM - LT) and torques L, + Ly LM
1 2 3 1. 2

and LT (component-wise for each data point);

3
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statistics of the residual torque (variance);

the raw and smoothed quaternion parameters Uy and their first
two derivatives together with statistics of the differences
between raw and smoothed data (component-wise for each data
point);

the angular velocities v and accelerations o (component-wise

for each data point).

A systems flow chart is discussed in appendix D,

Integration algorithm

The validity of the estimated parameter values was checked

in a few cases by integrating the dynamical equations of the space-
craft attitude motion, equation (1), and comparing the measured
attitude during a pass (or a segment of a pass) with that obtained
by numerical integration., During integration the parameters aj in
the mathematical model were given their estimated values, Inte-
grations were performed forward or backward in time starting at a

suitable data point of the measured pass,

A norm on the angular difference between measured and computed

attitude was chosen as error measure (equation (E2)).
It may be expected that the numerical value of this norm increases

from zero during the integration process,

Details of the algorithm are presented in appendix E,
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Summary of wvalidation test

In order to test the validity of the mathematical model and
of the numerical differentiation algorithm the program system for
parameter estimation is used with the measured data of each of the
22 available passes as input. The results are 22 estimates of the
parameters aj and statistics (averages, variances, Ims values) of
residual torques, residual quaternion parameters, etc. A second
step in the validation test is an attempt to answer the question
whether the results are acceptable from an engineering point of

viewe.

Some results are checked with the integration algorithm (one

pasS) .

Results of the validation test are presented in section 4 and

discussed in section 5.

VALIDATION TEST RESULTS

The results of the running of the program system for parameter
estimation are presented in table 1. The average values of the para-
meters over all passes and their a priori estimates are given at the

lower end of the table.




Table 1 : Parameter estimates and rms-values of residual torques of 22 passes,
Pass | No of 1st Parameter estimates .8 Residual. torques
no data data a, , a, a3 a4 a5 » 10 iMS RMS RMS RMS
points| point 4 ot. b ¢ y Z
falle | EARGIRE = - AT seo/V | pyn o | by ow | DYwe cu | poiE ou
2039 | 364 1 24,28 | ,4985 007142 | ,01874 | + 3.91 50 54 61 29
2919 | 360 104 24,48 | .4165 .004885 | .01658 | - 3,17 55 63 70 13
1912 | 400 1 24.51 | .4231 004773 | ,01522 | - 2,31 51 5 64 33
1913 | 350 1 23.99 | .3353 .004452 | ,01282 | + 2,05 61 5T 84 26
1921 | 400 283 25,57 | «4472 .007307 | .02375 | - 83.55 48 56 48 40
1928 | 358 J 25,82 | 3677 .007359 | .,02121 | + 1.13 51 62 51 39
1933 | 400 200 23,60 ,4220 .,003902 01522 | + 4,62 139 198 115 70
1915 | 400 302 25.15 | .4553 .005499 | .,01590 | + 0.54 45 59 47 16
1905 | 400 350 25,16 | .3958 .008918 | ,01786 | + 30.70 54 4 50 28
2471 | 380 1 23.56 | 0797 .000993 | .OOTTT | - 32.79 90 142 56 29
2123 270 1 23.42 ,0112 .003285 01154 | + 1.66 45 62 45 16
2129 | 400 1 24,62 | «3527 .006570 | ,01250 | = 5.74 31 41 e 18
2148 | 400 233 23.87 | .3932 +.010751 | ,O1175 | + 21.94 92 55 145 3e
2153 | 374 368 23,92 | 4745 -.009026 | ,02781 | + 23.29 ge 115 106 32
2154 | 314 35¢ 23.94 | .4706 +.002536 | ,02358 | + 17.36 139 158 176 42
2155 | 364 325 24.71 | 3475 +.001713 | ,02252 | 4+ 40,72 117 160 114 52
2170 | 400 304 24,80 | ,4415 .002906 | ,01287 | + 5.17 96 85 136 41
2175 | 400 275 24,17 | .1399 .001316 | ,01167 | + 8.46 58 43 88 23
2113 358 325 24.29 .1889 ,004013 01124 | + 38.47 90 118 97 31
2118 | 400 300 24.47 | 1664 .004122 | ,01347 | + 0.43 56 80 45 29
2108 | 400 1 24,61 | .4760 .005374 | .,01339 | - 3.13 68 64 95 25
2456 | 400 1 {25,300 | .1709 .005071 | ,02765 | + 9.16 122 145 140 66
Average and a priori values of the parameters
Averages L24.47 I .34 .004 l 016 ‘ 5 88 85 I 33
A priori values 24 235 0 0 + 5

(from Ref, 7 and
App. G)

G T
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The relevance of these numerical results can only be avpreciated
if additional results of the application of the algorithm for the para-
meters estimation are analyzed, This will be done mainly in section 5.
A few results are:

- The angular differences between model and measured sun directions
and earth magnetic field lines are of the order of one degree,

- The differences between model and measured magnitudes of the earth
magnetic field are of the order of one percent of the average
magnitude.

- The maximum values of the differences between raw and smoothed
quaternion parameters (computed during numerical differentiation)
are of the order of one percent.

- The accuracy of the numerical computation of the estimates of the
parameters aj for each pass separately is at least:

a .0001

1
a, .00001
a3 .00001
a .00001
-8 4 01
10 .
%5

(These numbers are deduced from differences between values of the
parameters at the last few iteration steps in the minimization
technique). As these numbers are considerably smaller than the
dispersion of the estimates in table 1, it may be concluded that
the estimates are not contaminated with numerical errors due to
ill-conditioness of the minimization problem or to imperfect tuning
of the tolerance tests terminating the minimizing iteration,

- The programs were thoroughly tested for correctnéss (in particular
the smoothing differentiation and minimization programs) by applying

them to model problems,

Results obtained with the application of the numerical integration

program are presented in the next section and in appendix H,.




DISCUSSION OF TEST RESULTS

The results presented in table 1 are disappointing in several
respects, Taking into account that the accuracy of the raw cuaternion

parameters is of the order of one percent and that 300 to 400 data

points are available to estimate the five parameters aj, one would

expect that:

a; the differences between the parameters and their overall averages
would be only a few percent of the average values;

b. the residual torques would be about one percent of the order of
magnitude of the total torque., As the total torque is of the order
of 1000 dyne cm, the residual torques should be 10 to 20 dyne cm,

The actual values are about 75 dyne cm,

The disappointing results are due to imperfections in the mathe-
matical model for the torques and for imperfections in the data pro-
cessing and numerical smoothing algorithms, An effort has been made
to clarify the situation; the results are discussed in the remainder

of this section,

A list of possible causes for the problem was first compiled:
effect of sun sensor switching;
modelling of the inertia dyadic (partially deployed booms);
aerodynamic torque effects;
solar radiation torque effects;
modelling of the permanent magnets and magnetic damping system;
imperfections in the data processing loop;

imperfections in the numerical differentiation algorithm,

The points on this list will be discussed separately in the

next sections,

The residual torques shown in table 1 are smaller than those
presented in reference 2, This is due to improvements made in the

algorithm,
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Sun sensor switching

The measured values of the direction vector to the sun are ob-
tained at each data point from one of the five solar sensors, When
sun sensor switching occurs between two successive data points,

additional errors may be generated.

Using data of pass 2129 it was found that these additional
errors are of the order of 0.2° or less. This value is considerably

less than the overall accuracy of 1° of the measurements.

It is thus evident that sun sensor switching does not introduce

significant errors.

Modelling of the inertia dyadic
In reference 7 the possibility of partial boom deployment is
mentioned, If one or more of the booms are only partially deployed

the inertia dyadic will not have the form assumed in reference 2.

