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Chapter 1

Introduction

In this thesis we will deal with the sum of a linear and a nonlinear m-accretive
operator in a Hilbert space. In particular we are interested in the question:
when is the sum m-accretive as well 7 This question has no immediate answer
unless some additional assumptions are imposed on the operators involved.

As general references on m-accretive operators, let us mention [BB1], [CR],
[CL1] and [D]. For the richer theory in the setting of Hilbert spaces, we refer
to [BR1].

Let H be a real Hilbert space with innerproduct ((-,-)) and let
A:D(A) CH—2"

be a multivalued, possibly nonlinear operator in H. As usual we shall identify
a graph A C ‘H X 'H with its corresponding multivalued operator. An operator
A in H is called m-accretive if the resolvent (I + AA)~1 is an everywhere
defined (not necessarily strict) contraction in H, for all positive real numbers
A. By expressing the contractivity of the resolvent in terms of the innerproduct
of H it can be shown that the operator A is m-accretive if and only if A is
monotone, that is,

((ug — ug,v1 —2)) >0, forall v; € Au;, t = 1,2,

and the operator el + A is surjective, for each positive real number € (equiv-
alently for some € > 0). A monotone operator is called mazimal monotone if
it has no proper monotone extension. It is well-known that the operator A
is m-accretive if and only if A is maximal monotone [BR1, Proposition 2.2].
The class of maximal monotone operators in H plays an important role in

9
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nonlinear functional analysis since it coincides with the class of negative gen-
erators of strongly continuous (nonlinear) contraction semigroups in ‘H [BR1,
Théoréme 4.1]. An interesting subclass of the maximal monotone operators
are the so-called subdifferentials d¢ of convex lower-semicontinuous function-
als ¢ : H — (—o00, 0] (see [BR1]).

Let £ and A be two m-accretive operators in H. We shall assume through-
out that £ is linear and that 0 € AQ. It is immediate that the sum £+ .4 with
domain D(L + .A) = D(L) N D(A) is monotone. Thus in order to prove the
m-accretivity of the operator £ + A we need to show that the equation

eut+ Lu+ Aud f, €>0, (1.1)

has a solution u € D(£)N D(A) for all f € H (by the monotonicity of £ + A,
a solution of equation (1.1) is necessarily unique).

I the operator A is moreover everywhere defined and Lipschitz continuous
then the sum £ + A is m-accretive. Indeed, equation (1.1) is equivalent to

w=(I+ %c)-l{% f - 2 Au}. (1.2)

Now take € > 0 sufficiently large such that the operator %A has a Lipschitz
constant less than one. By the contractivity of the resolvent (I + 1£)~1
follows that the right-hand side of equation (1.2) defines a strict contraction
in H and therefore it admits a fixed point (see [BR1, page 34]). (Observe that
we did not use that £ is linear or that 0 € A0.)

In the case that A is merely m-accretive one could try to approximate .A by
a sequence {.Ak} © of m-accretive, everywhere defined, Llpschltz continuous
operators The approximate equatlon

ceu+ Lu+ A =f, k=1,2,..., €>0,

is then uniquely solvable. The next step is to obtain a priori estimates so
that one can pass to the limit.. We illustrate this approach by means of an
example. This example possesses already some features of the settmg which
w1]l be consxdered later.
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An example

Let © C RN be a bounded open subset wzith a smooth boundary 9Q. If
A denotes the Laplace operator: 88? +...+ -aax—,,, then the operator —A, with
1 N

domain

D(-A) = W @) n Wo(9),
is m-accretive in L2() (see for example [BR3, page 206]). Here L%(f) is
equipped with the standard innerproduct denoted by (:,-) and norm || - ||o.
Let 3 : IR — IR be an everywhere defined non-decreasing function of class C1,
satisfying 8(0) = 0. The function 8 is m-accretive in IR [BR1, Proposition
2.7]. For each € > 0, consider the following equation

eu — Au+ p(u) = f, in Q;
(N { uw =0, on 0f).

We define the m-accretive operator B in L2(Q2) by

Bu(z) = B(u(z)) a.e. for u € D(B). (1.3)

{ D(B) = {u € L*(9) : the function B(u) belongs to L?(Q)};
We claim that the equation (I) has a unique solution u € W22(Q)NW,*(Q) for
all f € L%(Q), which means that the operator —A + B with domain D(—A)nN
D(B) is m-accretive in L?(Q).

For k € IN we define the Lipschitz continuous functions

ﬂ(_k)a z < —k;

Pr(z) =  B(z), 2] <k
B(k), z 2k,

and the corresponding operators By defined by Bxu(z) = fi(u(z)) a.e. for all
u € L*(2). The operators Bi, k € IN, are m-accretive, everywhere defined
and Lipschitz continuous in L?(Q2). Therefore the approximate equation

eur — Aug + Brug = f,  a.e.in (1.4)
ug = 0, on 0%, ’

has a unique solution ux € W22(Q) n Wy*(Q), for all f € L2(Q), k € IN.
Moreover the sequence {ux}¥=3° is bounded in L%(Q) by 1||f|l2. By partial
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integration, using the fact that g} is non-increasing and that £;(0) = 0 for all
k € IN, we have that

/ _ Au(z)Byu(z)ds = / IVu(a)2BL(u(z))dz > 0, (1.5)
Q Q

for all w € W22(Q) N W,*(Q). It can be shown, multiplying equation (1.4)
by —Awuy, that inequality (1.5) implies the boundedness in L2(Q) of the se-
quences {—Auy}¥=$° and {Bjux }F=$°. By the compact embedding of W2?(R2)
into L2(Q) and the boundedness of the sequences {uj}¥=$°, {—Aux}¥=5° and
{Bx(ux)}F=$°, we can extract a convergent subsequence

U, — U, (n — o0),

n

and weakly convergent subsequences
-Aug, — v, Bg,uk, —~w, (n— 00),

in L*(Q) with u, v, w € L%(Q). Since the operator —A is linear and closed,
hence weakly closed, we get u € W22(Q)NW(Q) and v = —Au. It remains
to show that v € D(B) and that w = Bu. Here the maximal monotonicity of
the operator B plays a role. For all z € D(B) we have that

(u—z,w— Bz) = k]in;o('u,n,c - z, By, ug, — Bk, 2z) 2> 0.

It follows that the graph BU{[u, w]} C L%(Q)x L%(Q) is monotone. Since B has
no proper monotone extension it follows that v € D(B) and w = Bu. Hence,
equation (I) has a unique solution w € W22(Q) N Wy'*(Q) for all f € L3(Q).
In other words the operator —A + B is m-accretive in L2(Q2).

More generally, let 3 C IR x IR be an m-accretive graph, with 0 € 5(0).
In this case, one can take the Yosida-approximation 8x, A > 0 (see below)
which is everywhere defined, Lipschitz continuous and non-decreasing. By
proceeding as above, one shows that

/ —Au(z)B(u(z))dz > 0, for all u € W2A(Q)NWEA(Q),A> 0. (1.6)
Q

See [BR-C-P, Theorem 3.1].
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The approximate equation eu + Lu + Ayu = f

We come back to equation (1.1) with £ and A two m-accretive operators
in H and f € H. One can define for a general m-accretive operator AinH
the Yosida-approximation

Ay = 3= T+,

for all A > 0. The Yosida-approximation Ay, A > 0, is an everywhere defined
Lipschitz continuous m-accretive operator [BR1]. ( We note that A, is single-
valued and that Ay C A(I + AA)~! in the sense of the corresponding graphs.)
Therefore the equation

euy + Luy+Aun=f €>0, (1.7)

has a unique solution uy € D(L) for all f € H and A > 0. By a result of
Brezis, Crandall and Pazy [BR-C-P] (see also [BR1, Théoréme 2.4]), equation
(1.1) has a unique solution » € D(L) N D(A) if and only if the net {Axua}aso
remains bounded in H. It is has been proven that the boundedness in H of
the net {Ayux}aso implies that the net {ux} >0 converges strongly to some
u € H. Therefore the net {(I + AA) " ux}r>o converges strongly to u as well,
since

uy — (I + /\.A)_I’LL)\ = Myuy — 0, (/\ l 0).

Furthermore, by the boundedness of {Ayux}a>o0 there exists a weakly conver-
gent subsequence
Ay, up, — w, (n— 00),

for some w € H. Since Ay C A(I+ AA)~1, the monotonicity of A implies that
(v — z,w— Az)) = nli_)ngo(((1+ A A)uy, — 2, Ay un, — A2)) 20,

for all z € D(A). By the maximal monotonicity of A we obtain that u € D(A)
and w € Au. By the same argument, it follows that « € D(L) and that u
satisfies equation (1.1).

In order to prove the boundedness of the net {Axux}r>o0 one needs a prior:
estimates. A sufficient condition for {Axux}rs>o to be bounded in H for each
f € H is that the following inequality holds:

((Lu, Ayu)) >0, forallue D(L), A>0. (1.8)
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Thus if £ and A are m-accretive operators in H satisfying inequality (1.8),
then the sum £ + A is m-accretive in H. If the operators £ and A satisfy
inequality (1.8) then we shall say that £ and A form an acute angle in H (see
[SO], [K1]).

A result of Brezis and Strauss

Inequality (1.6) shows that the m-accretive operator —A with domain
W2%(Q) N W,"*(Q) and the operator B defined by (1.3) form an acute angle.
This inequality is a special case of a result of Brezis and Strauss [BR-S, Lemma
2], who proved that if L is a linear m-accretive operator in L?(£2) such that

the resolvent (I + AL)~! is order — preserving and

contractive in LP(Q) for all p € [1,00], A > 0, (1.9)

then
/ (Lu)(z)pr(u(z))dz > 0, forall w € D(L),\ > 0, (1.10)
Q

where 3 C IR X IR is an m-accretive graph satisfying 0 € 3(0). We recall that
the operator —A satisfies the property (1.9) (see [BR-S]). In the terminology
of Bénilan and Crandall [B-C], an m-accretive operator L in L?(Q) satisfying
(1.9) is called m-completely accretive in L?(2). We note here that the operator
L satisfies the property (1.9) if and only if —L generates an order-preserving
semigroup which is contractive in LP(Q2) for all p € [1, o0].

The m-accretive graph § C IR x IR is automatically a subdifferential of a
convex and lower-semicontinuous function j : IR — [0, 0] with j(0) = 0 (see
[BR1, page 43]). It can be shown that the inequality (1.10) with 8 = 97 is
equivalent to the inequality

/ H((T+ ML) tu(e))de < / j(u(e))de, (1.11)
Q

Q

for all w € L?(2), A > 0 (see [B], [B-P]). The assumption (1.9) on L is
necessary for inequality (1.10) to be true for all m-accretive graphs 8 C IRX IR,
(0 € 4(0)). This follows from inequality (1.11) by choosing the convex and
continuous functions j(z) = |z|?,p € [1,0) and j(z) =z V 0.
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The setting

In Chapter 3 we shall prove a vector-valued version of inequality (1.10). The
structure we consider throughout, is motivated by the following two abstract
differential equations.

Lu(t) + Au(t) 3 f(3), te(0,T};
(1 { 2(0) = 0,

— L u(t) + Au(t) 3 f(t), t€(0,T);
(1IT) { u(%) = w(T), v(0) = v/(T).

Here A denotes a nonlinear, possibly multivalued, m-accretive operator in
a real Hilbert space (H,(-,-)) with normalization 0 € A0. The function f
belongs to L2(0,T; H), where L?(0,T; H) is the Hilbert space equipped with

T
the innerproduct ((u,v)) = [(u(t),v(t))dt. It is convenient to write each of
0

these equations as an operator equation of the form
Lu+ Au 3 f. (1.12)
The operator A is defined in L%(0,T; H) by
u € D(A) and v € Au iff u, v € L*(0,T; H) and v(-) € Au(-) a.e.

The operators £ corresponding to equation (II) and (II) are defined by

D(L) = {ue€ WH2(0,T; H) : u(0) = 0};
{ Lu=%u, forue D(L), (1.13)
respectively,
(2O~ s 0TI 0 u) KO TN
Lu=—%zu, forue D(L) :

The operators A and £ are m-accretive operators in L2(0,T; H) (see for ex-
ample [HA]). Instead of equation (1.12), we will first consider equation (1.1).

This motivates the following abstract setting. Let (2, M, v) be a o-finite
measure space and let L?(Q; H) be the Hilbert space with the innerproduct

((w,0)) = /(u(w),v(w))d'/(w), u,v € L*(%; H).

Q
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Let L be a linear m-accretive operator in L?(£2). In Section 2.4 we show,
by using a result of Marcinkiewicz and Zygmund [E-G, page 203], that L is
uniquely “extensible” to a linear m-accretive operator £ in the Hilbert space
L?*(Q; H), with the property that

Lx(f-z)=(Lrf)-z, forall fe L*(Q), z€ H, A>0,

(f -z is the function in L%(Q; H) defined by (f-z)(w) = f(w)z a.e.). Here L3,
(L») denotes the Yosida-approximation of £, (L).

We will be concerned with the sum £ + A, where £ is the m-accretive
extension in L2(Q; H) of a linear m-accretive operator L in L%(Q2), and where
the operator A is the m-accretive operator in L%(Q; H) induced by the operator
A:

u € D(A),v € Au iff u,v € L}(Q; H) and v(-) € Au(-) a.e.

Observe that the m-accretive operators in L2(0,T; H) defined by (1.13) and
(1.14) are the extensions of the m-accretive operators in L?(0,T) defined by

D(L) = {u € W¥2(0,T) : u(0) = 0};
{ Lu= %u, forue D(L), (1.15)
respectively,
D(L) = {u € W22(0,T): u(0) = (T), w(0) = w'(T)};
{ Lu= —%:ru, for w € D(L). (1.16)

Operators forming an acute angle

Let us first restrict our attention to example (II). Let £ be defined by
(1.13). In the case that A is a subdifferential, A = 9y, with ¢ € Jo (see Section
2.3), then the operators £ and A form an acute angle in H = L*(0,T; H),
that is, £ and A satisfy inequality (1.8) (see [BR1,Page 73]). The operator
L defined by (1.15) satisfies (1.9) with @ = (0,7T). It will appear that this
property is necessary and sufficient for the validity of inequality (1.8) for all
subdifferentials A = J¢.

The class of linear m-accretive operators in L?(Q) for which (1.9) holds
will be denoted by M(£2).

In Section 3.2 we prove that the inequality (1.8) holds (H = L%*(Q; H)),
for all subdifferentials A = d¢ with ¢ € Jp if and only if L € M(Q) [C-E,
Theorem 1.1]. We refer to this result as the vector-valued version of inequality
(1.10), since an m-accretive graph in IR is a subdifferential .
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We consider now example (III), so let £ be defined by (1.14). It can be
shown that inequality (1.8) holds for all m-accretive A in H with 0 € A0 (see
[HA]). (For further information concerning abstract second order differential
equations, we refer to [BB2], [BR4] and [M1,2,3].) It turns out that here the
crucial point is that the operator £ is the extension of the operator L defined
by (1.16) which is symmetric and belongs to the class M(0,T).

In Section 3.3 we show, assuming that dim(H) > 1, that inequality (1.8)
holds for all m-accretive A in H with 0 € A0 if and only if L € M() and L
is symmetric [C-E, Theorem 1.1].

It is of interest to note that if the operator A is linear, then £ and A form
an acute angle provided that L or A is symmetric (see Section 3.1). Whereas
in the nonlinear case the class M(f2) is needed.

Let us recall that inequality (1.8) implies that the operator £ 4+ A is m-
accretive, hence equation (1.1) is uniquely solvable for all f € L?(Q; H). In
particular equation (1.12) with A replaced by A+e€l, € > 0 is uniquely solvable
for all f € L?(Q; H).

More can be said for equation (1.12). It follows from a result of Brezis and
Haraux [BR-H] that inequality (1.8) implies that

intR(L + A) = int(R(L) + R(A)) (1.17)

holds, where R(A) denotes the range of the operator A and “ int ” stands for
the interior. Hence, when either £ or A is surjective, then £ + A is surjective
as well.

In particular equation (IT) with A = 8¢, a subdifferential, as is well-known,
is solvable for all f € L?(0,T; H).

Another consequence of the acute angle (1.8) is that the inequality
Ellull® + [|Lull® + [lo]* < |IFI%, €>0 (1.18)

holds for equation (1.1), where v € Au and eu + Lu+ v = f (see Section 3.4).
In fact, (1.17) is implied by the estimate (1.18).
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The sum £ + A when £ and A not forming an acute angle

Let L be a linear m-accretive operator in L2(Q2) and A an m-accretive
operator in H with 0 € A0. Let £ and A denote the corresponding m-accretive
extensions in L?(Q; H). We know that if L € M(Q) and if L is symmetric
then £ and A form an acute angle, which implies that £ + A is m-accretive.
We are now interested in the m-accretivity of £ + A when £ and A do not
form an acute angle.

We recall that if £ + A is m-accretive for all (linear) m-accretive A then
L must be the negative generator of an analytic semigroup (see Section 4.3).

One approach to the problem of the m-accretivity of £+ .4, is to introduce
a third operator Lo which forms an acute angle with both of the operators A
and £. More precisely we search for a symmetric operator Ly € M(£2) such
that

(Lu, Lou) > al||Loul||2 — b||u||3, for all u € D(Ly), :

for some ¢ > 0 and b € IR*. If such an operator Lo exists, it is shown in
Section 4.3 that {Ayux}r>o in equation (1.7) remains bounded and hence the
m-accretivity of £ + A will follow.

Using this idea we prove in Section 4.3 that if L € M(Q) is the negative
generator of an analytic semigroup and if in addition L is normal then £+ A is
m-accretive [EG2]. These conditions on the operator L in the case @ = IRY are
satisfied when L is the negative generator of an order-preserving, translation
invariant, analytic, contraction semigroup in L2(IR™) (see example 4.3.4). It
is a consequence of this result that the operator (£)* + A is m-accretive in
L*(IR;H), 0 < a < 1. Here the operator (L—‘f;)"‘, 0 < a < 1, denotes the
fractional power of the m-accretive operator (—% in L2(IR; H) with domain
WY2(IR; H). It follows that equation (IT) where % is replaced by ()%, 0 <
a < 1is solvable for all f € L?(0,T; H). We note that the operator (%)"‘,
0 < a < 1 on the interval [0,7] is not a normal operator.

The m-accretivity of L + A

In general £ + A is not m-accretive even if L € M(Q) and A a linear
m-accretive operator in H. Nevertheless it follows from [DP-G] (see Theorem
2.5.1) that if A is linear then

R(el + L+ A)D D(L), €>0. (1.20)
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The inclusion (1.20) implies, in particular, that the operator £ + A, the closure
of L + A, is m-accretive.

