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Treating large bone defects is still a clinical challenge without perfect solution, mainly due
to the unavailability of suitable bone implants. Additively manufactured (AM) absorbable
porous metals provide unparalleled opportunities to realize the challenging requirements
for bone-mimetic implants. Firstly, multi-scale geometries of such implants can be
customized to mimic the micro-architecture and mechanical properties of human bone.
The interconnected porous structure additionally increases the surface area to facilitate
adhesion and proliferation of bone cells. Finally, their absorption properties are tunable
to maintain the structural integrity of the implant throughout the bone healing process,
ensuring sufficient loadbearing when needed and full disintegration after their job is
done. Such a combination of properties paves the way for complete bone regeneration
and remodeling. It is important to thoroughly characterize the biodegradation behavior,
mechanical properties, and bone regeneration ability when developing ideal porous
absorbable metal implants. We review the state-of-the-art of absorbable porous metals
manufactured by selective laser melting (SLM), with a focus on geometrical design,
material type, processing, and post-treatment. The impact of the latter aspects on
absorption behavior, resulting mechanical properties, and cytocompatibility will also
be briefly discussed. In comparison to their solid inert counterparts, AM absorbable
porous metals (APMs) have shown many unique properties and hold tremendous
potential to further optimize their application-specific performance due to their flexible
geometrical design. We further highlight challenges in adopting AM APMs for future
Orthopedic solutions.

Keywords: selective laser melting, absorbable implants, structure, corrosion, biomechanics

INTRODUCTION

Despite their self-healing abilities, large bone defects do not heal spontaneously and globally
require millions of bone grafting procedures annually (Wu et al., 2014; Zhang L. et al., 2019).
At present, 15–20% of the Western World population is 65 years or older and our aging society
will soon face a dramatic increase in the demand for bone implants. This will cause increased

Frontiers in Materials | www.frontiersin.org 1 April 2021 | Volume 8 | Article 628633

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2021.628633
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmats.2021.628633
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2021.628633&domain=pdf&date_stamp=2021-04-16
https://www.frontiersin.org/articles/10.3389/fmats.2021.628633/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-08-628633 April 12, 2021 Time: 17:8 # 2

Jahr et al. AM Absorbable Porous Metal Implants

medical care costs as well as patient morbidity and mortality
(Geetha et al., 2009; Fayaz et al., 2011; Loi et al., 2016).
Current clinically applied bone grafts comprise autografts
(a person’s own bone tissue), allografts (donor bone), and
xenografts (non-human tissue). While devitalized allografts
provide osteoconductive scaffolds of compromised mechanical
stability for smaller defects (Giedraitis et al., 2014; Allsopp
et al., 2016). Allografts and xenografts hold risks such as
transplant rejection due to alloimmunity, transmitting diseases,
infections, and compromised osteogenesis (Dimitriou et al.,
2011). Therefore, autografts are the superior gold standard.
However, they suffer from a limited supply, donor site
morbidities, and complication rates of up to 40% (Van der Stok
et al., 2011; Wang and Yeung, 2017).

Implants to treat critical-sized bone defects are, thus,
particularly sought after on a bone grafts and substitutes
market being valued at $4.15 billion by 2026 (Zhao et al.,
2017; Polaris Market Research, 2020). Apart from being
biocompatible, an ideal bone substitute might have a fully
interconnected porous structure to allow for bone ingrowth
and possess bone-mimetic mechanical properties to provide
sufficient support, while avoiding stress shielding (Wen et al.,
2001; Oh et al., 2003; Zadpoor, 2015). Highly porous metal
implants were, therefore, introduced to improve biomaterial
properties of traditional solid metals. With appropriately
designed porosities, surface coefficients, and elastic modulus
(Young’s modulus), they already mimic characteristics of
cancellous bone (Amin Yavari et al., 2013; Matassi et al., 2013).
Further advantages of 3D-printed biomedical metals over
traditional implants include cost-efficiency, personalized design,
and implantation site-specific tunable mechanical performance
(Yan et al., 2018). However, like traditional solid permanent
implants, they are still at risk of implant-associated infections
or may require revision surgeries, with potential complications
and unnecessary hospitalization and rehabilitation costs
(Hexter et al., 2018).

Geometrically ordered AM porous metal implants with
proper absorption profiles now offer these unique material
properties and the possibility to fully regenerate bony defects
with native bone. Absorbable implants would further allow
regenerating bone tissue to replace the implant instead of
growing around it or just into its interconnected pores.
Given the implant’s complete disintegration, any risk of
long-term infection would disappear with it – as opposed to
permanently retained implants (Chen et al., 2014). So far, it has
been challenging to produce porous absorbable biomaterials
fulfilling all these requirements and the quest for ideal bone
substituting materials is still booming (Oryan et al., 2014).
We will specifically focus on absorbable porous implants
manufactured by SLM technology, as AM biodegradable metals
were recently reviewed (Li et al., 2020a), and summarize the
impact of topological design- and material type-dependent
differences in the corrosion behavior and corresponding
mechanical properties. Furthermore, present shortcomings in
adopting these implants for orthopedic applications and future
opportunities will be briefly discussed.

