Nicotinamide adenine dinucleotide as a photocatalyst

Kim, Jinhyun; Lee, Sahng Ha; Tieves, Florian; Paul, Caroline; Hollmann, Frank; Park, Chan Beum

DOI
10.1126/sciadv.aax0501

Publication date
2019

Document Version
Final published version

Published in
Science Advances

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Nicotinamide adenine dinucleotide as a photocatalyst

Jinhyun Kim1, Sahng Ha Lee1, Florian Tieves2, Caroline E. Paul2, Frank Hollmann2, Chan Beum Park1*

Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two π-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour−1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.

INTRODUCTION
Nicotinamide adenine dinucleotide (NAD+) is a vital cofactor that functions as an electron carrier in cellular energy transduction (1). The cytosolic and mitochondrial pools of NAD+ modulate the activity of compartment-specific metabolic pathways, such as glycolysis in the cytoplasm and tricarboxylic acid cycle in the mitochondria. In the cytoplasm, NAD+ is reduced to NADH through glycolysis by glyceraldehyde-3-phosphate dehydrogenase. The cytosolic NADH is transported into mitochondria and then oxidized by complex I (NADH:ubiquinone oxidoreductase) for transferring electrons to the electron transport chain. This electron relay drives the chemiosmotic synthesis of adenosine triphosphate as an energy storage molecule. Beyond the role for redox shuttling, NAD+ is a cosubstrate for a variety of redox enzymes, such as poly[adenosine diphosphate (ADP)–ribose] polymerases (PARPs) and sirtuins (SIRTs) (2, 3). Some members of the PARP and SIRT families cleave NAD+ to use the ADP-ribose moiety in the interest of genomic integrity, mitochondrial biogenesis, improved metabolic efficiency, and life-span extension. In addition to intracellular roles, NAD+ functions as a neurotransmitter and neuromodulator in the peripheral nervous system after it is secreted from neurons in blood vessels, the urinary bladder, and the colon (4). For instance, extracellular NAD+ tunes the release of other neurotransmitters (e.g., norepinephrine) in blood vessels, inhibits spontaneous smooth muscle contractions in urinary bladders, and causes membrane hyperpolarization and relaxation in colons.

Here, we report a newly found function of NAD+ as a molecular photocatalyst, distinct from the biological roles of NAD+ as a cofactor, cosubstrate, neurotransmitter, and neuromodulator (Fig. 1). A photocatalyst absorbs light, excites its electrons (or holes) to higher electronic levels, and makes the excited charges participate in a photocatalytic reaction. Solar energy has emerged as a clean and inexhaustible resource; thus, molecular photocatalysts have been widely applied for solar-driven redox chemistry [e.g., organic synthesis (5), hydrogen production (6), and CO2 reduction (6)]. Furthermore, photocatalysis has been recently combined with biocatalysis to expand the scope of cascade-type syntheses (7). NAD+ contains π-conjugated systems (i.e., nicotinamide and adenine), at which electrons are delocalized in circular π bonds from the overlap of hybridized atomic pπ orbitals. Upon photosensitization of NAD+, these electrons can be excited to energetically higher levels, obtaining a reducing power enough to reduce adjacent molecules or ions. We have conducted proof-of-concept experiments to demonstrate that NAD+ can perform photocatalytic redox reactions, such as H2O oxidation coupled with O2 reduction and the growth of silver nanoparticles (AgNPs) from Ag+ ion reduction. Furthermore, beyond the function of NAD+ as a cofactor, photosensitized NAD+ can directly activate redox enzymes such as eNOS-reductases [from the Old Yellow Enzyme (OYE) family] through the electron transfer from NAD+ to the prosthetic flavin moiety. Subsequently, the redox enzyme catalyzes the stereoselective hydrogenation of activated C=C bonds.