Some parameter estimates were made with the inertia dyadic
completely parametrized with the exception of one diagonal element
(the element 133 = 5.53 kgm2 (see equations (4.4) and (4.5) of Ref. 2),

as that element is accurately known.

The estimated values turned out to differ too much from the a
priori values. This was probably due to other disturbing effects to
be discussed below. Incorrect modelling of the inertia dyadic, al-
though unlikely, must still be considered a possibility, however,

because the numerical testing was not exhaustive,
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Aerodynamic torque effects

All data points were taken at altitudes above 700 km, At these
altitudes the aerodynamic torque should be at most of the order of
the expected residual torque level, If the aerodynamic torque is

larger it would not be permitted to neglect it,

In appendix G2 an estimate is made of the maximum of the aero-

dynamic torque on the spacecraft, This maximum is found to be of the
order of 2 dyne cm at altitude of 700 km (Eq., (G10)).

Aerodynamic torques are thus not responsible for the high error

level,

Solar radiation torque effects
In appendix G3 it is estimated that the torque on the space-
craft due to solar radiation is of the order of one dyne cm at most,

Solar radiation effects are thus not significant,

Modelling of the permanent magnets and the magnetic damping system

From the fact that the estimates of the parameters ayy a3, a4
and 8 (occurring in the mathematical model for the permanent magnets
and the magnetic hysteresis rods) show rather large dispersion it

can be concluded that the magnetic modelling is probably incorrect.

The modelling of the permanent magnet and magnetic damping
system is investigated in appendix F, It is concluded that the
modelling of both the effective permanent magnet and the hysteresis
rods is probably incorrect. The incorrectness is already sufficient
to account completely for the dispersion of the aqy a3, a, and a5

4

parameters,

Specifically, the errors concern the modelling of the magnetic
damping system (hysteresis rods). In reference 2 it is assumed that
the rods are parallel to the spacecraft x~ and y-axes; in reality

they are oriented along the bisectrices of the angles between the
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¥- and y-axes, As a consequence the damping torques (order of
magnitude 20 dyne cm, see appendix G4, equation (G26)) cannot be
correctly estimated, Furthermore, it is shown in appendix F that

the decrease of the effective magnitude of the permanent magnets by
the hysteresis rods is a dynamic effect, In appendix G4 the magnitude
of this dynamic effect is estimated to be cf the order of ten percent
of the magnetic dipole moment of the permanent magnets (26.6 Amg).

In reference 2 this dynamic effect is not taken into account,

The analysis of the modelling of the magnetic damping system
is based on the assumption that the magnetic effects of the rods
can be adequately based on the application of the Rayleigh model
for the relation between external magnetic field and induced magnetic
induction, There appears to be no reason to distrust the applicability

of the Rayleigh model.

Imperfections in the data processing loop
There are at least two related points concerning the data pro-
cessing that are worth to be considered:
- the normalization of the quaternion parameters;
- the computation of angular velocities and accelerations from

quaternion parameters,

The quaternion parameters satisfy the normalizing relation
(Refs. 1 and 3)

The first and second derivatives of the parameters with respect

to time should thus satisfy the relations:
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The first and second derivatives of the smoothed quaternion

parameters were not corrected to account for the last two relations.

The computation of the angular velocities w from the smoothed
quaternion parameters occurs with a system of four equations for
three unknowns (equation (El) in appendix E). As long as equations
(12) and (13) are satisfied this system has a unique solution,
otherwise, it is usually overdetermined. In the present parameter
estimation algorithm an ESOC subroutine was used, that selects from
the four equations three equations that may be expected to be well-
conditioned., However, this will introduce discontinuities in w when
equations (13) are not precisely satisfied and the subroutine changes
its selection of equations. The same conclusion may be drawn for .
The discontinuities in w and @ occasionally introduce jumps in the

residual torques of over 60 dyne cm.

Imperfections in the numerical differentiation algorithm
In appendix H an analysis is presented of the numerical performance
of the smoothing spline function algorithm and the results obtained

with the numerical integration algorithm,

The conclusion is that so-called end effects of the spline
functions introduce large errors, that are not present in the
measured data. The end effects are due to the end conditions (10);
these are physically incorrect as the second derivatives of the
quaternion parameters actually resemble periodic functions. The end
effects may account for residual torques of over 100 dyne cm in roughly

the first and last 50 data points of a pass.

The presence of end-effects is also evident from experiences
with numerical integration: the maximum of the norm ¥ of the error
angle (appendix E, equation (E2)) was reduced from 32° (over 400 data
points) to about 12° (over 320 data points) by excluding the first
60 data points of a pass.




The smoothing spline function algorithm can possibly be improved
either by making a physically more relevant assumption about the end
conditions or by introducing better smoothness measures than the one
defined by equation (7). The end conditions (10) may be replaced by

g(o) (1) (¢-1)

y 8 y & prescribed at t=t, and t:tn (14)

1

without much change in the algorithms., The smoothness measure (7)

could perhaps be replaced by a measure of the form

t

8 & f {f(q) - c(t)} : dt (15)
%

1

where c(t) is a function of t estimated such that it is a better
estimate of the g-th derivative of the quaternion parameters than
the function identically zero. The algorithms have to be rather

drastically changed in this case.

The numerical stability and efficiency of the smoothing spline
function algorithms proposed by Anselone and Laurent (Ref. 4) was

found to be noteworthy.

AERODYNAMIC TORQUES OVER PERIGEE PASSES

The aerodynamic torques exerted on the spacecraft at low
altitudes may be sufficiently large to permit a quantitative analysis

of these effects.

If models for the aerodynamic interaction between spacecraft
and atmosphere contain parameters that are not accurately known, these
may be estimated. In order to obtain sufficiently accurate estimates
the aerodynamic torques should on the average be large compared to

the residual torques.
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In appendix I it is estimated, that the aerodynamic toraues
vary from about 12,8 dyne cm at 500 km altitude to about 573.6
dyne cm at perigee (260 km altitude), and that about 34.08 minutes,
equivalent to 330 data points, are available if a pass contains a
trajectory from 500 km altitude down to perigee and up again to
500 km.,

It may be concluded that the aerodynamic torques and the number
of data points are sufficiently large to permit the estimation of
parameters in aerodynamic interaction models, In particular, if the
residual torque level of the present parameter estimation algorithm
could be reduced to 10 to 20 dyne cm (this seems to be feasible by
improving the modelling of the effects of the magnetic damping-
system and excluding the begin and end of smoothed data sequences),
relevant aerodynamic parameters can be estimated with a precision of
seven percent (average signal to noise ratio: 1/2 % 573.6 : 20 —>

signal to noise ratio in parameters : 14 : 1),

CONCLUSIONS

The main conclusions of the validation test of the parameter
estimation algorithm proposed in reference 1 and subjected to a pre-
liminary investigation in reference 2, are:

— The smoothing spline function algorithms proposed by Anselone and
Laurent (Ref, 4) are very stable and efficient from a computational
point of view.

— The application of the smoothing spline function algorithm to the
sequences of data occurring in this study introduces so-called end
effects. These are due to the fact that the modelling of the data
in the theory for the smoothing spline functions is physically
incorrect at the end points,

— The modelling of damping effects of the highly permeable magnetic
rods is incorrect,

— The minimization algorithm applied in this sfudy does not contri-




bute to uncertainties and errors.

- It seems possible to estimate relevant parameters in models for the

aerodynamic interaction with an accuracy of, say, ten percent.

= It is expected that the residual torques can be reduced significantly

by correcting the various shortcomings.
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Appendix A: SELECTION OF PASSES

A careful selection was made of the telemetered data to be used.

The following selection criteria are applied in this particular study:

1.