ADDITIVE MANUFACTURING OF
ABSORBABLE METAL IMPLANTS

Additive Manufacturing Technologies
Current bone-substituting porous biomaterials may comprise
polymers, ceramics, and metals (Do et al., 2015). Polymer-
based biomaterials offer biofunctionalization and tailored
biodegradation through design flexibility (Liu and Ma, 2004),
while ceramic-based biomaterials are recognized for their
favorable biodegradability and superior osteoconductivity (Seitz
et al., 2005). For fully load-bearing applications in humans the
former are too soft, while the latter are too brittle (Zhang
L. et al., 2019). Metallic implants, on the other hand, have
remarkable strength and energy absorption capacity, making
them most suitable for such applications (Chen and Thouas,
2015). Complex design considerations are required to fabricate
ideal porous metal bone implants. There are three main types
of metal AM techniques, (i) directed energy deposition (DED),
(ii) powder bed fusion (PBF), and (iii) binder jetting, which
are described elsewhere in more detail (DebRoy et al., 2018;
Li et al., 2020a). Generally, DED and PBF are both direct AM
metal printing techniques, which can be further sub-divided by
their heat source. Selective laser melting (SLM, Figure 1) is a
laser-based PBF technology, also known as direct metal laser
melting (DMLM) or laser powder bed fusion (LPBF). A more
comprehensive overview on AM techniques for bio-inert metals
also addresses their limitations (Li et al., 2020a). At present, LPBF
is considered the most appropriate method for building complex
porous structures and yet only absorbable porous metals meet all
requirements to become ideal bone substitutes (Liu et al., 2017;
Li et al., 2020a).

In contrast to bio-inert metals, AM absorbable metals
(especially Mg and Zn) have low boiling temperatures and
high chemical activities, posing new challenges for LPBF
processing (Qin et al., 2019). Inappropriate processing conditions
may cause defects, such as voids, lack of fusion, rough
surfaces, severe residual stresses, and distortions. Even for Fe,
evaporation can occur at high laser intensities (Kruth et al.,
2004) and precise process control is, therefore, essential to
successfully fabricate topologically ordered porous implants from
absorbable metals by AM.

The type of PBF process applied potentially differentially
affects the mechanical properties of porous metal products.
Internal pores, inclusions, and cracks inside the struts of an
implant can deteriorate its mechanical properties (Qin et al.,
2019; Li et al., 2020a). Manufacturing defects of AM porous
Zn may act as crack initiation sites, potentially shortening the
fatigue life of an implant (Ahmadi et al., 2018). Optimizing
the energy density tends to improve densification, and, thus,
mechanical properties of SLM Mg alloys [e.g., AZ91 (Wei et al.,
2014)], while different SLM process parameters affect the size
and orientation of grains, thereby affecting mechanical properties
as well (Manakari et al., 2016; Qin et al., 2020). Absorbable
porous metals generally tend to have much finer grain sizes than
their conventionally produced counterparts. This can improve
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FIGURE 1 | Schematic representation of requirements, material properties, and corrosion characteristics of absorbable metals for bone repair. (A) Relationship
between corrosion speed-dependent mechanical support (orange line) of an absorbable implant (Hermawan, 2018) and projected mechanical support by bone
regeneration (green line). Stages of bone healing are indicated in orange. Dependent on the defect site and size, mechanical implant integrity should remain high
enough for about 3–6 months, to ensure initial mechanical support prior to implant failure by progressive corrosion. (B) Comparison of mechanical properties of
selected biomaterials to those of bone (lower left values = trabecular, upper right values = cortical), polymers [e.g., poly(lactic acid), poly(glycolic acid), or
polyhydroxybutyrate in light blue; polyetheretherketone in dark blue], Mg/alloys (green), titanium (Ti)/alloys (gray), Zn/alloys (yellow), iron/steel (brownish),
cobalt-chromium (Co-Cr)/alloys (light gray), and ceramics (ZrO2 and Al2O3, dark gray). Age- and gender-dependent Dietary Intake Recommendations (DRI) for Mg,
Zn and Fe (in mg) are values for older adults (females-males) (Marian and Sacks, 2009). Note that DRI of Mg is 42 times higher than that of Fe and Zn, respectively.
(C) Schematic of an SLM process (a) with different topological designs of absorbable metals (b), and Electron Back-Scattered Diffraction (EBSD) images of these
SLM metals (c), next to the macroscopic appearance of identically designed scaffolds with their respective weight loss (%) after 28 days of standardized
quasi-physiological in vitro absorption (d). Note the white and brownish corrosion products on Zn and Fe scaffolds, respectively.

their strengths according to the Hall-Patch relationship (Li et al.,
2018a, 2019a, 2020d).