In Chapter 5, we formulate conditions for the operator L which ensure that
L + A is m-accretive. As in Chapter 4, we explore the idea of introducing a
suitable symmetric operator Ly € M(Q). It appears that if condition (1.19)
is weakened to

D(Lo) € D(L);
{ (LU,OLOU) >0, forall ue D(Lo), (1.21)

then the operator £ + A is m-accretive [EG1]. The method we use is, to solve
first the singularly perturbed equation

ut+elou+Lu+Aud f, €>0. (1.22)

It is then shown that for all f € L%(Q; H) the corresponding solution . of
(1.22) converges strongly to a function u, which will be the unique solution of
the equation u+ L+ A u 3 f.

In the case that an operator L € L2(1RN ) is translation invariant we may
take Lo to be —A which implies that £ + A is m-accretive.

It is possible in some cases to take for Lo the symmetric m-accretive opera-
tor L*L (L* denotes the adjoint of L). It can then be shown that the inclusion
(1.20) holds. Since the operator L* is monotone, the operator Ly = L*L will
always satisfy inequality (1.21). We show in Section 5.2 that L*L € M(Q)
whenever L € M(Q) is skew-adjoint.

We summarize some of the results. Let L € M(Q) be a normal operator,
and let A be an m-accretive operator in H with 0 € A0. Let the m-accretive
operators £ and A in the Hilbert space i = L?(Q; H) denote the extensions
of L and A respectively. Then

(i) The operators £ and A form an acute angle for all m-accretive operators
Ain H, (dim(H) > 1), if and only if L is selfadjoint;

(ii) The operator £ + A in H is m-accretive for all m-accretive operators A in
H if and only if L is the negative generator of an analytic semigroup;

(iii) The inclusion (1.20) holds for all m-accretive operators A in H whenever
L is skew-adjoint.

The considerations above motivates the following conjectures.
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Open problems

Conjecture I: If L € M(R) and if —L generates an analytic semigroup then
the operator £ + .4 in H is m-accretive for all m-accretive A in H with 0 € AOQ.

Conjecture II: If L € M(2) then the operator £ + A in M is m-accretive for
all m-accretive A in H with 0 € A0.

An application to a semilinear elliptic system

Part two is devoted to some applications of the theory developed in Part
one. In Chapter 6 we prove an existence result for a semilinear second order
elliptic system. We mention first a special case of a result due to Brezis
and Nirenberg [BR-N, Theorem III. 6', Remark IIL.5] which is related to the
elliptic system considered in Chapter 6. Let g be a continuous everywhere
defined m-accretive mapping in IR", with respect to some innerproduct (5,
and assume that g(0) = 0. Let § C IR" be a bounded open subset with a
smooth boundary and let M be a linear m-accretive operator in L?(Q; IR"),
with respect to the innerproduct ((-,-)), such that M —¢I is accretive for some
positive constant ¢ > 0. Consider the following system

Mu+ g(u) = f, (1.23)

where f € L%(%; RN ). It has been proven that if for all R > 0 there exists
CRr > 0 such that

(z,9(2)) > R|g(z)| — Cr for all z € IRV, (1.24)
and the set
{ue DOM): Jlulh < 1, [ Mulls, (Mu,w) < 13, (1.25)

is relatively compact in L'(Q;IR"), then there exists u € L2(Q;IR") such
that g(u) € L'(9; IRN) satisfying the system

Mu+g(u) = f,

where M denotes the closure of M in L2(Q; IR") x L(Q; IRN). The outline of
the proof of this result is as follows : By a contraction argument, there exists
a unique u) € D(M) satisfying the approximate equation

Muy +g)\(’M)‘) =f A>0, (1.26)
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where g, denotes the Yosida-approximation of g. Multiplying (1.26) by u) we
have
(Mux, un)) + ((9a(ua), un)) < [|Fll2lluall2-

Since c||ual|2 < ((Muy,uy)) and ((ga(wr),vr)) 2 0, A > 0 it follows that the
net {||ux||2}r>0 is bounded and hence the nets

{((gr(wr), ua))rso and {((Muy,ur))}r>0

are bounded as well. Inequality (1.24) implies now that {gx(ux)}a>0, and
therefore also {Mu)}r>0, Temains bounded in L!(£; IRN ). Thus we can ex-
tract a weakly convergent subsequence u), — u in Lz(Q;IRN )} and, by the
compactness of the set (1.25) in L'(Q; IRY), a convergent subsequence uy, — u
in L1(9; IRN). We take the subsequence {uy,}32, such that uy, — u almost
everywhere. Therefore g,,(u),) — g(u) almost everywhere. Using inequality
(1.24) and the boundedness of the net {((gx(ux), %))} >0 it can be shown that
the sequence {g»,(u),)} is uniformly integrable. It follows by the convergence
theorem of Vitali that gy, (uy,) — g(u) in L'(; IRY) which proves the result.

It can be shown that if g = d¢ with ¢ : IRNY — IR* convex and of class
C! then g satisfies (1.24) (see [BR-N, Remark III.4]).

We obtain stronger results if the operator M in L%(; RN ) is of the form
Mu = (Liuy, Lata, ..., Lyun), u= (u1,82,...,uN),

where Ly, Lo, ..., Ly are N strictly elliptic m-accretive second order differen-
tial operators in L2(Q) with smooth coefficients and

D(Li) = W@ nWak(Q), i=1,..,N.

If iy = Ly = ... = Ly and g a subdifferential as above it follows from
Theorem 3.2.1 and Lemma 2.2.3 that equation (1.23) has a unique solution
u € {W2HQ) N Wy ()} for all f € L2(Q;RY). More generally we treat
the following system

{ Liu; + Ai(uq,...,un) 3 fi, inQ, i=1,...,N;

u; = 0 on, 2=1,...,N, (1.27)

where A = (Ay,...Ay) is an m-accretive graph in IR with respect to some
innerproduct. It will be proven that there exist unique u; € W22(Q)NW,%(Q),
i=1,...,NJdorall fi,..., fn € L?(Q) satisfying (1.27).

Let a;; € cY(Q), 4,7 = 1,..., N be such that a;; = a;; and, for some
constant o > 0, ), ; 0;;6€5 > a|é? on Q for all £ = (&4,...,&n) € RY. If
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Li=Ly=...=Ln=-%;; aiz‘_(agja%j), the existence and uniqueness result
for system (1.27) follows from Theorem 3.3.1. In the case that the operators
Li, i =1,...,N are different we use an inequality due to Sobolevskii [SO]
(see also [BR-E]). This inequality, which will be stated precisely in Section
6.3, implies that L; satisfies (1.19) with Lo = —A. More generally we shall
consider (1.27) with right-hand side depending on u4,...,un, using a fixed
point theorem.

Nonlinear Volterra equations

The last chapter deals with nonlinear Volterra equations in Banach spaces.
We consider the equation

u(t) + / b(t — s)Au(s)ds 3 f(1), t€[0,T], (1.28)
0

where A is an m-accretive operator in a Banach space X, b a real, integrable
kernel and f a given function taking values in X. As a general reference on
Volterra equations we mention [GR-L-S]. Equations of the type (1.28) have
been studied first by Barbu [BB] and Londen [LO] in the case where X is
a Hilbert space, and A is the subdifferential of a convex function. The case
where A is m-accretive in a Hilbert space has been considered by Gripenberg
[GR1}.

Existence results for equation (1.28) are obtained by approximating the
operator A by its Yosida-approximation Ay, A > 0, and subsequently by pass-
ing to the limit as A | 0. It follows from a contraction argument that the
approximate equation

t
un(t)+ [ bt - ) Arua(s)ds = (1), t€[0,T], (1.29)
0

has a unique solution uy € L(0,T;X) whenever b6 € L'(0,7) and f €
LY(0,T; X). The convergence of the net {u)}>o has then to be established.
This has been done in [LO] and [GR1] for kernels satisfying

be AC[0,T], b(0)>0, b € BV[0,T]. (1.30)

It can be shown that a kernel b satisfies (1.30) if and only if b € L}(0,7) and
there exist a real number v > 0 and a function k € BV[0,T] such that

(2 + / b(t— s)k(s)ds =1, t€[0,T] (1.31)
0
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holds. This equivalence is used in [CR-N] to “invert the kernel 4” and to write
equation (1.28) as an abstract differential equation of the form

j—’ll, u u 3

where G is a mapping satisfying certain Lipschitz conditions. Existence of
solutions of the equation (1.28) is obtained via existence results for equations
of the type (1.32), even when X is a general Banach space. It has been proven
by Crandall and Liggett [CR-L] that equation (1.32) (with initial value u(0) €
D(A)), where G(u) = f € LY(0,T;X), has a unique generalized solution
u € C([0,T]; X) which, roughly speaking, may be obtained as a uniform limit
of solution of an implicit difference scheme.

Motivated by positivity preserving and invariance properties for equation
(1.28) in an ordered Banach space, Clément and Nohel [CL-N1] introduced a
class of kernels b, called completely positive in [CL-N2]. By [CL-N2, Theorem
2.2], a kernel b € L'(0,T) is completely positive if and only if there exist a
real number ¥ > 0 and a function 0 < k € L'(0,7) non-increasing such that
(1.30) holds (see also [CL-P] and [CL-M)).

In [CL-N1] existence of solutions of (1.28), where b is completely positive,
is proven when A is a linear m-accretive operator in a Banach space.

The nonlinear case has been treated by Gripenberg [GR3]. If the kernel

t

is completely positive and the function f is of the form ug + [ b(t — s)g(s)ds
0

with g € L1(0,T; X), then equation (1.28) reduces to the equation

) v
FOru(t) + [k(t = s)u(s)ds) + Au(t) 3 k(tJuo +9(0), t € [0,T]; ) g
u(0) = uo,

where ¥ > 0 and 0 < k € L1(0,7) non-increasing.

In [GR3, Theorem 1], Gripenberg showed that the existence of generalized
solutions of equation (1.33) can be obtained, by approximating the operator

Lu(t) := %('w(t) +/k(t — s)u(s)ds) (1.34)

by its Yosida-approximation, instead of approximating the nonlinearity. In
Section 7.3 we give a modified proof of this result, in the spirit of this thesis,
based on personal communication from dr. G. Gripenberg. We note that, by
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[GR3, Theorem 3], generalized solutions of equation (1.33) can also be ob-
tained for kernels k = k; + k;, where 0 < k; € L1(0,7) is non-increasing and
k2 € BV[0,T].

In Section 7.2 we consider equation (1.33) with u(0) = 0, where v > 0,
0 < k € L*(0,T) non-increasing, in the Hilbert space setting. Equation (1.33)
fits into the theory developed in part one. The operator £ in L2(0,7; H)
expressed by (1.34) is the extension of an operator L € M(0,7). If A is a
subdifferential it follows immediately from Theorem 3.2.1 and Lemma 2.2.4
that the equation (1.33) is solvable for all g € L2(0,T; H).

For m-accretive operators A in H which are not necessarily subdifferentials
we obtain some new results in the case y = 0. f ¥ = 0 and the kernel & is in
addition convex we have that equation (1.33) is solvable for right-hand side

t
g € D(L). Furthermore, if the operator Lu(t) = 4 [k(t — s)u(s)ds is the
0

negative generator of an analytic semigroup in L?(0,7) then equation (1.33),
with v = 0, is solvable for all f € L?(0,T; H). This is for example the case if
k(t)=t">,t€(0,T),0 < a < 1. In particular the equation

(F)*u(t) + Au(?) 3 f(t), t€0,T],

0 < @ < 1, has a solution u € D((§)*) for all f € L?(0,T; H). Here (%)=
denotes the fractional power of the operator defined by (1.13).
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Chapter 2

Preliminaries

2.1 Introduction

In the first section we give the definition of a nonlinear, possibly multivalued,
m-accretive operator in a Banach space. However, our attention will be re-
stricted to m-accretive operators in a Hilbert space. We state some known
results which provide a way to show the m-accretivity of the sum of two m-
accretive operators in a Hilbert space.

In Section 2.3 and 2.4 we set up the structure, motivated in Chapter 1.
In Section 2.3 we define the m-accretive extension A in L?(Q; H) of an m-
accretive operator A in a Hilbert space H. Also the notion of a subdifferential
will be introduced. In Section 2.4 we show that a linear m-accretive operator
L in L*(Q) has a unique linear m-accretive “extension” L in L*(Q; H) such
that Lx(f-z) = (Lxf)-z forall f € L*(Q),z € H, A > 0.

In general it is not true that the operator £L4.A is closed even if the operator
A is linear. If A is linear then £ and A commute in the sense of resolvents.
In the last section we shall state some general theorems concerning the sum
of two linear and resolvent commuting operators. A result of Da Prato and
Grisvard [DP-G] tells us that, if A4 is linear, then £ + A, the closure of £+ A, is
m-accretive. It follows from another result in [DP-G] that £+.4 is m-accretive
if L is the negative generator of an analytic semigroup. This will also be a
consequence of a result of Dore and Venni [D-V] where imaginary powers of
operators plays a role. A basic assumption on the operators in [DP-G] and [D-
V], besides that they are resolvent commuting, is that the sum of the angles of
the sectors in which the spectra lie is less then 7. Baillon and Clément [BA-C]
proved that an additional condition is necessary in order to show the closedness
of the sum. They constructed an example of two resolvent commuting closed

27
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operators in a Hilbert space with spectra on the non-negative real axis for
which the sum is not closed. By [DP-G] and [D-V], both of the operators in
this example can not be m-accretive.

2.2 m-Accretive operators

Definition of m-accretivity and some notations

Let X be a Banach space with norm || - ||. As usual we identify a graph
A C X X X with its corresponding nonlinear, possibly multivalued operator
A: X — 2%, The effective domain D(A) of A is defined by

D(A)={z € X : Az #0}.

We denote by R(A) the range of A. The operator A : D(A) C X — 2X is
called accretive if

llz1 = 2|l < ||lz1 — 22+ My — 92)|| for all 4; € Az, i =1,2, A > 0.

The operator A is called m-accretive if A is accretive and R(I + AA) = X, for
all X > 0. We will denote by J{! the resolvent of A, that is, J = (I+24)1.
Thus A is m-accretive if J{' is an everywhere defined (nonlinear) contraction
for all A > 0. The Yosida-approximation of A is defined, for A > 0, by
Ay = 3(I - J{!) which is m-accretive as well.

m-Accretive operators in a Hilbert space

Let H be a real Hilbert space with innerproduct (-,-) and norm |-| = (-, )%
An operator A: D(A) C H — 2 is then accretive if and only if

<y1 - Y2,T1 — il?z) >0 forall Y; € Aw,», 1=1,2.

An operator in H satisfying this property is also called monotone. A mazimal
monotone operator is defined as a monotone operator which has no proper
monotone extension. Recall that the notions of m-accretivity and maximal
monotonicity in a Hilbert space coincide. Furthermore the m-accretive oper-
ators in a Hilbert space H are precisely the negative generators of nonlinear
strongly continuous semigroups on closed and convex subsets C C H.

- In this thesis we are mainly concerned with the sum of two m-accretive
operators in a Hilbert space. In particular to find conditions on the operators
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which ensure us that the sum is m-accretive. It should be noted that the sum
of accretive operators in a Hilbert space is obviously accretive. Here we state
some basic tools. First a simple case.

Lemma 2.1. [BR1, Lemma 2.4]. Let A C H x H be m-uccretive and let B
be an accretive, Lipschitz continuous and everywhere defined operator in H.
Then A+ B C H x H is m-accretive.

Throughout this section, let A, B C H X H denote two m-accretive oper-
ators. Lemma 2.1 shows that for all f € H there exists a unique uy € D(B)
satisfying

euy + Ayuy +Buy>d f, e€>0. (2.1)

A method toshow that f € R(eI+A+B), € > 0, is to consider the approximate

equation (2.1) and the following theorem due to Brezis, Crandall and Pazy
[BR-C-P]

Theorem 2.2. Let ¢ > 0. Then f € R(el + A+ B) if and only if Ayu,
remains bounded in H as A | 0. If f € R(el + A+ B) then uy = u as A | 0,
where w € D(A) N D(B) is the solution of

eu+ Au+ Bu > f. (2.2)

Moreover ||uy — u|| = o(VA) and Ayuy — v as A | 0, where v is the element
with minimal norm of the closed and convez set Aun (f — u — Bu).

The following lemma provides a useful sufficient condition for A,u) to
remain bounded.

Lemma 2.3. [BR2]. Assume that D(A)N D(B) # 0. If
(Ayu,Bu) > 0 for all w € D(B), A >0, (2.3)

then A+ B C H x H is m-accretive.

It has been shown by Brezis and Haraux [BR-H] that inequality (2.3) has
the following interesting consequence (see also [BR2]).

Theorem 2.4. If inequality (2.3) holds under the same assumption of Lemma
2.3 then

R(A+ B) = R(A) + R(B) and intR(A + B) = int(R(A) + R(B)).
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In several cases it is not true that the sum A + B is m-accretive but the
closure A+ B of (the graph) A + B is m-accretive. If equation (2.2) has
a solution in D(A) N D(B) for f in a dense subset in H then A + B is m-
accretive. We also note that if A + B is m-accretive then the solution u) of
the approximate equation (2.1) converges to the solution u of

eu+A+Bu>f, feH.

We end this section by stating a nonlinear Trotter product formula proved by
Brezis and Pazy [BR-P], see also [BR1, Prop. 4.3 and 4.4].

Proposition 2.5. (i) Assume that the operator A + B is m-accretive and
denote by {5(t)}i>0, {Sa(t)}e>0 and {S B(t)}1>0 the semigroup generated by
— A+ B, —A and B respectively. Then for all u € D(A)n D(B),

{JfJf}"u — S(t)u, if n— oo, (2.4)

uniformly on compact subsets of [0, c0).

(i) Let C C D(A) N D(B) be closed and convez, such that JAC C C and
JBC C C for all A > 0. If in addition A, B are single valued and A+ B is
closed then for allw € C N D(A)N D(B),

{sA(%)sB(%)}nu ~ S(tyu, if n— oo, (2.5)

uniformly on compact subsets of [0, o).

