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Abstract—For many years, traditional satellite design 
philosophy was dominated by highly reliable components, 
conservative designs and extensive performance testing at 
subsystem and integrated system levels to achieve long lifetimes 
in the harsh space environment. CubeSats attempted to choose 
a different philosophy, utilizing suitable state-of the art, 
commercial-off-the shelf products, yielding, if successful, an 
increased performance per mass figure of merit for those small 
vessels at potentially higher risk but lower cost. CubeSats 
seemed to promise universities and companies to be faster, 
better and cheaper – once more in history. Unfortunately, many 
CubeSat missions, especially university-built ones, never 
achieved a detectable functional state or failed shortly after the 
satellites were ejected from their deployer. Data based on our 
developed CubeSat Failure Database (CFD) and research 
carried out by others suggest, that a great percentage of those 
early failure cases could have been detected and avoided by 
more careful and adequate system-level functional testing on the 
ground. However, many university teams still fail to plan with 
adequate resources for system level functional testing or are 
confronted with hard deadlines, thus unable to complete 
appropriate integrated system testing on a sufficient level, and 
launching a satellite that never was adequately functional. 
Ongoing work on a novel reliability estimation tool using 
Bayesian methods is introduced to fill this gap and to provide 
meaningful data for all developers on the achievable reliability 
and required functional testing time of their CubeSats. Using 
test data and reliability goals for their actual mission, merging 
that data with statistical data from past missions and a database 
of subjective developer’s beliefs, CubeSat developers should 
now be able to estimate their required functional testing time on 
subsystem and system level at an early project stage, as a 
function of the targeted reliability goal for their CubeSat. 
Alternatively, if the required resources (testing time, money, 
knowledge) are not available, CubeSat developers and program 
managers can still use the tool to now quantify a resulting 
realistic lower boundary for the expected system reliability of 
the mission, and decide, if their mission goals can be fulfilled or 
not with a certain probability. To evolve CubeSats into more 
reliable and accepted platforms for scientific payloads and 
commercial applications, it is utmost important to avoid or 
reduce the many infant mortality cases, where no or little useful 
data is produced by the satellite. To guide developers towards 
higher success rates without losing the spirit of using novel, state 
of the art technology in fast mission timelines, the reliability 
estimation tool should ensure higher reliability of CubeSat 

missions without drawing too much resources nor imposing too 
many burdens on the CubeSat teams. 
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1. INTRODUCTION

The dawn of the CubeSats in the last decade changed the 
traditional satellite design philosophy towards state-of the art, 
commercial-off-the shelf (COTS) products. Data generated in 
ongoing research [1]-[4] suggests that the success of 
CubeSats is jeopardized by many dead-on-arrival (DOA) 
cases and a high ratio of infant mortality (see also Fig. 1-2). 
Looking closer at the reasons for success and failures, 
Swartwout suggests that many of the early failures can be 
traced back to insufficient system level functional testing on 
the ground [1]. Thereby, those errors detectable by functional 
testing (called “functional errors” in the paper) can either be 
of design, manufacturing, workmanship or of operational 
origin. It is important to note that the proposed research will 
not replace the environmental tests needed for verifying 
space hardware (e.g. thermal-vacuum tests, mechanical stress 
tests, radiation tests). 

In this paper we address current reliability prediction 
methodologies and evaluate their suitability for CubeSat 
programs with respect to their mostly constrained resources. 
We report on the ongoing research on a two-fold reliability 
estimation methodology, aiming to detect functional errors 
trough subsystem and system level functional testing. The 
methodology should furthermore help CubeSat developers in 
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planning their resources (time, money) and in estimating their 
reliability after launch. All methods were developed based on 
the lessons learned from the CubeSat First-MOVE [5], 
launched end of 2013, and are implemented in the currently 
ongoing CubeSat project MOVE-II [6], which is to be 
launched end of 2017. Additional refinement work still has to 
be carried out on the specific reliability prediction methods, 
but we believe this work to be an essential first step to 
alleviate the impacts due to the lack of suitable reliability 
prediction techniques for CubeSat teams. 

This paper is organized as follows. Chapter 2 describes 
current reliability prediction methodologies for satellites and 
their suitability for CubeSats. In Chapter 3, the CubeSat 
Failure Database (CFD) is introduced as one means of prior 
knowledge for addressing the “one-of-a-kind” problem many 
CubeSat missions face. In Chapter 4, the ongoing work on the 
Reliability Estimation Tool is presented. Chapter 5 describes 
the application of the methodologies on the satellite project 
MOVE-II. Finally, in Chapter 6, we conclude with the 
implications of this work and give an outlook. 

