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1- Probability concepts

1.1 Introduction

In practical design of the structures, engineers are generally aware from the determination
of absolute reliability. The reason for this conscious actiOn is that structurés are practically
neither feasible nor tenable due to the lackage of the av'ialable 'information. Since the lack
of absolute reliability is a consequence of uncertainty, the evaluation of reliability naturally
requires sufficient knowledge of the unknown uncertainties. Therefore, we may know the
increasing gaining acceptance based on the belief that the reliability approach can be
implemented without difficulties within the farmework of conventional structural analysis and
design procedures (Fredenthal 1975 [18])'. Thus, the only requirements of this approach is
to provide a logical systematic analysis of the reliability and safety of a design in the face
of uncertainties that are specified with the probabilistic 'approximation of "load" and
"resistance". However the distributions of the statistical variâbles are neither known nor
obtainable by simple probability distributions. The main problem of a reliability analysis is
thus the understanding of uncertainties and principles of probabilistic approaches. 'It is
concluded that for assessment of reliabilityand structural safety, the concepts of probabilistic
methods are playing a central role.

Before that we start with the definitions of reliability concepts, it is necessary to distinguish
between the risk and uncertainty assessments. Because the risk is a measureable uncertainty
of loss or of a damge, the faulty of a risk assessment is that its result is often related 'to the
financile success' of the design and the consequences of structural damge is often omitted. On
the other hand, by application of the probabilistic theory to design circumstances, the result
of analysis are constructed with a credible model which is consisted from physical reality
In other words, the limitation of measurable values for the subjéctive excitation and structural
response are logically involved only in a reliability approach A good definition of
uncertainty is required to identify the sources of basic data information which is needed as

1.2 Uncertainty

Uncertainty is defined in Webester's New Twentieth Century Dictionary with six different
meanings:

I. Not certainly known; questionable; 'problematical.
Vague; not definite or determined
Doubtful; not having certain knowledge; not sure.
Ambiguous.
Not steady or constant; varying.
Liable to change or vàry; not dependable or reliable.

Ñiiñiberi iiibckets desiguiite Refelences at end of paper.

a first step in reliability design procedure.
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If one concentrates on the difinations which seems are different in first instance, he will
receive to the conclusion that all the definitions can be captured by two distintict meanings;
Ambiguity and Vagueness [30]. In general, the vagueness is associated with the difficulties
of making sharp or precise distinctions in the world, in other words, the reason of uncertain-
ty is that the boundaries of a quantity is not known in a boundary domain. On contrary, the
ambigusy is related to the several concepts as well as, one to many relation, variety,
generality, diversity and divergence. In regarding to structural reliability theories, most of
work has been concentrated to the analysis of ambiguty not to the vagueness. The question
of how to measure vagueness or (fuzziness) has been one. of the issues assosiated with the
development of the theory of fuzzy sets. The application of fuzzy theory to the structural
reliability of mooring pipelines has been considerd by Japan's researchors in order to find
the collision damage. The evaluation of fuzziness for expert systems (computer networks
managements and so on) is considered at the faculty of Informatics of Deift University of
Technology.

1.3 Probability and probability of combined events

Bertrand Russell (1926) believed that the probability is the most important concept in modern
science. In his intelligent statement,, nobody has not the absolute definition for theprobability
and nobody knows what it means. In any case, in human living, there are a lot of problems
that, the people encounter with the probability estimation. For example a decision may not
be chosen as a "best" decision without consideration of a decision criteria. In most of
deciisions, the final result is found under condition of uncertainty and a best decision can be
found by a decision maker with a lot of experience. It can be concluded that in spite of
probability, non of any decisions can not be accepted. However in most of cases the nature
of belief, extremely affects the result of a decision. For this reason one decision which is
pessimistic in the opinion of one person, may be considered as a wrong decision by a
optimistic person. (A pessimistic person belives that nature always works against him while
an optimistic person believes that luck is always on his side.)

Before that we introduce a mathematical definition for probability of an event, it seems
necessary to define the event itself. Any problem involving the uncertainty, the "true
situation" is, of course, not known for certain. In addition the existing condition will be
turned and there will be different outcomes for a certain
state. In probabilistic approach, possible outcomes are called
events. AlfredO H.S. Ang and Wilson H. 'Tang [ij have
defined the event by means of sample space. If all posibilities
in a probabilistic approach is collected in a space which is
called a sample sapce, then each of the invidual possibilities
can be estimated as an event. Therefore the event is defined
by a subset of sample space. An event may be represented by
a Venn diagram. In a Venn digrarn, the sample space is represented by a rectangular; the
event E itself is then represented by a closed region inside of the rectangular. The remainder
part of the rectangular in the outside of this region is called the complementary event E (see
Figure 1.1).

Figure. 1.1 A Venn diagram



Knowing the meaning of an event, the probability has been defined in reference [39] as: "A
mathematical concept which assigns a number between O and i to an event or a combination
of events is called probability of the event or events. The likelihood of event is equal to O
when it is impossible to occur and is equal to I when it is almost certain. Probabilities are
dimensionless quantities."

In reality, true values for 'probabilities can be obtained only from an infinite events. Since
infinite triàl of any event is not existed in real world thus the mathematical definition of
probabilities are often found in a fixed number of trial evelits.. COnsider the result of a failure
test of a component (take for example tensile strength of a bar). Suppose that the fixed
number of components is given with N under test. In time t, the number surviving
components is found by N8(t while the n Umber of failing components will be N1(t (where
N(t + N1(O = IV). The probability of survival (or reliability) and the probability of failure
at time t are defined by the following equations

Pr{E}=Pr(N N)=R(O- N(t)
N

In which, .Pr{.E} denotes the probability of occurrence of the event (usually called success).
The probability of non-occurrence of the event or complement of E (E, usually called failure)
is defined by

Pr{)=Pr{N M=F(t).=/ N

These are complementary, i.e the survival and failúre events can be added together and we
have R(t + F(t) = 1. By a certain event, the probability is equal to i and by an impossible
event which does not occur in any time, the probability takes a zero account.

1.4 Fundamental laws of probability

Consider the probability of an event A, i.e. Pr{A} or simply P[A}, is given by a number
between 0 and 1. Thus the probability that event A happens will be equal to PEA]. For
example, PEA] = 0.1 in evaluation of flood (i.e. event flood A) in this year means that
the probability of occurrence of a flood is equal to 0.1.

in probability engineering, the relationships between sets are restricted by certain operation
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(1.2)

Figure 1.2 Union events

In most of cases an event occurs in a combination of
different events which are correlated with the fOrmats of
"AND", "OR", "NOT" and a cOmbination of these three
relations For example, in describing the stae of supply of
cons tructión material, if E1represents the shortage of concrete
and E2 represents the shortage of steel, then the shortage of
material is given by the union E1 U E2 as shown in Venn
diagram of events E and E2 [Figure (1.2)]..



rules. Who has some problems with the probability concepts, he must be care from the initial
definition of the used symbols. The operational symbols have been classified in accordance
to the relations beteen an one dimensional category system. These symbols are given in Table
1.,! [1]. By definition, the union probability A and B, i.e. PEA UB] is the sum of the
individual probabilities of A and B minus the probability that both events A and B) occurring
simultaneously. Thus

Table 1.1' Operational symbols in probability

PROBABILITY CONCEPTS

Symbol Decription

U Union

n Intersection

C Belongs to, or is contained in

J Contains

P[AUB] =P[A] +P[B] -P[AflB] (1.3)

In special case when 'two events exclude each other, Le. PEA nB] = O, then the probability
of two events can be added by the simple algebraic summation., This axiom is called the
addition law of probability in the literature.

The conditional probability for A is the probability of occurrence of event A provided that
event B has' taken palce. By definition, 'the conditional' probability is the ratio of the
occurrence of both events A and B simultaneously PEA n B] to the probability of occurrence

the occurrence of both events with the appropraite normalization (respect to the first.
occurrence or B), i.e.

P[A IB] P[AflB]
(1.4)

P[B']

which can be rewritten as

P[AflB] =P[A IB].P[B] (1.5)

If two events A and B are not correlated to each other (the occurrence of an event does not
depend on the occurrence of another event), then

P[A IB] =P[A] (1.6)



P[R, AI
P[AflB,] P[A IB].P[B]'

P[4]=E P[AflB,J=EP[A IB.].P[B,]

P[AJ
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(1.12)

The basic problem is that the statistical data can be described in term of subjective
judgement.The traditional approach to statistical inference does not take into acount this past
experience. The frequentistic philosophical, is
accepted as an objective degree of belief for the
event with prior probability. By a bayesian
philosophy, the subjective event (posterior
probability) is obtained from the objective one
(prior probability). 'TherefOre the posterior
probabaility distribution is updated' from the prior probability distribution through a likelihood
function. The fundamental of the bayesian philosophy is used in experimental' practice for the
analogy of quality of a material B1 by contribution of many laboratory test results defined by
A. The extraction of subjective event (posterior probability) in term of the objectIve event
(prior probability) requires the knowledge of the entire distribution of a random variable as
defined by equation (1,. 12).

,li, rVAVA
Figui'e 1.3 Conditional probability

P[AflB] =P[A].P[B] (1.7)

For three events A, B and C the equation (1.7) can be written as follows

P[AflBfl'C]=P[AIBflC].P[BIc].p[c] (1.8)

An advantage result can be obtained by implementation of this theory for n uncorrelated
events B in which i 1.,2,3,...,n [see Figure (1.3)]. The probability, of event A is given by

PEA] =P[AflB1,j P[AflB2] +... +P[AflB] (1.9)

With the same definition of conditional probability for eventA, the probability of occurrence
of all events A, B1. ¡=1 2 ii can be written by using equation (1.5) as follöws

P [A flB1] '= P[B l.A ]P [A J (1 .. 11')

Thus the conditional probability of P[B1 lA'J is calculated by equation (1,12). In practice., the
lack of statistical data and model uncertainty are important fèatures for the conditional
probabilities.



1.5 Discrete and (or) Continuous Probability distribution functions

A real-valued function F(x) is called a uni-variate cumulative distribution function (c.d.f.) or
'simply d:istributiòn function if

i ) F(x) is non-decreasing, i.e., F(x,) F(x2) for x1 x2.
F(x) is everywhere continous from the right, i.e., F'x) = 11m F(x+E,; e-'O.
F(-oo) =0, F(oo)'='l.

Thus the probability of the event "X f' (where' X is a random variable) defines by the
cumulative distribution function, i.e., Pr{ X x } = F(x).

In the numerical analysis, the probabilistic distributions may not always be complete
compatable with the continuous distributions and the discrete distributions which are
characterized by the random variable X taking an enumerable number of values at discritized
points tx,, x2, x3, ..., x) with point probabilities are defined as follows

f=Pr{X=x}O (1.13)

The only requirement for the point probabi1ityf is that it should be satisfy the condition of

And the corresponding distributión fùnctions can be written as

F(x) =Pr(Xx') =

6 PROBABILITY CONCEPTS

(1.15)

On the other hand, if the derivatives of a cumulative distribution function was absolutely
continuous, then the distribution is called a continuous distribution. Examples of continuous
distributions are Normal distribution, Log-Normal distribution, Exponential distribution,
Gumbel or Maxima &tremevalue Type!, Frechetor Maxima Extreme-value Type If, Fisher-
Tippett or Minima Extreme-value TypE I, Weibull or Minima Extreme-value Type Iii,
Rayleigh distribution, Special Erlangian, Triangular distribution, Error function, Cauchy
distribution, Laplace distribution,, Pearson Type II! or Gamma distribution, Beta distribution
and rectangular distribution [9,52,31].

The application of Gumbel distribution to model the environmental maximum of a quantity

where the 'summation is over all values of x for which x x. 'Examples' of discrete
distributions are single point or degenerate distribution, binominal distribution,
Hypergeometric distribution, Poisson distribution, Negative biñominal distribution and
geometric distribution. 'For more information about the characteristics of the distributions the
reader is reffered to Handbook of mathematical functions written by M. Abramowitz and l.A.
Stegun (see reference [52])'.

fn=1 (1.14)



can be found in wide area of science (take for example the maximum wind speed). For the
first time, E.J. Gumbel has introduced this distribution in his book "Statistics of extremes'
published in 1958. The Gumbel distribution is in fact doubly exponential distribution.
Therefore if Y is Type II Maxima distributed then Z Ln Y is Type 1 maxima distributed
which is often called: the Gumbel distribution. On the other hand, Weibull distribution (3-
parameter or 2-parameter) is also applied for the prediction of extreme conditions. In
practice, it is common to plot the cumulative probability and environmental variable in a sO-
called "Weibull Scale" paper. A "good-fit" of environmental data will achieve by a straight
line on this scale unless the Weibul'! distribution is not suitable for the given dàta. However
based on the "Main study report of Hutton Area" [26],. it has been found that when
approxiamtely 30 years of data are used, the difference between Gumbel and Weibuil
distributions is fairly predictable. The extremes for 1 and 10-year are approximately
evaluated with the same quantities, but on the other hand by the comparison of the 50 and
100-years data, the Gumbel results are always higher than those given by the Weibull
distribution [26]:.

Note that the rectangular distribution with unit length is often called the Uniform distribution
[31]. The distributions which have been introduced earlier have found their applications in
a variety ofsciences. In offshore engineering as well as other hydraulic engineerings, for
meteorological and Hydrological events, the most important distributions are: Normal, Log-
normal (3-parameter or 2-parameter), Gumbel, Pearson, Log Pearson and Frechet (or
Maxima Extreme-value Type II). In fracturai mechanics and fatigue problems, the Weibull
distribution (3-parameter or 2parameter) and Log-normal distribution are implemented in
majoraty of reliability problems. In each case, the characteristics of all important
distributions can not be prçpared in the context of this report and the reader should be study
the advantage books about the mathematical discription of these distributions. However
because of that in most physical problems the distribution of random variables are coinciding
with the normal distribution, it will be useful to point out some characteristics of the normal
probability distribution function in this context,

1.6 Normal or Guassian probability function

A random variable X is said to be normally distributed with mean ' and variance a2 if the
probability that X is less than or equal to x is given by:

Pr{Xx)= fexp[_(t_2]dtF(..) (1.16)
2a

The corresponding probability density function (p.d.f.) is found by the differentiation of the
above formula, i.e. equation (1.. 17).

a i----F( X X) f(x) = exp(-
ax a 2a

The ormà[dis&ìbütiöiiT is symmetric aróund X and the iiiflëiif poiïits of the prdbability

7 PROBABILITY CONCEPTS

(1.17)



density function are at The direct integration of equation (1.16) would be
cumbersome. It is possible to avoid this direct integration for manual calculations by
providing a table in which a standardized nórthal function has been integrated The normal
density function may be placed: in standardized form as follows:

(1,. 18)'
2ir 2

x-x
Where z=

In other words, if the characteristics of the normal distribution are taken equal to

x=O, a i

In that case the integral of the normal distributicn may be stored in a table for evaluation of
integrals' of a normal density function given a x and o. The standard normal probability
distribution function and its derivaties has been given: by M. Abramowitz and l.A. Stegun
in reference [52].

In generai, the multivariate joint normal probability density function is considered in the n-
dimensional basic variables, space w. For a given structure, the basic variables are defined
by a realization of a randOm vector X= X1,X2,X3,. . . ,X) where the number of basic variables
n is assumed finite.

1 .Jj.exp[! (x-)M(x,,--)]- -
(2ir),2 C2

where .Ex]= and M C' where C is the covariance
matrix defined 'by equation (4.8).

Var[x1] Cov[x1,,x2] Cov[x1.,xJ

Cov[x2,,x1] Var[x2j Cov[x2,x]

(1.20)

[ Cov[x,xJ Cov[x,x2] Var[x]
J

The covariance matrix of X can be written 'in a more convenient way by using vector and
matrix notation as follows.

C=E[(XX)(X_AT] .. (1.2:1)

8 PROBABILITY CONCEPTS

(1.19)
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where the superscript 'T' denotes the transpose of matrix. Since C is positive definite, there
exists an orthogonal matrix, T, and that TCTT is a diagonal matrix. (Its diagonal elemeñts
will be the eigenvalues of C) Let Y= TX. Then

E[(YY)(Yi)TJ=7..c.7T

will be a diagonal matrix, and the variables, Y, will be the required uncorrelated variables.

M'. Abramowitz and l.A. Stegun have also considered the standard bivariate normal
probability density function Which is defined by pair of random variables X1,X2). The
formulation is similare to the formulation of multivarite joint normal probability function
(Equ. (1.19)), but with introducing of the correlation factor p between two random varibtes
X, and X2. (The correlation factor is defined by the ratio of covariance of variables to the
product of their standard deviations). A simplified case for bivarite probability density
function occures when the standard deviations of random variables are equal and the variables
are independent , i.e., the correlation factor is zero (p = O). In this case, the function is
called the circular normal probability density function which can be written as follows:

X - x-i i (x _i)2+x_i)2I i 2 2) f( 'f2) - exp{- ' 2

O 2ito2 2a2

However,, the multi-integral of the probability density function, equation (1.19), which is
called the cumulative joint probability distribution function of the random variables, can be
evaluted analytically only in some special cases. For the case of the bivariate normal
probability function, the double integral of probability density function is called the joint
probability distribution function of the random pairs. M.Abramowitz and l.A. Stegun have
introduced sorne simplified graphs for the integration of the bivariate normal probability
distribution fUnction.

(1 .22)

(1.23)

An alternative for the integration of the probability distribution functions has been found by
use of the numerical methods. In fact, in the case of multivariates with several distributiòns,
the combersome of the analytical methods makes it impossible to evalute the integrals without
application of digital computers and it seems the numerical approach is the only one.It is
necessary that all the uncertainties in a design have been involved in the joint probability
density function Jx), and that f(x) is known. Owing the lack of data, these probability
distribution functions are seldom known precisely, and the numerical evaluation of the joint
probability distribution function is extremely difficult or even impossible. In structuràl1
reliability analysis, sometimes only the first and second order moments (the mean ancf.
variance) may, be known. Different approaches of first-order second-moment (FOSM);
methods simplifies the functional relationships and mitigates these difficulties outlined befòre..

On the other hand, generally speaking, the basic variables cannot be satisfactory modelledÇ
by a normal distribution. In order to simplify the development of the concept of reliablit.
analysis method, an assumption is made that the basic variables are considered to contain.just!
two normal or',log-normal distributins.