RESULTS
Electronic property and photostability of NAD+
To comprehend the origin of NAD+’s photocatalytic activity, we investigated its electronic properties using ultraviolet-visible (UV-Vis) spectroscopy. NAD+ exhibited a characteristic absorption peak at around 260 nm that stems from the π–π* electronic transition (8) of nicotinamide and adenine (fig. S1A). Upon shining light (λ, ~260 nm) on NAD+, π electrons in the nicotinamide and adenine moieties were excited to the lowest unoccupied molecular orbitals (LUMO) or higher energy levels, making NAD+ a potent reductant. Next, we obtained cyclic voltammograms of NAD+ and ferrocene to estimate the energy levels of LUMO and the highest occupied molecular orbital (HOMO) of NAD+. As displayed in fig. S1 (B to D), NAD+ exhibited an onset of reduction wave at around ~0.94 V (versus Ag/AgCl) and that of oxidation wave at around 1.20 V (versus Ag/AgCl); the cathodic and anodic currents originated from the reduction of nicotinamide (9) and the oxidation of adenine (10), respectively. On the basis of the formal potential of ferrocene (fig. S1E) and the onset potentials of NAD+, we found that the energies of LUMO nicotinamide and HOMO adenine are ~0.90 and 1.24 V (versus Ag/AgCl), respectively. In addition, HOMO nicotinamide of 3.23 V (versus Ag/AgCl) and LUMO adenine of ~2.89 V (versus Ag/AgCl) were estimated on the basis of the HOMO-LUMO gap of 4.13 eV (300 nm) from the absorption onset.
wavelength (fig. S1F). We verified a negligible photodegradation of NAD+ under illumination (\(\lambda\), 260 to 900 nm; \(P_{260-900\,\text{nm}}\), 200 mW cm\(^{-2}\); \(P_{260-300\,\text{nm}}\), 10 mW cm\(^{-2}\)), as shown in fig. S2. This excellent photostability is a highly desirable property of molecular photocatalysts because of photobleaching and instability issues of many molecular photocatalysts (7, 11).

NAD\(^+\)-driven photocatalytic H\(_2\)O oxidation and O\(_2\) reduction

Building on the electronic properties and photostability of NAD\(^+\), we investigated its capability to photocatalytically reduce O\(_2\) to superoxide ion (O\(_2^\cdot\)) because its reduction potential (O\(_2/O_2^\cdot\), \(E_{\text{red}} = -0.54\) V versus Ag/AgCl) (12) is more positive than LUMO Nicotinamide of -0.90 V (versus Ag/AgCl) and LUMO Adenine of -2.89 V (versus Ag/AgCl). We analyzed the formation of superoxide ion (O\(_2^\cdot\)) using a nitro blue tetrazolium (NBT) assay; the reduction of NBT by O\(_2^\cdot\) forms NBT formazan, which can be monitored spectrophotometrically at 560 nm (13). As shown in Fig. 2A and fig. S3A, O\(_2^\cdot\) formation was achieved only under irradiation with light (\(\lambda\), 260 to 900 nm), and the ion’s concentration increased with the increasing concentration of NAD\(^+\) and light intensity (\(P\), 0 to 200 mW cm\(^{-2}\)). The photochemical formation of O\(_2^\cdot\) was also triggered under filtered illumination (\(\lambda\), 260 to 390 nm; \(P\), 0 to 20 mW cm\(^{-2}\)) but not under visible–near-infrared (Vis-NIR) illumination (\(\lambda\), 360 to 900 nm; \(P\), 0 to 200 mW cm\(^{-2}\)). It is ascribed to the negligible photoactivation of NAD\(^+\) because NAD\(^+\) does not absorb light longer than 300 nm.

Control experiments in the absence of NAD\(^+\) or O\(_2\) resulted in a background signal (Fig. 2B); NBT, phosphate ions, and UV light were necessities for reduction of NBT to NBT formazan (fig. S3B). According to the literature (14), the exposure of NBT to UV light increases the redox potential of NBT, transforming it into a stronger oxidant to extract electrons directly from neighboring molecules other than from O\(_2^\cdot\).

In the photochemical reduction of O\(_2\), an anodic reaction should occur as a counterpart to accomplish a redox reaction. Because we did not use an artificial electron donor for the NAD\(^+\)-sensitized formation of O\(_2^\cdot\), we hypothesized that photoactivated NAD\(^+\) can oxidize H\(_2\)O. The products of H\(_2\)O oxidation with corresponding oxidation potentials at pH 7.5 are as follows (Eqs. 1 to 3) (15)

\[
\text{H}_2\text{O} \rightarrow \text{OH}^\cdot + (\text{H}^+ + e^-), \, E_{\text{ox}} = 1.73\text{V} \quad (\text{versus Ag/AgCl}) \quad (1)
\]

\[
2\text{H}_2\text{O} \rightarrow 2\text{H}_2\text{O}_2 + 2(\text{H}^+ + e^-), \, E_{\text{ox}} = 1.11\text{V} \quad (\text{versus Ag/AgCl}) \quad (2)
\]

\[
2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4(\text{H}^+ + e^-), \, E_{\text{ox}} = 0.58\text{V} \quad (\text{versus Ag/AgCl}) \quad (3)
\]