2.3 The operator A

Let (2, M, v) be a o-finite measure space and let (H, (-,-),|-|) be a real Hilbert
space. Set H = L?(Q; H), the Hilbert space of (equivalence classes) H-valued
Bochner measurable functions » : & — H which are square integrable, and
with the innerproduct ((-,-)), defined by

((u,v)) = /(u(w),v(w))du(w), for u, v € H.
Q
Let A C H x H be m-accretive. If ¥(Q) < oo or if 0 € A0, then the operator
A C'H x H defined by

D(A) = {u € H:3 v € H such that v(-) € A(u(-)) on Q a.e.}; (3.1)
Au={v e H:v(-) € A(u(-)) on Q a.e.}, :
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is m-accretive.
Next, we introduce an important class of m-accretive operators. Set

Jo:= {1 : H = [0,00] : ¥ Ls.c., convex, with ¥(0) = 0}. (3.2)
Recall that the subdifferential d¢, ¢ € Jo, is defined by
(Bp)u = {w € H : ¢p(v) — ¢(u) > (w,v—u) for all v € D(p)}, (3.3)

where D(p) = {u € H : ¢(u) < oo}. The set D(p) is called the effective
domain of d¢. It is well-known that 8¢ is m-accretive [BR1]. Furthermore,
the Yosida-approximation is again a subdifferential. In fact, (8¢)r = O¢x,
where @y : H — [0,00) is the convex and Fréchet differentiable function given
by

o1 2
ox(w) = min{oxlu —vl" + ¢(v)}, weH.
Note that 0 € (8¢)0 since ¢(0) = 0. It can be shown that if A = d¢, then its

extension A defined by (3.1) is again a subdifferential. More precisely A = 09
where ® : H — [0, 00) is given by

8(u) = [pluw)idv(w), veM.
Q

We refer again to [BR1] for the facts that ® is lower semicontinuous, convex
and that, indeed, A = 8®. Moreover,

(1) = [ o)), ueH.
Q

Finally, we introduce a special class of lower semicontinuous convex functions
which will be useful in the sequel.
Let K C H be a closed and convex subset and define for z € H

0 if z € K;
400 otherwise.

Ix(z) = {

Ik is called the indicator function of K. Observe that if ¢ = Ik then ® = Iy,
where
Hg ={ueH :uw)€ K, weQae. }.

Note that Hx C H is also closed and convex.
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2.4 The operator L

Let (X, || -||) be a Banach space and let L be a linear densely defined operator
in X. We use the notation p(L) and o(L) for the resolvent set and spectrum
of L. Consider the assumption

(H1) (—00,0) C p(L) and for some constant M > 1, ||JF|| < M for all A > 0.

In the literature, an operator L in X satisfying (H1) is sometimes called a
positive operator (see for example [TR]). Note that an operator L satisfying
(H1), with constant M = 1, is m-accretive.

Let L : D(L) C LP(2) — L?(Q), p € [1,00) be a linear operator satisfying
(H1). Then there exists a unique linear operator £ in LP(Q; H) satisfying (H1)
with the same constant M as for L, such that

(@, (X u)(w)) = (e, u)(w) (4.1)

for any u € LP(Q; H), z € H, A > 0 and w € Q almost everywhere.

This extension is based on the following result of Marcinkiewicz and Zyg-
mund [E-G, Page 203], see also [RF]:

A bounded linear operator T : LP(Q) — LP(Q) is uniquely estensible to a
bounded linear operator T : LP(Q; H) — LP(; H) such that

T(f - 2)(w) = (Tf) - z)(w)

for all f € LP(Q), z € H and w € Q almost everywhere ((f - z)(w) :=
f(w)z, w e Q a.e.). Moreover ||T| = ||T]|.

Applying this result to the bounded linear operator J¥ in LP(Q), A > 0, we
obtain a bounded linear operator J¥ in LP(Q; H) such that

TXF - 9)(@) = ((JXF) - 9)(w)

for all f € LP(Q), y € H and w € N almost everywhere. Using the linearity -
of the operator J /\L one verifies that

(@, JE(f - 9)()) = (JE (=, f - 9))(w).

Next, let w € LP(Q2; H). Then there exists a sequence {u,}32, of simple'
functions in LP(Q; H) such that u, — w in LP(Q; H) if n — co. Since J¥ and
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J L are bounded operators we can choose the sequence {uy}52; such that

{ Jf‘(z,un) — J/\L(x,u);

J}un — J}u, pointwise a.e. as n — oo.
Hence,
(2, (JFuw)(w)) = lim (2, (Fun)(@)) = lim (JE (2, ua))() = (Jf (2, u)) (@),

w € © almost everywhere. It remains to show the existence of a unique linear
operator £ in LP(Q; H) such that J£ = JL for all A > 0. For that, consider
the resolvent equation

MY —pJl=A=wJIYIL, Au>0.
Then, ; 3 L
ME—pJb = (A= p)JEJE, A\p>0.

Thus the family {Jj{:, X > 0} is a so-called pseudoresolvent on IR* [P]. More-
over, J} is injective. For, if Ji’\"u = 0, then J¥(z,u) = (:I:,J}\Lu) = 0 for all
z € H, hence u = 0. Therefore, there exists a linear operator £ in LP(Q2; H)
such that J€ = J for all A > 0 [P].

Remark 4.1. Note that the operator L is given by

D(L) = {ue LP(Q;H): (u,z) € D(L) for all z € H and there
exists a v € LP(Q; H) such that L{u, z) = (v, z)};
Lu = v for v € D(L),

In the case p = 2 the extension result above can be proven directly, using
completely orthonormal sets in L#(Q) and H, as we will point out here. Let
{f-}rer respectively {z,},cs be a complete orthonormal set of L%(Q2) respec-
tively of H. Then {f; -z, }re1,0e is a complete orthonormal set of L*(Q; H).
For T': L%(Q)) — L?(Q) linear and bounded we define

n n
T(Z Jris2o,) = Z(Tf‘r.') *Zgy-
=1 =1
Set w =31y fr. * To;. Then,

ITull = O IT£15)% < ITIKC 1751832 = (7Nl

=1 =1
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It follows that T give rise to a bounded operator in L?%(Q; H), also denoted by
T, with ||T|| < ||| and such that T(f-z)=(Tf) -z forall f € L*(Q),z € H.
To show that ||T|| = ||T|| take f € L*() with ||f]z = 1 and z € H with
|z| = 1. Then,

ITflla = WTF) -l = IT(F - )| < NN F - 2ll = 1.
Thus ||T|| < ||T|| and equality follows.

Remark 4.2. Let L be a linear operator in LP()) satisfying (H1). If the
resolvent family consists of positive (with respect to the order) operators, that
is, JLf > 0 for all f > 0, A > 0, then there exists a unique linear operator £
in LP(Q; X) such that £ satisfies (H1), with constant M, and

(*, (¥ u)(w)) = (JX{e", u))(w)

for all v € LP(Q; X),2* € X*,A > 0 and w € Q almost everywhere. Here X*
denotes the dual space of X and (-,-) the pairing between X* and X.

This follows from the known fact that a positive bounded linear operator
T in LP(2) is uniquely extensible to a bounded linear operator | T in LP(Q; X)
such that T(f-z) = (Tf) -« for all f € LP(Q),z € X and ||T|| = ||T||. For
the sake of completeness we prove it here, see also [RF].

n
For any function § = ¥} xg;z; in L?(Q; X) with E; € M pairwise disjoint,
=1

v(E;) < oo and z; €,i = 1,...,n, define 7(S) = > (TXE )z;. Then,
IS = 13 (Tl = { / I3 (Txe)eilPdvy
=1 =1
< { / (O ITCem P} = ¢ / o TO ey v
i=1 i=1
<

T [ (3 xmlill Py = T / ||(E xgail v}

Q =1
= [ITISIl,-

Hence, T is bounded on the dense subset of simple functions of LP(€; X ) with
IT|l < |IT|l- One verifies that 7' is extensible to a bounded operator T in
L?(Q; X) with ||T|| = |IT|.



PRELIMINARIES 35

2.5 Sum of commuting operators, the linear case

As pointed out in the introduction we will consider the sum “L + A” in the
Hilbert space H := L?(Q; H), where L is the extension of a linear m-accretive
in L?(Q) as described in Section 2.4, and A the extension of a nonlinear pos-
sibly multivalued m-accretive operator A C H X H defined by (3.1). Observe
that, in the case A is linear, the operators £ and A are resolvent commuting,
that is,

JEJR = JAJE, forall A, p> 0,

(equivalently for some A, u > 0). Then £+ A is closable, and by a result of Da
Prato and Grisvard [DP-G], the operator £ + A is m-accretive. In fact they
proved the following

Theorem 5.1. Let X be a Banach space. Let A and B be two linear m-
accretive resolvent commuting operators in X and let one of them be densely
defined. Then,

R(el + A+ B) D D(A)+ D(B), forall €> 0.

Recall that a linear m-accretive operator in a reflexive space is automati-
cally densely defined.

We need the following definition. Set
S(0) = {z € € \{0} : |argz| < 0},

for0 <8 <. :
A densely defined linear operator L in X is said to be of type (w, M) if
there exist 0 < w < 7 and M > 1 such that

(®) o(L) C S(w)u {0}

(i) for all 0 < @ < 7 — w there exists M(8) > 1, with M(0) =1,
such that ||JE|| < M(8) for all z € S(6).

It is well-known that an operator L in X satisfying (H1) is of type (w, M)
for some w € (0,7), M > 1. In the case L is m-accretive, L is of type (3,1)
and if L is of type (w, M) with 0 < w < & then —L generates an analytic
semigroup. Another result of Da Prato and Grisvard tells us that if A and B
are two, resolvent commuting operators in a Banach space X of type (w4, M4)
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and (wp, Mp) respectively, such that ws + wp < 7 then the equation

z+ Az + Bz = f, (5.1)

is uniquely solvable if f belongs to certain interpolation spaces. For the precise
statement we need the following definition. Let L satisfy (H1) in a Banach
space X,1 <r < oo and 0 < @ < 1. Define

o0
dt.1
DL(8,7) 1= {z € X : lallo, := { [ 7"+ Lial T} < o
0
Dp(0,00) :={z € X : ||z|lg, := supt>o||t_9+1Lta:|] < oo}.

Theorem 5.2. [DP — G| Let A and B be two, resolvent commuting operators
of type (wa,M,) and (wp, Mp) respectively, such that ws + wp < 7. Let
1<r<o00and 0 < 6 < 1. Then A+ B is closable, A+ B is of type
(w, M) withw < max(wy,wp) and for every f € D4(0,7) there ezists a unique
z € D(A)N D(B) satisfying (5.1). Furthermore Az and Bz belong to D 4(8, )
and there ezists a constant M such that ||Az||s, + || Bz|lo, < M||fll6,r

In the case that the underlying space is a Hilbert space :

Theorem 5.3. Let A and B be two, resolvent commuting operators in a Hilbert
space H of type (wa, M) and (wp, MB) respectively, such that wg + wp < 7
and D(8,2) = D y«(6,2) for some 0 < § < 1. Then (5.1) is uniquely solvable
Jor all f € H with solution x € D(A)N D(B) and A+ B is of type (w, M)
with w < max(wa,wB).

If A is an m-accretive operator in H with N(A) = {0} then D4(6,2) =
Dy+(6,2) for all 0 < 6 < 1 as can be seen as follows. It is well-known that
for such an operator one can define fractional powers A%, 0 < Rez < 1 [KO].
In [K2] Kato proved that the purely imaginary powers of A are bounded :
|A*|| < eZ¥!| s € IR. From this it follows that the complex interpolation
space [H, D(A)]p coincides with D(A?) [A2]. Furthermore it is known that
[H, D(A)]e = Dy(6,2) [PE] Finally it has been shown in [Kl] that D(A%) =
D(A* yforall 0 < 6 < 1.

It follows from Theorem 5.3 that if A and B are two m—accretlve, resolvent
commuting operators in a Hilbert space such that —A generates an analytic
semigroup then A+ B is m-accretive. This is also a consequence of the following
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theorem due to Dore and Venni [DO-V] where the boundedness of the purely
imaginary powers is assumed:

(H2) there exist constants M > 1 and w > 0 such that
|A%|| < Melsl, for all s € IR

Theorem 5.4. Let A and B be two, resolvent commuting operators in a
Hilbert space H of type (wa, Ma), (w, MB) such that ws +wp < 7 and for
some 0 < € < 1, ¢ + A satisfies (H2). Then for all f € H there erists a
unique ¢ € D(A) N D(B) satisfying (5.1) and A+ B is of type (w, M) with
w < max(w4,wB)-

In [DO-V] and [PR-S] it has been proved that (H2) implies that A is of
type (w, M) if w < 7. The converse question is negatively answered in [BA-C].
They showed the existence of an operator A, in a Hilbert space, of type (0, M),
for some M > 1, such that the imaginary powers A* are unbounded for all
s € IR\{0}.

Another example in [BA-C] is the construction of two resolvent commuting
operators A and B of type (0, M4) and (0, Mp) such that A+ B is not closed.
Note that by Theorem 5.3 and Theorem 5.4 the constants M4 and Mp in this
example are necessarily greater than one.



Chapter 3

The operators £ and A
forming an acute angle

3.1 Introduction

Let (H,((+,-))) be a real Hilbert space and let £ and .A denote two, for the
moment linear, m-accretive and resolvent commuting operators in H. As we
have seen in Section 2.5, the operator £ + A is m-accretive whenever —L
generates an analytic semigroup. In the particular case that the operator £
is symmetric even more is true. In this case the operators £ and A form an

acute angle: —
((Lrw, Au)) >0, forallX, u>0,ueX (1.1)

Indeed, by using the commutativity of (£ ,\)2 and A, and the accretivity of
A, we have that

(Lru, Agw) = (((£2)Fu, (£2)7 A,uu))
= (((Lr)Fu, Au(Lx)Fu)) > 0

By Lemma 2.2.3 inequality (1.1) implies, even if £ and .A are nonlinear, that
L + A is m-accretive. We will prove a nonlinear version of inequality (1.1).

Throughout this chapter we consider the following situation. Let (2, M, v)
be a o- ﬁmte measure space and let (H,(:,-)) a real Hilbert space with norm

[- ] = (, ) We denote by H the Hilbert space L%(Q); H) with innerproduct
((w,0)) = f(“(w),v(W))dV(W), u, v € M.

39
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We assume that £ is the linear m-accretive extension of a linear m-accretive
operator L as discussed in Section 2.4 and A is assumed to be the m-accretive
operator in ‘H defined by (2.3.1), where A C H x H is a nonlinear, possibly
multivalued m-accretive operator with normalization 0 € AO0.

Motivated by the paper of Brezis and Strauss [BR-S], where H = IR, we
consider the following assumption on L

(1.2)

JEf>0 for every 0 < f € L?(Q), )X > 0;
175 flls < I fllp for every f € LY(R) N L®(R),p € [1,00],A > 0.

We shall denote by M(Q) the class of linear m-accretive operators L in L%((2)
satisfying (1.2).

Under the assumption L € M(Q) we prove that if L is symmetric or if
A = 0O¢, a subdifferential, with ¢ € Jy, then inequality (1.1) holds. This
is a vector-valued extension of the result of Brezis and Strauss mentioned
in the main introduction. Recall that if H = IR then A is automatically a
subdifferential. Furthermore it will be shown that the assumption L € M({)
is necessary for inequality (1.1) to be true for all subdifferentials and if (1.1)
holds for m-accretive A then in addition L must be symmetric. -

In the last section we show some consequences of inequality (1.1).

3.2 The case where A is a subdifferential

The main result in this section is the following

Theorem 2.1. Let L be a linear m-accretive operator in L2(Q). Then in-
equality (1.1) holds for all A = B¢ with ¢ € Jo if and only if L € M(Q).

Proof. Assume that L € M(f) and recall that if A = 9¢ then A = 09,
where & : H — [0,00] is given by ®(u) = [ ¢(u(w))dv(w) for every u € H
Q
and A, = (0®), = 0%,, p > 0, see Section 2.4. By the definition of a
subdifferential,

(Lrw, 8(@,)w) = (1w~ TFu, 0(Bu)0)) > 3(Rulw) —~ Bu(JFw).

Thus in order to show inequality (1.1) it is sufficient (and necessary) to show
that
®,(Jfu) < ®,(u), forall A,pu> 0. (2.1)
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Since a lower semicontinuous function is the pointwise supremum of continuous
affine functions we have

0u(z) = supacr(Cap + (Tap, ), forallze H,u>0,

for certain c,,, € IR and z,, € H, where a € I and I an index set [BR3].
Note that ¢4, < 0 for all a € I since ¢,(0) = 0.

We prove that (2.1) holds for simple functions. Let u € H be such a
function, that is, u = Y™, XE,%:, where z; € H, E; € M pairwise disjoint
such that v(E;) < co and xg; the characteristic function of E;, 1 =1,..,n.
Set E = U™, E; and let from now on A\, > 0, a € I. It follows from the
assumption L € M(Q) that 0 < J,{‘XE < 1. Hence,

L
Caul < JyCauXE ae.

By using that (z4 ., (JEu)(w)) = JF(Zau u)(w) a.e. (see Section 2.3) we ob-
tain
Caul + (Tau (qu)(w)) < (Jf(ca,uXE + (Zau w))(w) ae.
From the positivity of the resolvent J f and the inequality
o 5(©) + (g u0)) < () ace,
it follows that
Caul + (Za (J{u)w)) < (JXpu(w))w)) ae. (2.2)

Note that @,(u) € L1(Q) N L®(Q), since pu(u) = Yiz; ¢(zi)xE;- By taking
the supremum, with respect to a € I, in inequality (2.2) we obtain

eu((Jfu)(w)) € (JXpu(u)(w) ae. (2:3)
Inequality (2.3), together with the assumption that the resolvent
JE LNQ)N Lo(Q) - LN(Q)

is a contraction with respect to the L'-norm, implies that

8, (0f0) = [pu(Ifu)w)dr(w)
Q

IA

JEFpuw) @)
Q

IN

[ou)@ine) = 2,
Q
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We have proven that inequality (2.1) holds for all simple functions. Since the
set of simple functions in H is a dense subset of H and @, : H — [0,00) is a
continuous function the inequality holds for all u € H.

Now we show that the assumption Z € M(R) is necessary for the validity
of inequality (1.1), or equivalently of (2.1), for all subdifferentials A = dq,
¥ € Jo. Indeed, take y € H with |y| = 1.

(i) Let p € [1,00) and define ¢ : H — [0, 00) by

o(z) = |z|P, forallz € H.

Then ¢ is a continuous function and @ : H — [0, c0) is given by

®(u) = /lul’”du, for all u € H.
Q

One can verify that ® is lower semicontinuous function by using Fatou’s
lemma. Let w = f -y where f € L*(Q) N L*°(Q). Inequality (2.1) implies
that

J\ktrav= [£s-wPavs [1f-ypav = [157an,
Q Q 0 Q

which shows the necessity of the contraction property of J f‘ in LP,
(ii) Set K = {z € H:z=1ty, t €[0,1]} and let & = Ip;,.. Then (2.1) with
u=f-y, 0< f<1showsthat 0 < J/{’fg 1. Hence

|J¥Alco < ||Rlloo, for all & € LY(€) N Lo(R).

(i) fK={yeH:z2=ty, t€[0,00)} and ® = Iy, then (2.1) implies that
the resolvent J¥ is order-preserving.

Remark 2.2. We note that inequality (1.1) with A = 8@ is equivalent to
each of the following assertions.
(i) ®(JEu) < ®(u) forall w € H, A > 0.

(i) ((Lru,v)) > 0 for all w € D(8®), v € 0®u.
(iii) ((Cu, (8®),u)) > 0 for all u € D(L), p > 0.
See [BR1, Théoréme 4.4].
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3.3 The case where £ is symmetric

Besides L € M(Q) we need an additional condition on L for inequality (1.1) to
be true for general m-accretive A C H x H. This condition is that L should be
a subdifferential. Recall that a linear m-accretive operator in a Hilbert space
is a subdifferential if and only if L is symmetric. From now on we consider
A C H x H to be a general m-accretive operator.

