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Abstract. For a lot of applications the Lagrangian approach may be a suitable alternative
of the Eulerian approach. However, one of the biggest disadvantages of the Monte Carlo
methods is their computational expensiveness. The traditional Monte Carlo methods can
be improved by using more sophisticated methods, as,for instance, the forward-reverse es-
timator recently introduced by Milstein, Schoenmakers and Spokoiny [7]. Another method
to speed up the Monte Carlo methods is to use parallel processing. In this paper the par-
allel version of the forward-reverse estimator is developed and analyzed. The parallelized
estimator 1s applied to estimate the concentration of pollutant in Dutch coastal zone and
the efficiency of the algorithm s discussed

1 INTRODUCTION

Last several years the ship accidents caused the serious ecological catastrophes in the
seaside of different countries. To prevent or, at least, reduce the possible damage due
to accidents we need to develop efficient and accurate model for the simulation of the
pollution spreading. The movement of the pollutant can be modeled by using a random
walk model [4]. Here the trajectory of a particle of the pollutant is simulated with the
help of the appropriate system of the stochastic differential equations. By averaging the
positions of many particles the concentration of the pollutant can be found.

For a number of applications, it is not necessary to simulate the concentration in the
whole domain of the problem. For these kind of problem the forward- reverse estimator
can be applied. This estimator has recently been introduced by Milstein, Schoenmakers
and Spokoiny [7] and is based on realizations of original forward system and also on
realizations of reverse time system derived from original forward one. This approach
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allows to compute the concentration of the pollutant in certain region efficiently without
solving the complete simulation problem.

Because of the independence of movement of particles random walk models can be
easily parallelized. In this paper we considered the parallelization of the forward-reverse
estimator based on the particle decomposition. Several approaches are proposed and their
advantages, disadvantages and efficiency are discussed.

The parallel version of the forward-reverse method is applied for the simulation of the
pollution spreading along the Dutch seaside. For this model we investigate the efficiency
of the parallel algorithm. The results show that the efficiency of the parallelization is very
high, especially for a large size of realizations.

2 THE TRANSITION DENSITY ESTIMATORS
2.1 The forward estimator (FE)

First of all, let us consider the stochastic differential equation in the Ito sense in general
form:

dX(s) = a(s,X)ds+ o (s, X)dW(s), t<s (1)
X(t)==z

where X = (X1,...,Xy)7.a = (ay,...,aq)" are d-dimensional vectors, W = (Wy, ..., W,,)
(m > d) is a m-dimensional Wiener process and o = {0;;} is a d x m matrix. We assume
that the d x d matrix b = oo’ is of full rank for every (s,z), s € [t,T], z € R%. We
also assume that the functions a;(s, z) and o;;(s, z) and their first derivatives are con-
tinuous and bounded. This particularly implies existence and unigness of the solution
X, .(s) € RY X (t) = x of (1), smoothness of the transition density p(t,x, s, z) of the
Markov process X and existence of all the moments p(-,-,-,y) [1, 3, 9].

In many situations we do need to know the exact solution of the equation (1), which is
called strong solution, but the solution in weaker sense - the probability law of the process
X, so called weak solution. The weak solution is wider concept, than the strong solution
in the sense that the strong solution is of always a weak solution, but the converse is
not true. There are stochastic differential equations that have weak solutions, but have
no strong ones (for instance, Tanaka equation). Further, speaking about the solution of
stochastic differential equation, we will always mean the weak solution.

Suppose that our goal is to find the transition density function p(t,;s, z) of the
stochastic process X. It may be found from the following partial differential equation,
called Fokker-Planck equation (or Kolmogorov equation) (¢ < s)

ap 1.4 9 a9
p(t> w>t7 Z) = 5(w - Z)

Another way is to use the standard method of non-parametric statistics called kernel
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estimator [10, 16].
N (n)
~ 1 Xt,w (T) - Y

where ¢ is a positive real number called bandwidth, K is a kernel function and {X f;g},

n = 1,...,N are independent realizations of the solution X of stochastic differential
equation (1) with initial condition X (t) = «. In general, the sample {X §’2<T)}, n =
1,..., N is not known and to use the estimator (3) we need to use one of the approximation

scheme, for instance the Euler scheme [5, 8]

A (4)
X, =0,
where k =0,...,L -1, X, = Ym(tk) is the numerical approximation of the position
X (tg), ty = kAt, At = (T —t)/L is the time step of numerical integration and AW are
mutually independent Gaussian variable with zero mean and covariance matrix AtI,,.
Applying the approximation (4), the estimator (3) may be transformed as

(n)
Pt 2, T,y) = 5dZK<X (1) — y). (5)