We measured hydroxyl radicals (OH\(^\cdot\)) because the one-electron–one-proton oxidation of water (Eq. 1) is kinetically more favorable than two-electron–two-proton or four-electron–four-proton oxidation of water (Eqs. 2 and 3). To determine the concentration of OH\(^\cdot\), we...
We investigated the possibility of photochemically reducing Ag\(^+\) ions to AgNPs by NAD\(^+\) to procure additional evidence of NAD\(^+\)-driven photocatalytic redox reactions. According to the literature (19), a photocatalyst transfers its photoexcited electrons to Ag\(^+\) ions, which become Ag atoms and form seed nuclei. These nuclei function as templates for the growth of AgNPs based on the Lifshitz-Slyozov-Wagner theory or the autocatalytic reduction-nucleation process proposed by Finke and Watzky. Because the interaction between electron donor (i.e., NAD\(^+\)) and acceptor (i.e., Ag\(^+\) ion) plays an important role in redox catalysis, we used UV-Vis spectroscopy to examine the cation–π interaction between Ag\(^+\) ions and the π-conjugated moieties of NAD\(^+\). The absorbance of NAD\(^+\) at ca. 260 nm gradually decreased with the concentration of Ag\(^+\) ions (fig. S6A), which indicates the alteration of the π–π* transition of the nicotinamide and adenine moieties of NAD\(^+\) through noncovalent ion-quadrupole interaction. The increase in concentration of Ag\(^+\) ions (from 0 to 10 μM) caused the spectrophotometric change in the absorbance at around 210 nm (fig. S6B).

After identifying the favorable noncovalent interaction between NAD\(^+\) and Ag\(^+\) ions, we exposed a solution of NAD\(^+\) and silver nitrate (AgNO\(_3\)) in deionized water to light from a solar simulator (λ, 260 to 900 nm; \(P_{260-300 \text{ nm}}\) 5 mW cm\(^{-2}\); \(P_{260-900 \text{ nm}}\) 100 mW cm\(^{-2}\)). We did not use additional sacrificial electron donors because H\(_2\)O is an electron donor of photoactivated NAD\(^+\). As displayed in fig. S6 (C and D), we observed a localized surface plasmon resonance (LSPR) band of the AgNPs, which shows the resonant harmonic oscillation of surface electrons in AgNPs upon incident electromagnetic radiation on AgNPs (20). In contrast, a negligible LSPR band was detected in the absence of NAD\(^+\) or light (fig. S6, E to H). The high-resolution transmission electron microscopic image of thus-synthesized AgNPs in fig. S6I shows that the AgNPs were quasi-spherical with a diameter of 15.8 ± 3.8 nm.

After observing the rather slow formation of AgNPs, we hypothesized that the use of a sacrificial electron-supplying agent may improve the formation rate of AgNPs if the oxidation kinetics of an electron donor is faster than those of water by photoactivated NAD\(^+\). Note that a kinetic bottleneck of water oxidation could be a cause of the low reduction rate of the counterpart, which is a well-known issue in photo(electro)catalysis (21, 22). We used 3-(N-morpholino)propanesulfonic acid (MOPS) as a model electron-supplying agent; it has a tertiary amine that can provide its electrons to an excited photocatalyst. We observed its oxidation potential at 0.79 V versus Ag/AgCl (fig. S7A), which indicates that the electron transfer from MOPS to photoactivated NAD\(^+\) is thermodynamically favorable. As displayed in Fig. 3A, the intensity of the LSPR band in a MOPS buffer increased more than 10 times faster than that in H\(_2\)O (fig. S6C; the absorption spectra of AgNPs in a MOPS buffer were obtained after 10-fold dilution of samples). The concentration of the AgNPs synthesized in a MOPS buffer increased with the irradiation time (fig. S7B; see the detailed analytical procedures in the Materials and Methods section). In addition, both NAD\(^+\) and light were required to obtain a distinctive LSPR band of AgNPs (fig. S7, C and D). The diameter of AgNPs synthesized in a MOPS buffer (17.0 ± 4.8 nm; fig. 3B and fig. S7E) with 1-min irradiation performed a colorimetric assay using tris(hydroxymethyl)aminomethane (Tris) and Nash’s reagent (12, 16, 17); Tris reacts with OH\(^-\) to yield formaldehyde (stoichiometric ratio of 1:1:1), and the formaldehyde can be quantitatively monitored using Nash’s reagent (fig. S4). We confirmed that both NAD\(^+\) and light were required for photocatalytic formation of OH\(^-\) (fig. S5A); NAD\(^+\) concentration and light intensity increased the concentration of the radical (fig. 2, C and D). However, the filtered light (λ, 360 to 900 nm; P, 200 mW cm\(^{-2}\)) did not prompt the NAD\(^+\)-driven generation of OH\(^-\) due to the negligible photoexcitation of NAD\(^+\) (fig. S5A). Because OH\(^-\) can be formed in the course of O\(_2\) reduction (fig. S5B) (18), we further conducted an additional experiment of photocatalytic OH\(^-\) generation under N\(_2\)-rich conditions. The radical’s amount was ca. 68% of that generated under O\(_2\)-rich conditions (fig. SSC), indicating that the contribution of H\(_2\)O oxidation is greater than that of O\(_2\) reduction. On the basis of the widely accepted mechanism of molecular photoredox catalysis (5), a possible mechanism for O\(_2\) reduction and H\(_2\)O oxidation is suggested to be a combination of oxidative and reductive quenching cycles (fig. S5, D and E). Light absorption of NAD\(^+\) transforms it into a photoactivated state, [NAD\(^+\)]\(^*\). In an oxidative quenching process, O\(_2\) is reduced to O\(_2\)\(^-\) by receiving electrons from [NAD\(^+\)]\(^*\). Subsequently, the oxidized cata-