The geomagnetic activity level must be low. This criterion is
desirable, as the attitude reconstitution is based on the assump-
tion that the actual geomagnetic field is closely approximated by
the model field. A high geomagnetic activity level (geomagnetic
storms) would disturb the correspondence, and hence lead to errors
in the attitude reconstitution,

The daily equivalent planetary amplitude Ap may be used as a geo-
magnetic activity index. If Ap < 20 one usually speaks of low
activity. Daily values of Ap (Ref. 8) have been plotted versus
time in figure 1. Those orbits for which Ap < 20 are of interest

here,

The orbital plane should preferably be roughly normal to the
Sun-Earth line, so that large parts of the orbits are illuminated,
and the directions of the sun vector and Earth magnetic field
lines will not be collinear.

To obtain the angle between orbital plane' and Sun-Earth line as

a function of time, a simplified mathematical model was formulated,
assuming that the Earth moves with constant angular velocity
around the Sun. This model yields the sun vector as a function

of time., The direction of the normal to the osculating orbital
plane as a function of time may be obtained from the daily values
of the osculating elements tabulated in reference 8. One now
deduces the time behaviour of the angle § between sun vector and
orbital plane (Fig. 1, solid line). Note that the error resulting
from the assumption of constant Earth angular velocity is

roughly nine degrees, leading to an error band of 2 x 4.50 width
(hatched region in Fig. 1). Those orbits for which 5OO<~ § <:9Oo
(roughly) are of interest.
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3. Only altitudes larger than 700 km are to be considered. This
criterion insures that the aerodynamic torques (not accounted
for in the present attitude model) are small enough to be

negligible. (cf. App. G.2)

4. Criteria one and two led to a selection of 130 passes. Criterion
three determines the part of those passes that may be used. Sub-
sequently, a data selection program was used to inspect each of
these passes with respect to the following three, additional
criteria:

a, the Sun must illuminate more than eighty percent of the passj
b. per pass a maximum of five synchronization errors (wrong

time flags) is allowed.
c. the magnetometers were not allowed to operate in the so-called

calibration mode.,

It was found that of the 130 passes selected on the basis of
criteria one, two and three, 22 o/o satisfied criteria 4a, 4b
and 4c simultaneously. Results of the application of the latter

three criteria are compiled in the following table:

aAbAc 29 22

I
satisfaction of resulting number ! percentage
criteria of apogee passes :

8 % | 75

b 126 | 97

c 32 | 25

al\bv 94 I 72

bA c 32 ' 25

a/c 29 : 22
|

I




5. 0f the 29 passes satisfying criteria one through four, six
had to be rejected as these displayed saturation of the fine
magnetometers over rather sizeable parts of the passes., Another

pass had to be rejected as it contained an insufficient number

of data points,

Thus, satisfaction of criteria four and five occurred

for twenty two passes, which is equivalent to a yield of 22/130 =
17 o/o.

6. Two of these acceptable twenty two passes did not contain the
fine magnetometer reading (MFY) in each first half-subframe,
The missing readings were corrected for by linear interpolation

in the readings in the second half-subframes,

In principle it is possible to accept additional passes with a
small amount of magnetometer readings in calibration mode, and to
correct for this., In this study this possibility was not explored

as it was not recognized in time as such.




Appendix B: NUMERICAL DIFFERENTIATION OF QUATERNION PARAMETERS

The quaternion parameters Uy k=1(1)4, in the data points are
differentiated twice with respect to time using the smoothing spline
function technique outlined in section 3.2, The computation sequence

applied to the data of a pass was:

- determine {Jk from w,_ with q=3 and p=10_6;

- it a new ﬁk X p=l 3
- n iik " {Jk " q=3 " p=10_6;
- 1" a new fa]c " ﬁk 1"

This computation sequence was taken from ESOC-provided computer

u n

q=2

q=2 n p=l .

programs,

The choice of p can be based on Schmidtbauer's analysis of the
filtering characteristics of the smoothing spline functions (Ref, 2,
App. A) and on the observation that the oscillation periods of the
spacecraft are of the order of 6 to 12 minutes, Hence, frequencies
above about 0,017 rad/sec may be filtered out of the data., The choice
of p=10—6 corresponds to a cut-off frequency of the smoothing spline
function of 0,0156 rad/sec (equivalent to a cut-off period of 6.7

min,).

The differentiation has been carried through with the data points
equally spaced at intervals of unit length, This fact has been taken

into account when choosing a value of p,

It was found that the smoothing with q=2 and p=1 is not effective
and might have been deleted from the computation sequence., On the

other hand, the data were not affected by this operation,
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Appendix C: PARAMETER ESTIMATION WITH PROGRAM FLETMIN

The parameters 351 j=1(1)5, in the mathematical model are
estimated by a method proposed by Fletcher (Ref, 5). Details of the
method are presented below,

Equation (12) can be written as

3

B

2

(5] (01)

E(a) =

M

~
1l

1

where a is the vector of the parameter aj. The summation is over
all squares of the three torque vector components in each data

point of a pass,

The parameter vector a minimizing E(a) is computed iteratively,
In each iteration step s first a search direction vector dS is
computed from a given parameter vector ag (see next paragraph).
Next, a linear search along the line ag + kds is performed in order

to determine the minimum of E(a) on this line:

E(aS + A

e ds) = min E(as e Ads) (c2)

AD 0
The parameter vector vector as+1 for the next iteration step
(s+1) is then defined by

a

=a_+A. d (c3)

s+l min s

The search direction vector d is determined by minimizing

an approximation to E(a) in the neighbourhood of the vector ags
of
(5o +(32 ] 7 0)] (c4)

The approximation is non-negative and quadratic in ds' The
expression between square brackets is obtained by approximating

fk(a) near a=a_ by a Taylor series in d_=a-a_ and truncating after
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the linear term in the expansion,

The iteration is terminated if:

1,
Ihmin ds|<al - [%ﬁ {E(as> - E(as_l)}] < & (c5)

where €. and ¢

1 o are preassigned small constants.

When the mathematical model contains physically meaningless
parameters this often results in a poor condition of the minimi-
zation problem, In such cases the solution of the least squares
problem (C4) poses problems, Difficulties can be avoided, however,

by computing ds with the generalized inverse 5 of the Jacobian

J . == (c6)

following Hansen and Lawson (Ref, 6).

The elements of the Jacobian are computed by analytic differen-
tiation, whereas Fletcher follows a procedure equivalent to numerical
differentiation, In ill-conditioned minimization problems numerical

differentiation should be avoided, however,
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Appendix D; DESCRIPTION OF PROGRAM SYSTEM FOR PARAMETER ESTIMATION

For the study a system of six programs was developed, Their

function and interrelated use will be sketched in this appendix.

The six programs have the following functions (see also Fig.2):

ORBDATA : collection of measured data, checking of quality of

the data, preliminary data processing, disposition of
raw quaternion parameters and other processed measure-
ments to the auxiliary files RAWCK and VINPOS.

SMODIFF  : Smoothing and differentiation of raw quaternion para-

meters on file RAWCK, disposition of smoothing results
to auxiliary files USODO (smoothed parameters) and
PLOTS (for plotting purposes).