Because this estimator is based on the forward system we will call it as Forward Estimator
(FE). The error of this estimator can be split into two parts: the error due to the kernel
estimator (3) and the error due to the approximation of the stochastic process X. The
first error depends on the choice of the kernel function and the bandwidth. The most
popular kernel functions are Gaussian function

K(z) = (27) " exp (—;m) %)

and Epanechnikov symmetric multivariate kernel
1
K(a}) = §Vd (d + 2)(1 — a:Ta:)lmegl (7)

where vy = 27%2 /{dI'(d/2)} is the volume of the unit d-dimensional sphere. However, the
¢ the accuracy of the kernel estimator depends most of all on the choice of bandwidth §. It
is well known ([10, 16]) that the optimal bandwidth is given by do, ~ N ~ara provides the
error due to kernel estimator of the order e(p) ~ N ~@+i, As aresult, for high dimensional
systems this method became inefficient. In statistical literature this fact is often referred
as "the curse of dimensionality”.
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2.2 The reverse estimator (RE)

In the previous section we described the estimator based on forward system. Another
approach is based on the so called reverse time diffusion and has been introduced by [15].
If the forward estimator (5) is connected with the Fokker-Planck equation (2), the reverse
estimator is connected with the Kolmogorov backward equation

op 14 0p d  Op
E N _5 i,jzzl 4 83:Z837] B Zzzl i @xi’ (8)
p(Ta €, T7 y) = 5(w - y)

The main idea of the reverse time approach is that the forward Kolmogorov equation
can be considered as a backward Kolmogorov equation (8) associated with the stochastic
process (Y,)) in R*™, hence in a space of one dimension higher.

First, we introduce a reverse time variable s =T +t — s, t < 5 < T and define the
functions

@2(5;7 g) = &Z(T +1t - g? g)a
For a stochastic process Y ,(3) € IR? and a scalar process ), ,(3) we then consider the
system of stochastic differential equations

(9)

dY = a(5,Y)ds + &(3,Y)dB(3),
dY = c(3,Y)Vds, (10)
Y(t)=y, Y({)=1

with B being an m-dimensional standard Wiener process and

1
d (9261»]» d 9a; (1)

I\

It can be proved that the transition density function p(t,x,T,y) of the forward process
X can be represented with the help of the reverse-time system (9) [6, 7]. By applying
the kernel estimator, it is possible to construct the density estimator based only on the
reverse time system

R 1 M :B—?(m) .

where (YE v ,yt v ) = 1,..., M is an independent identically distributed (i.i.d.) sample
of numerical solutions of system (10). The Reverse Estimator (RE) (12) can be applied

in a number of application, for instance for the risk analysis [13].

4
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2.3 The forward-reverse density estimator (FRE)

In this section we discuss a new estimator based on both the forward system (1) and
the reverse time system (10). This estimator is called the forward-reverse estimator and
has been recently introduced by [7]. By taking advantage of the forward and reverse-time
systems via the Chapman-Kolmogorov equation with respect to an intermediate time t*
one can obtain the following estimator

N M (1) 5 (m)
~ 1 Xt,:c (t") — Yt*,y(T) 35(m)
p(t,iL‘,T, y) - MN§? ZZK < 5 t*,y(T)' (13)

n=1m=1

In this equation ¢* is an arbitrary point from the time interval [¢,T]. If the t* = T the
forward-reverse estimator collapses to the pure forward estimator (5) and if we take t* = ¢
we will obtain the reverse estimator (12). The Forward-Reverse Estimator (FRE) is more
efficient as compared with the forward or reverse estimators. Under the assumption that
N =M, t <t* <T and the kernel function K is a second order kernel, it can be shown
that for d < 4 and the bandwidth § ~ N~1/¢ logl/ 4 N the forward-reverse estimator has
the root-N accuracy €(p) ~ N~2. For d > 4 the root-N accuracy is lost, but the order

of accuracy of the FRE €¢(p) ~ N+ (for the bandwidth of order o ~ N~#a is still a
square of the FE accuracy order. The proof can be found in [7].

3 THE PARALLEL ALGORITHMS FOR DENSITY ESTIMATORS

Because of all realizations of particle’s paths are independent the random walk model
can be easily parallelized. It makes the particle modelling very attractive for a lot of
application. In this section we consider the algorithms of the parallelization for the forward
and for the forward-reverse estimators.

3.1 The parallelization of FE/RE estimators

It is very simple to parallelize the FE/RE estimators (5) and (12). As all particles
are independent and do not interact during the simulation, therefore, each processor
can simulate the movements of subgroup of particles without communications. However,
communications are needed to locate particles on the different processors in the beginning
and to gather the results from each process. Equation (5) can be rewritten as follows

~, 1 N Yg,w (T) - Y
pt,x, T,y) = N(Sdnzzle 5 =

_(nvk)
1 Nproc M) Xt (T)_y Nproc
_ K| = 7 Z = pk),
Noe 1§1 <z=21 0 ngl

where Nproc is the number of processors, M*) is a number of particles handled by
Nproc

kth processor, Y. M®) = N. Each processor gets approximately the same amount of
k=1

n)

(14)
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~(n,k
| o N MY (X1 -y .
particles, so M*) ~ . Finally, p® = > K| ———————=| is the contribution
Nproc = )
of the kth processor to the sum p.
The following algorithm can be used for the parallelization of the FE/RE estimators.
We need only two communications and the load is equally distributed. That’s why the

efficiency of this algorithm is close to 1.

Send the data Receive the data
-
to all slaves from master
The simulation for The simulation for
M®) particles M®) particles
The estimation of The estimation of
local concentration p*) local concentration p*)
Receive the Send the
local concentrations o local concentrations
from all slaves to the master
‘ The result ‘

3.2 The parallelization of the FRE estimator

The FRE can not be parallelized so easy as it has been done for the FE/RE. It is clear
that it should be used the particle decomposition.

For the forward-reverse estimator (13) we assume that M = N, so we need to simulate
the same number of the forward and reverse particles. Therefore, if we evaluate the double
sum (13) directly, we need O(N?) elementary computations. It makes the forward-reverse
estimator too computational expensive. However, it is possible to speedup the calculation,
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if the kernel function K («) has a compact support, as, for instance, Epanechnikov function
(7). If we want to use the Gaussian function (6), we need first to modify it

K(x) asin (6) vValx <66

Ks(x) = { 0 otherwise (15)

This modification does not affect the final result, because for the values «, such that
valx > 60 the value of Gaussian kernel is very small and can be neglected. As a

result, in formula (13) we need to consider only pairs <Y§’2 (t*),?ﬁ”?}(T)) for which
YEQ (") — ?,Em;(T))‘ < ad, for some a.

The algorithm proceeds as follows. For a given forward sample { X™ ¢t n=1,...,N

we define the bounding hyper-rectangle, i.e. the smallest hyper-rectangle in which all
realizations lie. This hyper-rectangle is divided in d-dimensional hypercubes with the
length of a side equal to ad. The size of each cell in the obtained grid can be enlarged to
make sure that our grid consists of an integer number of cells. Each realization of forward
process X ™ is stored in cell is which enclosed it. For each realization of reverse process
Y™ we consider only sample pairs (X ) Y(k)) where X™ and Y® are in the same
grid cell or in neighboring cells. Figure 1 illustrates the example of a 2-dimensional grid.

The forward

process
.
° o o
o
o|° ©
o o
° o Alev N
o

The reverse—tir
process

Figure 1: The 2-dimensional grid

Of course, some cells in the grid contains no particle and it has no sense to store
them. In case of high-dimensional system the number of empty cells is quite large and
saving of such a grid requires a lot of memory. To reduce the memory needed for the

7
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grid hash-tables can be used. The further discussion about using of hash-tables for the
forward-reverse estimator can be found in [2].

Next we consider the parallelization of the calculations of the forward-reverse estimator.
Three different approaches to particle decomposition were considered and implemented.

1. Each processor gets the same amount of particles assigned for the forward as well
for the reverse simulation and simulates the random walk of the forward and the reverse
particles. Minimal and maximal positions of the forward simulation particles are evalu-
ated for all processors and the corresponding grid is constructed and broadcasted to all
processors. The positions of the reverse particles are then broadcasted to all processors
and the kernel is estimated locally. In the end, the resulting local kernel estimation is
brought together to make the overall result.

2. Each processor is either computing forward or reverse particles. Minimal and max-
imal positions of forward simulation particles are exchanged among forward processors.
The corresponding grid is calculated and sent to all forward processors. Reverse particle
positions are broadcasted and the kernel is estimated locally. Finally, the resulting local
kernels are brought together.

3. One of the processors is assigned to simulate the reverse particles while all the other
processors run the forward simulation. The reverse processor keeps simulating while the
forward processors exchange grid information.Then the position of the reverse particles
are broadcasted and followed by the estimation of the kernel. The more particles are used
for the simulation the more runs can be made to balance the work load.

Comparing the three different approaches, the first one seems to have the fewest draw-
backs. In the second approach the problem that slows down the calculation is that the
reverse processors are lazy while the forward processors estimate the kernel which means
that half of the processors are idle during the kernel estimation. In the third approach it
is hard to determine how many runs must be made to balance the work load equally. This
changes with the number of particles and must be adaptive. The first version seems to be
the simplest and all processors are running the same program and is therefore expected
to perform the best.

