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Abstract—Loss of lateral stability remains a major cause of
road accidents in recent years. Further improvement of passen-
ger vehicle’s active safety requires a more efficient utilization
of the tire-road friction. Nonlinear model predictive control
(NMPC) is expected to fulfill such a role, as the nonlinear
characteristics of the vehicle are included and the control input
is optimized. However, the computational load can be excessive
for onboard hardware, which hinders the NMPC from practical
implementation. To tackle the problem, this study proposes a
method to improve the computational efficiency in NMPC. The
proposed solution consists of an explicitly stored look-up table for
generating initial guesses and an online optimization component.
The look-up table is based on the offline solution of a hybrid
MPC controller. Through the simulation with multibody vehicle
model, impressive control performance has been observed, as the
vehicle can be stabilized from a side-slip angle of up to 0.5 rad.

Index Terms—vehicle control, MPC

I. INTRODUCTION

Striving towards the ultimate active safety of passenger
vehicles has never stopped. Despite the wide application of
current active safety systems like anti-lock braking system
(ABS) and electronic stability control (ESC), road accident
is still a major cause of unnatural deaths. According to traffic
data in the US, loss of lateral stability still contributed to 20-
30% of total road fatalities [1]. New actuators have given the
necessary degrees of freedom but the problem of coordinat-
ing them for optimal utilization of frictional forces remains
unsolved. Quick development of computing hardware and
numerical optimization algorithms has widened the application
of NMPC. As a powerful method to incorporate nonlinearities
in the plant and coordinate multiple control inputs, NMPC is
expected to contribute greatly to the enhancement of active
safety. However, model accuracy comes at the cost of com-
putational complexity, which can prevent the implementation
of NMPC in systems with quick dynamics like the passenger
vehicle. Borrelli et al [2] first used nonlinear MPC to control
the front steering angle alone and pointed out the problem
in computational complexity. In the follow-up study [3], the
researchers added the braking torques on individual wheels
into the control inputs and hence the simulation became
too time-consuming for controller tuning. A recent study [4]
claimed to have achieved real-time NMPC control of torque-
vectoring using a commercial toolbox. However, the numerical

quality is not satisfactory, as the final cost reached 28%
higher than the actual optimum in some cases. Simplifying
the model of dynamics can reduce the computational burden.
Beal and Gerdes [5] developed an affine-force-input model for
controlling the front steering with MPC. The lateral force on
the front tires was adopted directly as the control input and the
rear tires were considered linear. Yet such simplifications are
not valid for limit-handling cases. To handle the nonlinearities,
Falcone et al [6] looked into the linear time-varying (LTV)
modeling. LTV-MPC assumes linear dynamics through the
prediction horizon and changes model parameters every time
step. As a result, the optimization problem was reduced to
quadratic programming like linear MPCs. Unfortunately, such
an approach is not applicable for long-term prediction because,
throughout the prediction horizon, the dynamics may vary
greatly from where it is linearized. Hybrid MPC is another
possible option and has been investigated by Di Cairano et
al [7]. A hybrid model can be utilized to approximate non-
linear dynamics with linear sections and thus yields moderate
complexity and sub-optimal control.

Apart from changing the modeling techniques, the optimiza-
tion process itself can be improved as well. Tondel [8] has
attempted with explicit MPC which aims to move intensive
computation offline, using the multi-parametric programming
technique. This technique has also been adopted by Di Cairano
et al [7] to enable real-time experiments. Explicit MPC per-
forms only tree-search operation and evaluation of affine func-
tions online. The downside is, the storage of offline solution
demands plenty of memory. Around 5,000 space partitions are
needed for approximating the hybrid MPC solution [7] and the
number grows to 11,277 when a nonlinear model was used
[8]. Nevertheless, these studies limited the state variables in a
rather narrow range and the prediction horizons were short.

