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Abstract. Computational fluid-structure interaction is commonly performed using a
partitioned approach. For strongly coupled problems sub-iterations are required, increas-
ing computational time as flow and structure have to be resolved multiple times every
time step. Reductions in computing times can be achieved by e.g. improving the conver-
gence of the sub-iteration technique and/or performing sub-iterations on a coarse level,
but also by improving the iterative solver used in the flow solver.

In this paper we investigate the combination of a multilevel acceleration technique for
sub-iterations which employs a Newton-Krylov solver on the coarse level to obtain high
convergence for the correction term and a multigrid solver which performs only a limited
amount of iterations on the fine level to reduce memory and computing requirements.
For switching between a coarse grid correction and fine grid solve, an automated coarse
grid ACG(r) selection algorithm is proposed. The algorithm is applied to an academic,
two dimensional test case with incompressible flow. Compared to sub-iterating with
a (memory intensive) JFNK algorithm on the fine mesh, the hybrid algorithm already
requires 10% less computing time. When compared to sub-iterating with multigrid, the
performance increase for the hybrid scheme is a factor 3.

1 INTRODUCTION

Fluid-structure interaction in the incompressible flow regime is often encountered in
engineering problems, e.g. aeroelasticity of wind turbine blades, flapping wing flight of
micro aerial vehicles or underwater propulsion using deformable bodies. Especially in the
field of bio inspired propulsion/control, one encounters strongly coupled fluid-structure
interaction in incompressible media. These interactions are challenging to simulate in
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a partitioned procedure, which is a common way of simulating complex fluid-structure
interaction problems as it allows the usage of sophisticated mono-disciplinary solvers.
Every time step sub-iterations are required between flow and structure solver to resolve
the fully coupled solution, reducing computational efficiency.

A robust and effective sub-iteration technique with incompressible flow domains is by
no means a trivial task as the coupling gets stronger as the time step is reduced [1]
and straight forward sub-iterations such as block Gauss-Seidel iterations diverge. More
sophisticated algorithms such as the Aitken [2] and interface quasi-Newton [3] method are
required. Still, a number of sub-iterations need to be performed at every time step.

To reduce the computational work for the sub-iterations, we previously proposed a
multilevel algorithm [4], which resolves a defect-correction on a coarse fluid mesh for the
initial sub-iterations when still a large part of the partitioning error has a large wave num-
ber component. This part of the partitioning error can be effectively reduced on a coarse
fluid mesh at a low computational expense compared to solving the fluid equations on
the fine mesh. The algorithm was successfully applied for compressible flow using a den-
sity based finite volume code with nonlinear multigrid. For these cases, the flow solution
of the previous sub-iteration is continuously closer to the fully coupled solutions as the
sub-iterations converge. Therefore the flow does not have to be resolved to a very high
precision at every sub-iteration, which limits the computational cost per sub-iteration.
However, when using the same density based nonlinear multigrid solver with incompress-
ible flow, the number of multigrid iterations required per sub-iteration was much higher
[5] for the accurate representation of the pressure field, increasing computational cost per
sub-iteration.

In order to overcome the poor convergence of the nonlinear multigrid solver for incom-
pressible flow problems using a density based finite volume code, preconditioning of the
equations can be applied [6]. Another approach is to use a different iterative solver, e.g. a
Jacobian Free Newton Krylov (JFNK) solver [7]. This solver has the advantage that flow
field (pressure field) is solved globally and the method therefore does not experience the
same reduction in convergence rate as the nonlinear multigrid solver for incompressible
flow. On the other hand JFNK has the disadvantage that a preconditioner is required,
e.g. an ILU (incomplete LU decomposition), for fast convergence and that this precondi-
tioner is expensive both in terms of memory and computing time. For unsteady flow the
preconditioner can be reused for a number of time steps so that computational costs are
reduced, but for sub-iterations in a fluid-structure interaction setting, the intermediate
solutions during the sub-iterations may differ too much to use the same preconditioner
especially during the initial sub-iterations [5].

In this paper we propose a hybrid algorithm which uses a multilevel acceleration for
the sub-iterations, using a fixed number of nonlinear multigrid iterations on the finest
mesh and a JFNK algorithm for the coarse grid correction computation. By choosing
a fixed number of multigrid iterations on the finest level, the computational costs of a
fine level sub-iteration is reduced at the expense of a lower convergence. This way both
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a high level of convergence can be reached on the coarse level for limited computational
effort and the memory requirements stay within limits as the ILU preconditioner is only
required for the coarse mesh.