Theorem 3.1. Let L be a linear m-accretive operator in L*(Q) and assume
that &im(H) > 1. Then inequality (1.1) holds for all m-accretive A C H X H
with 0 € A0 if and only if L € M(Q) and L is symmetric.

Remark 3.2. In the case dim(H) = 1 we are in the situation of Theorem 2.1

since A is in this case a subdifferential.
3

Proof of Theorem 3.1. Assume that L € M(Q) is symmetric. Let
u=Y"", XEZ; € H be asimple function as described in the proof of Theorem
2.1. Then

(Lyu, Ayu)) = / (Lyu, Ayu)dy
Q

1 n n n
= ;/(ZXE.-M — S I (xm)zi, ) xE, Aut;)dy
Q i =1 i=1

=1

1 n
= (w4 [ - T xe)xE )iy

1 n n
—;Z‘L(m,Auw» / X (xE:)XE;dv
=1 j=1
i “

1 n
= 3 oo Auai) [ = TE (e )xm)dy

+§i(xi,A,ﬂi) / Jf(XEi)(fﬁXEj)dV
Q 3=l

=1
J#
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—“ZZ(“’H u;) /JA(XE‘)XEJdV

1—1 J—l
J#t

= )\E<m” y:c,)/(XE. J¥(xE,)XE)dv

=1

330D (e Ay = Aues) [ T cm, ) o
Q

1'—1 ]__
I#

We claim that both terms are non-negative. Since 0 = A,0 and A, is accre-
tive, we have that (z;, A,z;) > 0fori=1,...,n. Using the assumption that
JE: NN L®(Q) —» LYQ)

is a positive contraction with respect to the L!-norm we obtain
/Jf’(XEi)XEdV < /J)I((XEi)du < /XE.-dV fori=1,...,n
Q Q Q

Hence, the first term is non-negative. In order to show that the second term
is also non-negative we introduce for convenience the following notation :

cij = / J¥ (xE:)xE,dv;
Q

ri; = (%, Auzi— Auz;), fori,j=1,...,n

With these notations the second term becomes

Z Z CijTij-

=1 j=1
I
Observe that for ¢,j = 1,...,n, 0 < ¢;; = ¢ji, since J¥ is a positive symmetric
operator in L%(Q) and that z;; + z;; > 0 since A, is accretive. Therefore
P ¥ i " )
n n n
DD ez = D (3w + ) €izi)
i=1 j=1 i=1 j<i i>i
J#i
n
= 2 i + 3 cizji)
=1 j<i i<t

n
= Y cij(zij + i) 2 0.

=1 j<¢
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Using the continuity of the operators £y, A, and the fact that the set of simple
functions is dense in H it follows that inequality (1.1) holds for every u € H.

We have observed in the previous section that the assumption L € M(Q)
is necessary for inequality (1.1) to be true for all subdifferentials A = J¢ with
¢ € Jo. If inequality (1.1) holds for general A C H x H m-accretive (with
0 € A0) and if dim(H) > 1 then in addition L must be symmetric. Indeed, let
z1, ¢ € H be two orthonormal vectors and let A be the bounded operator H
defined by

Az = -z
Azy = z1;
Az = 0, foreveryz € {z1,z2} .

Then A and —A are accretive since {(Az,z) = 0 for all z € H. Therefore,
since +A are bounded, +A are m-accretive operators in H. By assuming that
inequality (1.1) holds we have

+((Lau, Ayu)) > 0 forall A, p>0and u€H.

Since A is single-valued and everywhere defined it follows, by letting x | 0,
that
((Lru, Au)) =0 forall A>0andueH. (3.1)

Let f1, f2 € L*(Q) and take u:= fi- 21+ f2 - 22 in (3.1). Then

(LA(fr - 21+ fa-22), fa-21)) = (La(fr 21 + fa-22), fu z3)).

Hence,

/(L/\fl)fz’d’/ = /(LAf2)f1dV for every fi, f2 € L*(2) and X > 0.
Q y

Finally, since Ly = L} for all A > 0 we get L = L*.

3.4 Consequences of the acute angle

The main implication of the acute angle (1.1) is that the sum £ + A is m-
accretive. Here we give some other consequences.

Theorem 4.1. Let L and A be as in Theorem 2.1 and 3.1 such that inequality
(1.1) holds. Let f € H and € > 0. Then
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(i) For all A > 0 there ezists a unique uy € D(A) satisfying
euy + Lyuy + Auy D f.

For all pp > 0 there ezxists a unique u, € D(L) satisfying
eu, + Lu, + Ayu, = f.

Moreover lim)ouy = lim,jou, = u, where u € D(L) N D(A) is the unique
solution of eu + Lu + Au > f.

(1) The estimate
Ellell +1£ull® +[|v]1* < llew + Lu+ o] (4.1)

holds for all w € D(L) N D(A), v € Au.
(i) R(L + A) = R(L) + R(A) and intR(L + A) = int(R(L) + R(A)).

(iv) Let {S(t)}:>0 denote the semigroup generated by —(L+ A). Then for all
u € D(£)Nn D(A),

nango{JfJf}“u = S(t)u, (4.2)

uniformly on compact subsets of [0, c0).

Proof. (i) See Theorem 2.2.2.
(ii) Let € > 0, w € D(£) N D(A) and v € Au and consider the approximation
equation
euy + Luy + Ayur =ew+Lu+v, A>0.

Then, using inequality (1.1) and the accretivity of the operators £ and A it
follows that

llewall® + |€uall® + [ Arusll® < llew + Lu+ o]?,  Ae> 0.
By Theorem 2.2.2,
uy = u, Luy— Lu, Ayuy—ov, if A]O0,

and (4.1) follows.
(iii) See Theorem 2.2.4
(iv) See Proposition 2.2.5

Next, we prove an invariance result.
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Theorem 4.2. Let K C H be a closed and convez set such that 0 € K and
let L be a linear m-accretive operator in L*(2) which satisfies

feL*Q), 0< f<1ae. implies OSJ,\LfS 1 a.e. for all A > 0.

Let A C H x H be m-accretive and assume that L + A C H X H 1s m-accretive.
If J;\4K C K for all X > 0 then the solution of

v+ L+Aud f, [fE€HK (4.3)

belongs to Hx

Proof. Let f € HMg. It follows from the proof of Theorem 2.1 that
inequality (2.3) holds for all ¢ € Jo. Since (Ix),(z) = 0if and only if z € K
it follows from (2.3) with ¢ = Ix that

0 < (Ix)u((J£ )(@)) < (IXUR)u(H)w) = 0,

almost everywhere, and therefore J¥f € Hk, for all A > 0. Consider the
equation

u+ Lyu+Aud f, f€Hk. (4.4)
This equation can be written as
1 A
_ JA L
u—JAi1(}\+1JAu+__/\+1f) (4.5)

Observe that the right-hand side defines a strict (nonlinear) contraction in .
Thus, there exists a unique solution, which we denote by uy, of equation (4.4).
We claim that u) € Hgi. Namely, if « € Hx then J,\Eu € Hg and therefore

1 A
— J£ A
since it is a convex combination of elements in Hx. Hence the right-hand side
of (4.5) defines a strict contraction in Hg. Finally, one shows that u) — u,
if A | 0 where u is the solution of equation (4.3). By the closedness of Hx it
follows that © € Hx.

Remark 4.3. Provided that £+ A4 C H X H is m-accretive, the Trotter
product formula gives that, denoting the semigroup generated by — £ + A by
{S(t)}+>0, for z € D(L) N D(A),

{JEIfY 2 — S(t)z, if n— oo,
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uniformly on bounded subsets of [0, 00), (see Proposition 2.2.5). In order to
prove Theorem 4.2 one could also use this formula. It follows, under the
assumptions of Theorem 4.2, that {J£J£}" leaves Hx invariant, so that

SA)(DUL)ND(A)NHkg)NHgk, forallt>0.
This implies that J/\Z‘*'_AHK NHk, for all A > 0 [BR1, Prop.4.5].

Denote by {T()}i>0, {7(t)}:>0 the Cop-contraction semigroup generated
by —L and —Z respectively. It is clear that if L € M(Q) then the semigroup
{T(t)}+>0 satisfies (1.2) with J¥ replaced by T()). Note also that if L is
symmetric then the semigroup is symmetric as well. Then, setting

1
Ty = 5T = T(A)),
it follows from the proof of Theorem 2.1 and Theorem 3.1 that, under the
same assumptions, the inequality
((Tpyw, Auu)) >0 forallue ™, A, p>0 (4.6)
holds. Inequality (4.6) provides another way to approximate the equation
v+ Lu+ Au > f.

Proposition 4.4. Let £ be a linear m-accretive operator in a Hilbert space
H and A C H X H an m-accretive operator such that D(L)N D(A) D {0} and
(4.6) holds. Then L+ A C H X H is m-accretive and the solution uy € D(A)

of
uy + 'ZZ,\)u,\ +Auy3 f, feH (4.7)

converges strongly to the solution v € D(L)N D(A) of u+ Lu+ Au > f.

Proof. By taking the inner product of (4.7) with 7(yyuy it follows that
N
|Z»)ux|| remains bounded if A | 0. Thus we can find subsequences

uy, =8, Ty, =~ w, v—f-—u—w, asn— oo,

for certain », w € H and v, € Auy,, n=1,2,.... Then for all z € H

An
(Toiam2) = (5 [ T(s)ur,ds,2)

An
= (W3- [ T2ds) = (w2)
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as n — oo, since the dual semigroup {7*(¢)}:>0 is also strongly continuous.
A

Since Tnyux = L(5 [ 7(s)uads) and L is a linear and closed operator we
0

obtain u € D(L) and w = Lu. One verifies that
lim sup((un,,vn)) < ((u, f — u — Lu)),

and by the m-accretivity of A this implies that u € D(A) and f—u—Lu € Au.
By a standard argument we have that uy — w» if A | 0. Finally, taking the
innerproduct of

ux —u + Znyur — Toyu + Tpyu — Lu + Auy — Au 3 0,
with ) — u we obtain

[lux — wll < | Znyw — Lu|| =0 if A ]O.



Chapter 4

Angleboundedness and the
m~accretivity of £+ A

4.1 Introduction

Let L be a linear m-accretive operator in L?(Q) and A an m-accretive operator
in H. In Section 3.3 it is proven that the operator £ + A is m-accretive if L
is symmetric and in the class M(Q2). We extend this result to a larger class of
operators.

Even if the operator A is linear, £ + A need not to be m-accretive. If
L + A is m-accretive for all m-accretive operators A in H then L must be
the negative generator of an analytic semigroup ( Remark 3.5). As we know
already this condition on L is sufficient if the operator A is linear (see Section
2.4). In the nonlinear case, if L is symmetric then £ + A need not to be
m-accretive. In the last section we give such an example where the operator
A is a subdifferential.

Motivated by Chapter 3 we assume that L belongs to M({2). We conjecture
that £ + A is m-accretive if L € M({) is the negative generator of an analytic
semigroup. In the case L is normal we answer this conjecture affirmativily in
Section 4.3.

We show in Section 4.2 that angleboundedness is equivalent to the notion
of regular accretivity. It is well-known that if L is regularly accretive then —L
generates an analytic semigroup, see [K1]. On the other hand we show that if
L is normal and the negative generator of an analytic semigroup then L + ¢l
is anglebounded (hence regularly accretive) for some ¢ > 0.

An example of an operator L which is normal and the negative generator

51
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of an analytic semigroup is the operator L = (£)%, in L?(IR), 0 < a < 1, the
fractional power of the operator % with domain W12(IR). In Chapter 7 we

t
consider more generally, operators of the form (Lu)(t) = & [ k(t — s)u(s)ds,
0

where £ is a real kernel.
4.2 Angleboundedness and regular accretivity

Let H be a real Hilbert space with innerproduct (-,-). An accretive operator
L in H is called anglebounded if for an a > 0,

(Lf,9) - (f, Lg)| < 2a(Lf, f)?(Lg,g)?, forall f, g € D(L).

This notion is introduced by Amann, see e.g. [A1]. For equivalent formulations
of angleboundedness we refer to [BA-H].

Let V C H be a continuously and densily embedded Hilbert space and
1
denote the innerproduct of V' by (-,-)v and ||f||v := (f, f)&, f € V. Let
e(,): VXV ->IR
be bilinear, continuous and coercive, that is, there exists an a > 0 such that

ol flIy < e(f,f), forall feV.

It is well-known that there exists a unique m-accretive operator L such that

D(L)CV
o(f,9)=(Lf,g) forall fe D(L),geV

Such an operator L is said to be regularly accretive, see [K1].
We recall that an m-accretive operator L is called strictly m-accretive if
L — cI is accretive for some constant ¢ > 0.

Theorem 2.1. The following assertions are equivalent
(i) L is regularly accretive.
(i) L is strictly m-accretive and anglebounded.

Proof. (i) = (ii). By assumption, there exists constants ¢1,cy > 0 such
that || - || < e1]| - ||v and {o(f, )] < e2|| fllvllg|lv for all £, g € V. Therefore

(Lf, f)=o(f, f) > el % > %nfnz,
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and

I(Lf,9) - (£, Lg)|

le(f,9) — ¢(g, f)l

2¢s|| fllvllgllv

%w(f, iele,9)?

2% (L, N} (Lar o)},

IA

IA

a
for all f, g € D(L).
(i) = (i). Set

(Fha)v = 3{(LF,9)+ (S, 9}, 1, 9 € D(L).

Then (-,-)y defines an innerproduct on D(L) since L is strictly accretive.
Denote by (V,(,-)v) the completion of the pre-Hilbert space (D(L),(:,")v)
Note that V can be identified with a subspace, also denoted by V', of H which
is continuously and densely embedded since L is strictly accretive and D(L)
is dense in H. Define

{ e1(f,9):=(f,9)v, forf, geV;
wa(f,9) = 3{(Lf,9) - (f, Lg)}, for f, g € D(L).

Since L is anglebounded we have

lo2(f,9)| < a(LF, F)3(Lg,9)? = allfllvllgllv,

for all f, g € D(L). Using that D(L) is a dense subset of V' we can extend
©2(-,+) to a bilinear continuous form, again denoted by ¢2, on V.
Now we define the continuous bilinear form ¢ on V' by

(P(f,g) = ‘Pl(f,g)+$02(f,g), f, gEV.

Observe that ©(f, f) = ¢1(f, ) = ||f]|%, so that ¢ is coercive. Furthermore,

if f, g € D(L) (C V) then ¢(f,g) = (Lf,g). Hence ¢(f,g) = (Lf,g) for all
f € D(L), g € V and we have proved that L is regularly accretive.

If H is a complex Hilbert space the notion of regular accretiveness is defined
as follows [K1] : Consider a sesquilinear form

0(+): D@ xD(@)CHXH—C.
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The form ¢ can be written as
¢ = Rep + iImep,

where

(Reg)(f,9) = 3{ef,9)+ 9@ D;

(Ime)(f,9) = 5:Aelf:9)~ #le, P,

Then ¢ is called a regular form (or a closed sectorial form [K3] ) if
(i) Rey is non-negative, that is (Rep)(f, f) > 0 for all f € D(yp).
(ii) Regp is closed.

(iii) for an a > 0, |(Ime)(f, f)| < a(Rep)(f, f) for all f € D(y).

(iv) D(¢p) is dense in H.

If ¢ is a regular form then there exists a unique m-accretive operator L
such that D(L) C D(y) and ¢(f,g) = (Lf,g) for all f € D(L), g € D(y)
[K2]. The operator L will be called regularly accretive.

If L is a linear operator in a real Hilbert space we denote by Lg its com-
plexification in the complexification Hy of H. Now we can state

Theorem 2.2. Let L be a linear operator in a real Hilbert space and a > 0.
Then the following assertions are equivalent.

(i) L is m-accretive and anglebounded ( with constant a ).

(%) Lg is m-accretive and [Im(Lg f, f)| < aRe(Lg f, f) for all f € D(Lg).
(i) L is regularly accretive ( with |(Ime)(f, f)| < a(Rep)(f, f) ).

(i) Lo is of type (arctg(a),1) and M(8) = 1 for all 6 € [0,% — arctg(a)),
(see Section 2.4).

(v) € Lp is m-accretive for all 8 € [0,% — arctg(a)).

Proof. (i) = (ii). Writing f € Hp as f = fi + if2, f1, f2 € H we have
(Le £, f) = (Lf1, i) + (Lf2, o) + i{(Lf2, 1) = (f2, LF1)}.
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Thus

= |(Lfz, f1) — (fa, Lf1)l
< 2a(Lfy, )} (Lhr f2)7
S a{(Lflvfl)+(Lf27f2)} = a’Re(LCfaf)7

[Im(Le f, f)

for all f € D(Lg ).
(ii) = (i). By assumption

(L f2, /1) = (fo, LA < a{(Lf1, f) + (L ]2, f2)}
for all fy, f, € D(L). Then
(2, a) (2, Lap)
< af?(Lfi i)+ o5 (L ).

|(Lfa2, f1) — (f2, Lf1)l

1
Choosing o = { fﬁ’ﬁ }4 we obtain

I(Lfa, f1) = (far L) < 2a(Lf1, 1)3 (Lo, f2)3-

Here we assumed that (Lfy, f1) # 0 # (Lfa, f2) otherwise consider L + €I,
€ > 0, instead of L.

(ii) = (iii). The expression

(fr0v = 5{(Le £,9)+ (f: Lo )} + (1, 9)

defines an innerproduct on D(Lg ). We denote by (V,(+,-)) the completion of
.

(D(Lg),(+,-)) and ||f|lv = (f, f)? for f € V. Note that V is dense in H.
Define

(Pl(f’g) = (f’g)V = (f)g)’

for f, g € V. Then ¢ is a closed bilinear and non-negative form. Next, we
define for f, g € D(Lg)

1
¢2(f,9) = 5:A(Le £,9) = (f, Le 9)}-
Observe that g is symmetric on D(Lg¢ ) and

|902(fsg)| = IIm(LC f7 f)l < aRe(LC' fa f) = asal(f, f)$
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for f € D(Lg ). This implies that

loa(f,9)| < 2a01(f, F)Eo1(g,9)7, (2.1)

for all f, g € D(Lg ). Indeed, by replacing f by e~%a8%2(f:9) f we may assume
that ¢2(f,9) is real. Then, since ¢, is symmetric the polarization principle
reads

wa(fr9) = i{%(f +9,f+9)—po(f—9,f-9)}

Therefore
p2(f,9) = %{901(f +9,f+9)—ei(f—9,f—9)}
= g{‘Pl(f, f)+ ¢a(g,9)}-
Set a := {gﬁﬁg}%. Then
e2(£,9) = lpa(af, L))
< g{achl(f, i+ %sol(g,g)}

= 2ap:1(f, f)i¢1(9,9)7 .