Fig. 2. NAD\(^+\)-sensitized reduction of O\(_2\) and oxidation of H\(_2\)O. (A) Absorbance changes of NBT solution at 560 nm with varying concentration of NAD\(^+\). \(\Delta A(t) = A(t) - A(0)\) min; The background signal (displayed in B) was not subtracted from \(\Delta A(t)\). Reaction condition: NAD\(^+\) and NBT in an O\(_2\)-purged sodium phosphate buffer (50 mM, pH 7.5) under irradiation (xenon lamp: λ, 260 to 900 nm and P, 200 mW cm\(^{-2}\)). (B) A series of control experiments for each reaction component (i.e., 400 μM NAD\(^+\), light, and O\(_2\)) in the photochemical formation of O\(_2\)\(^-\); \(\Delta A = A(30 \text{ min}) - A(0)\) min. Reaction conditions: NAD\(^+\) and NBT in an O\(_2\)-purged sodium phosphate buffer (50 mM, pH 7.5) under irradiation (xenon lamp: λ, 260 to 900 nm and P, 200 mW cm\(^{-2}\)). (C) Effect of NAD\(^+\) concentration on OH\(^-\) formation for 30-min irradiation (200 mW cm\(^{-2}\)). (D) Dependency of OH\(^-\) formation on the light intensity (t = 30 min). Reaction conditions: 1 mM NAD\(^+\) and Tris in an O\(_2\)-purged sodium phosphate buffer (50 mM, pH 7.5). All reported values represent means ± SD (n = 3).
Direct photoactivation of redox enzymes by NAD⁺

NAD⁺ is a prominent redox cofactor for activating numerous oxidoreductases [e.g., alcohol dehydrogenase (24), formate dehydrogenase (25), and xylitol dehydrogenase (26)] through hydride transfer. We found an alternative route for activating redox enzymes: NAD⁺ that functions not as a cofactor but as a photocatalyst, delivering its photoexcited electrons directly to the enzyme prosthetic group. This approach couples redox biocatalysis with photocatalysis, enabling nonphotocatalytic enzymes to perform photobiocatalytic redox reactions (7). As a model enzyme, we have used a flavin-containing OYE homolog from *Thermus scotoductus* (*TsOYE*) that requires NADH as a cofactor for catalytic activities. The flavoenzyme reduces prosthetic flavin mononucleotide (FMN) to catalyze asymmetric trans-hydrogenation of activated C=C bonds; the catalyzed enantioselective hydrogenation was highlighted by the 2001 Nobel Prize in Chemistry (27).

We verified the reduction of the enzyme-bound FMN of *TsOYE* by photoactivated NAD⁺ in a MOPS buffer using UV-Vis spectroscopy (see the rationale for using MOPS in the Materials and Methods section). According to the literature (28), the reduction of the prosthetic FMN to FMNH₂ (or FMNH₃) through proton-coupled electron transfer causes an absorbance decrease at 464 nm. We observed these characteristic phenomena only under irradiation, and the presence of NAD⁺ decreased the absorbance more than the absence of NAD⁺ (fig. S8A). Because of the rather slow reduction of the prosthetic FMN, we substituted MOPS with triethanolamine (TEOA) to improve the rate of the overall photoinduced cascade of electron transfer. Note that TEOA is an extensively used electron donor in photocatalytic reduction reactions [e.g., H₂ evolution (29) and cytochrome P450 activation (30)]. The use of TEOA augmented the decrease in the relative absorbance (A/A₀) of prosthetic FMN by 46% for 3-min illumination compared to the use of MOPS (Fig. 4A). We attribute the result to the higher oxidation rate of TEOA than that of MOPS by photoactivated NAD⁺. On the other hand, A/A₀ of *TsOYE*-bound FMN decreased under illumination without NAD⁺ (fig. S8B); the overall rate of the A/A₀ decrease was lower, and the convergence value of A/A₀ was higher than those in the presence of NAD⁺. We attribute the FMN’s absorbance decrease in the absence of NAD⁺ to direct photoreduction of FMN by TEOA. According to the literature (7), sacrificial electron donors can directly reduce flavin derivatives under illumination. In addition, A/A₀ under the filtered light (324 nm < λ < 900 nm) was comparable to that in the absence of NAD⁺ (Fig. 4A), which is ascribed to the negligible photosensitization of NAD⁺.