- PLOTU : Preparation of a magnetic tape for plotting with an
off-line plotter,

, — COLDATA : Collection of smoothed guaternion parameters and other

measured data from files USODO and VINPOS and data

processing using smooth quaternion parameters,

- FLETMIN  : estimation of parameters_aj, 3=1(1)5 in mathematical
model (App, C).
— EULINT : integration of equations of motion using given values

of the parameters aj, and comparison of measurements

with results obtained by integration (App. E),

Detailed flow charts of each program can be found in figures 3
through 6, These flow charts are useful when details of the programs
(available at NLR) have to be studied, A list of symbols accompanying

the figures is given on next page,
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vector of parameters aj, j=1(1)5

rotation matrix, obtained from smoothed u

rotation matrix, obtained from raw u

rotation matrix, obtained by integration of u

measured magnetic flux vector (body-fixed co-ordinates)
and numerical first derivative

measured magnetic field stremgth vector (body-fixed
co-ordinates)

model magnetic field stremgth vector (inertial

co-ordinates) and numerical first derivative

integration step in time
magnetometer readings
plot number

measured spacecraft position vector (inertial

co-ordinates)

unit vector the earths centre (body-fixed co-ordinates)

measured sun vector (body-fixed co-ordinates)

model sun vector (inertial co-ordinates)

sun sensor readings
smoothing parameter
error rotation angle (equation (E2))

raw cquaternion parameters

smoothed quaternion parameters




RO,

numerical first and second derivative with respect

to time of u

u quaternion parameters and derivatives

a } obtained by integration

w = w(u,u(l)) kangular velocity vector and first derivative
u = é(u,u(l),u(z)) derived from smoothed u(k)

© angular velocity vector and first derivative
® as obtained by integration




App. E
~1-

Appendix E: THE INTEGRATION OF THE DYNAMICAL EQUATION OF THE
SPACECRAFT ATTITUDE MOTION

The results of the parameter estimation can be checked by an

integration program, This program is described below.

The equations (1) and (2) and the equations relating the
angular velocity components Wy to the quaternion parameters
Uy s k=1(1)41

ﬁlw 0 ® W i uIT

= %/2 (E1)

~wq 0 u

4] N e - L%

(Ref.1, Eq. (13)) constitute a system of seven first-order, non-
linear, ordinary differential equations, They are integrated numeri-
cally with the fourth order Runge-Kutta process, The parameters

a5 3=1(1)5 in the Euler equations are given values equal to the
least-squares estimates, The unit vectors to the earth center and
the earth magnetic field vector (needed in the Euler equations)

are computed from the measured positions and times of the space-
craft and from the magnetic field model, Because the measurements
are available at time intervals of 6.4 sec., while the Runge-Kutta
process requires two points for a complete integration step, the
integration step was chosen equal to a multiple of 12,8 sec. The
differential equations were integrated forward and backward in time,
taking as initial or final values of Wy éi’ U and ﬁk the smoothed

values obtained during parameter optimization.

It was verified thai'rounding and truncation errors are a few
orders of magnitude smaller than the order of magnitude of the

computed data,




A suitable error measure is the angular difference between the

measured and the numerically integrated attitudes. This difference
can be computed using two rotation matrices, A and A, A gives the
spacecraft attitude as obtained with numerical integration. A is the
attitude computed directly from the measurements. (In both cases a
geocentric inertial co-ordinate system is taken as reference system,
The rotation matrices A and A are related to computed and measured
quaternion parameters respectively according to ecuation (10) of

reference 2).

A suitable norm on the angular errors in attitude is the ex-
pression
2 cos § = tr(A.E¢)—l, (E2)

see reference 2, page 22,

Inputs to the computation program are the estimated parameters
aj of a pass, the raw quaternion parameters (computed directly from
the measurements) and the spacecraft position in the data points,
the integration step, the initial conditions and the data point where
the integration has to start, The output consists of computed values
of the quaternion parameters and their first derivatives, the angular
velocity and acceleration vectors and the error ¢ at the end of each

integration step,

A system flow chart of the program is given in figure 7.
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Appendix F: MAGNETIC INTERACTION MODEL

An independent derivation of the torques generated by the
interaction between the Earth's magnetic field and the spacecraft's
permanent magnet and hysteresis rods, leads to results that differ
in some respects from the expressions for the torcue presented in
reference 2, In this appendix, the derivation will be outlined, and
the differences with the expressions in reference 2 will be dis-
cussed, The results are used in appendix G4 to obtain a numerical
estimate of the magnitude of the magnetic torque, which, in turn,
leads to a significant conclusion concerning the level of the

residual torque,

F,1 Magnetic torque

Consider the torque exerted by a magnetic field in vacuum on
a magnetic dipole, An external magnetic field with a magnetic in-
duction Bo (v sec/ﬁz) exerts on a magnetic dipole moment of strength

Md(AmZ) a torque given by:

L =My xB, i (F1)
This expression may be found e.g. in references 9 and 10, Care
must be exerted in the application of the torque equation, as it
differs from those used by a number of authors (e.g. Refs. 11
through 14). Use of rationalized dimensions must also be scruti-

nously observed,

In the following expressions for the magnetic dipole moment
of the permanent magnet and the hysteresis rods will be developed

for use in equation (F1),
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F.,2 Determination of the magnetic dipole moment

If a material body is intrcduced in the B0 field, one can
determine the B field inside the body through application of the
proper boundary conditions (Fig. 8) and using the definition of
the induced magnetization M and of the magnetic field strength Ho
(Ref. 9):

B = u(H, +4) 2 8 (F2)

o
where B, denotes the permeability of free space and ¢ the permea-~
bility of the body., In general U depends on Ho‘

The boundary conditions Bn =B _ and Ht =H , lead to

on ot

M =0 M, = (ﬁ: - DH_, (F3)

where the indices "n" and "t" denote vector components normal

respectively tangential to the body surface,

Inside the body Mn and Mt may differ from their boundary
values (F3) at locations interior to the surface. For slender,
cylindrical bodies one finds, however, that M will differ only
slightly from zero, If the body is ferro magnetic, one has typi-
cally u/uo>> 1, which means that everywhere in the slender, cylin-
drical body one has in general Mt/Mn>$>l, or, in words: the
magnetization vector M is virtually parallel to the cylinder axis
everywhere in the body and constant for a given Ho' The magnetic

dipole moment M, of this body follows by integrating (F3) over

d
the volume of the body (rod):

- e .
Md (uo 1) HOt v

where V denotes the volume of the rod, This vector is parallel
to the axis of the rod, With u/uo>> 1 one may therefore approximate

the magnetic dipole moment of the rod positioned in an external
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3=
field of magnetic induction BO:
TR an® (74)
d uo ot

where Md is oriented along the axis of the rod.

F.3 Magnetic dipole moment of the permanent magnet
For permanent magnets positioned in an external magnetic field,

one finds, for a certain range of H , (cf.Ref. 14)
B=u (B +M) =pH +pM (F5)

where the index "p" denotes a residual, permanent value of M inside
the permanent magnet, The magnitude of this magnetic dipole moment

is to be stated by the manufacturer of the magnet. For geomagnetic

field strengths, the contribution of Ho to B can be neglected in

most applications towards the generation of magnetic torques.

In the ESRO IA application, the nominal magnitude of M is
26,6 Am (Ref, 15, table 8,5), The dipole is assumed to make a
small angle with the spacecraft z-axis, This assumption leads to
the following expression for the components of the dipole moment

of the permanent magnet along the spacecraft axes:

Md,x 3
2
(Md)p.m. | Mayy I A.m (F6)
My 1
p.m,

where a3 and a, denote the small misaligmment angles of the permanent

4
magnet with respect to the spacecraft z axis (Ref, 2, Fig. 4.2) and

where "p.m," stands for permanent magnet,
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F.4 Magnetic dipole moment of the hysteresis rods

The dependence of the magnetic dipole moment of hysteresis rods
on the external magnetic field is usually given in the form of a
so-called B-H curve, which relates the Bt field in a rod to the

component Ho of the external HO field, that is tangential to the

t
rod (Fig. 8). In order to use information from these curves, sub-

stitute equation (F2) into (F4) to obtain

|<‘.

