
Delft University of Technology
Master of Science Thesis in Embedded Systems

Debugging Intermittently-Powered
Embedded Systems Like Any Other

Embedded System

Tom Sebastiaan Hoefnagel

Embedded
Networked
Systems

Debugging Intermittently-Powered Embedded

Systems Like Any Other Embedded System

Master of Science Thesis in Embedded Systems

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Tom Sebastiaan Hoefnagel
t.s.hoefnagel@student.tudelft.nl

hoefnageltom@gmail.com

31st October 2022

mailto:t.s.hoefnagel@student.tudelft.nl
mailto:hoefnageltom@gmail.com

Author
Tom Sebastiaan Hoefnagel (t.s.hoefnagel@student.tudelft.nl)
(hoefnageltom@gmail.com)

Title
Debugging Intermittently-Powered Embedded Systems Like Any Other Embedded System

MSc Presentation Date
31 October 2022

Graduation Committee
Przemys law Pawe lczak Delft University of Technology
Annibale Panichella Delft University of Technology
Jasper de Winkel Delft University of Technology

The work presented in this thesis has led to a paper that has been submit-
ted and accepted to the ACM SenSys 2022 conference for publication (https:
//sensys.acm.org/2022/)

mailto:t.s.hoefnagel@student.tudelft.nl
mailto:hoefnageltom@gmail.com
https://sensys.acm.org/2022/
https://sensys.acm.org/2022/

Abstract

Debugging and testing battery-free intermittently-powered systems is notori-
ously difficult. This is not only due to the additional complexity of maintaining
state through power failures but also due to the lack of proper tools to test
and debug these systems. As a solution, we present DIPS : a fully-featured
hardware debugger for battery-free intermittently-powered systems capable of
automatically verifying memory and peripheral state between power failures.
Our solution seamlessly integrates an emulator allowing for emulation of any
power scenario to the device under test. This allows our debugger to pause
emulation and program execution when debugging or when state restoration
issues are detected. Our new system is built around GNU Debugger (GDB):
a widely-used debugging tool. Therefore, DIPS allows for a debugging process
identical to state-of-the-art debuggers for continuously-powered devices. User
studies found that our debugger is easy and intuitive to use. It allows em-
bedded system developers to find bugs quicker in code written for battery-free
devices. Users evaluate our debugger and we have found unseen errors in a
state-of-the-art software framework for intermittently powered systems.

iv

Preface

This work you face is part of research imposed by the Embedded and Net-
worked Systems group at the Delft University of Technology. It is supervised
by Jasper de Winkel and Przemys law Pawe lczak. Batteries have had an environ-
mental impact since the beginning, and demand for smaller embedded systems
is only growing. With this work in battery-free systems, I hope to make battery-
free embedded programming more alluring and fun. Creating an easier way to
produce intermittently-powered systems should lead to more embedded engin-
eers choosing battery-free solutions instead of continuously-powered options like
nowadays.

Now, when reaching the end of my masters, I look back gratefully. First
and foremost, I am extremely grateful to my supervisors Jasper de Winkel and
Przemys law Pawe lczak, for their innumerous support and priceless advice dur-
ing my study. During a difficult pandemic period in 2021, it was hard to find
an interesting thesis subject. During on of the lectures given by Przemys law
Pawe lczak, I got introduced to intermittently-powered devices, which eventually
led to this thesis. During my research period, Jasper de Winkel and I had count-
less brainstorm sessions, I would thank him for these sessions, which eventually
lead to a better end result. I also would like to thank Annibale Panichella for
reviewing my work as the graduation committee with my daily supervisors.

Tom Hoefnagel

Delft, The Netherlands
31st October 2022

v

vi

Contents

Preface v

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 3

2 Related Work 5

2.1 Intermittently-Powered Debugging 5

2.2 Intermittently-Powered Energy Emulation 5

2.3 Testing Frameworks For Intermittently-Powered Devices 6

3 Motivation 7

3.1 Debugging Intermittently-Powered Embedded Systems 7

3.2 Intermittent Bugs Classification 7

4 Architecture 11

4.1 Hardware Intermittence-free Debugger 11

4.1.1 Intermittently-Power Supporting Debugger 11

4.1.2 Intermittently Energy-Neutral Debugging 12

4.1.3 Energy-Aware Debugging Features 13

4.2 DIPS Energy Emulator . 13

4.3 DIPS Automated Software Testing 14

5 Implementation 15

5.1 Debugger Firmware Implementation 15

5.2 Energy Emulator Implementation 17

5.2.1 Synthetic Wave Emulation 17

5.2.2 Replay of Energy Traces 18

5.2.3 Hardware Debugger Integration 19

5.2.4 GUI Emulator Serial Communication 19

5.3 Automated Software Testing . 20

5.3.1 Checkpoint-Restore Memory Test 20

5.3.2 Peripheral Restoration Test 21

5.4 Emulator GUI Implementation 21

5.5 GDB Client Wrapper . 23

5.6 DIPS Hardware Implementation 24

vii

6 Evaluation 25
6.1 DIPS Characterisation . 25
6.2 User Experience Studies . 26
6.3 DIPS Case Studies . 30

6.3.1 Scenario 1: Memory Restoration Failure 30
6.3.2 Scenario 2: Peripheral Initialisation Failure 31

6.4 ENGAGE’s Memory Restoration Issue 32

7 Limitations and Future Work 35
7.1 Scope of Generic Embedded Systems Applications 35
7.2 Support for non-ARM MCU Architectures 35
7.3 Increasing Reconnecting Speed 35
7.4 Per-Line Code Inspection . 36
7.5 Future development of DIPS . 36

8 Conclusions 37

viii

Chapter 1

Introduction

There are currently over 12.2 billion [33] connected Internet Of Things (IoT)
devices, most of which perform just a single, simple task, providing new solu-
tions to societal-scale problems such as home automation, security, and wearable
computing. A significant challenge lies in powering all these IoT devices. While
batteries are still the common energy source, they are not sustainable and come
with environmental and social-cultural impacts [43]. Energy harvesting techno-
logy is a more promising way of powering these IoT devices. By applying energy
harvesting, the device is directly powered by the ambient source without using
chemical batteries [19]. Nevertheless, removing the primary energy source is
challenging as standard embedded systems are not built for intermittent oper-
ations. This is where a new category of low-powered embedded systems arises,
Intermittently-powered devices.

Intermittently-powered devices guarantee correct and forward-progressing com-
putation despite frequent power interrupts. These interrupts are caused by
the incoming energy from ambient (therefore intermittent) energy sources that
power the device. That incoming energy charges small energy storage, i.e.
(super-)capacitor, that cannot buffer incoming energy as much as the battery,

System On

System Off

En
er

gy

Time

Power Failure Power Failure

Checkpoint

Restore

Figure 1.1: Battery-free embedded systems operate intermittently;
power failures frequently happen for an indefinite duration. The fig-
ure includes checkpointing capability, checkpointing crucial memory
to non-volatile memory before a power failure and restoring after a
recovery.

1

elevating the intermittency rate further. Battery-free operation promises per-
petual operation: as long as there is an ambient energy source, battery-free
devices will continue operating [39]. Examples of these intermittently-powered
embedded applications include a battery-free handheld gaming console [14],
battery-free computational Radio Frequency Identification (RFID) tags [42],
battery-free sensors [11] and sensor networks [1], battery-free eye tracker [27],
as well as battery-free edge computing platform [31].

Unfortunately, despite the increasing number of battery-free intermittently-
powered platforms, they are still hard to develop [24, Section 7], the main reason
ensuring the continuation of the executed program after a power interruption.
The developer of the intermittent program must programmatically account for
twofold events. That is, whenever a power interrupt happens, at any moment
in time, the device (i) must resume operation from the moment that a power
interrupt happens, and (ii) the state of the device’s memory and its peripherals
must be correctly restored. To assure both events, the developer can instrument
the code utilising two approaches. The first one is the inclusion of checkpoints
and restore, as visualised in Figure 1.1, which forces saving the program’s state
from volatile to non-volatile memory (examples of such approaches include [53,
25]). The second one is code transformations, where code is divided into atomic
blocks (in the context of intermittently-powered devices called tasks [28] or
threads [55]) whose execution time matches the specific energy budget of the
intermittently-powered device. In either method, the intermittently-powered
device’s code needs to be debugged and tested during the development phase.

1.1 Problem Statement

Sadly, debugging intermittently-powered software is far from easy [7, Section
2.2]. This is because, above the existence of regular bugs (not related to
intermittently-powered operation), the developer also has to cope with bugs
related to these power failures. Debuggers designed for continuously-powered
embedded systems, such as [44] and [51], assume the target is continuously
available and relinquish the connection on every power failure, so the developer
has to reestablish the connection between the chip and the debugger manually,
every time, leading to a time-consuming or even unworkable debug process.
The notion to solve this debugging problem for intermittently-powered embed-
ded systems could be defined as follows:

How could we modify intermittently-powered embedded systems’ de-
bugging process so developers can debug these systems like any continuously-
powered embedded system?

To solve the debugging problem for intermittently-powered devices, our idea
is to bring two necessary embedded debugging components together in a single
debugging platform. (i) A complete hardware debugger based on the GNU
Debugger (GDB) Project [38, 48]—to make sure the steps of debugging are
the same as already existing (non-intermittently powered) embedded debug-
ging platforms on the market, and (ii) an energy emulator capable of replaying
energy traces, powering the battery-free embedded systems following either a
pre-recorded or synthetically generated energy profile—for emulating specific
intermittency patterns such as in [16].

2

1.2 Contributions

This work is mainly focused on software, although the complete project presen-
ted in the paper [12], submitted and accepted to ACM SenSys 2022, consists of
both hardware and software, the hardware is primarily developed by Jasper de
Winkel, and will only be briefly described in this thesis report. The software
component can be divided into multiple sections:

1. Embedded Debugger Firmware. We present custom debugging firmware for
the DIPS prototype PCB board. This software enables regular debugging
for intermittently-powered embedded ARM systems based on the GDB
principles. The firmware allows debugging without interruption due to
intermittent power failures, supporting battery-less debugging operations.

2. Embedded Energy Emulator Firmware. We created a custom energy emu-
lator firmware for the second component of the DIPS prototype PCB
board, allowing either (i) replaying standardised pre-recorded energy pro-
files and (ii) playing generated synthetic energy profiles. The embedded
energy emulator has a tight interconnection with the embedded debugger
to allow real-time communication between the emulator and the hardware
debugger.

3. Emulator Graphical User Interface (GUI). For easy parameter adjustment
of the energy emulator and visualising real-time energy traces, we create
a GUI. The interface (shown in Figure 5.4) allows embedded developers
to upload pre-recorded energy traces to the emulator or modify synthetic
wave generation and-or buck-boost simulation parameters.

4. GDB Debugger Command-line interface (CLI) wrapper. With the addi-
tion of intermittently-powered devices’ automated software testing and
specific intermittently-powered debugging features, the GDB client soft-
ware had to be modified. This allows tight integration with existing In-
tegrated Development Environment (IDE) and using standardised GDB
functionalities in an intermittently-powered scope without completely re-
creating the debugger experience.