2. RELIABILITY PREDICTION METHODOLOGIES 

The high percentage of DOAs and early failures is not 
acceptable if CubeSats should evolve into reliable and 
accepted platforms for scientific payloads and commercial 
applications. Nevertheless, to stay attractive and affordable, 
traditional space industry processes and testing cannot be 
implemented in CubeSat projects. 

We performed a literature research on reliability prediction 
methodologies and evaluated them for their suitability in a 
CubeSat project. Since these methods are not necessarily 
developed for CubeSat projects, specific requirements have 
to be considered, to evaluate the methods:  

- The methodology shall focus on detecting functional 
failures (i.e., out of design and/or manufacturing-related 
failures), since they are the most critical aspect for infant 
mortality in CubeSats [1]-[4]. 
 

- Lack of time and lack of resources are critical aspects in 
CubeSat and SmallSat projects, especially when late in 
the project [7],[8]. 
 

- General validity: The method has to be generally valid. 
It has to be suitable for hardware as well as software and 
for mechanisms as well as electronic circuits. This 
ensures a continuous use in the whole project and that 
leads to comparable results [7]. 
 

- The method has to be feasible without any experience in 
the field of risk management. Even if the involved 
persons have attended risk management training that 
does not necessarily mean that they can or will apply 
their theoretical knowledge in practice [4], [7]. 

 

System Level Integrated Modeling Language (SLIM) 

The SLIM language was developed within the scope of the 
COMPASS (Correctness, Modeling and Performance of 
Aerospace Systems) project in cooperation with the European 
space industry [9]. In general, SLIM allows the modelling of 
complex technical systems and the subsequent analysis of 
their reliability. The SLIM syntax is based on AADL 
(Architecture Analysis and Design Language). AADL is a 
standard modeling language, used in automotive applications 
and the SAE (Society of Automotive Engineers) maintains 
the standard AS5506B [10]. 

The SLIM syntax emulates different aspects of the real 
system in different model parts. The hierarchical structure is 
emulated by components and interfaces. These components 
can be hardware, software or composites of both. The 
description of failures is realized by mathematical equations, 
which describe the relation between the cause of failure and 
its impact. It is possible to create templates for risk 
assessment methods with additional software tools, for 
example Failure Mode and Effect Analysis (FMEA) tables. 
The SLIM system has the ability to use an already created 
model for a similar technical system, reducing expenses in 
serial production. We came to the conclusion that, due to its 
complexity, SLIM is too elaborate for a CubeSat-like project. 

United States Military Standard Defense Handbook 217f 

The standard MIL-HDBK-217f was released in 1991 by the 
United States Army [11] and is still the state-of-the art for 
reliability prediction in many application areas. Its initial 
purpose was to standardize the cooperation between the 
Army and civil suppliers in the field of electronics. 
Nowadays the standard is also used in entirely civilian areas 
of industrial production. Although some other standards are 
also capable to assess the reliability of electronics (such as 
PRISM, Telcordia SR-332, Physics of Failure,), MIL-
HDBK-217f is still the most commonly used. According to 
[12], the underlying databases of the other standards can 
differ a bit from MIL-HDBK-217f, depending on their exact 
field of interest. The MIL-HDBK-217f handbook is divided 
in two parts: 

- Parts Count Method: This analysis is able to calculate an 
estimation of the reliability of an electronic system in an 
early phase of the development, based on the types and 
numbers of every component used and their usage 
environment. The Part Count Method does not consider 
interconnections between the components, making it 
most suitable for early design phases, where only the 
circuits are defined but not the layout of the printed 
circuit board. 

 
- Parts Stress Analysis: The Parts Stress Analysis can only 

be performed in later design phases. It emulates the 
connections between the electronic components and 
considers also details about the components and their 
usage environment, allowing a precise reliability 
estimation for many technical systems. 
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The obsolescence of the database is the biggest concern while 
using MIL-HDBK-217f, making it unsuitable for state-of-
the-art COTS-based systems with novel electronics, such as 
CubeSats. 