M, = . B
d " e t (H

ot) (F7)

Following the approach of Schmidtbauer (Ref, 2) the (symmetric)
4 to H oy (Fig., 9 and
Ref. 12). Upon deletion of the index "t" for the sake of clarity,

Rayleigh model is used to amalytically relate B

one has the Rayleigh relation

?_n?) sign (1) (¥5)

= 2v. H -

B (ua ¥ Hom) o v (Hom
which is quadratic in nature., A method to determine the numerical
values of the constants is discussed in appendix G 4. In numerical
applications one must verify that the material is indeed far from
saturated; otherwise the Rayleigh model will not be applicable, Also,

symmetric oscillatory motion around the x and y axes is assumed,

Substitution of (F8) in (F7) yields the following expression

for the magnetic dipole moment of a hysteresis rod:

2 2 ) . 2
My =by H - b, (Hom ~ H_ ) sign (Ho) Am (F9)

a V_ 3
where b, = m (ua % 27Hom) m
F10
. 2 v v Eﬁ ( !
2 B ‘ A
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This result for a rod will now be applied to the ESRO IA
spacecraft, In this spacecraft, four sets of five rods each are
oriented at angles of n/4 radians with respect to the spacecraft
x and y axes (Fig, 10),*

Let the external magnetic field strength have the components Hox
and Hoy along the x and y axes respectively., It then follows that

the components along the o and B axes of the rod frame (Fig. 10)

are

Hy o= (H o+ H y)/ V2'; H = (-H _4+H /N2 (F11)

0,a Oy 0,8 04X 0,5

The magnetic dipole moment induced in the a- and p-rods now
follows from (F9):

2 2 :
d,a 1 0,0 ~ by (Hom,a - Ho,a) sign (Ho,a)

=
Il

o
fas)

(F12)
M

2 2 . .
d,B bl H01B - b2 (Hom,B - HOvB) A (HOvB)

Decomposition of this moment along the x and y axes yields:

- 2
My p = (g o = Md,B)//E %y Mg o= (Mg o+ Md’B)//E An©  (F13)

whereas M = 0,
d,z

* Reference 7 (page 4) states that the rods are parallel to the x and
y axes, Schmidtbauer bases his model on this particular configu-
ration, On the other hand, reference 15 states that the rods are
rotated in the x-y plane over an angle of n/4 radians (Figs 4.4
and 4,17, p. 181, p. 185, Fig, 8,10, Fig, 9.6 and Fig, 14.5).

The analysis of the present appendix is based on the latter con-

figuration,
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This resulting system is now analyzed for more insight and
to yield expressions suitable for numerical evaluation, Considera-
tion of the expression for the magnetic moment of the hysteresis
rods shows a linear part (associated with bl) and a nonlinear part

(associated with b,).

Taking the linear part first:

b
1
M =b, H === (H H
( d’a)lin 1 7o,a > ( 04X » o,y)
b1
M =b H = == (-H H
( d’B)lin 1 7o,pB VE‘( ol « ¥ o,y)

and hence, in vector form:

(Md) = by (Ho < B o 0) in the x,y,z reference system (F14)
lin ? '
These terms generate a torque (equation (F1)):
B
0y¥
blBoz
4 lin d lin = My Ty
0

However, one can show that precisely the same torque is generated

by a hypothetical linear dipole moment

By
- (0,0,Bo
lin o

) (F15)

(M -

",

which is of the same form as the one presented in reference 2, Intro-

~

ducing the definition of b, and noting that Bo,z ~ - |Bo| , one has

V(e + 2VH_ )
g =22 (0,0,|BI) (F16)
lin uo

(M

where again, Hom is the maximum of the component of the external

magnetic field strength parallel to the rod,
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It will now be established whether this linear part may be
contracted with the contribution of the permanent magnet, as done
in reference 2, The particular contraction is valid if the following

inequality condition is satisfied:

M
| dlli

n<< ]Mdl - (F17)

Using numerical values ébtained in appendix G.4:

lMdl = 26.6 . by =5x 1073 Vsec/Am
PeMm,
' - 4,58 WG > Y = 4.54 x 1074 Vsec/A2
3 1 =
B, = 4n/10 Vsec/Am Hom = 4,17 A/m
lBOI =3x 10_5 Vsec/m2
leads to [Mdl = 2,58 in”
lin

The value 2,58 Am2 is certainly not very small compared to
26.6 Am2, and hence the inequality (F17) is considered to hold to an

insufficient degree,

Yet another important observation follows from the numerical
evaluation of equation (F16). According to appendix G 4 one has
IB
) . .
L b . Clearly, HOm depends on the maximum angular excursion
e of the spacecraft z-axis away from the magnetic field lines,

Therefore, in equation (F10) @

b —V—(u 2VH )—V—(u 2)’&- e ) m> (F18)
l—uo a ™t om‘uO a ™ uo'm

where € denotes the most recent value of the maximum angular ex-

cursion, Substituting the above numerical values yields
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B
v
b, = o (3 4+ 817 2 ) x 1073 > (em in radians).
o)
One then finds that the second term equals the first term for
iy ™ 0,23 rad, = 13,2 degrees, In actual flight, the maximum angle
e, may range from a few degrees to about 20 degrees (Ref, 16). It
then follows that treating b, as a constant leads to errors of the
same order of magnitude as bl (i.e. of 100 o/o). Moreover, the term
Bo occurring in the vector part of equation (F16) and in bl may vary

in the order of 100 o/o, as Bo varies with altitude as well as with
geocentric latitude. For example, in the latter case one finds that
for the same altitude, the value of BO at the magnetic poles is
twice the value at the magnetic equator. Thus, treating BO as a

constant leads to equally unacceptable errors,

Summarizing these observations:

1, the linear part of the hysteresis dipole moment (bl) should not be

contracted with the dipole moment of the permanent magnet.

2, in the linear part of the hysteresis dipole moment, neither bl
nor Bo should be treated as constants, The dipole is to be used

in the form

\ 2)7’]30’
(Md)lin =7 (u, al e,) (0,0,]B |) (F19)

where BO and the maximum excurs1on angle e, vary with time and
where V.u /u and 2V97u are true constants (which may be

determined as new, a priori unknown parameters),

3, the above analysis should be made separately for the rods in the

a-direction and for those in the p-direction (Fig, 10).

Next, the nonlinear part is treated, Assuming that the space-
craft oscillates sinusoidally with respect to the magnetic field
lines, and with negligible damping, the following relations can be
derived (cf, Ref, 2):
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"
o s H .2
H =H sinpt => H - H = (=),
0,0 om, om,a 0,0 W
M- (M, ) } B
5 { hs) Ay lin ’ J
where o =
0 I
av
where Iav denotes the average moment of inertia for an axis in the
spacecraft x,y plane,
Thus:
(M, ) SO | S
dya’ 4 2 To,.m 0,0 0
M, ) =-Db,H Iﬁ ] e :
d’Bn.l. 2 "0,B 0,B o 3
where the index "n,l," stands for non-linear,
Upon substitution of the expressions for W and for
H and H .
0, & Oy
(Md'a) ;- —ag (B . + Bo,y) } ox * Bo’yl /|8,
(F20)
M = -a —ﬁ ﬁ —ﬁ ﬁ B
(dvﬁ)n.l 5( °9x+ Oty) l O,I+ Ovyi /I 0'
where
b2 Iav
a. £ " (F21)
> 2u 2, - (Md z)
) P ' 1lin

which is constant if (Md z) is treated as a

2’
Note that this Lin

definition of a

one used in reference 2,

The expressions (F20) are now substituted

constant.,

5 differs from the

in (F13) to yield the

dipole moment due to the non-linearity in the hysteresis rods,
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F.5 Summary
The magnetic dipole moment due to the permanent magnet is
given by equation (F6)., This equation agrees with the corresponding

result in reference 2,

The magnetic dipole moment due to the hysteresis rods has been
derived on the assumption that the a and B axes of the rods are
rotated with respect to the x and y axes of the spacecraft over
an angle of n/4 radians, The linear part of the dipole moment is
given by equation (19), and the non-linear part is given by ecuations
(F13) and (F20). These equations differ from those presented in

reference 2, Numerical estimates are developed in appendix G 4.
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Appendix G: ESTIMATES OF SPACECRAFT TORQUES