The reduction of the prosthetic FMN in *TsOYE* was not mediated by NADH through hydride transfer because photochemical activation of NAD⁺ does not generate its reduced form (i.e., NADH). We illuminated a TEOA-buffered solution of NAD⁺ and observed a negligible characteristic peak of NADH at 6.96 parts per million (31) in the ¹H nuclear magnetic resonance (NMR) spectrum (Fig. 4B). Furthermore, the characteristic absorbance of NADH at 340 nm in the UV-Vis spectrum (32) was imperceptible (fig. S8C). Taking into account the
spectroscopic analyses, we have depicted a possible pathway of electron transfer for direct activation of TsOYE by photoexcited NAD\(^+\) in fig. S8 (D to F). Light promotes electrons of NAD\(^+\) from a ground state to an excited state; the photoexcited electrons have a potential energy enough to reduce a prosthetic FMN \((-0.43 \text{ V versus Ag/AgCl})\). TEOA donates its electron \((0.86 \text{ V versus Ag/AgCl})\) \((7)\), reinstating the initial state of NAD\(^+\).

The iterative delivery of photoexcited electrons from NAD\(^+\) to TsOYE should execute a sustainable asymmetric hydrogenation of C=C bonds in \(\alpha,\beta\)-unsaturated compounds (Fig. 5A). We tested 2-methyl-2-cyclohexen-1-one as an enone substrate because the tertiary carbon atom of the substrate becomes a chiral center after TsOYE-catalyzed reduction. We observed a stereoselective conversion of 2-methyl-2-cyclohexen-1-one to 2-methylcyclohexanone \((93 \pm 1\% \text{ enantiomeric excess})\) after 150-min illumination (Fig. 5B). The yield of the enantioenriched product was highest when the reaction occurred through the course of an electron cascade from TEOA to TsOYE via photoexcited NAD\(^+\) (Fig. 5C), which is consistent with the highest reduction rate of the enzyme-bound FMN under these conditions (Fig. 4A). A turnover frequency of TsOYE \((\text{TOF}_{\text{TsOYE}})\) and its total turnover number \((\text{TTN}_{\text{TsOYE}})\) were estimated to be \(1263.4 \pm 120.1 \text{ hour}^{-1}\).
and 1692.3 ± 63.3, respectively, with 1.5 mM NAD⁺ and 3 μM TsOYE. These values are substantially higher than other reports on the combination of OYE and photocatalysts (28, 32–35) shown in Fig. 5D. The TTN of NAD⁺ (TTN_{NAD+}) increased with the decreasing NAD⁺ concentration; it reached 168 with 9 μM TsOYE (fig. S9A). Furthermore, the NAD⁺/TsOYE hybrid exhibited a catalytic activity toward an unsaturated aldehyde (i.e., trans-cinnamaldehyde). The production yield of 3-phenylpropionaldehyde was lower than that of 2-methylcyclohexanone (fig. S9B), which is attributed to the lower specific activity of TsOYE toward the aldehyde (36) and the inhibitory influence of the product on TsOYE (28).

DISCUSSION

The present work unveils the capability of NAD⁺ as a metal-free molecular photocatalyst. Through spectroscopic and electrochemical analyses, nicotinamide and adenine moieties of NAD⁺ absorb light (HOMO-LUMO gap, 4.13 eV) and consequently excite delocalized electrons in conjugated π bonds (LUMO_Nicotinamide, –0.90 V; HOMO_Nicotinamide, 3.23 V; LUMO_Adenine, –2.89 V; HOMO_Adenine, 1.24 V versus Ag/AgCl). On the basis of the HOMO and LUMO levels of NAD⁺ as thermodynamic indices, we have substantiated NAD⁺-sensitized reduction of O₂ coupled with H₂O oxidation. The capability of a photocatalyst to oxidize H₂O as an electron donor is desirable in photochemical reduction reactions because of its abundance (i.e., 55 M in pure water) and no requirement of additional sacrificial electron suppliers. With H₂O identified as an electron donor of photoactivated NAD⁺, we have demonstrated photocatalytic reduction of Ag⁺ ions to form AgNPs in deionized water, which are widely used for catalytic and biomedical applications [e.g., plasmonic oxidation reactions (37) and antibacterial activity (38)]. Furthermore, the use of MOPS as a sacrificial electron donor boosted the formation rate of AgNPs. This reduction experiment takes advantage of the cation–π interaction between Ag⁺ ions and aromatic moieties of NAD⁺.