Due to inequality (2.1) we can extend ¢, to a continuous sesquilinear form ¢,
on V X V. Define

e(f,9) = ¢1(f,9) + ipa(f,g), for f, geV.

As already observed Rey = ¢ is closed and non-negative. Furthermore,

|(Ime)(£, 1)l lp2(f; )l = Im(Lg f, )]
aRe(Lp f, f) = a(Rep)(f, f),

IA

for all f € D(Lg ) and hence

|(Im@)(f, /)| < a(Rep)(f, f), forall feV

by continuity. We have proved now that ¢ with D(p) = V is a regular form.

Clearly, D(Lg ) C D(p) and ¢(f,g) = (Lg f,g) for all f € D(Lg ), g € D(p).
Hence L¢ is the regularly accretive operator associated with ¢.

(iii) = (ii). Obvious.
(ii) = (iv). This implication is well-known see e.g. [K3].
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(iv) = (ii). ¥ |( + zLg )Y < 1 for 2 € Bz, with w = arctan(e) then for
z=z+1y
el < I+ 2Le )ull® = |lull® + (2Lo v, w) + (u, 2L w) + |21 Lo )
= lull® + #(Lo u,w) + 2(Lo u,w) + |21l Lo ull®
||lu]|® + 2(z Re( Lo u, u) — yIm(Lg u, u))|z?|| Lo w||?.
In particular 2 Re(Lg u,u) — yIm(Lg u,u) > 0. Then
z = cos(g —w), y= sin(g- —w) = Im(Lp u,u) < tan(w)Re(Lp u,w)
and

z = cos(—;— —w), y=— sin(-72£ —w) = —Im(Lg u,u) < tan(w)Re( Lo u, u).

Hence |Im(Lg u,u)| < Re(Lg u,u) for all w € D(Lg ).
(iv)= (v). Note that (v) is a reformulation of (iv).

Some remarks concerning Theorem 2.2 are in order.

Remark 2.3. (i) An operator satisfying property (ii) of Theorem 2.2 is called
m-sectorial in [K3].

(ii) The implication “(ii) = (iii)” corresponds to {K3, Ch.6, Thm 1.27]. How-
ever, the proof presented here is different.

(iii) Recall that property (iv) implies that the operator —L generates an an-
alytic semigroup. In [BA-H] a different proof is given of the fact that an
m-accretive and anglebounded operator is the negative generator of an ana-
lytic semigroup.

4.3 The m-accretivity of L+ A

In this section we will weaken the assumption of selfadjointness of the operator
L in Theorem 3.3.1.

Theorem 3.1. Let L € M(Q) be normal and the negative generator of an
analytic semigroup. Then L+ A C H x H is m-accretive. Moreover there
ezists a constant ¢ > 0 such that

|ILu]|| < e|lw+ Lu+ 2|, forall u€ D(L)N D(A), v € Au. (3.1)
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The main step in proving this theorem is to introduce a third operator Lg
in H which, roughly speaking, forms simultaneously an acute angle with £
and A. This idea is expressed in the following

Lemma 3.2. Let L be a linear m-accretive operator in L%(Q) such that there
ezists a symmetric operator Lo € M(Q) satisfying

(i) D(Lo) C D(L)

(4i) there ezists constants 0 < a and b € IR* such that

(Lu, Low) > af|Loul|} — b||ul|3, for all uw € D(Ly).
Then L+ A C H X H is m-accretive. Furthermore inequality (8.1) holds.

Proof of Theorem 3.1. Without loss of generality we assume that L is
strictly accretive, otherwise consider L. := L+¢, € > 0. We will apply Lemma
3.2 with Lo := L + L*, D(Lo) = D(L)(= D(L*)). The operator L is clearly
symmetric. First we show that the operator Ly belongs to the class M(Q).
Since —L is a generator of an analytic contraction semigroup we have that
is of type (wr,1) with wy, < § (see Section 2.5). Similarly the operator L* is
of type (wg+,1) with wr+ = wy. Therefore

WL +wre < 7.
Since L is normal it is evident that
DL(O, 2) = DLc(0,2), for all 8 € (0, 1)

and it follows from Theorem 2.5.3 that Lg is m-accretive. The fact that the
resolvent of Lg is order-preserving and contractive in LP(Q) for all p € [1, ]
can be seen, using the Trotter product formula

To(t)f = lim {JEJE'}Y'f, for every f € L¥(Q),

uniformly on bounded intervals of ¢, see proposition 2.2.5. Here {To(t)}1>0
denotes the semigroup generated by —Lg. It follows that the semigroup
{To(t)}t>0 consists of order-preserving and contractive operators in LP(Q) for
all p € [1,00]. We have proved now that Lo € M(f). Next we claim that
there exists a constant ¢ > 0 such that

(L, Lof) 2 el|Lof|?, for all £ € D(Lo). (3.2)
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Indeed, by the commutativity of L) and L} we have that

ST+ LD (Er + 1))

l *
= S+ I

(Lxf, (Lx + L3)S)

Let f € D(Lo). Then by passing to the limit, inequality (3.2) is proven and
the proof is complete using Lemma 3.2.

Proof of Lemma 3.2. First we observe that (i) and (ii) implies that
D(Lo) = D(L). Namely,

al| Lopullf — bl /3y ullf < (LIX"u, Loyu) < (Lu, Lou) < || Lull2liLou]l2,

for all w € D(L), A > 0. Thus || Lo ul|z remains bounded if A | 0 for v € D(L)
so that u € D(Lo).
Consider the approximation equation

uy+ Luy+Ayuyr=f, A>0.
Taking the inner product with Lou) and using Theorem 3.3.1 we obtain
allCous|” < I FICounll + blluall < [[vl{ILouall + b}

Thus |[Lous|| remains bounded if A | 0 and it follows that ||Lu,|| remains
bounded as well if A | 0. By Theorem 2.2.2 it follows that v € R(I + £ + A).

By Theorem 3.1 and Theorem 2.2 we have

Corollary 3.3. Let L € M(2) be normal and satisfying one of the assertions
of Theorem 2.2. Then L + A C H X H is m-accretive and (3.1) holds.

In the next example all the conditions in Theorem 3.1 are fulfilled

Example 3.4. Let L be the negative generator of a positive, analytic and
translation invariant contraction semigroup in L2(IRN). Then L+ A C Hx H
is m-accretive and (3.1) holds. This result follows from Theorem 3.1 and
Remark 5.3.8 (iii) which tells us that such an operator L is normal and belongs
to M(IRM).

We point out now that if L is normal then the assumption “— L generates an
analytic semigroup” is equivalent to assertion (ii) (and therefore all assertions)
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of Theorem 2.2. Indeed, the spectral theorem in multiplication form for a
normal operator L in a Hilbertspace H says that L is unitarily equivalent to
a multiplication operator, that is, there exist a measure space (M, u) with u a
finite positive measure, a unitary operator U : H — L?*(M, ) and a (complex-
valued) measurable function f on M which is finite almost everywhere, so that

(i) g € D(L) if and only if f(-)(Ug)(-) € L*(M, p);
(ii) If h € U(D(L)), then (ULU=Y)(m) = f(m)h(m).

Then one shows that o(L) is precisely the essential range of f. Recall that
the essential range of f is the set

{AeC@ :p{me M :|f(m)—- A <€} >0 forall e > 0}.

If L is m-accretive and such that it is the negative generator of an analytic
semigroup we have that Ref > 0 almost everywhere and the essential range
of f is contained in a sector

{z€C :larg(z+c)| < 5 —¢),

for certain 0 < ¢ < 7 and ¢ a non-negative constant. Hence, there exists a
constant a > 0 such that

[ Im(f + ¢)| < aRe(f + ¢).
Then

NIm((L + c)h, k)|

[tm [(f+ \UhRdul = | [ Im(f + U
M M

IA

J1mmis + )UAPdp < a [ Re(f + )Ty
M M

= aRe /(f + 0)|Uk%du = aRe((L + c)h, h).
M

Hence L + cI satisfies (ii) of Theorem 2.2.

Remark 3.5. About the necessity of the assumption “—L generates an ana-
lytic semigroup”. We define the m-accretive operator A in L%(0,T) by setting
A = £ with D(A) = {u € W12(0,T);u(0) = 0}. It is well-known that if
L + A is m-accretive then L must be the negative generator of an analytic
semigroup. For the sake of completeness we prove it here.
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Let uy be the solution of the equation u + Lu + Au = f where f\ = ey
with Rel > 0 and g € L?(Q). Denote by {T(t)}s>0 the semigroup generated
by —L. One verifies that u) is given by

uy = (eM - e_tT(ty):)()\ +I+ L)y

Then
uy = (A + e T I+ L)A+ 1+ L) g

By the closedness of A and £ + A we have that there exists a constant ¢
independent of A such that || Au,| < ¢ f>\|| Usmg this estimate and the
expression of u) we obtain that [[(A+I+ L) 1g|l2 < Bl M |g|; for some constant
M and for all ReX > 0. Hence I + L and therefore L is the negative generator
of an analytic semigroup, see e. g. [P, Theorem 2.5.2].

In the proof of Theorem 3.1 we used a result of Da Prato and Grisvard in
order to prove that if L is m-accretive, normal and the negative generator of
an analytic semigroup then L 4+ L* is m-accretive. Here we give another proof
of this fact.

Let A and B be m-accretive resolvent commuting operators in a Hilbert
space (H,(:,-)) and assume that A is normal and the negative generator of an
analytic semigroup. We show that A + B is m-accretive. For that consider
the approximation equation

uy+ Auy+ Byuy=f, f€H, A>0. (3.3)

If | Auy|| remains bounded if A | 0 then the result follows by substracting the
weakly convergent subsequences

uy, — u, Auy, —v, Byur, —f—-u—-v, ifn-oo,

for certain u, v € H. Observe that u), — Jf’nu,\" = A By, uy, = 0if n — o0,
thus anuAn — u if n — 00. Since A and B are closed and linear operators,
hence weakly closed, and B),u), = BJﬁuAn, it follows that v € D(A) N
D(B), v=Au and Bu = f — u — Au.

Let us prove the boundedness of ||Auy|[, A > 0. To this end let 0 < e <1
be fixed and A, := A + eI. Then by the observation following Example 3. 4
A, is regularly accretlve say with the correspondmg form ¢ and D(p) =

Since A is normal as well we have that D(A’) = D(A? 2) In [K2] it is proved
that this implies that V' = D(A’) = D(A*2 ), see also [L]. We repeat here the
argument used in [K2]. From D(Az) = D(A*z) it follows that A*2A : is
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1
a bounded operator and therefore A:‘%AE is also bounded. Then for some
constant ¢ > 0

1 1
lull} = (Acw,u) = (A"‘_fA’Ae u, A2u) < c||AZ u|)?, (3.4)

1
for all w € D(Ac). Using the well-known fact that D(A.) is a core of AZ,
1

inequality (3.4) implies that D(A2) C V. On the other hand for some constant
c1>0

1 1
|(AZu, A720)| < exflullvlo]lv,
1
for all u € D(A), v € D(A*2) = D(A?). By setting w = A*3v we have
1 1
(A, w)| < exllullv]| 472 w]lv < eallullvlwl],

for all w € H. Hence,

1

|AZu|| < collullv, for all u € D(A). (3.5)

Using that D(A) is dense in V and that A is closed inequality (3.5) implies
that V C D(Az) We have shown that V = D(Az) = D(A"‘Z) It follows now

that A2 and A*2 form an acute angle and are comparable, that is, for certain
positive constants ¢, m, M

1 1 1 1
(Afu, ATZu) > cf|AZ ul[|[AZZ ],

and .
1 i 1
m||Ag2ul] < ||A2u|| < M| AZ7 4|,

1
for all u € D(A?) = D(A*?).
By taking the inner product of equation (3.3) with the selfadjoint operator
1

A*3AZ we get
1 11 11 11
(1= )||AZup|®> + (Acur, ATZ A2uy) 4 (Baun, AZZAZuy) = (f, AZZ A2 uy).
Since
1 L 11 11 1L
(Acur, AT2 A2uy) = (A2 A2uy, AT2 A2uy) > || Acun||||AF2 A2 uy|
and, due to the assumption that A and B are resolvent commuting,
1 1 1
(Bruy, A*3 AZuy) = (BaAZuy, AZup) >0, A>0,

it follows that c[]A.uy|| < || f||, for all A > 0. Hence ||Au,|| remains bounded
if A | 0 which completes the proof.
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4.4 A counterexample

For the sake of completeness we give an example of a symmetric m-accretive
operator L in L?(0,1) and a subdifferential A = d¢ C H x H with ¢ € Jq,
such that £+ .4 C H x H is closed but not m-accretive. Here H = L%(0,1; H).
Define the operator L by

D(L) = {ueW*0,1):u®(0) = u®(1) = u®(0) = (1)}
Lu = u® forue D(L).

The operator L is a selfadjoint and accretive operator in L?(0,1) and therefore
m-accretive. Let P be a nonempty, closed and proper cone in H. By proper
we mean that (P N {—P} = {0}). Let A = dIp, where Ip is the indicator
function of the closed and convex set P. Then the extension A is given by

D(A) = Hp;
A Olnp,

where Hp = {u € H : w(w) € P, w € (0,1) a.e.}. In order to show that £ +.A
is not m-accretive we will use the following

Proposition 4.1. Let L be a linear m-accretive operator in a Hilbert space
(H, {-,-)) and let C C H be a closed and convez subset. Then, the following
conditions are equivalent.

(i) 1. {Lu,v)>0 for allv € dIgu andu € D(L)NC.
2. D(L)nC =C.
3. L + 0Ip is m-accretive.

(i) JEC C C for all X > 0.

Remark 4.2. Proposition 4.1 is a slight modification of [BR1, Proposition
4.5). Note that (L + 81¢)°, the principal section of (L + 8I¢), is equal to L if
and only if (i) 1 holds. Indeed, if « € D(L) N C then,

|Lu+ v|2 > |Lu|® for every v € lcu,
if and only if condition (i) 1 holds since,

v € 8lcu if and only if Av € 8Icu, A > 0.
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By showing that (i) 1, (i) 2 are satisfied and that (ii) does not hold for
C = Hp and the operator £, Proposition 4.1 implies that £ + A is not m-
accretive.

First, (i) 1 holds. In fact,

((Lu,v)) =0, forallve dly,u, u€ D(L)NHp. (4.1)

Namely, for u € D(L), Lu = 0 almost everywhere on the set where u = 0 [G-T,
Lemma 7.7], so that supp(Lu) C supp(u) for all « € D(L). Furthermore, for
u € Hp, v € 01y, u implies that ((u,v)) = 0 and ((v,w)) < 0 for all w € Hp.
In particular supp(v) N supp(u) = @. Therefore we may conclude that (4.1)
holds.

Next, (i) 2 holds since a function in Hp can be approximated by C$°(0, 1; P)
functions.

Finally, by using a contradiction argument we show that (ii) is not satisfied.
Suppose that JEHp C Hp forall A > 0. Take 0 # z € P and 0 < f € L?(0,1)
then, since P is a cone, f -z € Hp. By assumption Jff -z = Jf(f -z) € Hp
and hence J£f > 0 since P is assumed to be proper. It follows that JL is a
contraction in L*(0,1) for all A > 0, since J£¥1 = 1. In particular, the “part
of L in C[0,1],” that is, the operator L, defined by

D(Ls) {u € C40,1] : u®(0) = u@(1) = u®(0) = v®(1)};
Lou = u for u € D(Ly),

is accretive in (C[0, 1], ||||cc ). By a result due to K. Sato [SA], this is equivalent
with

Iél;tx){(Loou)(z)mgnu(w)} >0 forall u € D(Lu), (4.2)

where S(u) = {z € [0,1] : |u(z)| = [|u||loo}- If
u(z)= (1 - (z - 5))x(z) forz € [0,1],

with x € C'3°(0 1) such that 0 < x < 1 and x = 1 on (},32), then uw € D(Lo)
and S(u) = {1}. For this u € D(Ls) we have

zIéxs‘:?tx){(Loou)(:z:)s1gnu(:z:)} = (Loou)(= )51gnu( )=-24<0,

which contradicts (4.2), see also [SI]. Hence we may conclude that (ii) is not
satisfied.
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-

To show the closedness of £ + A, consider a sequence {u,}52; in D(£)N
D(A) such that

Up — U
Lu, + vy, = w as n — oo, for certain u, w € L%(0,1),
where v,, € Au,, for n =1,2,.... Set w, = Lu, + v,. Using (4.1) we obtain
|£unl? = ((wn, Lun)) < ||wn||||Lun|] forall n=1,2,...

Hence, the sequence {Lu,}S2, is bounded in H and consequently {v,}5%,
is bounded as well. Therefore, there exists a subsequence of {u,}32,, which
we denote again by {u,}°%,, such that {Lu,}32, and {v,}32, are weakly
convergent. Since £ and .A are m-accretive it follows that u € D(L) N D(A)
and {Lu,}2, respectively {v,}3%; has the weak limit Lu respectively v € Au,
so that w € Lu + Au. Thus £ + A is closed.

Remark 4.3. Let L be a linear m-accretive operator in L?(€2) which is local,
that is supp(Lf) C supp(f) for all f € D(L), and such that D(L)N Li(Q) =
L2(Q). Note that the latter is satisfied if C§°(2) C D(L). Then from the
above we have that the statement £ + A C H X H is m-accretive for all
A = 0y, ¢ € Jp implies that J,{’ > 0forall A>0.

Let us take in the example above H = L%(Q), P = L%(). Then, A =
oI 12.(9) and J{f = f*. The operator A has the property that it satisfies the

nonlinear analog of assumption (3.1.2), that is,

Ju> Jfv forall A >0if uw> v, u,v € LA(Q);

I/{u — Jfv||p < ||u — v||p for all u,v € LY ()N L®(R),A > 0,p € [1,00].
In the terminology of [B-C], A is called an m-completely accretive operator in
L%*(2). This example shows that one can not interchange the role of the linear
and nonlinear operator.
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Chapter 5

The m-accretivity of £+ A

5.1 Introduction

In the previous chapters we have obtained results where £ + A is m-accretive.
It is not true in general that £ + .A m-accretive, even if L € M({2) and 4 is
linear. However, by Theorem 2.5.1, if A is linear then

R(eI + £ + A) D D(L) + D(A), for all € > 0.

This is due to the fact that £ and A are resolvent commuting. In particu-
lar it follows that £ + A is m-accretive. In Section 5.2 we show that if the
operator L, not necessarily in the class M(f2), forms an acute angle with a
symmetric operator Lo € M(Q) such that D(Lo) C D(L), then L |p(gy) +A
is m-accretive and for 0 < a < 1

Jle(L°)+AD(£3) C D(Lg), for all A >0,

[EG1]. (By £ |p(z,) We mean the operator £ with domain D(Lo).) If moreover
D(LY) € D(L),0 < a < 1, then one can conclude that

R(el + L+ A) D D(LG), for all € > 0.