This appendix contains order of magnitude estimates of the
following types of torque:

1, gravity gradient torque;

2, aerodynamic torque;

3. solar radiation torque;

4. magnetic torque,

G.1 Estimate of the gravity gradient torque
The gravity gradient torque on a body of arbitrary shape is

defined as

A ET v3,) an (c1)

where dm denotes an infinitesimal quantity of spacecraft mass, r
defines the position of dm with respect to body fixed reference axes
with origin at the center of mass of the spacecraft;@nldenotes the
potential of the Earth's gravitational field at dm; and the inte-
gration is carried out over all spacecraft mass, Note that the torgue
vector L, is identical to the vector IM3 used in the main body of

G
the report,

Following and extending the analysis of reference 17 and using

the notation shown in figure 11, one finds that equation (G1l) may be

written in the scalar form:
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These expressions reduce to those presented in reference 17 for
the special case where the body fixed reference axes x,y,z are chosen
to coincide with the spacecraft principal axes of inertia, Note that
the quantities ("')e are measured with respect to the body fixed

reference axes.

In the case of the ESRO IA Spacecraft one assumes Ixz = Iyz = 0,
Furthermore, the principal axes of inertia £, n, ¢ are assumed to be
obtainable from the x,y,z axes by a simple rotation around the z-axis

cver an angle a,. This leads to the following results (Ref. 2):

w2 .
T =Ip+ (Iﬂ - Ig) sin”a,; IXy = (Iﬂ - IE) sina,.cosa,;
. 2
Lo ™ In - (In - Ig) sin"a; s = 0 ; (G3)
Izz = IC; IyZ = 0 ;
2
where: IE = 8,07 kgn
T w §,58 Kan~
" 2
IC = 5,53 kgm

Using the typical value (Section 4) a, = 0.45 rad, one finds,

correct to two decimal places:

2 2

I, = 8.31 kem Ixy = 0,49 kgn
2 2

I = 9,08 kgnm I,=0 ke (c4)
2 2

IZZ = 5.53 kgm Iyz = 0 kem

Furthermore, for a small eccentricity orbit one may approximate

3

the factor u/ri by u/a , Where a denotes the semi major axis, For an

apogee at 1400 km altitude and a perigee at 260 km one finds:

E_ - 1,064 x 107 sec™? (@5)
r3
e
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The worst case magnitude of the torques defined in equation (G2)
can now be evaluated:
-6y | 1 1 -6
|l ) <3 x (1.064 x 107°) [ 5 X 0,49 + 0 4+ 0 + 5 x 3.55| = 6.45 x 107" ¥m
?
= 64.5 dyne cm
L ]<3x(1054x10'6)[-1-xo49 0+0+2x2.78|=5.22 %100 W
lG,y\ . 2 ] + + 2 ) - .
= 52,2 dyne cm
L x (1.064 x 107° Lei.2 8 x 1070
|G,z|$3x 064 x )1x0.49+0+0+2x.6=3.5x0 Nm
= 35,8 dyne cm
(G6)
G.2 Estimate of the aerodynamic torque
The aerodynamic torque exerted on the spacecraft is defined as
L, = ] rx (p+7)dA (G7)

where r defines the vectorial position of the elementary surface area
dA with respect to the spacecraft center of mass, and p and 7 denote
the vectorial pressure and shear stress resp., exerted on dA by the

interaction between spacecraft and surrounding atmosphere,

The interaction between spacecraft and surrounding atmosphere
takes place in the free molecular flow regime, Different models exist
for the calculation of pressure and shear stress exerted on an elemen-
tary surface area dA moving in the free molecular flow regime,
Different models do lead to different results and considerable care

must therefore be exerted in the interpretation of these results,

An estimate of the order of magnitude of the aerodynamic torque is
developed on the basis of a recently proposed aerodynamic interaction
model (Ref, 18), This estimate involves both atmospheric density and
velocity in the form (p Vg). This quantity will be evaluated at the
lower altitude of the apogee passes; i,e, at 700 km altitude.
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The velocity is obtained from the energy equation:
2 2 1
Ve (Z-3) (G8)

: *

For an apogee at 1400 km altitude ) and a perigee at 260 km altitude,
one finds for the semi major axis a = 7.108 x lO6 m, For an altitude
of 700 km one finds for the radial distance: r = 7.078 x 1O6 m, Sub-

2
stitution in equation (G8) then yields: V. = 5.655 x 107 (m/sec)z.

Care must be exerted in finding "the density" at 700 km altitude.
The density at that altitude depends strongly on the level of solar
activity and on the local time, The numerical estimate will use

weighted average values,

Recall that the spacecraft was launched in October 1968. During
its first half year in orbit the solar activity was represented by an
average flux of about F = 175 x 10722 W/m’Hz, of the solar radiation
at a wavelength of 10,7 cm (cf, Ref, 8 and Fig, 1 of Ref. 19). Super-
imposed on thisaverage value are fluctuations of about 50 x Vs
W/m2 Hz at most; cf, figure 1, Neglecting these fluctuations, F will
be taken to be 175 x 10‘-22 W/m2 Hz, This value corresponds to Model
Six of the ten CIRA 1965 atmospheres (Ref. 20). Model Six shows that
the density p at 700 km altitude varies from 3,363 x 10—14 kg/m3 at

four hours local time to 3,380 x 10713 kg'/m3 at fourteen hours local

1

time, These values suggest that p = 3 x 10 3 kg/m3 is a useful upper

value for the torque estimate,

The above considerations result in:

2 ~ -5 .72
(pV )700 = 10696 x 10 N/m”,

%) Note that the apogee altitude has decreased from its initial
value of 1535 km, due to the influence of the atmosphere, Perigee
altitude remains almost constant during this early phase of orbit

decay,
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A refined estimate of the aerodynamic torque may be obtained by
using the detailed aerodynamic interaction model developed and dis-
cussed in reference 18, Specifically, this model will be used to
calculate the torque due to interaction with an incident flow directed
along the spacecraft y-axis (Fig., 12), as this situation would result
in the largest value for the aerodynamic torque for a given value of

P vl

The central body consists of an "effective" cylinder, replacing
the actual central cylinder and truncated cones, Using data from

reference 7, one finds:

central body : L/ £ 0.84m
Rc = 0,38 m

central mast : Lm ¥ 0,55 m
Rm =0,0125 m

sphere : RS = 0,05 m

Also, reference 7 assumes the location of the center of gravity

at about 0,43 m below the top plate on the z-axis, Thus, one deduces:

Am = 0,38 m
Ac = 0,46 m
AS =0,98m

The torque contributions are (Ref, 18, with a = 0):

2 2 T
for the central body: LA,c (pV%) L, R, (LC-Z.AC)(3 by + by -7 b2)

(pVZ)(-i- by + by - 20,).(2.55 = 107%)
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y . . 2 x
for the central mast: LA'm (pV°) LhRm(Lm & 2,Am)(3 by + by - b,)

¥

%, . F -
(pV )(5 by + by - % b,)(9 x 10

]

2 2 1 2
for the sphere : L (pV9) nRs As (5 bl e b2 + b3)

2

2 i
(679 (3 By = 5 by + B,)(7.7 x 107)

where the appropriate dimensions have been substituted.