Absorbable Metal Families
Recently, absorbable (ASTM F3160-16), or “biodegradable,”
metals received increasing interest as they possess excellent
mechanical properties and degrade in the human body without
concerning long-term fatigue damage and revision surgery as
compared to permanent counterparts (Do et al., 2015; Liu et al.,
2017; Hermawan, 2018). The currently considered absorbable
metal families comprise iron (Fe), magnesium (Mg), and zinc
(Zn) (Li et al., 2020a; Wang et al., 2020). A comparison of the
different mechanical properties of selected biomaterials to those
of native bone illustrates the attractiveness of Mg, and its alloys,
for load-bearing Orthopedic applications, and why Fe would
benefit relatively the most from a decreasing Young’s modulus
through increasing porosity (Figure 1B).

In contrast to traditional permanent implants with almost
constant mechanical properties, those of absorbable implants
are supposed to change with time. The projected different and
increasingly load-bearing phases of bone tissue regeneration have
to keep pace with the corrosion speed-dependent decreasing
mechanical support by the implant (Figure 1C).

Degradation behavior of AM absorbable bulk and porous
metals are compared in Table 1. Importantly, the influence
of loading on their corrosion behavior is currently poorly
appreciated. Absorption of AM porous absorbable metals (PAM)
can, however, be controlled not only by their material type
or chemical composition (i.e., alloying), but also through their
microstructure and geometrical design (Li et al., 2020a).

Corrosion Behavior of Absorbable
Metals
Depending on their anatomic location, healing rates of bone may
differ. Most Orthopedic and cardiovascular applications require

mechanical support of at least three and 4 months, respectively,
ideally being fully absorbed within 2 years (Zheng et al., 2014;
Francis et al., 2015; Venezuela and Dargusch, 2019). Bone fixation
devices are further suggested to have degradation rates of less
than 0.5 mm/year (Chen et al., 2014; Zheng et al., 2014). In
contrast, there is no widely accepted criterion for the corrosion
rate of absorbable implants. Controlling degradation speed in situ
is thus utmost important to avoid premature implant failure
and proper corrosion testing of absorbable metallic materials
in vitro is crucial. Logically, ideal degradation rates would
match the location-specific bone regeneration pace (DebRoy
et al., 2018). Therefore, means to control the corrosion rates
of PAMs are highly sought after. Absorbable metals, and their
corrosion products, must further be biocompatible, which will
be briefly discussed in section “Biocompatibility and Clinical
Application Potential”.

The electrode potential values of pure Fe, Mg, and Zn
are −0.44, −2.37, and −0.76 V, respectively (Zheng et al.,
2014). This suggests the lowest and highest degradation rates
for Fe and Mg, respectively, with Zn having an intermediate
rate. Biodegradation changes mechanical properties and fatigue
behavior of AM PAMs. It decreases the fatigue life of SLM
porous Mg and Fe (Christen et al., 2013; Nune et al., 2016):
SLM porous absorbable Mg and Fe showed decreasing yield
strengths and stiffnesses within 28 days of in vitro degradation
under quasi-physiological conditions (i.e., in revised simulated
body fluid, r-SBF). Currently, uncoated AM porous Mg and
its alloys appear to corrode too fast and may prematurely
fail in vivo.

Solid Zn implants corrode too slowly for most orthopedic
applications and first 3D-printed Zn alloys recently improved
this (Wen et al., 2018a,b). Surprisingly, after 28 days of
biodegradation under the same conditions as for Mg and
Fe, SLM porous Zn revealed increased mechanical properties
as compared to as-built controls (Li et al., 2018a,b, 2020c),
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which was explained by formation of degradation products.
Those are 5-times harder than AM Zn itself (Li et al., 2018a)
and tightly bind to AM Zn (Li et al., 2020b). Vascular
applications of zinc-based alloys were recently critically reviewed
(Mostaed et al., 2018).

Alloying-Dependent Corrosion Behavior
During 28 days of in vitro corrosion, AM WE43 implants lost
almost 20% of their weight, whereas AM Fe and Zn exhibited
only 3% and 8% weight loss, respectively (Li et al., 2018b;
Figure 1A). As Mg generally degrades too fast and Fe too

TABLE 1A | Comparison of mechanical properties of selected solid and porous absorbable metals produced by SLM.

Metal Alloy Unit cell design Porosity Testing method Elastic modulus Ultimate strength Yield strength References

(%) (GPa) (MPa) (MPa)