Other non-software-based contributions mainly related to the evaluation are
the user testing experience and case studies.

3

4

Chapter 2

Related Work

Since the beginning of research in intermittently-powered embedded systems,
numerous institutions have searched for new future-proof intermittently-powered
frameworks and development platforms. DIPS can be placed within the follow-
ing context related:

2.1 Intermittently-Powered Debugging

To the best of our knowledge, there is only one dedicated intermittent-aware
debugger, i.e. Energy-interference-free Debugger (EDB) [7] which addresses
some of the core limitations of existing continuously-powered debuggers used for
intermittently-powered embedded systems. Nevertheless, debugging with EDB
requires manual code adjustment, using the EDB-specific API. One has to re-
compile and flash the complete code base for each new assertion or breakpoint,
resulting in a time-consuming debug process. A more detailed table of lim-
itations of EDB is provided in Table 2.1. The state-of-the-art Segger J-Link
Debugger [44] is the other system used, mainly for continuously-powered em-
bedded systems. This debug probe has no support for intermittently-powered
devices, so will break the connection after every power interrupt, but does have
rich debugging features like GDB and IDE support and hardware assist debug-
ging.

2.2 Intermittently-Powered Energy Emulation

Some Energy Emulation solutions have been proposed before this work. Start-
ing with [16], who promised a complete converter-based portable testbed for
intermittently-powered devices capable of recording and replaying harvesting
current and voltage traces. DIPS is directly capable of replaying these Shep-
herd traces, including running these traces in a buck-boost converter as de-
scribed by the original paper [12]. The buck-boost converter calculation and
implementation originated from [5], which is also related work. The last bit
is [18], another emulator capable of recording and replaying energy harvesting
conditions, mimicking the physical characteristics of surrounding energy har-
vesting environments.

5

Table 2.1: A feature comparison of debuggers used for intermittently-
powered embedded systems. The systems used are the EDB [7], J-
Link [44], and our work DIPS. Where both EDB and J-Link are
state-of-the-art debugging probes

Feature EDB J-Link DIPS

Intermittent support Yes ✓ No ✗ Yes ✓
Energy breakpoints Yes ✓ No ✗ Yes ✓

Software breakpoints Yes ✓ Yes ✓ Yes ✓
Hardware breakpoints No ✗ Yes ✓ Yes ✓

Single step No ✗ Yes ✓ Yes ✓
GDB support No ✗ Yes ✓ Yes ✓
IDE support No ✗ Yes ✓ Yes ✓

2.3 Testing Frameworks For Intermittently-Powered
Devices

The second significant work in this paper lies within the testing frameworks for
intermittently-powered devices. In [29], the authors introduce the Write After
Read (WAR) hazards and a framework for detecting these using code analysis.
Another example of an intermittently-powered code analysis tool based on a
statistical model is CleanCut [8]. CleanCut checks and report non-terminating
tasks in existing code. The last testing framework related is Siren [15], Siren
introduces NVM and energy simulation capabilities using the MSPSim [9] sim-
ulator.

6

Chapter 3

Motivation

Developing of Intermittently-Powered IoT devices is still a complicated task that
copes with many specific challenges and adds new kinds of bugs to embedded
programming. Even though battery-free devices create possibilities for a more
sustainable environment in the future, further research is needed before battery-
free devices can be the standard, starting with easing up the development and
testing process.

3.1 Debugging Intermittently-Powered Embed-
ded Systems

Debugging of embedded systems code is different from PC-based code debug-
ging [4, Chapter 8], as PC-based programs execute on the same device. Unlike
embedded systems where code is executed on an external embedded system.
This makes the developer rely on external hardware–such as [44]–acting as an
interface between the development computer and the Microcontroller (MCU)
on-board debug hardware.

We can extend this requirement even further when looking at debugging an
intermittently-powered embedded system. As intermittently-powered devices
have frequent power outages, the interface between the development PC and
MCU on-board debug hardware should cope with this unknown duration of
unconnectivity.

3.2 Intermittent Bugs Classification

At first, it is important to understand the type of bugs conceived by program-
ming intermittently-powered embedded systems. We can categorise bugs into
two classes presented in Figure 3.1. The first class is the common program-
ming language and embedded system-related bugs. Examples of such bugs are
algorithm implementation bugs like wrong implementations or typos and code
errors in embedded system-related functionalities such as inaccurate peripheral
initialisation. These bugs have been extensively analysed since the dawn of
programming languages and will not be explained here. The second, more re-
lated class of bugs are intermittent operation-related bugs. These bugs are the

7

Intermittent Operation Bugs

RTC1_Start();
while(RTC1 >= 100)
 Checkpoint();
 NOP();

➊ Peripheral Restoration ➋ Memory Restoration
Common Bugs

while(i < 50) {
 j++;
}

while(RTC1 >= 100)
 Checkpoint();
 NOP();

P
ow

er
 F

ai
lu

re !=

Power Failure

i[0] = 5 i[0] = 7

i[n] = 2 i[n] = 2

0x00

0x05

0x00

0xff 0xff

➌ Task Sequence

Sense

Compute

Transmit

int* i = 0;
...

*i = 5;

0x05

Figure 3.1: The major classes of bugs which are present in
intermittently-powered systems. First common programming and
embedded bugs and second the specifically intermittent bugs intro-
duced in this work, categorised as peripheral restoration, memory
restoration and task sequence bugs.

ones which the DIPS specifically targets. We can even further categorise these
intermittent operation bugs into (i) peripheral restoration bugs, (ii) memory
restoration bugs, and (iii) task sequence bugs.

(i) Peripheral restoration bugs occur due to inaccurate re-initialisation
of the peripheral configuration after checkpoint restoration. Figure 3.1
defines an example of these kinds of bugs. In the example, one can see
that after the power failure, the program restarts directly from within the
while loop without re-initializing the correct peripheral, causing the device
to reach a state where undefined behaviour such as an infinite loop occurs
from the not re-initiated Real-Time Clock (RTC). Peripheral restoration
bugs also occur when the state of any external peripheral such as displays,
sensors and radios is not carefully considered within the application’s con-
text, especially when these peripherals have a persistent state and were
originally designed for continuously-powered applications. Examples of
such bugs include (i) persistent configuration registers where the process
of configuring the register could not be confirmed due to a power failure,
(ii) a failure to gracefully power down an E-Ink display resulting in a faded
background, and (iii) synchronization issue where the external peripherals
state is not aligned with the expected state.

(ii) Memory restoration bugs is a category of bugs related to the check-
point and restore point architecture. In the first place, they can re-
late to the wrong placement of check and/or restore points (functions
Checkpoint() and Restore() as illustrated in Listing 3.2 (a). In this ex-
ample, one can find a classic write-after-read error, which could occur due
to the lack of a checkpoint in-between reading from and writing to non-
volatile memory. Memory restoration bugs can also occur whenever the
checkpoint or restore is not implemented correctly. For example, check-
pointing is often based on double buffering (as [24], where the whole
memory is copied to the non-volatile memory on a predefined clock in-
terval), here a binary flag specifies from to which memory region check-
point needs to be stored and restored. If the checkpoint happens at the
moment of a flag update, the checkpoint could be corrupted and should

8

Listing 3.2: Masked Write After Read (WAR) error due to break-
point insertion (listing (b)). When function calls are instrumented
as checkpoints such as in [25], the addition of breakpoints, required
by EDB [7] debugger, can mask WAR-related errors, see listing (a),
since the breakpoint itself will be instrumented with a checkpoint.
nv_x refers to a variable stored in non-volatile memory.

(a) WAR-related error

1 Checkpoint()

2 y = nv_x // wrong

3 // after restart

4 z = y + 1

5

6 nv_x=z

7 # Power failure

8 ...

9 Checkpoint()

(b) Masked WAR-related error

1 Checkpoint()

2 y = nv_x // correct

3 // after restart

4 z = y + 1

5 breakpoint(0)

6 nv_x = z

7 # Power failure

8 ...

9 Checkpoint()

be repaired. The probability of an error in the checkpoint implement-
ation could be even higher with more complicated checkpoint routines,
like differential checkpointing of [14] or undo logging-based checkpointing
in [26].

(iii) Task sequence bugs are the last special types of bugs, these bugs are
specific to run-time systems for intermittently-powered devices where in-
put code is transformed into special tasks (such as ‘Calculate‘, ‘Read‘ and
‘Commit‘) and checkpointing is performed on every task transition. Ex-
amples of such implementation include InK [54] and Alpaca [28]. Bugs can
occur not only by incorrect implementation of the task state machine but
also when defining the volatile memory associated with each task–if not
accurately defined, it could result in writing and reading from unrestored
memory.

9

10

Chapter 4

Architecture

Driven by requirements listed in Table 2.1 we propose a new method of devel-
oping and testing battery-free intermittently-powered systems. These develop-
ment and testing methods are designed following the principles discussed in this
chapter. This design combines a hardware debugger and an energy emulator,
enabling seamless debugging and automated testing of intermittently-powered
embedded systems. The entire design and workflow of DIPS are visualised in
Figure 4.1.

4.1 Hardware Intermittence-free Debugger

A core part of debugging any system is the hardware debugger. It interfaces with
the Device Under Test (DUT)’s MCU enabling the use of the MCU’s debugging
features. These features usually include (i) halting, (ii) reading and writing
memory, (iii) setting breakpoints, and (iv) setting watchpoints.

4.1.1 Intermittently-Power Supporting Debugger

The first requirement listed in Table 2.1, is intermittent support. To achieve
intermittent support for DIPS we have to find a way for the debugger interface
to either (i) stay connected to the debugger module on the MCU or (ii) recon-
nect directly after a power failure and restore the current debug parameters, i.e.
break- and watch-points, without the end user noticing this at the performance
of the debugger. While the first solution sounds the most practical, keeping
the connection intact, without the hassle of restoring the connection and last
debug information. It is so far not possible to keep the debug module powered
without powering the other MCU core functionalities, by looking at the com-
mon ARM System on a Chip (SoC) system designs [47, 50]. Adding this support
must include changes to the SoC architectures, allowing powering the debugger
module separate from other MCU components. As DIPS should form a de-
bug interface for existing intermittently-powered battery-free systems, changing
common architecture is not an applicable option. The second approach sounds
more attainable, without eliminating already existing intermittently-powered
systems and changing common chip architectures. With this solution, any state
not specifically stored before a power failure is lost and not recoverable. This

11

1 int i = 0;
2 for(int i = 0; i < 50; i++){
3 int x = compute();
4 printf("Result: %d \n", x);
5 printf("Iterration: %d \n", i);
6 log_result(x);
7 }

Source

Compilation

*.elf

Register
file

*.svd

Code generation

Software Testing

IDE Support

Break & Watchpoints
Energy Guards
Energy Breakpoints

Hardware Debugger

GDB

Energy Emulator

Device
Under
Test

Synthetic
Emulation

Virtual Buck-
Boost Emulation

DIPS

Energy Neutral
Debugging

Memory
Restoration

Peripheral
State

Programmer

Step 1: Compile
the application.

Step 2: Program
and verify.

Step 3: Debug as any embedded system,
optionally enable software testing.

Step 4: Replay pre-recorded energy traces or
simulate synthetic energy traces.

Figure 4.1: DIPS architecture and workflow, enabling seamless debug-
ging of intermittent systems. In the code view marks an energy-
neutral section, marks the current line and hardware breakpoints are
indicated by . Arrows in the figure denote information flow between
individual blocks.

includes the configuration of the MCU’s debugging registers. Even worse, these
debugging registers are usually not configurable within the MCU due to the
associated security risks. Hence the hardware debugger must be able to quickly
reconnect and keep track of all debugging attributes, such as break- and watch-
points.

4.1.2 Intermittently Energy-Neutral Debugging

One of the core features of DIPS is the energy-isolated interface between DIPS
and the DUT. This allows monitoring the DUT whilst not interfering with the
power consumption of the DUT. If the DUT is halted by any of the debugging
actions e.g., a breakpoint, the hardware debugger automatically pauses the en-
ergy emulator, making sure the DUT remains powered whilst not affecting the
energy levels, so when execution resumes, the energy states stay as prior.

We introduce two debugging modes of the DIPS, (i) attached and (ii) detached
debugging, each of them is described below; the hardware implementation is
further described in chapter 5.

Attached Debugging In the attached debugging mode, the debugger is con-
stantly connected to the DUT. After every power failure, the debugger auto-
matically reconnects and restores debugging attributes. The debugger behaves
like a normal embedded system to the developer, masking intermittency effects.

Detached Debugging Detached debugging is intended for operation when
using an external energy source, e.g. harvesting source. In this mode, the de-
bugger only initiates a connection when it receives a hardware interrupt from
the DUT. This mode allows minimum interaction between DIPS and DUT.
Whenever a hardware interrupt is generated by the DUT, the debugging emu-
lator takes over the power, mitigating the energy required by the debugging.

12

After the execution of the DUT is resumed, the debugger detaches and the
emulator will finish mitigating, restoring the energy levels to prior.

4.1.3 Energy-Aware Debugging Features

Besides regular embedded debugging functions described earlier, mostly utilized
by the built-in MCU’s debugging hardware, DIPS also introduces some custom
features related to energy-aware debugging. At first, DIPS does not require
the usage of a specific API for debugging. We extend GDB with extra CLI
commands to implement two key intermittent specific debugging functions: (i)
energy breakpoints and (ii) energy guards.

(i) Energy breakpoints extend traditional breakpoints by only triggering when
the DUT’s capacitor value is lower than the provided threshold. This al-
lows debugging in specific situations with low energy levels

(ii) Energy guards or energy-neutral sections allow users to execute debug
code whilst emulation is paused and continuous power is provided. This
allows for eliminating certain code from testing or compensating energy
levels for debug functions

Apart from these extensions, DIPS is also capable of programming/flashing
of supported MCUs. This completes the all-in-one suite of features served by
DIPS for the developer of intermittently-powered embedded systems.

4.2 DIPS Energy Emulator

The second core component of the DIPS is the energy trace emulator. State-
of-the-art intermittently-powered systems harvest energy and store this into a
(super-)capacitor. The voltage of this capacitor is often used as a threshold
to determine when the voltage regulator powering the MCU is turned on or
off. In this case, the MCU is only provided with a regulated supply that is
switched accordingly to the voltage of the (super-)capacitor. Often this regu-
lator is implemented using a buck-boost converter to generate the MCU supply.
We emulate the buck-boost converter and the storage capacitor and directly
provide the resulting on/off output to the DUT. As this behaviour is entirely
analyzed by another master thesis [5], we will not discuss this matter. Please
refer to [5] or [12] for an in-depth explanation of the virtual buck-boost emu-
lation. The emulator is implemented as a configurable power supply allowing
fast on/off switching the supply to the DUT. It can also accurately measure
the power consumption of the DUT.

Synthetic Trace Emulation Apart from operating as a virtual buck-boost
converter, our emulator can also generate arbitrary signals. These signals in-
clude square, triangle and sawtooth waves with adjustable frequency, duty cycle
and amplitude, and a constant supply mode. Synthetic emulation can be used
for stress testing and general testing of any intermittently-powered device.

13

4.3 DIPS Automated Software Testing

DIPS provides full access to the memory space of the DUT. By levering debug
symbols of the compiled code via GDB, DIPS can provide a full debugging
context to the developer, including rendering the call stack, variable values
and all other debugging features of normal batter-free systems. Leveraging the
emulator we can detect issues that are traditionally present in intermittently-
powered devices, as introduced in section 3.2. Through the use of GDB and the
utilisation of GDB’s CLI, we are able to run custom scripts to automate specific
testing for intermittent systems. We developed two software testing scripts:

Checkpoint Correctness Test To prove checkpoint correctness, one has to
check for memory restoration correctness through power failures. The developer
must specify the checkpoint function and the first function called directly after
a restoration when initialising the script. Additionally, the volatile memory
regions that should be compared need to be specified. After initialisation, the
test compares the specified memory regions before and after a power failure
and resolves the symbolic name and values when a mismatch occurs. Running
this checkpoint correctness test for an extended period without mismatches in
memory is often a good indicator of a correct check-point restore architecture.

Peripheral State Restoration Test The second automated testing proced-
ure is for peripheral initialisation state correctness. As explained in section 3.2,
this test sequence focuses on the peripheral restoration bugs. Since DIPS has
access to the entire address space, including the peripheral address space, we
are able to monitor peripheral states and configurations during checkpoints and
check if they are properly restored. To detect the configuration registers our
script parses standardised DUT MCU’s .svd file–a .svd file that is commonly
provided as part of a software development kit and can be requested by the
manufacturer of the MCU. This .svd or register description file can be used for
retrieving information on the different configuration register addresses.

14

Chapter 5

Implementation

After thoughtfully explaining the design, this chapter will list and discuss the
parameters and components we used to implement DIPS. This section is again
divided into the different subsystems: (i) debugger firmware, (ii) emulator firm-
ware, (iii) emulator GUI, and (iv) DIPS CLI wrapper.

5.1 Debugger Firmware Implementation

The hardware debugger features are implemented by taking a popular open-
source hardware debugger–the Black Magic Debug Probe [37]–as a base and
building upon its functionality addressing the required features to debug and
test intermittently-powered systems. The Black Magic Debug Probe is built
around GDB and has support for many popular MCUs out of the box–For a
complete list, please refer again to [37]. In addition, the popular power-efficient
Ambiq Apollo3 [47] is supported by adding custom-created drivers.

Intermittent Device support The Black Magic Debug Probe [37] is mod-
ified to support intermittently-powered embedded systems. At the base, any
intermittently-powered activity gives a fatal error that leads to freeing the device
from memory and requiring a new connection initialisation from scratch. With

 GNU Debugger Client

Device
Under
Test

DIPS Wrapper

Integrated development
environmentDIPS Hardware Debugger

Energy Guard /
Breakpoints

Intermittent Support

Programmer

Debugger Server

SWD / JTAG

I/O UART

Figure 5.1: Diagram of DIPS’ debugger implementation and its relation
to the energy emulator, DUT, and GDB client. DIPS has four main
functions, intermittently-powered device support, energy guards and
energy breakpoints, programmer and built-in GDB server.

15

Start GDB
Client

Connect with
GDB Server

Search on
JTAG/SWD

Attach
Set / Reset
Breakpoints

Continue

Cached Characteristics

Power Failure

Halt

DIPS Autoconnect

Figure 5.2: A simplified intermittently-powered debugging process
with DIPS. DIPS_AUTOCONNECT automatically searches for the correct
serial port, connects to the gdb server, and attaches to the target
without any user input. After the first connection, the connection
characteristics are kept in the cache to allow quick reconnection.
Set/Reset breakpoints are a simplified combination of multiple GDB-
specific actions, either done automatically from the cache or manually
from the GDB client.

Table 5.1: DIPS API calls for in both the GDB CLI and the extended
C API, explained in section 5.1

GDB CLI Description

energy_breakpoint Defines a voltage-dependant breakpoint
energy_guard Defines an energy neutral section

C API Description

DIPS_PRINTF Energy-neutral printf
DIPS_ASSERT Halts code execution upon assertion
DIPS_ATTACH Connect debugger (Detached mode)

our modified firmware, instead of this error, it starts a reconnecting sequence,
keeping all the DUT characteristics in place. After a successful reconnection,
the DIPS retransmits the DUT’s debugging parameters, i.e. breakpoint and
watchpoints, allowing a quick reconnection process without notice. Intermit-
tent support can be activated/deactivated via the DIPS CLI, by using the
intermittent_mode enable/disable function.

Attached and Detached Debugging The hardware debugger and emulator
are tightly interconnected by a Serial Peripheral Interface (SPI) connection on-
board. Switching between the attached and detached mode becomes intuitive
due to this connection, explained in section 5.2.4. Detached debugging, inten-
ded for operation when using an external harvested energy source, listens to a
hardware interrupt from the DUT. This interrupt is generated by any call to
the C API listed in Table 5.1. When an interrupt is generated, the emulator
takes over, powering DUT. Then the debugger connects, allowing the debugger
to interact with the DUT. After the user resumes code execution or when the
debug operation finishes, the debugger detaches, and the energy state of the
DUT is not affected.

DIPS Energy-Aware Debugging Features In section 4.1.3 we introduced
the concept of (i) energy breakpoints and (ii) energy guards.

16

Energy Emulator

SPIRegulator

Virtual Buck-
Boost Emulation

Synthetic
Emulation

Sense
Device
Under

Test

Graphical User
Interface

Hardware
Debugger

Figure 5.3: Diagram of DIPS’ energy emulator implementation and its
relations to the hardware debugger, graphical interface and the DUT.
Sense is implemented by the ADC of the energy emulator, regulator
by the DAC regulating the linear voltage regulator on the DIPS PCB.

For energy_breakpoints, we make use of the regular breakpoint implement-
ation and a supply voltage check. Every time an energy breakpoint is toggled,
the CLI checks if the breakpoint is any form of energy_breakpoint, triggering
the check_eb. This sequence either halts or continues the execution based on
the threshold and measured voltage.

The energy_guard is implemented primarily in the energy emulator. An
energy_guard is defined between two regular breakpoints, whenever the first of
these breakpoints is triggered, the debugger enables the energy guard threshold
on the emulator, commuted over the SPI connection. The same energy guard
is again disabled after the second breakpoint is triggered, allowing a seamless
transition to and from an energy guard.

The DIPS library includes C API functions, as shown in table 5.1. We in-
troduce three functions: (i) DIPS_PRINTF,a simple printf console TX imple-
mentation based on the serial output. Developers can trace the output directly
from an external serial port, as supported by the base version of Black Ma-
gic Probe [37]; (ii) DIPS_ASSERT, a simple assertion, when parameters assert
to false, code execution is halted and the DIPS_ATTACH sequence executes; (iii)
DIPS_ATTACH, starts the hardware interrupt procedure connecting the DUT to
the DIPS in detached mode. During this connection, the emulator is notified and
continuous supply is provided, so no energy of the energy-harvesting device’s
(super-)capacitor is yielded on debug functions.

5.2 Energy Emulator Implementation

The energy trace emulator, based on an STM32F373 MCU [49] on the other
end of the SPI-bus, is integrated with the hardware debugger. The emulator is
implemented as a configurable power supply and is able to quickly switch off/on
its supply to DUT. It can also accurately measure the power consumption of
the DUT, as depicted in Figure 5.3.

5.2.1 Synthetic Wave Emulation

The emulator has built-in synthetic wave generators. Developers can adjust
parameters in the GUI. The synthetic waves are generated using the built-in
interrupt-based timer to allow accurate timing emulation. Currently, DIPS can
generate four different artificial waves: (i) constant supply–allowing a continuous

17

voltage for testing non-intermittent modes and required for flashing; (ii) Saw-
tooth wave–generating an increasing voltage to Vin, then have a sharp drop off
in another straight line to zero; (iii) Square wave–a block signal between vin and
zero over a period p and with a duty-cycle of dc; (iv) Triangle wave–generating
a symmetrical pattern over half of the period p with a triangular shape. Besides
these four modes, the emulator allows switching off/on by directly interfer-
ing with the linear regulator and replaying energy traces. All synthetic traces
are defined using an initial or construct function—called for initialisation when
switched to the related supply mode; a periodic update function—called every
period, generating time-based updates in the signal; and a destruct function–
called after selecting a different supply mode, for deconstruction and a clean
exit (i.e. stopping hardware timers). Next, we explain how the combination of
these different functions together generates synthetic waves:

i Constant supply is initialised within the construct function, and no peri-
odic updates are required except for changes in voltage level from the end
user.

ii Sawtooth wave is generated by a period function Vout = (Vin/Tperiod) ∗
Timer where Timer is reset on every complete Tperiod. The construct and
destruct functions take care of the timer logic, including constructing and
destructing the timer, respectively.

iii Square wave is produced by looking at the relative supply duty cycle
provided by the end user. Again using a hardware timer, we can switch
between Vin and zero, respectively. The hardware timer either checks if
its current timing is over the period threshold, calling a timer reset and
making the output high or whenever the timer value is over TPeriod ∗
DutyCycle

100 disabling the output all together to zero.

iv Triangle wave is generated by keeping track of the up/down phase (halfway
phase). Each value of the vin is divided by half-a-period (2vin

Tperiod
), mul-

tiplied by the current timer value t and subtracted from vin. The timer
is reset every half-completed period, creating a real-time triangle wave
emulation.

All parameters, i.e. duty-cycle, vin and tperiod, can be changed respectively
to the application within the GUI. Communication of these parameters is de-
scribed in section 5.2.4.

5.2.2 Replay of Energy Traces

Our emulator is not only capable of providing synthetic test patterns to power
the DUT but is also capable of mimicking the power supply circuit commonly
used in state-of-the-art intermittently powered systems: the buck-boost con-
verter and the storage (super-)capacitor, including an accurate replay of indus-
trial standard energy trace profiles. We use the Hierarchical Data Format (HDF)
file format introduced in [16] for bi-directional compatibility. The traces can be
imported from within the GUI, as explained in Section 5.4. After receiving the
data within our MCU, the information is added to a queue in memory, taking
care of the order of received profiles and making the implementation thread-safe.
The hardware-interrupt timer of the MCU interacts with both the supply and

18

this queue, enabling a precise timing of changes within our data profile. After
polling an entry from the queue, the supply is updated. Whenever only five or
fewer entries are left in the queue, the queue is again replenished by requesting
new data from the host.

5.2.3 Hardware Debugger Integration

If the energy emulator actively powers the DUT when a debugging feature is
triggered, such as a breakpoint, emulation is paused whilst keeping the DUT
powered. When execution is resumed, emulation also resumes. Any calls to
the DIPS API also pause emulation until completed. The energy emulator also
implements a passive mode compatible with the debugger’s detached mode,
intended for a case when debugging an intermittently-powered system operating
using its energy harvesting supply. When a DIPS API call occurs, the DUT
voltage is first sampled in this mode. Then the emulator supplies a safe, higher
voltage than the system voltage to the DUT—taking over and powering the
DUT until the debugging action completes.

5.2.4 GUI Emulator Serial Communication

The GUI, further explained in section 5.4, has bi-directional serial communic-
ation over USB protocol to the emulator MCU. For easy implementation and
future expansion possibilities, we use Protocol Buffers (Protobuf) [20], designed
by Google. The Protobuf implementation takes care of the complete serial con-
version, considering the challenges like false start-bit detection and differences
in transmitter and receiver module, as explained in [3]. Protobuf includes an
interface description language and serialises all data to binary structures, which
are cross-language compatible. We use Nanopb [2] as plain-C implementation of
Protobuf as this is not supported by Protobuf out-of-the-box.

The communication protocol contains seven different upstream and seven
downstream messages, described as follows: 1

• CalibrationResponse and CalibrationRequest are the request-response
pair for the calibration options. Current and voltage calibration can be
requested using the CalibrationCommand. The CalibrationResult is
shared back over the CalibrationResponse, containing either success or
failure information.

• DataStream, DataStreamResponse and DataStreamRequest are used for
the communication of Analog-to-digital converter (ADC) data. The GUI
can request a DataStream using the DataStreamRequest. The related
DataStreamResponse contains the latest voltage, current, currenthigh and
currentlow data from the ADC.

• BreakpointStream, used for informing the GUI about the current break-
point status, the message is broadcast whenever the system is halted or
resumed.

• StatusStream is used for informing the GUI about the current state of the
emulator. The packet is broadcast together with the DataStream, after a
DataStreamRequest.

1The complete definitions are attached in the artefacts [13].

19

• ProfileDataRequest and ProfileDataRespond are the request-response
pair for profile data in replay (or buck-boost) mode. When the emulator
transmits a ProfileDataRequest, multiple ProfileDataRespond pack-
ages are transmitted from the GUI, containing the profile information for
the next period.

• InitialParameterResponse and InitialParameterRequest are again
pair-wise communication for sharing the initial configuration parameters
of the emulator. Whenever the GUI is started or restarted, an
InitialParameterResponse is requested by the
InitialParameterRequest. The InitialParameterResponse contains
multiple messages containing previously set values of all configurable para-
meters to keep the GUI and emulator consistent.

• ModeRequest is sent whenever a mode change is requested in the GUI.
After a ModeRequest, the StatusStream enables the change.

• PauseRequest is a request from the GUI, requesting to pause or resume
the emulation. On a PauseRequest, the supply is either paused or re-
sumed, depending on the included pause or continue bit.

• SupplyValueChangeRequest is a particular request to change a certain
parameter. Within a SupplyValueChangeRequest packet, one can include
either a boolean, integer or float value, depending on the to-be-changed
configuration parameter.

5.3 Automated Software Testing

The following section defines the implementation of DIPS’ automated software
testing protocol. We currently implemented two software tests, introduced in
section 4.3. Algorithm 1 contains the pseudo-code of the common grounds of
both test scenarios.

5.3.1 Checkpoint-Restore Memory Test

The first automated software test, based on comparing the memory after a
checkpoint and after a restore point, is used to find intermittently-powered re-
lated bugs within the check/restore implementation. Before running the test,
intermittently-powered embedded testers should configure the critical memory
regions in the configure.json configuration file, allowing multiple regions.
Both definitions of the checkpointing and restore functions can also be enabled
in this file. As shown in Algorithm 1. After initialising the memory regions and
the function definitions, the breakpoints are set on the configured lines, and the
execution is resumed, waiting for any interruption. On an interrupt halt, first,
we check if the halt reason is related to the checkpoint or restore breakpoint.
If not, we will continue the execution. If so, we copy the memory within the
supplied boundaries. If the request is part of the restore breakpoint, the latest
dumped memory is pair-wise compared with the current memory dump. The
memory address and the contents of this memory address are presented to the
user for further investigation when a mismatch occurs. If no difference exists,
the execution is resumed. When the entire utilised volatile memory is saved

20

t0 ← tcurrent;
while 1 do

t← tcurrent;
if b is B1 then

/* Current breakpoint checkpoint */

t0 ← t;
c←dump_memory();

else if b is B2 then
/* Current breakpoint restore */

t0 ← t;
r ← dump_memory();
if r is not c then return; /* Pair-wise comparison */

;

if t− t0 > Th then return; /* Timeout */

;

end
Algorithm 1: DIPS’ simplified automated testing procedure for memory
comparison. The dump_memory() function returns values of the assigned
memory locations. tcurrent is the current timestamp, required for the timeout
threshold r. B1 and B2 are the relative breakpoint numbers of the checkpoint
and restore functions, created during the initialisation of the script. Th is
the timeout threshold between checkpointing actions, defined in the settings.

at each checkpoint, then this memory state can also be restored, allowing to
recreate the scenario causing the failure after the DUT experiences memory
restoration failure.

5.3.2 Peripheral Restoration Test

The second automated software test, like the memory restore test, is based
on comparing volatile memory regions. Nevertheless, the peripheral restora-
tion test uses register information for gathering these memory regions. Testers
should configure the critical peripheral register names in the configure.json

configuration file. The addresses of these registers can be achieved using the
register description file, allowing the possibility of continuing the same testing
sequence as the memory test.

5.4 Emulator GUI Implementation

The GUI is created using the Qt development tool [40]. The GUI has four
primary tasks: (i) Serial connectivity with the emulator, (ii) visualising the
ADC received signals graphically, (iii) easy adjustment of parameters and char-
acteristics of the emulator, and (iv) writing energy traces to the buck-boost
converter–replay module. The following paragraphs explain these tasks.

Serial USB Connectivity The physical USB connection is the first layer
between the emulator and the emulator host/GUI software. The emulator and
its host share a UART–Serial connection over this USB protocol, explained

21

Figure 5.4: Screenshot of the GUI of the DIPS’ emulator acting as the
emulator host. The above screenshot shows the Replay/Buck-Boost
emulation mode, allowing changing the Buck-Boost configuration, up-
loading a pre-recorded data profile and changing back to other supply
modes.

earlier in section 5.2.4. The QSerialPort automatically initialises a connection
with the hardware emulator by searching for the related device characterist-
ics. The Protobuf library deserialises the packets received over this connection,
making it robust and easily expandable. This sequence of events ran on an
independent thread to avoid distortion with other tasks.

ADC Graphical Visualisation The second part of the emulator host is
the graphical visualisation of the received ADC data. Four values have to be
visualised in graph formation. We use QtCharts for this matter. The four values
voltage, current, currenthigh, and currentlow all represent as a QLineSeries,
allowing it to be plotted within a QtChart. The Graph view automatically
scrolls with the latest data points, creating an oscilloscope-like feeling. The
QtGraphView allows easy pan-zoom modifications on the graph. After 1000
data entries, the first entry will be removed to avoid memory leaks on the host
computer. Besides the graphical representation, the latest read values are also
exhibited in decimal to allow quick lookups.

Adjusting Emulator Parameters and Characteristics The third, and
maybe most vital task of the emulator host, is to write/read parameters and
characteristics–to and from the emulator. At first we can change operating
modes using the ModeRequest data packet, explained in Section 5.2.4. Each
supply mode contains a set of unique parameters saved on the emulator and
synchronised with the host on the first launch. Only parameters related to the
selected supply mode can be modified by only showing these parameters and
hiding unrelated properties; this creates a cleaner and more straightforward GUI
design.

22

Table 5.2: DIPS API calls within the GDB Client Wrapper, explained
in section 5.5

GDB CLI Description

connect Automatically connect to the DIPS Hardware Debugger
dips_memory_test Executes the memory testing procedure
dips_peripheral_test Executes the peripheral memory testing procedure
energy_breakpoint Defines a voltage-dependant breakpoint
energy_guard Defines an energy neutral section
intermittent_count Return number of power failures/intermittences
dips_help Print list of custom DIPS commands

Writing Energy Traces to the Emulator The last use case of the host
software is the distribution of energy trace entries. As all calculations regarding
the Digital-to-analog converter (DAC) and ADC are performed on the emulator
MCU, we are only requested to share the voltage and current values per time
unit. As we mentioned earlier, DIPS is compatible with Shepherd’s [16] HDF5-
format files. These files can easily be loaded within the host using the file dialog.
DIPS uses the HighFive plain-C library [6] for decoding HDF5-formatted files.
After selecting the file, an automatic process of determining the refresh rate
interval is executed. To achieve enough accuracy but not overflow the serial bus,
a fixed update rate of 10 Hz is chosen by effectively sending ten entries once
every second. Nevertheless, a weighted average is taken over the measurements
between interval updates to achieve higher resolutions within every interval.
After initialising the energy traces within the host, the first measurements are
written to the emulator MCU after pressing the start/resume button. The end
user can always pause or stop the emulation at any time.

5.5 GDB Client Wrapper

As DIPS has extended the standard GDB possibilities, the standard ARM GDB-
client also lacks support for DIPS’ added functionalities. To confront this, we
create a python-based wrapper primarily running a GDB-client subprocess. This
allows us to extend standard GDB operations, adding custom ones for DIPS,
based on combinations of existing GDB functions, without recompiling the com-
plete GDB client binary. Using the GDB/Machine Oriented Text Interface (MI)
in combination with the pygdbmi package [46], we create a powerful interface
allowing easy bi-directional conversion between GDB’s process and python ob-
jects. Table 5.1 introduced both energy_guard and energy_breakpoint, both
noteworthy functions of DIPS. Table 5.2 extends this interface with extra func-
tions implemented within the DIPS client wrapper. The function connect

automatically searches for the DIPS’ serial port, connects, and attaches to
the first debug port. dips_memory_test and dips_peripheral_test run the
automated testing procedures explained in Section 5.3. intermittent_count

returns the times the attached device has been intermittent via a power failure.

23

Figure 5.5: The DIPS PCB, with the hardware debugger components
(A○– E○) and energy emulator components (F○– J○).

5.6 DIPS Hardware Implementation

As described earlier DIPS is composed of two subsystems: (i) the hardware de-
bugger and (ii) energy emulator. Both subsystems, shown in Figure 5.5 and
marked by the blue and orange polygon, respectively. The details of each sub-
system hardware implementation are briefly described as this design is beyond
the scope of this thesis.

Hardware Debugger

The hardware design of the debugger centers around a STM32F103RET [50]
MCU A○ and is based on the Black Magic Debug Probe [37]. It is able to
communicate with the energy emulator through SPI and shares two interrupt
lines. The MCU interfaces with the DUT through SWD/JTAG or SBW E○,
I/O interrupt pins and acts as a UART-USB bridge D○. To translate the signals
to the DUT voltage all the interfaces with the DUT are level shifted by level
translators C○ [34] using the buffered DUT voltage. The debugger connects to
the PC with USB B○.

Energy Emulator

Central to the energy emulator is the low noise TPS7A87 [22] I○ linear regu-
lator. The regulator generates the adjustable supply rail to the DUT J○. Power
consumption by the DUT is measured by two INA186 current sense amplifi-
ers [23] H○. The first amplifier sense resistor measures large currents without
imposing a high burden voltage. The second amplifier with a 1000 Ω sense res-
istor measures low currents and is able to be bypassed at large currents prevent-
ing high-burden voltages. Two analog switches [21] allow for quickly disabling
the output and discharging the output through a 47 Ω resistor. The emulator is
controlled by a STM32F373 [49] MCU G○. With its on-board DAC DIPS is able
to adjust the linear regulator and samples the output voltage and the output
of the current sense amplifiers (each using one of its dedicated on-board Sigma
Delta ADCs). The energy emulator connects to the PC with USB F○.

24

Chapter 6

Evaluation

We now proceed with the evaluation of DIPS. We divided the evaluation into
three parts. First, we characterise DIPS in section 6.1. Second, we perform user
studies to find whether DIPS is a useful (and better than state-of-the-art) tool
for debugging battery-free systems in Section 6.2. Next, we show how developers
can use DIPS to find bugs in differently designed case studies in Section 6.3. And
finally, we use DIPS to find bugs in a state-of-the-art intermittently-powered
system.

6.1 DIPS Characterisation

To evaluate DIPS, we conduct several measurements to evaluate the perform-
ance of our debugger.

At first, we measure the connection and reconnection rates, this shows us
the average time required to establish a connection, listed in Table 6.1. The
times listed in Table 6.1 indicate the overhead of the DIPS hardware debugger
operating in attached mode. We might notice that early breakpoints might
be missed when the device runs and the debugger is only connected after the
breakpoint location. When this is unacceptable, DIPS_ATTACH can be placed
at the program’s start. The software is halted at the start, waiting for the
debugger. This way, the debugger connects before any code execution at the
cost of a slight delay.

Moreover, we discuss the stability of DIPS by running a duration test. There-
fore, we ran the system in the attached mode for over ten hours. This test is
done twice, using both [35, 47]. Both systems were put to the test by intermit-
ting the power every 300 ms, forcing a re-connection on the system, creating at
least 120000 intermittent power cycles on the DUT. Afterwards, we tested the
systems on responsiveness and inspected DIPS for memory leakage, by compar-
ing the memory allocations by malloc, calloc and realloc with the number
of deallocations of the memory by free. After the duration, the number of
these memory allocations was still generally moderate (4 memory allocations
by the debugger), and the system behaved similarly in responsiveness after this
benchmarking period.

25

.

Table 6.1: DIPS debugger characterization: tinit (initial connection
time) and trec (re-connection time) while connected to different
devices. Data points were collected using a Saleae Logic Pro 8 [41]
and averaged over ten measurements.

Device Under Test tinit (ms) trec (ms)

nRF52 [Arm-M4] [35] 311.1 72.7
SAM4L8 [Arm-M4] [30] 324.7 75.8

MKL05Z [Arm-M0+] [36] 309.6 105.8
STM32F3 [Arm M4] [49] 318.6 68.2

Apollo 3 [Arm M4] [47] 331.1 95.6

6.2 User Experience Studies

To assess the effectiveness of bugs found in code written for intermittently
powered systems, we have designed two user experience studies. In both studies,
participants were asked to experiment with DIPS and EDB [7]—state-of-the-art
debugger for intermittently-powered systems. In particular, we ask to search for
three bugs in a single simple program consisting of multiple files (written sep-
arately for both debugging platforms, containing bugs of similar complexity—
DIPS and EDB) using two respective debuggers. After the bug search process,
participants were asked to assess their debugging experience with each platform
through an anonymous survey.

User Experience Study Participants

We have invited seven participants to the first study. Participants were recruited
through mailing lists and personal contacts. Special care was taken of not
recruiting people that are in a current or former professional relation with the
responsible persons for this study. The second study can be seen as an extended
version of this user study. Here 16 people were invited to participate, and the
time per assignment was doubled, giving the participants more time to introduce
both systems.

In the first study, six participants were men and one woman, the median
age was 26 (youngest: 23, oldest: 44). The most comfortable programming
language in which participants code was C/C++ (four participants). All par-
ticipants have used an IDEs before when developing their applications, and all
but one participant preferred to develop their application using this IDE. Four
participants self-assessed themselves as having a lot of embedded programming
skills, two some experience, one little experience, and none no experience. A
large majority (i.e. five) of the participants used hardware-based debuggers for
their embedded project (such as Segger J-link [45]). All participants used at least
one of the debugging techniques while debugging an embedded system, such as
breakpoints, watchpoints, memory views, peripheral views, etc. Where printf

was mentioned by six participants, single stepping by three, memory inspection
by three and ‘measuring voltage‘ mentioned by one participant. Only two par-
ticipants did not hear about battery-free intermittently-powered systems before
the start of this first study. Based on the Likert scale, on the question ‘how

26

difficult is the application development for battery-free intermittently-powered
systems?’, five participants answered ‘somewhat difficult’ and two participants‘
similar to battery-powered embedded systems’ (for the record, nobody found
them either ‘very difficult’, ‘easy’ or ‘very easy‘ to program).

For the main study, fourteen participants were men and two women. the
median age was 26.5 (youngest: 20, oldest: 36). C/C++ was also their most
comfortable programming language, all but one have used an IDE before, and
five out of the 16 participants preferred to develop with an IDE. Three parti-
cipants elf-assessed themselves as having many embedded programming skills,
six had some experience, five had little experience and two had no experience.
Next, five out of 16 have used hardware-based debuggers for their embedded
project. 11 out of 16 participants were exposed to the questioned debugging
techniques. printf was again their main debugging technique (mentioned six
times), followed by single-stepping (three participants). Two out of 16 had
heard of battery-free intermittently-powered systems before the study, and one
had experience programming intermittently-powered systems. On the ques-
tion ‘how difficult is the application development for battery-free intermittently-
powered systems?’, 13 participants answered ‘somewhat difficult’ and three par-
ticipants ‘similar to battery-powered embedded systems; Again, nobody found
them either ‘very difficult’, ‘easy’ or ‘very easy‘ to program.

Based on the above information, we can conclude that user experience study
participants were well-skilled (considering their background and experience) and
well-informed to participate in this user experience study.

User Experience Study Setup

We asked each participant to enter a room with two pre-configured PCs. One
PC was connected to DIPS that in turn connected to a Nordic Semiconductors
NRF52 development kit [35]. Another PC was connected to EDB, where EDB
was connected to a Wireless Identification and Sensing Platform (WISP) [42]
(version 5.1). Both platforms were powered from a DIPS emulator configured
either as constant voltage or square wave supply simulating intermittency. This
emulation was not part of the user study but was required to power the devices
under test. Both PCs had VSCode [10] as a code editor and all requisite tooling
to compile and use the debuggers installed. The PC with DIPS-only had the
IDE open, while the other PC also displayed a console environment with the
EDB program and means to recompile the code.

Before the debugging session started, each participant was requested to read
a short description of intermittently-powered systems and to read an instruction
on how to use DIPS and EDB.1 After reading the instruction, the participant
was asked to debug a piece of code for one of the systems (with which debugger
system the user starts the study was determined randomly per each participant).
After 15 minutes of debugging, the participant was asked to fill in the survey
with a questionnaire regarding the debugging experience. This survey section
was enabled only when the participant asked for a password—this reduced the
chance that the participant would answer survey questions without first debug-
ging with the system. The same process (bug finding and password-protected

1The exact text given to the participants, with the code given for debugging for both
systems, together with the user experience study results, which are available as part of the
original open-source repository of DIPS [13].

27

I would use it

I am familiar with it

Intuitive to use

Easy to use

14.3%

14.3%

28.6%

42.9%

14.3%

42.9%

28.6%

85.7%

57.1%

14.3%

14.3%

42.9%

EDB Both DIPS Neither

Figure 6.1: Responses to questions in the pre-study given to user ex-
perience study participants after completing bug-finding sessions for
DIPS and EDB. Note that numbers in this figure, and Figures 6.2, 6.3
and 6.4, are rounded to the nearest decimal digit.

Bugs found with EDB

Bugs found with DIPS

100.0%

28.6% 71.4%

Zero One Two Three

Figure 6.2: Number of bugs found by users participated in the first
(pre-) study, categorized per debugger system.

survey fill-in) was repeated for the second debugger. During the survey, neither
DIPS nor EDB was mentioned, and both PCs were referred to as ‘System A‘
and ‘System B‘ with name cards attached to the PC’s monitor to remove any
bias in assessing both systems and not reveal which system originates from the
institution with which all experience study participants were associated with.
In the same spirit, the study was approved by the human ethics committee of
the TU Delft. The second user experience study was on all fronts the same
except for the duration, which was doubled to 30 minutes per system. This
study was done to improve the confidence interval by increasing the number
of participants and to see whether more time would allow more people to find
more bugs in either ‘System A‘ or ‘System B‘.

User Experience Study Results First Study

The first result of the user experience pre-study is presented in Figure 6.1. We
see that more users would use DIPS than EDB. Moreover, many users found
DIPS more intuitive to use than EDB. Only a small minority of participants
would use EDB instead of DIPS. No participants stated that they are only
familiar with the way EDB debugging process works— the majority of them are
familiar with the ‘regular’ way programs are debugged, what DIPS does. All
these results hint that DIPS suits debugging tasks of intermittently-powered
devices better than the state-of-the-art system.

The results of the bug session finding are presented in Figure 6.2. One surpris-
ing result is that nobody was able to find any bug with EDB, while the majority
of the participants were able to localise at least one bug with DIPS. We speculate
that such an extremely low bug finding rate for EDB (and inability to localize
two or more bugs with DIPS) was due to insufficient time allocated to find all

28

I would use it

I am familiar with it

Intuitive to use

Easy to use

12.5%

6.2%

6.2%

6.2%

87.5%

81.2%

87.5%

93.8%

12.5%

6.2%

EDB Both DIPS Neither

Figure 6.3: Responses to questions in the main (and second) study
given to user experience study participants after the completion of
bug finding sessions for DIPS and EDB.

Bugs found with EDB

Bugs found with DIPS

81.2%

12.5%

18.8%

56.2% 25.0% 6.2%

Zero One Two Three

Figure 6.4: Number of bugs found by users who participated in the
main user experience study, categorized per debugger system.

bugs in a session. On the other hand, a short time for bug finding was a stress
test for both systems, suggesting that the usefulness of DIPS in code debugging
(even for complex and still unexplored systems such as intermittently-powered
devices) is higher than for EDB. With the main study, with more time allocated
to debugging, we shall find whether this extra time would result in a significantly
better perception of EDB. The results are presented in the next section.

User Experience Study Results Second Study

The results of the main study are presented in Figure 6.3 and Figure 6.4. Com-
paring them with Figure 6.1 and Figure 6.2, respectively, we can conclude that
increased time to find bugs in the code (from 15 minutes to 30 minutes per
debugging session) did not significantly affected the perception of which system
is better (Figure 6.3) nor how many bugs have been found (Figure 6.4). Actu-
ally, the main study shows that participants are more positive about DIPS than
EDB, as fewer participants were pointing to EDB or to both debugging systems
(Figure 6.4). Most importantly, however, more time assigned to participants of
the user study resulted in more bugs to be found with EDB, but also more bugs
with DIPS (Figure 6.4).

Generic Observations by Study Participants

In addition to closed questions given to the participants, which results are
presented in Figure 6.1, Figure 6.2, in Figure 6.3 and Figure 6.4, we have ask
four open-ended questions asking to specify positive and negative aspects of
DIPS and EDB, respectively. Considering EDB, the positive aspects listed were
as follows: it suits those developers better who prefer terminals over GUIs,
allowing for scripting and automation (which, on the other hand, other study

29

participants found as negative for developers used to GUI-driven development2);
one person found the ability to set breakpoints and see the capacitor voltage
as valuable. The negative aspects of EDB listed were as follows: not intuit-
ive as a whole and having non-intuitive commands; forcing to re-flash code for
breakpoints; being erroneous when debugging and having no ability to resolve
symbols. Conflicting points were listed; however, one person described EDB as
‘programmer friendly’ while others found no positive aspects of EDB.

Considering DIPS, the positive aspects listed were: very similar to existing
debuggers—”people will have an easier time learning how to use [it]”—being able
to use already-accustomed GUI debugging buttons; being “tightly integrated
to IDE” and being able to “set breakpoints in editor”; no need to compile
code for every debug session. The negative aspects of DIPS listed: two users
were expecting an even more user-friendly system (not requiring to “switching
between tabs for building/loading” whereas “restart button doesn’t seem to
function correctly”); one user still found DIPS difficult to use (who nota bene
made the same remark about the EDB).

As an overarching remark stemming from all questions posed to the participants—
overall, we can conclude that users found DIPS easier to use, more intuitive and
more familiar than EDB.

6.3 DIPS Case Studies

Within this section, we developed two intermittent bug scenarios and ran them
on an intermittently-powered embedded development environment based on the
NRF52-DK [35]. The source for both scenarios is included in the artefacts [13].
The first scenario is based on the memory restoration bug explained in Sec-
tion 3.2, and the second on the intermittent peripheral initialisation bug, also
defined in Section 3.2. The code used for both case studies can be found in the
artefacts [13].

6.3.1 Scenario 1: Memory Restoration Failure

In this first scenario, we have to mimic a check-restore scenario. This is done by
initialising the non-volatile memory. For the load, we use a program based on
the algorithm designed by Xavier Gourdon [17], which estimates the n-th digit of
Pi on a rather superficial embedded system. Thanks to Cristiano Monteiro [32]
for porting this to a simple Arduino-based example, which we can use in our
environment. Once rewriting the code for the NRF52-DK [35] development
board, we make it intermittently powered by storing the latest calculated digit
(n) in the non-volatile memory after every iteration of calculating the next
number. On startup of the development board, we restore the values of the
non-volatile memory to the exact location in the volatile memory we got it from
in the first place. Nevertheless, a bug is added to the restore function to mime
the memory restoration failure.

2We speculate that due to the setup of the user study participants thought that DIPS was
developed to be integrated only with IDE. However, we note that DIPS can also be used as
a stand-alone debugger in the console.

30

void FlashClass::write(int idx, uint8_t val);

.

..

void store_checkpoint(uint32_t data){

// Writing int data to a char-sized memory space

flash.write(0, data);

}

Listing 6.5: Writing memory data to a limited memory space. In this
case, the allocated memory in the Non-Volatile Memory (NVM) for
the function write is only a single byte. Nevertheless, we tried writing
a 4-byte integer to this space within the store_checkpoint function.
This creates a buffer overflow after reaching a value of 255, losing the
most-significant bit.

Symptoms When inducing power failures after the value of n is over 255, the
digit is read out as 0 again. This is no issue when running in continuous mode
(no power failures).

Diagnosis The symptoms hint at a memory restoration issue, where either
the value of n gets corrupted or stored/restored incorrectly within the check-
restore architecture. We start by looking up the memory allocation address
of our volatile restoration variables by inspecting the generated map-symbol
file. We only store n to our non-volatile memory, so we look for the allocation of
.bss.n. .bss.n is allocated at 0x200000b8 (size 0x4), so we update our settings
by filling in the related address space. After initialising the test configuration,
we can run the debugger’s memory inspection test, running an inspection on
the functions checkpoint and complete_checkpoint. Next to that, we open
the serial output to print out our value of n and pi. As supply for the system,
we connected DIPS’ emulator on square-wave mode, generating enough power
failures to mimic a power intermittent event every five cycles. As explained in
Section 1, the testing sequence compares the memory after every restore with
the latest checkpoint. Running the test for the first cycles, the allocated memory
locations look fine; no difference is found between the memory on checkpoint
and after restore. After running the test for more cycles n > 255, an error
is located, and the execution of the test stops and outputs the inconsistency
found on address 0x200000b9 (part of the n address space). DIPS persists to a
halt for further investigation of the program on this point. Looking back to the
code after identifying the issue with n, we notice the conversion when storing
an integer to only a char-sized memory space, allowing a maximum of n being
255 (see Listing 6.5).

6.3.2 Scenario 2: Peripheral Initialisation Failure

In the second scenario, we mitigate the issue of incorrect peripheral initialisation.
This is done by a faulty location of the serial initialising. A simple program is
used, performing 3 simple unrelated tasks. After each finished task, the latest
task ID is saved to the NVM, allowing the continuation of the program flow by
restoring this taskID after a power failure. The case study is once again done

31

char taskID = restore_checkpoint();

switch (taskID) {

case 1:

goto task2;

case 2:

goto task1;

default:

break;

}

INIT_SERIAL();

...

Listing 6.6: Initialisation of the serial in the wrong place, allowing a
state where INIT_SERIAL is never called. This can be solved by putting
the INIT_SERIAL before the restoration of the checkpoint.

on the NRF52-DK [35] development board and can be downloaded from our
artefacts [13].

Symptoms After each task, the application’s process is shared over the serial
connection, in some cases, the serial is non-responsive, sometimes even ending
in a hard fault or deadlock.

Diagnosis The symptoms hint towards a peripheral initialisation issue, where
the serial is not (completely) initialized or somehow incorrectly restored. By
looking at the NRF52-DK datasheet [35], we can find the UART0 group with
the registers CONFIG, BAUDRATE and ENABLE. We include them in our config file
dips_testing.json, so they will be loaded in our test. Next, we start the
debugger, connect to the development board and start the DIPS peripheral
memory check with our emulator on square wave mode (1000 ms, 50%, 2500
mV). After a few seconds, our script stopped, calling a mismatch between the
CONFIG address of the checkpoint and the restore point. After locating this
matter in the source (see Listing 6.6), the bug shown to be a clear example
of an intermittently-powered peripheral initialisation mistake (i.e. calling the
INIT_SERIAL() after restoring and jumping to the latest checkpointed task).

6.4 ENGAGE’s Memory Restoration Issue

In this next section, we perform a complete system test using a start-of-the-
art intermittently-powered system. We chose Engage, the system used in the
Battery-Free Game Boy [14]–battery-free intermittently-powered handheld gam-
ing console, as the selected DUT. Engage uses an optimized version of check-
pointing, where only the memory regions that were changed since the last check-
point (denoted as patches) are stored in non-volatile memory at each new check-
point. We have connected DIPS to the DUT, as shown in Figure 6.7 and powered
Engage system using the energy emulator of DIPS in a square wave mode.

32

Figure 6.7: DIPS connected to Engage [14] aiding in finding a memory
restoration bug. After a certain time of continuous, intermittent exe-
cution, a checkpoint of Engage is corrupted, resulting in the handheld
console failing to start.

Symptoms After an extended period of time when power failures are induced
frequently to Engage, no game content is displayed on the screen when powered
and Engage appears unable to start (i.e. only a black screen is seen instead of
the game content). After this failure, even when continuous power is supplied
to Engage, Engage fails to start the game it intended to play.

Diagnosis The symptoms hint at a memory restoration issue, where either
Engage’s memory gets corrupted or something prevents the Engage from boot-
ing. First, we ran our software testing memory restoration script for 15 minutes,
verifying that the volatile memory was correctly checkpointed and restored.
Whilst running the test, we did not detect any discrepancies in Engage’s memory.
Then, by running the peripheral state script for another 15 minutes, we ruled
out any inconsistencies between peripheral configurations that could prevent
Engage from, for example, accessing the external non-volatile FRAM where the
checkpoints are stored.

As these 15-minute long tests could not reproduce the symptoms, we have
extended the testing time. After extended testing of the memory restoration,
our DIPS paused code execution. This pause was triggered as no checkpoint had
occurred within the predefined time window of five minutes, hinting that, most
likely, no forward progress had been made. At this point, Engage exhibited the
previously mentioned symptoms.

Engage’s execution was paused by the hardware debugger of DIPS at the
moment of the restoration process, i.e. where memory is restored from a chain
of memory patches. By further manual investigation with DIPS by breakpoints
and stepping through the code, we deduced that the process of applying the
patches could not finish and formed an infinite loop preventing the system from

33

starting. By replicating this multiple times with a square wave (800 mV, 10%,
500 ms), we were able to reproduce this issue within half an hour every time
using DIPS.

In this case study, DIPS assisted by quickly ruling out major problems. The
description of the process (from unsuccessful 15-minute tests to a successful
automated test) shows the usefulness of DIPS, indirectly pointing the developer
to the issue (which prevents Engage from starting).

34

Chapter 7

Limitations and Future
Work

Despite the advantages DIPS is bringing in debugging intermittently-powered
systems, the research on debugging platforms for such intermittently-powered
systems is not over. We list the most critical limitations of DIPS, with its
current study below. We discuss possible directions of DIPS, DIPS limitations
and potential impacts.

7.1 Scope of Generic Embedded Systems Ap-
plications

Even though DIPS is created for debugging intermittently-powered embedded
systems, DIPS is also capable of debugging and powering generic embedded
systems applications. DIPS can thereby be seen as a complete development
platform also supporting intermittently-powered systems. On top of that, we
challenge embedded developers to rethink their low-power embedded systems,
applying energy harvesting options.

7.2 Support for non-ARM MCU Architectures

Beyond the list of already supported ARM devices, DIPS does not yet sup-
port debugging of non-ARM MCU architectures. One particular MCU series
that requires immediate support from DIPS is Texas Instruments’ MSP430
MCU’s [52]–used in numerous previous projects on intermittently-powered sys-
tems. Luckily, no technical limitations would disallow support for MSP430-
based systems by DIPS.

7.3 Increasing Reconnecting Speed

Even though DIPS increased the reconnecting rate by at least three times com-
pared to creating a new connection, 80 ms reconnecting overhead might still be
too much in some intermittently-powered cases. One could increase this even

35

further by applying cache techniques on the different PROBE functions, which
define the device connecting specifics. These PROBE functions are called recurs-
ively and count for the current overhead in the connection process.

7.4 Per-Line Code Inspection

What DIPS cannot do is point to the exact code line that caused the program
error. Such per-line code inspection for intermittently-powered systems was
presented in [29], where WAR dependencies are found using code analysis. Then
at each of these dependencies, a power interrupt was emulated, and memory
regions were inspected for any inconsistencies. With additional scripting, DIPS
could single step through the code and generate a power failure at every potential
WAR; this method, however, will be significantly slower than simulation-based
methods.

7.5 Future development of DIPS

The overarching aim of the DIPS project is to be useful to the developers work-
ing on intermittently-powered systems. This can only be achieved by intro-
ducing new functionalities and support for new platforms, such as including
MSP430 MCU [52] support mentioned above. Furthermore, since we make DIPS
available to the broader community, additional features, further improvements,
and evaluation can be contributed to the project by the community itself.

36

Chapter 8

Conclusions

We have presented Debugger for Intermittently-Powered Systems (DIPS): a new
debugging platform for intermittently-powered battery-free devices. It closely
couples a hardware debugger for embedded systems capable of debugging inter-
mittent systems and an energy emulator that replicates real-life and synthes-
ised power supply traces. Both the case studies and the user experience studies
have shown that DIPS enables debugging of intermittently-powered embedded
devices like any typical embedded system debugging process.

37

38

Bibliography

[1] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo
Caslini, Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica
Barone, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and Luca
Mottola. Battery-less zero-maintenance embedded sensing at the mith-
ræum of circus maximus. In Proc. SenSys, pages 368–381, Virtual Event,
2020. ACM. https://doi.org/10.1145/3384419.3430722.

[2] Petteri Aimonen. Nanopb - protocol buffers with small code size. https:

//jpa.kapsi.fi/nanopb/, 2011. Last accessed: Sep 19, 2022.

[3] Liakot Ali, Roslina Sidek, Ishak Aris, Alauddin Mohd. Ali, and Bam-
bang Sunaryo Suparjo. Design of a micro-UART for SoC application. Com-
puters & Electrical Engineering, 30(4):257–268, 2004. https://doi.org/

10.1016/j.compeleceng.2003.01.002.

[4] Brian Amos. Hands-On RTOS with Microcontrollers: Building Real-Time
Embedded Systems using FreeRTOS, STM32 MCUs, and SEGGER Debug
Tools. Packt Publishing Limited, Birmingham, United Kingdom, May 2020.

[5] Boris Blokland. Energy harvesting emulation testbed for battery-
less iot. Delft University of Technology, 2019. Master of Sci-
ence Thesis in Embedded Systems. http://resolver.tudelft.nl/uuid:
f9289d0a-bf2b-4883-83d0-f5881cc8f51f.

[6] Bluebrain. Highfive - header-only C++ HDF5 interface GitHub repository.
https://github.com/bluebrain/HighFive. Last accessed: Jun 16, 2022.

[7] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson Sample.
An energy-interference-free hardware/software debugger for intermittent
energy-harvesting systems. In Proc. ASPLOS, pages 577–589, Atlanta,
GA, USA, 2016. ACM. https://doi.org/10.1145/2980024.2872409.

[8] Alexei Colin and Brandon Lucia. Termination checking and task decompos-
ition for task-based intermittent programs. In Proceedings of the 27th In-
ternational Conference on Compiler Construction, CC 2018, page 116–127,
New York, NY, USA, 2018. Association for Computing Machinery.

[9] Contiki-NG. Official MSPSim Software Github repository. https://

github.com/contiki-ng/mspsim, May 2022. Last accessed: Oct 2022.

[10] Microsoft Corp. Visual studio code, 2022. https://code.visualstudio.

com.

39

https://doi.org/10.1145/3384419.3430722
https://jpa.kapsi.fi/nanopb/
https://jpa.kapsi.fi/nanopb/
https://doi.org/10.1016/j.compeleceng.2003.01.002
https://doi.org/10.1016/j.compeleceng.2003.01.002
http://resolver.tudelft.nl/uuid:f9289d0a-bf2b-4883-83d0-f5881cc8f51f
http://resolver.tudelft.nl/uuid:f9289d0a-bf2b-4883-83d0-f5881cc8f51f
https://github.com/bluebrain/HighFive
https://doi.org/10.1145/2980024.2872409
https://github.com/contiki-ng/mspsim
https://github.com/contiki-ng/mspsim
https://code.visualstudio.com
https://code.visualstudio.com

[11] Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım, Przemys law
Pawe lczak, and Josiah Hester. Reliable timekeeping for intermittent com-
puting. In Proc. ASPLOS, pages 53–67, Lausanne, Switzerland, 2020.
ACM. https://doi.org/10.1145/3373376.3378464.

[12] Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemys law
Pawe lczak. DIPS: Debug intermittently-powered systems like any em-
bedded system. In SenSys’22, Boston, MA, USA, 2022. ACM. https:

//doi.org/10.1145/3560905.3568543.

[13] Jasper de Winkel, Tom Hoefnagel, and Przemys law Pawe lczak. DIPS: De-
bug intermittently-powered systems like any embedded system artefacts,
2022. https://github.com/TUDSSL/DIPS.

[14] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemys law
Pawe lczak. Battery-free game boy. ACM Interact. Mob. Wearable Ubi-
quitous Technol., 4(3):111:1–111:34, September 2020. https://doi.org/

10.1145/3411839.

[15] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber. Real-
istic simulation for tiny batteryless sensors. In Proceedings of the 4th In-
ternational Workshop on Energy Harvesting and Energy-Neutral Sensing
Systems, ENSsys’16, page 23–26, New York, NY, USA, 2016. Association
for Computing Machinery.

[16] Kai Geissdoerfer, Miko laj Chwalisz, and Marco Zimmerling. Shepherd: a
portable testbed for the batteryless IoT. In Proc. SenSys, pages 83–95,
New York, NY, USA, 2019. ACM. https://doi.org/10.1145/3356250.

3360042.

[17] Xavier Gourdon. Computation of the n-th decimal digit of π with low
memory. In unpublished, 2003. http://numbers.computation.free.fr/

Constants/Algorithms/nthdecimaldigit.pdf.

[18] Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho: Realistic and
repeatable experimentation for tiny energy-harvesting sensors. In Proc.
SenSys, pages 1–15, Memphis, TN, USA, 2014. ACM. https://doi.org/

10.1145/2668332.2668336.

[19] Josiah Hester and Jacob Sorber. The future of sensing is batteryless, in-
termittent, and awesome. In Proc. SenSys, pages 21:1–21:6, Delft, The
Netherlands, 2017. ACM. https://doi.org/10.1145/3131672.3131699.

[20] Google Inc. Protocol Buffers. https://developers.google.com/

protocol-buffers, 2022. Last accessed: Sep 19, 2022.

[21] Texas Instruments Inc. TS5A23159 1-ω 2-channel SPDT! (SPDT!) analog
switch 5-v / 3.3-v 2-channel 2:1 multiplexer / demultiplexer. ttps://www.
ti.com/lit/ds/symlink/ts5a23159.pdf, 2005. Last accessed: May 9,
2022.

[22] Texas Instruments. Tps7a87 dual, 500-ma, low-noise, ldo voltage regu-
lator. https://www.ti.com/lit/ds/symlink/tps7a87.pdf, 2016. Last
accessed: May 9, 2022.

40

https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3560905.3568543
https://doi.org/10.1145/3560905.3568543
https://github.com/TUDSSL/DIPS
https://doi.org/10.1145/3411839
https://doi.org/10.1145/3411839
https://doi.org/10.1145/3356250.3360042
https://doi.org/10.1145/3356250.3360042
http://numbers.computation.free.fr/Constants/Algorithms/nthdecimaldigit.pdf
http://numbers.computation.free.fr/Constants/Algorithms/nthdecimaldigit.pdf
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/3131672.3131699
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf
ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf
https://www.ti.com/lit/ds/symlink/tps7a87.pdf

[23] Texas Instruments. Ina186, current-sense amplifier. https://www.ti.com/
lit/ds/symlink/ina186.pdf, 2021. Last accessed: May 9, 2022.

[24] Vito Kortbeek, Abu Bakar, Stefany Cruz Kasım Sinan Yıldırım,
Przemys law Pawe lczak, and Josiah Hester. BFree: Enabling battery-free
sensor prototyping with python. ACM Interact. Mob. Wearable Ubiquitous
Technol., 4(4):135:1–111:39, December 2020. https://doi.org/10.1145/
3432191.

[25] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and
Przemys law Pawe lczak. WARio: Efficient code generation for intermittent
computing. In Proc. PLDI, pages 777–791, San Diego, CA, USA, 2022.
ACM. https://doi.org/10.1145/3519939.3523454.

[26] Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemys law Pawe lczak. Time-sensitive intermittent computing
meets legacy software. In Proc. ASPLOS, pages 85–99, Lausanne, Switzer-
land, 2020. ACM. https://doi.org/10.1145/3373376.3378476.

[27] Tianxing Li and Xia Zhou. Battery-free eye tracker on glasses. In Proc.
MobiCom, pages 67–82, New Delhi, India, 2018. ACM. https://doi.org/
10.1145/3241539.3241578.

[28] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent Ex-
ecution without Checkpoints. In Proc. OOPSLA, pages 96:1–96:30, Van-
couver, BC, Canada, 2017. ACM. https://doi.org/10.1145/3133920.

[29] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Har-
oon Siddiqui. Discovering the hidden anomalies of intermittent comput-
ing. In Proc. EWSN, pages 1–12, Delft, The Netherlands, 2021. ACM.
https://dl.acm.org/doi/10.5555/3451271.3451272.

[30] Microchip Technology Inc. SAM4L8 Xplained Pro Evaluation Kit. https:
//www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO, 2016.
Last accessed: Jun. 16, 2022.

[31] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Al-
loulah, Lorena Qendro, and Fahim Kawsar. ePerceptive: energy reactive
embedded intelligence for batteryless sensors. In Proc. SenSys, pages 382–
394, Virtual Event, 2020. ACM. https://doi.org/10.1145/3384419.

3430782.

[32] Cristiano Monteiro. Happy pi day 2022, linkedin post,
2022. https://www.linkedin.com/pulse/happy-%25CF%

2580-day-2022-cristiano-monteiro/.Lastaccessed:Sep20,2022.

[33] IoT Business News. State of IoT 2022: Number of connected IoT devices
growing 18% to 14.4 billion globally. IoT Business News, may 2022.
https://iotbusinessnews.com/2022/05/19/70343. Last accessed: Jun.
11, 2022.

[34] Nexperia. 74LVC2T45; 74LVCH2T45 dual supply translating transceiver;
3-state. https://assets.nexperia.com/documents/data-sheet/74LVC_
LVCH2T45.pdf, 2021. Last accessed: May 9, 2022.

41

https://www.ti.com/lit/ds/symlink/ina186.pdf
https://www.ti.com/lit/ds/symlink/ina186.pdf
https://doi.org/10.1145/3432191
https://doi.org/10.1145/3432191
https://doi.org/10.1145/3519939.3523454
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3241539.3241578
https://doi.org/10.1145/3241539.3241578
https://doi.org/10.1145/3133920
https://dl.acm.org/doi/10.5555/3451271.3451272
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://doi.org/10.1145/3384419.3430782
https://doi.org/10.1145/3384419.3430782
https://www.linkedin.com/pulse/happy-%25CF%2580-day-2022-cristiano-monteiro/. Last accessed: Sep 20, 2022
https://www.linkedin.com/pulse/happy-%25CF%2580-day-2022-cristiano-monteiro/. Last accessed: Sep 20, 2022
https://iotbusinessnews.com/2022/05/19/70343
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf

[35] Nordic Semiconductor ASA. Bluetooth Low Energy and Bluetooth Mesh
development kit for the nRF52810 and nRF52832 SoCs. https://www.

nordicsemi.com/Products/Development-hardware/nrf52-dk, Septem-
ber 2021. Last accessed: Jun. 11, 2022.

[36] NXP Semiconductors N.V. Freedom development platform for
the kinetis kl05 and kl04 mcus. https://www.nxp.com/design/

development-boards/freedom-development-boards/mcu-boards/

freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:

FRDM-KL05Z, July 2013. Last accessed: Sep. 11, 2021.

[37] Open Source Community Developers. Black magic debug repository.
https://github.com/blackmagic-debug, 2022. Last accessed: May 9,
2022.

[38] Open Source Community Developers. GDB: The GNU project debugger re-
pository. https://sourceware.org/git/binutils-gdb.git, 2022. Last
accessed: May 10, 2022.

[39] Matthai Philipose, Joshua R. Smith, Bing Jiang, Alexander Mamishev,
Sumit Roy, and Kishor Sundara-Rajan. Battery-free wireless identification
and sensing. IEEE Pervasive Comput., 4(1):37–45, Jan.–Mar. 2005. https:
//doi.org/10.1109/MPRV.2005.7.

[40] QT Group. QT software development framework product website, October
2022. https://www.qt.io/product/framework. Last accessed: Oct. 15,
2022.

[41] Saleae Inc. Logic Pro 8 USB logic analyzer. http://downloads.saleae.

com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf, 2021. Last accessed:
Jun. 16, 2022.

[42] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexan-
der V. Mamishev, and Joshua R. Smith. Design of an RFID-based
battery-free programmable sensing platform. IEEE Trans. Instrum.
Meas., 57(11):2608–2615, November 2008. https://doi.org/10.1109/

TIM.2008.925019.

[43] Muhammad Moid Sandhu, Sara Khalifa, Raja Jurdak, and Marius Port-
mann. Task scheduling for energy-harvesting-based iot: A survey and crit-
ical analysis. IEEE Internet of Things Journal, 8(18):13825–13848, 2021.
https://doi.org/10.1109/jiot.2021.3086186.

[44] SEGGER Microcontroller GmbH. J-Link debug probe. https:

//www.segger.com/products/debug-probes/j-link/models/j-link,
July 2021. Last accessed: Sep 14, 2022.

[45] SEGGER Microcontroller GmbH. J-Link educational debug probe.
https://www.segger.com/products/debug-probes/j-link/models/

j-link-edu, July 2021. Last accessed: May 16, 2022.

[46] Chad Smith. Python (py) GDB machine interface (mi) package. https:

//github.com/cs01/pygdbmi. Last accessed: Jun 16, 2022.

42

https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://github.com/blackmagic-debug
https://sourceware.org/git/binutils-gdb.git
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/MPRV.2005.7
https://www.qt.io/product/framework
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
https://doi.org/10.1109/TIM.2008.925019
https://doi.org/10.1109/TIM.2008.925019
https://doi.org/10.1109/jiot.2021.3086186
https://www.segger.com/products/debug-probes/j-link/models/j-link
https://www.segger.com/products/debug-probes/j-link/models/j-link
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://github.com/cs01/pygdbmi
https://github.com/cs01/pygdbmi

[47] SparkFun Electronics. RedBoard Artemis ATP. https://www.sparkfun.

com/products/15442, 2019. Last accessed: Jun 16, 2022.

[48] Richard Stallman, Roland H. Pesch, and Stan Shebs. Debugging with GDB:
The GNU Source-Level Debugger, V 7.3.1. Free Software Foundation, Bo-
ston, MA, USA, 2011.

[49] STMicroelectronics. Mainstream mixed signals mcus Arm Cortex-
M4 core with DSP and FPU, 256kbyte of flash memory, 72mhz
CPU, MPU, 16-bit ADC comparators. https://www.st.com/en/

microcontrollers-microprocessors/stm32f373cc.html, 2016. Last ac-
cessed: May 9, 2022.

[50] STMicroelectronics. Mainstream performance line, Arm Cortex-M3 MCU
with 512kbyte of flash memory, 72mhz CPU, motor control, USB and
CAN. https://www.st.com/en/microcontrollers-microprocessors/

stm32f103re.html, 2018. Last accessed: May 9, 2022.

[51] STMicroelectronics. ST-Link/v2 debug probe. https://www.st.com/en/

development-tools/st-link-v2.html, September 2022. Last accessed:
Sep 14, 2022.

[52] Texas Instruments Inc. MSP430FR59xx mixed-signal microcontrollers
(Rev. F), March 2017. Last accessed: May 18, 2022, http://www.ti.

com/lit/ds/symlink/msp430fr5969.pdf.

[53] Joel Van Der Woude and Matthew Hicks. Intermittent computation
without hardware support or programmer intervention. In Proc. OSDI,
pages 17–32, Savannah, GA, USA, 2016. ACM. https://www.usenix.

org/system/files/conference/osdi16/osdi16-van-der-woude.pdf.

[54] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemys law Pawe lczak, and Josiah Hester. InK: Reactive ker-
nel for tiny batteryless sensors. In Proc. SenSys, pages 41–53, Shenzhen,
China, 2018. ACM. https://doi.org/10.1145/3274783.3274837.

[55] Eren Yıldız, Lijun Chen, and Kasım Sinan Yıldırım. Immortal
threads: Multithreaded event-driven intermittent computing on ultra-
low-power microcontrollers. In Proc. OSDI, pages 339–355, Carlsbad,
CA, USA, 2022. USENIX. https://www.usenix.org/system/files/

osdi22-yildiz.pdf.

43

https://www.sparkfun.com/products/15442
https://www.sparkfun.com/products/15442
https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/st-link-v2.html
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://doi.org/10.1145/3274783.3274837
https://www.usenix.org/system/files/osdi22-yildiz.pdf
https://www.usenix.org/system/files/osdi22-yildiz.pdf

	Preface
	Introduction
	Problem Statement
	Contributions

	Related Work
	Intermittently-Powered Debugging
	Intermittently-Powered Energy Emulation
	Testing Frameworks For Intermittently-Powered Devices

	Motivation
	Debugging Intermittently-Powered Embedded Systems
	Intermittent Bugs Classification

	Architecture
	Hardware Intermittence-free Debugger
	Intermittently-Power Supporting Debugger
	Intermittently Energy-Neutral Debugging
	Energy-Aware Debugging Features

	DIPS Energy Emulator
	DIPS Automated Software Testing

	Implementation
	Debugger Firmware Implementation
	Energy Emulator Implementation
	Synthetic Wave Emulation
	Replay of Energy Traces
	Hardware Debugger Integration
	GUI Emulator Serial Communication

	Automated Software Testing
	Checkpoint-Restore Memory Test
	Peripheral Restoration Test

	Emulator GUI Implementation
	GDB Client Wrapper
	DIPS Hardware Implementation

	Evaluation
	DIPS Characterisation
	User Experience Studies
	DIPS Case Studies
	Scenario 1: Memory Restoration Failure
	Scenario 2: Peripheral Initialisation Failure

	ENGAGE's Memory Restoration Issue

	Limitations and Future Work
	Scope of Generic Embedded Systems Applications
	Support for non-ARM MCU Architectures
	Increasing Reconnecting Speed
	Per-Line Code Inspection
	Future development of DIPS

	Conclusions