To evaluate b,, b, and b,, the following values are assumed:

17 T2 3?
1 1 3 5 Ty 2713 %
6N=§,CT=-2-’Ca=Z’ X=3,T—w'=—LO—
i 1200 X

and the molecular speed ratio S is roughly 8, This leads to:

1
by = -1 b, = 0.164 by =~ 5

Substituting these values in the expressions for the component

torques and summing, yields:

il 0

|L,| = |;A’C ¥ LA7m & LA,s, = (1.28 x 107°) V"  Tm (@9)

and hence

lLA’ - 2,18 x 10~ Tm = 2,18 dyne cm (¢10)
700

G.3 Estimate of the radiation torque

Radiation incident on the surface of a spacecraft leads to a
torgue of the form (G?). The generation of p and 7 is mainly due to
solar radiation, Earth-reflected sunlight, and infrared emission from
the Earth and the Earth atmosphere, The latter two sources lead to
varying torque contributions as the spacecraft moves along its orbit

(Ref. 21, Fig, 6). For an order of magnitude estimate it will be
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assumed that the total radiation input is equal to one and a half

times the solar radiation input.

Little is known about the precise interaction between incoming
radiation and spacecraft surface, However, for an order of magnitude
estimate one might assume adsorption followed by completely diffusion
re-emission, This case leads to the following expressions for pressure
and shear stress (Refs, 21 and 22):

. (sing +§) sina

ol

(¢11)
T =< , 8inn cosa

QIH

where 1 denotes the radiation input, c the speed of light, and a the
acute angle between the surface element under consideration and the

direction to the radiation source,

Substitution of (G11) in (G7) and integration leads to the total
torque exerted on the spacecraft by radiation, Instead of carrying out
the analysis in detail, it is instructive to compare (Gll) with the
corresponding expressions for the pressure and shear stress exerted
on the spacecraft by aerodynamic interaction,(equations (3.3) and
(3.4) of Ref, 18), The following correspondences can then be
establisheds

2
pV —=>1/c ; op =1

(¢12)

) 1 ol ﬂTr@2

(2 - ap) <= i 2s V T 3

leading to
2

b, =0 b, =3 b3 = -1 (G13)

Thus, the radiation torque may readily be obtained by repeating




the analysis of appendix G 2 (aerodynamic torque), using these

correspondences.,

Reference 22 gives for the solar radiation input: I = 1400 W/h ",
The total radlatlon input therefore equals T = 2100 W/h . With

=3 x 1O m/sec one has I/c =7 x 10 -6 N/bz.

Substitution of this value in the place of pV2, and of the
values for bl’ b2 and b3, in the expressions for the torque con-
tribution by central body, central mast, and sphere, and subsequent
summation of these component torques, yields the following estimate

for the total radiation torque:

ILRADI £ 107 Wam = 1 dyme om (614)

G.4 Estimate of the magnetic torque
Following appendix F, the torque exerted on the spacecraft due
to the interaction between the Earth's magnetic field and the permanent

magnet and hysteresis rods, is given by:

Ly = 13 x B, (1m) (c15)

where the contribution to Md from the permanent magnet is given by
equation (F6), and from the hysteresis rods by equations (F19) and
(F20).

To estimate the magnitude of the total magnetic torque, a number

of preliminary assumptions and calculations are made:

1. The magnitude of the external magnetic induction is taken equal to
the latitudinally averaged value at an average altitude during an
apogee pass, The average altitude during an apogee pass is equal
to 1050 km., The value of B at this altitude varies between 2 x 10 e
and 4 x 10 "> Vsecﬁn as functlon of latitude. The assumed average
value is therefore Bo =3 x 10 = V/sec/h .




App. G

-9-

2, The dipole moment of the permanent magnet is assumed to have the

nominal value: 26.6 Am2 (Ref, 15),

3. The orientation of the permanent magnet is assumed to be nominal;

i,e., parallel to the spacecraft z-axis: a, = a, = 0,

2 4

4. The spacecraft z-axis oscillates with respect to the local magnetic
field vector., The maximum value €n of the oscillating angle between
the z-axis and the field vector is taken to be ten degrees (cf.
Ref, 16).

5. The numerical values of the hysteresis parameters bl and b2 defined

in appendix F are derived from data presented in reference 15,

From assumptions 1 and 4 one can calculate the maximum value of

the component of the Earth magnetic field strength in the rod-plane:

Bo A
om,of3 - Hom = Cm E; - fedl m

This value lies far below the saturation value (cf, Ref, 7) and there-
fore justifies use of the Rayleigh model for the hysteresis rods (as

far as the saturation criterion is concerned),

The determination of the numerical values for b1 and b2 may be
based on the determination of My and ¥ (cf. app., F) from various
figures shown in reference 15, Several approaches are possible, The
most reliable approach was found to involve measurements of the linear
part of the Rayleigh curves shown in figure 8.5 of reference 15,
According to appendix F, the hysteresis curves may be modelled by the

equation

2

B = (ua + 2\‘7H0m) H - % (Hom

2 . e
-H") sign (H) (a16)
o) o
where ua and ¥ are the same for all curves, If the values of Ho and
B at the two extremes of the curves are taken from several curves,
and substituted in equation (Gl6), one obtains an overdetermined

system of linear equations in the two unknown parameters b, and ¢;
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each equation being of the form
b+ V. (2H_)=B/H (17)

Using measurements of the two extremes of three curves, the following

approximate result was obtained:

_ -3 Vsec _ -4 Vsec
u, =5 x 10 pres vV=4.5 x 10 2 (618)

with an error of the order of two percent,
Finally, note that the rod volume in either o or B direction is
equal to V = 1,55 x 1072 m> (Ref, 15, table 8.6).

One can now derive the numerical values for bl and b2, defined by
equation (F10):

3 mt

m

3 b, = 5.6 x 107> I~ (G19)

b, = 1.08 x 107" m

The maximum induced magnetic induction in the rods is calculated
for the case of oscillations around the rods' B axis., At this maximum
the nonlinear contribution (b2) vanishes,,and the magnetic dipole
moment may therefore be calculated from the linear part as given by
equation (F16) or F19):

() = (0,0, 2.58) " (620)

rods

Using assumptions 2 and 3 together with equation (F6) one finds

for the magnetic dipole moment of the permanent magnet:

- (0, 0, -26.6) Am° (621)

The total dipole moment is given by their sum:

My = (Md) 4 (Md) = (0, 0, =24,02) An® (a22)
P

oMa rods
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The resulting total torque is calculated from equation (G15):
IM,x Md,y'Bo,z - Md,z Bo,y
LM,y - Md,z Bo,x - Md,x Bo,z (623)
I'M,z Md,x Bo,y - Md,y Bo,x
5 2
where 'Bo zl = 3 x 1077 Vsec/m” and
1
-6 2
B =B === H = 3.7 = 10 Vsec/m
l o,xl l o,yl VE om af 1 /
(the square root arises due to the oscillation around the p-axis)
Substitution of these values and those of expression (G22) in the
torque equation yields the estimates
s 80 -5 -~ 2
ILM,XI and 'LM,yl 9 x 10~ Nm = 890 dyne cm (G24)

| Y,z ] = ©

Recall that this result was obtained at the upper limit

lHoaBl_"HomaB’ which led to the vanishing of the nonlinear part of

the dipole moment induced in the rods., An estimate for the torque due
to this nonlinear part may be obtained from equations (F12) and (F13)

by setting H = 0 together with H A =0, H = 0 (oscillations
oQ. 0 om

B 8

around the B axis), Thus:

2
(Mgqr Mag) = o H

rods 2 om,a sien (Ho,a)’ 0)