Improvements are achievable within the optimization pro-
cess itself as well. It generally believed that the initial guess
(i.e. starting point) plays an important role in numerical opti-
mization. An initial guess is usually required as a manual input
or randomly generated. For non-convex problems, multiple
random initial guesses are necessary for raising the chance
of finding the global optimum, which has no theoretical
guarantee. It can be a reasonable choice to use the roughly
stored optimal solution as the initial guess. Such idea can be
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Fig. 1. Schematic drawing of the proposed control system. The explicit map
first generates an initial guess to warm-start the online optimization. Then the
input is optimized and eventually sent to the vehicle.

observed from Zeilinger et al [9], where the implementation
of MPC in large-scale linear systems was accelerated, by
means of generating initial guesses with explicit piecewise-
affine (PWA) functions and limiting the iterations in online
optimization.

In this study, we present an NMPC controller that coordi-
nates the braking and steering action to stabilize the vehicles
lateral motion (Fig. 1). The combination of these control inputs
utilizes tire-road friction efficiently so that the range of state
where stabilization is achievable can be expanded. In addition,
a warm-start method has been proposed to reduce computation
time. By approximating the nonlinear characteristics with
PWA formulation, a hybrid MPC solution can be calculated
offline and then serve as the initial guess to the NMPC solution
online. On top of that, a quick local optimization process is
adopted to find the optimal control input. Of course, the initial
guess itself is already a sub-optimal control input that can be
used as a backup solution in case that the online optimization
fails.

The paper is organized as follows. The derivation of PWA
tire model and hybrid 2-track model of vehicles lateral dy-
namics are covered in section II, where the tuning of hybrid
MPC is also included. Then the warm-start nonlinear MPC
is explained in section III. Section IV introduces the test of
control performance using multibody simulation. Conclusions
and future directions are pointed out in Section V.

II. HYBRID MPC FOR EXPLICIT INITIAL GUESS

A. PWA tire model

PWA modeling of tire behavior is the core of the hybrid
vehicle model, as the tire forces contribute greatly to the
nonlinear vehicle dynamics. Based on Magic Formula, the
PWA tire model incorporates the saturation of longitudinal and
lateral forces and the combined-slip behavior. Originally, the
Magic Formula uses longitudinal slip κ and wheel slip angle α
as variables to determine longitudinal and lateral forces. These
forces are also influenced by parameters including vertical load
Fz , camber angle γ, inflation pressure pi, etc. In this study,
the influence of pi and γ is neglected and Fz on each tire are
assumed constant for hybrid modeling. Since Fx is directly
exploited in the control inputs, one can transform Fy into a
function of α and Fx under certain conditions. Given a certain
α, Fx is a function of κ. As long as κ does not exceed a certain
limit, Fx is monotonic to κ. Therefore, the inverse function
exists in this range of κ and its value can be approximated

Fig. 2. PWA modelling of the characteristics of tire’s lateral force generation.
The upper-left subplot shows the modified Pacejka’s model. The planar
sections represents the modes in the PWA model and are separated by color.

by means of interpolation. The modified tire model can be
visualized as a 3-D surface and the PWA tire model can then
be derived by approximating the surface with planar sections.
These planar sections are expressed with:

Fyij = aijαi + bijFbi + cij

dijkαi + eijkFbi + gijk ≤ 0

i ∈ {FL,FR,RL,RR}
j ∈ {1, 2, · · ·Nmodes}
k ∈ {1, 2, · · ·Nconstraints}

(1)

In this study, it has been determined that 7 sections are
required to obtain a proper quality of approximation. The
sections are visualized in Fig. 2 and they represent the 7 modes
in the PWA tire model. Mode 1-5 are each defined within 4
linear constraints and mode 6 and 7 are defined on a straight
line section.

B. Hybrid planar vehicle model

The hybrid model of the vehicle dynamics is based on the
planar vehicle model which incorporates the generation of yaw
moment by braking. The yaw rate r and body slip angle β are
the measures of lateral motion and forward velocity vx is the
measure of longitudinal motion.