1.7 Log-Nonnal probability function

The characteristics of log-normal distribution is very similare to the characteristics of normal
distribution. Consider a random variable x is related to a second random variable x,1 by the
relation

(1.24)

where Ln denotes the logarithms of the variable x in exponential base. If the random variable
x is normally distributed, then x1 is said to have a log-normal distribution. In terms of the
mean value of x1 , i.e. x1 the mean'of the logaritms of variable x, and the standard deviation.
of x, i.e. the standard deviation of logaritms of x, the probability density function of X
is given by,:

10 PROBABILITY CONCEPTS

.exp(- ((Ln x _)2); x>O
2o

a

X

i1=Lni-Ln(i +'C2)

o12 =Ln(1 +'C2)

(1.25,

The mean añd the standard deviation of Log-Normal distribution, i.e., T and x1, can be
calculated in term of the mean 'and standard deviation of the random variable x. If the
coefficient of variation of random variable x is. defi ned in term of its mean and' standard
deviation as given by equation (1.26), then the mean and the standard deviation of new
variables are easily calculated by formula's (1.27) and (1.28).

And the cumulative probability distributiòn function of x is written as equation (1.29) in
which denotes the cumulative distribution function for the standard normai distribution.
Using Monte-Carlo approach, the cumbersome of integration for logaritms of many values
would be facilitated by application of simple computer programes.

Lnx-i
F(x)='1[ 1]

(1.29)
a xi,

One of the characteristics of Log-normal distribut.ion is that its mode, median and'' mean are
different from each other. (Nòte that the mode of a density function would be peak of the



distribution, the median of a data is the midpoint cf the data if the data values are arranged
in either ascending or descending order and finally the arithmatic mean is the measure of
central tendency o average of the sample data)..

1.8 Hazard

Although there are many definitions for the concept of hazard as well as risk, peril, ... but
in the term of potential condition of a component, equipment or a system of components, the
hazrd is implied threat or danger and often harm. Thus by occurrence of a hazard, the
potential condition can be changed to condition of injury,, death, damgae, loss, of part or
whole of the object.

In probability engineering, the hazard rate,, is defined in term o probability of survival (or
reliability).. If we rewrite the próbability of survival as follows

P (tN(tl_1t)
R N N

By differentiating we will get the following expression

dPR(t) i dN1(t)

dt Ndt
In which {dN1(t) / N. dt} is the instantaneous probability when dt approaches to zero. The
instantaneous ptobability is often called the probábility density function (pdf) fOr the case
of continuous random variable and probability function or point probability function for the
case of the discrete random variable. Thus the relation between probability of survival PR(t
and the probability density function flt' is obtained as follows

dPR (t)

A rearrangement of equation equation (1. 3Ø) gives an express iOn for the failure rate.

d(t
- N

dPR(t
(1.33)

dt dt

The failure rate can be iïflerpreted as the number of components failing in time interval dt,
between t and t + dt. If both sides of equation (1.33) are divided by Pv(t), the instantaneous
failure rate or the hazard rate will be equal to

dN(t N dPR(t)
= A (t (1 34)

N(t dt N3(t dt

Substitution of equation (1.30) intO the equation (1.34) results to 'the following expression

t

i i PROBABILITY CONCEPTS

(1.30)

(1.31)

(1732)



i dPR(t)

PR(t) dt
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(1.35)

Hazard rate is always time dependendent but the case of constant hazard rate is a practical
interest. An application ofconstant hazard rate will be shown later.

1.9 Probabilistic modelling

The accuracy of a reliability method is highly dependent to the probabilistic models. Normal
distribution is the conventional distribution for the probabilistic modelling and often is used
with the large number of variables. An important reason for the wide applicability of the
normal distribution is in fact it fits with most quality controles and some reliability
observations. The goodness of normal distribution for large number of variables is proved
by central limit theorem. Because of extensive application of Normal distribution, the non-
normal distributions are often converted to the equivalent normal distribution. Although these
transformations are widely used in level II reliability analysis but the result is often lapsed
by the applied transformations.

If the random variables are product of a large number of quanteties,, then the log-normal
distribution often gives a better approximation because of central limit theorem. Further, the
extreme value distribution is used for the largest or smallest quantity of random variables.
Although any distribution may be transformed to the normal distribution, but it should be
considered that the results will not be accurate specificly in the tails. Although many types
of distributions may be considered in the reliability analysis but usually it is a difficult task
to find the best distribution for a randbm sample data.

The random variables that are often called basic variables mainly are collected by loading,
strength (or resistance) and geometrical quantities. Concerning, the loading, the basic
variables will be treated in term of physical nature of loading and its statistical simulation.
The main types of loadings are classified as Functional, Environmental and Accidental loads
that may act individually or simultaneously. The important poiñt in the reliability analysis
is the effect of simultaneous loadings' particularry when the accidental loadings are included.
If two or more loads are acting to the structure then the combined effects will be considered
ultimately. However, the uncertainty of current action and wind turbulences or the damage
to hatch covers caused by local loads will not be considered here. Concerning the
uncertainties for the local loads, structural details of this type should always be designed with
higher nominal safety margins than the substructures or single members The collapse due
to the usual over loading may be considered as' the "fail safé" case (Lindemann et al. [34]).
In the following chapter, the uncertainty in environmental lóading especially the wave effect
will be discussed with a sufficiènt attention. In consideratioh of the resistance parameteres,
basic variables are often modelled as time independent váriables Thoft Christensen and
Murotsu [50]). The distribution for the yield, buckling änd collapse failures are often
concides with the normal or log-normal distribution. For fatIgue ultimate parameteres often
the Weibull, expotential and Gumbel distributions are used th the response analysis.



1.10 Reliability method and its Level
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The reliability method is a design tool for limit states. Essentially, it is based on probabilistic
approach, which can be used to making decisions for important structures. Today the
concepts of reliability analysis are applying for the design of nuclear plants, highway bridges,
offshore structures and so on.

The probability of performance of a function is defined the reliability of the component,
equipment or system for a stated period of time On contrary, the probability of failure is
defined in term of inability of the component, equipment or system for a required function.

An efficient reliability method treats the efficiency and the accuracy of requirements.
Although in reliability engineering both efficiency and accuracy are important to making
decisions, but in practice the models of reliability methods are divided into, two major
branches. Duddeck (1977) calls two kinds of models the reseach models and the technical
models. The reasearch model compromises the reliability data to minimize the difference
between the ideal;ized reliability (PR') and the true reliability (P,,). Here the emphesis is to
develop an accurate reliability method. In contrary, a technical model improves theefficiency
and the objective of the model aids to making decisions [37].

The advantage of a relibility method is positioned on its probabilistic nature. In the first
place, by a probabilistic method it is possible to compare different failure modes. This
method gives a uniform meaning in the safety of a structure.. Furthermore, the relibility
methods may be compared with the common sensivity analysis. Here, the advantage of a
probability method is that it gives a coherent picture from the sensivity componant.

Different classical techniques are used to assess the reliability of engineering structures. Level
I method comprises calculation based on characteristic values and (partial) safety factors or
safety margins. Strictly speaking, a calculation at Level I does not involve failure
probabilitis. It does, however, provide a method of checking whether a defined Ievelf
safety is satisfied. This type of calculation is more particulary suitable for every day practice.
The interrelation of various Levels will be dealt latter on.

The transformation techniques are used to transfer all probabil;ity density functions to the
probability density functions of normal distribution. This is the basis for a Level II (or second
moment) method which comprises a number of approximate methods for linearization of limit
state margin. Two important second-moment methods are the mean value first order second-
moment (MVFOSM) and the advanced first order second-moment AFOSM) methods that will
be described in chapter 4, The classification of two mentioned methods are as follows:'

The mean value first order second-moment method is based on the variation of mean and
standard deviation of random variables and is formulated on the basis of linear approximation
of failure surface.

The advanced first order second-moment method is based On the recalculation of design
points in terms of sensitivity values in an iterative form, and finally calculation of the



14 PROBABILITY CONCEPTS

reliability index (ji) while the limit state equation is formulated by the linear approximation
of failure criteria.

For the linearization of limit state function either one or two expression from the Taylor
series are often used in the vicinity of design points. Depending on the approximation on the
expanding of Taylor series the methods are often called FORM I SORM methods in the
literature. Which formulation is to be chosen depends on the nature of the problem. It means
that if the limit state function only consists of linear relationships, then a FORM procedure
will give the accurate results otherwise the SORM formulation is implemented in the frame
work of reliability analysis. On the other hand, the approximate full joint distribution method
is based on derivation of normal distribution values in term of non-normal infOrmations based
on the normal tail or weighted fracture approximation. These transformation methods have
been discussed in detail by Shu-Ho Dai and Ming-O Wang [11].

In level III method the joint distribution of required uncertian parameteres are used to access
probability of failure. In either case, the reliabilty of total joint distribution for the structure
can be found by means of numerical integration procedures (take for example Monte Carlo
method). The method comprises calculations in which the complete probability density
functions of the stochastic variables are introduced and the possibly non-linear character of
the reliability function is exactly taken into account.

Recently, a reliability method that compares the structural prospect with a reference prospect
according to the principles of structural economic analysis has introduced in literature by a
so-called level IV method. The interests in the analysis are the consideration of costs and
benefits, maintenance, repair and consequences of failures. Such methods are appropriate for
structures that are high economic importance such as nuclear power plants, highway bridges
and so on. The full definition of these methods are given in chapter 4.

1.11 Jackup risk versus fixed platforms

The risk has existed in human life since the dawn of human history. As time went by, the
safety plan took on a social form. The advances usually had negative as well as positive
effects on all eras and all peoples. Humanity soon became technical in the means to provide
the objects and conditions necessary for sustenance and physical contentment. Nowadays
humans must deal with those hazards that occur through carelessness and the unguarded or
inadequately organized: uses of their devices and substances. It was such a safety discipline
that assisted in putting men on the moon. Such disciplines made air transportation so safe that
it is the common way to travel over long distances. But again note to the paradox of
technology versus hazard which has been explained in Table 1.2.

We now have learned some methods of avoiding the pitfalls of human weakness. A modern
poet from P. Hein (1966) put it very clearly (see reference [44]).

The road to wisdom? Well it's plain and simple to express: Err and err, and err again, but
less, and less, and less.

Scientists nowadays believe that the nathraleveîiisaiè só oiIìcateFthIt ,eàii not handle
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all of them, in the framework of mathematical relations such as the differential equations.
Indeed the type of a system is rather complicated in the order of it's characteristics behavior
(The system is always defined by a set of variables). Thus one problem arises with the
incompatibility of real behavior of the adopted system and its relative response observed by
an unknown supplier (usually this also holds fOr the designer of the system). Informally
stated, as well as the complexity of a system increases, our ability to make precise and yet
significant statements about its behavior diminishes. Thus the precise analyses of the behavior
of a complex system is not likely to have much real-worlds such as in the design of complex
systems as well as aircrafts, nuclear plants,, highway bridges and offshore platforms. The
responsibility of the designer requests the implementation of fullified methods for insurance
of operating systems and their passengers.

Table 1.2 Technology versus hazard

Before that we start to identify the basic concepts of reliability theory in general, it should
be clearly noticed that which type of structures are studied in the skeleton of this thesiiiiiiI
what kind of hazards will be discussed as a source of the structural collapse?

In the concepts of offshore industry different kind of mobile platforms are usually used for
the production of oil and gas resources. In spite of all type of mobile operating platforms,
a jack-up platform is a mobile offshore structure consisting of a hull supported by 3 or more
legs. The leg is towed to the location and then the hull is jacked above the water level.

For the fixed platforms 60339 is the total number of platform-years exposure while for the
jack-ups the corresponding exposure is equal to 4097 rig-year in the period 1970-'87.
Therefore a relative exposure ratio of approximately (60339/4097 15) is obtained for this
period. The relative exposure ratio for the fixed platforms was fifteen times higher than that
of jack-up' structures in period of 1970-'87 and it may be interpretated With the vast
experience of fixed platforms with comparison to the jack-up structures.

The philosophy for the 'integrity assesment of offshore structures can be found with
consideration of different uncertainties in design parameteres and assumed models Let us

The Technological Advance The Hazard

Fire Burns, conflagrations

Knives Inadvertent trauma

Fossil fuels . Atmospheric pollution

High speed transportation systems Accident induced damage and injury

Pesticides Food chain toxicity

Food preservatives Carcinogens

Nuclear energy Ionizing radiation



to start we the relative reliability of jack-ups compared with the fixed platforms. M.
Efthymiou has extracted the exposure statistics of losses for the jackups and fixed platforms
in the period 1970-'87 from the Worldwide Offshore Accident Databank WOAD [15].

Focussing on the most severe accidents, i.e., those found with the total loss of the unit, two
important results can be drawn (see for instance reference [33]). Firstly the total löss of
integrity for the jacket type structures is considerably less than for the jack-ups, i.e. When
we consider only one of the periods of i.970-'79 and 1980-'87. Secondly, whereas the
frequency rate of accidents for the jacket structures shows a significant improvement with
time (from 7.3 to 1.1), such a trend cannot be observed for the jack-ups (162 vs. 97). Note
that the frequency rate of accidents is determined by the total losses during the period of
investigation (years) per 10,000 unit-years (for example the total losses of fixed platforms
during 1970-'79 was 17 and the number of unit-years of exposure was 23,204 in the same
period, thus the frequency rate of total losses is [(17'/23,204) X 10,000 7.3]). Accidents
in the WOAD databank are defined as those events or conditions which have caused damage
to supporting structures or equipment and environment causing death or injury to individ-
uals). On the other hand, if the same issue is used for the total losses due to the
environmental loading or foundation failure., i.e. excluding total losses due to blowout, fire,
collision or during transportation, then the frequancy rate of accidents for the fixed platforms
will be (1.7 vs. 0.5) for the period of 1970-'79 and 1980-'87, while for jack-ups the
frequency rate of accidents will be equal to (35 vs. 34) for the period of 1'970-'79 and 1980-
'87 respectively

With the frequaency rate of accidents, we are able tó find the (instantaneous ) failure rate
or hazard rate. for the total losses of two kinds of platforms for two mentióned fáilures, i.e.
either fir the total loss or for losses resulting from environmental loading or foundation
failure.

In the last section, it proved that if the probability that an item (platform) will survive for
astatedintervalisdenoted-by-the-srellabuiiy-andit-is-given-by-the-rel lab ility-funct ion PR(t),
then the conditional probability of failure in the unit interval (take for example one year) is
obtained by the equation (1.35). Rearrangement of equation (1.35) and integrattion from time
O to. time t gives general reliability function in term of failure rate X(t as follows

Returning to our discussion over the losses of platforms, the failure rates for periods of 1970-
'79 and i980'87areshowwinTable-1 .3.. It canbesimply-concludedihat therelative-fai1u
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For the case of constant failure rate, i.e. X(t) independent of time, is a practical interest. In
that case, the relation between reliability and failure rate can be written as:

PR(t)=e (1.37)

where e denotes the exponential function.

PR(t) =exp[-.fÂ(t).dt] (1 .36)
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rates for total losses are 22 and 89 in the period of 1970-'79 and 1980-'87 respectively. The
relative failure rates for losses from environmental loading and foundation failure can be
estimated from Table 1.3 which are equal to 21 and 68 in the period of 1970-'79 and 1980-
'87 respectively.

Table 1.3 Failure rates for fixed platforms and jack-ups in the period 1!970'87
(Numbers in the table should be multiplied to 1/1,000,000)

As a matter of fact, the total loss of integrity would be assembeled by addition of individuale
losses during the life time. In first instance, it is necesseray to focus on the subset of losses
in the elevated condition excluding losses caused by blówout, fire, explosion and collision
or loss during the transportation of the unit. This subset can be split up into two parts,
namely those caused by the external circumstances or by the intérnal conditions. Thus the
sources of the integrity losses for a jack-up structure can be investigated properly by two
ways:

(a Firstly, the designer can be interested to the variation of external circumstances with a
set of design conditions. In this case, the most unfavourable external conditions are
considered by the extreme waves and their probabilistic modelling. The stochastic
response of the jack-up structure is Obtained with the stochastic models for the wave
loading. ihe response of the structure is aimedto find'the worst probbilistic extreme
wave conditions

(b) Secondly, the structural conditions (physical and geometrical characteristics) can be
changed during the design life. The method is based on the derivation of best design for
a required environmental conditions. In this case, the sensitivity of jack-up in real
environmental condition requires a more severe investigation into the added risks. The
structural conditions can be changed during the design life including the effects of
reformed structure after inspection. The stochastic models for materialj strengths can be
considered to lead an effective cost design for the structure.

1.12 Developments in structural analysis of jack-ups

Traditionally the jack-up platforms have been designed for static deterministic (design wave)
approach. The dynamic response has been studied for the self-operating uints when it was
recognized that the reaction of jack-up units would be different when the units have moved
to deeper waters and/or harsher environments. In 1982 Youicho Hattori et al. [22,23] have

Total losses consist
loading, fire, transportation,

of environmental Losses from environmental loading and
... foundation failure

1970 - 1979 1980 - 1987 1970 - 1979 1980 - 1987

Fixed Jackup Fixed Jackup Fixed Jackup Fixed Jackup

73.03 1633 11 947.7 17 350.4 5 340.6
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suggested that an equivalent single degree of freedom system (SDOF) would be suitable for
the dynamic analysis of jack-up oil rigs. Their study was not only a way to find the natural
vibration of jack-up units but also they have considered the virtual mass of a leg vibrating
in water, and the supporting condition of the sea bed among othersj In the foregoing study
by Y. Hattori et al., the three-dimensional idealized model of the unit was composed of
beams and rigid plates. The beams formed the lattice structure of the legs and the rigid plates
formed the box structure of the platform. An example of a three dimensional model of unit
which contains 209 nodes, 450 beams and 76 plates is adopted from their study and is shown
in Figure 1.4. The leg-hull interface in this model is represented by a weight-less rigid bar.
The bar is tightened to the connection and the gap between leg and leg-guide is fulled by
inserting a wedge into the gap.

A comprehensive study has been carried out by I.J. Bradshaw presented in the proceedings
of Mobile Offshore Structures Conference held in City University London [5]. His suidy is
consist of the comparison of analytical methods and software used for the jack-up analysis.
Three analysis methods have been discussed including the design wave method, Two types
of Frequency Domain (random dynamic) methods and Time Domain (random dynamic)
method. At that time, only the software for the design wave method was capable to represent
almost the all options of analysis (In Shell Internatinale Petroleum Maatschappij). The
computer model used for the design wave method, i.e. static deterministic analysis, was a
three dimensional space frame for the lattice legs, stiff elements for the hull and jack-housing
and Pseudo members with specific properties and geometric planes for the leghull interface.
This interface was able to model the additional loads resulting from the rack teeth in wave
load of members. For the Frequancy Domain analysis, two different approaches have been
used. These approaches were different in three lights; the wave linearisation procedure, the
free surface effects and the statistical distribution of peak values. In issue of the linearisation
method, the method (1) was implemented by a so called "constant wave steepness" approach
while the method (2) was developed by Borgman approach. The shortcome of inclusion of
non-linear effects due to wave loading and free surface effects have been overcome by
implementation of limited, but still quite lengthy, time domain analysis. 'ihis providthe
large amount of significantly lengthy time domain analysis for three dimensional model of
unit which prohab its this approach. Thus an alternative idealized model of structure was used
in the time domain analysis which lias been called the "single stick representation" of the
jack-up by Bradshaw [5]. Again this model introduces some errors with regarding to the
spatial seperation effects (hydrodynamic cancellation phenomenon).

One of the recent studies on the up-to-date methods of jack-up analysis has been investigated
by M.J.R. Hoyle [24]. In his case study, the jack-up was represented by an equaivalent
model of hull grillage, collinear beam elements for lattice legs and a number of linear springs
for the leg-hull interface. Two approaches were compared adopted from the JIP (Joint
Industry jack-Up committee) and from Noble Denton. The main conclusion of the comparison
was that there is no significant difference between the the response obtained from the JIP or
Noble Denton. The only expection is that the uP results are much larger than the results
from the Noble Denton study. Indeed the application of Pierson-Moskowitcz spectrum has
lead to the additional wave energy comparing to the results of the Noble Denton which have
used a Jonswap spectrum with the peak enhancement factor ! 33



In viewing the ongoing research for the offshore structures,
a new discussion of practical system reliability approach will
be discovered in the further developments of the research. A
combination of extreme environmental loading with fatigue
loading will be considered. The probabilistic formulation for
such a combined failures may occur due to the initial failure
in fatigue and subsequent collapse under an extreme wave.
The system reliability approach will be used in order to
compare the most probable cause of failure for an individuale
member and for the overall structure. The previous work by
Jan Inge Dalane [12] has proved that for an individual
element, the dominant cause of failure is fatigue, but on the
other hand, fôr overall sturactural failure, overload and (or)
a combination of fatigue and overload are. more important. In
fact, they have shown that because of redundancy effect, the
failure of an individual section does not constitute structural
collapse. However, the probability of failure for series and
parallel system in conjunction with Boolean àlgebra will be
used in the formulation of the system reliability.
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Figure 1.4 Idealized model
forajack-up rig

Application of system reliability within inspection and maintenance planning will be
demonstrated in the context of this study. Using the failure path approach which often is
referred as "failure tree approach", the sequences of events up to failure will be analyized
in the framework of fatigue failure. This method overcomes the problems arising by
application of plasticity based approaches. It represent a more general approach which also
can be used for the reliability assessment of truss or beam type elements. However in the
domain of basic variables, using the correlation factors, increases the complexity of the
formulation and the probability computation requires an extra dimension in integratión. To
reduce the problem of joint probability distributions, the important sequences of failure are
includetiwthe-reiiabitity-evaluation and unimportantsequences-are ignired. Based on [lie
experience, it has been cncluded that the joint probability integral may not be integrated
with the basic variables more than 4 [50]. Since in most of structural systems, the failure
function is often formulted in term of several basic variables, the implementation of
numerical tools for evalUation of integrals is unavoidable.

In order to apply the standard methodologies of reliability problems for old offshore
platforms, it seems a practical and general procedure should be developed for the assessment
and requalification of existing platforms. in a recent report presented by Robert G. Bea [2]
in OMAE 1993, four levels of Reserve Strength Ratio (RSR) has been introduced as an issue
of qualification of offshore structures. The paper addresses how much the relaibility methods
can be used to develop rational and reasonable criteria for the requalification of offshore
platforms. The purpose of the paper is to quantify "false positives" with application of
simpler methods, and for this purpose the Fitness for Purpose (FFP) criteria has been'
evaluted in the framework of reliability approaches. A graphical representation of this
methodology is demonstrated in Figure 1.5 which has been adopted from the same paper [2]
with some differences.



1.13 Exposing the problem

Continuous research in structural engineering has pointed a way for applying the reliability
theory to the complex structures as well as offshore platforms. Generally, the reliability
methods provide a common basis for comparative analysis. Figure 1.6 shows the steps
involved in the calculation of structural reliability. At first, the hindcast data are assembeled
together to provide the basic representitive combination of extreme environmental conditions.
The failure of the structure for different direction of load set is evaluted to find the critical
failure surface corresponding to the load set directions. The probability of failure is adopted
in term of uncertainties in load set, strength characteristics and geometrical dimensions of
structure in a frame work of quasi-static push-over analysis. It should be emphasized that
the cumulative probability of failure P1 is normally obtained in term of cumulative directional
distributions of long term extreme wave loads with the distribution of individual effects of
current, wind, tides and etc. However, it seems that we are still many years away from being
able to rely on reliability methods to give us an absolute sense of structural risk. n parti-
cular, taking into account the effects of inspection programs and the normal' maintenance
procedures into the reliability model have not been study very well This presents that the
only rational way to apply this theory, as we don't know explicitly that if 'a probability of
failure of 1O is good or not (as an example). The primary use for reliabilty analysis is fôr
design óf new alid differçnt types of platforms, where we have no experience base. The
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configuration and consequence of failure of, for instance, a new jack-up for deep water is
so difficult from conventional jack-ups that a different level of reliability would seem ap-
propraite. Wouldn't the results be the same if instead of requiring a lower probability of
failure, we simply reduced design stress -when adopting new concepts?

With regard to the interpretation of the probability of failure within the context of the present
report, we may arbitrary make use of the frequency sense or cyclic interpretation (see
reference [38]). In a frequency sense, the probability of failure of, say, 0.001 indicates that,
one in a thousand identical jack-ups operating under similar operating conditions is expected
to fail during lifetime. The cyclic interpretation may be possible if the loading on the jack-up
is constructed in terms of extreme value in N cycles, but in that case care must be taken from
the nonstationary character of the waves over the lifetime of the jack-up.

The calibration of safety factors for associated structures may be specified in term of nominal
loads (or stresses) and strength instead of mean values. In this case, the nominal values
already contain safety factors that are not well defined. Therefore by application of nominal
values, an ambiguity may arise as to the meaning of the resulting additional partial safety
factors. However, in the definition of the mean values, there is no ambiguity and the partial
safety factors may be find wihout any ambiguity.

An offshore platform can fail in a variety of hazards, for example, overturning, blowout,
collision, storni condition, seabed collapse, fire, war and possibly fatigue. For jack-up
platforms the highest risks occur by moving from one location to other place [45]. The risk
of damage due to storm has been found less than 2.8x104 ifa site assessment is carried out.
However this context is not aimed to quantify the risk assessment of jack-ups but rather it
contains a basic theory which is needed for comparison of structural damage due to different
failure modes.

In fact, there are two appropriate aims from the issue of this report. Initial purpose is the
collection of the foregoing results of reliability engìneering rerches and thecndary
reason is the evaluation of difficulties on the reliability integrity of offshore structures.

The methodology is given hier can be used for the integrity assessment of offshore platforms
relative to fatigue and extreme environmental loading. The rational program consist of either
a design procedure for new platforms or the inspection and repair process for the existing
rigs. In addition, the reliability analysis will be revealed for the structural model of jack-up
platforms consist of three different parts. Although the fundamental issue of this report is to
focus on the reliability of legs but in general the jack-up structure is represented by a hull,
a lattice leg model (or may be a combination of lattice and stick model) and leg-hull
interface. The hull structure may be represented by a suitable membrane element consists of
main deck, sides, bottom, main structural bulkheads and Helicopter deck. The legs comprise
either accurate models of three dimensional structure or stick modelling of legs with
equivalent properties (Formulation of equivalent characteristics of legs has been given in
classification flotes e.g. Det Norske Vertias [13, 141 or Joint Industry Jack-up Committee
[27, 28]). The leg-hull structure may be decided to model by the Hybrid structure including
the following sub-structures: Leg-guide subsystem, Leg-pinion subsystem and combination
of these ubytems jito th tctal1nterface.



In addition, for the development
of the program with practical
objects, jack up structure is
considered on the southeast
coast of the Caspian Sea located
at the north of the town Neka in
Iran. The Unit shall be capable
of Operating, all year around, in
water depth ranging from 7. 7m
to 91.5 in. Tchiiiical
specification has been given by
Rauma-Repola offshore
company which is the rig-
builder of semi-submesibles,
jack-ups, dril Ish ips and pipe-
layiiig vessels from Finland.
The structure is now
constructed in sections on the
specialist production l;iné in the
workshop, and the deck is

completed onshore. The legs
are t'ed from beneach, so high
lifts are, avoided. The rigs are
launched totally complete.

The legs are designed as a
lattice type. frame work with
three chords and tubular
bracings. The chords of the legs
have a constructionw.jth two

Gencric
Load Model
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gear racks on each chord and are manufactured of a high tensile steel. The three chords, of
every leg. are interconnected, by Ktype tubular bracings. Free ends of the K-type tubular
bracing are flame-cut to shape and size prior to welding to the chords.
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2- Wave statistics

2.1 Introduction

Our first purpose is to find a mathematical description of the waves, which apperantly seems
impossible at first sight, since wind generated waves are irregular and vary non-periodic. The
sea state in a storm or hurricane is measured by the variation of the water surface, described
by the time and varies with the position. Instead of looking to the wave record at a fixed
point, one can imagine that the water surface was measured at instant time in direction of
horizontal wave propagation. This way of recording is, however, difficultand expensive añd
often the statistical characteristic of both methods are samilare for both types of signals. It
is common practical to record at a fixed point.

Concerning the assumption that the wave record has been adopted in a suitable meteorolog-
ical condition, it should be noticed that the characteristics of ergodicity and stationary are
involved. A process is called an ergodic process whereby the characteristics of the process
¡s derived by the time-averaging of the single sample record instead of the calculation rif the
essembled averages of the records at specific instants of time. In other words, a measurement
of ,(t) is typical for ali other measurements from an ergodic process (t). The record is
called stationary if the statistical properties are independent of the origin of the time
measurement. For a sample record the stationary process can be ensured if a sharp limitation
of recording time is taken into account where there is usually quick variation in wave and
wind conditions.

There are two basic approaches defined in choosing the design wave environment for an
offshore structure. One of the methods consideres a single design wave with a given wave
height and period (deterministic approach). One reason for this approach is the simplicity in
design and the easy determination of response due to the given sea conditions. If this method
for the calculation of response is considered, then it is recommended that single waves are
considered to find the worst loads experienced for any of design wave conditions.

The other approach to selecting the design wave environment is based on the wave spectrum
(stochastic approach). In this case, a suitable design wave spectrum is chosen representing
an approparaite density distribution of the sea waves at the site under consideration. The most
suitable spectrum is a measured design wave spectrum at the site, although such a spectrum
is seldom available. As an alternative, one chooses one of the theoritical spectrum models
available base on the fetch, wind and other meteorological conditions of site. The chosen
wave spectrum, of course, describes a short term wave condition.

2.2 Wave energy spectrum

Although the wave propagation in general is three dimentional but in the following it is
assumed that the waves are one dimensional and long crested in horizontal direction. First
assume that the random wave with unknown amplitude and phase angle is decomposed of n
sinusoidal waves that their constant parameteres can be found by Fourier analysis. The
components of n harmonic waves with amplitudes a and phase angles a are superimposed
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Figure 2.1 Stepped variance spectrum

When the frequancy interval dw (or df) tends to zero, the stepped curve may be converted
to the smooth continous curve. In most of cases our knowledge relies to the empirical data.
In this situation, the characteristic values of wave spectrum is obtained by the information
of wind records at the desired site. Having obtained the wave spectrum, its characteristics
is normally defined by the moment of spectrum whichi taken respect to the origin of w or
f in the wave spectrum diagram.

m,,=ff"S(f)df=
i fS()d

o (7Yo

The area of the wave spectrum is equal to the zeroth moment m0 and the relationship between
SD and St'w) fôr the zeroth moment is derived by

(2.3)

to find the random wave surface;

N

11(x,t)=> acos(kx-w st-I-eL ) (2.1)

Where k =2ir/L, L = wave length at the frequency ,, and N = number of slices made in
the wave spectrum. The frequency of a random Wave is determined in the frequency
corresponding to the n th & slice. The frequncy w,, and the wave number k,, are related by
the transcendental equation (the linear dispersion equation).

=gk tanh(kd) (2.2)

From linear theory of gravity waves, it is well known that the energy of a harmonic wave
is proportional to the square of the amplitude a and its quantity per unit area is given by
pga2/2 Where p is the density of the water. With this approach, we assume that the energy
spectrum of wave record is discritized in n interval Whereby the frequency increments is
given by df (or dw),. The wave spectrum for a typical record is shown iñ Figure 2.1; For
simplicity, we omit the constant factor pg where the later results in the variance of wave
spectrum by a2/2.

S(ca)(nl' sec)
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(2.5)

On the other hand, the spectral width parameter may be obtained from the moments of wave
spectrum. For a stationary Gaussian process, the expected rate of peaks f and the expected
rate of zero uperossing period j; are 'used for the defination of spectral width parameter.

f (2.6)
m2

and

f ('2)2m
(2.7')

Thus the irregulaiity factor a is obtained by division of twO frequncies that can be used as
a measure for the broadness of the wave spetrum.

6
Oa1 (2.8)

Having obtained the irregularity factor a, the spectrum width parameter is often expressed
by the spectral moments

3(J)=2ES() (2.4)

2.3 Spectral width parameter

The spectral width: parametere is a measure of higher frequency portion of the spectrum. For
a stationary Guassian process it can be found either in the time domain or in the frequency
domain In time domain analysis, the width of the spectrum is measured' by the mean zero
uperossing period T and the mean crest period T The mean crest period is almost smaller
than the mean zero uperossing period because most ocean waves have local maxima (or also
minima) that do not cross MWL. (i.e. in any caseN !, where Ï is the totai number of
crest points and N is the total number of zero uperossing points) If 7 is close to 7, then
wave spectrum 'is considered as a' narrow band spectrum where in that case the energy is
concentrated over a small frequency band. If the ratio a is defined by the divisionOf 7, over
1, then the spectral width parameter can be obtained as



m2
2 )2

m0m4

It is very important to note that the presence of any noise in the es imatiön of energy spectral
density will be amplified' particularly in the calculation of higher moments. Errors in
estimation of second and fourth moments are 'the main reasons of divergence from true
spectral width parameter.

2.4 Probability distribution of water surface

The most promising distribution for the water surface is considered with the assumptionof
normal distribution. The normal density function supposes equal probability for positive and
negative water surface which persumes that the mean value of distribution is expected to
zero., The. density function for water surface elevation is given by:

' exp[--li-] fl (2.10)
2ofl

Where o is the standard deviation of the water surface elevatiön and is formulated in term
of spectral moments as

The normal distribution for the wave elevation is fitted with deep water condition where the
low steepness of waves are predominant., In shallow water condition, the nonlinearity of sea
waves produces some deviation from the normal distribution which is discussed in the
following.

2.5 Nonliìiearity of sea waves

The extent of normal' distributiOn for waves requires the measure of characteristics of the
skewness X3 and kurtosis X4 These quantities are derived in terms of mean water elevation

and root mean square value of the profile a.
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(2.9)

(2.12)

Where N is total nuthberäf pointsiñ thë éOdWëase of normai distribution, X3= 0aiïd

ç"

a! (2.11)

j)4 (2.13)



X4 3.0. The new quantity which is called the coefficient of excess X4= X4 3M is often
introduced to measure the deviation from Guassian process. The characteristics of skewness
X3 is that it demonstrates the symmetry of the distribution about the mean value. For the
positive values of skewness, the distribution has a longer tail within the range of values
greater than mean.

For a narrow - band wave, the skewness is proportional with the wave steepness. Skewness
is also related to the band width of the spectrum. For broad spectrums, the Skewness is
inversely proportional with the spectrum width parameter. The same law is valid for the
kurtosis. Kurtosis indicates the peakedness of the mode of statistical distribution. The long
tails of the distribution for higher values of kurtosis is observed on the possitive side of the
spectrum. The probablity density function of nonlinear sea is expanded by use of skewness
and kurtosis factors in a series form as

A A.p(i)=4(i) ( 1:+_-H3(,)+__H4()+

Where'4 () and H,, are the standard normal distribution and nth order of Hermite polynomial
of the variable j respectively.

bA =!
4 4

27

COncerning the quantities of skewness and kurtosis, the Hermitian moment b,, is used as
defined below..

Where b,, is formulated in term of Hermitian moments.

b, =

WAVE STATISTICS

(2.14)

(2.15)

(2. 18)

(2.19)

(2.20)

waveprofile-lirshallow

and

H3(ñ) =i3-ì 2.16)

H4(fI) =íj4-6f'2+3 (2.17>
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Figure 2.2 Probability density functions of sea surfâce
Bitner (1980) adopted from reference '[9J

2.6 Probability distribution of positive maxima extremes

The probability distribution of Wave surface in a linear or non-linear wave condition was
discussed earlier The emphasis of this section is to find the probability distribution of
positive maxima. For a random process, the wave surface at a given reference location is
formulated in, term of Wave frequency and phase angle.

ri=acos(cot-) (2.21')

The local positive maxima for a given wave is defined by two boundary conditions i = O
and < O, where j and 'are the first and second derivat:ives of random wave equation. The
Joint probability distribution of i, tj, and are evaluated in term of moments of
wave spectrum according to Cattwright and Longuet-Higgins (see reference [9]):

exp{- 1[ 2

(rn 2+2m tfi +m0ij2)]}
3 1 2 rn2 A

where

80 lOO

(2.22)

The expected number of occurances (or the mean crossing frequency) during which a
maximum takes a valuebetween and +d7is 'obtainedrfromthe integral-of thejoint-

A =mm4-m (2.2.)



probability density fuñction.

.(iio)=fp(iioO,ij) PI I d

Substitution of p(0, O, ) gives the expected number of occurrence for i 0±di as
fölloWs:

, exp{_-i(__)2)[exp(_L!(_!ï)2}

(2it)2rn0/ o

+--(-) I exp(-)d]ci;;;- J' 2
_a qO)

1' Im4r C i T,
I. exp{----( ) }2c2/
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In which is the standard normal distribution and a

The expected number of' positive values, of maxima (or the mean' crossing frequency for
positive maxima) is given by the integral of p(, O, i) with two variants elevation n and
cceleration ,.

After simplification the integral is reduced to

(2.24)

(2.25)

+ cz
110

)exp(- 1oa flO))]
(2.26)

:a=.: P(11,0,i1) Iii Idiì d (2.27)
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Having obtained the values of () and in equations (2.26) and (2.28),, the probability
density functiòn of positive maxima is derived by:

p(i0)=
2// c exp{-J_( flO

1+« 2e2

0
)exp(---( )}{1-(-- no

)}]
2
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If ij, is nondimensionalized by dividing by s/ (f= A/T), the probability density
function becomes

2 C 0.<oo
1+a 2C2 2

p() =iexp(-j)

(2.28)

(2.29)

0too (2.30)

(2.31)

Hier it is interesting to notice a physical :phenornenonln case of long crested waves , the
distribution

f
individual crest of ripples follows the probability distribution of positive

maxima while the height of swell of complies the normal' probability density function.

However the probability distribution of a narrow band spectrum is obtained by substitution
of c= O in equation (2.31).

(2.32)

For a wide band spectrum (E'= 1), the probability density function is fOund in the form of
a truncated (j= 0) normal distribution as follows



12
p(Tl) AII exp(

N

For narrow band spectrum (=O) we will find

P(f) 1. - exp(--îi

O44
O21

0.8

0.6
A

p.(?7)

P() = i - exp.(---)
I -/

where
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A
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OfVoo

17

3.5

(2.. 33)

Thus if bandwidth is finite, the probability distribution falls between a normal and a Raleigh
distribution functions [equations (2 33) and (2 32)] The probability density function of ff for
various values of is shown in Figure 2.3..

The cumulative distribution of , is derived by integratiòn of p(ffj in equation (2.31):

2 1
P(11) = [--(1-a) + 1)-aexp(--1--}(.1 _c(_.))]

1+a 2 e 2 e
(2.34).

(2.35)

I I

= 0(RAYLEIGHi)

08

I.\ .0 (TRUNCATED N0MAL)

Figure 2.3 Probability density functions of non-dimensional maxima watheter
surface as a function of band width parameter

The application of joint successive level crossing technique has investigated by Naess and
Tayfun [16]. Naess deduced that the cumulative robabilfty for the non-d.iinensionalized
amplitude can be rpIaced with the following apprdximation:.

(2.36)



00

r'= R(T/2) & R(r)' S(w).cosci,r4w
o

T dominant wave priod with condition R('T = O.

2.7 Generalized probability distribution of H

Let us start with the definition of statistibal height parameteres which are commonly used in
random waves. If all heights in a record are evaluted from the difference between the crest
and trough then the following equations can be used to describe the height of the wave H by
three different symbols as follows,:

The mean height

The mean of the heights in the record i called the mean height Th

N

(2.37)

The significant wave height 115

'The mean of the highest one-third of all' heights is defined by the significant wave height 115
or H113.
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N/3

H3=fii=2_>H,
3 ' ¡.4

3- The root mean square height H

It isclear that the probability density of troughs (the expected numCmaxil:yma with negative
values) is similar to the probability density of crests (the expected number of maxima with
positive values). Thus the probablity density of amplitudes is obtained by the probability of
crests or troughs because the wave surface elevation 'is proportional with wave amplitude
[equation (2.1)]. Substitution of amplitude notation a instead f

water surface notation in
equation (2.30), the probability density of wave amplitudes becomes

(2.38)

The root mean square (rm height is calculatedln term of square of wave heights as

N 1/2

=
H] (2.39)
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2// 1 2
1 2

V exp{ __ a }+( a
)exp{- a )1-(--- a

))j (2.40>
1+ a 2e2 2 e

The probability density of amplitudes a for a random wave follows a Rayleigh or normal
distribution depending on the spectrum' width parameter ( = O Rayleigh, and E= i normal
distribution).

Assuming the Airy wave theory is valid, the relation H= 2a can 'be introduced into the
equation (2 40) Thus the probability density of H is given by the half of probability density
of amplitude a as follows

The integral 'is evaluted for odd and even numbers of n separately as

(2.41)

The cumulative distribution: function of H is derived by integration of equation (2.41>

P(H)= 2 1(i)( H )-aexp{J( H )2}{l_«H)}
i+a 2 2e/ 2 2/ 2e

2.8 Narrow 'band Guassian wave
o

For a narrow band Gassiàn wave, the probability density function of H is obtaed by
substitution' of ' O (or a=1) in equation (2.41)

i H i H 2, H H2p(H) = exp{--( ) ) = exp(--) (2.43)2/ 2/ ,2 2/ 4m0, 8m0

The nth monent of the function p'H,) about the origin (11= 0> is given by the ollowing
equation. It should be noticed that the moment 'is equal to the expected value of H in order
n.

(2.42)

EIH'] =fH"p(H)dH (2.44)
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(2.45)

(2.46)

It is clear that the zeroth moment gives the value of cumulative prob(IÇwhich corresponds.
to a unit area under probability density function that E[ Ji°J= 1). Ih mean height H is
evaluted by the first' moment as follows

H=E[H]='/2Em0 '(2.47)

The root mean square 'height H may be calculated by the square of second moment

H = VE[i'2] =2 (2.48)

The variance of heights 'is formulated 'in term of the first and second moments. 'For this
purpose, we use 'the defination öf variance as follows

4 =E[(H - E[E])2j = E[(H -H)2j (2.49)

where aH2 is the variance (ai, is the. standard deviation) and E denotes t[. expected value.
After expansion of equation (2.49) noting that E/HJ= H, the variance 'of wave height is
evaluated as

4=Eii2] -2E[H]H+H2 (2.50)

'(2.52)

Thus replacing m0 by H in' equation (2.43), the probability density function of H for
narrow band spectrum becomes'

2H H2
2

exp(-
2 ' (2.53)

Hr

and

Because 71= EfIJJ, thus equation (2.50) is reduced to

- (E[H])2 = E[H2]
2 (2.51)

With substitution of the first and second moment in equation (2.51), we find 'the variance as
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On the other hand, the significant wave height H is often represented in term of IÌ,. y
definition, H, is the mán of the highest of one third waves. First we find the height H0
Which corresponds with the highest of. one third of wave heights.

P(H0) = i -exp(-
H2

(2.55)
'rnu

and H0, the corresponding height for the highest one third of wave heights is equal to

H0=1.048H,,,. . (256)

The centriod of the area for H H0. under the probabilïty density functiòn is used to find
the H3 as follows

where p.(H) is given by equation (2.53)., We then integrate equation (2.57). to .find H, in term
of wave spectrum parameters

2.9 Modified Rayleigh distribution and joint probability distribution of (H, T)

The probability distributtiön of computed wave heights '(in dimensiönless form) has been
compared with the measured data by Naess [see reference 161. He found that the modified
'Rayleigh. distribution with the parameter r' -0.71 is a better approximation for the wave
height distributiòn.

Theoritical distributions for wave heights are not limited to the disTheoreticalwhich have
been discussed by Cartwright, 'Longuet-Higgins [9] and Naess [16] Cavanié et al [16] have
given a distribution which is resonably in agi.ement with wave data for a narrow band
spectrum. Lindgren and Rychlic. [16]. have formulated! a distribution which is not in a closed
form and needs more complex numerical computations. The distribution 'predicts the
difference between maxima and minima as well as their time interval.

P(I1) = i -exp(-2) (2.54).

f Hp(i1) dH
H0

(2.57)

fp(H)dH
H0

H3=i.416H,,, (2.58)
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The joint probability distribution of Wave height and period has been considered to provide
useful informations for the statistics of waves. However we will not going to discuss the joint
probability distribution of wave heights and period and only it might be useful that in
application of different probability distributions for Wave height and wave period two points
should be considered carefUlly. Firstly the definition of wave height and periods are not the
same in most of publicatiòns and they must be used with care. Secondly the joint probability
distribution of wave height and period for a broad spectrum have not been adequately
described with the update available distributions.

2.10 Long term probability distribution of wave heights

The long term probability distribution of wave heights can be obtained either in term of
extreme individual Wave heights H or the significant wave heights H. The first choice is
often used in association with the ultimate limit state analysis while the second is usually
applied for the ultimate fatigue analysis. The importance of a long term distribution is
established by two types of storms during the design life of the structure. One is the locally
generated storm condition and other is the distant storm appearing as swells. The locally
generated storms often are random in nature while the swells are generally low- frequency
waves and regular in nature.

In evaluation of long term wave distribution, first a design life is considered for the structure.
If the wave data for the löng term criterion is lacking such as many cases in offshore sites,
then the probability distribution of long-term wave data is calculated by the available
distribution functions of short term waves. The long term distribution of wave heights is
found by ascension of wave heights during design life. The individual wave height
distributions are assumed be independent and therefore it is possible to apply one of the
extreme value distributions for the long term cumulative function.

Assume that N is the number of waves in the planned service life (N= TL I T where TL is
the return period and T is the short term period.) . The extreme value diffibution oflype
I is based on the maximum N individually independent random waves. The wave heights are
numbered from ¡ to N in ascension order, thus the cumulitive probability of the largest H,,.
is defined in term of H1 in which i= 1., 2, 3, . ..

P(H H) P(H1H, H2H, H3 H,... , HNH) (2.59)

Since H1 are independent, P( H H) may be written by the product of cumulative
distributions as

P(Hn)=fl P(H1H) =P(H1n) P(H2H)P(H3H)...P(HNH)

P(HH)=P(H).P(H).P(Jf).... =[P(rn]'

2.6O)

We assume that the cumulative probability functions are equal for any short term wave height
H,. This simplifies equation (2.60) to:

(2.61)



Or
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Substitution of equations (2.41) and (2.42) in (2.62), the long term probability density function
of wave heights is derived as

Nf/ H 2, H i H 2 a Hp(H R)= .[ exp{---( ) }+( exp(--( ) ){1-(------).max
(1 w 2e2 2/ 2 2/ 2e

x[---(1a)+I( H
2 2c/

- exp{----( H 2)(

- ___
11

2 2/ 2e
(2.63)

The cumulative distribution is given by the integral of equation (2.63) as follows

i i u i u 2 u NP(H_ L [--±.(1_cc)+( )-aexp{_L( A ){i-cI!(---- ))] (2.64)" (1+«)' 2 2e/ 2 2e

Instead of using the generalized probability function, sometimes the Weibull cumulative
distribution is employed to predict the long term wave heights. In that case, the extreme value
distribution of type II may be applied in the Weibull cumulative distribution. The probability
of exceedence for P( H,,..> H) is determiïed in term of N independent probability of
exceedence as follows

PH>H P(H1>H ,H2>H, ... ,H,1>I1) (2.65)

Since H are independent

P(H>ll) =Q(H1>H) Q(H2>J1) ...Q(HN>H) (2.66)

Substitution of probability of exceedence for H, 'f2, H3, ..., HN, equation (2.64) is reduced to

P(H>H)=[1 P(H)]'

and the cumulative probability of H,,, is written as

P(HII) = i [i _pff]N4 -NEI -P(R)]

(2.67)

(2.68)

This approximation needs to curtail for small values of wave height, otherwise the negative
values are found for the cumulative distribution fúnction. The absolute error is almost nil for
large values of H which are interested in the design condition. However a three parameter
Weibull distribution is assumed for the short term wave height in the following

p(H1i) =N p(H) [P(H)] (2.62)



P(Jf) = i _exp[_(Hh1)C]

The long term distribution is found by the substitution of equation (2.69) in (2.68)

HAcP(HH)=1-Nexp[-(
B
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(2.69)

(2.70)

Because the number of waves N in the working life is known, so that the cumulative probability
distribution may be formulated in form of Weibull 'distribution

P(HIf) = i exp[-()] (2.71)

Before application of Weibull distribution, a method for prediction of extreme wave heights was
developed by Gumbel [20]. The long term probability distribution of wave heights is sometimes
obtained by log-normal probability distribution. Ochi (1978) [reference 9] has compared the
cumulative distribution of significant wave heights from ocean weather station India in the' North
Atlantic. It was concluded that log-normal distribution is fitted with the data except at the upper
extremes because it overestimates the data for large values of H On contrary, the Weibull
distribution compares well for large values of Il while it fails to satisfy the data in other range
than near the upper tail. Thus the generalized form of Weibull distribution was found a better
represent instead of two parameter distribution, since it encompasses two parameter distribution
and other alternative distributi'ons as well. On the other hand, Mathisen and Bitner-Gregersen
(1990) [reference 9] have suggested a "Lonowe" (Log normal) distribution. 'They have shown
that :distribution provides a good result in many sets of wave data. The only problem
is' the position of transition point which can be selected arbitrary.

211 Hydrodynamic forces

The statistics of wave amplitudes was discussed earlier in both short term and long term
conditions. For strength analysis of an offshore structure thethatabilistic models of wave
characteristics are introduced in the wave force models. The square of Response amplitude
operator (RA 02) for each response is multiplied to the wave energy spectrum in order to find
the structure response spectrum. This method of analysis for any excitition is called the spectral
analysis method which has been discussed elsewhere with more details (see for instance [9]).
The spectral method was initially developed for the 'linear systems. 'The system is defined linear
when the excitation of the wave is prothatonal to the amplitude of wave such as for inertia
dominated wave force. In that 'case,, the principle of superpostion may 'be applied for random
wave distribution. It 'is highly desirable that in any case the ideal linearization may not be'
achieved even for the fixed 'structures.

The nonlinearity of the response may be arised due to the selected wave theory, the drag term
'in Morison equation, the interaction of wave and current, the nonlinearity of strength parameters
and physical conditions of sea-bed. Nevertheless in reality , ho.nlinear 'systems can not be
treated without-some approimations with-regarding- tothe-linearization:-'Because in -each--case



an unic RAO can only be obtained for a linear system, thus the application of common spectral
analysis is restricted to the linear modelling of external wave and current forces.,

With respect to the reliability analysis, it is important to seperate two classes of uncertainties
in modelling of loads [42]. The class I uncertainties are naturally inherent variables which are
random through time and space. The class II uncertainties are variables due to the modelling,
measurement and observation errors which are systematic through time and space. The class I
variables are always independent With respect to data while the class II variables are sensetive
by data information, improvement of physical or numerical modelling and accuracy of
meseurements. The distinction between two variables in statistics of loads is highly valuable for
two reasons. First the extension of uncertainties to other environmental conditions (sea-state,
annual periods) may not be achieved without gathering the nature of characteristics. Second, the
contribution of risks due to two types of uncertainties is important in order to making decisions
or eviuting the reliability of existing structures.

Although the old formula for wave forces, Morison equation, originally has been derived for
oscillatory flow applied to the cylinderical members but the wave forces in inclined cylinders,
the effect of structural velocity, the interaction of current and wave forces are obtaiñed with the
improvement of the Morison equation. The primary information with respect to the Morison
equation becomes available with the dimensional analysis. For dimensional description of the
wave forcef('t,ì, a group of independent parameteres has been considered by different researches
(see for instance [9]). The relationship between force on the unit length with space-time
variables is given by following expression

Jt = '1(t,T,a,D;Dr,p,v) (2.72)

where a is the amplitude, D is the characteristic dimension (such as diameter), Dr ¡s the
roughness mean size, p is the density and ' is the kinematic viscosity of water.

Assume that thel:inear.wavetheory-js-vd.iLin-descrjption of Wavekads. The Morison
equation for a vertical cylinder gives the wave forces per unit length of the member with
diamater D as

Jt) =p!-D2C +!PDCD u,.juX (2.73)

where
f = wave force per unit length of the vertical cylinder
u = horizontal component of water particle velocity
Ç. = inertia
C= drag

If the non-dimensionalized form of equation (2.72) in term of water particle velocity is
compared with the Morison equation, the infulence parameters for the inertia and drag
coefficients are obtained. The relationship between hydrodynamic coefficients and
nondimensionalized parameters is estabilished by using the foregoing expressions.
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2aUDD
Cm = Cm(()t__9_,_!)

,uDD
Cd = Ct,,--_-,_.-!)

where .u0 (2rti-a)/T.

Note that the most commOn parameteres which are affecting the wave forces are Reynolds
number Re and Keulegan-Carpenter number KC (if the roughness is assumed constant). Both Re
and KG numbe.r5 defined in terms of the amplitude of velocity u0 and the period T as
follows.

uTKC=--
D

uDRe'=
V
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(2.74)

(2.75)

(2.76)

Returning back to the Morison equation, formula (2.73), one of the wave theories is applied in
the estimation of hydrodynamic forcès. Even with the application of linear Airy wave theory,
the drag term in Morison equation causes the deviation of the distribution of wave force from
distribution of water surface. The result of foregoing discussion is thus the distribution of
hydrodynamic force deviates from the water surface distribution except by the linearization of
drag term in the spectral analysis, the wave force follows the same distribution as well as the
wave surface ( Guassian distribution).

2.12 Invarient uncertainties of hydrodynamic forces

For practical application of the reliability format, the traditional methods has been developed
by the approximation of quasi-staic loading instead of dynamic one.:. .!

Even for the deterministic methods, two types of loadings are distinguished from each other
which are called static and dynamic loadings. The first issues of reliability engineering in 1970
proposed the substitution of dynamic loadings with equivalent quasi-static loadings. By this way,
the time -invariant of basic varibles are formulated in general format of reliability analysis. The
push-over analysis of fixed and floating platforms is the first product of this approach and
uncertainties of this time - invarient reliability method is discussed in the following.

The first issue of class II uncertainty of wave forces is found in determination of wave heights.
Generally speaking, the uncertainty of wave forces comes from three origins which can be
defined as model uncertainty, statistical uncertainly and measurement uncertainty. The model
uncertainty indicates the fitness of one proposed distribution with the observed data. An average
value thatefficient of variation V= 0.11 has been given by Guedes Soares and Moan [19] for
the model uncertainty. The statistical uncertainty arises from the method of parameter
estimation (likelihood method, method of moments or graphical approach) and the limited
amount of data. An approximate value of uncertainty V= 0. has been given in reférence [19].
The measurement uncertainty represents the errors in the source of measurements which differs
by theth dOfthta blltiònFr obsrved data thebound fr the coefficient of variationis



taken in the interval V= 0.05-0.10 while for the instrumental measurements and handcasting
data, Pianc [43] suggests the values of V= 0.10-0.20 and V= 0.20 respectively. One reasonable
value of measurement uncertainty V= 0.09 has been given for the instrumental data which is
valid for the North sea (see reference [19]). In fact the method of data collection influences the
measurement uncertainty as well as the statistical uncertainty. The large number of data fOr the
visual observation causes a smaller statistical uncertainty but a larger measurement uncertainty
than instrumental data.

With all these values, the systematic uncertainty of wave heights may be found by the
multiplicative law. As described in the previous section, the systematic uncertainty is a measure
of actual variable to predicted variable and often in reliability engineering is called the bias
factor or the ratio of mean to nominal value (I2/Xnom). The coefficient of variatiôn fór bias factor
is found as
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where BH is the bias factor for extreme wave height and Vis the coefficient of variation.

Olufsen and Bea [42] has been discussed the bias factors for the extreme wave heights and
significant wave heights. The distribution of bias in hindcast wave heights has been described
by log-normal distribution with a mean value and coefficient of variation equal to 0.95 and 0.15
for North Sea (NS). The corresponding values for Gulf of Mexico (GoM) has been found as 0.85
and 0.20 for the mean value and standard deviation respectively The bias is not only the class
II uncertainty but also a small amount of class I uncertainty. The class I variability is considered
very small with respect to the class II variability and because the contribution of each one can
not be seperated precisely thus the bias for hindcast data is estimated as class II uncertainty.
However the wave height in the relibility analysis is described by the predicted wave height
multiplied to the bias factor.

The coefficient of variation for sytematic uncertainty of wave periods may bç found seperately
or by the joint distribution of wave heights and periods [19]. The typical values for the model
uncertainty, the statistical uncertainty and measurement uncertainty for the NS are respectively
0.1, 0.05 and 0.1. Thus the coefficient of variation for bias factor in NS is evaluted as

Where the BT is the bias for wave period and V, is the coefficient of variation.

2.13 Distribution of hydrodynamic coefficients and marine growth

The source of uncertainty for hydrodynamic coefficients are substantially located on class II
uncertainties. Due to the complex variation of hydrodynamic coefficients with wave amplitude
and phase angle, even with large amount of data which are available for the smooth circular
cylinders, the limited data on hydrodynamic coefficients for non-circular shapes with surface

VB = /0. ii + 0.082 + 0.092 = 0.1:6 (2.77)

VBS/0.102 +0.052 +0.102 -015 (2.78)



roughness and Re & KG numbers dependency can not be found in the literature. It is noticeable
that for high Reynolds numbers (say above i0), the hydrodynamic coefficients show a
negligible dependency to the Reynolds number. Therefore the dependency of Reynolds number
for the hydrodynamic coefficients in jack-up legs can be neglected in extreme wave conditions
[40].

For example, experiments with full scale measurements in Christchurch Buy Tower have
illustrated that the hydrodynamic coefficients diminish with increasing the depth of water but
for design purposes the condition of near surface seems to be safer [47]. For near surface
Soding et al [47] suppose the following values:

In reference [50], 'the mean value and coefficient of variation for hydrodynamic coeffficients in
a jacket structure are taken with normal distribution where the mean values and coefficient of
variation are given as:

Goedes Sòares and T. Moan [19] assume)hat the hydrodynamic coefficients are often complied
by normal distribution with coefffiecent 'of variation equal t°0. i (both inertia and drag
coefficient) One reprort 'by R. Loseth and L. Hauge [36] has been applied the log-normal
distribution for hydrodynamic coefficients with taken into account the influence of non-circular
sections of lattice legs with racks and marine growth. The effect of marine growth must be
discussed for two reasons. Firstly, the increase of diameter leads to the increased projected area
and hence increasedhydro'dynamicl'oadingSecondlythe--increaseofroughness which
influences the estimate of drag force and therefore increased wave force.

GM= 2.0
GD 0.65 for 0 mm. marine growth thickness
GD= 0.80 for 80 mm. marine growth thickness.

The prediction of wave forces especially the drag coeffiecients for lattice legs has been
investigated from 1975 in engineering science data unit [46]. A great number of wind tunnel
tests have been calibrated to find the mathematical model for darg coefficient in different
configuartions of legs. Unfortunately, the tunnel wind tests are the only experimental way for
the prediction of drag coefficients because in most of cases,, the wave basins are not large
enough to test full legs and the evalution of results for wide range of Re or KG numbers are
impractical. The comparison of tunnel wind tests with analytical method for both square and
triangular legs are discussed by N.P. Smith and C.A. Wendenburg [46]. It has been concluded
that when the effect of roughness on the drag coefficient is 'neglected, the drag coefficient is
underpredicted by 23% for all-cylinderical legs and by 9% för the standard 116 leg with
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= 1.75, a= 0.125;
,z= 1.00, o 0.200;

GM= 1.8 & CD= 0.66 KG>30;
GM and CD both are increased when KG' decreases 5<KG<30;
GM= 2.0 (for KG < 5 GD is not important) KG<5.

Drag coefficient CD= 0.75 V= 0.30
inertia coefficient GM = i .80 V= 0.30
Correlation factor between 'GD and CM p = - 0.90
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triangular chords. The difference between the test results and the calculated values is less than
4%. Therefore even with the application of high order wave theories, the effect of roughness
on the marine growth should be evaluted properly in. the .prediction of drag term coefficient.
Sometimes by applying the anti-fouling coating, the effect of marine growth is restricted for a
few years but the experience have learned that the coating is not a proper way to prevent the
increasing marine growth. In Recommended practice [27] it is assumed that the severe marine
growth is not allowed for the jack-ups by the regulary cleaning of legs. Also the painting of legs
influences the roughness and therefore the drag coefficient (effect of salt water during long
period).



3 Strength statistics

3.1 Introduction

Until recently the design of fixed offshore structures has been customarily based on th basic
allowable stresses. The AISC building code (1978) and API-RP-2A (1981) allow to use the
method of working stress in design of fixed offshore structures. On contratry., in Europe, the
limit state design philosophy has been used for the design of fixed platforms. The method
has been adopted by regulatory authorities worldwide (Chen 1985, referènce [10]). The
application of limit state design method for both fixed and floating plátforms requires
sufficient and accurate information about the behaviour of the structure throughout the entire
range of loading up to the collapse process.

In this chapter, the uncertainty due to the strength parameters is discussed for steel offshore
structures. Given a statistical distribution for the loads (or the stresses),, the most probable
largest load (or stress) amplitude during a certain time period can be determined.. The.
probability of exceeding a certain load (or stress) level can also be found.

FOr the designer of a offshore platform it would be more useful to get information about the
probability of failure. It is therefore necessary to know the strength in terms of a stress which
will cause failure. This has to be the real failure stress and not a design stress including
safety margins.

The uncertainties of strength of materials are often proposed time independent unless the
chemical compisition of the steels will be altered during the structure life. The chemical
composition gives the reduction in the plate thickness of members by corrosion and this
increases the uncertainty which is then time dependent.

The emphasis of this chapteristo-investigate-the-uncertaintyof±steehinmarinestructures for
the extreme conditions. Although an overview on the strength characteristics of marine steels
as well as chemical composition, mechanical propertiès, weldability, fatigue strength,
hardebility, corrosion is needed but in the following sections the uncertainties due to the
predictions of strength parameteres with importance in mechanical properties of marine steels
are considered.

3.2 Application of steel in marine structures

According to the unified requirements of classification societies, the marine structural steels
are divided into three principle groups. The distinction among three groups are classified by
the minimum yield stress (strength) according to the unified requirements of classification
societies as shown in Table 3.1 (see reference [25]). Muesgen et al [41] have diVided the
high strength steels in offshore structures to thtee groups StE355, StE46O and StE69O. They
have reported the application of each type of steels in large offshore pròjects. Based on the
recent reports, while the majority of ships are built using the mild steeJs, in construction of
the offshore platfOrms and especially the jack-up structures, the high strength steels play an
important role. -------- -------------
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To obtain considerable higher strength, additional elements such as vanadium, and higher
nickel and copper contents are required. It has been shown that the probabilistic modelling
of each type of steels requires sufficient data based on the tensile strength of steels.
Lindemann et al [34] have proved a negative correlation between tensile strength o with the
plate thickness t. It has been found that the yield strength is decreased with increasing the
thickness but no data on the correlation factor has not be reported. However, the sources of
uncertainties in probabilistic modells of steels are mainly influenced by many factors as well
as [25]:

- steel grade,
- chemical composition,
- manufacturing process,
- plate of profile and test specman thickness,
- testing procedure,
- parameter estimation method.

Table 3.1 Characteristics of marine structural steels

3.3 Steel in jack-up platforms

The characteristics of steels for jack-up platforms are usually verified by the same methods
in other types of offshore structures. The specifications of steels are generally given from the
existing standards in the world like ASTIy, API, BSI, AWS, 11W, ASM and other InternatiOnal
Codes that are used in the classification of structural steels. SometImes the operators of
offshore platforms are using their own specifications that are the modified versions of
national standards (see reference [29]).

The applicatiOn of high strength steels is attributed more interest in recent offshore
structures. It is well known that in deep water the applications of high strength steelÑ have
saved the weight and the cost of oil and gas platforms. Since last four years, many studies
have been made for the application of materials which can be used in deep waters. High
strength steel is only one of the them. Others may be found in the literature as the application
of composite materials of steel and concrete or the high strength concrete.

3.4 Importance of probabilistic modelling for strength of steel members

If we consider the common: reliability methods in the literature, it may be concluded that the
statistic of strength parameters has a minor effect on the overall reliability analysis To
illustrate the importance of statisticâl liirá iifoÏtreiÏgth parametersconsïdèf the
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No. Type Abbreviation Yield strength (N/mm2)

(1) Normal strength steels MS 235 < a, minimum

(2) Higher strength steels HTS 315 < a minimum > 390

(3) Very high strength steels YHTS 420' < o minimum



diagrams of Fig. 3.1.

The influence of material model on the Hasofer - Lind reliability index lias been calculated
for the pressure in the semisubmersible hull with D= 2000 mm and h= 600 m (see refeüence
[25]). The mean and coefficient of variation have been assumed equal to 420 MPa and 0.06
respectively. The numbers on the figures indicate the state of l:imit condition. While the case
No. (1) is valid for the membrane yielding, the other two cases with No. (2) and (3)
represent the ultimate state of elastic instability and elastic/plastic instability respectively. By
comparison of diagrams, it is explicitly resulted that the yield stress modifies the reliabIlity
index more than the Young's Modulus.
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Fig. 3.1 The inflüence of material model on the
the Hasofer-Lind reliability index of a
spherical semisubmersible hull

3.5 PrObabilistic modelling of mill steels in tensiön and compression

Julian (1957) has considered the uncertainty of test results for ASTMA-7structural mill steels
(see reference [29]). According to his investigation, the statistical distribution of ultimate
strength and yield strength pertaIns the normal distribution. The data has been collected from
3982 tests for the ultimate strength and 3974 tests for the yield strength representing 33000
tons of steels used on nine projects between 1938 and 1951. Figs. 3.1 (a) and (b) are given
by Julian using the results of ultimate strength arid the yield strength of structural steels. The
ordinates of the histrograms shown as cells drawn in dash lines represent the relative
frequency of the test resultsoccuring with thecell. widths_indicated by tile abscissas at their

0.0 0.025 coy

(20 IiPa ¿60 0.02 0.08 0.10



bases., To achieve a standard for comparison, the width of the cells in graphs has been
arbitrary chosen as one probable deviation according to the normal distribution.

The plots are also representing the percentages for the deviation from medium. The figures
in circles indicate the number of test results pertainting to each cell of the histograms. The
solid lines represent the cumulative frequency or probability of occurance or Pr(X xj The
ordinates should be interpreted by two separate occurance. For the left of the median, the
percentage of total number of samples testing below the value indiôated by the corresponding
abscissa. For the right of the medium, the percentage of total number of samples testing
above the value indicated by the corresponding abscissa.
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Fig. 3.2 Histogram and probability curve of ultimate and yield strength of ASTM A-7
structurai steels (From Oliver G. Julian 1957)

The histogram and probability curve of ultimate strength and yield strength have been
transfórmed into a histogram for the member compression strength by P.S. Tromans and
J.W. Van de Graaf [51]. They have performed the risk assessment for a jacket structure
Iocated m the Gulf of Mexico (GOM) They assumed that the member compression strength
wiil be reduced according to the Tomà
the reduced slenderness was equal to X= 0.55 and it was assumed that it has a coefficient
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of variation of 10 % according to the investigation of J.W. Cox. The redUced slendernessX is dèfined in term of the yield strength and the slenderness parameteres of member asfollows:

x=-i- IiL
TENET (3.1)

P with the reduced slenderness parameter X in the risk assessment of a platform prepared

of the yield strength The first formula has been used to correlate the member yield strength
by P.S. Tromans and J.W. Van de Graaf [51],

structures, they recommended two formulas for evalution of the compression strength n term

member compression strength P,,. For fabricated steel tubular columns as used in offshore

compression strength. Toma and Chen [10] have compared different formulations for the

histogram of compression member strength, it is necessary to calculate the reduced member

of the yield strength of structural steels which has been discussed earlier. To obtain the

thus it has to be reasonable that the distribution of compression strength to be similar to that

Since this uncertainty is dominated by the uncertainty of yield strength given equal to 8%,

P =(l.O-O.09i1A -0.22)p 0<A< f41 (3.2)

In the same report, they discritized the member strength histogram into six valUes withassociated probabilities.. The failure mode is found by a progressive collapse methoddeveloped, by G. Stewart and J.W. Van de Graaf (see reference [48]) which corresponds withthe collapse of six comprssjon members. First they assume that the compression strength ofthe six members are uncorrejated. For six strength values and six critical members, therequired collapse analysis has been performed 6= 46656 times with the push over analysisbased on an efficient method described by Stewart and Van de Graaf (1991). However if the
independent, the coefficient of variation of the collapsestrength Swill reduce [51], because the simultaneous failing of the several compressionmembers should be occured. The coefficient of variation for the fully uncorrelated strengthof compression members is estimated to be 4%. The ratio of environmental load to meancollapse strength (1.39 has been compared With the almost same deterministic value of L 4calculated by using the mean member compressive strength. In one recent report by M. SiBoon1ng et al (see refèrence [3]),. the coefficient of variation for the broadside collapse isevaluated equal to 3.5%. The risk analysis has been performed for determiñitic strengthcharcteristics and the results have been compared with the results for the fully correlatedmember strength 10% and fully uncorrelated member strength 3.5%.

3.6 Comments on the Common distrjbutjo functions for strength :paramj.
The uncertainty of strength parameteres for steeis are substantially originated due to thefollowing reasOns:

1- The unstable upper yield strength is considered rather than the stable lower yield strengthwhich-causesto a difference-about S-iO%--in the-results
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The train rate for tests are considerably higher than the practical experience which makes
approximately 10% deviation from the mean test results.

At cross sections consisting of webs and flanges, the result indicates the yield strength of
the web rather than the strength of thicker metal in the flanges. To account the effect of
thicker flanges a difference about 5-10% is proposed.

The values for three uncertainties are added to find the uncertainty of strength pararneteres
for mill steels. The combined uncertainty is evaluted equal to 20-30% for the yield strength.
By an mean value of 25% the reduced strength for an average yield strength of 40 ksi is
found to be 30 ksi. It should be noted that these values are given as examples and they may
not be typical (Julian 1957).

Lindemann et al 1977 (see reference [34]) has proved a negative correlation of the yield
stress a>, with the plate thickness t based on the material tests by Augestad. They showed that
the yield stress will decrease with increasing thickness. They poved that the normal
distribution is not a good representation for the histograms and they proposed the dOuble
exponential distribution. They pointed out that the distribution tails in most of the cases are
largely contributing to the computed of failure. This means that the truncation of the
probability density functions should be considered very carefully because the probability of
failure depends particularly on the shape of the tails of the probability density functions.

Mansour et al 1984 (see reference [38]) discussed the steel properties and their uncertainties
on the base of more than 60000 samples of various steel types and test methods. The
calculated weighted average of coefficient of variation for the yield strength was 0.089. They
also remarked that Galambos in reviewing much the same data suggests that any numerical
analysis is probably worthless since the measurements are so varied. They conclude that for
rolled shapes the mean yield stress be taken as 1.05 ay in flanges and 1.10 ay in webs with
coefficient of variations of 0.10 and 0.11 respectivelyThe-results-for-ultimate strength (4200
samples) were more significant when compared, since this measurement is not so affected
by strain rate. The weighted average of the coefficient of variation representing several
different types of steel was 0 068. In the same paper they presented the results for the
Young's modulus (300 samples) by the mean and the weighted average of the coefficient of
variation as follows

207.2 X 10 MPU and COV = 0.031

Huther et al 1992 (see reference [25]) recalculated the same data (given in [38]) and they
proved that the results for ultimate strength (4200 samples) were more significant when
compared, since the measurement is not so affected by strain rate. They also considered the
effect of steel grade on the results of mean and coefficient of variation for three parameters
(the yield strength, the ultimate strength and the Young's Modulus) and by this investigation,
they proved that the mean of the yield. strength strongly depends on steel quality. In the same
paper, they summarized statistical results given by Stiansen et al (1980) The analysis of
available data from Staugaitis for the tensile yield and ultimate strength in ABS grade B and.
C steel lãtes of 19 and 32mm havebeencalculated. Thenormaldistibution.wasacceptabte



In Table 3.2, the parameteres a, b and c are defined by the type of distribution. For normaldistribution a and b represent the mean i and standard deviation o of distribution type whilefor log-normal distribution a, b and c are the Origin parameter, the mean and the standarddeviation of log-normal distribution, i.e. X 1and as defined in section 1.7. For Gumbeldistribution a and b 'represent the Mode parameter and the Scale parameter which are

'In original paper the parameter has been given by b 40 N / mm'2!
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at any resonable significan level for all grades investigated except for the tensile strengthof the C steel. The calculated coefficient of variation were 4.4 to 6.9% against 6-8%proposed by ISSC.

3.7 Proposed model using the new statistical data
In chapter one, the difficulties. encounters with the choice of a distribution have beendiscussed briefly. We already established that the normal' distribution is compateble with thedata when a large number of data are availabI. Hutler et al (1992) have compared fourcommon probabilistic models for the strength parameters. The probabilistic models were:

Normal law, Log Normal law, Gumbel and Weibulj Jaw.
They considered the statistical models of the yield strength, ultimate strength and Young'sModulus for the various steel grades. The probabilistic models were checked with the x2 andKoJmogorovsj0 tests. By fitting of data, they have concluded that the Normal and'Gumbel laws do appear acceptable as they can allow negative values for very lowprobabilities

The new statistical data of the marine steels showed that the coefficIent of variation and biasof o decreased When nominal characteristics increased, While the data for the tensile (orrupture) strength results that the standard deviation is particulary independent of the nominalcharacteristics About 1000 test samples were considered in the recent investigation byHuther et al. The following are the results obtained from their calculations:
Table 3.2 Probabilistic models and basic variables fôr marine steels [25 J

UltimateStrengthj,,)



calculated in term of mean and standard deviation while for Weibull distribution a, b and care thç Origin parameter, the Scale parameter and Exponent parameter respectively. Theprobability density function (pdt) and the cumulative distribution function (cdt) of 4distributions are plotted iñ Figures 3.3 - 3.10 with the calculated parameteres obtained fromHuther et al [25]

The concerned parameters for the evalUation of parameters were ffy o, the strain at rupture,the steel thickness and the steel strength. According to their investigations, the lòg-normaldistribution can be used for the probabilistic modelling of the yield strength of (MS) and(HTS) steels classified in table 3.1. It is extremely important to note that the data for theyield strength have. been collected from the test of (MS) and (HTS) steels and due to thelackage of data for the (VHTS) steels, Hutler et al proposed that the (VHTS) steels can bebetter modelled with the normal distribution. The coefficient of variation for the yieldstrength of mild steels and higher tensile steels are calculated to be 0.100 and 0.080. Thebias factor are assumed to be 1.125 and 1.100 for the mild steels and the high tensile steelsrespectively.

For the tensile (or rupture) strength, they conclUded that the hypothesis of the log normaldistribution can be rejected, then it has been recommended to use the normai distributioninstead of log normal distribution. The coefficient of variation for the tensile strength of theMS and HTS steels are evaluted to be 0.050 and 0.040. The bias factor are also computedequal to 1.100 and 1.050 for the mild steels and the high tensile steels respectively. Howeverfor the very high strength steels (VHTS), there is not sufficient statistical data available atleast in the present time and their suitable probalistic models are the subject of futureinvestigation.

The Young's Modulus for three types of marine steels are assumed to coincide with thenormal distribution. Mansour et al [38] have been given the mean and coeffficient ofvariation of 300 sample tests resulted from the tension and compression tests. Theyrecaljjlate the weighted average of the mean value is 200.67 X i0 MPa and the weightedaverage of the coefficient of variation is 0.031. In many cases the Young's Modulus may betreated as deterministic, without making large mistakes, except for slender columns.
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4- Limit states design - First order methods

4.1 Introduction

The accuracy of a stochastic analysis for an offshore structure depends on the reliable data
for determinig the design loads, the fatigue loads and the operational aspects. J.R. Lloyd in
the second offshore symposium has been related the probability of occurance of the design
sea-state to the projected life of the structure (see reference [35]). He has mentioned the so-
called '5 times rule' Which states that the design conditiOn should have a probability of
occurance of 5 times the projected life of the structure. For example a structure with a 30
year projected life should be designed to withstand a sea-condition with a prdbability of
occurance of once in 150 years.

The design loads are often specified as the 'most probable maximum value or (mpm) value'
being the load vahe coincides with the peak of the distribution of the extreme loads.
Regardless of analysis method (either in frequency domain or in time domain), the common
way for extreme dynamic analysis of the structure has een explained in all of the
Classification Notes (take for example DnV Classification Notes, Joint Industry Jack-up
Committee, etc.). There are three different dynamic amplification factors for determining of
the inertial loadsets. The first dynamic amplification factor (DAF1) is expressed by the ratio
of the standard deviation öf dynamic response c, to the standard deviaticn of static response
a.,. The dynamic amplification factor 2, (DAF2), is defined by the ratio of the most probable
maximum value of the dynamic response to the most probable maximum value of the static
one. The third dynamic amplification factor , DAF3 ), is calulated in term of the extreme
most probable maximum value or (mpme) value of the dynamic and static responses. At last
by taking into account the third dynamic amplification factOr, the inertial loadsets for base
shear, overturning moment are evaluated by the procedure described in the classification
notes.

5.6

'On the äther hand., the non-linearities in the restoring force characteristics are a major of the
deviation of the distribution' function from predictions based on the assumption of a narrow
band spectrum (i e Rayleigh distribution) In principle, it is concluded that analytical
methods which are aimed at obtaining statistical data directly from knowledge of the equation
of motion and' the statistics of the forces, while giving insight in the main factors determinig
the behaviour and loads., are as yet inadequate for application, to many practical cases.

4.2 Probabilistic basis of Structural reliability

A physical model for reliability expression is an abstract, simplified, practical one for
studying the mechanism of failures This model implies an assumption that the probability
density functions for 'stress and strength are known. Let the density function for the stress
be denoted by f and for the strength by fT. In principle, R is a variable representing the
variations in resistance between nominally identical structures, whereas S represents. the
maximum load effects within a period of time, say successive T years Let, for the time
being, assume that the distribution of R and S are both independent of time. Then the

--reliability is defined_as the probability that the strength will exceed the stress during any



reference period of duration T years. The mathematical expression is determined by equation(4.1) pr (4.2) depending to the model whether it is the true reliability model (indicated bythe small letters) or the idealized reliability model (indicated by the large letters).
PR=Pr(r>c=pr(r-s>O) (4.1)

P;=Pr(R).$)=pr(R -S>O) (4.2)

Fig. 4.1 Stress f5(s,), and strength, frfr, ditributions With interference region [34]

f(S)
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Fig. 42 Enlarged portion of interface region for deriving integral form of reliability

where Pr('.) is the probability and S, R are the random variables for the stress s and the
strength r respectively. For the simplicity we assume that there is no difference between the
true reliability and idealized reliability and both are represented by

R in the ongoing context.Thu thé shidédrgii iii Fiue 4T2 caTn6e iJèd tôÌid1he bibItty of strength r being
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greater than s0 by integration Offrfr) in the interval s r < 0o

Pr(r>s0) ffrfr)d (4.3)

On the other hand, the probability of the given stress s0 is equal to the small area with width
ds; that is,,

Pr(s0-1!- ss0.4!)=f5(s0)ds (4.4)

The probability that the stress in the small interval ds and the strength r exceeding the stress
can be calculated by the product of two probabilities calculated earlier as follows

f (se) ds.ff(r) dr (4.5)

The reliability is the probability that the strength r is greater than the stress s for all values
of stress s (i.e. r s) and is calculated by double integral of equation (4.5) as follows

"R = ff3(x) P(x) dx (4.6)

where in equation (4.6) the parameter x represents the strength or stress variable and r
indicates the chance of exceedance (or the probability of exceedance) for strength r. To find
the probability of failure, equation (4.6) is used as follows

= ff(s) [ff(r) dr]ds (4.7)

F =F=Pr(r s) = i - f f3s) .[ffr( r) dr] ds (4.8)
- s

By substitution of new bounds for the integral (4.8) we will have

F= ff(s)[ff(r)dr]ds (4.9)



where Fr(.) denotes the cumulative distribution function of strength parameter.

The probability of failure F in equi (4. 10) is a measure of justification for the acceptance of
a design. if this probability is less than a small value, , the "socially acceptable" probability
of failure, the design is acceptable (Hasofer and Lind [21]). In second moment or Level II
methods, the criterion Pr (R S) < is replaced by a criterion involving the mean and
standard deviation of two random variables i.e. the resistance (or strength) R and the stress
(or load) S.

In some reliability engineering books (see for instance reference [11), the reliabilIty
expression is formulated with the probability that the stress will not exceed by the strength.
The mathematical expression is determined by an equation similar to equation (4.1) or (4.2)
and in this case the probability of Pr (s r,) is evaluted for an interface region of r0 - dr/2

r r0 + dr/2. By the same way, the reliability expression is found as

where R is the probability that the strees will not exceed by the strength (or reliability) and
F(.) denotes the cumulative distribution function of Stress parameter. The probability of
failure is then found by a similar function 1h term of reliability expression given in equatiòn
(4.11) and we have

r

F=Pr(r0 s) = i - J frfr) [f f3(s)dsjdr

By using new boundary conditions for the integral (4.13), the probability of failure is
formulated as

F= ff,(r). [ff(s) ds] dr
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(4.13)

(4.14)

F= fJ3(x).F(x)dx (4.1:0)

= f fr (r). [ff(s)d]dr (4..1 1)

Or

"R = f f(x). F5(x)dx (4.12)



And finally by substitution of chance of exceedance for stress distribution in equation (4.14),the probability of failure is determined by equation (4.15):

where the parameter x represen the strength or stress variable and P(.) indicates the chanceof exceedance for stress S. Which formulation is to be chosen depends on the nature of theproblem.

4.3 Generalization of the reliability expression

The probability of failure and the probability of survival (or the reliability) has beenexpressed in terms of the joint probability distribution of strength and stress. On the basisof limit state model, a so-called convolution integral explained with reference to R and Srepresenting the nominal strength and stress. Usually R and S are functions of many randomvariables, i.e.

- .. rests , rests , resis y rests'Rlhh1 1k3

= S (X stress x stress ,strss ,stress
m+1 ' m+2 Am+3 e... Afl ) (4.17)

Thus the probability of failure for the general case is similar to the equations given in the lastsection . The generalized reliability expression will depend on the all basic variables whichis represented by a multi-dimensional integral (instead of double-integral with basic variablesof strength and stress) ; that is

=¿ :
x1) dx1 (4.18)

where 11 indicates the
multiplication of probability
distribution function of basic ElM]

region which is the corresponding
margin represented by M O in
Figure 4.3. The variables x1 (or in random space X1) in the formulation of probability offailure are called the basic variables and it was beforehand assumed that the probabilitydensity function of random variables are always known. In general the basic variables mayhave density functions which are consists of correlation parameteres and thus in the

Figure 4.3
variables and c denotes the failure

60 LIMIT STATES DESIGN

1M (m)

PlMoJ

Illustration of probability of faiÏii

(4.16)

F = ffr(X). P(x).dx
(4.15)
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formulation of probability of failure it is usual to integrate the joint density function of X1,,..., in the coordinate of basic variables as follows

'Ff f,. ..,ffx(xi,xz,...,x)dxidx2dx (4.19)

By this equation, the determination of the prObability of failure comes down to calculatingan n-fold integral, n being the number of basic variables. Integration of the equation (4.18)or (4. 1 9) requires the probability knowledge for the resistance and load parameteres and also
. by application of modern computers , it is found that the integration of this diffrentialequation consumes a lot of CPU time even for the simple engineering problems. Howeverthere are two convenient approximate methods for the evaluation of this integral which arecalled the transformation methods and the simulation methods. These methods have beenclassified as fllóws (see M.J.. Marley [53).

In the transformation method, the original integral is transformed to the integral in
.

boundàry of independent standard normally distributed variables. The firsttransformation is used for the transformation of correlated basic variables touncorrelated variables that often requires the determination of Jacobian matrix. The
second transformation is usually carried out by the Rosenblatt transformation that is usedto find the independent standard normal varieties from the initial probability densityfunctions (note that they are not necessarily normally distributed). By this formulation,the safety iñdex can be evaluated by the so-called Hohenbichler algoritm.

In the simulation method, the integral is approximated by random Monte Carlointegration. For this purpose, a repeating process involves in the equation of integralwhich is simualted by a set of random variables generated in accordànce with thecorresponding probability distribution functions. It has been concluded that MonteCarlo method from finite samples in analysis are not 'exact' enough and the results ofMonte Carlo simulation is questionable When we are dealing with low probability of
failures (see Ang and Tang [54]).

The transformation methods are often splited to FORM and SORM methods. In the nextsection, we will discuss the linear transformation methods (or a so-called FORM procedüre).
It should be emphasised that the use of FORM/SORM or MCS (Monte Carlo SimulatiOn)
methods does require some caution, insight, and experience in reliability computation. Themethods may be compared with thç structural analysis methods whether In one problem the
common sttiffness matrix theory or the finite element approach will lead to accurate results.Like structural engineering problems, it is useful to start with the classical and usual methods(i.e. the transformation methods in the relaibility analysis) for better understanding of theadvanced methods (advanced MCS methods).



Failure occurs when the total
applied stress S exceeds the
ultimate capacity R, i.e., When the
margin M is negative. Considering
the safety margin in Figure 4. 3, if-
R and S are normally distributed,
then the probability of failure Pf
or F is bounded in the safety
margin M O. The mean and the
standard deviation of the margin
W, o [or (12M, M; (EMJ, oJj
are calculated by equations (4.21)
and (4.22).:

2 2 2
°MOR+OS2PRØOROS
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4.4 The mean-value first order
secondmoment (MVFOSM) method (Level II)

The closed form Solutions for the integrals in equations (4.10) and (4. 15) only exists forspecial cases [50],. Basically the rationale of a reliability method is a justificaj in term ofa higher level. The level of a reliability method refers to the extent of informat:jon about theStructural problem. The most common in the practical engineering is the traditional safetyfactor method that in fact can be estimated as level ¡or first moment reliability method. Thesecond moment or level II method, often is used in which two different parameteres arecontributed to describe the relevant random variables. Among the Level Il reliabilitymethods, in the MVFOSM method the linearizatiOn of the limit state function takes place atthe mean value (MI'). The method is formulated on the basis of linear approximation offailure surface and only the first-order (FO terms are retained in Taylor series expansion.The mean-value first order second-moment (M VFOSM) method is based on the variat ion ofmean and standard deviation of random váriables and up to second moment (SM) of therandom variables (means and covariances) are used in tl1e reliabity measure. For applicationof MVFQSM method, the non-normal distributions for the stress and strength variablès shouldbe converted to the equivalent normal distributions 1f S i a random variable representingthe stress and R is a random
variable representing the strength
of the structure, then the safety
margin is defined as

M=g(R,S)=R_s. (4.20)

Figure 4.4 The R - S model, the marginaldistributions, the joint distribution and Domain of thelimit state surface G(r,$) = O

M=R-s
(4.21)

(4.22)

where a and a are the mean and the standard deviation of strength and stress:variables and p is the correlation coefficient of two random variables. The Limit state surfaceg(r, s) 0is -shown in
the-margina1andj- difribijj of (R,



The correlation coefficient is defined by the ratio of covarince of R and S to the product. of
the standard deviation of strength and stress.

COV{R,s}

air 0s
PRS

where COV{R, S) is the covariance of R and S which is defined by

COVtR,S}.E[R -E(R)]E[S -E(S)]

Using equations (4.21). and (4.22), the standardized margin M which has a zero mean and
a unit standard deviation can be written as (see reference [38]),;

The probability of failure is calculated in term of the safety margin M by equ. (4.26)..

PF=F=Pr{ M o } (4.26)

With substitution of M = O in equ. (4.25), the standardized margin becomes M=- / o.,
and thus the limit state for failure condition is determined in term of the standardized safety
margin and we have

where 4N which is often denoted by in the literature, is the standard normai distribution
function. The ratio of M I M is the so-called the safety index ß which is the inverse of the
coefficient of variation of the safety margin (C'M / M). The function (-ß) must be
looked up in Table 4.1.

Using equations (4.21) and (4.22),, the safety index is formulated in term of four
characteristics values i.e. the mean and covariance of the strength and, stress variables.

1-u R-S
GM (a + a 2PR,SGRO

5)2
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(4.23)

('4.24)

'(4.28)

treM1

In a comprehensive 'literature survay presented by Faulkner et al(&efetence [17]), a central
sffctor O is defined by the ratio of the mean value of the stress to the the mean value

S 'of the strength O = R / S. This model is used in many situations for the comparison 'of'
strength with:respect to'the-:stress. -The'O-parameter -is-often-defined-asthe-safetyfactor and ..-' -

MM-M
(4.25)

GM

PF=Pr( P. ---y- (4.27)
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may be used by other convenient symbols as it has been used in literature (for example K
parameter). Whether the component or system bahaves safely (O > 1), the safety fàctor must
therefore be treated probabilistically, i. e. what is the probability that the event (O > 1)
occurs. Introducing the O parameter into the equation (4.28)., an alternative definition of the
safety index may be expressed by equation (4.29) written below:

o-.1
o

(620
R + 0S 2PR,SOO R0

2

Table 4.1 Cumulative distribution functiön for standard normal distribution

(4.29)

4.5 The advanced first-order second moment method (AFOSM) method (Level-LI)

The issue of MVFOSM method was the first step on the mathematical formulation ofthe
Level two reliability methods. Historically the probabilistic calculation of failure by use of
a computational model has been considered at the mean value of basic variables. Thus the
basic varible space c was divided into two sets called the failure región c and the safe
region c. In reliability analysis, the seperation of the two regions w1 and w is called the
failure surface and is defined by a failure function.

It shóuld be Ñphasized that the failure function-concept isdeterministic-and-is-usually:

/3 cF(-ß) 13 (-ß) /3

0.0 5.0000 x 10_1
0.1
0.2

4.6018 X 1'0

4.2075 X lO
2.1.
2.2

1.7864 X iO2
1.3903 x 102 4.2

2.0658 x iO,
1.3346 x 10'

0.3 3.8209 X 10' 2.3 1.0724 X 10 4.3 8.5399 x 106
0.4 3.4458 X 10-' 2.4 8.1:975 X i0. 4.4 5.4125 x 1o6
0.5 3.0854 X 10-' 2.5 6.2097 X 10's 4.5 3.3977 x 10
0.6 2.7426 X 10-' 2.6 4.6612 X i0 4.6 2.1125 X 10
0.7 2.4197 X 10 :. 2.7 3.4670 X 10 4.7 1.3008 X 1.0
0.8 2.1186 X 10' 2.8 2.5551 X 10 4.8 7.9330 x l0
0.9 1.8401 X 10" 2.9 1.8658 X 10 4.9 4.7920 X l0
1.0 1.5866 x 3.0 1.3500 X 10 5.0 2.8665 X lOi
1.1 1.3567 x i0' 3.1 9.6760 x i0 5.1 1.7000x 10
1.2, 1.1507 X 10-'

-

3,2 6.8714 X 1'0 5.2 1.0000 X 10
1.3 9.6800 X f0

;
3.3 4.8342 X i0 5.3 5.8000 x 108
3.41.4 8.0757 x l0 3.3693 X i0' 5.4 -3.3000 x 10-8

1.5 6.6807 x 102 3.5 2.3263 x 10 5.5 1.9000 x 108
1.6 5.4799 x 10 3.6 L5911 X I0 5.6 1.1000x 108
1.7 4.4565 X 1:Oi 3.7 1.0780 X i0 5.7 6.0000 x 10
1.8 3.5930 x 1b02 3.8 7f2348 x l0 5.8 3.3000 x 10
1.9 2.8711 X 10 3.9 48097 X 10 5.9 . 1.8000 X 10
2.0 2.2750 X 10 40 3.1672 X 10 6.0 9.8660. .x 10'°
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determined by the traditional structural analysis methods. On the other hand, one importantissue to bear in mind is that the same failure surface can be described by a number ofdifferent failure functions and thus the results obtained from the structural reliability as-sessments are more likely to be nominai rather than actual. Now the question is arising thatwhat can we do in order to find the best approximation (or at least one better approximation)
for the failure surface? In other words, because the margin is not unique for a given failuresurface, what is the effect of different approximation in the evaluation of failure surfâce?This and many other questions have been discussed in the rest of this section.

Consider the définition of safety margin in term of basic variables (strength and stress) as hasbeen given by equation (4.20). This is the one formulation for the evaluation of the reliabilityof a componant, or a collection of componants (or a system). Since in general we do not haveenough information on the tail of the distributions of R and (or) S, thus we replace the
criterion of "socially acceptable probability of failure., i.e., P (M 0) K " (where is asmall value) by a criterion involving the mean and standard deviation of R and S (In genral
all characteristics of probabilistic distribution of random variables. R, S as well as skewness,
kurtosis and etc..).

Using a linear safety margin M defined by equation (4.20) and assuming that the strength Rand the stress S or in general all basic variables X, i = 1,2,3,... ,n, are normally distributed,
the probability of failure is then given by

PfPr{MO}=.(0M)-() (4.30)

Where M and 0M are the mean and standard deviation of linear safety margin of n basic
variables and is the safely (or reliability,l index. The mean value first order second moment
(MVFOSM) reliability approach is implemented by expanding the safety margin M in a
Taylor series about the linearization point. This elementary reliability index can be given a
simple geometrical interpration. First assume that the basic variables X,, i = 1,2,2,... ,n are
trnasformed to the stochastically independent normally distributed variables Z1 while i =1,2,3,... ,n. The standardized variables are calculated as follows

(Ul,U2,...,U)=(Z1I.,Z22
) (4.31)0; o

where U1, U2, ...., U,, are n independent standard normal variables. Inserting the
corresponding expressions for Z1, Z2,. ....., Z,, we have

(Zi.,Z2.,...,Z)=(.tU1.a , , , p+U.a) (4.32)

The principle of limit state design requires that the basic variables would be the functions of
the resistance R and the stress S as given by equations (4.16) and (4.17). Thus the basic
variables are mainly two types and the safety margin should be evaluated in term of both of
the stength and the stress variables as follows.



where = [a1 a2 ... am], = [b.1 b2 .. and = (Z1, Z2,..., Z)are the constants
and normally distributed basic variables respectively. The vectors a and b are assumed to
be positive real values and the vectors ZR and Z are represented the basic variables
corresponding to the strength and stress parameters respectively.

Substitution of M = O in equation (4.33) leads to the failure surface equation, which i now
indicates a straight line in the coordinates of R and S. By the vector symbols introduced in
equation (4.33), the mean and the variance of safety margin are obtained as

E{M}=aoT.E{iR}_T.E(i) (4.34)

where the mean value and the variance (the square of standard deviation) of the safety margin
are represented by E{ M } (is also called the expected value) and Var{ M }.

By substitution of reduced variables, i.e. equation (4.32), in the equation of safety margin
(4.33), the following expression may be expressed for the safety margin

M=[ao+1T.E{iR) -bT.E{Z5)] +[(a.oz)T. -(b.az)T. U] (4.36)

To implement an invariable measure, both sides of equation (4.36) are divided by the
standard deviation of the safety margin 0M By substitution of equation (4.34) into (4.36), the
expres iIfor the-normalized-safety--margin-is-obtained by

- P.M
(a.az)T (b.az)TM= R

UR- Us
aM aM

In use of equation (4.37), the following notations are mainly substituted and a common
equation is derived for the normalized safety margin as given in literature [55]. Consider the
following expressions

aM
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(437)

(4.3e)

aR-cos(OR)=
(a.

0)T
(4.39)

0M

Var{M}=a.a + (4.35)
i=1 i=m+1



- (b.crz)

The normalized safety margin is rewritten by

=P(R UR+OES U) _T ji
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(4.40)

(4.41)

where ER , Th = [VR V] are the, vectors of sensivity measures and the
uncorrelated basic variables respectively. In the ER,8) coordinate system space, cos(Oì and
cos(9) are the direction cosines of the unit outward normal vector for R and S respectively.
Also a is a unit outward norma! vector to the limit state surface in U-space. Thus in
dimension of n reduced basic variables U,, the shortest distance from the origin to this linear
failure surface (i.e. A? 0) is equal to ¡3 because '.a = 1

In a FORM approach (First Order Reliability Method), the linear safety margin M is
obtained in terms of basic variables in a general expression as given by equation (4.41) and
the elementary reliability index can be interpreted as the distance from the origin (mean value
point) to the limit state surface in the standardized U-space. In MVFOSM method, the point
closest to the origin in U coordinates, the most likely failure point, which is also known as
the design point, is found by the zero safety margin or

u*=
p

Clearly, the ¡3-value obtained fOr a non-linear safety margin will depend on the choice of
linearization point. The resulting ¡3-value will also depend on the choice of failure function.
(for example, compare the results for M = R2 - 52, M = (R - ,... with the safety margin
given in'equation (4.20)). in other words, the choice of the mean value point for expanding
Taylor series causes the invariance problem. Since the distance from the linearization points
increases, thus some errors will be introduced at increasing distance by neglecting higher
order terms in expanding Taylor series. In addition, even for certain linear forms of the
safety margin, such as when the loads counteract one another, significant errors may be
introduced in reliability problem. This shortcomings are avoided by using a procedure usually
attributed to Hasofer and Lind [21].

Hasofer and Lind in 1974 have suggested a new definition for the safety index instead of that
given by equation (4.38). They supposed that if the basic variables of a system X = X1, X2,
X3, ..., X) are uncorrelated, the first step is to transform the non-normal variables to the
equivalent normal distributions. This can be down by both the normal tail approximation
prodecure or by the weighted fractile approximation [li]. The normal tail approximation is
often called the Rosenblatt transformation and has been originally introduced by M.
Rosenblatt in 1952 [54]. The Posenblatt transformation includes transformation of a set of
multivariate random variables ftnto a set of independent random variables, each normally
distributed. The weighted fractile approximation was introduced by Palóheimo and Hanus

(4.42)



(1974) [ii] for an equivalent normal distribution in accordance to the probability of failureP at the desig.n point. It can be interpreted as follows. The design point is equal to theweighted average of the mean value and the probability of failure P , or (1 - fractileof each variable X, using sensivity factor c as the weighting factor. After the transformationwas performed to the equivalent normal distributions, the second step would be the linear
transformation of a normalized set of random variables Z (Z1, Z2, Z3, ..., Z) to thestandardized normally distributed random variables U (U1, U2, U3, ..., U,. by thefollowing equation

Z. -
U1= ,i=l,2,3,...,n

When the basic variables X = (K1,, X2, X3, ..., X,.) are correlated it is necessary as a first step
to obtain a set of uncorrelated variables Y = (Y1, Y2, Y3, ..., Y,. and then normalize this set
of variables. It means that .the non-normal stochastic quanteties (Y1, Y2, Y3, ..., Yr) which are
characterised by a distribution type and a number of parameters (eg. the mean and the
standard deviation and etc.) can be always transformed to the normally distributed variables
(Z1, Z2, Z3, . . .,, Z,) by the Rosenblatt transformation or similar transformation methods [50].By the linear transformation as given in equation (4.31), the standardized normally
distributed variables (U1, U2, U3, ..., U,.) are calculated where in equation (4.31) it has been
already assumed that the basic variables (Z11, Z2, Z3, ..., Z,) are normally distributed (i.e. the
set of basic variables which are used as the input data for linear transformation). Finally, the
reliability index fi has been defined by Hasofer and Lind in the u-coordinate system, namely
as the smallest distance from the
origin to the failure surface (see
Figure 4.5).
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(4.43)

It should be emphasized thaL_the_.
reliability index in this method can be
calculated independently of the distri-
bution types of the basic variables,
while the one-toone relation
expressed by equation (4.30), is inva-
lid when the failûre surface is non
linear. Experience shows that a good
approximation to the probability of
failure, P1 , can usually be obtained
by using equation (4.30) and the
Hasofer and Lind reliability index
even for non-linear safety surfaces. In
each case, the reliability index for a
single structural element with respect
to a single failure mode can be
estimated by implementation of
uncorrelated normalized variables in Figure 4.5 Hasofer and Lind reliability index



failure surface function and calculation of the distance, , from the origin of the failuresurface. Thus the second-moment reliability criterion will now be:

(4.44

In which, 13 is given by the ratio of mean and covariance of the strength and stress variablesas indicated in equation (430). If the mean value of X (both R and iS are adopted, a socalled mean value approximation is obtained. By this. procedure, a more accurateapproximation however, is obtained by setting the design point as the point on the failureboundary where the probability density is greatest. Such as the MVFO5M method, the pointwhich corresponds to the shortest distance from linear failure surface is reffered to as the.checking point or design point or (3-point. In the AFOSM method, the distance 13 (or thecorresponding design point) can be determined.by solving by iteration the n+1 equations .interm of standardized variables

YT* * -

where a represents the relative effect of the corresponding random variable on the totalvariation and indicates the safety margin in standardized coordinates. Equations (4.45) and(4.46) can be .directly used for the. estimation of safety index._Eor_thjs purpose_some'additional parameters are often. used to simplify the expressions of design point. For examplethe following notation is introduced in equation (4.46) to obtain a unit vector in term of thesensivity factors.

(--) i a[Vg(u7)] au1 (j)Pai*
JVg(U*).

[:: (.I;)i;r]' .[ ()J2
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(4..46)

(4.47)

where V(U) is the g.radient vector for the reduced safety margin (U). The expression (4.45')

(U,U2*,...,u,)=g
(4.45)

and



expresses that the point A is on the failure surface as indicated on Figure 4.5. Thus by
substitUtion of equation (4.47) in equation (4.46), the set of equations are simplified to the
safety margin equation (4.45) plus the following n equations

[Vg(U,*)j
ri

=-1 iUi*

IW(U*)I

As a practical approach, the set of n + i nonlinear equations (in general case) are often solved
by an alternative procedure. Let the uncorrelated normalized basic random variables in the
design point may be found by

Z'FLz
= iYu.cos(0) =:pm.aT (4.49)

where , cos(0) and' a are the reliability index, cosine direction and: the sensivity
factors in the n-th iteration (ni means the number of iterations). The so-called sens ivity
factors c" and reliability index are used to calculate the design point in the system
coordinates of uncorrelated standardized basic variable U as follows

=

*ni ni nl
z1 =ILzLI+13

z1 = + .
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(4.50)

(4.51)

(4.52)

At last with substitution of equation (4.48) into equation (4.52), the set of n equations are
obtained as

[V( Uy')]
=

pni
vg(u*I)

(4.53).

The equation (4.53) together with equations (4.45) and (4.49) form a set of n+i equations
which can be solved for the parameteres and Z (or Ui).

In general, for a linear limit state function, the Hasofer/Lind (or AFOSM) method will yield
the same result for j3 as the MVFOSM method. For nonlinear state functions, this method
yields a safety index ¡3 which is invariant to the formulation of the limit state function., The
full procedure of the AFOSM method is summarized as f011oWs:

Define an appropraite limit state function in term of basic random variables X1).
Implement a transformation fpt the basic variables in case of correlated variables (1.

i=1,2,3,...,n (4.48)
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Implement the second transformation for the basic variables in case of non-normal
distributions (Z).
Transform the approximaite limit state function (step 1) by use of new basic random
variables.
Compute the mean and the standard deviation of the basic variables, i.e. and azj.
Compute the mean and the standard deviation of the transformed limit state functiOn

M
and aM by equatiOns (4.34) and (4.35).
Compute the initial reliability index by the ratio of mean and standard deviation of M.
Define a set of standardized variables (U1) in term of basic variables obtained in step 3
by using equation (4.31).
Identify the limit state function in the coordinates of reduced basic variablès U1.
Compute the sensivity factors a1 by equation (4.46) or the partial derivatives 3/aUfrom
equation (4.45)
With the initial variables at design point Zr" [in the first step Z° = (Z1)}, the safety
index fi, the sensivity factors a1 or the partial derivatives from step 8, determine
Z'' [in first step Z1*l] values from equation (4.53).
Check the calculated safety index fi by equation (4.53) until a satisfactory result is
calculated on the basis of successive iteration.

11,. Repeat steps 8 to 10 until convergence has been attained.
12. Determine the probability of failure P by the results of last computation in step 10 and

the cumulative standard normal distribution from equation (4.30),.

Example 4.1 (Reliability analysis of a beam ; Excerpted from [li])

In this example we consider a beam which is only calculated for pure bending moment; The'
beam is designed in accordance with the Euler-Cauchy equilibrium condition. Let the critical
stress-is-denotedby-o--the-maximummomentand the inverse of the section modulus by M
and Z' respectively. With application of these notations, the equilibrium condition can be
stated by

(4.54)

Assume that all variables of o, M and Z' are normally ditributed. The mean and the
standard deviation of basic variables are given in Table E4. 1.1.. Find the reliability index and
the probability of failure P by the 'MVFOSM and AFOSM methods.

Table E4.1.1 Probabilistic characteristics of the design parameteres

IMean Standard deviatin

Critical stress = 700 N/rn2 = 140 N/rn2

Maximum moment 14M 18,750 N.m 2812.5 N.m
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Inverse of the section
modulus

0.024 rn3 = 0.00144 m3

Solution

The limit state function is formulated as follows

g(ci,M,Z)=a -M.Z' (4.55)

The example has been solved by an iteration procedure in reference ['11] with an initial
reliability index ß = 2.5, and the final solution was ¿3= 1.58, with the probability of failure

5.7026 X lOE2. With the Super-Form program Written by Koster Engineering, the
relaibility index and the probability of failure have been calculated by the same procedure
discussed earlier. The results are demonstrated 'in Table E4. 1.2 which are comparable with
the solutions of Dai and Wang [11?] (pp. 84-85).

Table E4.1..2 The reliability indices and the probabilities of failure with FORM methods

The AFOSM method gives a better estimate on the reliability approach. Using the
characteristics of the 'iteration procedure for this method a relatively accurate solution is
obtained by 2 itertions, The final result for the design point and the square of the sensivity
factors areJndicatedjnTable E4.i.3

Table E4.1.3 Design point and square of the sensivity factors 'for design point

By comparison of the sensivity factors for different designs, it can be concluded that the
major importance for probabilistic design are attributed for the critca1 stress o and' the
maximum moment M respectively. The sensivity of the design wIth respect to the section
modulus can be ignored in case of complicated limit state design.

Used method ß

MVFOSM 1.585 5.651 x 102
AFOSM

' 1.580 5.707 x 102

Design point value a12

5.049 X 10 N/rn2 " 0.78
M 2.067 X 10 N.m 0.19
Z 2.443 X lOE2 m3 0.04
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Example 4.2 (Reliability analysis of a fillet weld in compression and bending ;Excerpted from ;[lij)

The reliability of a joint with fillet weld is considered in the combined effect of the bendingmoment and the axial loading. The structure is a rectification column and the fillet weldattachs the skirt of tank to the rectification, column. The allowance stress of fillet Sa is acharacteristic value which is assumed to have the
following values expressed in MPa.

60 -62 -64 - 66 - 68 - O 72 74 76 78 80

The throat area of the fillet weld is A = 267 cm2 and
its section modulus is Z 13,800 cm3. The column is
operating under combined effect of axial force and
fiextural bending as shown in Figure E4.2.1.

The axial load Q includes the total weight of the
column and reacting medium under operation and is
assumed to consistent with the normal distribution. The
maximum bending moment M is obtained from the
environmental effects and it is assumed to be log-
noramily distributed.The geometrical and physical
characteristics of the joint together with the external
load effects are given in Table E4.2. 1.

Table E4.2.1 Probabilistic characteristics of the axial load and bending moment

Fig. E4.2.1 A fillet weld attaching
skirt to colùmn

Mean

Bending moment M I = 5.91 X i0 N.m

Standard deviation

3.3 X 104N

= 5.91 X '104N.m

Solution

A limit state function is defined as

g(X) =Sa(-! +)
It has been stated that the bending moment obeys from a log-normal distribution, In orderto implement the characteristics parameteres of both distributions in the Super - Formprogram, it is necessary to find the mean and the standard deviation of log-normaldistribution. In section 1.7, it hás been explained that the mean and the standard deviation

(4.56)

Axial load Q 3.3 x i0 N



of random variable x, (hier bending moment M), is related to the probabilistic characteristics
of random variable x1., (hier M1,) which obeys from log-normal distribution. The coefficient
of variation of random variable M is defined by the ratio of its standard deviation to its mean
[equation (4.57)]

Thus the mean and the standard deviation of log-normal distribution are obtained from

PM1 ' PM ° =Ln(5.91 x105) - !(0.09975)2 = 13.2846

g(X) =S0-3.74532xI05Q-7.2464x 105M=0
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(4.59)

With substitution of the characteristics of the fillet area and the section modulus, the limit
state function can be rewritten as

(4.60)

The characteristics of both distributions of Q and M are used' in Super-Form program. The
results of calculation togçther with the diagram of the probability of failure fôr MVFOSM
and AFOSM methods are shown in Figures (E4.2.2) - (E4.2.5). In 'Super - Form program
for the case of MVFOSM method, the mean value and the standard deviation of the limit
state function is found for each critical stress' Sa. Moreover the reliability index and the
probability of failure are calculated' in the analysis way. For the case of AFOSM method, in
addition to the above mentioned parameteres, the number of iterations and the value of
reliability function in the calculated design point and finally the difference between the lt
two iterations for probability of failure are calculated. In addition the sensivity factors for
each variable are established in both methods while for the AFOSM method, the sensivity
factors indicate the solution for the last iteration.

For our example it has been found that the AFOSM method needs to evaluate the safety
margin for three times. Similar to the Example .. 1', the results of calculation for relaibiljty
index (or the probability of failure) are conservative by using the AFOSM method than the
MV'FOSM method. As much as the allowance stress for the fillet weld increases, the
probability of failure comes down. and thus by estimating a criteria for the probability of
failure. (or for the reliability index), the appropraite allowance 'stress of the fillet weld can
be obtained. AISC specifications for a fillet weld can be used here. Depending on the
particular load combination used, the criteria for the target reliability index will be varied for
the given fillet weld. With the notatiòns of D for dead' load, L for live load and W for wind
load (or alternatively earthquake load) it can be assumed that the following ratios are valid'
in this example as

LID 2 and WID = 5.

o
M (4.57)

IM

0M ='Ln(1 + C) = 0.09975 (4.58)
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Thus the target reliability should be greater or equal to ß = 3.3 (see Table C.7.7, pp. 164
in reference [56]), Searching the results of Super-Form program it can be easily found that
for the allowance stress of Sa = 72 MPa the desired reliability index is revealed. Therefore
the design point is obtained at the point that the probability of failure is smaller than P =
4.856 X 1O where the difference between the last two iterations for probability of failure
is equal to 7.024 X lOE7. Other characteristics of the desired design are summarized
in Table E4.2.2.

Table E4.2.2 Design point and square of the sensivity fáctors for design point

It can be concluded that the marginal effect of the bending moment M on the reliability
design has a greater influence than from the axial load Q. However the results for the
allowance stress of Sa = 60 MPa are identical with the results of Dai and Wang [11] when
the solution is performed untiU 3 iterations.

Design point value c2

Q 1525 x 10 N 0.04

M 8.114 X 10 N.m 0.96
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4.6 Relaibility analysis for simplified systems

The procedure of reliability analysis for single elements by FORM method has been
discussed in sub-sections 4.4 & 4.5. Moreover Examples 4. 1 & 4.2 have been proposed to
illustrate the main concepts for the computational method of reliability analysis of single
elements. In general , for a structural element, several different failure modes are usually of
importance. As an example for truss and plane frame structures, the most important failure
modes are failure iqçion/compression due to axial loads and failure in bending and large
deflections. It has í proved that a sequence of member failures can be represented by a
parallel system. 0h the other hand, the total structural collapse occurs if any such failure
sequence occur, i.e., the structure can be modelled as a series system of parallel sub-systems.
In reliability analysis the statically determinate (Isostatic) structures will fail as a series
system while for a statically indeterminate (hyperstatic or redundant) structure the system
will fail by a mechanism of failure in a parrallel system. The failure modes are then
combined in a series system to obtain the total probability of failure. The experience shows
that in order to reduce the number of variables and calculation time it is satisfactory to find
the probability of failure for the most dominant mechanisms. It has been shown that how the
13-unzipping method and the branch and bound method are used to identify the significant
mechanisms of failure [50].

Consider a structural element
with two potential failure modes
defined by margins M1 =
g1(U1, U2) and M2 = g2(U1,
U2), where U1 and U2 are stan-
dardized basic variables. The
corresponding failure surface
and reliability indices j3 and 132
are_shown in Figure (4.6). The
probability of failure is found
by integration of the joint
bivariate normal density
function for the random vari-
ables in the failure region w1 (if
the random variables are
normally distributed).

F ff(u1,u2,o).dii
t.)'

= o

Figure 4.6 The probabilsitic of failure for a series system

(4.61)

where f is the bivariate normal density function for the random vector V = (U1, U2). The
shortest distance from the origin O to the failure surface is defined by the reliability index
¡3 = ¡2 as shown in Figure (4.6). Thus the probability of failure is estimated by integration
of the distribution function over the hatched area (the "right" of the tangent 4). Such a
modelling of the system reliability has been called systems modelling at level O by P. Thoft-
Christensen and Y. Murotsu [50], which is in fact an element reliability modelling and gives
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an upper bound for the reliability index. They have proved that a better choice for the proba-
bility df failure can be found by modelling the reliability problem by a series system. In a
series system, the probability of failure P of the element is

F'F1 UPF (4.62)

In fact, in this case the probability of two failure elements (or two modes of failure for one
element) and the correlation factor between them are taken into account which is called
system modelling at level i. However the probability of failure for the series system of
Figure 4.6 can be obtained by. the probabilities of survival (or reliabilities) of two (elements
or modes) Rj and P as follows (see Hohenbichier and Rackwitz [57])

=1 ER;] (4.63)

Because U1 and U2 are the independent standardized normal variables and the safety margins
M1 and M2 are approximated by the linearized margins in their design points A1 and A2, thus
the safety margins can be formulated as follows

(4.64)

where a1, a2, b1 and are the cosine direction. of the unit vectors and. f3 and f.2 are .the
corresponding reliability indices to the safety margins. The correlation coefficient p can be
obtained by calculation of the cos(,v) Where y is the angle between the unit vectors a and b.
The safety margins M1 and M2 are also standardized normally distributed and the correlation
factor between two safety margins. M1, and M2 are simply obtained by the following
expression

In section 1, it was shown that the reliability measure (or the probability of survival) and the
probability of failure are complementary, thus if the reliability index for anelement 'is given
by then in case of normal distributiOn, the reliability (or the probability of survival> can
be found by the cumulative distribution function. as given by

'R(Ii) (4.67)

The bivariate normal distribution functiön, defined in section 1, can be used in order to
obtain the probability of failure for a series system with two elements as shown in Figure,

M2 =b1 U1 b2 U2 .p2 (4.65')

2

p=Ea1.b (4.66>



4.6. Thus the probability of failûre for the series system is öbtained by the cumulative joint
probability distribution of two elements as follows

F1 -F(:f31,132,,p)=1 2(13l,132;p) (4.68)

where F and 2 are represented for the cumulative bivariate probability of uncorrelated
reliability indices ß1, and ß2 while the correlation cofficient of safety margins are given by
p. When the probability of failüre determined by a level i approxiamtion of P1, the reliability
index may be calculated by

13 = -1(Pf)

where c1 denotes the cumulative distribution function for the uni-variate standärd normal
distribution.

Example 4.3 Reliability analysis of a simple structural system ; Excerpted from [50])

Assume that the simple structura! system shown in Figure
E4.3. i loaded by a single concentrated load p. The collapse
of system may be occurred by structural failure of elements
i and (or) 2. The load-carrying capacity in the elements i
and 2 are represented l,y 1.5 X n and np respectively. Both
of the basic variables are realizations of independent normally
distributed random variables P and N with the following
characteristics.

Table E4.3.1 Probabilistic characteristics' of P and NF
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(4.69)

Fig. E4.3.1 Plane truss

Find the probability of failure and the reliability, index for the structural system.

Solution

The peiformance function (limit state function) can be defined for elements i and 2 as
folloWs

strUcture

Mean Standard deviation

Conntrated load P = 4 KN 0.8 KN

Measure of capacity N = 4 KN . .0.4KN



M =N -P12F
2
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(4.70)

Suppose that the characteristics of basic variables are used in order to find the safety margins
in term of the standardized random variables U1 = (N - 4)! 0.4 and U2 = (P - 4) / 0.8
M1 =0.72W1 -0.686U2+3Á86 (4.72)

M2 0.577 U1 -0.816 U2 + 1.691 (4.73)

By comparison with equations (4.64) and (4.65,), the reliability indices are = 3.846 and
= 1.691. The correlation coefficient between two safety margins is determined by

equation (4.66) as follows

p = 0.728 x 0.577 .+ 0.686 x.0.8 16=0.98 (4.74)

Thus the probability of failure of the system is determined by equation (4.68)

1F = -F(j.1, p2, p) = i - 2(3.846, 1.691 ;:0.98) (4.75)

where c1)2 is represented for the standard bivariate normal distribution function (i.e zero
means and unit standard deviations for both random values). In section 1, it has been
discussed that the-calculation_of_theuni-variate normal distribution have been performed
numerically without any difficulties and a number of of tables exist for this purpose in the
appendix of any probabilistics handbook [1,9,11,44,50,52]. M. Zelen and N.C. Severo [52]
have been given a number of plots for approximate calculations f

standard bivariate normal
function (see Figs. 26.2-26.4 pp. 937-939 from referenec [52]). Although the solutiOn has
been performed by numerical integration methods but the Figures are not accurate especially
for boundary values of the correlation coefficient p cg. for p -1 , 0, +1. Moreover the
1-lermite polynomial 'expansion method is also used for calculating the b'ivariate normal
distribution function [50]. In author's opinion, it will be more appreciated if the numerical
method is developed for the standard bivariate normal distribution. For this reason the
cumulative function is expanded by the Taylor series with respect to the correlation
coefficiènt near the origin (i.e. p = 0). By this method the integral is reduced from the
dOuble integral (for the random variables) to the single integral [50]. By the same notations
used in section 1, the standard bivariate normai density function is rewritten as

2
'(4.71)



f(t1 '2' P) ={27tVI p21'exp[
I(tÏ +t22 -2 p t,t2

(4.76)2 l-p2

The function f can be integrated for the variables t1 and t2 in order to find the jointcumulative distribution function as given by
U1 '2

F(u,.,u2, p)
= f f f(t1,t2,p)dt1dt2 (4.77)

Let we assume that both variables t1 and t2 are represented by constant parameteres and thefunction f be the first order derivative of the cumulative functon F with respect to p. :ßydifferentiation of equation (4.77) to the variable p, the standard bivariate normal densityfunction can be written as follows
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F(u1 ,u2,, p) c3F(u1 ,u2,p)

3u13u2 äp

Thus for the uni-variate function F, the Taylor series can be derived at the point by bivariatefunction with p 0

F(u1,u2,p) =F(u1,u2,0 dp
A=p

(4.78)

(4.79)

(4.80)

Returning back to our example, we only need to determine the single integral or secondexpression on the right hand side of equation (4.80). For this purpose a lot of numericalmethods have been used in literature (for example Hermite polynomiaJ expansion method)
but hier weconsider the PFD (Polynomial Finite Difference) method which has been reportedby the author on earlier report [58].

In the PFD method, we could eliminate the errors which are arisIng from the simpl:ifications
of the conventional finite difference method. Brifel.y, in the traditIonal (or conventional) finitedifference method,, the derivatives of a function are obtained from the minimum requireddegree of function and for example if the differential equation involves the second derivativesof iunction then a ,parabolicfunction is.passed ihrough.eachthree assumed points.jnthetraditionary method, using the direct substraction methods ör exapansion methods on series

of the two uni-varjate normal distribution functions and we have

'
F(

I
dp

o A A-p



approach, the real function is replaced by a few of discontinuous functions (parabola's forthe second derivative). In the PFD method, we have used polynomial functions in derivativesand thus for approxiamation of second order derIvatives, the diffrentiation is taken place onthe higher order function rather than' the parabolic equation. By this way, the derivatives ofsmall degrees (first and second) are obtained with very small errors compared to thetraditionai-y finite differenec method. It has been shown that for the higher orders derivativesthe PFD method gives a reasonable approximation and the shape of function is changed whenit is compared with the conventional finite differenec method.

In order to integrate equation (4.80), it is necessary to divide the variable domain into somefinite distances. For our example p 0.98 and it has been assumed that the variable domainis divided by 7 equivalent distances each equal to p = 0.14. The first expression on theright side of equation (4.80) forms one the boundary conditions for the differential equation.Thus the product of two uni-variate normal functions is detremined as follows

F(131, p2,0) = (3.846)(L69i)z(9 999409411 D-1) X(9.544224341333685D.4)(48l)

where D denotes the double precision real däta type. Note that the cumulative uni-variatenormal function is excerpted from reference [521. The product in equation (4.81) iscalcualted by a simple program in FORTRAN with 15 accuracy decimal digits which isrepresented by the double precision variable as follows

F(31 ,t32,0) =9.S43660669942732D-1 (4.82)

The 'boundary conditiòns for the differential equation (4.80) are defined as follows
F(3.846, 1.691 ,O = 9.S4366O669942732D-1 (4.83)
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and

e3F(3.846, 1.691, p)
={27t%I1: - p21'exp[_l (3.8462 +(1691)2 2P;(3.846(1.69uI)J(484)ap 2 I_p2

Equation (4.84) holds for p ,[ 0.14 , 0.28 ,. 0.42 , 0.56 , 0.70, 0.84 , 0.98 j . Thusequation (4.83) together with the 7equations obtained from equation (4.84) form a set of 8linear systems of equations. The output will be the cumulative bivariate normal distributionfor defferent parameters of p and the answer for p = 0.98 is obtained by
F(p1, ) =2(3.846, 1.691 ¡0.98) =9.54417356D -1 (4.85)

And the probability of failure P is determined by equation (4.75) as follows
1 2(3.846, 1691 ;0.98) =0.045582644 (4.86)

The reliability index for the series system inFigure. (4.6) is-calculated by the -FORM-methed -by



= '() 1.6893' (4.87)

in reference [50], the Ditlevsen bounds for this example have been calculated and the
probability of failure is expected to be close the the lower bound of Ditlevsen. The lower
bound is the maximum probability of failure of any element and in this example the lower
bound and the corresponding reliability index have been given by P1 = 0.04557757 and ß1= 1.691.
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CONCLUSIONS AND 85 FURTHER RECOMMENDATIONS

5- Conclusions and further recommendations

The following conclusions can be drawn from the reliability analysis methods:

The main objective of the research has been discussed in the first section of this reports
A risk analysis has been reported for the jack-up failures vs. jacket failures by M. Efthymiou
[15] and S.F. Leijten & M. Efthymiou [33]. The detailed investigation of the platform
failures in two parts including the total loss and the environmental loading and foundation
failure has been studied. The hazard rate for both type of platforms has been compared and
it has been concluded that regardless of the selection of type of loss, the failure rate does not
differ from the failure rate of previous decade for jack-up platforms. it included the loss of
jack-up platform in case of total loss or loss due to the envirönmental loading and fOundation
failure.

Developments on the dynamic analysis of jack-up platforms has been outlined in the first
section. This is due to large dynamic amplification for moderate and deep waters combined
with the structural flexibility for jackup structures. The method is implemented on the
extreme load effect that will need the contribution of joint probabilIty distribution of
significant wave height and spectral peak period as discussed in the second section. The
nonlinearities in the structural response due to the flexibility of the structure (so-called p-
effect) may introduce highly dynamic behavior. Even with the advances for the reliability
analysis methods it seems that most of the reliability approaches are not consistent with the
state-of-the-art structural analysis techniques. For example in the estimation of reliability
measure for dynamically sensitive offshore platforms, it has been assumed that the dynamic
amplification factor (DAF) can be assumed as a deterministic parameter in the, reliability
analysis.

One of the promising applications of probabilistic methods is for reliability updating based
on impro'ed-or-new-information.---Thiscanbe-implemeflted for the strength characteristics
includiiìg the reliability updating based on improved or new information with respect to
fatigue crack growth in weldings of platform. The reliability model may be improved by
improved information about the environmental' characteristics,, the dynamic properties of the
structure, the improved model for probabilistics characteristics of strength of materials and
all geometrical restrictions.

A well known technique from classical methods of reliability analysis is the first order
second moment (FOSM) methods in which a complex system reliability model is
approximated by linear functional relationship between the output safety margins and the
input basic variables. An efficient repeated computation is adopted which allows the
determination of design point, probability of failure and reliability index. As the structural
reliability is governed by the tail behavior of the normal probability distribution, it is
apparent that the FORM methods based on second moment characteristics may not be
sufficient in reliability studies. Adoptive techniques that combine FORM (or even SORM)
calculations on the Monte Carlo Simulation (MCS) with point evaluations of the true failure
function has been suggested e.g. in [59].
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5. As indicated by P. Thoft Christensen [60], the safety margin for most fàilure elemenis in general dependent on the stress effect history. There are some techniques fär theformulation of reliability under combined random load sequences, but the stochastic modelis comprising from the transformation of discrete time variant problem into a time invariantproblem involving only the extreme of the time-variant varIables. The tail behavior is againoccurred when the basic variables are transformed to the uncorrelated standardized randomvariables. Superposition of the environmental loadings can be simply applied for highlyredundant platforms as well as the fixed platforms but the robustness of the initial design willnot be differ too much. This effect can be taken into account by introducing one or moremodel uncertainty variables. The problem is arising which distributions must then beestimated from information of unknown data. An additional problem is arising in theevaluation of the residual strength of a damaged element. For reliability approaches optimalinspection and maintenance strategies can not be obtained without and real information aboutthe residual strengths.

Documented experience show that offshore structures are occasionally exposed toaccidental loads and damages. The consequences of damage should require more attentionand the reliability of the remaining damaged system may be useful than the estimatedprobability of failure for the initial undamaged structure. The motivation in the newregulations is to ensure that the local damage do not lead to structural collapse rather thanthe progressive collapse analysis of first design. Although there is not an union method forthe evaluation of the reliability of damaged state but the structurai redundancy concept shouldbe accounted in the reliability measures in conjunction with the nonlinear effects of slendersystem.

The above mentioned factors need to be balanced to the type of platform, its side andthe mode of operatiön, in order to optimize its overall performance and ensure the integrityof the platform during its service life. Some optimal design procedures regarding to theweight of Platformhave_beenstudiedby_p.ThoftChrteefl [60] butalso iLls_not a fullyoptimal design procedure. It is possible to modify the position of joints in the set ofoptimization variables (shape optimization). On the other hand, in case of deep water fixedplatforms, the inspection and maintenance of the deeply submerged parts of the structure maybe difficult if not impossible. In this case, it may be necessary to build more redundancy intothe structure in order to ensure its long term integrity. However the structure has to be ableto continue its design operation or to provide sufficient time for safe evacuation and repairs.Sometimes it is much better to design the platform in such a way that sufficient safety isensured during the total installation titne of the structure than to rely on repair when needed.

The equivalent linear safety margin concept can be used in order to approximate thesystem reliability of complex structure. The method is often referred as the Hohenbichjer &Rackwitz or Goliwitzer & Rackwitz algorithms [50]. An alternative approach has beendeveloped in simulation methods which is called the Response Surface Methodology (RSM).In this method the complex system is directly approximated by a simple functionalrelationship between the reliability quantities (for example reliability indices) and the basicvariables. As well as the transformation methods, the linear and quadratic functions areapplied with an efficient repeated computation Adaptive techniques that_combineFORM/SORM calculation on the response surface function with point evaluations of the true
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failure function has been reported by P. Bjerager [55].



6- Nomenclature

(t) = an ergodic record representing the
water surface

a = wave amplitude
= phase angle

k = wave number
L wave length

= 2-irf = wave frequency
d = water depth
m = E [f'] = nth moment of spectrum

= mean zero uperossing period
T = mean crest period
N = number of zero uperossing points
N = number of crest points

= spectral width parameter
= spectrum width parameter

p(.) = probability density function
(p. d.f.)

= X = mean value
= standard deviation of variable x

X3 = skewness
X4 = kurtosis

= standard normal distribution of x
H11 = nth order of Hermite polynomial
b11 = Hermitian moments
H = H¼ = significant wave height

KC = Keulegan-Carpenter number
B11 bias factor for extreme wave

height
VBH = coffiecient of variation for B11

= yield strength iN/m,n2)
0r = rupture strength Nimm2)
X = slenderness parameter of an

element
E = Young's Modulus
DAF = dynamic amplification factor
Pr{X x} = probability of the event

"X X"

F(x) = uni-variate cumulative distribution
function (c.d.f.)

= point probability at ponit n
expO = exponential of
0 = partial differentiation

= safe space region
= failure space region

X = (X1, X2, X3, ...., X11) random vector

C = covariance matrix of random
vector X

AT transpose of matrix A
p = correlation factor
Ln = logaritms of x in exponential base
Ç = coefficient of variation
z = standardized variable
R = resistance (or) strength
S = stress (or) load

= idealized reliability
true reliability

M = safety margin
= standardized margin

P1 = F = probability of failure
ß = safety (or) reliability index
O = central safety factor

I NOMENCLATURE

H = root mean-square height
N number of waves in planned

service
T5 = short term period
TL = long term return period
RetO = response amplitude operator
D = characteristic dimension (diameter)
Dr = roughness mean size
p = density of water
i' = viscosity of water
f(t) = wave force per unit length of

vertical cylinder
u = horizontal component of water

particle velocity
C'M inertia
CD = drag
Re Reynolds number
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