In Proposition 3.1 we give sufficient (and necessary) conditions for L such that
Lo := L*L € M(R2). Here L* denotes the adjoint of L. Then we have

R(eI + L + A) D D(£), for all € >0,
andfor0 < <1,
JEHAD(LP) C D(LP), for all A > 0.

67
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We show that if L € M(R) is skew-adjoint then L*L € M(Q).

If @ = IRN and the semigroup generated by — L is translation invariant we
can take Lo = —A if W>?(IRN) C D(L). In the case that W*2(IRN) c D(L),
0 < s £ 1 we obtain

R(el + L+ A) D W*2(IRN; H), for all € > 0.
5.2 A regularity result

The main idea we use here in order to deal with situations where the sum
L + A is not m-accretive, is to find suitable conditions on L which ensure the
existence of a symmetric operator Ly € M(2) with D(Lo) C D(L) forming an
acute angle with L : (Lu, Lou) > 0 for all u € D(Lg). If such an operator Lg
exists, one can solve, and pass to the limit, the perturbed equation

Ue + €Loue + Luc + Aue 5 f, €> 0.

We use this perturbation argument to prove the following

Lemma 2.1. Let L be a linear m-accretive operator in L%(2). Assume that
there ezists a symmetric operator Lo € M(Q) such that

1) D(Lo) C D(L)

#4) (Lu, Lou) > 0, for all u € D(Lo) (2.1)

Lete >0 and0<a§%.
Then L |p(cy) +A C H X H is m-accretive and the solution u of the equation

ev+ L |p,) +Aud f, (2.2)

belongs to D(L§), whenever f € D(L).
If moreover D(Lg) C D(L), then R(el + L+ A) D D(LE), and the solution u
of the equation

euw+ Lu+ Au d f, (2.3)

belongs to D(L§) if f € D(LF).

Remark 2.2. If £ |D(50) +A C H x H is m-accretive then for all f € H there
exists a unique generalized solution u of equation (2.3) in the sense that there
exist sequences u, € D(Lo) N D(A), frn € H, n =1,2,---, such that

Up —> U, fn— f, asn — oo and eu, + Lu, + Au, 3 f,.
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Recall that a linear m-accretive operator L admits fractional powers L,
0 < a < 1 which are m-accretive as well [Y]. D(L) is a core of L® and for
u € D(L) one has the expression

. [o0]
L%u = Sm:”/%L,\udz\,
0

where the integral is absolutely convergent. The semigroup generated by —L
we denote by {T'(t)}:>0. Then the formula for the semigroup {Ta(t)}:>0 gen-
erated by —L® yields

To(t) = / Fai(s)T(s)ds, t >0, Ta(0) =1,

where the family {fu,:}t>0 consists of non-negative functions satisfying
[ee]

[ fai(s)ds = 1. It follows from the representation of 7, that L € M(Q)
0
implies that L* € M(R2), 0 < a < 1. Furthermore it should be observed that

L* is symmetric if L is symmetric.

Proof of Lemma 2.1. Let f € H and € > 0. Since for all § > 0, the
operator 6L + L is m-accretive, there exists a unique solution us, € D(Lo)
of the equation

eus,, + 0Lous,, + Lus, + Apusy = f. (2.4)

Note that |jus,|| < 1||f|| due to the accretivity of the operators involved. Let
1
f € D(LZ). By taking the innerproduct of (2.4) with Lous, we obtain
1
ellCgusll® + 8lLousull® + ((Lusp Lous,)) +
L1
+  ((Auusu, Lous)) = ((£3 f, L4 us,u))

Using assumption (2.1) and the fact that ((A,us ., Lous,)) > 0 it follows that
b ek ik
ellLgusull® < 116 FINILS us,ull-

1
Hence, ||£&us,,|| and subsequently 6||Lous,,||* remains bounded. Then there
exists a unique us € D(Lo) N D(A) satisfying

eus + 6Lous + Lus + Aus 5 f, (2.5)
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1
(see Proposition 3.3.3) and £ us respectively §Lous are the limits of weakly
1

convergent subsequences Eg Us,u, Tespectively 6Lous,,, . Therefore,

1 1
1£3usll < liminf (1€ us

and
8| Lous||* < lim inf 8| Lous,pn >

1
Thus ||£Zus|| and §{|Lous||? remains bounded if § | 0. In particular,
6Lous — 0, aséd |0,

which implies that

1
D(L3) C R(el + L |p(c,) +A)-

1
Since D(L}) is a dense subset of H and

R(el + L |D(£o) +A)C R(el + L 'D(ﬁo) +A)=R(el + L |D(£°) +A),

we conclude that
R(€I+ L', |D(Co) + A) = H,

and therefore the operator L | D(£o) TA C H X H is m-accretive which proves
the first statement of the theorem.

In order to obtain the estimates for the other statements we show that
(Lu, L3u) > 0, forall u € D(Lo), 0< B < 1. (2.6)

Let u € D(Lg),0 < 8 < 1. Then
sin S T1
(Lu,Lgu) = (LU’T/)\_ﬁLO"\u)
0

sin B

71
- /A—ﬁ(Lu, Lo’)\u)
0

sin G
T

v

/XE(LJ)I:O'IL, Lo,,\’u) 2 0.
o .
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Take f € D(LY) and let 0 < a < 1. Then, by taking the innerproduct of
(2.4) with LZ*us,, using that the operator L* € M(Q) is symmetric, one
shows that e€|[L§us,|| < ||[£§f||. By observing that us, converges strongly
to the solution u of (2.2) as é,p | 0 it follows by the closedness of L that
u € D(L§).

Assume now that D(L§) C D(L). By the closed graph theorem and the
closedness of L and L§ we have

| Zull < e(LGull + flull), for all u € D(Lg), (2.7)

for some positive constant ¢. Making use of the fact that D(Lo) is a core of
D(LZ*) one verifies that (2.6) holds, with 8 = 2a, for all u € D(L3*). Instead
of equation (2.4) we consider the equation

€usu+ 6L5Usu + Lrsy + Aptisy = f.

In a similar way as we have obtained the estimates so far, it follows that
|18 us|| and 6)|L3%us||? remain bounded if § | 0, where

€us + 5£(2]aug + Lus + Aus 3 f.
In particular, 6£3%us — 0 if 6 | 0, and by inequality (2.7), |[Lus|| remains

bounded as well. Therefore we can extract the following convergent subse-
quences in H:

us, —u=(el+L+ A7,
Lus, — w, -
vs, —f—-eu—w,  asn— 00,
for certain w € H,vs, € Aug,,n = 1,2,---. Since L§ and L are linear and

closed operators we have u € D(L$) and w = Lu. Due to the m-accretivity
of A it follows that w € D(A) and f — eu — Lu € Au.

5.3 Examples

In this section we describe some situations where we can apply Lemma 2.1.
Let L be an m-accretive operator in L%(2). We distinguish two situations,
namely, where we can take Lo = L*L, respectively Lo = —A. The latter will
be the case if & = IRN and the operator L commutes with translations. As a
first application of Lemma 2.1 we have '
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Proposition 3.1. Let L be a linear m-accretive operator in L2(2) with a core
D such that

i) Ifu€ D then | u|€e D(L).
) (Lu*t,Lu~) < 0 for all w € D, where ut = u V0, v~ = (—u)t.

i) Ifu€ D then OV (uA 1) € D(L) and ||L(0V (v A 1)||]2 < || Lull2.
Lete>0and0< B < 1.
Then R(el + L + A) D D(L) and L |p(cec) +A C H x H is m-accretive.
Moreover, if f € D(LP) then the solution u of

euw+ L |D(£'[Z) +Ausf (3.1)

belongs to D(LP).

Proof. It is well-known that L*L is selfadjoint and m-accretive. We show
that L*L can play the role of Ly in Lemma 2.1. For that, observe that the non-
negative closed and bilinear form ¢ corresponding to the positive selfadjoint
operator L*L is given by

{ Q:D(L)x D(L)— IR
Q(u,v) = (Lu,Lv), wu,v€ D(L)

By the Beurling-Deny conditions, formulated in terms of ¢}, the operator L*L
belongs to the class M(2) if and only if i), ii) and iii) holds for a core D of
L, see for example [DV,Thm 1.3.2, Thm 1.3.3 and Lemma 1.3.4]. Observe
that (Lf,L*Lf) > 0 for all f € D(L*L) since L* is accretive. Note also that
D((L*L)%) = D(Q) = D(L). The purely imaginary powers of (L*L)% and L
satisfies estimate (H2) (see Section 2.4) with M =1 and w = § [K2]. By [A2]
it follows that

D((L*L)%) = [L¥(Q), D((L*L)})]s = [LA(®), D(L)]g = D(LP).

Here [ , ]g denotes the complex interpolation. The result follows now from
Lemma 2.1.

As a consequence of the following theorem we can apply Proposition 3.1
to skew-adjoint operators in the class M(2).

Theorem 3.2. Let L € M(Q) be a skew-adjoint operator.
Then L*L € M(Q) as well, or equivalently, L satisfies the assumptions of
Proposition 3.1.
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Proof. Denote the by {T'(t)}:>0 the semigroup generated by —L. Recall
that the semigroup {T'(¢)}+>0 consists of unitary operators. Set

Ty = %(1 —T(N).

Then
T(*A)T(A)f — L*Lf if |0 forall f € D(L*L),

as can be seen by writing
1 7 1 7
Toy Ty = / T(1){5 / T(s)L* Lfds)dt.
0 0
So that T(*/\)T()\) — L*L in the sense of resolvents that is,

T* T *
Jum (")f_,J‘I: Lf ifAl0 foralleLz(Q), p>0.

Thus for the positivity of the resolvent J ﬁ“l‘ it suffices to show that —T(*/\)T( »)
generates a positive semigroup. This follows from the following inequality

Loy Togw) = 35((1 = TO)h, (1 = T))
= @O, )+ TR} S 0,

for all w = ut — u~ € L%(). Here we used that T()) is a unitary and order
preserving operator. In order to prove that the resolvent J [j*L is a contraction
in L1(§) observe that

Tyl = gt =TI =TO)

_ %{1 _ T\ + T - TV}

Since T(A) as well as T*()) defines an contraction in L'(Q) it follows that
I —T()) and I — T*()) are m-accretive operators in L(2). Hence, ToyTey
is an m-accretive operator in L!(§2). Next, consider the equation

ux + pTO)Tyus = £,

with 0 < f € LY(2)N L?(R) and g > 0 fixed. As shown above the solution u,
is non-negative and uy — uin L2(Q)if A | 0 where u = Jﬁ’*Lf. By subtracting
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a pointwise convergent subsequence {u), }32; and applying Fatou’s lemma we
obtain

lulhy < imin s, < [17]h.

We have proved now that J;f"l’ is a positive contraction in L}(Q) and by
duality it is also a contraction in L®((Q).

Example 3.3. One verifies that the operator Lu = d—“ in L%0,7T) with

domain
D(L) = {u € WH2(0,T) : u(0) = 0} or
D(L) = {u € WH3(0,T) : u(0) = w(T))}

and the operator Lu = % in L?(JR) with domain D(L) = W2(IR) satisfies
the assumptions of Proposition 3.1. However, for these operators one can show
that equation (2.3) has a unique strong solution « € D(L) N D(A) if f is of
bounded variation on [0,7] [BR1].

Note that the operator with the periodic boundery values and the operator
on the real line satisfy the assumptions of Theorem 3.2.

Example 3.4. A first order differential operator on IRY with smooth coeffi-
cients. We define

D(L) = {u € L*(IRN ) E ;8% € L*(IRN) in distributional sense }
Lu= Za,a“ foru € D(L),

where a;,2 = 1,---, N, are bounded continuous differentiable functions with
bounded derlvatlve, and Z, < 0 on IRN. The operator L is m-accretive
and WL2(IRN) C D(L) is a core of L, see [M, page 321-322]. We show that
the assumptions of Proposition 3.1 are satisfied with D = W12(IRY).

First of all i) holds since W2(IRV) itself is a sublattice. Clearly ii) is true.
It remains to show iii) : « € D implies 0V (v A 1) € D and

ou
LOV(uAl))= Zaib—z'jx[Mua],

where Xjgcu<1) denotes the characteristic function of the set [0 < u < 1] =
{z € RN : 0 < u(z) < 1}. Hence || L(0V (v A1))||2 < ||Lu||; and iii) is proved.

It can be shown that L € M(IRV) so that, by Theorem 3.2.1, £ + A is
m-accretive if A = O, ¢ € Jo.
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Now we consider the situation where we can take Lo = —A := — I, 25 557
We introduce the fractional Sobolev spaces W*2(IRN; H), s > 0, by deﬁnmg
W*2(IRV;H) := {ue L*(RY;H):z — |z|* f() belongs to L2(IR"; H)}.

Here 4 denotes the Fourier transform of u in L2(IRY; H).

Proposition 3.5. Let L be a linear m-accretive operator in L2(IRN) which

commutes with the group of translation.
Lete>0and 0< s < 1.

i) FW2(IRY) C D(L) then L lw22(ry ) +A CH X H is m-accretive.
i) If We2(IRN) c D(L) then R(el + L+ A) D W*X(IRN;H) and if f €
W*2(IRN; H) then the solution u of (2.8) belongs to We2(IRN; H).

Proof. Apply Lemma 2.1, where Ly = —A and observe that D(Lo) =
W 2( RN )

Remark 3.6. The fact that under the assumptions of Proposition 3.5 in-
equality (2.1) holds is a special case of the following situation. If a symmetric
m-accretive operator Lo with D(Lo) C D(L) is resolvent commuting with L
ie. JhoJl = JEJLo for all A, 1 > 0 (equivalently for some A, pz > 0) then (2.1)
holds Indeed

(LS, Louf) = (Lo  Inf, (Low)? ) = (La(Lo)? f, (Lo) i f) > 0.
If f € D(Lo) and A, | 0 it follows that (Lf, Lof) > 0.

Example 3.7. A second order differential operator on IRN with constant
coefficients.
Define the m-accretive operator L in Lz(lRN ) by setting

D(L)={ue L2(IRN): Ea” amaz + Zb, 5, teu€ L2(IRN)}

2u 3.2
u=-) af.-za;;, + Ebt 3;: + cu, for u € D(L) (32)
3

where (a;)N;_; is a real positive semidefinite symmetric matrix, b; € IR and

¢ > 0. By Proposition 3.1 we have that £ |W2,2(RN;H) +A is m-accretive. In
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the case that (%‘j)%’:l is positive definite it follows from Proposition 4.3.2
that £ + A is m-accretive.

We end this section with some remarks concerning the structure of trans-
lation invariant m-accretive operators in L2(IR").

Remark 3.8. (i) An m-accretive operator L in L2(IRY) is given by (3.2) with
(ai;)N;_; areal positive semidefinite symmetric matrix, b; € IR and ¢ > 0if and
only if the operator L is local, commutes with translations, and the resolvent
J¥ is order-preserving for all A > 0 [BG-F, page 190].

(ii) There is a one to one correspondence between translation invariant m-
accretive operators L € LZ(HZN ), having an order-preserving resolvent family
{J£, X > 0}, and continuous negative definite functions ¢ : IRN — @, given
by .
D(L) = {f € L*(IR") : ¢f € L*(RN)}; (3.3)
Lf = of for f € D(L),

see [BG-F]. In connection with Proposition 3.5 i), we note that, by [BG-F,
Corollary 7.16], a locally bounded negative definite function is at most of
order | z |2 if | z |— co. Hence W22(IRN) c D(L).

For an expression of a continuous negative definite function, the so-called
Lévy-Khinchine formula, we refer to [BG-F] or [CO].

(iii) Let the operator L be as in (ii). It is known that the semigroup {S(¢)}:o0,
generated by —L, can be expressed as

(S()F)(s) = ( * pe)(s) := /R (s =r)dur), t>0,s€ RY,  (3.4)

f € L*(IRN), where {p:}>0 is a family of bounded positive measures (see [BG-
F]). It follows that L € M(IRV) due to the fact that the positive measures
{#¢}e>0 in expression (3.4) are bounded by 1 (u(IRY) = ||S(2)]| < 1). Hence
1S fll, < ||fllp for all f € LYIRN) n L=(IRN), p € [1,00]. We note also
that L is a normal operator.
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Chapter 6

Elliptic systems

6.1 Introduction

Let Q C IR be an open and bounded subset with a C? boundary Q. In the
first section we consider the elliptic system

N

—Auy = 'Elaljuj + o
N
—Aug = 21 az;u; + g2 g
= . " (1.1)
N
~Auy = '21 an;u; + 9N
J=
U =uy=...=un=10 on 0%,

where ¢g; € L2(2),¢=1,...,N, A= (a,-,-)f\”j___l a real N X N matrix. The sys-
tem is assumed to be cooperative, that is, a;; > 0 for i # j. de Figueiredo and
Mitidieri proved among other things in [F-M1] that a necessary and sufficient
condition for the unique solvability and the positivity of the solution for pos-
itive data of system (1.1) is that the principal minors of Aol — A are positive
(see also [F-M2]). Here Ao denotes the first eigenvalue of —A with Dirichlet
boundary conditions. We shall give another proof of this result [CL-E].

In the second section we prove an existence result for the following semi-
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linear elliptic system

Lywy +  Ai(ug,ug,..,uny) 3 g1(w,ur, Uz, ..., un)

L2’U,2 + A2(u1vu27 ,’UN) 2 gZ(wvul’u% very 'U,N) .
. . . in Q

: : : (1.2)

LN’LLN + AN(’U,l,’Ulz,...,’liN) 3 gN(waulau%"" UN) :

U =U=...=uy =0, on 00

Here Ly, Ly, ..., Ly are N m-accretive strictly elliptic second order differential
operators with smooth coefficients and A = (A4, A3,...An) an m-accretive
graph in IRV with respect to some innerproduct. The function

9= (91,92, -»98) : @ x RN - RN

satisfies the Caratheodory condition and a growth condition.

6.2 A maximum principle for a linear cooperative
system

Let A= (a.,'j)f\,’;.=1 be a real N X N matrix.

Theorem 2.1. Assume that A is cooperative: a;; > 0 for i # j. Then the
system (1.1) is uniquely solvable and the solution is non-negative for non-
negative data ¢g;, t = 1,..., N, if and only if

the principal minors of Aol — A are positive (2.1)

Proof. If A is a cooperative matrix then, by [BM-P, Ch.6, Thm 2.3],
condition (2.1) holds if and only if the matrix Ao/ — A is invertible and the
matrix (Ag/ — A)~! is non-negative. Taking this equivalence into account we
prove first the necessity of (2.1).

If z € IRV satisfies (Ao — A)z = 0 and if o is the principal eigenvector of —A
normalized by max g~ ug(z) = 1 then u = ug - « satisfies system (1.1) with
g = 0. From this we have z = 0. Hence (Aof — A) is invertible. For v € IRY,
let z := (Aol — A)~!v. Then, the function u = ug - satisfies system (1.2) with
g = ug - v which is non-negative. Since ug > 0 in 2, we have z € lRf .