Mg pure indentation 27–33 Ng et al., 2011a

pure indentation 33–35 Ng et al., 2011b

AZ91D tensile 296 254 Wei et al., 2014

WE43 tensile 45.7 ± 1.5 308 296.3 ± 2.5 Zumdick et al., 2019

Mg compression 51 Zhou et al., 2016

Mg-1Zn tensile 148 Wei et al., 2019

Mg-2Zn 71

Mg-4Zn 60

Mg-6Zn 45

Mg-8Zn 44

Mg-10Zn 63

Mg-12Zn 74

Fe pure tensile 215.8 ± 20 411.5 ± 25 305.3 ± 20 Song et al., 2014a

pure tensile 208 ± 16 357 ± 22 256 ± 17 Song et al., 2014b

Pure compression 200 Montani et al., 2017

Zn Pure tensile 14–32 132–138 108–122 Wen et al., 2018b

pure tensile 20.47 ± 5.71 137.9 ± 2.48 122.13 ± 2.61 Wen et al., 2018a

pure compression 99 ± 22 Montani et al., 2017

pure tensile 117–133 93–110 Qin et al., 2020

pure compression 146 Shuai et al., 2018c

Zn tensile 12.2 ± 2.4 61.3 ± 5.0 43.2 ± 3.1 Yang Y. et al., 2018

Zn-1Mg tensile 18.8 126.3 ± 3.6 74.1 ± 3.8

Zn-2Mg 25.2 161.8 ± 5.6 117.4 ± 5.4

Zn-3Mg 48.2 ± 4.2 222.3 ± 8.2 152.4 ± 4.8

Zn-4Mg 57.5 ± 4.8 166.4 ± 7.4 131.6 ± 7.5

Zn-2Al 141.7–192.2 121.4–170.5

porous Mg WE43 lattice 76.20 compression 15 Kopp et al., 2019

WE43 bending 20–23 Witte et al., 2016

WE43 diamond 67 compression 0.77 27 23 Li et al., 2018b

porous Fe Fe cubic 66.72 ± 2.3 compression 135 ± 5.2 70.3 ± 4.2 Shuai et al., 2020

Fe-25Mn sheet 42 compression 221.7 ± 10.9 137 ± 8.4

Fe-35Mn 33.5 ± 1.7 304.0 ± 7.4 89.2 ± 1.9 Carluccio et al., 2020

Fe diamond 84.6 ± 0.4 compression 1 11.4 Li et al., 2019a

69.7 ± 0.2 1.4 29

70.3 ± 0.5 1.8 30.7

58.9 ± 0.3 2.8 53.6

Fe diamond 73 compression 1.8 23.7 Li et al., 2018a

Fe + 28d 1.6 22.4

porous Zn Zn diamond 72.6 ± 2.3 compression 399.765 4.165 Li et al., 2020c

diamond 68.5 ± 2.3 457.085 6.31

62.0 ± 2.5 785.67 10.835

AZ91D (8.3–9.7% Al, ≤0.03% Cu, ≤0.005% Fe, ≤0.002 Ni, 0.35–1.0% Zn, 0.15–0.5% Mn, ≤0.1 Si, 0.02% other metals); WE43 (UNS M18430; rare earths 2.4–4.4%,
3.7–4.2% Y, 0.4% Zr).
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TABLE 1B | Corrosion behavior of selected solid and porous absorbable metals produced by SLM.

Material Alloy composition Unit cell design Porosity Pore size Duration Testing medium Control Weight loss CRI CRE References

(%) (mm) (days) (%) (mm/year) (mA/cm2)

Mg Mg 10 SBF 13.30 Zhou et al., 2016

Mg-1Sn 7.70

Mg-3Sn 14.80

Mg-5Sn 19.10

Mg-7Sn 22.50

AZ61 6 1.2–2.7 He et al., 2017

ZK60 7 SBF 2.1 44.2 Shuai et al., 2018b

ZK60-0.2Cu 2.4 60.4

ZK60-0.4Cu 2.5 85.3

ZK60-0.6Cu 17 485.7

ZK60-0.8Cu 30 827.5

ZK30 SBF 131 ± 14 Shuai et al., 2018a

ZK30-1Al 68 ± 6

ZK30-3Al 24 ± 6

ZK30-5Al 156 ± 26

ZK30-7Al 340 ± 28

Mg-6Zn-0.5Zr 28 SBF 1.58 ± 0.21 36.2 ± 2.3 Yang Y. et al., 2018

Fe Fe HANKS 6.2 ± 0.1 Carluccio et al., 2019

Fe-2Pd-2.5bredigite 21 SBF 0.22 17.78 Gao et al., 2019

Fe-2Pd-5bredigite 21 0.38 31.62

Fe-2Pd-10bredigite 21 0.5 39.81

Fe-4Pd-2.5bredigite 21 0.41 34.67

Fe-4Pd-5bredigite 21 0.6 50.12

Fe-4Pd-10bredigite 21 0.76 63.09

(Continued)
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TABLE 1B | Continued

Material Alloy composition Unit cell design Porosity Pore size Duration Testing medium Control Weight loss CRI CRE References

(%) (mm) (days) (%) (mm/year) (mA/cm2)