ṙ =
1

Iz

(
FyF lF − FyRlR + (FxR − FxL)

B

2

)
β̇ =

1

m
(FyF + FyR)− r

v̇x =
1

m
(FxL + FxR)

(2)
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where, the force components are as explained by:

FyF = (FyFL + FyFR) cos δ − (FbFL + FbFR) sin δ

FyR = FyRL + FyRR

FxL = −FbFL cos δ − FyFL sin δ − FbRL
FxR = −FbFR cos δ − FyFR sin δ − FbRR

(3)

Several simplifications are required to enable hybrid formu-
lation. The vertical load on each tire is assumed constant as
well as the forward velocity (fixed at 20 m/s). The transfor-
mation effect of the front steering angle is neglected and the
wheel slip angles are approximated with their tangent values.

α̃FL = α̃FR = δ − rlF
vx

+ β

α̃RL = α̃RR =
rlR
vx
− β

(4)

Therefore, the lateral dynamics is linear with respect to
lateral forces and braking forces.

ṙh =
1

Iz

(
F̃yF lF − F̃yRlR +

(
F̃xR − F̃xL

) B
2

)
β̇h =

1

m

(
F̃yF + F̃yR

)
− rh

(5)

And since the lateral forces are also PWA functions of
state variables and control inputs, the planar model derived
here is indeed a PWA model. As each tire has 7 modes of
behavior, 4 independent tires originally result in 2,401 possible
combinations. Because the wheel slip angles of both wheels
on the same axle are equal, both wheels are in the identical
mode. Thus each axle has 7 modes and the vehicle has 49
modes of lateral dynamics. For implementing hybrid MPC,
the model is then discretized with a sampling time of 50 ms.

C. Specifications of Hybrid MPC

The hybrid MPC controller finds the optimal input by
optimizing a cost function:

J =

Np∑
i=1

(
yTk+iQyk+i + uT

k+i−1Ruk+i−1

)
(6)

In this case, the input and output are given by:

y = αR(r, β, vx)

u = [FbFL, FbFR, FbRL, FbRR, δ]
T

(7)

The cost function emphasizes the wheel slip angle of the
rear tires. It can be approximated with the linear combination
of state variables, as has been mentioned above. The choice is
based on the fact that smaller wheel slip angle on the rear
axle is beneficial for quicker lateral stabilization. Because
the actuators are not fast-responding when compared to the
sampling rate of the controller, the control horizon should
be much shorter than the prediction horizon. And for the
safety-critical situation, the weight of system output should
be significantly larger than the weights of control inputs. The

Parameter Nc Np Qy RFbi Rδ
Value 1 8 100 1 4

TABLE I
PARAMETERS OF HYBRID MPC.

Fig. 3. Closed-loop behavior of the hybrid model and MPC.

parameters are tuned with the hybrid model and the eventual
choices are given in Table I. The resulted MIQP problem
can be solved by multiple commercial software and Gurobi
optimizer was chosen in this study. The build of hybrid model
and formulation of hybrid MPC problem was supported by
MPT Toolbox [10].

The validity of hybrid MPC has been examined with closed-
loop simulation (Fig. 3). Starting from the initial state of
xh0 = [1, 0 : 4]T , the controller stabilized the vehicles lateral
motion within 1.2 seconds. The steering and braking action
are utilized comprehensively to generate yaw moment.

Next, a look-up table (Fig. 4) has been generated by solving
the hybrid MPC problem at a set of initial states. The initial
states lay on a uniform grid with the yaw rate varying from
-1.8 to 1.8 rad/s and body slip angle from -0.6 to 0.6 rad and
the step length is 0.2 for both state variables. Consequently,
the hybrid MPC is solved at 133 initial states and in total 931
floating-point numbers are needed to contain the information.
The look-up table will be used to warm-start the nonlinear
MPC, which will be introduced in the next section.

III. WARM-START NONLINEAR MPC

A. Nonlinear planar vehicle model

In the nonlinear MPC, the online optimization of control
inputs is performed, starting from the initial guess given by the
explicit map. The nonlinear planar vehicle model is adopted
for prediction, where the tire forces are determined with Magic
Formula. Here, the effect of varying vertical load on the force
generation is taken into account in the prediction.
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Fig. 4. The explicit control solution calculated with hybrid MPC. For steering,
the yellow area means positive steering angle of the front wheels.

Fx = GxFx0

Fy = GyFy0

Fx0 =Dx sin(Cx tan−1(Bxκ

− Ex(Bxκ− tan−1(Bxκ))))

Fy0 =Dy sin(Cy tan−1(Byα

− Ey(Byα− tan−1(Byα))))

Gx = cos(Cα tan−1(Bαα

− Ex(Bαα− tan−1(Bαα))))

Gy = cos(Cκ tan−1(Bκκ

− Eκ(Bκκ− tan−1(Bκκ))))

(8)

Steady-state load transfers in both longitudinal and lateral
direction are included, in order to capture how the body
accelerations influence tire behaviors.

Mroll = ay (muF (hcg − hrF ) +muR (hcg − hrR))

Mpitch = ax (muF +muR)hcg

∆FzFL =
lR
2L
mg − KrF

KrF +KrR

Mroll

B
− Mpitch

2L

∆FzFR =
lR
2L
mg +

KrF

KrF +KrR

Mroll

B
− Mpitch

2L

∆FzRL =
lF
2L
mg − KrR

KrF +KrR

Mroll

B
+
Mpitch

2L

∆FzRR =
lF
2L
mg +

KrR

KrF +KrR

Mroll

B
+
Mpitch

2L

(9)

The cost function and control and prediction horizon are
identical to those of hybrid MPC, except that the approxima-
tion has been discarded.

αFL = αFR = δ − tan−1

(
rlF
vx

+ β

)
αRL = αRR = tan−1

(
rlR
vx
− β

) (10)

B. Local optimization algorithm

Although the gradient of the objective function can be
calculated numerically, such calculation is time-consuming

Fig. 5. Demonstration of simulated scenario where the purple vehicle collided
with the red vehicle (controlled).

and thus contradicts with the purpose of accelerating the
optimization process. Therefore, a gradient-free method has
been implemented. The algorithm combines perpendicular
search method with varied-step line search, which tries to
evaluate the objective function as few times as possible. The
step length will be scaled down several times as the line search
goes on and hence yields higher approaching speed at the
beginning and good accuracy when in the neighborhood of
the optimum or the constraints.

IV. SIMULATION WITH MULTIBODY MODEL

A. Simulation Setup

The simulation of nonlinear MPC is performed on a roll-
axis model built with SimScape. The modeled lateral dynamics
has been finely validated using experimental data [11]. The
electro-hydraulic braking system is used to enable the active
generation of braking force without pedal input. The transmis-
sion of the electric signal and hydraulic pressure are modeled
as a load-dependent delay plus a second-order response. The
controller’s performance can be better demonstrated when the
vehicle is directly forced into side-slip motion. This can be
observed when an excessive lateral force is exerted on the rear
end of the vehicle. The potential causes include a collision on
the highway when one of the drivers accidentally moves off
its original lane and collides with the car in the neighboring
lane (Fig. 5).

B. Simulation results

The controller has been tested at two velocities. Starting at
14 m/s ( 50 km/h), the vehicles trajectory after the impact
is shown in Fig. 6. The trajectory from uncontrolled case
shows that the impact is sufficiently large to destabilize the
vehicle. With the NMPC on the other hand, the stabilization
is quick that the vehicle’s lateral displacement is limited
when stable motion has been recovered. The vehicle states
and the controller’s actions are shown in Fig. 7 and Fig. 8.
The impact immediately raises r to 1.5 rad/s, causing β to
increase negatively. Without control, the loss of stability is
obvious. The explicit and NMPC control, steering and braking
actions are utilized comprehensively to counter the spinning.
Direct adoption of the explicitly stored initial guess is already
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Fig. 6. Trajectory of the vehicle after the external impact. The initial speed
is 50 km/h. Yellow for no control, blue for controlling with initial guess and
orange for controlling with NMPC.