The question is, however, whether the relaxation of the convergence for the fine level
sub-iterations, reduces the effectiveness of sub-iterating to such an extent that the com-
putational speed gained by not iterating the solution to a high convergence on the fine
mesh level is eliminated by the increase in sub-iterations to converge to the fully coupled
solution. To answer this question, the hybrid algorithm is applied to an incompressible,
two-dimensional test case [8] and its efficiency compared to only sub-iterating on the fine
level and multilevel acceleration without JFNK.

First the two dimensional incompressible test case is given in Section 2. Next the
hybrid multilevel algorithm is introduced in Section 3, where after the algorithm is used
to solve the coupled problem in Section 4. Finally conclusions and recommendations are
given in Section 5.

2 COUPLED PROBLEM

In this paper a fluid-structure interaction problem is addressed which is based on the
benchmark problem by Turek [8]. The original problem consists of an incompressible fluid
around a circular cylinder with a flexible trailing flap. The coupled problem consists of a
fluid domain Ωf , see Fig. 1, which is modeled as an incompressible fluid, and a structure

ΓI

Ω s

Ω f
Γf

Γs

y

x

Figure 1: Computational domain.

domain Ωs which is here modeled as a linear elastic body. The boundaries of the domain
are given by Γs, Γf , which result in boundary conditions for the structure and fluid
dynamics respectively. In the partitioned approach the interface boundary between the
fluid and the structure domains ΓI is denoted by two boundaries Γsf and Γfs which close
the structure and fluid domains so that each domain can be treated separately from the
other. The coupling between flow and structure is introduced in the boundary conditions
that are imposed on Γsf and Γfs and that should yield continuity of displacement (of
the interface) and stresses. Since the flap has the highest flexibility in y-direction and
the shear stresses mainly act in x-direction, we simplify the continuity of stresses to a
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continuity in pressure so that the conditions at the interface are

dΓfs
= dΓsf

, (1)

pΓsf
= pΓfs

, (2)

where d denotes the displacement of the interface boundary and p the pressure. At
the moment it is still assumed that the spatial coupling is continuous and the temporal
coupling instantaneous. Since the domains have been split and the coupling is performed
using boundary conditions, readily available flow and structure solvers can be used to
discretize and resolve their own dynamics on their own domains. Therefore, we do not
address the specific spatial discretization of the solvers and simply write

dws

dt
+ Ds(ws,pΓsf

) = Ss, (3)

dwf

dt
+ Df (wf ,dΓfs

) = Sf , (4)

wherein ws and wf are the discrete state vectors for the structure state and fluid state
respectively. They contain e.g. the structural displacement or the fluid density. The
spatial discretization of the governing equation is simplified by the operator D, which
depends both on the state w and on the fluid-structure interface conditions pΓsf

(the
discrete pressure acting on the structure) and dΓfs

(the displacement of the fluid domain
boundary). The right hand side may contain terms S that may arise from boundary
conditions on Γs and Γf . Equations (3) and (4) are in semi-discrete form. We assume
that the time integration is performed by the same implicit scheme in both domains. The
structure and flow solver programs can then be described as solution techniques that can
find solutions wn+1

s and wn+1
f under the boundary conditions pΓsf

and dΓfs
such that

they satisfy (or minimize)

rs(w
n+1
s ,pΓsf

) − ss = 0, (5)

rf (wn+1
f ,dΓfs

) − sf = 0, (6)

wherein r the residual function (discretized representation of the governing equations), s
a constant source term within the time step that can depend on e.g. previous solutions or
boundary conditions, pΓ the discrete pressures in the boundary nodes and dΓ the discrete
displacements of the boundary nodes. The subscript s, f denotes that the discrete quan-
tities belong to the structure and fluid domains respectively. A Computational Structure
Dynamics (CSD) package is capable of finding a wn+1

s such that (5) is satisfied for a given
pressure load pΓsf . A Computational Fluid Dynamics (CFD) package is able to find a
wn+1

f such that (6) is satisfied for a given boundary displacement dΓf s. A fully implicit
(or fully coupled) solution would require

rs(w
n+1
s ,pn+1

Γsf
) − ss = 0, (7)

rf (wn+1
f ,dn+1

Γfs
) − sf = 0, (8)

4



818

Alexander H. van Zuijlen and Hester Bijl

wherein the superscript n+1 denotes the discrete solution at the new time level tn+1.
The coupling between (7) and (8) now poses a problem in a partitioned approach as the
pressure acting on the structure interface pn+1

Γsf
depends on the fluid state wn+1

f and the

displacement of the fluid boundary dn+1
Γfs

depends on the structure state wn+1
s . Both the

spatial coupling (transferring data from the flow to the structure mesh and vice versa)
and the temporal coupling (obtaining an implicitly coupled solution) are addressed in the
next sections.