Highly Accelerated Life Testing (HALT) 

The HALT method was developed in the early 1990s by 
Hobbs [12], targeting the overloading of products or 
components to detect their weakest parts. During the test 
process, an increasing load is applied to a small number of 
test objects, until a function of the test object is affected or 
something is permanently damaged. This procedure is 
repeated for every kind of load the test object experiences 
during its lifetime [14]. In contrast to other tests, HALT aims 
at the destruction of the product (called “testing to failure”). 
Pitfalls mentioned in [15] lead to possible problems for 
CubeSat teams for applying HALT. Purchasing several 
subsystems for destruction is not a feasible option for 
CubeSat teams.  

Reliability Growth in Assembly, Integration and Testing 

Cho proposed a method to estimate the reliability growth 
through assembly, integration and testing (AIT) for a 
nanosatellite [16], [17]. The method is based on the model by 
Duane [18], assigning a reliability growth to failure detection 
in the AIT test activity. As it is more and more time 
consuming to detect the next potential failure, the purpose of 
the method is to find the optimal point to stop the test 
activities (i.e., finding the next failure would statistically be 
very time consuming). The model supposes, that every 
detected failure will be completely removed and no new 
failures are induced by doing that. It is also assumed that the 
test object has a limited numbers of failures and these failures 
are homogeneously distributed over the whole test object. 
The last assumption is that the applied tests are also 
homogeneously distributed over the whole state space of the 
test object.  

Cho assumes [17], that the distribution of the cumulative 
failures over time should reach a saturation over time. The 
distribution of the cumulative failures can be mathematical 
modeled by a Weibull distribution: 

 �(�) = 	
�

��
�(���) (1) 

with: 
 
λ(t)  =  cumulative failures over time 
α  = scale parameter of the Weibull distribution 
β = shape parameter of the Weibull distribution 
t = time 
 
To reach the best approximation of this function to the real 
values, α and β have to be optimized. That can be done by the 
sum of squared deviations method. By extrapolating the 
saturation curve into the future, the time needed to find the 
next failure can be estimated. From a project management 

point of view, resources (in time and money) can be traded-
off against further tests against the reliability growth that is 
expected by these tests, allowing a data-based decision 
whether the tests shall be continued or stopped. 

Cho also presented Monte Carlo simulations for calculating 
the reliability in orbit after a certain time in AIT [17]. Being 
conservative with his assumptions, the calculated results 
show only little positive impact of testing time on reliability 
after launch. The presented method has two main 
disadvantages for CubeSat projects: 
 
- The method is not focused on functional failures. 

Instead, different AIT activities and phases are merged 
and the total time in testing used.  
 

- The time needed to correct a failure and the time to repeat 
previous AIT activities, as required after the failure 
correction, is not taken into account. That makes the 
time-estimation for future activities very uncertain. 
 

Although having those two disadvantages, the reliability 
growth model by Cho has been used by us as one of the two 
main models of the proposed reliability prediction tool for 
CubeSats (see Chapter 4).  

3. THE CUBESAT FAILURE DATABASE (CFD) 

The growing number of CubeSat missions allowed a 
statistical analysis of the reliability of past missions, both on 
system as well as on subsystem level. By doing so, non-
parametric and parametric analysis can help the CubeSat 
developers to identify critical subsystems in their systems. 

We examined three available databases in detail: 

- Castet and Saleh collected data from 1584 satellite 
missions up to 2006 of all weight classes and published 
work on satellite and subsystem reliability [19], data 
analysis and modelling [20], as well as Weibull 
distribution modelling for parametric analysis [21]. 
Although the results and analysis methods are interesting 
for CubeSat teams to understand general correlations, no 
dedicated analysis is specifically addressing CubeSat 
failure rates. 
 

- Swartwout collected data from 483 CubeSat missions, 
building an online available database dedicated on 
CubeSat success and failure. Data on the type and origin 
of the mission as well as a mission success criterion is 
provided. Swartwout analyzed the reasons for success 
and failure [1]-[3], but their time dependence remains 
unknown. 
 

- Guo et.al. [22] researched small satellite reliability on 
spacecraft under 50 kg. Analyzing the data of 222 small 
satellites, parametric a non-parametric models were built 
and published. CubeSats were not specifically addressed 
in this study.  
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To fill this gap, the CubeSat Failure Database (CFD) was 
built in late 2014 by the authors. It is comprised of 178 
individual CubeSats up to a launch date of 30/06/2014 and 
was created with the goal to collect time of failure and root 
cause data of all CubeSats launched so far. More information 
on the database can be found in [4] and further results can be 
accessed in [23] and [24]. 

