

Delft University of Technology

Explaining Black-Box Models through Counterfactuals

Altmeyer, P.; Liem, C.C.S.; van Deursen, A.

DOI
10.21105/jcon.00130
Publication date
2023
Document Version
Final published version
Published in
The Proceedings of the JuliaCon Conferences (JCON)

Citation (APA)
Altmeyer, P., Liem, C. C. S., & van Deursen, A. (2023). Explaining Black-Box Models through
Counterfactuals. In The Proceedings of the JuliaCon Conferences (JCON)
https://doi.org/10.21105/jcon.00130

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.21105/jcon.00130
https://doi.org/10.21105/jcon.00130

Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer1, Arie van Deursen1, and Cynthia C. S. Liem1

1Delft University of Technology

ABSTRACT
We present CounterfactualExplanations.jl: a package
for generating Counterfactual Explanations (CE) and Algorithmic
Recourse (AR) for black-box models in Julia. CE explain how in-
puts into a model need to change to yield specific model predic-
tions. Explanations that involve realistic and actionable changes
can be used to provide AR: a set of proposed actions for individuals
to change an undesirable outcome for the better. In this article, we
discuss the usefulness of CE for Explainable Artificial Intelligence
and demonstrate the functionality of our package. The package is
straightforward to use and designed with a focus on customization
and extensibility. We envision it to one day be the go-to place for
explaining arbitrary predictive models in Julia through a diverse
suite of counterfactual generators.

Keywords
Julia, Explainable Artificial Intelligence, Counterfactual Explana-
tions, Algorithmic Recourse

1. Introduction
Machine Learning models like Deep Neural Networks have be-
come so complex and opaque over recent years that they are gener-
ally considered black-box systems. This lack of transparency exac-
erbates several other problems typically associated with these mod-
els: they tend to be unstable [11], encode existing biases [7] and
learn representations that are surprising or even counter-intuitive
from a human perspective [36]. Nonetheless, they often form the
basis for data-driven decision-making systems in real-world appli-
cations.
As others have pointed out, this scenario gives rise to an unde-
sirable principal-agent problem involving a group of principals—
i.e. human stakeholders—that fail to understand the behaviour of
their agent—i.e. the black-box system [6]. The group of principals
may include programmers, product managers and other decision-
makers who develop and operate the system as well as those in-
dividuals ultimately subject to the decisions made by the system.
In practice, decisions made by black-box systems are typically left
unchallenged since the group of principals cannot scrutinize them:

“You cannot appeal to (algorithms). They do not lis-
ten. Nor do they bend.” [27]

In light of all this, a quickly growing body of literature on Explain-
able Artificial Intelligence (XAI) has emerged. Counterfactual Ex-
planations fall into this broad category. They can help human stake-
holders make sense of the systems they develop, use or endure: they
explain how inputs into a system need to change for it to produce
different decisions. Explainability benefits internal as well as ex-

ternal quality assurance. Explanations that involve plausible and
actionable changes can be used for Algorithmic Recourse (AR):
they offer the group of principals a way to not only understand their
agent’s behaviour but also adjust or react to it.
The availability of open-source software to explain black-box mod-
els through counterfactuals is still limited. Through the work pre-
sented here, we aim to close that gap and thereby contribute to
broader community efforts towards XAI. We envision this pack-
age to one day be the go-to place for Counterfactual Explanations
in Julia. Thanks to Julia’s unique support for interoperability with
foreign programming languages we believe that this library may
also benefit the broader machine learning and data science commu-
nity.
Our package provides a simple and intuitive interface to generate
CE for many standard classification models trained in Julia, as well
as in Python and R. It comes with detailed documentation involv-
ing various illustrative example datasets, models and counterfactual
generators for binary and multi-class prediction tasks. A carefully
designed package architecture allows for a seamless extension of
the package functionality through custom generators and models.
The remainder of this article is structured as follows: Section 2
presents related work on XAI as well as a brief overview of
the methodological framework underlying CE. Section 3 intro-
duces the Julia package and its high-level architecture. Section 4
presents several basic and advanced usage examples. In Section 5
we demonstrate how the package functionality can be customized
and extended. To illustrate its practical usability, we explore exam-
ples involving real-world data in Section 6. Finally, we also discuss
the current limitations of our package, as well as its future outlook
in Section 7. Section 8 concludes.

2. Background and related work
In this section, we first briefly introduce the broad field of Explain-
able AI, before narrowing it down to Counterfactual Explanations.
We introduce the methodological framework and finally point to
existing open-source software.

2.1 Literature on Explainable AI
The field of XAI is still relatively young and made up of a vari-
ety of subdomains, definitions, concepts and taxonomies. Covering
all of these is beyond the scope of this article, so we will focus
only on high-level concepts. The following literature surveys pro-
vide more detail: Arrieta et al. (2020) provide a broad overview of
XAI [3]; Fan et al. (2020) focus on explainability in the context of
deep learning [10]; and finally, Karimi et al. (2020) [16] and Verma
et al. (2020) [41] offer detailed reviews of the literature on Counter-
factual Explanations and Algorithmic Recourse (see also [25] and
[40]). Miller (2019) explicitly discusses the concept of explainabil-
ity from the perspective of a social scientist [24].