2.1 Spatial coupling

The coupling between flow and structure takes place at the fluid-structure boundary.
In the continuous case, this boundary ΓI would be identical for both fluid and structure
domains, however, at the discrete level, the boundary Γsf and Γfs do not have to be
matching and gaps or overlaps may occur. In this paper a radial basis function interpola-
tion is used [9], both for the interpolation of displacements from structure to fluid mesh
and for the interpolation of surface pressure from fluid to structure mesh. The interpo-
lations Ifs and Isf respectively denote the interpolation from structure to flow and vice
versa.

2.2 Temporal coupling

In partitioned fluid-structure interaction, obtaining the coupled solution described by
(7) and (8) would require sub-iterating, e.g. when a sequential algorithm is used

rs(w
i
s, p̂

i
Γsf

) − ss = 0, (9)

rf(w
i
f ,d

i
Γfs

) − sf = 0, (10)

wherein the superscript i denotes the i-th sub-iteration and p̂i
Γsf

is the estimation of

the fluid pressure acting on the structure for the i-th sub-iteration and di
Γfs

= Ifs(d
i
Γsf

)
is the fluid boundary displacement obtained by interpolation of the structure boundary
displacement. The simplest choice for the pressure estimation is

p̂i
Γsf

= Isf(p
i−1
Γfs

), (11)

which results in a block-Gauss-Seidel type of iteration, but which is not guaranteed to
be stable. To increase robustness under-relaxation can be applied, but generally at the
expense of slower convergence rate. In this paper we focus on the widely applied Aitken
method [2], which applies an adaptive under-relaxation to the estimation for the next
time step

p̂i+1
Γsf

= p̂i
Γsf

+ θi+1(pi
Γsf

− p̂i
Γsf

), (12)

for which the under-relaxation parameter θi+1 is obtained from

θi+1 = θi

(

1 −
(∆ei)T (ei)

(∆ei)T (∆ei)

)

, (13)
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with ei = pi
Γsf

− p̂i
Γsf

the error between the estimated and the resulting pressure after

solving (9) and (10) for iteration i and ∆ei = ei − ei−1. For the first under-relaxation
step a θ has to be chosen as ei−1 is not available yet. One can use last known value and
at the very start of the computation any (sufficiently small) value can be taken.

3 HYBRID MULTILEVEL ACCELERATION

In order to reduce the computational time for updating the fluid solution during sub-
iterations, the multilevel acceleration scheme solves for a correction of the fluid solution
on a coarse mesh. In the following we introduce the subscripts h and H to denote that
variables or operators are defined on the fine or coarse fluid mesh respectively. In order
to obtain the coarse level correction, it is first assumed that a fluid solution wi−1

h,f is
known (e.g. from the previous sub-iteration or previous time step). When this solution
is substituted in (10) a residual is identified

rh,f(w
i−1
h,f ,di

h,Γfs
) − sh,f = r̂i

h,f , (14)

wherein r̂h,f denotes the residual in the fluid domain on the fine fluid mesh h. Subtraction
of (14) from (10) gives a relation for the change in the solution ∆wi

h,f = wi
h,f −wi−1

h,f that
is desired for the current sub-iteration

rh,f(w
i−1
h,f + ∆wi

h,f ,d
i
h,Γfs

) − rh,f(w
i−1
h,f ,di

h,Γfs
) = −r̂i

h,f . (15)

Solving the correction ∆wi
h,f with an iterative solution technique is as expensive as iter-

atively solving (10) directly for wi
h,f . Therefore (15) is approximated on a coarse grid,

reducing computational costs. It should be noted that (15) does not include the source
terms sh,f derived from boundary conditions and that the smaller the right-hand-side
term (in general) the smaller the correction term that is computed, which is fundamen-
tally different from solving (10) on a coarse mesh.