(£ 9.7 x 1072, 0) M

i

and hence expressed, in x,y,z co-ordinates:

() = (£6.9x107% £6.9x107, 0 An° (c2s)

rods
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Substitution in the torque equation (G23) yields the estimate
for the torque due to the nonlinear (hysteresis) part:

6

’LM x] el ,LM y} < 2,07 x 107" Nm = 20,7 dyne cm
1 7

(G26)

[Ty, | = ©

Notice that an erroneous mathematical model for the nonlinear
hysteresis part would lead to an error of about twenty dyne cm, which
constitutes a sizeable part of the present level of residual torque.
One is tempted to conclude that inclusion of the present hysteresis
model as developed in appendix F might reduce the observed residual

torque considerably,
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Appendix H EXAMPLES OF SMOOTHING DIFFERENTIATION AND RESULTS
OF NUMERICAL INTEGRATION

Numerical experiments, carried out with the smoothing spline
function algorithm in order to check the choice of the weighting
parameter p (section 3.2, equation (9)) and to investigate the
possible occurrence of end effects in the smoothed results, indicate
that the value of p used in the computations (p = 10—6) is reasonable,
but that end effects are present., The last conclusion is also
supported by the results obtained with integration., Evidence for these

conclusions is presented in this appendix,

The choice of p was checked by applying the smoothing differen-
tiation algorithm to the quaternion parameters obtained from measured
data of pass 2129, The total number of data points for each parameter
was 400, corresponding to a time interval of 42.6 min (Fig, 13 ). The

computation sequence applied was:

a
3 , k¥ = 1(1)4, p fixed;
- smooth ﬁk to a new i, withq =3

-~ determine ﬁk from w_ with g

- determine ﬁk from ﬁk with q

where g is the order of the derivative in equation (7). This sequence

was applied with five different values of p:

p cut-off period
4.9 x 1072 3.5
1.1 x 1072 4.5
3.3 x 1076 5.5
1,2 x 1078 645
1070 6.7

The cut-off periods were computed according to the analysis of
Schmidtbauer (Ref., 2, appendix A); oscillations with periods less than
the cut-off period are heavily smoothed by the algorithm, those with

larger periods not,
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The changes in computed results with varying p are systematic,
It is therefore sufficient to inspect only results for p = 4.9 x lO-'5
end 105,

The results for Uy (Fig. 13) are virtually identical, those for
o (Fig. 14) differ somewhat (in particular at the ends), and those
for U, (Fig. 15) are different for the two values of p, Smoothing
of raw U .-values has effect (Fig. 16) but does not lead to physically
acceptable values when p = 4.910—5. On the other hand, smoothing of
the raw ﬁk-values for p = 10—6 has practically no effect (Fig. 17),
and the period of the oscillations in ﬁk (42.6 : 4 = 10 minutes) is
thus sufficiently large compared to the cut-off period of 6.7 minutes,

This justifies the choice of p = 10—6 in the computations (see App. B).

The occurrence of end effects is visible in figures 14 and 15.
In order to analyze these effects one may note from equation (10)
that near the end point t = to for t >-to the smoothing of the
quaternion parameters Lo implies that the smoothed values satisfy

relations of the form:

"o 3
i, = 0 (t-to)

6, = 2, +0 (t-to)4
ﬁk = bk & 2ck(t—to) % D (t-to)5

w o= a + by (t—to) + o (t_to)2 +0 (t-to)6

where ay s bk and c), are constants, If the raw uk—data do not exhibit
this behaviour and are smoothed heavily, we may expect that near the
end point t=to the smoothed W will have an approximately more linear
first and constant second derivative than the non-smooth data., Com-
parison of the results for ¢ = 4.910—6 and p = 10—6 in figures 14

and 15 shows these effects, The same conclusion is valid for the other

end point t=tn.
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The integration program was run for pass 2129, taking initial
and final data and estimates of the parameters aj computed with
P = 156 (App. E). The results are:
~ forward inmtegration from 1st to 400th data point: max |8 = 31.9°,

backward integration from 400th to 1lst data point: max |8 = 6.40,

backward integration from 400th to 60th data point: max |8l = 3.20.

forward integration from 60th to 400th data point: max |9 = 12.20,
where ¢ is the error angle introduced in appendix E, It is

evident that end effects at the beginning of the pass can account

for the error decreases that result if the first sixty data points

are not considered during integration,




Appendix I AERODYNAMIC PARAMETER ESTIMATION

For succesful estimation of aerodynamic parameters (Ref., 23,
section 2B) it is necessary that the aerodynamic torque be large
on the average, compared to the residual tormue, In this appendix
an estimate will be made of the magnitude of the aerodynamic toroue
in the perigee region, and of the total time available for the

acceptance of significant telemetered attitude data.

An estimate of the magnitude of the aerodynamic torque at any

altitude can be deduced from equation (G9):
) 2
|L,] = (1.28 x 107°) (pV°) Wm (11)

Perigee is located at an altitude of 260 km, Using equation (G8)
. . 2 2
one finds for the velocity at perigee: V = 6,402 x 107 (m/sec) .

Density at perigee is determined using the same arguments as in
appendix G 2 , Model Six of the CIRA 1965 atmosphere shows that the
density p at 260 km varies from 5,174 x 10_11 kg/m3 at six hours local
time to 8,522 x 1071

suggest that p = 7 x 12 e kg/m3 is a useful value for the torque

kg/m3 at sixteen hours local time, These values
estimate,

The above considerations result in:

3 2

= 4,481 x 107" N/m

>
(07 260 1am

and hence

5

< 5.736 x 107 Mm = 573.6 dyne cm (12)

%l

This value is an estimate for the upper bound of the aerodynamic
torque, Clearly, as altitude increases, both density and velocity

decrease, leading to a decrease in the magnitude of the aerodynamic
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torque, For example, consider the case of flight at an altitude
of 500 km,

Using equation (G8), one finds for the velocity at 500 km altitude:
V2 = 5,983 x lO7 (m/sec)z. Model Six of the CIRA 1965 atmosphere
shows that the density p at 500 km varies from 5,782 x 10_13 kg/m3
at four hours local time to 2,766 x 10_12 kg/m3 at fourteen hours
local time, These values suggest that the average value

p = 1,672 x 10_12 kg/m3 is a useful value for the torque estimate,

These considerations result in:

2 AL B
(67) 500 1 = 10 4 N/m

and hence:

6

|Ly|  <1.28 x 107 Nn = 12,8 dyne om (13)

» 500
Finally, the time to move from 500 km altitude down to perigee and

again up to 500 km altitude is calculated,

For an apogee at 1400 km altitude and a perigee at 260 km
altitude one finds for the semi major axis: a = 7,108 x 106m, and
for the eccentricity: e = 0,0791, Using the conic eruation one then
finds that an altitude of 500 km corresponds to a true anomaly of
70,67 degrees, and hence to an eccentric anomaly of 65.85 degrees,
Finally, using Kepler's time equation one finds that the arc from
perigee to an altitude of 500 km is traversed in 17,04 min, Thus,
the total time from 500 km down to perigee and again up to 500 km
is equal to 34,08 min,

Summarizing, the aerodynamic torque at perigee has been esti-
mated to be about 573 dyne cm or smaller, and the aerodynamic torque
at 500 km has been estimated to be about 12,8 dyne cm or smaller,
Assuming a residual torque of about 20 dyne cm, one finds for the
"signal-to-noise" ratio at perigee: S/N < 28,7, and at 500 km:
S/N:s.0.64. One concludes that the trajectory arc below 500 km wculd
be quite suitable for estimation of aerodynamic parameters as outlined

in reference 23, The passage time of 34,08 min is large enough to be

acceptable,