Fig. 7. Vehicle states according to simulation with an initial speed of 50
km/h. The lateral impact was exerted at T=1.0s. NC for no control, IG for
controlling with initial guess and IG+LO for controlling with NMPC.

capable of recovering the vehicle, while further optimization
reduced the stabilization time by 11.3%. In addition, online
optimization also saved control effort significantly. The peak
braking force was reduced by 63.6% and 41.3% on the front-
and rear-right wheel, respectively. The simulation was also
performed at an initial speed of 35 m/s ( 126 km/h), which is
close to the speed limits on the highway in the Netherlands and
several other countries. The corresponding results are shown
in Fig. 9 and Fig. 10. The results show similar trends. The
reduction in stabilization time is 23.3% in this case.

C. Real-time simulation

The warm-start strategy is expected to achieve real-time
implementation. For the proof of such capability, the simula-
tion using a multi-core dSPACE platform has been performed.
The multibody model and the controller were compiled on
two different cores on the DS1006 processor board (2.8GHz
quad-core, 1GB DDR2 SDRAM). The multibody model runs
at 100 Hz while the controller runs at 20 Hz. As suggested
by recorded data (Fig. 11), the processor is able to return the
optimized control input in less than 0.165 ms. Compared to
the sampling time of the system, which is 50 ms, the proposed

Fig. 8. Controller’s action according to simulation with an initial speed of
50 km/h. The lateral impact was exerted at T=1.0s. NC for no control, IG for
controlling with initial guess and IG+LO for controlling with NMPC. D for
control demand and A for actual response of the actuators.

Fig. 9. Vehicle states according to simulation with an initial speed of 126
km/h. The lateral impact was exerted at T=1.0s. NC for no control, IG for
controlling with initial guess and IG+LO for controlling with NMPC.

method has succeeded in enabling real-time implementation of
the nonlinear MPC.

V. CONCLUSIONS

In this paper, we proposed a method for accelerating non-
linear MPC, in order to enable its real-time implementation
in the control of passenger vehicles. The method combines an
explicit map of initial guess with a quick local optimization
algorithm. The initial guess is generated with a hybrid MPC
based on a PWA model of vehicle dynamics. The PWA model
not only captures the nonlinear characteristics of the tire’s
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Fig. 10. Controller’s action according to simulation with an initial speed of
126 km/h. The lateral impact was exerted at T=1.0s. NC for no control, IG
for controlling with initial guess and IG+LO for controlling with NMPC. D
for control demand and A for actual response of the actuators.

Fig. 11. Computation time recorded from dSPACE experiment. Blue line
represents the time needed for returning the initial guess with the look-up table
and the orange line represents the time for returning the optimized control
input. Dashed line is the sampling time of the system.

lateral and longitudinal forces alone but also the combined-
slip behavior. Starting from the initial guess, the control input
is further optimized online according to a more accurate
nonlinear model. The method eventually proves to be highly
powerful regarding the stabilization performance in extreme
situations. The controller can stabilize the vehicle lateral
motion with a large side slip angle and at both low and
high speed. The experiment on dSPACE platform suggested
a promising capability of real-time implementation.

By modifying the cost function, the NMPC controller can be
extended for tracking reference yaw rate, which is a key part of
path-following control in autonomous vehicles. By also track-
ing a reference body-slip angle, the controller can possibly
achieve combined path and attitude control. The framework of
exploiting hybrid model to improve computational efficiency
in nonlinear MPC may also be implemented in other systems
with quick and nonlinear dynamics. Nevertheless, an advanced

state estimator is required to allow the NMPC to work prop-
erly, as the current solution is not robust against measurement
noise. The variation in load distribution can cause a mismatch
between the vehicle and its model, which may also affect the
control performance.
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