3.1 Coarse grid correction

The coarse grid correction is obtained by approximation of (15) on a coarse mesh

rH,f(w
i−1
H,f + ∆wi

H,f , ẋ
i
H,f) − rH,f(w

i−1
H,f , ẋ

i
H,f) = −r̂H,f , (16)

wherein, instead of displacement of the boundary, the mesh velocity ẋ caused by the
displacement of the mesh is denoted to represent the coupling between structure and
flow. The mesh velocity is obtained after the displacement of the mesh by imposing the
Discrete Geometric Conservation Law (DGCL) [10]. In (16) we use geometric restriction
operators to obtain coarse level variables

wi−1
H,f = Rwwi−1

h,f , (17)

r̂i
H,f = Rrr̂

i
h,f , (18)

6



820

Alexander H. van Zuijlen and Hester Bijl

wherein Rw and Rr are the restriction operators for the solution and residual respectively.
The restriction operators can differ, depending on the variables that are stored in w and r̂

are already (cell) volume scaled. If the variables are volume scaled, the restriction operator
is simply summation, otherwise the restriction computes a volume weighted average on
the coarse level. The coarse level mesh velocity follows from imposing the DGCL on the
coarse level. When ∆wi

H,f is obtained on the coarse level, the solution on the fine level is
corrected by prolongation of the correction term to the fine grid

wi+1
h,f = wi

h,f + Pw∆wi
H,f , (19)

wherein Pw is the prolongation operator for the fluid state variables w. In this paper a
linear interpolation is used as prolongation operator. Since the coarse grid operator rH,f

is a nonlinear operator, obtaining ∆wi
H,f requires an iterative solution technique.

3.2 Coarse level iterative solver

In order to reuse the iterative solvers already available for the fine mesh, the coarse
grid correction (16) can be cast into the following form

rH,f(w
i
H,f , ẋ

i
H,f) + sH,f + ŝH,s = 0, (20)

which is equal to the origingal problem (10) on a coarse mesh with an additional source
term

ŝH,s = r̂H,f − rH,f(w
i−1
H,f , ẋ

i
H,f) − sH,f . (21)

The source term is constant during the coarse level iterations. If we denote w
i,j
H,f the j-th

iterative approximation of w
i,j
H,f , then the fluid residual during the coarse level iterations

is defined by
ǫj
it = rH,f(w

i,j
H,f , ẋ

i
H,f) + sH,f + ŝH,s. (22)

For incompressible flow with the current density based finite volume flow solver, an ac-
curate representation of the pressure field (and thus the loads on the structure) requires
a high level of iterative convergence (very low value of ǫit). E.g. when for a compress-
ible medium only 20 multigrid iterations were required to obtain a sufficiently accurate
pressure field, in the incompressible case it is roughly ten times larger. As explained
in the introduction, either a nonlinear multigrid algorithm is used to minimize ǫj

it or a
Jacobian Free Newton-Krylov algorithm. The JFNK algorithm initially needs more com-
puting time to build the ILU preconditioner. However, once the preconditioner is built,
the Newton updates can be efficiently evaluated using a GMRES algorithm and only few
Newton updates are required to obtain a high iterative convergence.

3.3 Automated level selection

The steps above describe how a sub-iteration can be performed by computing a coarse
grid correction. However, still a criterion is needed to determine whether to perform a sub-
iteration on the coarse level or that it should be performed on the fine level. Previously
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either a fixed number of coarse level iterations was performed followed by one fine level
iteration, or the coupling was first fully resolved using coarse level iterations after which
only fine level iterations were performed. The latter option has the drawback that if the
coupling is resolved fully on the coarse level, still a partitioning error is present on the
fine level that will not be reduced by further sub-iterating on the coarse level. The first
option is more efficient, but it had to be determined manually how many coarse level
sub-iterations gave the highest efficiency. Therefore a ratio is proposed to automatically
determine the mesh level on which the sub-iteration is performed. The idea is that when
the residual from the fine fluid mesh is restricted to the coarse mesh, any high wave
number mode is filtered out by the averaging (or summation) of neighboring cells. This
also means that the norm of the residual on the coarse level is reduced compared to the
norm of the residual on the fine level. When it is assumed that the correction that is
computed scales approximately with the norm of the residual, it can be estimated that
when the residual on the coarse level is much smaller than the residual on the fine level,
higher wave number errors remain dominant and are not reduced by the coarse level
correction and a fine level solve is desired. Using the L2 norms of the residual on the fine
and coarse levels

L2,h =

√

√

√

√

Nh
∑

i=1

r̂2
h,i

Ωh,i

, (23)