Based on the data, a non-parametric model, a parametric 
Single Weibull and a parametric 2 Weibull Mixture model 
was built for the overall reliability of CubeSats after 
successful launch. Specifically, dead-on-arrival cases are 
addressed in the parametric Weibull functions using the 
Percent Non-Zero (PNZ) calculation [25] for out-of-the box 
failures. In Figure 1, the non-parametric reliability of 

CubeSats over time after successful orbit insertion is depicted 
using the Kaplan-Meier estimator [26]. For Parametric 
Assessment, a Single Weibull function was fitted using the 
Maximum Likelihood Estimation (MLE) method. The 
parameters of the Single Weibull function were estimated as 
β = 0.4797, PNZ = 0.8146 and θ = 4661.7975. Figure 2 
depicts a MLE-fitted parametric 2-Weibull-Mixture function 
with parameters of: β1 = 0.9017, PNZ = 0.8146, θ1 = 
57.9715, α1 = 0.2115, β2 = 1.0710 and θ1 = 4837.3947.   

The parametric Weibull functions are the basis for the second 
model of the Reliability Estimation Tool, proposed in chapter 
4. Ongoing work is carried out to further expand the database 
to satellites launched since the end of 2014 and to enhance 
the resulting parametric models. 

Figure 1. CubeSat reliability with 95% confidence interval and MLE Single Weibull parametric fit – 360 
days in orbit 

Figure 2. CubeSat reliability with MLE 2-Weibull mixture parametric fit. – 360 days in orbit 
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4. THE SEARCH FOR A RELIABILITY ESTIMATION 

TOOL FOR CUBESATS 

The Reliability Estimation Tool was foreseen to help 
planning appropriate tests for reducing the high ratio of 
DOA- and infant-mortality cases [1]-[4] in the CubeSat-class 
of satellites. Currently, lack of conception or lack of schedule 
margin often lead to inadequate subsystem and integrated 
system-level testing for many CubeSats [1]. A survey [24] 
end of 2014 showed more than 34% of CubeSat builders 
(n=114) were not using any failure or risk analysis on their 
system [4]. 

The two-fold tool shall help CubeSat developers in allocating 
their resources adequately for subsystem and integrated 
system tests. Combined with carefully selected 
environmental tests (i.e., thermal-vacuum test, vibration, 
acceleration), infant mortality cases should be reduced or 
eliminated. First, the research on the tool will be introduced 
in chapter 4. Within chapter 5 it will be explained how the 
tool influenced decisions in the MOVE-II development 
process. 

The Adapted Reliability Growth Model 

The complexity of CubeSats (as well as many other systems) 
makes it impossible to test every input configuration. The 
Reliability Growth Model was built with the intention to help 
decide on “how much functional testing is enough?”. To 
refine the method of Reliability Growth in AIT, we adapted 
the methodology from Cho [16], [17] for the CubeSat-
specific requirements mentioned in chapter 2 [27]: 

While time is the input parameter leading to saturation of 
detectable failures in the model by Cho, varying input 
configurations are the underlying parameter to be explored in 
our model. Focusing on infant mortality, certain input 
configurations are tested and functional failures detected. We 
have chosen Anti-Random Testing [28] as the best method to 
get a homogenous state space coverage of our system [29]. 
Despite this change, the saturation of cumulative failures, 
now plotted over the number of tested input configurations, 
remains a valid output value for quantifying remaining 
functional failures. Ideally, while combinatorial testing all 
possible input configurations of the CubeSat and its 
subsystems, the whole state space is explored and all 
functional errors can be found. In reality, time and resources 
might restrict teams to certain input configurations for 
testing. With the Reliability Growth Tool, the failures 
remaining in the subsystem or system can be predicted if no 
further testing is possible.  

Bayesian Reliability Estimation on System Level  

Current CubeSats often face the problem of “small sample” 
and “no-failure” situations while performing their system 
level functional test. To answer the question of “how much 
functional testing is enough”, even when no failure has been 
detected, while operating the system in a “day in the life 
mode”, Bayesian Methods can be used to estimate the 
probability of fulfilling certain reliability goals. Especially 

for CubeSats, this approach could lead to realistic reliability 
estimations and optimized test durations with respect to the 
high infant mortality.  

In general, by using the Bayes Theorem [30], prior 
knowledge can be combined with test results to a posterior 
knowledge: 

 �(�|�) = 	
�(�)�(�|�)

∫�(�)�(�|�)��
 (2) 

By using Bayesian inference, uncertainty in the underlying 
models, assumptions and test data can be quantified. 
Depending on the choice of prior (P(θ)) model and the 
observed test result (P(D|θ)), the posteriori knowledge can 
either be calculated using a closed-form expression (if a 
conjugate prior can be chosen) or Markov Chain Monte Carlo 
(MCMC) methods. So far, work has been published on the 
analysis of deployment systems [31] and on the analysis of 
design risk for small satellites [32] using Bayesian Methods. 

So far, 3 possible ways of utilizing Bayesian inference within 
system level testing of CubeSats have been identified as 
suitable candidates for the Reliability Estimation Tool. In 
every case, heritage information from past CubeSat missions 
in the system level (e.g., the Weibull functions of chapter 4) 
or on subsystem level ([4]) shall be used as an input for prior 
knowledge. Furthermore, for upcoming mega-constellations 
or series of satellites, in-field data could be used as an 
alternative source of prior knowledge. Prior knowledge in our 
Bayesian Reliability model means to have a certain 
probability density function (PDF) or a certain cumulative 
density function (CDF) for the reliability of the system or the 
subsystem over time.  

Weibayes Analysis—A classical approach to deal with small 
test data and no-failure situations in reliability prediction is 
the Weibayes Analysis [33]. Using historical failure data, 
prior knowledge or engineering knowledge, a reasonable 
shape parameter β has to be assumed in the beginning. In our 
case, historical data for β can be obtained through the CFD. 
It still has to be evaluated if Weibayes is not too conservative 
for Reliability Estimation purposes on system level. 

Bayesian Updating using Gamma Prior and Poisson 
Likelihood Models— Another way of dealing with the prior 
information would be to assume a Gamma Function (1-CDF) 
of past CubeSats (3) as our prior knowledge. The Gamma 
function in Figure 3 was built using a shape parameter k = 
0.442028 and a scale parameter θ = 8000. As described in 
[34], a Poisson likelihood model could subsequently be used 
to update the gamma function with test data obtained through 
continuous testing. 

Bayesian Updating using alternative Prior & Likelihood 
Models—As a third option, other prior models and likelihood 
models could be used to describe the test data obtained. Other 
statistical distributions could be more suitable to correctly 
describe the prior and likelihood data obtained. Although, 
from a mathematical point of view, it will be easier to search 
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for a conjugate prior to the likelihood of the test result, also 
numerical solutions using Markov Chain Monte Carlo 
(MCMC) methods, for example with Weibull distributions, 
could be implemented. One possible solution with a 
conjugate prior will be discussed in chapter 6. 

Overall, if prior knowledge about past missions (on system 
as well on subsystem level) are used via Bayesian Inference, 
a posterior solution of the CubeSats reliability can be 
assessed not only taking the often limited information on 
system level testing, but also the reliability from past 
missions into account. Still, more work has to be done in 
order to resolve the question which Bayesian inference 
method is the most suitable to be used for CubeSat reliability 
prediction. 

5. APPLICATION TO MOVE-II  

The applicability of the refined Reliability Growth Tool has 
been proven by its utilization in the CubeSat project MOVE-
II. To optimize the resources within our team, we estimate the 
time needed for any functional test activity. This estimation 
is based on historical data and expert opinions. The estimated 
time can be assessed against the predicted time (out of 
equation (1)) to find the next failure. If we see a saturation 
before the end of the estimated testing, resources can be 
reallocated for other test. On the other hand, if there is no 
saturation foreseeable when the estimated time for the 
functional test is reached, the remaining risk and the 
additional time needed can be quantified. 

One illustrated example is the functional test of one critical 
aspect of the command and data handling subsystem (CDH) 
during the preparation for a high altitude balloon flight of the 
MOVE-II hardware. The test object was the Serial Peripheral 
Interface (SPI) bus that connected the command and data 
handling subsystem with the RF-communications boards. 
The system is chosen as an example, since the state space of 

this interface is actually very small for a technical system. 
Only ten commands can be transmitted. The used state space 
included four alternatives for every command [29]: 

- a random valid content 
- a random invalid content 
- the upper limit of the valid contents 
- the lower limit of the valid contents 
 
Eighteen of these forty possible input configurations were 
tested in two steps. Figure 4 depicts the first (red) and second 
(blue) series of tests. While the first series of tests lead to a 
quick rise in cumulative failures, signs of saturation can be 
seen during the second series after corrective actions to the 
series 1 hardware configuration. For the first series of tests, 5 
hours were needed in total for preparation and execution of 
all tests. With 10 input configurations, a total sum of 10 
failures were detected. For the second series of tests, a total 
sum of 9 hours was needed for preparation and testing. 
Nevertheless, only 2 failures were detected with 8 input 
configurations. After the two tests, the state space was 
covered to 45%. Extrapolating the second series, a total sum 
of 19 functional failures could be expected in the system with 
40 different possible functional test configurations (not 
including environmental tests, only functional tests 
considered).  

However, to find the theoretically predicted 7 failures 
remaining in the system (see equation (1)), a disproportionate 
expense in resources allocation would have been needed. Out 
of this considerations, the test was stopped at this stage, 
accepting the risk posed by the potentially remaining 7 
undetected failures. By using the Reliability Growth Model 
within the Reliability Estimation Tool for CubeSats, tradeoffs 
can be made whether to continue a certain functional test to 
detect possible functional deviances in the system or not.  

Figure 3. CubeSat reliability with MLE Gamma parametric fit. – 360 days in orbit 
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Figure 4. First and second series of tests on the SPI 
module of the CDH-subsystem of MOVE-II 

6. CONCLUSIONS AND DISCUSSION 

We presented ongoing research on a novel Reliability 
Estimation Tool for CubeSats based on reliability growth 
models over tested input configurations and based on 
Bayesian Inference of failure free test data with historical 
reliability data. Both methods were developed within the 
CubeSat project MOVE-II, but further work has to been done 
to fine-tune the underlying models. For the Bayesian 
Reliability Estimation Model, the right choice of prior and 
likelihood models for our test data has to be evaluated.  

In the case of failure-free testing time, while doing the system 
level functional test, the test data (i.e. the likelihood) could 
be interpreted as a Pareto function, with the time of failure-
free testing being the known minimum of xm. Hence, 
assuming a hypothetical failure-free test time of 100 days, a 
Pareto function with xm=100 days could be chosen as 
underlying model for the likelihood function. This resembles, 
from a functional point of view, all the information we have 
about the system: while continuously in operation, there are 
no problems to be expected from a functional point of view 
until the time xm. On the other hand, after the 100 days we 
don’t have any information about the system. In the worst 
case, this could be resembled as a shape parameter of α = ∞, 
resulting in reliability of zero (1-CDF). This rather optimistic 
(xm=100 days) interpretation of the first 100 days and rather 
pessimistic (α = ∞) interpretation of the time afterwards of 
the test results could be merged with prior knowledge 
(precursor mission, other CubeSats, expert knowledge). In 
our case, the Gamma distribution of the CFD (Fig. 3) could 
be our prior knowledge. It is a conjugate prior distribution to 
the Pareto distribution, thus, a closed form of the posterior 
expression is possible. Hence, no numerical solutions are 
needed while generating the posterior solution using Bayes’ 
theorem. The resulting posterior knowledge is an 
interpretation of all the reliability information we have on the 
system.  

Depending on the setting of the mission, other prior 
information than past CubeSat mission could also be taken 
into account. Expert elicitation (n=113) on the likelihood of 
failure for a university-built CubeSat mission within the first 
six months would be another source of prior information [4], 
specifically tailored to university teams. Other proprietary 
knowledge on past missions as well as in-house expert 
estimations can be included, if desired.  

Thus, by using the estimation model, a certain test time for 
the likelihood of the survival of the system for a pre-defined 
time could be assessed by the CubeSat developers with 
respect to their specific heritage, using all information 
obtainable. Furthermore, simulations can be made on certain 
reliability goals over time and the necessary failure-free test 
time needed for that. One must keep in mind that the 
functional tests mentioned only cover functional errors and 
not failures due to environmental issues in space, other than 
those tested in analog environmental tests on ground.  

Finally, developers of future constellations and series of 
SmallSats could use the method while mass producing their 
vessels. On-orbit data as well as test data on the ground can 
be incorporated and used for improving the reliability 
prediction models while reducing the infant mortality due to 
functional errors. Hence, the testing time and the design-
lifetime could be fine-tuned using a methodology like the 
proposed one.  

It is planned to use the Model within the system level tests of 
MOVE-II starting in May 2017. However, to estimate the 
necessary failure-free testing time needed for the reliability 
goals of the mission, an assessment beforehand will be 
necessary. In the future, it might be possible to use on-orbit 
reliability data of MOVE-II as prior information on 
subsequent missions. 
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