1

https://github.com/JuliaTrustworthyAI/CounterfactualExplanations.jl

Proceedings of JuliaCon 1(1), 2022

The first broad distinction we want to make here is between In-
terpretable and Explainable AI. These terms are often used inter-
changeably, but this can lead to confusion. We find the distinction
made in [32] useful: Interpretable AI involves models that are in-
herently interpretable and transparent such as general additive mod-
els (GAM), decision trees and rule-based models; Explainable AI
involves models that are not inherently interpretable but require ad-
ditional tools to be explainable to humans. Examples of the lat-
ter include Ensembles, Support Vector Machines and Deep Neu-
ral Networks. Some would argue that we best avoid the second
category of models altogether and instead focus solely on inter-
pretable AI [32]. While we agree that initial efforts should always
be geared towards interpretable models, avoiding black boxes al-
together would entail missed opportunities and anyway is prob-
ably not very realistic at this point. For that reason, we expect
the need for XAI to persist in the medium term. Explainable AI
can further be broadly divided into global and local explainabil-
ity: the former is concerned with explaining the average behaviour
of a model, while the latter involves explanations for individual
predictions [25]. Tools for global explainability include partial de-
pendence plots (PDP), which involve the computation of marginal
effects through Monte Carlo, and global surrogates. A surrogate
model is an interpretable model that is trained to explain the pre-
dictions of a black-box model.
Counterfactual Explanations fall into the category of local methods:
they explain how individual predictions change in response to indi-
vidual feature perturbations. Among the most popular alternatives
to Counterfactual Explanations are local surrogate explainers in-
cluding Local Interpretable Model-agnostic Explanations (LIME)
and Shapley additive explanations (SHAP). Since explanations pro-
duced by LIME and SHAP typically involve simple feature impor-
tance plots, they arguably rely on reasonably interpretable features
at the very least. Contrary to Counterfactual Explanations, for ex-
ample, it is not obvious how to apply LIME and SHAP to high-
dimensional image data. Nonetheless, local surrogate explainers
are among the most widely used XAI tools today, potentially be-
cause they are easy to interpret and implemented in popular pro-
gramming languages. Proponents of surrogate explainers also com-
monly mention that there is a straightforward way to assess their
reliability: a surrogate model that generates predictions in line with
those produced by the black-box model is said to have high fidelity
and therefore considered reliable. As intuitive as this notion may
be, it also points to an obvious shortfall of surrogate explainers:
even a high-fidelity surrogate model that produces the same predic-
tions as the black-box model 99 per cent of the time is useless and
potentially misleading for every 1 out of 100 individual predictions.
A recent study has shown that even experienced data scientists tend
to put too much trust in explanations produced by LIME and SHAP
[19]. Another recent work has shown that both methods can be
easily fooled: they depend on random input perturbations, a prop-
erty that can be abused by adverse agents to essentially whitewash
strongly biased black-box models [35]. In related work, the same
authors find that while gradient-based Counterfactual Explanations
can also be manipulated, there is a straightforward way to protect
against this in practice [34]. In the context of quality assessment,
it is also worth noting that—contrary to surrogate explainers—CE
always achieve full fidelity by construction: counterfactuals are
searched with respect to the black-box classifier, not some proxy
for it. That being said, CE should also be used with care and re-
search around them is still in its early stages.

2.2 A framework for Counterfactual Explanations
Counterfactual search involves feature perturbations: we are inter-
ested in understanding how we need to change individual attributes
in order to change the model output to a desired value or label
[25]. Typically the underlying methodology is presented in the con-
text of binary classification: M : X 7→ Y where X ⊂ RD and
Y = {0, 1}. Further, let t = 1 be the target class and let x denote
the factual feature vector of some individual sample outside of the
target class, so y = M(x) = 0. We follow this convention here,
though it should be noted that the ideas presented here also carry
over to multi-class problems and regression [25].
The counterfactual search objective originally proposed by Wachter
et al. (2017) [42] is as follows

min
x′∈X

h(x′) s. t. M(x′) = t (1)

where h(·) quantifies how complex or costly it is to go from the
factual x to the counterfactual x′. To simplify things we can re-
state this constrained objective as the following unconstrained and
differentiable problem:

x′ = argmin
x′

`(M(x′), t) + λh(x′) (2)

Here ` denotes some loss function targeting the deviation between
the target label and the predicted label and λ governs the strength
of the complexity penalty. Provided we have gradient access for
the black-box model M the solution to this problem can be found
through gradient descent. This generic framework lays the foun-
dation for most state-of-the-art approaches to counterfactual search
and is also used as the baseline approach in our package. The hyper-
parameter λ is typically tuned through grid search or in some sense
pre-determined by the nature of the problem. Conventional choices
for ` include margin-based losses like cross-entropy loss and hinge
loss. It is worth pointing out that the loss function is typically com-
puted with respect to logits rather than predicted probabilities, a
convention that we have chosen to follow.1
Numerous extensions to this simple approach have been developed
since CE were first proposed in 2017 (see [41] and [16] for sur-
veys). The various approaches largely differ in that they use dif-
ferent flavours of search objective defined in Equation 2. Different
penalties are often used to address many of the desirable properties
of effective CE that have been set out. These desiderata include:
proximity — the distance between factual and counterfactual fea-
tures should be small [42]; actionability — the proposed recourse
should be actionable ([39], [31]); plausibility — the counterfactual
explanation should be plausible to a human ([14], [33]); sparsity
— the counterfactual explanation should involve as few individ-
ual feature changes as possible [33]; robustness — the counter-
factual explanation should be robust to domain and model shifts
[38]; diversity — ideally multiple diverse counterfactuals should
be provided [26]; and causality — counterfactuals should respect
the structural causal model underlying the data generating process
([18],[17]).
Beyond gradient-based counterfactual search, which has been the
main focus in our development so far, various methodologies have
been proposed that can handle non-differentiable models like de-

1Implementations of loss functions with respect to logits are often numer-
ically more stable. For example, the logitbinarycrossentropy(�y, y)

implementation in Flux.Losses (used here) is more stable than the math-
ematically equivalent binarycrossentropy(�y, y).

2

Proceedings of JuliaCon 1(1), 2022

cision trees. We have implemented some of these approaches and
will discuss them further in Section 3.2.

2.3 Existing software
To the best of our knowledge, the package introduced here provides
the first implementation of Counterfactual Explanations in Julia
and therefore represents a novel contribution to the community. As
for other programming languages, we are only aware of one other
unifying framework: the Python library CARLA [29].2 In addition
to that, there exists open-source code for some specific approaches
to CE that have been proposed in recent years. The approach-
specific implementations that we have been able to find are gen-
erally well-documented, but exclusively in Python. For example, a
PyTorch implementation of a greedy generator for Bayesian models
proposed in [33] has been released. As another example, the pop-
ular InterpretML library includes an implementation of a diverse
counterfactual generator [26].
Generally speaking, software development in the space of XAI has
largely focused on various global methods and surrogate explain-
ers: implementations of PDP, LIME and SHAP are available for
both Python (e.g. lime, shap) and R (e.g. lime, iml, shapper,
fastshap). In the Julia space, there exist two packages related to
XAI: firstly, ShapML.jl, which provides a fast implementation of
SHAP; and, secondly, ExplainableAI.jl, which enables users to
easily visualise gradients and activation maps for Flux.jl models.
We also should not fail to mention the comprehensive Interpretable
AI infrastructure, which focuses exclusively on interpretable mod-
els.
Arguably the current availability of tools for explaining black-box
models in Julia is limited, but it appears that the community is in-
vested in changing that. The team behind MLJ.jl, for example,
recruited contributors for a project about both Interpretable and Ex-
plainable AI in 2022.3 With our work on Counterfactual Explana-
tions we hope to contribute to these efforts. We think that because
of its unique transparency the Julia language naturally lends itself
towards building Trustworthy AI systems.

3. Introducing: CounterfactualExplanations.jl
Figure 1 provides an overview of the package architecture. It is
built around two core modules that are designed to be as extensible
as possible through dispatch: 1) Models is concerned with making
any arbitrary model compatible with the package; 2) Generators
is used to implement counterfactual search algorithms. The core
function of the package—generate_counterfactual—uses an
instance of type <:AbstractFittedModel produced by the
Models module and an instance of type <:AbstractGenerator
produced by the Generators module. Relating this to the method-
ology outlined in Section 2.2, the former instance corresponds to
the model M , while the latter defines the rules for the counterfac-
tual search (Equation 2).

3.1 Models
The package currently offers native support for models built and
trained in Flux [13] as well as a small subset of models made avail-

2While we were writing this paper, the R package counterfactuals was
released [8]. The developers seem to also envision a unifying framework,
but the project appears to still be in its early stages.
3For details, see the Google Summer of Code 2022 project pro-
posal: https://julialang.org/jsoc/gsoc/MLJ/#interpretable_

machine_learning_in_julia.

Fig. 1: High-level schematic overview of package architecture. Modules are
shown in red, structs in green and functions in purple.

able through MLJ [5]. While in general it is assumed that users re-
sort to this package to explain their pre-trained models, we provide
a simple API call to train the following models:

—Linear Classifier (Logistic Regression and Multinomial Logit)
—Multi-Layer Perceptron (Deep Neural Network)
—Deep Ensemble [21]
—Decision Tree, Random Forest, Gradient Boosted Trees

As we demonstrate below, it is straightforward to extend the pack-
age through custom models. Support for torch models trained in
Python or R is also available.4

3.2 Generators
A large and growing number of counterfactual generators have
already been implemented in our package (Table 1). At a high
level, we distinguish generators in terms of their compatible
model types, their default search space, and their composability.
All “gradient-based” generators are compatible with differentiable
models, e.g. Flux and torch, while “tree-based” generators are
only applicable to models that involve decision trees. Concerning
the search space, it is possible to search counterfactuals in a lower-
dimensional latent embedding of the feature space that implicitly
encodes the data-generating process (DGP). To learn the latent em-
bedding, existing work has typically relied on generative models or
existing causal knowledge ([14], [17]). While this notion is compat-
ible with all of our gradient-based generators, only some generators
search a latent space by default. Finally, composability implies that
the given generator can be blended with any other composable gen-
erator, which we discuss in Section 4.2.
Beyond these broad technical distinctions, generators largely dif-
fer in terms of how they address the various desiderata mentioned
above: ClapROAR aims to preserve the classifier, i.e. to gener-
ate counterfactuals that are robust to endogenous model shifts [1];
CLUE searches plausible counterfactuals in the latent embedding
of a generative model by explicitly minimising predictive entropy
[2]; DiCE is designed to generate multiple, maximally diverse

4We are currently relying on PythonCall.jl and RCall.jl and this func-
tionality is still somewhat brittle. Since this is more of an edge case, we may
move this feature into its own package in the future.

3

https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/?badge=latest
https://github.com/interpretml
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://cran.r-project.org/web/packages/lime/index.html
https://cran.r-project.org/web/packages/lime/index.html
https://modeloriented.github.io/shapper/
https://github.com/bgreenwell/fastshap
https://github.com/nredell/ShapML.jl
https://github.com/adrhill/ExplainableAI.jl
https://docs.interpretable.ai/stable/IAIBase/data/
https://docs.interpretable.ai/stable/IAIBase/data/
https://fluxml.ai/
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
https://alan-turing-institute.github.io/MLJ.jl/dev/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/model_catalogue/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/explanation/generators/overview/

Proceedings of JuliaCon 1(1), 2022

Table 1. : Overview of implemented counterfactual generators.

Generator Model Type Search Space Composable

ClaPROAR [1] gradient based feature yes
CLUE [2] gradient based latent yes
DiCE [26] gradient based feature yes
FeatureTweak [37] tree based feature no
Gravitational [1] gradient based feature yes
Greedy [33] gradient based feature yes
GrowingSpheres [22] agnostic feature no
PROBE [30] gradient based feature no
REVISE [14] gradient based latent yes
Wachter [42] gradient based feature yes

counterfactuals [26]; FeatureTweak leverages the internals of de-
cision trees to search counterfactuals on a feature-by-feature basis,
finding the counterfactual that tweaks the features in the least costly
way [37]; Gravitational aims to generate plausible and robust coun-
terfactuals by minimising the distance to observed samples in the
target class [1]; Greedy aims to generate plausible counterfactuals
by implicitly minimising predictive uncertainty of Bayesian clas-
sifiers [33]; GrowingSpheres is model-agnostic, relying solely on
identifying nearest neighbours of counterfactuals in the target class
by gradually increasing the search radius and then moving counter-
factuals in that direction [22]; PROBE generates probabilistically
robust counterfactuals [30]; REVISE addresses the need for plau-
sibility by searching counterfactuals in the latent embedding of a
Variational Autoencoder (VAE) [14]; Wachter is the baseline ap-
proach that only penalises the distance to the original sample [42].

3.3 Data Catalogue
To allow researchers and practitioners to test and compare coun-
terfactual generators, the package ships with catalogues of pre-
processed synthetic and real-world benchmark datasets from dif-
ferent domains. Real-world datasets include:

—Adult Census [4]

—California Housing [28]

—CIFAR10 [20]

—German Credit [12]

—Give Me Some Credit [15]

—MNIST [23] and Fashion MNIST [43]

—UCI defaultCredit [44]

Custom datasets can also be easily preprocessed as explained in the
documentation.

3.4 Plotting
The package also extends common Plots.jl methods to facilitate
the visualization of results. Calling the generic plot() method on
an instance of type <:CounterfactualExplanation, for exam-
ple, generates a plot visualizing the entire counterfactual path in the
feature space5. We will see several examples of this below.

5For multi-dimensional input data, standard dimensionality reduction tech-
niques are used to compress the data. In this case, the classifier’s decision
boundary is approximated through a Nearest Neighbour model. This is still
somewhat experimental and will be improved in the future.

Fig. 2: Counterfactual path using generic counterfactual generator for con-
ventional binary classifier.

4. Basic Usage
In the following, we begin our exploration of the package function-
ality with a simple example. We then demonstrate how more ad-
vanced generators can be easily composed and show how users can
impose mutability constraints on features. Finally, we also briefly
explore the topics of counterfactual evaluation and benchmarking.

4.1 A Simple Generic Generator
Code 1 below provides a complete example demonstrating how the
framework presented in Section 2.2 can be implemented through
our package. Using a synthetic data set with linearly separable fea-
tures we first fit a linear classifier (line 3). Next, we define the target
class (line 7) and then draw a random sample from the other class
(line 10). Finally, we instantiate a generic generator (line 13) and
run the counterfactual search (line 15). Figure 2 illustrates the re-
sulting counterfactual path in the two-dimensional feature space.
Features go through iterative perturbations until the desired con-
fidence level is reached as illustrated by the contour in the back-
ground, which shows the softmax output for the target class.

Code 1: Standard workflow for generating counterfactuals.� �
1 # Data and Classifier :
2 counterfactual_data = load_linearly_separable ()
3 M = fit_model (counterfactual_data , : Linear)
4
5 # Factual and Target :
6 yhat = predict_label (M, counterfactual_data)
7 target = 2 # target label
8 candidates = findall (vec (yhat) .!= target)
9 chosen = rand (candidates)

10 x = select_factual (counterfactual_data , chosen)
11
12 # Counterfactual search :
13 generator = GenericGenerator ()
14 ce = generate_counterfactual (
15 x, target , counterfactual_data , M, generator)� �

In this simple example, the generic generator produces a valid
counterfactual, since the decision boundary is crossed and the pre-
dicted label is flipped. But the counterfactual is not plausible: it
does not appear to be generated by the same DGP as the ob-

4

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/data_catalogue/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/data_preprocessing/

Proceedings of JuliaCon 1(1), 2022

served data in the target class. This is because the generic gener-
ator does not take into account any of the desiderata mentioned in
Section 2.2, except for the distance to the factual sample.

4.2 Composing Generators
To address these issues, we can leverage the ideas underlying some
of the more advanced counterfactual generators introduced above.
In particular, we will now show how easy it is to compose custom
generators that blend different ideas through user-friendly macros.
Suppose we wanted to address the desiderata of plausibility and
diversity. We could do this by blending ideas underlying the DiCE
generator with the REVISE generator. Formally, the corresponding
search objective would be defined as follows,

Z′ = arg min
Z′∈ZL×K

{`(M(f(Z′)), t) + λ · diversity(f(Z′))} (3)

where X′ is an L-dimensional array of counterfactuals, f :
ZL×K 7→ XL×D is a function that maps the L × K-dimensional
latent space Z to the L × D-dimensional feature space X and
diversity(·) is the penalty proposed by Mothilal et al. (2020) [26]
that induces diverse sets of counterfactuals. As in Equation 2, ` is
the loss function, M is the black-box model, t is the target class,
and λ is the strength of the penalty.
Code 2 demonstrates how Equation 3 can be seamlessly
translated into Julia code. We begin by instantiating a
GradientBasedGenerator in line 1. Next, we use chained
macros for composition: firstly, we define the counterfactual search
@objective corresponding to DiCE in line 4; secondly, we define
the latent space search strategy corresponding to REVISE using the
@search_latent_space macro in line 5; finally, we specify our
prefered optimisation method using the @with_optimiser macro
in line 6.

Code 2: Composing a custom generator.� �
1 generator = GradientBasedGenerator ()
2 @chain generator begin
3 @objective logitcrossentropy
4 + 0 .2 ddp_diversity
5 @search_latent_space
6 @with_optimiser Adam (0 .0 05)
7 end� �

In this case, the counterfactual search is performed in the la-
tent space of a Variational Autoencoder (VAE) that is au-
tomatically trained on the observed data. It is important to
specify the keyword argument num_counterfactuals of the
generate_counterfactual to some value higher than 1 (de-
fault), to ensure that the diversity penalty is effective. The resulting
counterfactual path is shown in Figure 3 below. We observe that the
resulting counterfactuals are diverse and the majority of them are
plausible.

4.3 Mutability Constraints
In practice, features usually cannot be perturbed arbitrarily. Sup-
pose, for example, that one of the features used by a bank to predict
the creditworthiness of its clients is age. If a counterfactual expla-
nation for the prediction model indicates that older clients should
“grow younger” to improve their creditworthiness, then this is an
interesting insight (it reveals age bias), but the provided recourse is
not actionable. In such cases, we may want to constrain the muta-

Fig. 3: Counterfactual path using the DiCE generator.

Fig. 4: Counterfactual path with immutable feature.

bility of features. To illustrate how this can be implemented in our
package, we will continue with the example from above.
Mutability can be defined in terms of four different options: 1) the
feature is mutable in both directions, 2) the feature can only in-
crease (e.g. age), 3) the feature can only decrease (e.g. time left
until your next deadline) and 4) the feature is not mutable (e.g. skin
colour, ethnicity, . . .). To specify which category a feature belongs
to, users can pass a vector of symbols containing the mutability
constraints at the pre-processing stage. For each feature one can
choose from these four options: :both (mutable in both directions),
:increase (only up), :decrease (only down) and :none (im-
mutable). By default, nothing is passed to that keyword argument
and it is assumed that all features are mutable in both directions.6
We can impose that the first feature is immutable as follows:
counterfactual_data.mutability = [:none, :both]. The
resulting counterfactual path is shown in Figure 4 below. Since only
the second feature can be perturbed, the sample can only move
along the vertical axis. In this case, the counterfactual search does
not yield a valid counterfactual, since the target class is not reached.

6Mutability constraints are not yet implemented for Latent Space search.

5

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/generators/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/generators/

Proceedings of JuliaCon 1(1), 2022

Fig. 5: Benchmarking results for different generators.

4.4 Evaluation and Benchmarking
The package also makes it easy to evaluate counterfactuals with
respect to many of the desiderata mentioned above. For example,
users may want to infer how costly the provided recourse is to indi-
viduals. To this end, we can measure the distance of the counterfac-
tual from its original value. The API call to compute the distance
metric defined in Wachter et al. (2017) [42], for instance, is as sim-
ple as evaluate(ce; measure=distance_mad), where ce can
also be a vector of CounterfactualExplanations.
Additionally, the package provides a benchmarking framework that
allows users to compare the performance of different generators on
a given dataset. In Figure 5 we show the results of a benchmark
comparing several generators in terms of the average cost and im-
plausibility of the generated counterfactuals. The cost is proxied
by the L1-norm of the difference between the factual and counter-
factual features, while implausibility is measured by the distance
of the counterfactuals from samples in the target class. The results
illustrate that there is a tradeoff between minimizing costs to indi-
viduals and generating plausible counterfactuals.

5. Customization and Extensibility
One of our priorities has been to make our package customizable
and extensible. In the long term, we aim to add support for more
default models and counterfactual generators. In the short term, it
is designed to allow users to integrate models and generators them-
selves. These community efforts will facilitate our long-term goals.

5.1 Adding Custom Models
At the high level, only two steps are necessary to make any super-
vised learning model compatible with our package:

Subtyping: We need to subtype the AbstractFittedModel.
Dispatch: The functions logits and probs need to be extended

through custom methods for the model in question.

To demonstrate how this can be done in practice, we will reiterate
here how native support for Flux.jl ([13]) deep learning models
was enabled.7 Once again we use synthetic data for an illustrative

7Flux models are now natively supported by our package and can be instan-
tiated by calling FluxModel().

example. Code 3 below builds a simple model architecture that can
be used for a multi-class prediction task. Note how outputs from
the final layer are not passed through a softmax activation function,
since the counterfactual loss is evaluated with respect to logits as
we discussed earlier. The model is trained with dropout.

Code 3: A simple neural network model.� �
1 n_hidden = 32
2 output_dim = length (unique (y))
3 input_dim = 2
4 model = Chain (
5 Dense (input_dim , n_hidden , activation),
6 Dropout (0 .1),
7 Dense (n_hidden , output_dim)
8)� �

Code 4 below implements the two steps that were nec-
essary to make Flux models compatible with the pack-
age. In line 2 we declare our new struct as a subtype of
AbstractDifferentiableModel, which itself is an abstract sub-
type of AbstractFittedModel.8 Computing logits amounts to
just calling the model on inputs. Predicted probabilities for labels
can be computed by passing logits through the softmax function.

Code 4: A wrapper for Flux models.� �
1 # Step 1)
2 struct MyFluxModel <: AbstractDifferentiableModel
3 model :: Any
4 likelihood :: Symbol
5 end
6
7 # Step 2)
8 # import functions in order to extend
9 import CounterfactualExplanations . Models : logits

10 import CounterfactualExplanations . Models : probs
11 logits (M:: MyFluxModel , X:: AbstractArray) =

M. model (X)
12 probs (M:: MyFluxModel , X:: AbstractArray) =

softmax (logits (M, X))
13 M = MyFluxModel (model)� �

The API call for generating counterfactuals for our new model is
the same as before. Figure 6 shows the resulting counterfactual path
for a randomly chosen sample. In this case, the contour shows the
predicted probability that the input is in the target class (t = 2).

5.2 Adding Custom Generators
In some cases, composability may not be sufficient to implement
specific logics underlying certain counterfactual generators. In such
cases, users may want to implement custom generators. To illus-
trate how this can be done we will consider a simple extension of
our GenericGenerator. As we have seen above, Counterfactual
Explanations are not unique. In light of this, we might be interested
in quantifying the uncertainty around the generated counterfactuals
[9]. One idea could be, to use dropout to randomly switch features
on and off in each iteration. Without dwelling further on the merit
of this idea, we will now briefly show how this can be implemented.

8Note that in line 4 we also provide a field determining the likelihood. This
is optional and only used internally to determine which loss function to use
in the counterfactual search. If this field is not provided to the model, the
loss function needs to be explicitly supplied to the generator.

6

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/evaluation/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/benchmarking/
https://fluxml.ai/

Proceedings of JuliaCon 1(1), 2022

Fig. 6: Counterfactual path using generic counterfactual generator for multi-
class classifier.

5.2.1 A Generator with Dropout. Code 5 below implements
two important steps: 1) create an abstract subtype of the
AbstractGradientBasedGenerator and 2) create a constructor
with an additional field for the dropout probability.

Code 5: Building a custom generator with dropout.� �
1 # Abstract suptype :
2 abstract type AbstractDropoutGenerator <:

AbstractGradientBasedGenerator end
3 # Constructor :
4 struct DropoutGenerator <:

AbstractDropoutGenerator
5 loss :: Symbol # loss function
6 complexity :: Function # complexity function
7 λ:: AbstractFloat # strength of penalty
8 decision_threshold :: Union { Nothing , AbstractFloat }
9 opt :: Any # optimizer

10 τ :: AbstractFloat # tolerance for convergence
11 p_dropout :: AbstractFloat # dropout rate
12 end� �

Next, in Code 6 we define how feature perturbations are generated
for our custom dropout generator: in particular, we extend the rele-
vant function through a method that implements the dropout logic.

Code 6: Generating feature perturbations with dropout.� �
1 using CounterfactualExplanations . Generators
2 function Generators . generate_perturbations (
3 generator :: AbstractDropoutGenerator ,
4 ce :: CouterfactualExplanation
5)
6 s′ = deepcopy (ce .s′)
7 new_s′ = Generators . propose_state (
8 generator , ce)
9 ∆s′ = new_s′ - s′ # gradient step

10 # Dropout :
11 set_to_zero = sample (
12 1: length (∆s′),
13 Int (round (generator . p_dropout * length (∆s′))),
14 replace = false
15)
16 ∆s′[set_to_zero] .= 0
17 return ∆s′

18 end� �

Fig. 7: Counterfactual path for a generator with dropout.

Finally, we proceed to generate counterfactuals in the same way we
always do. The resulting counterfactual path is shown in Figure 7.

6. A Real-World Examples
Now that we have explained the basic functionality of
CounterfactualExplanations.jl through some synthetic ex-
amples, it is time to work through examples involving real-world
data.

6.1 Give Me Some Credit
The Give Me Some Credit dataset is one of the tabular real-world
datasets that ship with the package [15]. It can be used to train a bi-
nary classifier to predict whether a borrower is likely to experience
financial difficulties in the next two years. In particular, we have an
output variable y ∈ {0 = no stress, 1 = stress} and a feature
matrix X that includes socio-demographic variables like age and
income. A retail bank might use such a classifier to determine if
potential borrowers should receive credit or not.
For the classification task, we use a Multi-Layer Perceptron with
dropout regularization. Using the Gravitational generator [1] we
will generate counterfactuals for ten randomly chosen individuals
that would be denied credit based on our pre-trained model. Con-
cerning the mutability of features, we only impose that the age
cannot be decreased.
Figure 8 shows the resulting counterfactuals proposed by Wachter
in the two-dimensional feature space spanned by the age and
income variables. An increase in income and age is recommended
for the majority of individuals, which seems plausible: both age and
income are typically positively related to creditworthiness.

6.2 MNIST
For our second example, we will look at image data. The MNIST
dataset contains 60,000 training samples of handwritten digits in
the form of 28x28 pixel grey-scale images [23]. Each image is as-
sociated with a label indicating the digit (0-9) that the image repre-
sents. The data makes for an interesting case study of CE because
humans have a good idea of what plausible counterfactuals of digits
look like. For example, if you were asked to pick up an eraser and
turn the digit in the left panel of Figure 9 into a four (4) you would
know exactly what to do: just erase the top part.

7

Proceedings of JuliaCon 1(1), 2022

Fig. 8: Give Me Some Credit: counterfactuals for would-be borrowers pro-
posed by the Gravitational Generator.

Fig. 9: Counterfactual explanations for MNIST using a Latent Space gener-
ator: turning a nine (9) into a four (4).

On the model side, we will use a simple multi-layer perceptron
(MLP). Code 7 loads the data and the pre-trained MLP. It also loads
two pre-trained Variational Auto-Encoders, which will be used by
our counterfactual generator of choice for this task: REVISE.

Code 7: Loading pre-trained models and data for MNIST.� �
1 counterfactual_data = load_mnist ()
2 X, y = unpack_data (counterfactual_data)
3 input_dim , n_obs = size (counterfactual_data .X)
4 M = load_mnist_mlp ()
5 vae = load_mnist_vae ()
6 vae_weak = load_mnist_vae (; strong = false)� �

The proposed counterfactuals are shown in Figure 9. In the case in
which REVISE has access to an expressive VAE (centre), the result
looks convincing: the perturbed image does look like it represents
a four (4). In terms of explainability, we may conclude that remov-
ing the top part of the handwritten nine (9) leads the black-box
model to predict that the perturbed image represents a four (4). We
should note, however, that the quality of counterfactuals produced
by REVISE hinges on the performance of the underlying generative
model, as demonstrated by the result on the right. In this case, RE-
VISE uses a weak VAE and the resulting counterfactual is invalid.
In light of this, we recommend using Latent Space search with care.

7. Discussion and Outlook
We believe that this package in its current form offers a valuable
contribution to ongoing efforts towards XAI in Julia. That being
said, there is significant scope for future developments, which we
briefly outline in this final section.

7.1 Candidate models and generators
The package supports various models and generators either na-
tively or through minimal augmentation. In future work, we would
like to prioritize the addition of further predictive models and gen-
erators. Concerning the former, it would be useful to add native
support for any supervised models built in MLJ.jl, an extensive

Machine Learning framework for Julia [5]. This may also involve
adding support for regression models as well as additional non-
differentiable models. In terms of counterfactual generators, there
is a list of recent methodologies that we would like to implement
including MINT [17], ROAR [38] and FACE [31].

7.2 Additional datasets
For benchmarking and testing purposes it will be crucial to add
more datasets to our library. We have so far prioritized tabular
datasets that have typically been used in the literature on coun-
terfactual explanations including Adult, Give Me Some Credit and
German Credit [16]. There is scope for adding data sources that
have so far not been explored much in this context including addi-
tional image datasets as well as audio, natural language and time-
series data.