L2,H =

√

√

√

√

NH
∑

i=1

r̂2
H,i

ΩH,i

, (24)

wherein it is assumed that r̂ is volume scaled, so that taking the square of the residual and
dividing it by the cell volume Ω is effectively multiplying the unscaled residual squared
by the cell volume. This way the norms on the fine and coarse level give exactly the same
value when the residual can be perfectly represented on the coarse level (e.g. residual
is constant). These norms can be determined for each governing equation separately to
avoid an inaccurate estimation when the equations are not solved dimensionless. The
high wave number residual on the fine grid that cannot be represented on the coarse level
(and hence no correction computed), can be estimated as the difference L2,h − L2,H . We
now define the coarse grid residual ratio as

rCG =
L2,H

L2,h − L2,H

. (25)

This ratio approaches zero when more sub-iterations are performed on the coarse level.
When it is equal to one, it is estimated that the coarse level correction is of the same
order as the partitioning error still remaining on the fine level due to higher wave number
errors. The Automated Coarse Grid selection algorithm is now denoted by ACG(r) and
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selects the coarse level correction when

rCG > r. (26)

The smaller the value for r, the more sub-iterations are performed on the coarse level and
the number of fine level sub-iterations is reduced. However, the lower the value of r more
coarse grid corrections are performed that are hardly effective. Especially depending on
the difference in computing time for a fine level and coarse level solve, the value of r can
be typically chosen between 0.2 and 1. The faster the coarse grid correction compared to
a fine level sub-iteration, the lower the value for r can be.

4 RESULTS

The proposed multilevel acceleration technique is applied to a strongly coupled two-
dimensional test problem based on [8]. The test case consists of a circular cylinder of
diameter 0.1m in a channel with height H = 0.41m, length L = 2.5m, with an elastic flap
behind it of length l = 0.35m and thickness h = 0.02m, see Fig. 2. The inflow is a parabolic

L

Hh

l

Figure 2: Two-dimensional laminar testcase.

velocity profile (see [8] for details) with a mean velocity of 2 and a maximum velocity of
3m/s. The Reynolds number is based on the mean velocity and cylinder diameter and
is Re = 200. The structure is modeled as a linear elastic structure with a density equal
to the flow density ρ = 1000kg/m3 and a Young’s modulus of E = 5.6 · 106kg/(m.s2).
Time integration is performed by an implicit, third-order accurate, multistage Runge-
Kutta scheme with a time step ∆t = 0.01s (for details on time integration see [10]).
Each implicit Runge-Kutta stage is subiterated until the discrete pressure forces on the
structure mesh ||pi

Γsf
− p̂i

Γsf
||2 ≤ 10−3. The multigrid levels in the fluid are obtained by

agglomeration of fine level cells such that the coarsening ratio is close to the theoretical
optimal value of 4 (for two-dimensional applications). However, as the mesh is deforming,
the lay-out of the coarse grid may change and even the amount of cells on the coarse level
may differ. Therefore, the ILU preconditioner for the JFNK algorithm on the coarse level
cannot be reused and has to be rebuild for every new coarse grid sub-iteration. In this
paper only the fine mesh (21307 cells) and the medium mesh (5859 cells) are used in the
multilevel acceleration. However, the ACG(r) can just as well be used to identify even
coarser meshes to perform sub-iterations on.

First the computational work is determined for each part of the algorithm; a distinction
is made between solving the fluid domain on the fine grid (FG) or solving the coarse
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Table 1: Computational work (scaled by FG/MG(50)) and convergence for solving single sub-iteration.

Algorithm CPU time [-] Overhead Convergence [10 log]

FG/MG(50) 1 15% −0.01
FG/MG(500) 8.8 2% −0.1
FG/JFNK 1.75 9% < −6
CG/MG(50) 0.35 43% −0.005
CG/MG(500) 1.6 9% −0.05
CG/JFNK 0.6 25% < −6

Table 2: Number of sub-iterations and computational work (scaled by the work for FG/JFNK) for
different fine grid and ACG(0.5) solver settings for solving one time step.