As it has been done for the FE/RE estimator the forward reverse estimator (13) can
be rewritten as

~(n) 5~(m)
R 1  Nproc Nproc M()M(’“) X m( ) Y.. (T) ~—(m)
e T y)= 52 > > |2 - —Y ey(T) | =
N 5 k=1 n=1 5

=1 m:l
Nproc Nproc
SEDSIFTLY

Py
k=1 I=1

(16)

MO n® (X ey 7 )
where p( ( t,w( ) t,y( ) (m)

1
N25d nzl mzl K o t*’y(T>
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Send the data Receive the data
-
to all slaves from master
The forward and The forward and
reverse simulation reverse simulation
for M®) particles for M®) particles
| |
Find local Find local
minimum and maximum minimum and maximum
Define the global < Send local
minimum and maximum minimum and maximum
‘ Send the sizes of grid : ){ Receive the sizes of grid ‘
‘ Define the local grid ‘ ‘ Define the local grid ‘
— e

‘ for kK = 1..Nproc I

=

Send the reverse particles )—){ Receive the reverse particles
\ /

Calculate the local concentration p*-

Receive the Send the
local concentrations o local concentrations
from all slaves to the master
|
‘ The result ‘

In the above described algorithm all the processors are running the same program
which makes it particularly easy to implement and the load is equally distributed. The

9
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particles are distributed equally on all the processors. Forward as well as reverse simula-
tion is run on each processor. The number of processors and particles can therefore be
changed independently without any modifications in the code. It’s the simplest approach,
but through its simplicity it performs the best. Also the computation on each processor
takes about the same amount of time as they are all running the same piece of code. Only
when the position of the forward and reverse simulation particles is known, communica-
tion between the processors starts. In case of a long simulation this approach performs
especially well. A grid is computed relying on the forward simulation positions. This grid
is sent to all processors. Now the position of the reverse simulation is introduced into
the grid. This happens by broadcasting the reverse particles. The estimation can now be
computed on each processor locally. Then the results are summed together into a global
kernel estimation.

4 APPLICATION
4.1 Random walk model for the transport processes in shallow water

The forward and forward-reverse estimators may be used for a number of applications,
for instance, for the environmental models [2, 4, 12, 14]. The parallel algorithm for
forward-reverse estimator has been applied to estimate the concentration of the pollutant
in Dutch coastal zone. In this section we introduce the random walk model for tidally-
averaged flow.

Consider now a three dimensional space with points @ = (z1,x2) and define the vector
function a and o according to:

DoH oD

_( wm H 0x, 0xy
0= (1 )+ | Dot | + | 6B -
H@xg 8:)&2 ( )

where u = (uq,ug) is the water velocity vector, D is the dispersion coefficient and H is
the water depth. The Fokker-Planck equation (2) in this case becomes (see [4]):

o _6 <(u1 + 50+ ggi)p) - 9 <(U2 + G+ 5‘352)29) N 9*(Dp) N &?(Dp) (18)
0s oy 0y I(y1)? Ay2)?

Substituting p = HC' in this equation and rearranging terms yields

O(HC)  d(wHC) d(usHC) 3( 90) 5( ‘90) (19)

Js Oy1 0y oy oy 0y ya

where C'is the particle concentration. This equation is the well-known vertically-integrated
advection diffusion equation [4, 11]

10
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4.2 The performance

To evaluate the performance the program was run on up to 8 CPUs. AMD Athlon(TM)
XP 2600+, CPU Mhz 1916.547, cache size 512KB Figures 2,3 and 4 show the speed up
and efficiency for 1000, 50000 and 100000 particles respectively.

To investigate the behavior of the parallelization with more processors the paralleliza-
tion was also run on the DAS2 cluster. As it can be seen from figures 5,6 and 7 the results
run on DAS2 are consistent with the previous ones. With 1000 particles the paralleliza-
tion of the simulation is not very effective and efficiency decreases quickly as the number
of processors increases.

Because there are no communications between processes during the forward and reverse
simulations, we are interested also in the speedup of pure kernel estimator. Figures 5,6
and 7 illustrates the speedup of for the kernel simulation. When increasing the number
of particles to 50000 a linear speedup can be observed. With a number of particles on the
parallelization shows to be very effective. Better results are achieved when increasing the
number of particles to a million. There is even superlinear speedup which happens due
to some cache effects.

5 CONCLUSIONS

The forward reverse estimator can be used to make the standard Monte Carlo methods
more efficient. However, this method still requires a lot of CPU time. To further speed
up the estimator parallel algorithms can be applied. In this paper the parallelizations
of the forward reverse estimator are considered and analyzed. The results of applying
this parallel algorithm to estimate the concentration of the pollutant in shallow water
shows that the efficiency of the program is close to the highest possible. This makes the
forward-reverse estimator very attractive for real life applications.
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