8. Concluding remarks
CounterfactualExplanation.jl is a package for generating
Counterfactual Explanations and Algorithmic Recourse in Ju-
lia. Through various synthetic and real-world examples, we have
demonstrated the basic usage of the package as well as its extensi-
bility. The package has already served us in our research to bench-
mark various methodological approaches to Counterfactual Expla-
nations and Algorithmic Recourse. We therefore strongly believe
that it should help other practitioners and researchers in their own
efforts towards Trustworthy AI.
We envision this package to one day constitute the go-to place for
explaining arbitrary predictive models through an extensive suite of
counterfactual generators. As a major next step, we aim to make our
library as compatible as possible with the popular MLJ.jl package
for machine learning in Julia. We invite the Julia community to
contribute to these goals through usage, open challenge and active
development.

9. Acknowledgements
We are immensely grateful to the group of TU Delft students who
contributed huge improvements to this package as part of a univer-
sity project in 2023: Rauno Arike, Simon Kasdorp, Lauri Kesküll,
Mariusz Kicior, Vincent Pikand. We also want to thank the broader
Julia community for being welcoming and open and for supporting
research contributions like this one. Some of the members of TU
Delft were partially funded by ICAI AI for Fintech Research, an
ING—TU Delft collaboration.

10. References
[1] Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik,

Karol Dobiczek, Arie van Deursen, and Cynthia Liem. En-
dogenous Macrodynamics in Algorithmic Recourse. In First
IEEE Conference on Secure and Trustworthy Machine Learn-
ing, 2023. doi:10.1109/satml54575.2023.00036.

[2] Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller,
and José Miguel Hernández-Lobato. Getting a clue: A method
for explaining uncertainty estimates. arxiv:2006.06848. 2020.

[3] Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier
Del Ser, Adrien Bennetot, Siham Tabik, Alberto Bar-
bado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina,
Richard Benjamins, et al. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Information Fusion, 58:82–115, 2020.
doi:10.1016/j.inffus.2019.12.012.

8

https://alan-turing-institute.github.io/MLJ.jl/dev/
http://dx.doi.org/10.1109/satml54575.2023.00036
http://arxiv.org/abs/2006.06848
http://dx.doi.org/10.1016/j.inffus.2019.12.012

Proceedings of JuliaCon 1(1), 2022

[4] Ronny Kohavi Barry Becker. Adult. doi:10.24432/C5XW20.
Type: dataset.

[5] Anthony D. Blaom, Franz Kiraly, Thibaut Lienart, Yiannis
Simillides, Diego Arenas, and Sebastian J. Vollmer. MLJ:
A Julia package for composable machine learning. Jour-
nal of Open Source Software, 5(55):2704, November 2020.
doi:10.21105/joss.02704.

[6] Christian Borch. Machine learning, knowledge risk,
and principal-agent problems in automated trad-
ing. Technology in Society, page 101852, 2022.
doi:10.1016/j.techsoc.2021.101852.

[7] Joy Buolamwini and Timnit Gebru. Gender shades: Intersec-
tional accuracy disparities in commercial gender classifica-
tion. In Conference on Fairness, Accountability and Trans-
parency, pages 77–91. PMLR, 2018.

[8] Susanne Dandl, Andreas Hofheinz, Martin Binder, Bernd Bis-
chl, and Giuseppe Casalicchio. counterfactuals: An R Pack-
age for Counterfactual Explanation Methods. Technical re-
port, arXiv. arXiv:2304.06569 [cs, stat] type: article.

[9] Eoin Delaney, Derek Greene, and Mark T. Keane. Uncertainty
Estimation and Out-of-Distribution Detection for Counterfac-
tual Explanations: Pitfalls and Solutions. Technical report,
arXiv. arXiv:2107.09734 [cs] type: article.

[10] Fenglei Fan, Jinjun Xiong, and Ge Wang. On interpretability
of artificial neural networks. arxiv:2001.02522. 2020.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arxiv:1412.6572. 2014.

[12] Hans Hoffman. German Credit Data, 1994.
[13] Mike Innes. Flux: Elegant machine learning with Ju-

lia. Journal of Open Source Software, 3(25):602, 2018.
doi:10.21105/joss.00602.

[14] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk,
Been Kim, and Joydeep Ghosh. Towards realistic individual
recourse and actionable explanations in black-box decision
making systems. arxiv:1907.09615. 2019.

[15] Kaggle. Give me some credit, Improve on the state of the art
in credit scoring by predicting the probability that somebody
will experience financial distress in the next two years., 2011.

[16] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf,
and Isabel Valera. A survey of algorithmic recourse:
Definitions, formulations, solutions, and prospects.
arxiv:2010.04050. 2020.

[17] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel
Valera. Algorithmic recourse: From counterfactual explana-
tions to interventions. In Proceedings of the 2021 ACM Con-
ference on Fairness, Accountability, and Transparency, pages
353–362, 2021.

[18] Amir-Hossein Karimi, Julius Von Kügelgen, Bernhard
Schölkopf, and Isabel Valera. Algorithmic recourse un-
der imperfect causal knowledge: A probabilistic approach.
arxiv:2006.06831. 2020.

[19] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caru-
ana, Hanna Wallach, and Jennifer Wortman Vaughan. Inter-
preting interpretability: Understanding data scientists’ use of
interpretability tools for machine learning. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing
Systems, pages 1–14, 2020. doi:10.1145/3313831.3376219.

[20] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images.

[21] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. arxiv:1612.01474. 2016.

[22] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala,
Xavier Renard, and Marcin Detyniecki. Inverse Classifica-
tion for Comparison-based Interpretability in Machine Learn-
ing. Technical report, arXiv. doi:10.48550/arXiv.1712.08443.
arXiv:1712.08443 [cs, stat] type: article.

[23] Yann LeCun. The MNIST database of handwritten digits.
1998.

[24] Tim Miller. Explanation in artificial intelligence: Insights
from the social sciences. Artificial intelligence, 267:1–38,
2019. doi:10.1016/j.artint.2018.07.007.