Furthermore, this work reports the first example of NAD⁺-sensitized activation of redox enzymes through the reduction of the prosthetic groups, which is a departure from the traditional context of NADH regeneration coupled with enzymatic reactions. In the course of the NADH regeneration process, NAD⁺ is reduced to an enzymatically active form of NADH by an additional catalytic system (e.g., secondary enzyme or organometallic electron mediator) (27). Specifically, the photochemical regeneration of NADH requires a photocatalyst, an electron mediator, a sacrificial electron donor, and light (fig. S9C). Compared with the multicomponent regeneration method, the photobiocatalytic platform using NAD⁺ as a photocatalyst drastically simplifies the scheme by not using an electron mediator and a photocatalyst that reduces the electron mediator (fig. S9D). Besides its systematic simplicity, our direct photoactivation of OYE by NAD⁺ achieved the highest TOF_OYE and TTN_OYE ever recorded in photobiocatalytic transformation driven by OYE. We anticipate that this simple and efficient platform can enhance the enzymatic productivity through the molecular tuning of NAD⁺ in the future. Concurrently, the platform can vitalize the synthetic route for metal-free trans-hydrogenation, which is very rare in the production of Pharmaceuticals and fine chemicals (39).

In conclusion, the current work identifies a new role of NAD⁺ beyond biological energy transduction. Under dark conditions, NAD⁺ itself cannot oxidize H₂O and reduce O₂ and metal ions. The oxidized form of natural cofactor cannot activate OYE for biocatalytic transformation because the prosthetic group requires a hydride ion from a redox cofactor. This nonproductive property of NAD⁺ is overturned by shining light on NAD⁺; it can function as a photocatalyst to reduce O₂ to oxidize H₂O, to grow metallic nanoparticles, and to directly activate redox enzymes for solar-to-chemical conversion.

MATERIALS AND METHODS

Chemicals

β-NAD⁺ hydrate (NAD⁺), nicotinamide, adenine, δ-(−)-ribose, deuterium oxide (D₂O), tetrabutylammonium hexafluorophosphate (TBAPF₆), acetonitrile, sodium phosphate monobasic, sodium phosphate dibasic, ferrocene, NBT, Tris, acetic acid, acetylacetone, ammonium acetate, MOPS, AgNO₃, TEOA, calcium chloride (CaCl₂), ethyl acetate, magnesium sulfate (MgSO₄), 1-octanol, 2-methyl-2-cyclohexen-1-one, trans-cinnamaldehyde, and 3-phenylpropionaldehyde were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further purification. TsOYE was produced following a literature procedure reported previously (32).

Spectroscopic analysis

UV-Vis spectra were recorded on a V-650 UV-Vis absorption spectrophotometer (JASCO Inc., Japan) using a quartz glass cuvette (path length, 1 cm). A 1H NMR spectrum was obtained using a 400-MHz and 54-mm NMR DD2 instrument (Agilent Technologies, USA) at 298.15 K. Note that an aqueous reaction sample was dissolved in D₂O, and a water suppression technique was used to improve the signal-to-noise ratio.

Electrochemical characterizations

All electrochemical experiments were performed on a potentiotstat/galvanostat (WMPG 1000, WonATech Co., Korea). A three-electrode setup was used with a glassy carbon disk electrode (working electrode: electrode diameter, 3 mm), Ag/AgCl electrode (reference electrode; 3 M NaCl), and a platinum wire (counter electrode) in a single cell. The glassy carbon disk electrode was always polished using 1, 0.3, and 0.05 μm of deagglomerated alumina suspensions before electrochemical analysis. On the basis of the following equations (Eqs. 4 and 5) (40), we measured the formal potential of ferrocene and onset potentials of NAD⁺ to estimate LUMO and HOMO energy levels of NAD⁺.

\[
E_{\text{LUMO}} = - (E_{\text{onset,red}} - E_{\text{formal}} + 5.06) \text{eV} \quad (4)
\]

\[
E_{\text{HOMO}} = - (E_{\text{onset,ox}} - E_{\text{formal}} + 5.06) \text{eV} \quad (5)
\]

Note that \(E_{\text{onset,red}}\) is the onset potential of NAD⁺ reduction, \(E_{\text{onset,ox}}\) is that of NAD⁺ oxidation, and \(E_{\text{formal}}\) is the formal potential of ferrocene. The electrolyte solution consisted of acetonitrile (containing 100 mM TBAPF₆)/sodium phosphate buffer (100 mM, pH 7.5) (v/v, 1:1).

NBT assay

To confirm the photochemical formation of O₂⁻, NAD⁺ and 30 μM NBT were dissolved in a phosphate buffer (50 mM, pH 7.5). We injected 500 μl of reaction sample into a 1.5-ml Eppendorf tube (SPL Life Sciences Co., Korea). The reaction volume and the vessel type...
in control groups were identical to those in the experimental group. The tube was irradiated by a xenon lamp (Newport Co., USA) equipped with an infrared water filter. After irradiation, we used a V-650 UV-Vis absorption spectrophotometer (JASCO Inc., Japan) to monitor a change in the absorbance at 560 nm. Note that NBT formazan, which forms by the reaction between O$_2^-$ and NBT, exhibits a maximum absorption at 560 nm. The O$_2$- or N$_2$-rich solution was prepared by purging with O$_2$ or N$_2$, respectively, for 1 hour.