Zn Zn 21 HANKS 0.038–0.04 1.6–4.29 Qin et al., 2020

Zn 21 SBF 0.081 7.76 Shuai et al., 2018c

Zn-2Ag 21 SBF 0.086 5.01

Zn-4Ag 21 SBF 0.107 1.47

Zn-6Ag 21 SBF 0.114 9.56

Zn-8Ag 21 SBF 0.133 13.94

Zn-2Al 14 SBF 0.13–0.16 7.07–11.75 Shuai et al., 2019a

Zn 28 SBF 0.18 ± 0.03 9.24 ± 1.21 Yang Y. et al., 2018

Zn-1Mg 28 SBF 0.14 ± 0.01 5.86 ± 1.42

Zn-2Mg 28 SBF 0.13 ± 0.03 4.63 ± 0.95

Zn-3Mg 28 SBF 0.10 ± 0.02 3.62 ± 0.76

Zn-4Mg 28 SBF 0.11 ± 0.04 3.71 ± 0.87

porous Mg WE43 76.20 1131 21 DMEM CO2 40.20 Kopp et al., 2019

WE43 3 HANKS bioreactor 25 Witte et al., 2016

WE43 diamond 67 600 28 r-SBF HEPES 20.70 0.23 21–61 Li et al., 2018b

porous Fe Fe cubic 66.72 28 SBF 5.3 0.09 ± 0.02 7.38 ± 3.21 Shuai et al., 2020

Fe-25Mn 13.4 0.23 ± 0.05 51.25 ± 7.52

Fe35Mn sheet 42% 400 28 HANKS CO2,dynamic 0.42 ± 0.03 68.5 ± 2.1 Carluccio et al., 2020

Fe diamond 84.6 800 28 r-SBF bioreactor 16.7 0.2 Li et al., 2019a

69.7 10.3 0.14

70.3 8.9 0.17

58.9 400 5.1 0.11

Fe diamond 73% 28 r-SBF HEPES 3.10 0.03 102.8 ± 19.2 Li et al., 2018a

porous Zn Zn diamond 72.6 700 28 r-SBF bioreactor 11.9 0.17 Li et al., 2020c

68.5 graded HEPES 7.9 0.14

62.0 600 7.1 0.13

72.6 700 static 4.8 0.07

68.5 graded HEPES 3.3 0.06

62.0 600 3.8 0.07

Zn diamond 62.0 600 r-SBF HEPES 45 ± 2 Li et al., 2020d

AZ61 (M16600; Mg 94%, Zn 4.8–6.2%, Zr ≥0.45%); AZ91D (8.3–9.7% Al, ≤0.03% Cu, ≤0.005% Fe, ≤0.002 Ni, 0.35–1.0% Zn, 0.15–0.5% Mn, ≤0.1 Si, 0.02% other metals); WE43 (UNS M18430; rare earths
2.4–4.4%, 3.7–4.2% Y, 0.4% Zr); ZK61 (Mg 93%, Al 6%, Zn 1%); DMEM, Dulbecco’s Modified Eagle’s Medium (NaHCO3-buffered with sodium pyruvate and L-glutamine); HANKS, sodium bicarbonate-buffered salt
solution (0.35 g/L NaHCO3, 1 g/L glucose); SBF (142 mM Na+, 5 mM K+, 1.5 mM Mg+, 2.5 mM Ca2+, 148.8 mM Cl−, 4.2 mM HCO3

−, 1 mM HPO4
2−, TRIS–buffered) (Kokubo and Takadama, 2006); r-SBF

(HEPES-buffered SBF with 103 mM Cl−, 27 mM HCO3
−, and additional 0.5 mM SO4

2−) (Oyane et al., 2003). CRI, Corrosion rates determined gravimetrically from immersion tests; CRE, Corrosion rates determined
electrochemically. Tests requirements: bone substitute, not known; bone fixature < 0.5 mm/year (Chen et al., 2014); stents < 0.02 mm/year (Bowen et al., 2013).
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slowly, recent efforts were mainly directed toward tuning their
corrosion behavior by alloying. This may lead to grain refinement
to improve degradation resistance of Mg, but can generate
second phase(s) or cause grain boundary segregation, both of
which can accelerate galvanic degradation. Biodegradation rate
of SLM Mg was reduced by alloying with 1% Sn, while higher
percentages of tin increased corrosion rates likely due to second
phase(s) overshadowing the grain refinement effects (Zhou et al.,
2016). Similar results are reported for SLM ZK30 (Shuai et al.,
2018a). However, alloying Mg with aluminum (Al), like in AZ91
(8.3–9.7% Al) or AZ31B (2.5–3.5% Al), reduces its corrosion
rate at the expense of its biocompatibility (Ghosh et al., 2020).
A comparison of degradation rates of Fe-, Zn-, and Mg-based
alloys (including AZ31B) was recently published, illustrating
the improved corrosion resistance of Mg0.8Ca and Mg1Zn
(Mei et al., 2020).

Corrosion rates of Fe-Mn alloys are reported to be higher
than those of AM pure Fe (Li et al., 2019b; Shuai et al., 2020)
because of increased galvanic degradation. Fe-20Mn was recently
reported to have a decreased corrosion rate as compared to
the pure metal, though (Mei et al., 2020). Addition of silver
to Zn increased its corrosion rate, while, interestingly, addition
of Mg to Zn either decreased or increased it, probably due to
concentration-dependent different impacts of grain refinement
and second phase (Shuai et al., 2018c; Yang Y. et al., 2018;
Mei et al., 2020).

Impact of the Composition of the Test
Solution on Corrosion Behavior
Published discrepancies between absorbable metal corrosion
behavior likely result from non-comparable test conditions (Mei
et al., 2020). To mimic human body physiology, it remains
meaningful to use buffers to keep pH values constant (Törne
et al., 2017). The addition of buffers like HEPES, however, can
destabilize protective layers and accelerate Mg degradation by
a magnitude. In absence of corrosion accelerating Tris–HCl,
formation of uniform protective corrosion product layers slows
corrosion rates in DMEM as compared to SBF (Liu et al., 2019).
Using HEPES promoted the formation of passive layers in NaCl
solution to reduce corrosion rates, while it showed opposite
effects in SBF (Liu et al., 2019).

Of the few studies comparing the corrosion rates of these
metals directly under similar conditions, a recent study analyzed
all three metals in two simulated physiological solutions, and
reported their exact composition for the 28-day immersion tests
(Dong et al., 2021). In essence, corrosion rate was initially
slower in Dulbecco’s Modified Eagle’s Medium (DMEM) for
all three metals, with Mg showing the fastest burst corrosion
rate in both SBF and DMEM. Intriguingly, the ranking of
the relative corrosion speed changed over time, showing an
increasing corrosion resistance of Mg after the initial 24 h, which
confirms earlier data (Li et al., 2018b, 2020a). Typically, the
corrosion rate of Mg is decreased as a function of increasing
complexity of the medium, which indicates an urgent need to
develop standard protocols for corrosion tests of absorbable
metals (Mei et al., 2020). With a focus on Mg, recently a

selection guide for corrosion media for absorbable metals,
summarizing their advantages and shortcomings, was reported
(Mei et al., 2020).

Design- and Post Manufacturing-
Dependent Corrosion Aspects
Bone tissue is characterized by a gradual change in porosity
from the outer cortical, compact bone toward an inner
spongy tissue, with long bones being typical examples. This
porosity and directionality is highly graded and dependent
on local mechanical stimuli (e.g., strain energy density)
(Campoli et al., 2012; Christen et al., 2013; Hazrati Marangalou
et al., 2013; Zadpoor et al., 2013; Geraldes and Phillips,
2014; Nune et al., 2016). It is tempting to mimic these
natural structures in AM porous implants as they will
eventually be surrounded by new bony tissue of similar micro-
architecture and biomechanical characteristics (Nune et al., 2016;
Zhang X.-Y. et al., 2019).

AM porous absorbable metals showed a strongly location-
dependent corrosion behavior. The core of cylindrical AM
porous Mg implants corroded much more prominently than
their periphery (Li et al., 2018b); potentially due to limited
diffusion upon accumulation of degradation products within
the narrow spaces between struts, where Mg ions locally may
cause crevice-like corrosion. In contrast, AM porous Zn corroded
primarily localized in a contact zone with the reaction vial,
likely due to hindered diffusion (Li et al., 2020c). Despite further
identical designs and testing methods, in vitro degradation of
AM porous Fe occurred more prominently on its periphery
than in its core (Figures 1C; Li et al., 2018a). We recently used
geometrical design to control biodegradation of SLM porous
Fe to show that corrosion rates were directly proportional to
its porosity. Furthermore, its biodegradation profiles could be
tuned using functionally graded designs (Li et al., 2019a). This
was later confirmed for Zn (Li et al., 2020c), underscoring
the importance of rational design strategies for AM PAM
implants (Table 1).

Similar to inert AM porous metals, yield strengths and elastic
modulus of AM PAMs are directly related to their porosity
through a power law (Li et al., 2019a, 2020c). Two types of
unit cells are prevalent: (i) lattice structures and (ii) sheet-
based structures (Figure 1C) such as minimal surface designs
(Zadpoor, 2019a). The former can be subdivided into bending-
and stretch-dominated structures; with bending-dominated types
generally having a higher energy absorption ability, while the
latter structures show higher stiffnesses and yield strengths
(Deshpande et al., 2001; Zadpoor, 2019b). SLM porous Fe
cubic unit cell-based designs possess higher yield strengths
than diamond unit cell types (Li et al., 2018a; Shuai et al.,
2020). AM Zn of constant porosity also showed unit cell-
dependent mechanical properties (Lietaert et al., 2020), but
unit cell types also likely determine failure modes of scaffolds
under compression (Mazur et al., 2016; Bobbert et al., 2017).
SLM-based AM of functionally graded porous Fe and Zn of
precisely controlled geometries were reviewed (Li et al., 2020a),
realizing implants of trabecular bone-like mechanical properties
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(Li et al., 2019a, 2020c). Fatigue cracks tend to initiate at
junctions between two struts where stress concentration occurs
under compression, when using a diamond unit cell design (Li
et al., 2019b,c, 2020b). Graded structural design could increase
fatigue strengths of SLM porous Zn (Li et al., 2020b), confirming
earlier results for functionally graded porous EBM Ti-6Al-4V
(Zhao et al., 2018).

Surface roughness likely affects corrosion rates of absorbable
metals, too (Walter et al., 2013). As porous PBF implants
often suffer from adhered powder particles loosely sintered
to their struts, smoothening their surfaces can alter corrosion
profiles, especially during the initial phase. Chemical etching or
sandblasting are frequently used for polishing (Li et al., 2018a,b;
Wen et al., 2018a,b), which may decrease their compressive
mechanical properties (Hermawan, 2018; Li et al., 2018b).
Sandblasting was found to improve fatigue resistance of inert
AM porous titanium (Ahmadi et al., 2019). However, most
surface treatment procedures fail to yield smooth homogeneous
surfaces on both the periphery and inside the core of a porous
implant (Li et al., 2018b, 2019a), stressing the importance of
sophisticated quality control. Sandblasting can further induce
compressive stresses under the surface, which may affect
corrosion rates, too. Heat treatment increased degradation rates
of AM WE43, but PEO coating seemed to decrease it (Kopp
et al., 2019), and vacuum annealing increased yield strength of
SLM Fe (Song et al., 2014b). Overall, AM processes may cause
unique defects and microstructures, affecting their corrosion
profile over time. Contrary to Mg, smaller grains of SLM
Fe increased its corrosion rate as compared to cold-rolled
Fe with larger grains (Li et al., 2018a), as the relationship
between grain size and corrosion rate may dependent on the
level of passivity on the metal surface (Ralston et al., 2010).
Logically, HA coating on AM Fe scaffolds decreased its ion
release during in vitro biodegradation (Yang C. et al., 2018).
Of note, different AM process parameters result in different
grain structures, which may also affect corrosion rates as shown
for SLM Zn fabricated at different scanning speeds (Qin et al.,
2020). Zn corrosion seems to increase with refined grain sizes
due to higher grain boundary densities (Osorio et al., 2005;
Qin et al., 2020), while nanocrystalline Zn provides apparent
degradation resistance (Youssef et al., 2004). Additionally, AM-
related residual internal stresses can affect degradation rates as
well (Li et al., 2020a).

Biocompatibility and Clinical Application
Potential
Significant amounts of the body’s Mg and Zn content are
stored in the inorganic bone matrix. The daily recommended
intake of Mg is about 40–45 times higher than that of iron
and zinc (Habibovic and Barralet, 2011; Florencio-Silva
et al., 2015), suggesting its good tolerability (Figure 1B).
Current clinical applications of magnesium-based implants
in Orthopedics were recently reviewed comprehensively
(Wang et al., 2020).

Several in vitro studies, as well as small animal studies,
reported promising results on using iron as scaffolding material

for cardiovascular and Orthopedic applications (Li et al., 2020a).
Also a recent large animal model using iron-based degradable
sponge-like implants manufactured by a powder metallurgical
replication method underscored its potential for self-degrading,
high load-bearing bone replacements (Wegener et al., 2020).
Smart designs can further increase corrosion rates of Fe toward
avoiding long-term side effects (Rahim et al., 2018), but own
studies on porous SLM iron implants prompt to caution (Li
et al., 2018a, 2020a). Corroding iron fragments are further known
to migrate through the body, causing chronic inflammation
(Rahim et al., 2018).

Zinc alloys with favorable corrosion kinetics and
biocompatible degradation products hold several promises
for e.g., stent applications (Rahim et al., 2018).

Appropriately modified magnesium-based implants are
already marketed for cardiovascular applications (e.g., stents)
and Orthopedic applications (e.g., compression or interference
screws) and recent studies claimed they are resorbed to 95%
within a year (Rahim et al., 2018). To better predict their
translational potential, improved standards are not only
needed for corrosion testing, but also for assessing their
cytocompatibility in vitro. Recommendations to improve ISO
10993-5/-12 for Mg (Jung et al., 2019), and a recent technical
corrigendum to ISO 10993-1:2009 (i.e., ISO 10993-1:2018) now
containing additional information on the evaluation of, among
others, absorbable materials, are important steps to facilitate the
translational development of novel absorbable biomaterials.

A series of identically designed cylindrical porous SLM
implants were used to systematically evaluate the cytotoxicity
of pure Zn, WE43, and pure Fe, using the same osteoblast-
like cells and identical assays (Li et al., 2018a, 2019a,
2020d) to reveal a decreasing cytocompatibility in this order
under these conditions. Like with corrosion testing, present
cytocompatibility studies are hardly comparable. Limitations
of most current studies further include very short in vitro
evaluation periods and highly cell type-dependent outcomes
(Li et al., 2020a).

In summary, SLM Fe appears to be relatively cytotoxic (Li
et al., 2018a), potentially limiting its applications, while pure
porous Mg corrodes fast (Hermawan, 2018). Currently, Zn and
its alloys, seems to have an intermediate absorption rate and a
reasonable cytocompatibility, which is currently based on only a
handful of reports (Table 1), primarily in a cardiovascular context
(Bowen et al., 2016; Drelich et al., 2017; Levy et al., 2017).

DISCUSSION

Mg and its alloys have a higher strength as compared to native
bone, but a Young’s modulus closely matching that of cortical
bone. Such properties overcome shortcomings of traditional
metallic and polymeric biomaterials (Wang et al., 2020) in
Orthopedics: polymers are often too weak, and solid metals like
titanium (Ti), iron (red) or steel (CoCr) are too stiff to mimic the
mechanical properties of bone, while ceramics (Al2O3 or ZrO2)
are too brittle for fully load-bearing implants in humans (Table 1
and Figure 1; Li et al., 2020a).
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Other recent review articles focused on the design and
degradation (Shuai et al., 2019b; Li et al., 2020a) of absorbable
Orthopedic implants, corrosion testing methods (Mei et al., 2020;
Dong et al., 2021), biomaterial- stem cell interactions (Gao et al.,
2017), the role of magnesium ions in bone repair (Wang et al.,
2020), and the clinical translation of absorbable metals (Han et al.,
2019; Wang et al., 2020).

In this mini review, we highlighted recent developments
in SLM-based AM of PAM implants as they hold incredible
potential to satisfy all basic functional requirements of an
ideal bone-substituting implant. Their microstructural design
holds a plethora of opportunities to fine-tune their corrosion
behavior to specific clinical applications. To facilitate the
transition from basic research into clinics, and to close
remaining knowledge gaps in this rapidly evolving field,
better standards for reporting corrosion test results and
cytocompatibility data are needed though. Thus, a lot needs
to be improved before widespread clinical application of such
materials is feasible.

Due to lacking data, it is currently still largely unclear
if in vitro corrosion rates of AM PAMs are by any means
predictive of the in vivo situation. Next to reporting test solution
details, it may be better to report weight loss percentages
in future evaluations in addition to degradation rates as
mm/year, because the latter unit makes more sense for bulk
absorbable metals to which it is usually applied. For porous
structures, the ratio of surface area to weight is much higher
than for bulk counterparts and changes constantly during
the degradation process. For bulk Mg, in vitro degradation
rates are generally 1–4 times higher than values obtained
in vivo, but are largely depending on the used alloy and
in vitro testing conditions (Sanchez et al., 2015). To tune
absorption rates of AM porous metals where needed, it is
imperative to understand how in vitro corrosion is affected by
chemical composition, microstructure, topological design, and
surface conditions.

To improve mechanical properties, (i) Mg, Fe, and Zn
alloys with higher mechanical properties need to be developed
specifically for AM, (ii) as of yet underappreciated stretch-
dominated or minimal surface designs as well as, and (iii)
functionally graded structures combining different unit cell
types and sizes should be considered. Transformation hardening
may more likely work for Fe-based absorbable alloys than
for Mg and Zn, or derivatives (Li et al., 2020a). As AM
is a net-shape manufacturing technique, most strengthening
mechanisms usually applied to bulk metals will not be applicable
and accessibility inside 3D porous structures will be severely
restricted. Rapid solidification during SLM results in finer
grains, with size adjustment potential by layer-wise thermal
history controlling. Process optimization and post-AM heat
treatments may also improve mechanical properties. Alloying
pure Fe with other elements might improve its biocompatibility,
mechanical properties and biodegradation rate. Exploring Mg-
based porous metallic glasses could result in AM Mg-based
porous biomaterials with simultaneously improved corrosion
resistance and mechanical properties. Zn-based mechanical
properties may benefit from alloying Zn with other elements,

particularly Mg and Ca. Better surface polishing methods and
procedures are also needed (Li et al., 2020a). Creep and aging of
AM Zn-based materials and their influences on the performance
of these materials need to be further investigated. Different
loading regimens (e.g., compression-tension, tension-tension,
bending, and torsion) should be applied to all AM PAMs. Finally,
future AM porous implants should not only consider initial
bone-mimetic mechanical properties, but also anticipate dynamic
changes during bone regeneration as well as parallel occurring
deterioration of the implant properties. Thus, requiring much
more sophisticated approaches.

This also holds for biocompatibility testing of novel implants,
a detailed discussion of which is beyond our scope. However,
good osteointegration would be a prerequisite to a successful
clinical translation. As was shown for iron and zinc (Ray et al.,
2018; Yang H. et al., 2018), novel coatings may be considered
to potentially tune implant degradation and bone formation
rates (Yu et al., 2017; Kang et al., 2019), too. It is envisioned
that appropriate (functional) coatings will improve bone-forming
abilities of all future AM PAMs. The few current in vivo studies
unanimously reported new bone formation around SLM porous
absorbable metal implants, but longer studies are desirable
(Wang et al., 2020).

The “materialome” should be established to guide novel
developments instead of pursuing a trial-and-error approach; (ii)
the influence of the geometrical design on mechanical properties,
corrosion behavior, cell-material-adhesion, and osseointegration
should be systematically investigated by experimental and
numerical approaches; (iii) the big gap between in vitro and
in vivo results has to be closed. The plethora of educt and process
parameters will become a serious challenge which may require
real-time monitoring of the melt pool and powder bed in situ
(Li et al., 2020a).

General recommendations for potentially interesting future
work include (i) considering machine learning approaches
to improve the selection of the process parameters and to
better appreciate the complex relationships between chemical
composition, lattice structure geometry, processing parameters,
microstructure, and the resulting mechanical properties.
A bright future awaits SLM porous absorbable metal implants
when satisfying basic functional requirements of an ideal
bone-substitute becomes achievable. Yet, more sophisticated
round-robin evaluations are required to close current gaps
in our knowledge.
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