[25] Christoph Molnar. Interpretable Machine Learning. Lulu.
com, 2020.

[26] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Ex-
plaining machine learning classifiers through diverse counter-
factual explanations. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, pages 607–
617, 2020. doi:10.1145/3351095.3372850.

[27] Cathy O’Neil. Weapons of Math Destruction: How Big
Data Increases Inequality and Threatens Democracy. Crown,
2016.

[28] R Kelley Pace and Ronald Barry. Sparse spatial autoregres-
sions. Statistics & Probability Letters, 33(3):291–297, 1997.
doi:10.1016/s0167-7152(96)00140-x.

[29] Martin Pawelczyk, Sascha Bielawski, Johannes van den
Heuvel, Tobias Richter, and Gjergji Kasneci. Carla: A python
library to benchmark algorithmic recourse and counterfactual
explanation algorithms. arxiv:2108.00783. 2021.

[30] Martin Pawelczyk, Teresa Datta, Johannes van-den Heuvel,
Gjergji Kasneci, and Himabindu Lakkaraju. Probabilistically
Robust Recourse: Navigating the Trade-offs between Costs
and Robustness in Algorithmic Recourse. arXiv preprint
arXiv:2203.06768, 2022.

[31] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl
De Bie, and Peter Flach. FACE: Feasible and actionable
counterfactual explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 344–350, 2020.

[32] Cynthia Rudin. Stop explaining black box machine learning
models for high stakes decisions and use interpretable mod-
els instead. Nature Machine Intelligence, 1(5):206–215, 2019.
doi:10.1038/s42256-019-0048-x.

[33] Lisa Schut, Oscar Key, Rory Mc Grath, Luca Costabello,
Bogdan Sacaleanu, Yarin Gal, et al. Generating Interpretable
Counterfactual Explanations By Implicit Minimisation of
Epistemic and Aleatoric Uncertainties. In International Con-
ference on Artificial Intelligence and Statistics, pages 1756–
1764. PMLR, 2021.

[34] Dylan Slack, Anna Hilgard, Himabindu Lakkaraju, and
Sameer Singh. Counterfactual explanations can be manipu-
lated. Advances in Neural Information Processing Systems,
34, 2021.

[35] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and
Himabindu Lakkaraju. Fooling lime and shap: Adversarial at-
tacks on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages 180–
186, 2020.

[36] Bob L Sturm. A simple method to determine if a mu-
sic information retrieval system is a “horse”. IEEE

9

http://dx.doi.org/10.24432/C5XW20
http://dx.doi.org/10.21105/joss.02704
http://dx.doi.org/10.1016/j.techsoc.2021.101852
http://arxiv.org/abs/2001.02522
http://arxiv.org/abs/1412.6572
http://dx.doi.org/10.21105/joss.00602
http://arxiv.org/abs/1907.09615
http://arxiv.org/abs/2010.04050
http://arxiv.org/abs/2006.06831
http://dx.doi.org/10.1145/3313831.3376219
http://arxiv.org/abs/1612.01474
http://dx.doi.org/10.48550/arXiv.1712.08443
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1145/3351095.3372850
http://dx.doi.org/10.1016/s0167-7152(96)00140-x
http://arxiv.org/abs/2108.00783
http://dx.doi.org/10.1038/s42256-019-0048-x

Proceedings of JuliaCon 1(1), 2022

Transactions on Multimedia, 16(6):1636–1644, 2014.
doi:10.1109/tmm.2014.2330697.

[37] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and
Mounia Lalmas. Interpretable Predictions of Tree-based En-
sembles via Actionable Feature Tweaking. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 465–474.
doi:10.1145/3097983.3098039. arXiv:1706.06691 [stat].

[38] Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju.
Towards Robust and Reliable Algorithmic Recourse.
arxiv:2102.13620. 2021.

[39] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable
recourse in linear classification. In Proceedings of the Con-
ference on Fairness, Accountability, and Transparency, pages
10–19, 2019. doi:10.1145/3287560.3287566.

[40] Kush R. Varshney. Trustworthy Machine Learning. Indepen-
dently Published, Chappaqua, NY, USA, 2022.

[41] Sahil Verma, John Dickerson, and Keegan Hines. Coun-
terfactual explanations for machine learning: A review.
arxiv:2010.10596. 2020.

[42] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Coun-
terfactual explanations without opening the black box: Auto-
mated decisions and the GDPR. Harv. JL & Tech., 31:841,
2017. doi:10.2139/ssrn.3063289.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. Technical report, arXiv.
doi:10.48550/arXiv.1708.07747. arXiv:1708.07747 [cs, stat]
type: article.

[44] I-Cheng Yeh and Che-hui Lien. The comparisons of data min-
ing techniques for the predictive accuracy of probability of de-
fault of credit card clients. Expert systems with applications,
36(2):2473–2480, 2009. doi:10.1016/j.eswa.2007.12.020.

10

http://dx.doi.org/10.1109/tmm.2014.2330697
http://dx.doi.org/10.1145/3097983.3098039
http://arxiv.org/abs/2102.13620
http://dx.doi.org/10.1145/3287560.3287566
http://arxiv.org/abs/2010.10596
http://dx.doi.org/10.2139/ssrn.3063289
http://dx.doi.org/10.48550/arXiv.1708.07747
http://dx.doi.org/10.1016/j.eswa.2007.12.020

	Introduction
	Background and related work
	Literature on Explainable AI
	A framework for Counterfactual Explanations
	Existing software

	Introducing: CounterfactualExplanations.jl
	Models
	Generators
	Data Catalogue
	Plotting

	Basic Usage
	A Simple Generic Generator
	Composing Generators
	Mutability Constraints
	Evaluation and Benchmarking

	Customization and Extensibility
	Adding Custom Models
	Adding Custom Generators
	A Generator with Dropout

	A Real-World Examples
	Give Me Some Credit
	MNIST

	Discussion and Outlook
	Candidate models and generators
	Additional datasets

	Concluding remarks
	Acknowledgements
	References

