
Literature Survey of Type Inference Algorithms for Statically Typed Languages

Saulius Jakovonis1

Supervisor(s): Jesper Cockx1, Bohdan Liesnikov1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Saulius Jakovonis
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Bohdan Liesnikov, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The success of dynamically typed languages such
as Python has resulted in an increased interest in
supporting type inference in statically typed lan-
guages. Type inference refers to automatic type
detection based on surrounding context and allows
retaining the type safety (and other advantages) of
static types, while matching the ease of use of dy-
namically typed languages. Unfortunately, imple-
menting type inference can be tricky. Researchers
have been proposing various methods for type in-
ference ever since the 1970s, however there is no
single solution that works for all languages. This
paper presents and analyses the proposed methods
together with motivations, intuitions, use-cases and
examples from practice with the aim of helping new
programming language developers understand type
inference principles and choose the right technique
for their needs.

1 Introduction
Type-checking is a verification mechanism that occurs dur-

ing the compilation phase of a statically typed language and
is not present in dynamically typed languages [1]. It works
by scanning the entire program and verifying that all expres-
sions are well-typed. In case any type errors are detected, the
program is rejected.

Enforcing well-typedness provides statically typed lan-
guages several advantages over dynamically typed languages.
First, it guarantees that a program is type safe during run-
time. This means that no type errors can occur in a program
that has successfully compiled greatly reducing the potential
of bugs and also removes many potential test cases that a pro-
grammer would have to write otherwise. Second, due to the
nature of type checking the types of all expressions are known
in advance. As a result programming environments (IDEs)
can provide more powerful automatic refactoring, automatic
documentation and other quality of life features, enhancing
the programming experience of a language [2]. Furthermore,
knowing the types in advance allows for better performance
optimization and avoids the need for dynamic type checking,
which can result in an increased run-time efficiency [2].

However, in many statically typed languages these advan-
tages usually come with a significant cost - a requirement for
explicit type annotations, which increases the verbosity of a
language and burdens the programmer to know the type sys-
tem well before writing a program (e.g. in Java, should you
choose ”ArrayList” or ”LinkedList”?). This has led to a belief
that dynamically typed languages offer a better experience for
programmers, making many programmers (new and experi-
ence) forgo of the aforementioned benefits of static typing in
favor of more user-friendly atmosphere of dynamically typed
languages.

1.1 Type Inference
Fortunately, statically typed programming languages do

not inherently need type annotations to make type-checking

possible - most type annotations can be omitted by taking ad-
vantage of type inference. In programming languages, type
inference refers to automatic type detection based on sur-
rounding context. More specifically, it applies when there
is a known expression with an unknown type which needs
to be determined. Thus having type inference in theory re-
moves the need of explicit type annotations when declaring
variables and functions, while preserving the stated benefits
of statically typed languages.

However, implementing type inference is not a trivial task
and has been studied extensively for over 40 years since one
of the first and most influential type inferences algorithms (al-
gorithm W) was first formalized in 1982 [3]. The largest pro-
portion of research was directed towards investigating pos-
sible ways to achieve type inference for complex type sys-
tems, which allow for features not supported by algorithm W
(e.g. subtyping, type classes or first-class polymorphism), a
smaller share of research was also investigating the possible
ways to improve error reporting for languages which use al-
gorithm W for type inference.

Nevertheless, even after decades of research there still is
no single technique that would cover all the complex features
commonly used in modern languages. There are a plethora of
techniques, all of which prioritize some features, while sacri-
ficing others. Thus a programming language developer has to
choose wisely how to design a programming language so that
it allows for powerful type inference and what type inference
algorithms to use in different scenarios.

1.2 Research Goals and Structure
This paper will focus on providing a comprehensive liter-

ature survey of such type inference techniques used in stat-
ically typed programming languages by examining a wide
range of literature and presenting their key advancements,
challenges and use-cases. More specifically the following
questions will be answered:

• What are the common issues to implementing type in-
ference?

• What are the proposed solutions to these issues?
• How these solutions compare? Identify advantages and

limitations.
• How were these methods adopted in practice?

The rest of this paper is divided as follows. Section 2 will
describe how the information was collected (methodology),
section 3 will discuss how this paper adheres to the responsi-
ble research principles, section 4 will delve deeper presenting
an array of type inference algorithms present across literature
together with their motivations and specifics. It will also per-
form comparisons of competing approaches, identifying their
main strengths and weaknesses, section 5 will provide some
discussion and advice for programming language developers,
section 6 will conclude.

2 Methodology
The information present in this literature survey was gath-

ered with a strong emphasis on peer reviewed research pa-
pers and primary sources. However, some alternative sources



like pre-prints (e.g. a very recent algorithm FreezeML [4]),
articles published by reputable sources (e.g. an article pub-
lished by Microsoft about C# [5]) or official documentation
were used if they provided valuable additional information
not present in the peer review research papers covered by the
scope of this survey.

Relevant literature sources were gathered by using vari-
ous search engines (Google, ACM Digital Library, Research
Gate) with keywords appropriate to the research topic such as
“Type Inference”, “Type Systems”, “Hindley-Milner” or spe-
cific type system features like “First-Class Polymorphism” or
“Subtyping”. A lot of literature was also gathered through the
many related works sections and references used by initial set
of literature.

The algorithms present in this survey were compared based
on the information composed of the limitations and ad-
vantages identified by the original research, together with
second-hand evaluations of successors in this field and other
sources such as the success of adoption in practice.

3 Responsible Research
The data presented in this paper adheres to the principles of

responsible research, since all the information was presented
in an honest way i.e. exactly as found in the (identified) ref-
erences, especially if said research conflicted with our narra-
tives. In cases where our personal opinions were stated, they
were clearly identified as such (e.g. section 5). Furthermore,
the methods used to gather information were also identified
(section 2) to enhance the reproducibility of our research.

4 Type Inference Techniques
The aim of this section is to introduce the different type

inference techniques with real world examples of where they
have been applied and the motivation behind each technique.
First, subsection 4.1 will briefly discuss how type inference is
implemented and to what extent it is supported in most popu-
lar languages. Then, subsection 4.2 will focus on describing
the original Algorithm W, followed by 4.3 which will present
the various extensions of this algorithm. Lastly, subsection
4.4 will introduce bidirectional type checking - an alternative
approach to algorithm W. More comparisons between these
techniques will follow in section 5 discussions.

4.1 Type Inference in most Popular Languages
Although type inference for statically typed languages

seems especially advantageous (as described in section 1), in
practice languages which are currently the most popular are
slow to adopt it. For example, C offers no type inference [6].
Other very popular static languages such as C++, Java and
C# offer some type inference, however only in a very limited
form (e.g. var in Java or C# and auto in C++). For example,
the auto keyword in C++ might be used in a “for-loop” when
iterating over a list of a known type without explicit annota-
tions, however when creating a constructor for such a list the
return type must be annotated. In essence type inference in
these languages boils down to matching the known type on
the right side of the initialization expression to the left side or

vice-versa [5]. Thus, in these languages type inference alle-
viates the programmer from only the most primitive type an-
notations, resulting in most expressions still needing explicit
type annotations.

The reasons for this limited adoption might vary, however
it is safe to assume that it is difficult to introduce type infer-
ence for a language which was not not designed with it in
mind. It took years for all of these languages to receive any
form of type inference. For example, for Java (released in
1995) type inference for Generics was only introduced in Java
7 (2011), while var keyword only in Java 11 (2018). On the
other hand, newer statically typed languages like Swift (2014)
or Kotlin (2016) were released with type inference from the
very beginning and offer a much greater support for it. For
example, Swift is able to infer that a function {x in return
x + 1} is of type Int → Int, which is not possible in the
previously mentioned older languages.

On the other hand, many functional programming lan-
guages such as ML, Haskell, OCaml, F# (although not as
popular) showcase the true power of type inference. Hav-
ing their grounds in mathematics, these languages prioritized
abstract reasoning and were built with type inference in mind
from the very beginning and thus allow for nearly all expres-
sions to be annotation free. In fact, the most well-known
and influential of type inference algorithms - algorithm W (or
Damas-Milner) was designed for ML in 1982 [3] and since
has been used in various forms in many other functional lan-
guages (e.g. Haskell, OCaml or F#.). The following section
will delve deeper into Algorithm W and its extensions.

4.2 Algorithm W
Algorithm W [7] [3] (sometimes called Damas-Milner or

simply W) is a type inference algorithm created by R. Mil-
ner and L. Damas for the ML (Meta-Language) programming
language in 1982 [3] and since has been used as a base point
for type inference algorithms in many functional program-
ming languages, most notably OCaml, Haskell and F# (al-
though its influence extends much further beyond these three
languages). Its main power stems from its simplicity and the
ability to infer the most general type for any well-typed ex-
pression under the Hindley-Milner type system [3], a property
not many other type systems enjoy.

This subsection will first introduce the Hindley-Milner
type system used in Algorithm W and then the Algorithm W
itself.

Type System
The specific type system used by algorithm W is called

Hindley-Milner (HM in short), named that way because R.
Hindley and R. Milner both discovered and formalized this
system independently [8] [7]. Hindley was the first one to dis-
cover it in 1969 [8] and called it the “principal type scheme”.
Milner’s work came later in 1978 [7], where he called it the
“polymorphic type system”. In this paper Milner acknowl-
edged that he only became aware of Hindley’s system after
“doing the work”, nevertheless Milner still mentioned that his
type system for Algorithm W could be viewed as an extension
of Hindley’s system that is specifically tailored for program-
ming languages [7]. Formally HM can be viewed either as



id :: a -> a
id = (\x -> x)

-- Compiles ("id" becomes Int->Int)
ex1 = (\f -> (f 5, "text")) id
-- Compiles ("id" becomes String->String)
ex2 = (\f -> (5, f "text")) id
-- Error (Integer 5 is not a String)
ex3 = (\f -> (f 5, f "text")) id

-- Compiles (polymorphic binds allowed)
ex4 = let f = id in (f 5, f "text")

Figure 1: Haskell example, demonstrating the restriction of HM that
lambda functions can only be applied to monomorphic arguments
(see “ex3”), but let bindings don’t have this restriction (see “ex4”).

an extension of simply-typed λ-calculus or as a restriction of
System F (polymorphic λ-calculus):

HM is an extension of simply-typed λ- calculus, because
unlike the latter, HM allows for parametric polymorphism
and does not require type annotations. As an example con-
sider the identify function - λx → x. Such a function is
not possible in simply-typed λ-calculus since a concrete type
would have to be specified for its argument (e.g. λx : Int →
x or λx : String → x), yet it is possible in HM.

HM is a restriction of System F because unlike in System
F, in HM polymorphism is limited. More specifically it is
limited in two ways - first, λ-expressions are not allowed to
be applied to polymorphic values, second, polymorphic quan-
tifiers such as ∀ can only occur at the outermost level (first-
class polymorhism is not supported) [9]. These limitations
are necessary to maintain a very important property that HM
enjoys, which is that for any expression, most general (prin-
cipal) types can always be inferred and thus type annotations
are never needed [10]. System F, on the other hand, while
enjoying less restrictions, loses the principal type property,
causing type inference in this system to be undecidable [11].

To lessen the impact of not allowing lambda expressions
to be applied to polymorphic values, HM introduced let-
bindings, which “cheat” around this issue and formally make
HM let-polymorphic (as opposed to fully polymorphic). As
an example, consider a code-snippet written in Haskell in Fig-
ure 1. In this snippet four expressions are presented together
with the aforementioned polymorphic identity function. In
examples “ex1” and “ex2” lambda expressions are allowed to
be applied to “id” because internally “ex1” and “ex2” only
apply it to either Int or String (not both), thus “id” is in-
stantiated as a monomorphic type of Int → Int in “ex1”
or String → String in “ex2”, however “ex3” fails because
the function is applied to both Int and String, requiring id to
be polymorphic. Fortunately, “ex4” shows that an equivalent
expression that does use “id” in a polymorphic fashion can be
achieved using the let-binding.

Formally HM type system consists of 6 typing rules - vari-
able (Var), function application (App), lambda abstraction
(Abs), let generalization (Let), type instantiation (Inst) and
type generalization (Gen). All these rules are presented in a

x : σ ∈ Γ

Γ ⊢ x : σ
[VAR]

Γ, x : τ1 ⊢ e : τ2
Γ ⊢ λx.e : τ1 → τ2

[ABS]

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

[APP]

Γ ⊢ e1 : σ Γ, x : σ ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ
[LET]

Γ ⊢ e : σ2 σ2 ⊑ σ1

Γ ⊢ e : σ1
[INST]

Γ ⊢ e : σ α /∈ free(Γ)
Γ ⊢ e : ∀α.σ

[GEN]

Figure 2: Declarative representation of the Hindley-Milner type sys-
tem rules in formal notation. Adapted from Damas and Milner [3].

common formal type system notation in Figure 2.
The following subsection will introduce the actual type in-

ference algorithm W for this type system.

Type Inference Algorithm
In addition to extending Hindley’s type system, Milner’s

original paper publised in 1978 [7] also laid the groundwork
for algorithm W by introducing a type-checking algorithm for
Hindley-Milner type system. This work was later used in the
subsequent paper by R. Milner’s and L. Damas paper pub-
lished in 1982 [3] where the inference part of algorithm W
was finalized by R. Milner and the proofs for the decidability,
completeness and soundness of algorithm W were established
and presented by L. Damas. This paper showed that under the
Hindley-Milner type system, any well-typed expression can
be inferred a principal (most general) type using algorithm W.
Principle type property is very important and suggests that for
a language using Hindley-Milner type system together with
Algorithm W, type annotations are never needed. However,
in many cases adding new features to increase the expressive-
ness of HM results in losing the principal types property as
shown by some extensions presented in the following subsec-
tion.

At its core Algorithm W type inference relies on type uni-
fication [7]. J. Robinson was the first to provide a formal
algorithm for unification together with proofs of its complete-
ness in 1965 [12] and it is his algorithm that is used as a sub-
procedure in the original algorithm W.

Unification can be viewed as a function that takes in two
type expressions (e.g. “e1” and “e2”) and provides a set of
substitutions S, so that when when these substitutions are ap-
plied to both expressions “e1” and “e2”, the resulting expres-
sions are equal (i.e. S(e1) = S(e2)), we say that S unifies
“e1” and “e2”. Furthermore, Robinson’s algorithm produces
substitutions that are the most general [12], meaning that the
resulting type has the least amount of constraints. As an ex-



ample consider

f1 : α → Int and f2 : α → β,

where α → Int denotes a type of a function that takes a
value of any type α and returns a value of concrete type Int.
Similarly α → β denotes a type of a function that takes a
value of any type α and returns a value of any type β (f2 is
more general than f1). If we were to unify f1 and f2, the
resulting most general set of substitutions S would be

S = {β 7→ Int}.

Here we place a constraint on β, saying that β has to be of
type Int, so that

S(f1) = S(α → Int) = α → Int

S(f2) = S(α → β) = α → Int

thus S(f1) = S(f2).

It also easy to see that S is also the most general unifier, yet
not the only one. Consider another possible unifier S′, where

S′ = {α 7→ Int, β 7→ Int}.

S′ still unifies f1 and f2 (i.e. S′(f1) = S′(f2) = Int →
Int), yet the resultant type is not the most general since S′

imposes an unnecessary additional constraint α 7→ Int and
thus over-restricts the type.

Algorithm W works by combining this unification algo-
rithm together with the type system rules shown in 2. It ap-
plies these rules bottom-up, meaning that it first recursively
traverses the abstract syntax tree (AST) and applies new type
variables to the leaves as a base case. Then, the recursive
tree is collapsed by unifying the “child” types of each expres-
sion into a single “parent” type until either at some stage the
unification algorithm fails to unify (there doesn’t exist a sub-
stitution that would make the types equal) or the root of the
recursive tree is reached and the resultant type of the expres-
sion together with the set of substitutions is returned. In the
case where unification fails a type error is returned.

For example, given an application expression

e′ = e1 e2,

with the following types

e′ : τ2, e1 : α and e2 : τ1,

it is known from the application rule ([APP] in Figure 2) that
α needs to unify with some type τ1 → τ2. In this case the
algorithm assigns the parent expression e′ a new (unused)
variable name τ2, since due to this bottom-up approach the
expression e′ has not yet been processed by the algorithm
and has no type attached to it. The types α and τ1, on the
other hand, have already been inferred to the most general
types in their respective sub-trees, thus these concrete types
are used for the unification. After unifying α with τ1 → τ2, if
a solution exists, a new set of substitutions is obtained for all
three type variables α, τ1 and τ2, that when applied result in
these types being the most most general in this new broader
scope of the AST that includes expression e′. If e′ was the
root, algorithm W halts and returns the most recent set of

subsitutions together with the type τ2 belonging specifically
to e′. If e′ was not the root of the AST the algorithm continues
traversing the AST upwards and unifying expressions based
on the type rules in Figure 2 similarly to this function appli-
cation example until the root is reached. If at any point of
the algorithm no successful set of unifying substitutions ex-
ists, the algorithm halts with a type error, notifying that some
problematic expression could not be unified to some other ex-
pression.

Although simple, efficient and enjoying the principal type
property, algorithm W is limited to Hindley-Milner type sys-
tem, thus it is not very expressive. Due to this and other prob-
lems over the years many extensions to algorithm W were
proposed that either improve it in some way or adapt it to
handle more complex language features. This will be the fo-
cus of the following subsection.

4.3 Extensions of Algorithm W
Algorithm W is very efficient and guarantees that for any

well-typed expression, it will produce the most general type
(i.e. type annotations are never needed). However, this guar-
antee would only work in a type system which does not allow
for more complex type system features such as type classes,
subtyping, first-class polymorphism and others. In addition,
algorithm W suffers from poor error localization, meaning
that when type related errors occur the error location is fre-
quently reported far away from the actual source. As a result,
over the years many extensions to the original Algorithm W
were proposed. OutsideIn(X) (2011) [13] for type classes,
MLF (2003) [14], HMF (2008) [9], FreezeML (2020) [4]
for first-class polymorphism, MLsub (2017) [15], Simple-sub
(2020) [16] for subtyping and SOLVE [17] (2002), ”Practical
Error Localization” [18] (2015) for error localization.

Subtyping
Subtyping is an essential type system feature for many pro-

gramming languages. For example, subtyping shows up in
object-oriented programming (OOP) languages such as Java,
C# and C++ through the support of inheritance1 [20] (widely
considered a fundamental aspect of OOP paradigm). Other
examples include traits in Scala, union types in TypeScript,
and objects in OCaml (implemented as records with subtyp-
ing).

In general, implementing subtyping means allowing for
types to be related to each other in terms their constraints (or
conversely in terms of features they offer), such that more
precise types (e.g. Dog) could be used in places where more
general types (e.g. Mammal, Animal, etc.) are expected,
which makes for a more expressive and convenient language.
Formally we express this relationship as Dog ≤ Animal or
generally τ ≤ τ ′, meaning that the type τ is a subtype of τ ′
(conversely τ ′ is a supertype of τ ) and implies that τ might
be used anywhere where τ ′ is expected (the opposite does not
hold unless types are equal). In functional languages that do
not have objects, a more standard example to explain subtyp-
ing could be integers and natural numbers. Since each natu-
ral number is itself an integer, we can say that Nat ≤ Int,

1Inheritance does not always imply subtyping as remarked by
Cook et al. [19], but in these language it does [20].



and thus we can use naturals for any function/list/record that
expects integers. The opposite does not hold since not all in-
tegers are naturals.

Unfortunately, even though subtyping is very useful, com-
bining it with type inference has been a long lasting issue.
Hindley-Milner type system (that Algorithm W is built for)
does not feature subtyping for a very good reason - since at
its core its type inference algorithm relies heavily on unifica-
tion. Unification equates two types by generating a set of sub-
titutions, which simplifies/merges constraints on types into a
concrete type in an efficient way (as explained in subsection
4.2). However, in the presence of subtyping unification no
longer works, since instead of type equalities i.e. α = β,
implementing subtyping would result in type inequalities i.e.
α ≤ β, for which there is no way to perform unification [21].

The most natural approach to avoid unification is to col-
lect all of the subtyping constraints while traversing the AST
and solve them in one go at the the end of the algorithm. If
there exists no type satisfying the set of constraints imposed
to an expression, then it means this expression is ill-typed.
This problem of checking whether there exists a type which
satisfies a set of subtyping constraints is known as subtype
satisfiability [22].

However, collecting constraints without simplifying them
is not a good idea. Without simplification, as the size of the
program grows these constraints would accumulate and the
types of expressions would quickly become too large to com-
prehend for programmers (e.g. when shown in error mes-
sages). Furthermore, since the time-complexity of subtype
satisfiability is high (currently the most efficient algorithms
are O(x3) at best for most type systems [22]) such an ap-
proach would not be practical at all for large applications.
Thus some sort of constraint simplification is necessary for
type inference under subtyping to be practical. Pottier dis-
cusses this issue in detail and proposes a simplification algo-
rithm in his 1996 [21] and 2001 [23] papers.

Due to the difficulties mentioned above, extending Algo-
rithm W to handle subtyping has been a real struggle. Re-
searchers have been proposing various methods ever since
the early 1980s. Some of the earliest examples are Mitchell
(1984) [24], Stanisfer (1988) [25] and Fuh and Mishra (1989)
[26]. These early attempts at supporting type inference un-
der subtyping were not satisfying due to requiring heavy re-
strictions, for example none of these algorithms allowed let-
polymorphism (property of Algorithm W) or function over-
loading (ad-hoc polymorphism). Other algorithms focused
solely on enabling overloading without subtyping [27] [28]
(the topic of subsection 4.3).

In 1994, G. S. Smith combined these two lines of work
and proposed a sound and complete algorithm that would in-
fer principal types in the presence of both - subtyping and
overloading [29], however with some restrictions yet again
(though not as severe as the previous work) such as only
allowing global overloading, since local overloading would
break the principal type property. Although Smith’s work
looked promising, we could not find practical applications
of his type system and algorithm, which could be due to the
high cost of inferring types for larger programs (as he men-
tions himself in the future work section). There are many pa-

pers that continued the work, much more than we can cover
given the scope of our paper. Some papers not mentioned al-
ready are Aiken and Wimmers (1993) [30], F. Pottier (1998)
[31][32].

The most recent subtyping extensions of Algorithm W are
MLSub (2017) [15] by Dolan and Mycroft and SimpleSub
(2020) by Parreaux [16]. These two algorithms are very re-
lated, since SimpleSub was released as a simplification of
MLSub that was implemented in only 500 lines of Scala
code and was much easier to understand. Parreaux critiqued
MLSub as being hard to understand even by experts, men-
tioning that reading the related lengthy Dolan’s Ph.D. thesis
was necessary to understand MLSub in full. He showed that
his simplified version, although not as “mathematically ele-
gant” inferred equivalent types for a “million randomly gen-
erated expressions” [16]. Source code for both algorithms
has been published on GitHub [33][34] and both also feature
fully working demos online [35][36].

MLSub proposed a sound and complete algorithm that
would infer principal types in the presence of subtyping for
an ML-like language. This language included everything that
the HM type system included with an addition of records. Un-
like a lot of previous attempts, MLsub’s greatests strengths
were allowing let-polymorphism and inferring types which
are small/compact (thus easy to read). To acomplish com-
pact types, it applied constraint simplification methods in-
spired by Pottier’s (1998) work [32]. Furthermore, MLSub
differed from most previous work in that it introduced a con-
cept of “biunification”. Previous algorithms usually traversed
the application collecting a set of constraints and then solved
them as a separate step all at once, while MLsub merged con-
straints while traversing the AST using “biunification” in a
similar way how unification was applied in Algorithm W [6].

The greatest weaknesses of MLSub is that it does not allow
for function overloading, restricts function inputs to union
types (intersection types not allowed) and outputs to inter-
section types (union types not allowed) and is not very ef-
ficient (possibly exponential time [37]). The first two re-
strictions are needed to achieve the compact types that the
algorithm is known for. This is because the simplification
algorithm of MLsub exploits the assumption that the types
(int → int) ∩ (nat → nat) and (int ∪ nat) → (int ∩ nat)
are equivalent, which is only true if those restrictions men-
tioned above hold [16]. As with other algorithms mentioned
previously, we are could not find any integrations of MLsub
or SimpleSub with widespread languages.

First-Class Polymorphism
First-class polymorphism is another feature not supported

by Algorithm W. It means allowing polymorphic quantifiers
∀α to be first-class citizens. For quantifiers to be first-class
citizens they have to have the ability to appear anywhere
within the type signature [38]. Another term that is some-
times used for this concept is impredicative polymorphism.
In HM, quantifiers are second-class/predicative because they
are restricted to appear only in the outermost level of a type
[4], for example the type ∀α.[α] → [α] (a function that takes a
list of any type and returns a list of the same type) is allowed,
however [∀α.α → α] (a list of functions that take an expres-



sion of any type and return an expression of the same type) is
not since the quantifier ∀α appears inside the list constructor,
not as a predicate.

As already discussed in subsection 4.2, the reason why HM
does not support first-class polymorphism is that allowing it
would make HM equivalent to System F (for which type in-
ference becomes undecidable [11]). As a consequence, any
extension of HM enabling first-class polymorphism is guar-
anteed to lose the principle type property, meaning some type
annotations will become necessary 2.

Losing principal types is a considerably large trade-off,
which might not be justifiable for some programming lan-
guages. Especially since first-class polymorphism occurs in-
frequently in practice and can usually be avoided [39]. How-
ever, there certainly are rare cases [40] where it becomes un-
avoidable or the workarounds required are very impractical
as explained by Serrano et al. [38]. Consequently, some pro-
gramming languages might consider it a valuable feature to
have e.g. Haskell’s impredicative types extension (will be
briefly discussed in subsection 4.4) and thus there has been
a considerable amount of research into this topic.

Examples of extensions to algorithm W which support
first-class polymorphism are MLF (2003) [14], HMF (2008)
[9], FreezeML (2020) [4].

Type Classes (Function Overloading)
Type classes are another type system feature not present

in HM type system, yet in practice supported and commonly
used in languages such as Haskell or Scala. The purpose of
type classes is to allow function overloading [28]. Function
overloading is a form of ad-hoc polymorphism and is useful
when seeking non-uniform behavior for functions of the same
name. For example a function show that converts its input
expression into a string needs different implementations for
different types.

Overloading functions using type classes works in a simi-
lar way to interfaces or abstract classes common in OOP lan-
guages [41]. Type classes impose a set of requirements (i.e. a
set of function overloadings) that have to be implemented for
some type, so that this type could become a member of this
type class. Then any function wishing to use these overloaded
functions have to restrict their inputs to be of the typeclass
that specifies those functions. For example, in Haskell, for a
type to be a member of type class Num it has to implement
arithmetic operations +, −, ∗, etc. and then any function that
uses these operations has to restrict its input to be of typeclass
Num.

All numeric types (Int, Nat, Float, etc.) are members of
Num typeclass in Haskell, which means that the mentioned
arithmetic operations are defined for all of them, something
not possible using only parametric polymorphism present in
HM. In HM, the function + would only be able to be defined
for all types or for a single specific type like Int, thus it is

2Requiring annotations might also lead to issues if subtyping is
also desired, because now the compiler would have to verify whether
the user supplied annotation is not more general than the inferred
type (i.e. verifying that for every type allowed by annotation, it is
also allowed by the inferred most general type), a problem known as
subsumption checking [16].

either too general or to specific for this desired purpose. Fur-
thermore, it would need to have an identical implementation,
irrespective of the input types. All of these limitations restrict
the expressiveness of a programming language, thus it is valu-
able for many programming languages to support overloading
whether through type classes or otherwise.

The creation of type classes as an extension to Hindley-
Milney type system is often accredited to Wadler and Blott
(1989) [28]. Their idea was modified (to work with more
complex language features than intended) and integrated in
the early versions of Haskell, the specific changes are ex-
plained in a paper by Hall et al (1996) [42]. This system
was innovative, however it imposed strong restrictions and
even allowed for some ill-typed programs to typecheck like
true + true for the overloaded operator + not defined for
booleans as noted by Smith [29]. More recently, Haskell
adopted a new type inference algorithm for type classes called
OutsideIn(X) (2011) [13]. OutsideIn(X) allowed combining
type classes with other more complex features like GADTs
(Generalized Algebraic Data Structures) and itself was an ex-
tension of HM(X) (1999) [11]. HM(X) created a general type
inference framework for Hindley-Milner extensions that was
easy to adapt to arbitrary constraint systems and offered a
universal type inference algorithm that did not depend of the
specific constraint logic used [43].

Error Localization
Finally, we would like to discuss another group of related

Algorithm W extensions, which do not introduce any new
features but address an important problem associated with
this algorithm - error localization.

Algorithm W has been known to produce uninformative
errors almost since its invention in the early 80s. In 1986
Wand was one of the first researchers that addressed this prob-
lem and proposed an improvement to the original algorithm
[44]. Wand explained that the errors shown by Algorithm
W were usually indicating error locations far away from the
actual source, which was a real struggle for programmers try-
ing to diagnose their code. The reason for this issue was due
to unification, which propagated the errors in subexpressions
upwards the AST until unification was not possible anymore
and only then reported this location as being problematic. The
algorithm that Wand proposed returned all possible error lo-
cations instead of the last one that caused the issue, which
was an improvement however not an optimal one since the
number of errors reported could become large and cause con-
fusion once again.

In 1998 Lee and Yi formalized Algorithm M [45] 3 - an
analogous algorithm to W that worked top-down, rather than
bottom-up 4. In addition to formalizing and proving the algo-

3Lee and Yi noted that this algorithm was “folklore” and quite
common in practice, however it was never properly formalized be-
fore their work

4Instead of taking an expression as input and producing an in-
ferred type like Algorithm W, Algorithm M took an expression and
a type and produced a set of substitutions to make this type com-
patible with an actual type of the expression. After applying the
resultant set of substitutions (produced by algorithm M) to the input
type, the same exact type would be obtained as W.



rithm, they proved an interesting property of M, which stated
that M would always stop earlier than W in case of an error,
resulting in detected error locations being closer to the actual
source and easier to identify. They also noted that error local-
ization could be further improved by using both algorithms
M and W in conjuction and taking into account both of the
generated error locations when determining the most proba-
ble one.

Other notable algorithms that took upon improving error
localization of Algorithm W are SOLVE [17] proposed in
2002 by Heeren et al. and a more recent one by Pavlinovic et
al. [18] proposed in 2015.

4.4 Bidirectional Type Checking
In addition to Algorithm W and its various extensions, an-

other approach to type inference called Bidirectional Type
Checking “has become one of the most popular techniques
for implementing typecheckers in new languages” [46]. It uti-
lizes a bidirectional approach in a sense that it combines type
checking and type inference into one process. The reasoning
for this is that some expressions might be “typeable in check-
ing mode when it is not typable in inference mode” [47].
For example, consider Figure 3 which returns to the exam-
ple “ex3” from Figure 1 that did not compile with a unidirec-
tional type inference approach. It shows that this expression
successfully compiles if an explicit annotation is provided
and bidirectional type checking extension is enabled. This
approach was first formalized by Pierce and Turner in 1999
[48] and has been applied by many various languages ever
since, most notably in Scala. Type inference in Scala uses
an improved version of Pierce and Turner’s algorithm called
”Colored Local Type Inference” as formalized in a paper by
Scala’s creator in 2001 [43] to allow for subtyping. Another
notable algorithm that follows this technique is QuickLook
(2020) [38] which was designed specifically to support first-
class polymorphism and has been adopted by Haskell [49]. In
2021 Dunfield and Krishnaswami made an excellent survey
analysing how this approach evolved over the years and men-
tioning many more bidirectional type checking algorithms
that are not covered by our paper [46]. The remainder of this
section will introduce the main techniques of this approach
together with a few notable algorithms that implement these
techniques.

Bidirectional type-checking can be classified as partial type
inference (as opposed to Algorithm W which showcases com-
plete type inference), meaning that explicit annotations are
required for some expressions. In their original paper [48]
Pierce and Turner motivated this choice by recognizing that
complete type inference is really difficult to achieve for more
complex features such as subtyping or impossible in the case
of first-class polymorphism [11] and although there were nu-
merous attempts in combining Hindley-Milner type inference
with subtyping, there was no widespread adoption of these
techniques in practice.

Furthermore, Pierce and Turner argued that complete type
inference might not be as beneficial in practice as it would
seem. For example, requiring type annotations for top-level
function definitions could be seen as a form of documenta-
tion, showing the intent of the programmer. In their view,

ex3' :: (forall a. a -> a) -> (Int, String)
ex3' = \f-> (f 5, f "text")
-- Compiles:
-- >>> ex3' id
-- (5,"text")

Figure 3: Another Haskell example, showing how a similar expres-
sion to Figure 1 compiles, given ImpredicativeTypes extension is
enabled (QuickLook [38]) and explicit type annotation is provided.

inferring “common and silly” annotations should be enough
in practice. Specifically, after analysing a large amount of
code written in ML, they determined that the most important
cases where types should be inferred are applications of poly-
morphic functions, parameters of anonymous functions and
local bindings of variables. They argued that function defini-
tions do not need to be inferred since from their results local
function definitions are rare and (as noted) top-level function
definitions serve as documentation.

Their technique takes advantage of explicit type anno-
tations by propagating them downwards the AST (type-
checking) and synthesizes unknown types carrying them up-
wards (type inference similar to Algorithm W). For this rea-
son, the formal descriptions bidirectional type systems usu-
ally split the type system rules (such as seen in Figure 2 for
Algorithm W) into two rules - inferring a type (when “child”
types in AST are known) and checking (when “parent” types
in AST are known) [43].

Subtyping
A notable bidirectional type checking algorithm for Sub-

typing is “Colored Local Type Inference” (2001) [43] which
has been designed for Scala by Odersky et al. This algo-
rithm borrows heavily from the original “Local Type Infer-
ence” (2000) [48], yet improves it considerably. Odersky
noted that the original algorithm propagates types downwards
in the AST (using type checking) only if they are fully known.
If the types are only partially known, then the algorithm dis-
ables type-checking and relies solely on type inference (prop-
agating types upwards in the AST). This means that given the
type of f is (partially) known as

f : (Int → α) → α

the function application

f (λx → x+ 1)

is ill-typed in the original algorithm [43], but not in algorithm
by Odersky.

First-Class Polymorphism
Another noteworthy bidirectional type checking algorithm

is QuickLook (2020) [38]. QuickLook focuses on combin-
ing first class polymorphism with type inference. One of the
main strengths of QuickLook is its ease of integration with
existing type inference systems. This is achieved due to their
localized approach, where all first-class polymorphism is re-
solved before the constraint solving stage begins and thus a
standard constraint solver can be used [50]. This is especially
advantageous for complex production languages like Scala,



OCaml and Haskell, where any big changes to the existing
type system are impractical. In fact, to backup their claims
the authors of QuickLook have integrated their system with
GHC (Haskell compiler) with only 1% change of the original
codebase, preserving all the extensions that Haskell already
implemented such as Type Classes and GADTs [38]. Fur-
thermore, in 2021 the implementors of Haskell officially in-
tegrated QuickLook with Haskell as an optional “Impredica-
tiveTypes” extension, avalable as part of Haskell 9.21 [49]. In
their documentation, it is noted that for the first time Haskell
can enjoy a ”robust” implementation of first-order polymor-
phism, unlike previous attempts which were unstable and un-
reliable.

5 Discussion and Advice
From the previous sections it should be apparent that there

is a lot of research concerning type inference, resulting in a
wide array of techniques, all of which have their own subtle
nuances or restrictions that a developer of a new language
should be aware of and unfortunately due to the scope of this
paper it is not possible to cover each technique fully in as
much detail as they require.

Thus, in this last section we wish to provide further discus-
sion and advice for any new programming language develop-
ers regarding which techniques we believe are more suitable
in what contexts, which we hope will help determining which
techniques are worth investigating further based on the goals
of the programming language developers.

First, we will have a general discussion between the
Hindley-Milner and Bidirectional approaches, then we will
address subtyping, first-class polymorphism and finally the
quality of error messages.

Best Approaches Overall
As we have seen there are two main families type inference

techniques - Hindley-Milner based and bidirectional. Choos-
ing one over the other will have certain consequences for the
language.

HM approaches usually support global type inference to-
gether with principal type property, which results in type
inference being complete, where type annotations are never
needed, but comes with a consequence of being inflexible. It
is more difficult to add new features in HM than it is with bidi-
rectional type checking, since each new feature might break
the principal type property, rendering type inference unreli-
able as Odersky mentions for his motivations to not use HM
approaches in Scala [43].

On the other hand, bidirectional type checking comes with
greater freedom of type system features that one might add
to programming language, however it means sacrificing com-
plete type annotations, which might worsen the experience
for programming in such language. Fortunately, as argued by
Pierce [48], enforcing some annotations might be even desir-
able for some cases like top-level function definitions since
they serve as documentation and help understanding the in-
tent of the programmer.

Thus the choice of the type inference often comes down
to whether more language expressiveness or more type in-

ference is preferred. However, as certain bidirectional tech-
niques such as QuickLook [38] have shown, it could be
possible to combine both approaches into a hybrid system,
where the bidirectional inference algorithm serves as a ”pre-
processing step” that reduces the program into one that is
compatible with a HM based approach, in the end achiev-
ing best of both worlds - complete type inference (using HM
algorithms) for simple programs and partial type inference
(using bidiretional algorithms) when more complex features
are involved.

Subtyping
Although there are HM based approaches that offer prin-

cipal type inference under subtyping such as MLSub [15] or
SimpleSub [16] they come at a cost of imposing certain re-
strictions to subtyping such as inability to support function
overloading and are inefficient as noted by Melo [6] (some
sources suggest that these algorithms might even be exponen-
tial [37]). Furthermore, we were unable to find any successful
applications of these systems in practice. On the other hand,
widespread languages like Scala serve as evidence that bidi-
rectional type checking is a safe choice in the presence of
subtyping. Thus we recommend choosing this approach as
well.

First-Class Polymorphism
Since First-Class Polymorphism requires breaking the

principal type property anyway, we believe that choosing a
hybrid approach of HM together bidirectional algorithm like
QuickLook [38] is the safest choice, which has also proven
itself by being integrated in Haskell.

Good Error Messages
Finally, we believe that although the original Algorithm

W did suffer from uninformative error messages, there are
enough extensions addressing the problem like Algorithm M
[45], SOLVE [17] or the method proposed by Pavlinovic et al.
[18] that in our opinion makes it a tie between HM based ap-
proaches and bidirectional type checking, where other aspects
such as completeness of type inference or expressiveness of
the language should sway the choice one way or the other.

6 Conclusion
This paper presented a literature survey of type inference

techniques for statically typed languages by analysing a wide
range of research papers concerning this topic. Two main
families of algorithms for type inference have been estab-
lished - Hindley-Milner based and bidirectional type check-
ing. The paper broke down each technique, presenting most
notable algorithms belonging to each approach and intuitions
behind them. Furthermore, the different algorithms where
contrasted and compared, identifying their unique advantages
and weaknesses and where possible presenting their applica-
tion in real-world programming languages. Finally, the paper
presented some advice and discussion about the presented
techniques with the aim of helping programming language
developers make the right choice of type inference algorithms
when designing a new language.



References
[1] J. Siek and M. Vachharajani, “Gradual typing with

unification-based inference,” p. 7, July 2008.

[2] E. Meijer and P. Drayton, “Static Typing Where Pos-
sible, Dynamic Typing When Needed: The End of
the Cold War Between Programming Languages,” Jan.
2004.

[3] L. Damas and R. Milner, “Principal type-schemes for
functional programs,” Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 207–212, Jan. 1982.

[4] F. Emrich, S. Lindley, J. Stolarek, J. Cheney, and
J. Coates, FreezeML: Complete and Easy Type Inference
for First-Class Polymorphism. Apr. 2020.

[5] B. Wagner, “Type Inference.” https://
download.microsoft.com/download/5/4/B/
54B83DFE-D7AA-4155-9687-B0CF58FF65D7/
type-inference.pdf, May 2012.

[6] L. T. C. Melo, R. G. Ribeiro, B. C. F. Guimarães, and
F. M. Q. Pereira, “Type Inference for C: Applications
to the Static Analysis of Incomplete Programs,” ACM
Transactions on Programming Languages and Systems,
vol. 42, pp. 1–71, Sept. 2020.

[7] R. Milner, “A theory of type polymorphism in pro-
gramming,” Journal of Computer and System Sciences,
vol. 17, pp. 348–375, Dec. 1978.

[8] J. Hindley, “The principal type-scheme of an object in
Combinatory Logic,” Trans AMS, vol. 146, pp. 29–60,
Jan. 1969.

[9] D. Leijen, “HMF: simple type inference for first-
class polymorphism,” ACM SIGPLAN Notices, vol. 43,
pp. 283–294, Sept. 2008.

[10] M. Odersky and K. Laufer, “Putting Type Annotations
to Work,” Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, ser. POPL, Jan. 1996.

[11] J. B. Wells, “Typability and type checking in System
F are equivalent and undecidable,” Annals of Pure and
Applied Logic, vol. 98, pp. 111–156, June 1999.

[12] J. A. Robinson, “A Machine-Oriented Logic Based on
the Resolution Principle,” Journal of the ACM, vol. 12,
pp. 23–41, Jan. 1965.

[13] D. Vytiniotis, S. P. Jones, T. Schrijvers, and M. Sulz-
mann, “OutsideIn(X) Modular type inference with lo-
cal assumptions,” Journal of Functional Programming,
vol. 21, pp. 333–412, Sept. 2011. Publisher: Cambridge
University Press.

[14] D. Le Botlan and D. Rémy, “ML f: raising ML to the
power of system F,” in Proceedings of the eighth ACM
SIGPLAN international conference on Functional pro-
gramming, (Uppsala Sweden), pp. 27–38, ACM, Aug.
2003.

[15] S. Dolan and A. Mycroft, “Polymorphism, subtyping,
and type inference in MLsub,” ACM SIGPLAN Notices,
vol. 52, pp. 60–72, Jan. 2017.

[16] L. Parreaux, “The simple essence of algebraic subtyp-
ing: principal type inference with subtyping made easy
(functional pearl),” Proceedings of the ACM on Pro-
gramming Languages, vol. 4, pp. 1–28, Aug. 2020.

[17] B. Heeren, J. Hage, and S. Swierstra, “Generaliz-
ing Hindley-Milner Type Inference Algorithms,” Aug.
2002.

[18] Z. Pavlinovic, T. King, and T. Wies, “On Practi-
cal SMT-Based Type Error Localization,” Aug. 2015.
arXiv:1508.06836 [cs].

[19] W. R. Cook, W. Hill, and P. S. Canning, “Inheri-
tance is not subtyping,” in Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’90, (New York, NY,
USA), pp. 125–135, Association for Computing Ma-
chinery, Dec. 1989.

[20] M. A. AbdelGawad, “Why Nominal-Typing Matters in
OOP,” Dec. 2017. arXiv:1606.03809 [cs].

[21] F. Pottier, “Simplifying subtyping constraints,” in Pro-
ceedings of the first ACM SIGPLAN international con-
ference on Functional programming, ICFP ’96, (New
York, NY, USA), pp. 122–133, Association for Com-
puting Machinery, June 1996.

[22] J. Niehren and T. Priesnitz, “Non-Structural Subtype
Entailment in Automata Theory,” 2003.

[23] F. Pottier, “Simplifying Subtyping Constraints: A The-
ory,” Information and Computation, vol. 170, pp. 153–
183, Nov. 2001.

[24] J. C. Mitchell, “Coercion and type inference,” in Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, POPL
’84, (New York, NY, USA), pp. 175–185, Association
for Computing Machinery, Jan. 1984.

[25] R. Stansifer, “Type inference with subtypes,” in Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL
’88, (New York, NY, USA), pp. 88–97, Association for
Computing Machinery, Jan. 1988.

[26] Y.-C. Fuh and P. Mishra, “Polymorphic Subtype Infer-
ence: Closing the Theory-Practice Gap,” in Proceed-
ings of the International Joint Conference on Theory
and Practice of Software Development, Volume 2: Ad-
vanced Seminar on Foundations of Innovative Software
Development II and Colloquium on Current Issues in
Programming Languages, TAPSOFT ’89, (Berlin, Hei-
delberg), pp. 167–183, Springer-Verlag, Mar. 1989.

[27] S. Kaes, “Parametric overloading in polymorphic pro-
gramming languages,” in ESOP ’88 (H. Ganzinger, ed.),
Lecture Notes in Computer Science, (Berlin, Heidel-
berg), pp. 131–144, Springer, 1988.

[28] P. Wadler and S. Blott, “How to make ad-hoc poly-
morphism less ad hoc,” in Proceedings of the 16th

https://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf
https://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf
https://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf
https://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf


ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’89, (New York, NY,
USA), pp. 60–76, Association for Computing Machin-
ery, Jan. 1989.

[29] G. S. Smith, “Principal type schemes for functional
programs with overloading and subtyping,” Science of
Computer Programming, vol. 23, pp. 197–226, Dec.
1994.

[30] A. Aiken and E. L. Wimmers, “Type inclusion con-
straints and type inference,” in Proceedings of the
conference on Functional programming languages and
computer architecture, (Copenhagen Denmark), pp. 31–
41, ACM, July 1993.

[31] F. Pottier, “A framework for type inference with subtyp-
ing,” in Proceedings of the third ACM SIGPLAN inter-
national conference on Functional programming, ICFP
’98, (New York, NY, USA), pp. 228–238, Association
for Computing Machinery, Sept. 1998.

[32] F. Pottier, Type Inference in the Presence of Subtyping:
from Theory to Practice. report, INRIA, 1998.

[33] S. Dolan, “MLsub Demo.” https://web.archive.org/web/
20200429043036/https://www.cl.cam.ac.uk/∼sd601/
mlsub/, Apr. 2020.

[34] L. Parreaux, “Simple-sub Demo.” https://lptk.github.io/
simple-sub/.

[35] S. Dolan, “MLsub Source Code.” https://github.com/
stedolan/mlsub, June 2023. original-date: 2014-11-
17T20:46:32Z.

[36] L. Parreaux, “Simple-sub Source Code.” https://github.
com/LPTK/simple-sub, May 2023. original-date: 2020-
02-12T12:25:10Z.

[37] E. Jones and S. Ramsay, Intensional Datatype Refine-
ment. Aug. 2020.

[38] A. Serrano, J. Hage, S. Peyton Jones, and D. Vytini-
otis, “A quick look at impredicativity,” Proceedings of
the ACM on Programming Languages, vol. 4, pp. 89:1–
89:29, Aug. 2020.

[39] F. Henglein and J. Rehof, “The complexity of subtype
entailment for simple types,” pp. 352–361, Aug. 1998.

[40] L. Augustsson, “Impredicative polymorphism, a
use case.” http://augustss.blogspot.com/2011/07/
impredicative-polymorphism-use-case-in.html, 2011.

[41] “OOP vs type classes - HaskellWiki.” https://wiki.
haskell.org/OOP vs type classes#Type classes are
like interfaces.2Fabstract classes.2C not classes itself.

[42] C. V. Hall, K. Hammond, S. L. Peyton Jones, and
P. L. Wadler, “Type classes in Haskell,” ACM Transac-
tions on Programming Languages and Systems, vol. 18,
pp. 109–138, Mar. 1996.

[43] M. Odersky, C. Zenger, and M. Zenger, “Colored
local type inference,” in Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, (London United Kingdom),
pp. 41–53, ACM, Jan. 2001.

[44] M. Wand, “Finding the source of type errors,” in Pro-
ceedings of the 13th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, POPL
’86, (New York, NY, USA), pp. 38–43, Association for
Computing Machinery, Jan. 1986.

[45] O. Lee and K. Yi, “Proofs about a folklore let-
polymorphic type inference algorithm,” ACM Transac-
tions on Programming Languages and Systems, vol. 20,
pp. 707–723, July 1998.

[46] J. Dunfield and N. Krishnaswami, “Bidirectional Typ-
ing,” ACM Computing Surveys, vol. 54, pp. 1–38, May
2021.

[47] S. P. Jones, D. Vytiniotis, S. Weirich, and M. Shields,
“Practical type inference for arbitrary-rank types,” Jour-
nal of Functional Programming, vol. 17, pp. 1–82, Jan.
2007. Publisher: Cambridge University Press.

[48] B. C. Pierce and D. N. Turner, “Local type inference,”
ACM Transactions on Programming Languages and
Systems, vol. 22, pp. 1–44, Jan. 2000.

[49] “6.4.18. Impredicative polymorphism — Glasgow
Haskell Compiler 9.7.20230603 User’s Guide.”
https://ghc.gitlab.haskell.org/ghc/doc/users guide/exts/
impredicative types.html, Oct. 2021.

[50] F. Emrich, J. Stolarek, J. Cheney, and S. Lindley,
“Constraint-based type inference for FreezeML,” July
2022. arXiv:2207.09914 [cs].

https://web.archive.org/web/20200429043036/https://www.cl.cam.ac.uk/~sd601/mlsub/
https://web.archive.org/web/20200429043036/https://www.cl.cam.ac.uk/~sd601/mlsub/
https://web.archive.org/web/20200429043036/https://www.cl.cam.ac.uk/~sd601/mlsub/
https://lptk.github.io/simple-sub/
https://lptk.github.io/simple-sub/
https://github.com/stedolan/mlsub
https://github.com/stedolan/mlsub
https://github.com/LPTK/simple-sub
https://github.com/LPTK/simple-sub
http://augustss.blogspot.com/2011/07/impredicative-polymorphism-use-case-in.html
http://augustss.blogspot.com/2011/07/impredicative-polymorphism-use-case-in.html
https://wiki.haskell.org/OOP_vs_type_classes#Type_classes_are_like_interfaces.2Fabstract_classes.2C_not_classes_itself
https://wiki.haskell.org/OOP_vs_type_classes#Type_classes_are_like_interfaces.2Fabstract_classes.2C_not_classes_itself
https://wiki.haskell.org/OOP_vs_type_classes#Type_classes_are_like_interfaces.2Fabstract_classes.2C_not_classes_itself
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/impredicative_types.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/impredicative_types.html

	Introduction
	Methodology
	Responsible Research
	Type Inference Techniques
	Type Inference in most Popular Languages
	Algorithm W
	Type System
	Type Inference Algorithm

	Extensions of Algorithm W
	Subtyping
	First-Class Polymorphism
	Type Classes (Function Overloading)
	Error Localization

	Bidirectional Type Checking
	Subtyping
	First-Class Polymorphism


	Discussion and Advice
	Conclusion