Analysis of hydroxyl radical

To estimate the amount of OH* produced by photoactivated NAD$^+$, NAD$^+$ and 10 mM Tris were dissolved in a sodium phosphate buffer (50 mM, pH 7.5). The solution was exposed to light (λ, 260 to 900 nm; $P_{260-900\ nm}$ 200 mW cm$^{-2}$; $P_{260-300\ nm}$ 10 mW cm$^{-2}$) from a xenon lamp (Newport Co., USA) equipped with an infrared filter at 293.15 K. The sample was then mixed with Nash’s reagent (v/v, 1:1); the reagent was composed of 50 mM acetic acid, 20 mM acetylacetone, and 2 M ammonium acetate. The incubation of the mixture at 323.15 K for 1 hour developed a yellow color, which was measured spectrophotometrically at 412 nm. We purified O$_2$ or N$_2$ gas into a reaction medium for 1 hour for an O$_2$- or N$_2$-enriched environment, respectively.

Photoreduction of Ag$^+$ ions to AgNPs

For photochemical formation of AgNPs, NAD$^+$ and AgNO$_3$ were dissolved in a MOPS buffer (50 mM, pH 7.5) and irradiated with a xenon lamp (Newport Co., USA) equipped with a water filter at 293.15 K. In this experiment, the sodium phosphate buffer was not used because silver phosphate precipitates (Ag$_3$PO$_4$) form by the reaction between silver ions and phosphate ions. An LSPR band of AgNPs was monitored using a V-650 UV-Vis absorption spectrophotometer (JASCO Inc., Japan). Before obtaining UV-Vis absorption spectra, the samples in a MOPS buffer were diluted 10-fold, whereas those in water were not diluted because the formation rate of AgNPs in a MOPS buffer was much higher than that in water. We observed AgNPs using a JEM 3010 transmission electron microscope (JEOL Co., Japan) at 300 kV. The quantification of AgNPs was conducted using an inductively coupled plasma mass spectrometer (7700x, Agilent Technologies, USA). Before mass spectrometric analysis, a reaction sample was put in a dialysis tubing (molecular weight cutoff, 500 to 1000) against deionized water for 24 hours to eliminate Ag$^+$ ions in the sample. AgNPs were also quantified using a microbalance after their purification by centrifugation. We synthesized AgNPs in an Eppendorf tube containing AgNPs was measured using themicrobalance to find its weight. This washing process was repeated five times, but deionized water was added at the last repetition. The residual water was evaporated in a vacuum chamber for 10 hours, and the mass of the Eppendorf tube containing AgNPs was measured using the microbalance to calculate the mass of AgNPs.

Photoenzymatic reaction and analysis

A TEOA-buffered solution (150 mM, pH 7.5) containing NAD$^+$, TsOYE, CaCl$_2$, and substrate was prepared in a microcentrifuge tube. For the control experiment, in the absence of TEOA, MOPS was used as a substitute for TEOA because it is extensively used in the OYE biocatalysis, acts as an electron donor of photoactivated NAD$^+$, and does not produce a precipitate with Ca$^{2+}$ ions; the divalent ion is required for activity of TsOYE (41). Note that MOPS and TEOA have buffering capacities. The sample was irradiated with a 450-W xenon lamp at 318.15 K. For the unit conversion of light intensity from mW cm$^{-2}$ to μE cm$^{-2}$ s$^{-1}$, the average photon energy was ca. 2.14 eV according to the spectral irradiance of the xenon lamp. Note that μE cm$^{-2}$ s$^{-1}$ refers to the number of moles of photons in micromole hitting a defined surface per second. For quantitative analysis of the product using gas chromatography (GC), organic substrates and products were extracted with ethyl acetate solvent containing 1-octanol as an internal standard. The mixture was centrifuged to collect the organic phase and, after which, was dried with MgSO$_4$ to eliminate residual water content. The organic supernatant was analyzed by GC using a 7890A gas chromatograph (Agilent Technologies, USA). The machine was equipped with a flame ionization detector and a CP-Chirasil-Dex CB column (25 m by 0.32 mm by 0.25 μm). The oven temperature program for all enzymatic substrates and products was 363.15 K held for 2 min, 4 K min$^{-1}$ to 388.15 K held for 0 min, and 20 K min$^{-1}$ to 453.15 K held for 1 min. The yield, enantiomeric excess (ee), TOF, and TTN were calculated according to the following equations (Eqs. 6 to 10).