Algorithm # CG/stage # FG/stage CPU time [-]

FG/JFNK – 17 1
FG/MG(50) – 220.7 6.7
FG/MG(500) – 31 7.8
ACG(0.5)-CG/MG(50)-FG/MG(50) 306 46.7 4.9
ACG(0.5)-CG/MG(500)-FG/MG(50) 45.7 14 2.6
ACG(0.5)-CG/MG(500)-FG/MG(500) 33 9 3.9

grid correction (CG) and whether the multigrid solver is used with x iterations (MG(x))
or that the JFNK algorithm is applied (JFNK). The computational work includes any
overhead costs such as the agglomeration of the mesh and file I/O. The computational
work with respect to 50 multigrid iterations on the fine grid, MG(50), is given in Table 1,
including the percentage of overhead and the (average) reduction in residual reached. To
investigate the influence of not reaching the required convergence level before starting
a new sub-iteration, the number of sub-iterations (per implicit Runge-Kutta stage) and
computational work is compared for iterating only on the fine level with either JFNK,
FG/MG(500) and FG/MG(50) and compared to the ACG(0.5) algorithm with multigrid
solvers used on both the fine and the coarse level, see Table 2. The first part of the table
shows that the FG/JFNK algorithm, with full convergence of the flow solver, requires the
least amount of sub-iterations. The multigrid solver performs poorly as the computational
time is increased by at least a factor 6.7. The second part of the table shows that when an
automated multilevel algorithm with multigrid solves on both levels is used, an increased
convergence on the coarse mesh strongly reduces the number of sub-iterations on both
the coarse level (reduction of 85%) and even fine grid sub-iterations (reduction of 70%).
The additional work performed on the coarse level results in a net reduction in computing
time of 47%. However, when the convergence level on the fine grid is increased as well,
the additional work performed for the fine grid solver is not compensated by the further
reduction of sub-iterations. Therefore we choose the hybrid scheme to work with JFNK
on the coarse level to obtain high convergence and MG(50) on the fine level to reduce
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Table 3: Number of sub-iterations and computational work (scaled by the work for FG/JFNK) for the
hybrid ACG(r) scheme for solving one time step.

Algorithm # CG/stage # FG/stage CPU time [-]

ACG(0.25)-CG/JFNK-FG/MG(50) 41.3 4.7 0.98
ACG(0.5)-CG/JFNK-FG/MG(50) 32.3 8 0.90
ACG(1.0)-CG/JFNK-FG/MG(50) 24.3 13.7 0.93
ACG(0.5)-CG/JFNK-FG/JFNK 15.3 6 0.67

computational costs and memory requirements. The results for the hybrid scheme are
presented in Table 3. The influence of the residual ratio in the ACG(r) algorithm is as
expected: the smaller the value for r, the more the reduction in fine level sub-iterations
at the expense of an increased number of coarse level sub-iterations. The smaller the
amount of work for a coarse level sub-iteration compared to the fine level iteration, the
smaller the value of r can be. In our case ACG(0.5) has the lowest computational time
and although the fine grid sub-iterations only use 50 multigrid cycles and do not reduce
the residual as much as JFNK, it is even 10% faster than FG/JFNK. When compared to
the multilevel algorithms that use the multigrid solver on both fine and coarse grids, the
hybrid scheme has a reduction in computing time by a factor of 3. Finally, the ACG(0.5)
using JFNK on both the fine and coarse level shows the highest reduction in computing
time of 33% compared to FG/JFNK.

5 CONCLUSIONS

In this paper a hybrid multilevel algorithm is proposed which uses JFNK to solve the
coarse grid correction term and nonlinear multigrid using only a specified number of iter-
ations to solve the fine grid fluid equations. For incompressible flow the multigrid solver
has a low convergence rate and the number of sub-iterations to obtain the fully converged
solution increase by a factor of 12 when only 50 multigrid iterations are performed com-
pared to converging every sub-iteration to a high precision. However, sub-iterations can
be effectively reduced by imposing a high level of convergence only for the coarse grid
correction term. With the proposed automated coarse grid selection algorithm with a
ratio r = 0.5, a reduction of 10% in computing time was obtained with the hybrid scheme
compared to sub-iterating only on the fine mesh with the JFNK solver. When the hybrid
scheme is compared to a multilevel algorithm which only uses the multigrid algorithm, a
reduction in computing time of a factor of 3 is achieved. Although the multilevel algo-
rithm with JFNK on both the fine and the coarse level shows even a reduction of 33%
in computing time, the advantage of the hybrid algorithm is that the memory intensive
JFNK is not required on the fine mesh.

Currently the fine level JFNK solver reuses the ILU preconditioner during sub-iterating,
reducing the computational cost of updating the preconditioner continuously. Currently
the same strategy is not employed for the coarse level JFNK solver, as the coarse mesh
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is rebuild at every sub-iteration and the agglomeration procedure can result in different
coarse level meshes. When the agglomeration would remain fixed, an additional perfor-
mance increase could be expected for the coarse level JFNK as the ILU preconditioner
could then be reused.
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