Next, we prove the sufficiency. By [BM-P, Ch. 6, Thm 2.3], we have that the
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real parts of the eigenvalues of Aol — A are positive. By using Lyapunov’s
theorem, there exists a symmetric positive definite matrix B such that

B(X\oI — A)+ (Ml - A)TB

is positive definite, see [BM-P, Ch. 6, Thm 2.3]. Define the following inner-
product on IR :

(z,9)B:= 2T By forall z,y € IRV,
Then there exists a constant ¢ > 0 such that
(Mol — A)z,2)p > c(z,z)p.

Define L by setting

{ D(L) = W) n Wy *(Q)
Lu=—1(A+ XoI)u for u€ D(L)

and define 4g = (Ao — c - A) Note that L is m-accretive in L?(2) and
that Ao is m-accretive in (IR, (-,-)5). Denote by £ and Ao the m-accretive
extensions in L2(;IRN) of L and Ay respectively. Then £ and Ay form an
acute angle. This is a consequence of the fact that £, and A, commute and
that £ is symmetric, see Section 3.1. Set K = L?(Q; IRY). It is well-known
that JEK C K and since A is cooperative we have that e‘m" IRN C IRN and

therefore Jf°IC C K. By the Trotter product formula (2.2.4) it follows that the
semigroup {5(¢)}:>o0 generated by —(L +.4¢) leaves K invariant. This implies,

by the well-known formula Jf+A° =3/ e"§5'(t)dt, that JE toK c K and
0

the proof is complete.

6.3 A semilinear elliptic system

Let Q C IR" be an open and bounded subset with C? boundary 892. We define
for k =1,..., N the following elliptic differential operators

__y 9 0u (By) 4 o®
Lku__lzj:axi( 4 8:1:)+Za -(a; 'u) + a'Vu,

where,
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a®, o™ € (@), a® € LoQ), i,i=1,...,n;

tj ? 1
(H1) Ea(k)§,§j>azn:£-2 on 2, f:{fl,...,fN)GlRN for some o > 0;
(k)>0 a(’“)+ Z:—'—+a)\o>6ae for some § > 0.

Here )¢ denotes the first eigenvalue of —A with Dirichlet boundary condition.

Let {-,-) denote an innerproduct in IRY and let
A= (A1,...,Ay): D(A) C RN — 2F"

be an m-accretive map in (IRV,{(-,-)). If B = (b;;)Y;, is the positive definite
N x N matrix such that {z,y) = 2T By, z,y € IRV then the accretivity of A
is expressed by

N
> bi(a' — y)(ej—9;) 20 forall o’ € Aiz, v € diz,  (3.)
1,j=1

where z = (21,..,2N), ¥ = (Y1, YN)-

The function g = (g1, 92, .-, gn) : @ x IRN — IRV is assumed to satisfy the
following two conditions

(4) g(-,z) is measurable for all z € IR" and g(w,-) is continuous,
(H2) w € Q almost everywhere (the Caratheodory condition).
(43) |g(w, )| < A(w) + c|z|? for some h € L*(), ¢ € IR and
0<B<1forallz € RY

Define for u € L?(Q; RY), G(u)(w) = g(w,u(w)). It is well-known that un-
der the assumptions on g that G defines a bounded and continuous map in
L*(Q; IRN) (see for example [BD]).

The innerproduct in L2(Q;IRN) will be denoted by ((-,-)) and || - || =

((-,-))3.

Theorem 3.1. Let Lq,...,Ly and g = (g1,92,-..,9N) : @ x RY — IRN
satz'sfy (H1) and (H2). Assume that A = (A1, As,...,AN) is m-accretive in
(RN, (-,)) with 0 € D(A)

Then there ezists u = (uy,ug,...,uny) € {W22(Q) N WX (Q)}V satisfying
(1.2). Moreover if f = (f1, f2,.. ,fN) Qx RY — RN satzsfy (H2) and if
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-

u, v are solutions of (1.2) with right-hand side g respectively f then ||u—v| <
1|Gu — Fv|, where F is defined by F(u)(w) = f(w,u(w)), w € .

The basic tool in the proof of this theorem is the following inequality due
to Sobolevskii [SO]:

Let @ C IRN be as above and let L and M be two second order strictly
elliptic operators with bounded coefficients and leading coefficients belonging
to CY(Q). Then there ezist constants a > 0, b € IR* such that

(Lu, Mu) > al[u|baagq) — blluld  for all we WX Q)N Wp*(Q).  (3.2)
See also [L-U, page 182], [BR-E]! and [SK]' .

Proof of Theorem 3.1. Since 2 is bounded we can assume that 0 € A0,
otherwise consider the m-accretive operator Ag = A — zo, where zo € AO0.
It is well-known that the operators Ly, k = 1,..., N, with domain D(L) =

W22(Q) N W2 () are m-accretive in L2(Q2) and that §||u|i3 < (Lgu,u) for
u € D(Lyg) [BR-S]. Set

D(L) = {W2(Q) n W (N € LA(9; RY)
Lu = (Lyuy, Laua, ..., Lyun) for w = (u1,ua,. ..,uN) € D(L)

Then £ is an m-accretive operator in L2(Q; IRY). Let Lo = —A, the Laplacian
with domain D(Lo) = W22(Q) N W,(Q). The m-accretive extension in
L*(; IRY) is denoted by Lo and the extension of A in L*(&; IRY) by A.

We will show that the map (£ + A)1G : L2(Q; RY) — L*(Q;RY) is
compact and then using a fixed point theorem the result will follow. First,
R(L + A) = L*(Q; IRY). For that, consider the equation

eur+ Luy+Ayun=f, fEH, ¢A>0.
Then
e((ur, Lown)) + ((Lur, Lour)) + (Axua, Lown)) = ((f; Lotia))-
Since Lo € M(R) is symmetric we have by Theorem 3.3.1 that
((Axup, Loun)) > 0.

Hence ((Lux, Lour)) < || f|l]|Coun||. Using Sobolevskii’s inequality we obtain
that there exist constants a > 0, b € IRT such that

((Lur, Lown)) 2 allCour||® = Blluall?, A >0. (3.3)

1The author thanks Patrick Fitzpatrick for pointing out these references.
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It follows that ||Couy|| remains bounded if A | 0. Similarly as in the proof of
Lemma 4.3.2 it follows that £ + A is m-accretive. Hence there exists a unique
ue € D(L) N D(A) satisfying

eue + Lue + Au, D f

for all € > 0 and f € H. Since §)|ul|3 < (Lxu,u) for all w € D(Ly) we have
that

8lull® < ((Lu,u)) for all w € D(L). (3.4)

Using this estimate we get ||u[| < }||f|| one shows, by passing to the limit,
that there exists a unique u € D(L)N D(A) such that Lu+ Au 3 f. Observe,
using (3.3) and (3.4), that ||Lu|| < c||f]| for some constant ¢ > 0. It follows
that the map (£ + A)~! : L2(Q; IRY) — D(L) is bounded (D(L) equipped
with the graph norm of £). By a well-known embedding theorem D(L) is
compactly embedded in L2(Q; IRY).

Therefore we may conclude that the mapping

(L+A)71G: LA(9; RN) — L*(Q; IRY)
is compact. If we can show that the set
S={ve L*(QGRY):v=0(L+ A)Gv,0 € [0,1]}

is bounded it follows that (£ + A)~!G has a fixed point (see e.g. [G-T)).
Taking the innerproduct of Lv+.Av 5 0G(v) with v and using (3.4), (H2) and
that ((Au,u)) > 0 for all w € D(.A) we obtain that for all € > 0 there exists
Ce such that

8|lvl* < o((G(v),)) < o{ellvll® + Cc}

and the boundedness of S is proved. Since (£ + .4)7! is Lipschitz continuous
with constant % the last statement of the theorem follows.

Remark 3.2. If A: RN — IRV is an everywhere defined, continuous (hemi-
continuous) and accretive map with respect to (-,-) then A is m-accretive
[BR1,Prop.2.4]. Note that if A = (4j,...,AN) is continuously differentiable
then (3.1) is equivalent to

N N 0A; N
Y6y BZ(‘E)&“tj >0, forall z,£=(&,...En) € R
k=1

1,5=1
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Remark 3.3. Let Lo and A = (A4;,...,An) be as in the proof of Theorem
2.1. We have used the fact that, by Theorem 3.3.1, ((Lou, Axu)) > 0 for all
u € D(Lp). For this particular case the inequality can be proven by partial
integration as we will indicate. Note that 0 = A,0 since 0 € A0 and recall
that Ay = (Ax1,..., As ) is Lipschitz continuous. Then for u = (uq,...,un) €
D(Lo) we have by partial integration

N
((Com ) = [ 3 bis(=A)uy(a) A (uz))do

Q ’1.7

n N 2u.
0] )= CINEO

k=11,7=1

n N au

= ,'j T 2\ T T
> b [ GEe) s A=)
k=11,5=1
n N

DI ETE )Z‘”““( () 5 (o)
k=114,5=1 Q

n N
= >0 28342’( W2)) gk (a) 3 ()da 2 0



Chapter 7

Nonlinear Volterra equations

7.1 Introduction

In the first section of this chapter we will deal with the following eqliation in
a real Hilbert space H on the interval J = IR, IR* or [0,T]

cult) + $(u(®) + [ Mt = Ju(sde) + Au) 3 () t€T5 (g
w(0)=0, if J=IR"or[0,T]

Here A is an m-accretive operator in H, f € L*(J; H), €, > 0 and the kernel
k satisfies

0 < k € L}(0,T) non — increasing and T = oo if J = IR, IR*. (1.2)

We prove results concerning existence of strong solutions of (1.1) based on
the theory developed in the previous chapters. Also the case where A is a
subdifferential is considered. Some of the results obtained here are not new
and should be regarded as an illustration of the theory. However the results
where v = 0 is assumed appear to be new.

In the second section, equation (1.1) is considered in a real Banach space
X. The operator A is then an m-accretive operator in X. We take here
J =1[0,T],e=0, f € L'(0,T;X). Gripenberg proved in [GR3] that for all
f € L}(0,T; X) there exists a “generalized” solution of (1.1). Based on private
communication from dr. G. Gripenberg! a proof of this result is given, which
is along the lines of the setting in this thesis.

1The author likes to thank Gustaf Gripenberg for useful discussions.
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Let us summarize some known facts as a preparation of the next two
sections.
We denote by “+” the convolution operation

(a*u)(t):= /a(t — s)u(s)ds,

for a € L}(0,T) (LY(RY)), u € LP(0,T;X) (LP(IR*; X), LP(IR;X)) and
P € [1,00], where the integral should be interpreted as a Bochner integral.
Recall that by Young’s inequality,

o uly < Nellsliallys o € [1,00].
For J = IR* or [0,T] and p € [1,00) we set
WoP(J) := {u € WYP(J) : u(0) = 0}
and Wy?(IR) = WYP(IR). Define the operator L in L%*(J) by

{ D(L):={u€ L*J): yu+k+u € WH*(J)};

1.3
Lu := dit('yu+k*u), (1.3)

where v > 0 and the kernel k satisfying (1.2). Then L € M(J).
In the case J = IR the m-accretivity of L can be shown using the Fourier
transform and is a consequence the fact that (1.2) implies that

o0
/k(y) sinwydy >0 forallwe IRT.
0

.Using (1.2) one shows that (Lu,u~) < 0 for = ut — 4~ € D(L) which
implies the positivity of the resolvent J /{’ Since the m-accretive operator L
is the negative generator of a positive translation semigroup it follows that
L € M(J), see Remark 5.3.8 (ii).

Let J = IR* or [0,T] and let 7 > 0. Then there exists a function 0 < b €
L*°(J) satisfying

Yo+ kxb=1,

see [LE]. Note that b < . In [CL-N2] it has been proven that the solution ry,
of

1 1
utybru=b A>0
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is non-negative, belongs to L'(J) and ||75||; < 1. One shows that Jfu = ryxu
(see [CL-M]) and it follows that L € M(J). For ¥ = 0 it has been shown in
[GR1] that there exists a positive locally finite measure 3 satisfying k3 = 1,
see also [GR-L-S,Theorem 5.5.5]. Then J¥u = py * u, where p) is a positive
measure with [ dpy(s) < 1 which is the solution of

J

1 1
u+ Xﬁ*#—xﬂ-

(Here we are dealing with convolutions of measures.) Again we get L € M(J).
Furthermore, k(0%) = oo if and only if the measure § has no discrete part.
Finally, observe that if 4 > 0 then L='u = b * u and similarly if ¥ = 0 then
LYy =f+u.

7.2 Volterra equations in a Hilbert space

We define a function u : J — H to be a strong solution of equation (1.1) if
we LA(J; H), yu+k*u € Wy*(J; H), u(t) € D(A) almost everywhere and u
satisfies (1.1) almost everywhere.

The case A is a subdifferential

Proposition 2.1. Let e > 0, v > 0 and let k satisfy (1.2). If A = 0yp with
@ € Jo then for all f € L%(J; H) there ezists a unique strong solution u of
equation (1.1). In the case J = [0,T] and v > 0 the ezistence and the unicity
follows also if e = 0. Furthermore |I%(7u+ kxu)|| < |Ifl-

Proof. Set H = L%(0,T;H) and define the m-accretive operator L in
L?(J) by (1.3). Let £ denote the m-accretive extension in H of L and 0@
the m-accretive extension in H of d¢. Since L € M(J), inequality (3.1.1)
holds with A = §® which, by Lemma 2.2.3, implies that the operator £ + 3%
is m-accretive in H. This proves the proposition for the case ¢ > 0. In the
case J = [0,T] and € = 0 the existence of a strong solution follows from the
equality

intR(L + 8®) = int(R(L) + R(09)), (2.1)
which is, by Theorem 2.2.4, implied by inequality (3.1.1), and the surjectivity
of L. In order to obtain the unicity of the strong solution if v > 0, let u, v be
two solutions of the equation

Lu+0%u> f, feL*0,T;H).
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Then subtracting the two corresponding equations and subsequently taking
the innerproduct in H with the difference w(s) := u(s) — v(s) we obtain, using
that J¢p is accretive,

[

(Yw+ k*w)(s)w(s)ds =0, tel0,T].

&.]&

Hence,

yw¥(t) + / (k » w)(s)w(s)ds = 0, (2.2)
and the unicity follows since the integral term in (2.2) is non-negative for all
t € [0,T] so that w%(t) = 0 for ¢ € [0, 7).

As another example, but in the same spirit, we take J = [0, 7] and consider
the following initial value problem

4(u(t) + [ b(t - s)u(s)ds) + dp(u(t)) 3 (1), € (0,T);
s ? (2.3)

Proposition 2.2. Let ¢ € Jy. Assume that k € L?(0,T) satisfies (1.2). Then
Jor all z € D(p) and f € L?(0,T; H) there exists a unique strong solution of
(2.3). Furthermore

= (u+k*u)u < NI+ + [kl )e(z) +
+Hlz £l + 2 llIElz + (1 + (k1) 07 ()} 2.

Proof. Define the (nonlinear) operator £* by

D(L%) = {u € W2(0,T; H) : w(0) = z};
L2u = 4$(u+ k *u), for u € D(L?).

Then one verifies that £ is m-accretive with resolvent given by
I 5w = JE(u — Akz) + (1 = JE Dz, (2.4)

where L denotes the operator defined by (1.3) with ¥ = 1 and £ its extension.
We show that the following inequality holds

(((£%)u, (89)uu)) 2 —(1 + ||kl )¢u(z) = lIll||%]l2ll(08)uull2- (2.5)
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This inequality implies (2.1) where £ is replaced by L (see the proof of
Lemma, 2.2.3), which gives the existence part of the proposition. The unicity
of the strong solution can be shown as done in Proposition 2.1. We show
now inequality (2.5). For the following inequality we refer to (the proof of)
Theorem 3.2.1 .

pu(TE(u— Mkz) + (1= IF1)a)
TR pu(u — Xkz) + (1 - I D)pu(e).

‘Pu(']f'xu)

IA

Integrating this inequality over (0,7’ and using that L € M(0,T) we get

®.(Jx : u)

IA

T T
/ TE . ((u— Aez)(2))dt + A / %(Jfl +k+ JED) ()t pu(2)
0 0

®,(u - Mkz) + M1+ [[Kll)eu(z)
®,() + B, (u— Akz) = 2,(w) + AL+ [[k)@a(2).

IN

Hence,

(£, (08),0)) > - 2= MDY (4 4y, (2).

If u € D(L®) we obtain, by passing to the limit with respect to A, and using
that @, is Fréchet differentiable, that

((£7u, (89)uu)) 2 ((kz,(0®),w)) — (1 + [[Kll1)pulz), (2.6)

and inequality (2.5) follows. The last assertion of the proposition follows from
(2.5).

The case A is general
We write equation (1.1) as
eu+ Lu+ Au 3 f, (2.7)

where, as before £ is the extension of the operator L defined by (1.3) and A
the extension of A.

First we observe that, if J = IR, it is a direct consequence of Proposition
5.3.5 that R(el + £ + .A) D WL2(IR; H), € > 0. Furthermore it follows that
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L + Ais m-accretive and that if f € W*2(IR; H), 0 < s < 1, then the solution
of

eu+L+Audf, €>0

belongs to W*%(IR; H).
If J = IR* or [0,T] one can apply Lemma 5.2.1 with Ly = D*D where
D = 4 with domain W,"*(J). Indeed

(Lw, Lou) = (D(u + k * w), D*Du) = (Du, D*Du) + (D(k * Du), Du) > 0

for all w € D(Lo). Then it follows that equation (2.7) has a unique strong
solution for all f € Wy'2(J).

Remark 2.3. The results obtained here are not optimal in the sense that one
can prove the existence of strong solutions of (2.7) for f of bounded variation

[GR2).

Next, we prove some results which, to our knowledge, are new. We show
that much stronger regularity results can be obtained if ¥ = 0.

Proposition 2.4. Let J = IR and let L be defined by (1.3) with v = 0 and
k satisfying (1,2). Assume in addition that k is convex. Then the inclusion
R(el + £+ A) D D(L) holds for all € > 0

Proof. We show that Proposition 5.3.1 is applicable. Observe that the
sublattice W12(IR) is a core of L and hence i) of Proposition 5.3.1 is satisfied
for D = W12(IR). In order to prove that ii) holds we approximate the function
k by k), where

ka(z) :=k(z+ 1), A z>0.

Set p
L()‘)u = -(-i—t(k)‘ * u) = k)‘(())(u — h)\ * u),
where .
— = gt
h)‘ - k)\(O)k)‘.

Then for uw = ut — u~ € WL2(IR) we have

(Loyut, Loyw™) = E3(0)(ut — hy +ut,u™ — hy xu”)
= E3(0)((h*hx* —hyx —hyx)ut,u”).  (2.8)
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Here hy(z) := ha(—z). Since hy € L'(IRY) satisfies (1.2) and |[ha[|1 = 1 one
can verify that _ .
hy x hy < hy+ hy.
Therefore (2.8) implies that
(L(,\)'LL+, L(A)u_) <0.
Furthermore,

dut du~ dut du~
+ -\ — au” au aut G\ o T
(Lenyu™, Lpyu™) = (ka* o Lk * 7 ) — (k* o Sk * o )= (Lu™, Lu™)
if A | 0. Thus (Lut,Lu~) < 0 for all w = u* — u~ € WH?(IR). Since i)
and ii) of Proposition 5.3.1 implies the positivity of the translation invariant
Co-semigroup generated by —L*L it follows that L*L € M(IR) (see Remark
5.3.8 (iii) ), which is equivalent to the assumptions i), i) and iii) of Proposition
5.3.1.

The symbol of the operator L defined by (1.3) with v = 0 is given by
izk(iz) where k denotes the Laplace transform of k. Then by the definition
of W*2(IR) it is clear that W*2(IR) C D(L) whenever

lims p| k(i )l < oo. (2.9)

zooo [T

By Proposition 5.3.5 we have

Proposition 2.5. Let J = IR, 0 < s < 1, and let L be defined by (1.3) with
v = 0 and k satisfying (1.2). Assume in addition that k satisfies (2.9). Then
R(eI + L+ A) D W*X(IR;H), 0 < s < 1, € > 0. Furthermore the solution u
of equation (2.7) with f € W*2(IR; H) belongs to W*(IR; H)

Observe that if there exists a non-negative constant a such that
|Imk(iz)| < aRek(iz), (2.10)

then the operator L with v = 0 satisfies assertion (ii) of Theorem 4.2.2 (and
therefore all the assertions of Theorem 4.2.2). We conclude from Corollary
4.3.3 the following

Proposition 2.6. Let J = IR and let L be defined by (1.3) with y =0 and k
satisfying (1.2). Assume in addition that k satisfies (2.10). Then the operator
L+ A CH X H is m-accretive.
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Remark 2.7. Let L be as in Proposition 2.6. By Remark 3.3.5 and the
observation following example 3.3.4 it follows that condition (2.10) is necessary
for £ + A to be m-accretive for all m-accretive A C H x H.

Remark 2.8. In [PR-S] it has been proven that if K € C*(0, 00) is completely
monotonic such that lim, 10—%’%1 > 0 then (2.10) holds for some positive

constant a (see also [PR]). Recall that k is completely monotonic if (—1)7k(?) >
0,j=0,1,2,....

An example of a kernel & satisfying the assumptions of Proposition 2.6 is
the kernel k(t) = t*"le7 0 < a < 1,6 > 0.

Remark 2.9. Note that Proposition 2.6 is a special case of example 4.3.4. It
should also be observed that this proposition can also be applied if J = IR or
[0,T]in the case k € L?(0,T) is a restriction of a kernel k € L2(IR") satisfying
(2.10). In the case J = IR* or [0,T), the operator L defined by (1.3) is not a
normal operator.

7.3 Volterra equations in a Banach space

Let (X, |- ||) be a real Banach space and let A C X X X be an m-accretive
operator satisfying 0 € A0. We denote by A its m-accretive extension in
LY0,T; X), T € IR". Define the operator L by setting

D(L) = {u € LY(0,T) : yu + kv € W3 (0,T)};
Lu= a‘%(‘)m + k *u), :

where 7 > 0 and k satisfying (1.2). If ¥ = 0 then we assume that £(0%) = cc.
Note that if ¥ = 0 and k(0%) < co we are dealing with a bounded operator.
The operator L is m-accretive in L1(0,T) with order-preserving resolvent, see
Section 7.1. Let the operator £ be the m-accretive extension in L(0,7T; X) of
L (see Remark 2.4.2).

It will be shown that for all f € L1(0,T; X) there exists a so-called gener-
alized solution u € L'(0,7T; X) of the equation

Lu+ Au 3 f, (3.1)
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which is obtained as the L!-limit of solutions of the approximate equation
Lyuy+Aur3d f, A>0. (3.2)

By a contraction argument one shows that equation (3.2) has a unique solution
uy € D(A) for all f € L'(0,T;X). We present here a somewhat simplified
proof of the following theorem due to G. Gripenberg [GR3].

Theorem 3.1. The net {uy}aso s convergent in L'(0,T; X). Furthermore,
if ¥ > 0 then the limit function u belongs to C([0,T]; X) and if in addition
f € L*(0,T; X) then uy — u in L*°(0,T;X) as A | 0. Finally, if v is a
strong solution of (3.1), then u = v.

We use some facts and notations already introduced in the introduction.
Such as, there exist non-negative bounded measures py, 3 such that

1) = [ £-ypr(s), 170 = [ Ft-)dBls), £ e LO.T)

and fdp,\(s) < 1. If ¥ > 0 then dpx(s) = ra(s)ds and df(s) = b(s)ds, where

0< ‘r,\ € LY(0,T) satisfies ||rlls <1, A > 0,and b € L*>(0,T) with 0 < b <
For the proof of Theorem (3.1) we need the following two lemmas

Lemma 3.2. If f € BV(0,T;X) then uy € BV(0,T; X) and
t

Var(uy, [t a]) < AVar(f, [tr, ta]) + / Var(f, [t — 5, 2 — 5])dB(s)

+HIFOO [ da(s) (33)
for 0 < t; < ty < T. Furthermore
ua@®ll < AlF@OI+ LTHFONE), t€(0,T), (3.4)
and
llea(0)]| < AlLFCO*)]- (3.5)
If y > 0 then

lua(t+h) —ur(®ll < AVar(f,[t,t+h]) + %(Ilf(()")l\ +Var(f,[0,£+A])), (3-6)
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forO<t<t+h<T.

In particular it follows that
llua(0)|| + Var(u, [0,T1]) < (|| 7(0%)|| + Var(£, [0, T1]))

for some constant ¢ > 0. This inequality will be frequently used.

Lemma 3.3. Let b€ L'(0,T), v € BV(0,T;X). Then the function

(b % v)(t) = / b(t — s)v(s)ds
0

is absolutely continuous and differentiable almost everywhere on (0,T). More-
over

T
[ 13:® x0)(®llde < IBIhIo(@*)] + Vax(v, [0, 1),
0

Assuming these lemmas for the moment we proceed with

Proof of Theorem 3.1. First we consider the case where v = 0. Note
that equation (3.2) is equivalent to

uy = JAOAS + JEuy). (3.7
Rewriting equation (3.2) with A replaced by u as
Lyuy + Auy 3 f 4+ Lauy, — Lyuy,
we obtain in the same way
uy = JLOF 4+ MELuy — Louy) + TEu,). (3.8)

Due tot the m-accretivity of the operator A, the equations (3.7) and (3.8)
imply
llua(®) = wu(®] < ML = LaYuull(®) + IX llwr — wull(?)- (3.9)

Since I — J¥ = ALJ¥ it follows from (3.9) that

TXllur = wall(®) < L7H(LA = Lo )uull(2)-



NONLINEAR VOLTERRA EQUATIONS 97

So that, again using (3.9), we have

lua(®) = wa(Oll < AL = L)uall(®) + LTHILN = La)uall®)- (3.10)
Note that Lyu = LJfu = &(k+ Jfu) = £(J¥k + u). Hence, by Lemma 3.2
and Lemma 3.3

T

J 183 = Lol

0

T
J 15 (RE = TR s wa(0) et

< Rk = TR {)lwn(0F)I] + Var(uy, [0, 1)}
cllJxk — TR {llF(04)] + Var(£,[0,T1)}

A

for some constant ¢ > 0. Therefore ||(Lx— L,)u,|| — 0in LY(0,T)if A, p | 0.
It follows now from (3.10) that {u)}»>o is a Cauchy-net in L!(0,T; X).

We continue with the case ¥ > 0. Without loss of generality we may
assume that v = 1. Denote by D the m-accretive operator D = % with

domain Wy'*(0,T). The extension in L*(0,T;X) of D will be denoted by D.
Now we rewrite equation (3.2) as

Dyuy + Auy 3 f + Hauy — D(k x uy),

where )
Hyuy = Dyuy — Lyuy + D(k * uy).

From [CR-E, Lemma 1.7] it follows that

13(8) = () < E R (0) = )l + 357 lat) = T )]
4L {0(0) ~ 0a(6), Haua(t) = Hua(s) = DOk us)(t) + Dl # ) (o))

where [z, y]+ = infaso +(||z + Ayl = ||z]]). Therefore

[[ua(®) = uu(s)ll < 5 _’: u”u#(s)(l - JPD@)| + : i u||u,\(t)(1 —JP1) )
IR () = w O + T3 (a(0) = w O
a2 0umte),

A4 pu
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where

(A s, 8) = [un(t) — uu(s), Haua(t) — Huwu(s) = D(k xun)(t) + D(k+uu)(s)l+

Then we rewrite this inequality as

Dilfus(-) = wu($)II(2) + Dullur(®) — wa()l(s) < ¢(As s, 9). (3.11)

Here

(A sty 8) = T(X, 1,1, 8) + [[ua(@) 1 Dul(s) + [[ua(s)I DAL(E).

We introduce the following m-accretive operators in L![(0,T) x (0,T)]. Set
Y = L'[0,T] and recall that L(0,T;Y) = L((0,T) x (0,T)). Let the op-
erator D; denote the extension of D in L!(0,7;Y). Considering D as an
operator in Y we denote by D, its extension in LY(0,T;Y) with domain
LY(0,T; W,y'(0,T)) Note that the operator Dyx + D3, is surjective with an
order-preserving inverse and that the closure Dy + Dj exists since D and D,
commute in the sense of resolvents. Furthermore,

min(t,s)
D1+ Dg_lf(t,s) = / ft—1,8—T)dr
o

for f € L'(0,T) x (0,T)]. Since Dy + D; and Dy + Ds, are resolvent
commuting we obtain from (3.11) that

min(t,s) min(t,s)
Ju(t—7) = wuls = Dlldr < (Duat Do) [ aOmt=r,s=r)ir
0 0

(3.12)
We show now that there exists a continuous function % on (—T,T) satisfying
1(0) = 0 such that
min(t,s) )
lim sup / g(A, gyt — 7,8~ 1)dr < P(t—s) uniformly on (-T,T). (3.13)
Anl0
0

For that we need to estimate the following three integrals

min(t,s)

LA p,t,8) = / r(A pyt — 7,8 — 7)dT; (3.14)
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min(t,s)
LA, p,t,8) = lua(t — 7)||Du1(s — T)dT; (3.15)
0
min(t,s)
I\ p,ts) = / |luu(s — 7| DAL(2 — 7)dT. (3.16)
0

First we estimate I5. For t > s,

-[2()‘7 M, t? S)

[ luate = r)lze 26 Dar
I
0

>
- f l[ua(t = 5 + po)le= do.
0

Using (3.4) it follows that

lim sup Ip(A, i, £, 8) < || flloo L1 1(t — s) uniformly on (=T',T).
Aul0

Similarly one treats I3. We continue with I;.

Ir(A, mt8)] < IIF(@) = FOI+ IHaua (@l + [Huua()]] +
+Hua() — uu(s), =Dk + ua)(t) + D(k * wu)(s)]+
The corresponding four integrals of the right-hand side of this inequality we
denote by I}, I2, I3 and I# respectively, so that I; < I + If + I§ + I{. First
of all
(A p,t,8) < |t — s|Var(f,[0,T]).

Next, we estimate I?.

T

BOumts) < [l
0

T

d
JI5UR = If = ks If + k(o)
0

Since
(I+AD)JE + AD(k+JE) =1
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we have
JE—JP = (I - JP)(k+JD).

Thus we obtain by Lemma 3.3 that
B\ tys) < e(I(T = IR)IXkll + [I( = T)EIDIF(OF)I| + Var(£, [0,T]))

for some constant ¢ > 0. The estimation of I can be done the same way. We
proceed with the estimation of I}. Recall that |[z,y]+| < |lyll, [z, + 2] <
[z,9]+[2,2], |[s,9] - [2,2]| < ||y - 2|| and [z, ez +3] = cl|z|| +[2,3], ¢ € IR, see
[CR]. Set ky,(t) := min{m,k(t)}, m € IR*,t € IR* almost everywhere and
denote by I, the integral I} where k is replaced by k. Note that kn, — &
in LY(0,T) as m — co. By Lemma 3.3 it follows that Jim If,, = If. Again
let £ > s. Then
Iit,m()ﬁ Bty 8) =

/[uA(t —1)—uu(s—1),— dtkm *ur(t—7)+ %km * U, (8 — 7)]4dT

[ = 7) = s = @Y r(t = 7) = (5 = 1) =

$—T

([ ut == Odkn(© = [ wils = 7= Odkm(€)]1dr

/ {~km(@Hllur(t = ) = wu(s = 7| -

<

(7 lu(t =7 = €) = (s = 7 = €)l|dkon(€) - / lux(t = 7 = €)lldkm(€))}dr
= / . / m(€)r(t = 7) = (s — )| delr / t_/fnm(t - = Olldkn(€)dr
= / En(€)lur(t = €) = (s — Olldé - f i/_TnuA(t - 7= O)lldkn(E)dr
R T

0 s—7
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IA

el flloo [ k(s = 1) = kit = 7))dr

IA

el fllow [ bm(r)ar

¢
for some constant ¢ > 0. Hence If(A\,u,t,8) < c||fllo f k(T)dr, for some

constant ¢ > 0. Combining the estimates we have obtajnesd for I, Iz, Iz we
get (3.13). It follows from (3.12) and (3.13) that for all € > 0 there exists
6 > 0 such that

T
/H”A(T)—uu(T)HdT < (Dip+D2) M o(t—3) lr,1) +€(D1)+D2) "1 (z,1)
0

for all 0 < A, u < §. This implies

T
fimsup [ r(r) = wu(Dlldr < DiF Dz 9l =) ki
W 0

+eDi + D2_11 |(T,T)
= 04T =¢T.

Since ¢ > 0 is arbitrary it follows that the net {ux}x>o is convergent in
LY(0,T; X).

So far we assumed that f € BV(0,T; X). The convergence of {u}x>o for
all f € L1(0,T; X) follows from the estimate

lux — ol < MIf =gl + L7 f - gl (3.17)

where u,, vy denotes the solution of (3.2) with right-hand side f respectively
g. Inequality (3.17) can be obtained in a similar way as inequality (3.4). Next
we prove the last three statements of the theorem. If v > 0 it follows from
(3.6) that the family {ux}r>o is equicontinuous if f is Lipschitz continuous
on [0,T). Since, by (3.4), |luallo < ¢llflleo for some constant ¢ > 0 we may
conclude that the limit function u belongs to C([0,T]; X) and that uy — u
in L°(0,T;X) if A | 0. Using (3.17) one shows that u € C([0,T]; X) for all
f € LY(0,T; X) and that if f € L*(0,T; X) then the convergence of uy to u
is uniform.
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Let v be a strong solution of (3.1). Let uy, A > 0, be the solution of (3.2)
and u its L'-limit. Writing £Lyv + Av = f + Lyv — Lv and using (3.17) we
obtain '

llus — ol < All£av = Lo|| + L7H|Lxv — Lo]|.

Since L v — Lv if A | 0 we get that u = v.

It remains to prove Lemma (3.2) and Lemma (3.3). For the proof of Lemma
(3.3) we refer to [GR3]. We show now

Proof of Lemma (3.2). From (3.7), the contractivity of J{ and the
positivity of J f‘ it follows that

llux(t + k) — ua(Oll < AllF(E+ A) — F(D)II+

+ Xl + B) = ur () + TXua(I(E + B) = TXllua(- + B(2). - (3.18)

This inequality can also be written as
ALIZ|lua(- + h) = uwa(II(?) <

SAFGE+h) = FON+ IXNwONE +h) = IXllua(-+ R)I(®). (3.19)
Using that L~ is positive we get

IX|ur(- + k) = wa((E) < LHFC +h) = FON®+

+ %L'I{J,{“Ilw(')ll(t + k) = I¥ lur(- + W)} (3.20)

Inequality (3.20) combined with (3.18) gives

leat+ B = wa@l < ALFC+B) = SOl + LG +B) = SO
HU 4 S EHIEAONE+B) = Tl + RO}

= Af+B) = FO+ EAC+B) = SO

F3 L O+ B) = 327 (- + R

= AF+B) = SO+ EHAC+B) = SOl

t+h
+§ / llua(t + h — )||dB(s). (3.21)

t
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In the same way as we have derived (3.21) one shows that (3.4) holds. Then
for all € > 0 there exists a § > 0 such that 0 <t < § implies

l[ux(@®Il < AIFOD + e

Here we used that 3 has no discrete part (see Section 7.1). In particular (3.5)
follows. Choose, for a given € > 0, a number N € IN * large enough such that
% < §. Then it follows from (3.21) that

i

—Lh)

N .
lust+B) - m@l < Plluat+ Fh) —mi+

1=1
< AVar(f,[t,t+ R]) +
t+h

+ / Var(f, [min(0,t — s),t + h — s])dB(s)
0

t+h

@D +5) [ d8(s)

Since € > 0 is arbitrary, one verifies that the inequalities (3.3) and (3.6) follow.
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Samenvatting

In dit proefschrift beschouwen we de som van een lineaire (L) en een niet-
lineaire (.LA) m-accretieve operator in een Hilbertruimte.

We bewijzen dat, onder bepaalde voorwaarden, de som £ + A ook m-
accretief is. In hoofdstuk 1 worden deze voorwaarden toegelicht aan de hand
van enkele voorbeelden.

In hoofdstuk 3 geven we nodige en voldoende voorwaarden zodat de oper-
atoren £ en A een “scherpe hoek” (acute angle) vormen. Dit resultaat is een
vectorwaardige uitbreiding van een ongelijkheid van Brezis and Strauss [BR-
S]. Voor m-accretieve operatoren £ en A die een “scherpe hoek” vormen geldt
dat de som £ + A m-accretief is. In hoofdstuk 4 wordt de m-accretiviteit van
de operator £+ A bewezen onder algemenere voorwaarden. In veel gevallen is
niet de operator £ + A maar de afsluiting, £ + A, m-accretief. Deze situatie
wordt bestudeerd in hoofdstuk 5. Tot zover het eerste deel van het proefschrift.

Het tweede deel, bestaande uit hoofdstuk 6 en 7, behandelt enkele toepassin
gen van de in het eerste deel ontwikkelde theorie. In hoofdstuk 6 bewijzen we
een existentie resultaat voor een semi-lineair elliptisch systeem en in hoofdstuk
7, beschouwen we niet-lineaire Volterra vergelijkingen.

[BR-S] H. Brezis and W.A. Strauss, Semilinear second order elliptic equations
in L1, J. Math. Soc. Japan, 25 (1973) 565-590.
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