\[
\text{Yield(\%)} = \frac{\text{Concentration of product}}{\text{Initial concentration of substrate}} \times 100
\]

\[
\text{ee(\%)} = \frac{\text{Moles of one enantiomer} - \text{Moles of the other enantiomer}}{\text{Total moles of product}} \times 100
\]

\[
\text{TOF}_{\text{TsOYE}} = \frac{\text{Concentration of product at the given time}}{\text{Concentration of TsOYE \times Time}}
\]

\[
\text{TTN}_{\text{TsOYE}} = \frac{\text{Maximum concentration of product}}{\text{Concentration of TsOYE}}
\]

\[
\text{TTN}_{\text{NAD+}} = \frac{\text{Maximum concentration of product}}{\text{Concentration of NAD+}}
\]

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/7/eaax5051/DC1

Fig. S1. Optical and electrochemical properties of NAD$^+$.

Fig. S2. Photostability of NAD$^+$.

Fig. S3. Formation of superoxide radicals by photoactivated NAD$^+$.

Fig. S4. Use of Tris and Nash's reagent in the photochemical reaction, acts as an electron donor of photoactivated NAD$^+$, and does not produce a precipitate with Ca$^{2+}$ ions; the divalent ion is required for activity of TsOYE (41). Note that MOPS and TEOA have buffering capacities. The sample was irradiated with a 450-W xenon lamp at 318.15 K. For the unit conversion of light intensity from mW cm$^{-2}$ to μE cm$^{-2}$ s$^{-1}$, the average photon energy was ca. 2.14 eV according to the spectral irradiance of the xenon lamp. Note that μE cm$^{-2}$ s$^{-1}$ refers to the number of moles of photons in micromole hitting a defined surface per second. For quantitative analysis of the product using gas chromatography (GC), organic substrates and products were extracted with ethyl acetate solvent containing 1-octanol as an internal standard. The mixture was centrifuged to collect the organic phase and, after which, was dried with MgSO$_4$ to eliminate residual water content. The organic supernatant was analyzed by GC using a 7890A gas chromatograph (Agilent Technologies, USA). The machine was equipped with a flame ionization detector and a CP-Chirasil-Dex CB column (25 m by 0.32 mm by 0.25 μm). The oven temperature program for all enzymatic substrates and products was 363.15 K held for 2 min, 4 K min$^{-1}$ to 388.15 K held for 0 min, and 20 K min$^{-1}$ to 453.15 K held for 1 min. The yield, enantiomeric excess (ee), TOF, and TTN were calculated according to the following equations (Eqs. 6 to 10).

\[
\text{Yield(\%)} = \frac{\text{Concentration of product}}{\text{Initial concentration of substrate}} \times 100
\]

\[
\text{ee(\%)} = \frac{\text{Moles of one enantiomer} - \text{Moles of the other enantiomer}}{\text{Total moles of product}} \times 100
\]

\[
\text{TOF}_{\text{TsOYE}} = \frac{\text{Concentration of product at the given time}}{\text{Concentration of TsOYE \times Time}}
\]

\[
\text{TTN}_{\text{TsOYE}} = \frac{\text{Maximum concentration of product}}{\text{Concentration of TsOYE}}
\]

\[
\text{TTN}_{\text{NAD+}} = \frac{\text{Maximum concentration of product}}{\text{Concentration of NAD+}}
\]

REFERENCES AND NOTES

Acknowledgments

Funding: This work was supported by the National Research Foundation (NRF) via the Creative Research Initiative Center (grant no. NRF-2015 R1A3A2066191), Republic of Korea. Author contributions: J.K. and C.B.P. conceived the research. J.K designed the studies, performed all the experiments, analyzed the results, and prepared the manuscript. F.H. and C.B.P. supervised the research. S.H.L. provided a brief discussion on photobiocatalysis. F.T. prepared biocatalysts. C.E.P. and F.H. commented on biocatalysis. Competing Interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 18 February 2019
Accepted 14 June 2019
Published 19 July 2019
10.1126/sciadv.aax0501

Nicotinamide adenine dinucleotide as a photocatalyst
Jinhyun Kim, Sahng Ha Lee, Florian Tieves, Caroline E. Paul, Frank Hollmann and Chan Beum Park

Sci Adv 5 (7), eaax0501.
DOI: 10.1126/sciadv.aax0501

ARTICLE TOOLS http://advances.sciencemag.org/content/5/7/eaax0501
SUPPLEMENTARY MATERIALS http://advances.sciencemag.org/content/suppl/2019/07/15/5.7.eaax0501.DC1
REFERENCES This article cites 41 articles, 2 of which you can access for free
http://advances.sciencemag.org/content/5/7/eaax0501#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions