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1- Probability concepts
1.1 Introduction

In practical design of the structures, engineers are generally aware from the determination
of absolute reliability. The reason for this conscious action is that structures are practically
neither feasible nor tenable due to the lackage of the avialable information. Since the lack
of absolute reliability is a consequence of uncertainty, the evaluation of reliability naturally
requires sufficient knowledge of the unknown uncertainties. Therefore, we may know the
increasing gaining acceptance based on the belief that the reliability approach can be
implemented without difficulties within the farmework of conventional structural analysis and

. design procedures (Fredenthal 1975 [18]). Thus, the only requirements of this approach is

to provide a logical systematic analysis of the reliability and safety of a design in the face
of uncertainties that are specified with the probabilistic approximation of "load" and
"resistance". However the distributions of the statistical variables are neither known nor
obtainable by simple probability distributions. The main problem of a reliability analysis is
thus the understanding of uncertainties and principles of probabilistic approaches. It is
concluded that for assessment of reliability:and structural safety, the.concepts of probabilistic
methods are playing a cential role.

Before that we start with the definitions of reliability concepts, it is necessary to distinguish
between the risk and uncertainty assessments. Because the risk is a measureable uncertainty
of loss or of a damge, the faulty of a risk assessment is that its result is often related to the
financile success of the design and the consequences of structural damge is often omitted. On
the other hand, by application of the probabilistic theory to design circumstances, the result
of analysis are constructed with a credible model which is consisted from physical reality.
In other words, the limitation of measurable values for the subjective excitation and structural
response are logically involved only in a reliability approach. A good definition of
uncertainty is required to identify the sources of basic data information which is needed as

a first step in reliability design procedure.

1.2 Uncertainty

Unéerta‘inty is defined in Webester's New Twentieth Century Dictionary with six different
meanings: ‘ ,

. Not certainly known; questionable; problematical.
Vague; not definite or determined.

Doubtful; not having certain knowledge; not sure.
Ambiguous.

Not steady or constant; varying.

Liable to change or vary; not dependable or reliable.
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2 - PROBABILITY CONCEPTS

If one concentrates on the difinations which seems are different in first instance, he will
-receive to the conclusion that all the definitions can be captured by two distintict meanings;
Ambiguity and Vagueness [30]. In general, the vagueness is associated with the difficulties
of making sharp or precise distinctions in the world, in other words, the reason of uncertain-
ty is that the boundaries of a quantity is not known in a boundary domain. On contrary, the
ambiguty is related to the several concepts as well as, one to many relation, variety,
generality, diversity and divergence. In regarding to structural reliability theories, most of -
work has been concentrated to the analysis of ambiguty not to the vagueness. The question
of how to measure vagueness or (fuzziness) has been one. of the issues assosiated with the
development of the theory of fuzzy sets. The application of fuzzy theory to the structural
reliability of mooring pipelines has been considerd by Japan’s researchors in order to find
the collision damage. The evaluation of fuzziness for expert systems (computer networks
managements and so on) is considered at the faculty of Informatics of Delft University of
Technology.

1.3 Probability and probability of combined events

Bertrand Russell (1926) believed that the probability is the most important concept in modern
science. In his intelligent statement, nobody has not the absolute definition for the probability
and nobody knows what it means. In any case, in human living, there are a lot of problems
that, the people encounter with the probability estimation. For example a decision may not
be chosen as a "best" decision without consideration of a decision criteria. In most of
deciisions, the final result is found under condition of uncertainty and a best decision can be
found by a decision maker with a lot of experience. It can be concluded that in spite of
probability, non of any decisions can not be accepted. However in most of cases the nature
of belief, extremely affects the result of a decision. For this reason one decision which is
pessimistic in the opinion of one person, may be considered as a wrong decision by a
optimistic person. (A pessimistic person belives that nature always works against him while
an optimistic person believes that luck is always on his side.)

Before that we introduce a mathematical definition for probability of an event, it seems
necessary to define the event itself. Any problem involving the uncertainty, the "true
_ situation” is, of course, not known for certain. In addition the existing condition will be
turned and there will be different outcomes for a certain
state. In probabilistic approach, possible outcomes are called | —=
events. Alfredo H.S. Ang and Wilson H. Tang [1] have | E
defined the event by means of sample space. If all posibilities
in a probabilistic approach is collected in a space which is
called a sample sapce, then each of the invidual possibilities
can be estimated as an event. Therefore the event is defined Figure 1.1 A Venn diagram
by a subset of sample space. An event may be represented by
a Venn diagram. In a Venn digram, the sample space is represented by a rectangular; the
event E itself is then represented by a closed region inside of the rectangular. The remainder
part of the rectangular in the outside of this region is called the complementary event E (see
Figure 1.1).
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Knowing the meaning of an event, the probability has been defined in reference [39] as: "A
mathematical concept which assigns a number between 0 and 1 to-an event or a combination
of events is called probability of the event or events. The likelihood of event is equal to 0
when it is impossible to occur and is equal to 1 when it is almost certain. Probabilities are
dimensionless quantities. " ‘

In reality, true values for probabilities can be obtained only from an infinite events. Since
infinite trial of any event is not existed in real world, thus the mathematical definition of
probabilities are often found in a fixed number of trial events. Consider the result of a failure
test of a component (take for example tensile strength of a bar). Suppose that the fixed
number of components is given with N under test. In time ¢, the number surviving
components is found by N,(f) while the number of failing components will be N(®) (where
N,(t) + N(t) = N). The probability of survival (or reliability) and the probability of failure
~ at time ¢ are defined by the following equations

N,()

Pr{E}=Pr(N_<N)=R(f) = (1‘. 1)

In which, Pr{-E} denotes the probability of occurrence of the event (usually called success).
The probability of non-occurrence of the event or complement of E (E, usually called failure)
is defined by '

— , Nt
Pr{E)=Pr{N,<N) =F(t),.=—f1¥ (1.2)
These are complementary, i.e. the survival and failure events can be added together and we

have R(f) + F(r) = 1.- By a certain event, the probability is equal to 1 and by an impossible
event which does not occur in any time, the probability takes a zero account.

In most of cases, ah event occurs In a c_ombmatrion' of
i different events which are correlated with the formats of i '
-~ "AND", "OR", "NOT" and a combination of these three | ' 7/ ‘
i ’ [) . " 2,
. relations. For example, in describing the stae of supply of | ///%@///
1 . construction material, if E,represents the shortage of concrete | . < / |
' and E, represents the shortage of steel, then the shortage of | - : B i

material is given by the union E,U E, as shown in Venn Figure 1.2 Union events
diagram of events E, and E, [Figure (1.2)].

1.4 Fundamental laws of probability

Consider the probability of an event A4, i.e. Pr{A} or simply P[A], is given by a number
between 0 and . Thus the probability that event A happens will be equal to P[A]. For
example, P[A] = 0.1 in evaluation of flood (i.e. event flood = A) in this year means that
the probability of occurrence of a flood is equal to 0.1.

In probability engineering, the relationship

s between sets are restricted by certain operation




4 PROBABILITY CONCEPTS

rules. Who has some problems with the probability concepts, he must be care from the initial
definition of the used symbols. The operational symbols have been classified in accordance
to the relations beteen an one dimensional category system. These symbols are given in Table
1.1 [1]. By definition, the union probabzlzty A and B, i.e. P[AUB], is the sum of the

individual probabilities.of A and B minus the probablllty that both events (4 and B) occurring
simultaneously. Thus

Table 1.1 Operational symbols in probability

De;cription
U | Unien
N | Intersection 7
-C” | Belongs to, or is contained in
» Contains |
P[AUB] =P[A] + P[B] - P[ANB] (1.3)

In special case when two events exclude each other, i.e. P[/ANB] = 0, then the probability
of two events can be added by the simple algebraic summation. This axiom is called the
addition law of probability in the literature.

The conditional probabzlzty for A is the probability of occurrence of event A provided that
event B has taken palce. By definition, the conditional probability is the ratio of the
occurrence of both events 4 and B simultaneously P[AN B] to the probability of occurrence
for-event-B-In-fact-the-conditional-probability-of-A-assuming-B-has-occurred,-means-that_the
the occurrence of both events with the appropraite normalization (respect to the first.
occurrence or B), i.e

P[ANB]

P[A|B] = (1.4)
[A|B] PIB]
which can be rewritten as

P[AﬂB] =P[A|B].P[B] : (1.5)

If two events A and B are not correlated to each other (the occurrence of an event does not
depend on the occurrence of another event), then

P[A|B]=P[4] (1)

Or
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P[ANB]=P[A].P[B] | (%))

For three events 4, B and C the equation (1.7) can be written as follows

P[ANBNC]=P[A|BNC].P[B|C].P[C] (1.8

An advantage result can be obtained by implementation of this theory for n uncorrelated
events B; in which i = 1,2,3,...,n [see Figure (1.3)]. The probablllty of event 4 is given by

P[A] P[AﬂB]+P[AﬂB]+ .+P[ANB,] (1.9
P[A]Ff: P[ANB|] =‘}":,P[A|Bi,].P[B,.] -  (L.10)
is1

i=1

With the same definition of conditional probability for event A4, the probability of occurrence
of all events A4, B; ;_, , ... can be written by using equation (1.5) as follows

P[ANB]=P[B,|A].P[A] (1.11)

Thus the conditional probability of P[B,|A] is calculated by equation (1,12). In practice, the

lack of statistical data and model uncertainty are important features for the conditional
probabilities.
P[ANB) _ P{A|B].P[B,]

P[A] (1.12)
?; P[A|B;].P[B]

P[B;|A]l=

The basic problem is that the statistical data can be described in term of subjective
judgement.The traditional approach to statistical inference does not take into acount this past

experience. The frequentistic philosophical is B, ‘

accepted as an objective degree of belief for the | ‘“A| ”7 / A0 By
event with prior probability. By a bayesian | . ///, L
philosophy, the subjective event (posterior “" bs 6

probability) is obtained from the objective one Figure 1.3 Conditional probability

(prior probability). Therefore the posterior

probabaility distribution is updated from the prior probability distribution through a likelihood
function. The fundamental of the bayesian philosophy is used in experimental practice for the
analogy of quality of a material B; by contribution of many laboratory test results defined by
A. The extraction of subjective event (posterior probability) in term of the objective event
(prior probability) requires the knowledge of the entire distribution .of a random variable as
defined by equation (1.12).
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1.5 Discrete and (or) Continuous Probability distribution functions

A real-valued function F(x) is called a uni-variate cumulative distribution function (cd.f)or
simply distribution function if

i ) F(x) is non-decreasing, i.e., F(x,) < F(x,) for x,< x, .
ii ) F(x) is everywhere continous from the right, i.e., F(x) = lim F(x+¢); 0%,
iii) F(-00)=0, F(o0)=1.

Thus the prbbability of the event "X < x" (where X is a random variable) defines by the
cumulative distribution function, i.e., Pr{ X < x } = F(x). :

In the numerical analysis, the probabilistic distributions may not always be complete
compatable with the continuous distributions and the discrete distributions which are
characterized by the random variable X taking an enumerable number of values at discritized
points (x,, x,, X5, ..., X,) with point probabilities are defined as follows

f,=PriX=x}s0 (1.13)

The only requirement for the point probability f; is that it should be satisfy the condition of

Y f,=1 : : (1.14)

And the corresponding distribution functions can be written as

Fx)=Pr{X<x)= Zj £, (1.15)

where the summation is over all values of x for which x, < x. Examples of discrete
distributions are single point or degenerate distribution, binominal distribution,
Hypergeometric distribution, Poisson distribution, Negative binominal distribution and
geometric distribution. For more information about the characteristics of the distributions the
reader is reffered to Handbook of mathematical functions written by M. Abramowitz and I.A.
Stegun (see reference [52]).

On the other hand, if the derivatives of a cumulative distribution function was absolutely

continuous, then the distribution is called a continuous distribution. Examples of continuous

distributions are Normal distribution, Log-Normal distribution, Exponential distribution,

Gumbel or Maxima Extreme-value Type I, Frechet or Maxima Extreme-value Type II, Fisher-
Tippett or Minima Extreme-value Type I, Weibull or Minima Extreme-value Type I,
Rayleigh distribution, Special Erlangian, Triangular distribution, Error function, Cauchy
distribution, Laplace distribution, Pearson Type Il or Gamma distribution, Beta distribution
and rectangular distribution [9,52,31].

The application of Gumbel distribution to model the environmental maximum of a quantity
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can be found in wide area of science (take for example the maximum wind speed). For the
first time, E.J. Gumbel has introduced this distribution in his book "Statistics of extremes"
published in 1958. The Gumbel distribution is in fact doubly exponential distribution.
Therefore if Y is Type II Maxima distributed then Z = Ln Y is Type 1 maxima distributed
which is often called the Gumbel distribution. On the other hand, Weibull distribution (3-
parameter or 2-parameter) is also applied for the prediction of extreme conditions. In
practice, it is common to plot the cumulative probability and environmental variable in a so-
called "Weibull Scale" paper. A "good-fit" of environmental data will achieve by a straight
line on this scale unless the Weibull distribution is not suitable for the given data. However
based on the "Main study report of Hutton Area" [26], it has been found that when
approxiamtely 30 years of data are used, the differerice between Gumbel and Weibull
distributions is fairly predictable. The extremes for 1 and 10-year are approximately
evaluated with the same quantities, but on the other hand by the comparison of the 50 and
100-years data, the Gumbel results are always higher than those given by the Weibull
distribution {26].

Note that the rectangular distribution with unit length is often called the Uniform distribution
[31]. The distributions which have been introduced earlier, have found their applications in
a variety of sciences. In offshore engineering as well as other'hydraulic engineerings, for
meteorological and Hydrological events, the most important distributions are: Normal, Log-
normal (3-parameter or 2-parameter), Gumbel, Pearson, Log Pearson and Frechet (or
Maxima Extreme-value Type H). In fractural mechanics and fatigue problems, the Weibull .
distribution (3-parameter or 2-parameter) and Log-normal distribution are implemented in
majoraty of reliability problems. In each case, the characteristics of all important
distributions can not be prepared in the context of this report and the reader should be study
the advantage books about the mathematical discription of these distributions. However
because of that in most physical problems the distribution of random variables are coinciding
with the normal distribution, it will be useful to point out some characteristics of the normal
probability distribution function in this context. '

1.6 Normal or Guassian probability function

A random variable X is said to be normally distributed with mean x and variance 0,2 if the
probability that X is less than or equal to x is given by:

PriX <x) =;fexp[—(t_—?2]dt=F(x*x) (1.16)

Ux\/ﬁ_w 2()Jr Ux

The corresponding probability density function (p.d.f.) is found by the differentiation of the
above formula, i.e. equation (1.17).

B P(EEy - fr) = — L _oxpl- =D | (117
ox g, o 2n 2(,?‘ : v

The normal distribution is symmetric around X and the inflexion points of the probability
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density function are at x 4o, The direct integration of equation (1.16) would be
cumbersome. It is possible to avoid this direct integration for manual calculations by
providing a table in which a standardized normal function has been integrated. The normal
density function may be placed in standardized form as follows:

PV U o 1.18)
f(2) 2ﬂexp[ 2] (1.18)

. x-x
where z=
_ g,

In other words, if the characteristics of the nbrmal distribution are taken equal to

x=0, o=1 ‘
In that case the integral of the normal distr'ibutio_n_v may be stored in a table for evaluation of
integrals of a normal density function given a x and o,. The standard normal probability
distribution function and its derivaties has been given by M. Abramowitz and L.A. Stegun
in reference [52].

In general, the multivariate joint normal probability density function is considered in the n-
dimensional basic variables space w. For a given structure, the basic variables are defined
by a realization of a random vector X= (X,,X,,X,,...,X,) where the number of basic variables
n is assumed finite.

1

@r)? C?

(=)=

Ll..exp[—'—zlz Ox; =%, My (x; - %)) 19

ij=1

where [X]1= (X,,%,,%;,... X),[X]= (X}, ;X g,... ,x,) and M= C!where C is the covariance
matrix defined by equation (4.8). -

( Var{x,] Cov[x,,x,) Covlx,x,]]
Cov[x,,x,] Var{x,] Covlx,,x,]
c-l : - (1.20)
|
Covlx,,x;] Covix,,x,] Var(x,] l

The covariance matrix of X can be written in a more convenient way by using vector and
matrix notation as follows.

C=E[(X-X)}(X-X)T] (1.21)
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where the superscript ‘T’ denotes the transpose of matrix. Since C is positive definite, there
exists an orthogonal matrix, 7, and that TCT" is a diagonal matrix. (Its diagonal elements
will be the eigenvalues of C ) Let Y= TX. Then ;

El(Y-Y)(Y-D)"]-T.CTT (1.22)_5_“
_w-ill be a diagonal matrix, and the variables, ¥, will be the required uncorrelated variables;

M. Abramowitz and I.A. Stegun have also considered the standard bivariate normal
probablllty dens1ty function which is defined by pair of random variables (X,,X,). The
formulation is similare to the formulation of multivarite joint normal probablllty function
(Equ. (1.19)), but with introducing of the correlation factor p between two random varibles
X, and X,. (The correlation factor is defined by the ratio of covariance of variables to the
product of their standard deviations). A simplified case for bivarite probability dens1ty
function occures when the standard deviations of random variables are equal and the variables
are 1ndependent , the correlation factor is zero (o0 = 0). In this case, the function is
called the circular normal probability density function which can be written as follows:

X, =X, Xy-X,

£ 22y _f(%,,4) -

-* Y +lr - )2 :
exp(—'(xl X)) +(x,-x,) | (1'23)_
2 g? 202 C

However, the multi-integral of the probability density function, equation (1.19), which is
called the cumulative joint probablllty distribution function of the random variables, can be
evaluted analytically only in some special cases. For the case of the bivariate normal
probability function, the double integral of probablllty density function is called the joint
probability distribution function of the random pairs. M. Abramowitz and I.A. Stegun have
introduced some simplified graphs for the integration of the bivariate normal probablllty
distribution function.

An alternative for the integration of the probability distribution functions has been found by
use of the numerical methods. In fact, in the case of multivariates with several distributions,

the combersome of the analytical methods makes it impossible to evalute the integrals w1thout
application of digital computers and it seems the numerical approach is the only one.It is
necessary that all the uncertainties in a design have been involved in the joint probablllty
density function f{x), and that f(x) is known. Owing the lack of data, these probability.
distribution functions are seldom known precisely, and the numerical evaluation of the joint
probability distribution function is extremely difficult or even impossible. In structural
reliability analysis, sometimes only the first and second order moments (the mean and
variance) may be known. Different approaches of first-order second-moment (FOSM):
methods s1mpllf1es the functional relationships and mitigates these difficulties outlined before l
On the other hand, generally speaking, the basic variables cannot be satisfactory modelled
by a normal distribution. In order to simplify the development of the concept of reliab llt}‘(
analysis method, an assumption is made that the basic variables are considered to contaanust
~_two normal or log -normal distributins. i 3

0

1)
N
ks

‘.
b
3

e R e 1 § e,

b

— .
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1.7 Log-Normal probability function

The characteristics of log-normal distribution is very similare to the characteristics of normal
distribution. Consider a random variable x is related to a second random variable x, by the
relation

x,=Ln x | (1.24)

where Ln denotes the logarlthms of the variable x in exponential base. If the random variable
x is normally distributed, then x, is said to have a log-normal distribution: In terms of the
mean value of x, , i.e. x the mean of the logaritms of variable x, and the standard deviation.
of x;, i.e. o, the standard deviation of logaritms of x, the probability density function of x
is given by:

f(x,)‘==;.exp(‘»— 1 SLn x-x)" ;x>0 (1.25)

a,. 2% 2(.’*.:

‘The mean and the standard dev1atlon of Log-Normal distribution, i.e.. x,and o, can be
calculated in term of the mean and standard deviation of the random variable x. If the
coefficient of variation of random variable x is defi ned in term of its mean and standard
deviation as given by equation (1.26), then the mean and the standard deviation of new
variables are easily calculated by formula’s (1.27) and (1.28).

=2 | | (1.26)
x , : _

% ~Lnx- %Ln(l W %)

o,’=Ln(1+C}) (1.28)

And the cumulative probability distribution function of x is written as equation (1.29) in
which ¢ denotes the cumulative distribution function for the standard normal distribution.
Using Monte-Carlo approach, the cumbersome of integration for logaritms of many values
would be facilitated by application of simple computer programes.

Lnx -x,

] | (1.29)

-
1 _ :

F(x)=®[

One of the characteristics of 'LSg-nonmal distribution is that its mode, median and mean are

__different from each other. (Note that the mode of a density function would be peak of the
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distribution, the median of a data is the midpoint of the data if the data values are arranged
in either ascending or descending order and finally the arithmatic mean is the measure of
central tendency or average of the sample data). :

1.8 Hazard

Although there are many definitions for the concept of hazard as well as risk, peril, ... but
in the term of potential condition of a component, equipment or a system of components the-
hazrd is implied threat or danger and often harm. Thus by occurrence of a hazard, the
potential condition can be changed to condition of injury, death, damgae, loss. of part or
whole of the object.

In probability engineering, the hazard rate, is defined in term of probability of survival (or

reliability). If we rewrite the probability of survival as follows

N-N(t Nt ' |
PR(t)= f() =1- f() ‘ (130)
N N ' :
By differentiating we will get the following expression
dPy® 1 dN@®

, (1.31)
dt N dt '

In which {dN() / N.dt} is the instantaneous probability when dt approaches to zero. The
instantaneous probability is often called the probability density function (pdf ) for the case
of continuous random variable and probability function or point probability function for the
case of the discrete random variable. Thus the relation between probability of survival Py(f)
and the probability density function f{t) is obtained as follows

=) | (I32)
o L
A rearrangement of equatlon equation (1 .3¢) gives an expression for the failure rate.
dN(1) N dP(t)

\ (1.33)
dt dt

The failure rate can be interpreted as the number of componenls failing in time interval dt,
between ¢ and ¢ + dt. If both sides of equation (1.33) are divided by N,(¢), the instantaneous
failure rate or the hazard rate will be equal to

1 de-f(t)\z_ N dPy® A0 (1.34)
N.@® dt N@® dt -

Substitution of equation (1.30) into the equation (l‘.34) results to the following expression
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1 dPR(t) )

rO=- Pp(0) dt

(1.35)

Hazard rate is always time dependendent but the case of constant hazard rate is a practical
mterest An application of constant hazard rate will be shown later.

1.9 Probabilistic modelling

The accuracy of a reliability method is highly dependent to the probabilistic models. Normal
distribution is the conventional distribution for the probabilistic modelling and often is used
with the large number of variables. An important reason for the wide applicability of the
normal distribution is. in fact it fits with most quality controles and some rehablhty
observations. The goodness of normal distribution for large number of variables is proved
by central limit theorem. Because of extensive application of Normal distribution, the non-
normal distributions are often converted to the equivalent normal distribution. Although these
transformations are widely used in level I reliability analysis but the result is often lapsed
by the applied transformations.

If the random variables are product of a large number of quanteties, then the log-normal
distribution often gives a better approximation because of central limit theorem. Further, the
extreme value distribution is used for the largest or smallest quantity of random variables.
Although any distribution may be transformed to the normal distribution, but it should be
considered that the results will not be accurate specificly in the tails. Although many types
of distributions may be considered in the reliability analysis but usually it is a difficult task
to find the best distribution for a random sample data.

The random variables that are often called basic variables mainly are collected by loading,
strength (or resistance) and geometrical quantities. Concerning the loading, the basic

variables will be treated in term of physical nature of loading and its statistical simulation,
The main types of loadings are classified as Functional, Environmental and Accidental loads
that may act individually or simultaneously. The important point in the reliability analysis
is the effect of simultaneous loadings’ particularry when the accidental loadings are included.
If two or more loads are acting to the structure then the combined effects will be considered
ultimately. However, the uncertainty of current action and wind turbulences or the damage
to hatch covers caused by local loads will not be considered here. Concerning the
uncertainties for the local loads, structural details of this type should always be designed with
higher nominal safety margins than the substructures or single members. The collapse due
to the usual over loading may be considered as the "fail safe" case (Lindemann et al. [34]).
In the following chapter, the uncertainty in environmental loadmg especially the wave effect
will be discussed with a sufficient attention. In consideration of the resistance parameteres,

~ basic variables are often modelled as time independent varlables (Thoft Christensen and
Murotsu {50]). The distribution for the yield, buckling and collapse failures are often
concides with the normal or log-normal distribution. For fatigue ultimate parameteres. often
the Weibull, expotential and Gumbel distributions are used 1‘11 the response analysis.

— . —_— R R R
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1.10 Reliability method and its Level

The reliability method is a design tool for limit states. Essentially, it is based on probabilistic
approach, which can be used to making decisions for important structures. Today the

concepts of reliability analysis are applying for the design of nuclear plants, highway bridges,
offshore structures and so on.

The probability of performance of a function is defined the reliability of the component,
equipment or system for a stated period of time. On contrary, the probability of failure is

~ defined in term of inability of the component, equipment or system for a required function.

An efficient reliability method treats the efficiency and the accuracy of requirements.
Although in rellablllty engineering both efficiency and accuracy are important to makmg
decisions, but in practice the models of reliability methods are divided into two major
branches. Duddeck (1977) calls two kinds of models the reseach models and the technical
models. The reasearch model compromises the reliability data to minimize the difference
between the idealized reliability (P") and the true reliability (P). Here the emphesis is to
develop an accurate reliability method. In contrary, a technical model improves the efflclency
and the objective of the model aids to making decisions [37].

The advantage of a relibility method is positioned on its probabilistic nature. In the first
place, by a probabilistic method it is possible to compare different failure modes. This
method gives a uniform meaning in the safety of a structure. Furthermore, the relibility
methods may be compared with the common sensivity analysis. Here, the advantage of a
probability method is that it gives a coherent picture from the sensivity componant.

Different classical techniques are used to assess the reliability of engineering structures. Level
I method comprises calculation based on characteristic values and (partial) safety factors or
safety margins. Strictly speaking, a calculation at Level I does not involve failure

probabilitis. It dees, however, provide a method of checking whether a defined level of
safety is satisfied. This type of calculation is more particulary suitable for every day practice.
The interrelation of various Levels will be dealt latter on.

The transformation techniques are used to transfer all probability density functions to the
probability density functions of normal distribution. This is the basis for a Level II (or second
moment) method which comprises a number of approximate methods for linearization of limit
state margin. Two important second-moment methods are the mean value first order second-
moment (MVFOSM) and the advanced first order second-moment (AFOSM) methods that will
be described in chapter 4. The classification of two mentioned methods are as follows:

a) The mean value first order second-moment method is based on the variation of mean and
standard deviation of random variables and is formulated on the basis of linear approximation
of failure surface.

b) The advanced first order second-moment method is based on the recalculation of design

~points in terms_of sensitivity values in an iterative form, and finally calculation of the
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reliability index (8) while the limit state equation is formulated by the linear approximation
of failure criteria.

For the linearization of limit state function either one or two expression from the Taylor
series are often used in the vicinity of design points. Depending on the approximation on the
expanding of Taylor series the methods are often called FORM / SORM methods in the
literature. Which formulation is to be chosen depends on the nature of the problem. It means
that if the limit state function only consists of linear relationships, then a FORM procedure
will give the accurate results otherwise the SORM formulation is implemented in the frame
work of reliability analysis. On the other hand, the approximate full joint distribution method
is based on derivation of normal distribution values in term of non-normal informations based
on the normal tail or weighted fracture approximation. These transformation methods have
been discussed in detail by Shu-Ho Dai and Ming-O Wang [11].

In level IIT method the joint distribution of required uncertian parameteres are used to access
probability of failure. In either case, the reliabilty of total joint distribution for the structure
can be found by means of numerical mtegratlon procedures (take for example Monte Carlo
method). The method comprises calculations in which the complete probability density
functions of the stochastic variables are introduced and the possibly non-linear character of
the reliability function is exactly taken into account.

Recently, a reliability method that compares the structural prospect with a reference prospect

according to the principles of structural economic analysis has introduced in literature by a

so-called level IV method. The interests in the analysis are the consideration of costs and

benefits, maintenance, repair and consequences of failures. Such methods are appropriate for

structures that are high econemic importance such as nuclear power plants, highway bridges
. and so on. The full definition of these methods are given in chapter 4.

1.11 Jackup risk versus fixed platforms

The risk has existed in human life since the dawn of human history. As time went by, the
safety plan took on a social form. The advances usually had negative as well as positive
effects on all eras and all peoples. Humanity soon became technical in the means to provide
the objects and conditions necessary for sustenance and physical contentment. Nowadays
humans must deal with those hazards that occur through carelessness and the unguarded or
inadequately organized uses of their devices and substances. It was. such a safety discipline
that assisted in putting men on the moon. Such disciplines made air transportation so safe that
it is the common way to travel over long distances. But again note to the paradox of
technology versus hazard which has been explained in Table 1.2.

We now have learned some methods of avoiding the pitfalls of human weakness. A modern
poet from P. Hein (1966) put it very clearly (see reference [44]).

The road to wisdom? Well it’s plain and simple to express: Err and err, and err again, but
less, and less, and less.

Scientists nowadays believe that the natural events are so complicated that we can nof handle -
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all of them. in the framework of mathematical relations such as the differential equations.
Indeed the type of a system is rather complicated in the order of it’s characteristics behavior
(The system is always defined by a set of variables). Thus one problem arises with the
incompatibility of real behavior of the adopted system and its relative response observed by
an unknown supplier (usually this also holds for the designer of the system). Informally
stated, as well as the complexity of a system increases, our ability to make precise and yet
significant statements about its behavior diminishes. Thus the precise analyses of the behavior
of a complex system is not likely to have much real-worlds such as in the design of complex

systems as well as aircrafts, nuclear plants, highway bridges and offshore platforms. The

responsibility of the designer requests the implementation of fullified methods for insurance
of operating systems and their passengers.

Table 1.2 Technology versus hazard

The Technological Advance The Hazard
Fire | Burns, conflagrations
Knives | Inadvertent trauma
Fossil fuels | Atmospheric pollution
High speed transportation systems | Accident induced damage and injury
Pesticides o , | Food chain toxicity
' Food preservatives . ‘| Carcinogens
L Nuclear energy | Ionizing radiation

Before that we start to identify the basic concepts of reliability theory in general, it should

~_consideration of different uncertainties in design parameteres and assumed models. Let us

be clearly noticed that which type of structures are studied in the skeleton of this thesis and
what kind of hazards will be discussed as a source of the structural collapse?

In the concepts of offshore industry different kind of mobile platforms are usually used for
the production of oil and gas resources. In spite of all type of mobile operating platforms,
a jack-up platform is a mobile offshore structure consisting of a hull supported by 3 or more
legs. The leg is towed to the location and then the hull is jacked above the water level.

For the fixed platforms 60339 is the total number of platform-years exposure while for the
jack-ups the corresponding exposure is equal to 4097 rig-year in the period 1970-°87.
Therefore a relative exposure ratio of approximately (60339/4097 = 15) is obtained for this
period. The relative exposure ratio for the fixed platforms was fifteen times higher than that
of jack-up structures in period of 1970-’87 and it may be interpretated with the vast
experience of fixed platforms with comparison to the jack-up structures.

The philosophy for the integrity assesment of offshore structures can be found with
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to start we the relative reliability of jack-ups compared with the fixed platforms. M.
Efthymiou has extracted the exposure statistics of losses for the jackups and fixed platforms
in the period 1970-’87 from the Worldwide Offshore Accident Databank WOAD [15].

Focussing on the most severe accidents, i.e., those found with the total loss of the unit, two
important results can be drawn (see for instance reference [33]). Firstly the total loss of
integrity for the jacket type structures is considerably less than for the jack-ups, i.e. when
we consider only one of the periods of 1970-’79 and 1980-’87. Secondly, whereas the
frequency rate of accidents for the jacket structures shows a significant improvement with
time (from 7.3 to 1.1), such a trend cannot be observed for the jack-ups (162 vs. 97 ). Note
that the frequency rate of accidents is determined by the total losses during the period of
investigation (years) per 10,000 unit-years (for example the total losses of fixed platforms
during 1970-°79 was 17 and the number of unit-years of exposure was 23,204 in the same
period, thus the frequency rate of total losses is [(17/23,204) x 10,000 = 7.3]). Accidents
in the WOAD databank are defined as those events or conditions which have caused damage
to supporting structures or equipment and environment causing death or injury to individ-
uals). On the other hand, if the same issue is used for the total losses due to the
environmental loading or foundation failure, i.e. excluding total losses. due to blowout, fire,
collision or during transportation, then the frequancy rate of accidents for the fixed platforms
will be (1.7 vs. 0.5) for the period of 1970-°79 and 1980-’87, while for jack-ups the
frequency rate of accidents will be equal to (35 vs. 34) for the period of 1970-"79 and 1980-
’87 respectively. '

With the frequaency rate of accidents, we are able to find the (instantaneous ) failure rate
or hazard rate for the total losses of two kinds of platforms for two mentioned failures, i.e.
either for the total loss or for losses resulting from environmental loading or foundation
failure.

In the last section, it proved that if the probability that an item (platform) will survive for .

a'stated-interval-is-denoted by-the-s-reliability;-and-it-is-given-by-the-reliability-function-Px();
then the conditional probability of failure in the unit interval (take for example one year) is
obtained by the equation (1.35). Rearrangement of equation (1.35) and integrattion from time
0 to-time ¢ gives general reliability function in term of failure rate \(f) as foliows

PL(#) =exp[ - f A(t).dt] : (1.36)
0 .

v

For the case of constant failure rate, i.e. M@ independent of time, is a practical interest. In
that case, the relation between reliability and failure rate can be written as:

Po(t)=e™* (1.37)
where e denotes the exponential function. -

Returning to our discussion over the losses of platforms, the failure rates for periods of 1970-
“779-and 1980-"87-are-shown-in'Table 1.3. It-can-be-simply-concluded-that the-relative-failure- ———— -
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rates for total losses are 22 and 89 in the period of 1970-°79 and 1980-’87 respectively. The
relative failure rates for losses from environmental loading and foundation failure can be
estimated from Table 1.3 which are equal to 2/ and 68 in the period of 1970-'79 and 1980-
"87 respectively.

Table 1.3 Failure rates for fixed platforms and jack-ups in the period 1970-’87
(Numbers in the table should be multiplied to 1/1,000,000)

Total losses consist of environmental Losses from environmental loading and

loading, fire, transportation, ... foundation failure

1970 - 1979 1980 - 1987 1970 - 1979 | 1980 - 1987

Fixed Jackup * Fixed Jackup [ Fixed Jackup Fixed Jackup

73.03 | 1633 1 | w77 | 17 | 3s04 | 5 | 3406

As a matter of fact, the total loss of integrity would be assembeled by addition of individuale
losses during the life time. In first instance, it is necesseray to focus on the subset of losses
in the elevated condition excluding losses caused by blowout, fire, explosion and collision
or loss during the transportation of the unit. This subset can be split up into two parts,
namely those caused by the external circumstances or by the internal conditions. Thus the
sources of the integrity losses for a jack-up structure can be investigated properly by two
ways:

(a) Firstly, the designer can be interested to the variation of external circumstances with a
set of design conditions. In this case, the most unfavourable external conditions are
considered by the extreme waves and their probabilistic modelling. The stochastic
response of the jack-up structure is obtained with the stochastic models for the wave

Ioading. The response of the structure is aimed to find the worst probabilistic extreme
wave conditions.

(b) Secondly, the structural conditions (physical and geometrical characteristics) can be
changed during the design life. The method is based on the derivation of best design for
a required environmental conditions. In this case, the sensitivity of jack-up in real
environmental condition requires a more severe investigation into the added risks. The
structural conditions can be changed during the design life including the effects of
reformed structure after inspection. The stochastic models for material strengths can be
considered to lead an effective cost design for the structure.

1.12 Developments in structural analysis of jack-ups

‘Traditionally the jack-up platforms have been designed for static deterministic (design wave)

approach. The dynamic response has been studied for the self-operating uints when it was
recognized that the reaction of jack-up units would be different when the units have moved

to deeper waters and/or harsher environments. In 1982 Youicho Hattori et al. [22,23] have
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suggested that an equivalent single degree of freedom system (SDOF) would be suitable for
the dynamic analysis of jack-up oil rigs. Their study was not only a way to find the natural
vibration of jack-up units but also they have considered the virtual mass of a leg vibrating
in water, and the supporting condition of the sea bed among others) In the foregoing study
by Y. Hattori et al., the three-dimensional idealized model of the unit was composed of
beams and rigid plates. The beams formed the lattice structure of the legs and the rigid plates
formed the box structure of the platform. An example of a three dimensional model of unit
which contains 209 nodes, 450 beams and 76 plates is adopted from their study and is shown
in Figure 1.4. The leg-hull interface in this model is represented by a weight-less rigid bar.

- The bar is tightened to the connection and the gap between leg and leg-guide is fulled by

inserting a wedge into the gap.

A comprehensive study has been carried out by 1.J. Bradshaw presented in the proceedings
of Mobile Offshore Structures Conference held in City University London [5]. His study is
consist of the comparison of analytical methods and software used for the jack-up analysis.
Three analysis methods have been discussed including the design wave method, Two types
of Frequency Domain (random dynamic) methods and Time Domain (random dynamic)

‘method. At that time, only the software for the design wave method was capable to represent

almost the all options of analysis (In Shell Internatinale Petroleum Maatschappij). The .
computer model used for the design wave method, i.e. static deterministic analysis, was a
three dimensional space frame for the lattice legs, stiff elements for the hull and jack-housing
and Pseudo members with specific properties and geometric planes for the leg-hull interface.
This interface was able to model the additional loads resulting from the rack teeth in wave
load of members. For the Frequancy Domain analysis, two different approaches have been
used. These approaches were different in three lights; the wave linearisation procedure, the
free surface effects and the statistical distribution of peak values. In issue of the linearisation
method, the methed (1) was implemented by a so called "constant wave steepness" approach
while the method (2) was developed by Borgman approach. The shortcome of inclusion of
non-linear effects due to wave loading and free surface effects have been overcome by

used a Jonswap spectrum with the peak enhancement factor y = 3.3,

implementation of limited, but still quite lengthy, time domain analysis. This provides the
large amount of significantly lengthy time domain analysis for three dimensional model of
unit which prohabits this approach. Thus an alternative idealized model of structure was used
in the time domain analysis which has been called the "single stick representation” of the
jack-up by Bradshaw [5]. Again this model introduces some errors with regarding to the
spatial seperation effects (hydrodynamic cancellation phenomenon). '

One of the recent studies on the up-to-date methods of jack-up analysis has been investigated
by M.J.R. Hoyle [24]. In his case study, the jack-up was represented by an equaivalent
model of hull grillage, collinear beam elements for lattice legs and a number of linear springs
for the leg-hull interface. Two approaches were compared adopted from the JIP (Joint
Industry jack-Up committee) and from Noble Denton. The main conclusion of the comparison
was that there is no significant difference between the the response obtained from the JIP or
Noble Denton. The only expection is that the JIP results are much larger than the results
from the Noble Denton study. Indeed the application of Pierson-Moskowitcz spectrum has
lead to the additional wave energy comparing to the results of the Noble Denton which have
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In viewing the ongoing research for the offshore structures, - —
a new discussion of practical system reliability approach will - oL,
be discovered in the further developments of the research. A :
combination of extreme environmental loading with fatigue N
loading will be considered. The probabilistic formulation for
such a combined failures may occur due to the initial failure
in fatigue and subsequent collapse under an extreme wave.
The system reliability approach will be used in order to
compare the most probable cause of failure for an individuale
member and for the overall structure. The previous work by
Jan Inge Dalane [12] has proved that for an individual
element, the dominant cause of failure is fatigue, but on the
other hand, for overall sturactural failure; overload and (or)

a combination of fatigue and overload are more important. In
fact, they have shown that because of redundancy effect, the
failure of an individual section does not constitute structural
collapse. However, the probability of failure for series and
parallel system in conjunction with Boolean algebra will be
used in the formulation of the system reliability.

Figure 1.4 Idealized model

Application of system reliability within inspection and maintenance planning will be
demonstrated in the context of this study. Using the failure path approach which often is
referred as "failure tree approach”, the sequences of events up to failure will be analyized
in the framework of fatigue failure. This method overcomes the problems arising by

“application of plasticity based approaches. It represent a more general approach which also

can be used for the reliability assessment of truss or beam type elements. However in the
domain of basic variables, using the correlation factors, increases the complexity of the
formulation and the probability computation requires an extra dimension in integration. To
reduce the problem of joint probability distributions, the important sequences of failure are
included-in-the-reliability-evaluation-and-unimportant-sequences-are-ignored—Based-omthe
experience, it has been concluded that the joint probability integral may not be integrated
with the basic variables more than 4 [50]. Since in most of structural systems, the failure

function is often formulted in term of several basic variables, the implementation of

numerical tools for evaluation of integrals is unavoidable.

In order to apply the standard methodologies of reliability problems for old offshore
platforms, it seems a practical and general procedure should be developed for the assessment
and requalification of existing platforms. In a recent report presented by Robert G. Bea [2]

in OMAE 1993, four levels of Reserve Strength Ratio (RSR) has been introduced as an issue

of qualification of offshore structures. The paper address.es how much the relaibility methods
can be used to develop rational and reasonable criteria for the requalification of offshore
platforms. The purpese of the paper is to quantify "false positives” with application of
simpler methods, and for this purpose the Fitness for Purpose (FFP) criteria has been
evaluted in the framework of reliability approaches. A graphical representation of this
methodology is demonstrated in Figure 1.5 which has been adopted from the same paper {2]
with some differences.

for ajack-uprig -
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1.13 Exposing the problem

Continuous research in structural engineering has pointed a way for applying the reliability
theory to the complex structures as well as offshore platforms. Generally, the reliability
methods provide a common basis for comparative analysis. Figure 1.6 shows the steps
involved in the calculation of structural reliability. At first, the hindcast data are assembeled
together to provide the basic representitive combination of extreme environmental conditions.
The failure of the structure for different direction of load set is evaluted to find the critical
failure surface corresponding to the load set directions. The probability of failure is adopted
in term of uncertainties in load set, strength characteristics and geometrical dimensions of
structure in a frame work of quasi-static push-over analysis. It should be emphasized that
the cumulative probability of failure P, is normally obtained in term of cumulative directional
distributions of long term extreme wave loads with the distribution of individual effects of
current, wind, tides and etc. However, it seems that we are still many years away from being
able to rely on reliability methods to give us an absolute sense of structural risk. In parti-
cular, taking into account the effects of inspection programs and the normal maintenance
procedures into the reliability model have not been study very well. This presents that the
only rational way to apply this theory, as we don’t know explicitly that if a probability of
failure of 707 is good or not (as an example). The primary use for reliabilty analysis is. for
design of new and different types of platforms, where we have no experience base. The
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configuration and consequence of failure of, for instance, a new jack-up for deep water is
so difficult from conventional jack-ups that a different level of reliability would seem ap-
propraite. Wouldn’t the results be the same if instead of requiring a lower probability of
failure, we simply reduced design stress -when adopting new concepts?

With regard to the interpretation of the probability of failure within the context of the present
report, we may arbitrary make use of the frequency sense or cyclic interpretation (see
reference [38]). In a frequency sense, the probability of failure of, say, 0.001 indicates that,
one in a thousand identical jack-ups operating under similar operating conditions is expected
to fail during lifetime. The cyclic interpretation may be possible if the loading on the jack-up
is constructed in terms of extreme value in N cycles, but in that case care must be taken from
the nonstationary character of the waves over the lifetime of the jack-up.

The calibration of safety factors for associated structures may be specified in term of nominal
loads (or stresses) and strength instead of mean values. In this case, the nominal values
already contain safety factors that are not well defined. Therefore by application of nominal
values, an ambiguity may arise as to the meaning of the resulting additional partial safety
factors. However, in the definition of the mean values, there is no ambiguity and the partial
safety factors may be find wihout any ambiguity.

An offshore platform can fail in a variety of hazards, for example, overturning, blowout,
collision, storm condition, seabed collapse, fire, war and possibly fatigue. For jack-up
platforms the highest risks occur by moving from one location to other place [45]. The risk
of damage due to storm has been found less than 2.8 % 10 if a site assessment is carried out.
However this context is not aimed to quantify the risk assessment of jack-ups but rather it
contains a basic theory which is needed for comparison of structural damage due to different
failure modes.

In fact, there are two appropriate aims from the issue of this report. Initial purpose is the

collection of the foregoing results of Teliability engineering tes earches and the secondary
reason is the evaluation of difficulties on the reliability integrity of offshore structures.

The methodology is given hier can be used for the integrity assessment of offshore platforms
relative to fatigue and extreme environmental loading. The rational program consist of either
a design procedure for new platforms or the inspection and repair process for the existing
rigs. In addition, the reliability analysis will be revealed for the structural model of jack-up
platforms consist of three different parts. Although the fundamental issue of this report is to
focus on the reliability of legs but in general the jack-up structure is represented by a hull,
a lattice leg model (or may be a combination of lattice and stick model) and leg-hull
interface. The hull structure may be represented by a suitable membrane element consists of
main deck, sides, bottom, main structural bulkheads and Helicopter deck. The legs comprise
either accurate models of three dimensional structure or stick modelling of legs with
equivalent properties (Formulation of equivalent characteristics of legs has been given in
classification notes e.g: Det Norske Vertias [13, 14] or Joint Industry Jack-up Committee
[27, 28]). The leg-hull structure may be decided to model by the Hybrid structure including
the following sub-structures: Leg-guide subsystem, Leg-pinion subsystem and combination

of these subsystems into the total interface. ~— — _“
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In addition, for the development
of the program with practical
objects, jack up structure is
considered on the southeast
coast of the Caspian Sea located
at the north of the town Neka in
Iran, The unit shall be capable
of operating, all year around, in
water depth ranging from 7.7 m
to 91.5 m. Technical
specification has been given by
Rauma-Repola offshore
company which is the rig-
builder of semi-submesibles;,
jack-ups, drillships and pipe-
laying vessels from Finland.
The structure is now
constructed in sections on the
specialist production line in the
workshop, and the deck s

. completed onshore. The legs

are fed from beneach, so high
lifts are. avoided. The rigs are
launched totally complete.

The legs are designed as a
lattice type. frame work with
three chords and tubular
bracings. The chords of the legs
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Figure 1.6 Conventional approach for reliability

assessment of offshore structures
(adopted with some differences from [3])

have—a—construction—with—two

gear racks on each chord and are manufactured of a high tensile steel. The three chords of
every leg are interconnected by K-type tubular bracings. Free ends of the K-type tubular
bracing are flame-cut to shape and size prior to welding to the chords.
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2- Wave statistics
2.1 Introduction

Our first purpose is to find a mathematical description of the waves, which apperantly seems
impossible at first sight, since wind generated waves are irregular and vary non-periodic. The
sea state in a storm or hurricane is measured by the variation of the water surface, described
by the time and varies with the position. Instead of looking to the wave record at a fixed
point, one can imagine that the water surface was measured at instant time in direction of
horizontal wave propagation. This way of recording is, however, difficultand expensive and
often the statistical characteristic of both methods are samilare for both types of signals. It
is common practical to record at a fixed point.

Concerning the assumption that the wave record has been adopted in a suitable meteorolog-
ical condition, it should be noticed that the characteristics of ergodicity and stationary are
involved. A process is called an ergodic process whereby the characteristics of the process

is derived by the time-averaging of the single sample record instead of the calculation of the

essembled averages of the records at specific instants of time. In other words, a measurement
of ,(t) is typical for all other measurements from an ergodic process n(t). The record is
called stationary if the statistical properties are independent of the origin of the time
measurement. For a sample record the stationary process can be ensured if a sharp limitation
of recording time is taken into account where there is usually quick variation in wave and
wind conditions.

There are two basic approaches defined in choosing the design wave environment for an

offshore structure. One of the methods consideres a single design wave with a given wave
height and period (deterministic approach). One reason for this approach is the simplicity in
design and the easy determination of response due to the given sea conditions. If this method
for the calculation of response is considered, then it is recommended that single waves are

considered to find the worst loads experlenced for any of design wave conditions.

. The other approach to selecting the design wave environment is based on the wave spectrum

(stochastic approach). In this case, a suitable design wave spectrum is chosen representing
an approparaite density distribution of the sea waves at the site under consideration. The most
suitable spectrum is a measured design wave spectrum at the site, although such a spectrum
is seldom available, As an alternative, one chooses one of the theormcal spectrum models
available base on the fetch, wind and other meteorological conditions of site. The chosen
wave spectrum, of course, describes a short term wave condition.

2.2 Wave energy spectrum

Although the wave propagation in general is three dimentional but in the following ‘it is
assumed that the waves are one dimensional and long crested in horizontal direction. First
assume that the random wave with unknown amplitude and phase angle is decomposed of n
sinusoidal waves that their constant parameteres can be found by Fourier analysis. The
components of 7 harmonlc waves w1th amplltudes a, : and phase angles o, are supenmposed

,/
(-
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to find the random wave surface.

N
n(xH=)_ a,cos(kx-w t+a ) j. 2.1)

n=1

Where k,=2%/L,, L, = wave length at the frequency w, and N = number of slices made in
the wave spectrum. The frequency of a random wave is determined in the frequency
corresponding to the 7 th Aw slice. The frequncy w, and the wave number k, are related by
the transcendental equation (the linear dispersion equation).

=gk, tanh(k d) 2.2)

From linear theory of gravity waves, it is well known that the energy of a harmonic wave
is proportional to the square of the amplitude ‘@ and its quantity per unit area is given by
pga’/2 where p is the density of the water. With this approach, we assume that the energy
spectrum of wave record is discritized in n interval whereby the frequency increments is
given by df (or dw). The wave spectrum for a typical record is shown in Figure 2.1. For
simplicity, we omit the constant factor pg where the later results in the variance of wave
spectrum by a%/2.

S(w)m? sec)

w st )

Figure 2.1 Stepped variance spectrum

When the frequancy interval dw (or df) tends to zero, the stepped curve may be converted
to the smooth continous curve. In most of cases our knowledge relies to the empirical data.
In this situation, the characteristic values of wave spectrum is obtained by the information
of wind records at the desired site. Having obtained; the wave spectrum, its characteristics
is normally defined by the moment of spectrum which-i¢ taken respect to the origin of w or
f in the wave spectrum diagram. ‘

1
@m)"

m = { S { ®"S(w)dw . 2.3)

The area of the wave spectrum is equal to the zeroth moment m, and the relationship between
8(f) and S(w) for the zeroth moment is derived by
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S(H=2nS(w) (2.4)

2.3 Spectral width parameter

The spectral width parametere is a measure of higher frequency portion of the spectrum. For
a stationary Guassian process it can be found either in the time domain or in the frequency

domain. In time domain analysis, the width of the spectrum. is measured by the medn zero

upcrossing period T, and the mean crest period T,. The mean crest period is almost smaller
than the mean zero upcrossing period because most ocean waves have local maxima (or also

minima) that do not cross MWL. (i.e. in any case N, > N,, where N, is the total number of
crest points and N, is the total number of zero upcrossing points.) If T, is close to T}, then
wave spectrum is considered as a narrow band spectrum where in that case the energy is

concentrated over a small frequency band. If the ratio « is defined by the division of T, over

T,, then the spectral width parameter can be obtained as
1 2 1
e,=(1-at)?=(1-—-5)2 2.5)
T2

z

On the other hand, the spectral width parameter may be obtained from the moments of wave
spectrum. For a stationary Gaussian process, the expected rate of peaks J, and the expected
rate of zero upcrossing period f, are used for the defination of spectral width parameter.

1
22 o | 2.6)
m,
and
fz=(:’”_2)§ | e
0

Thus the irreg‘ular'itfy factor o is obtained by division of two frequncies that can be used as
a measure for the broadness of the wave spetrum.

./ O<o<l 2.9

14

Having obtained the irregularity factor o, the spectrum width parameter is often expressed

. by the spectral moments.
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1 m2 L
e =(1-a?)?=(1-—2-)2 2.9
mgin,

It is very important to note that.the presence of any noise in the estimation of energy spectral
density will be amplified particularly in the calculation of higher moments. Errors in
estimation of second ‘and fourth moments are the main reasons of divergence from true
spectral width parameter.

2.4 Probability distribution of water surface

The ‘most promising distribution for the water surface is considered with the assumption-of
normal distribution. The normal density function supposes equal probability for positive and
negative water surface which persumes that the mean value of distribution is expected to
zero. The density function for water surface elevation is given by: '

.9 '
p(n)=‘/_1 exp[-—1-] | () @10

2o, 20,

Where o, is the standard deviation of the water surface elevation and is formulated in term
of spectral moments as :

o, =/ 2.11)

The normal distribution for the wave elevation is fitted with deep water condition where the
low steepness of waves are predominant. In shallow water condition, the nonlinearity of sea
waves produces some deviation from the normal distribution which is discussed in the

following. '
2.5 Nonlinearity of sea waves
~ The extent of normal distribution for waves requires the measure of characteristics of the

skewness A; and kurtosis X,. These quantities are derived in terms of mean water elevation
n and root mean square value of the profile o,.

RN 0 - P | 2.12

3\——;-?2 M, - 1) 2.12)
o.“ n=1 '

r_ 1 -1 a —\4 ‘

Ag=—.— Y (m, - 1) (2:13)
o N
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K, = 3.0. The new quantity which is called the coefficient of excess \,= X, - 3.0 is often
introduced to measure the deviation from Guassian process. The characteristics of skewness
A; is that it demonstrates the symmetry of the distribution about the mean value. For the
positive values of skewness, the distribution has a longer tail within the range of values
greater than mean.

For a narrow - band wave, the skewness is proportional with the wave steepness. Skewness
is also related to the band width of the spectrum. For broad spectrums, the Skewness is
inversely proportional with the spectrum width parameter. The same law is valid for the
kurtosis. Kurtosis indicates: the peakedness of the mode of statistical distribution. The long
tails of the distribution for higher values of kurtosis is observed on the possitive side of the
spectrum. The probablity density function of nonlinear sea is expanded by use of skewness
and kurtosis factors in a series form as

P(H)=d(H) { 1+ al H(n) H(d)+ ... ) 2.14)

Where ¢ (1) and H, are the standard normal distribution and nth order of Hermite- polynomlal
of the variable 1 respectively.

At | | .19
0‘\

and’

Hy@)=4734 @.19)

H, (/) =1*-67%+3 (2.17)

Concerning the quantities of skewness and kurtosis, the Hermltlan moment b, is used as
! defined below.

|
1 ) | (2.18)
| 3 3 .
o‘l
b4 1
A=t (2.19)
a

Where b, is formulated in term of Hermitian moments.

b;aﬁ.Hﬂ(ﬁ-) | (2.20)

" Figure~2.2-shows-the-normal -and-non=normal-distributionsfor-a -wave-profile-in-shallow-
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water waves. (\;= 1.5, \,= 2.814)

‘NORMAL .
--------- NON-NORMAL (A .= 1.5, A;= 2.814)
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Figure 2.2  Probability density functions of sea surface
Bitner (1980) adopted from reference [9}

2.6 Probability distribution of positive maxima extremes

The probability distribution of wave surface in a linear or non-linear wave condition was
discussed earlier. The emphasis of this section is to find the probablllty distribution of
positive maxima. For a random process, the wave surface at a given reference location is
formulated in. term of wave frequency and phase angle.

N
1=y a,cos(w t-a ) 2.21)

n=1

The local positive maxima for a given wave is defined by two boundary conditions 5 = 0
and 7j < 0, where 1 and 1j are the first and second derivatives-of random wave equation. The
joint probability distribution of », %, % and p(y,s,7%) are evaluated in term of moments of
wave spectrum according to Cartwrlght and Longuet-Higgins (see reference [9]):

. 1
pln, i) =—ry 0 °xp{--[ +—(m4n #2m i +myi (2.22)
@)% (m,A)* "
where
PR (2:23)

The expected number of occurances (or the mean crossing frequency) during which a

~ maximum 7y takes a value between n,-and n;+dn; is obtained from-the-integral-of -the-joint- — -
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probability density function.

0
ko= [p(ne0,ii) ] di 2.24)

Substitution of p(n,, 0, 7) gives the expected number of occurrence for 9, < 5 < n,+dj as
follows :

1 2 g 2
u(no)=-—‘fLexp{’——;f(—nq—) )[CXP("'%&;(“_O/ )
@) my/m, i "

+£(i | f exp'{‘—x—z}‘dx]

=) 2 2.25)

Mo TGS

e Jm,

Or

7 2n mo\J‘mz VIn 28 g

re(— expl-L( 0y 1 -o (-2 oy 2.26)
m, 2 (Mg & m,

In which @ is the standard normal distribution and o= V7 —¢€ 2 .

The expected number of positive values of maxima (or the mean crossing frequency for
positive maxima) is given by the integral of p(n, 0, %) with two variants elevation » and
acceleration: 7.

w O ) .
Vo= f fp(n.O.-ﬁ) || dfi dn 2.27)
0 =

After simplification the integral is reduced to
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vieLol 22, ’"_4)=L(1+“ ‘ (2.28)
4n ' m, ]

Having obtained the values of ufy,) and »,* in equations (2.26) and (2.28), the probability
density function of positive maxima is derlved by:

plng = L400 (2.29)
vm
o, 2
p(n'o)=—i_—‘/'7°‘[ expl- ——(
+0 ‘/_
. Mo a Mo y -
+o(—)expl- 2( )}(1 (I)(—————-—)}] 0x1y< (2.30)

m, my Vmo

If 5, is nondimensionalized by dividing by vm, (= n,/Mm,), the probability density

function becomes:

P() =2 [——expl-1 ) aexpl=10) (1 -0(- £ 4] O's:ﬁ<‘;o 2.31)
l+a V2 2¢? 2 £ h

Hier it is interesting to notice a physical phenomenonIn case of long crested waves , the
distribution of individual crest of ripples follows the probability distribution of positive
maxima while the height of swell of complies the normal probability density function.

However the probability distribution of a narrow band spectrum is obtained by substitution
of e= 0 in equation (2.31).

a2
p(H) =ﬁeXP("12-) 024 <o0 2.32)

For a wide band spectrum (e= 1), the probability density function is found in the form of
a truncated (s= 0) normal distribution as follows
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. Z’ 2 2 o ;
P(Tl) = ;‘eXp(’-Zf) 0511 <00 ) (233)

Thus if bandwidth is finite, the probability distribution falls between a normal and a Raleigh
distribution functions [equations (2.33) and (2.32)]. The probability density function of 1 for
various values of e is shown in Figure 2.3. :

The cumulative distribution of +f is derived by integration of p() in equation (2.31):

P@) =22 (1-0) + 0 (D) -wexpl- L1 -0(- Ly | @.34)
‘ I+a ™ 2 € 2 g

For narrow band spectrum (e=0), we will find

P#)=1- exp(_% | | (2.35) *

| € = 0 (RAYLEIGH)

A

: 0.2 ‘
oA.:‘4 . T
, | 0.6 ‘ | ! :
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Figure 2.3 Probability density functions of non-dimensional maxima watheter
surface as a function of band width parameter e

The application of jeint successive level crossing téchnique has investigated by Naess and
Tayfun [16]. Naess deduced that the cumulative probability for the non-dimensionalized
amplitude can be replaced with the following approximation:

h
’

7 '
P(f)=1-expl-—1) . (2.36)
1-r ' i :

Twhere T o I
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r'= R(T/2) & R(r)= ;o S(w).coswr.dw

T= dbm’inant wave priod with co'nd(zt‘ion R(TM)= 0.

2.7 Generalized probability distribution of &

Let us start with the definition of statistical height parameteres which are commeonly used in
random waves. If all heights in a record are evaluted from the difference between the crest

and trough then the following equations can be used to describe the height of the wave H by
three different symbols as follows: ’

1- The mean height H

The mean of the heights in the record is called the mean height H:

— ! N .
iyg (2.37)
N .

2- The significant wave height H_

The mean of the highest one-third of all heights is defined by the significant wave height H,

or H,,.
H-Hi =2y | 2.39
1 '_Z i/ :
3 Nl=1

3- The root mean square height H,,,

— — Therootmean square (rms) height s calculated-in term of square of wave heightsas

I C (2.39)
N,":l :

It is clear that the probability density of troughs (the expected numCmaxilyma with negative
values) is similar to the probability density of crests ( the expected number of maxima with
positive values). Thus the probablity density of amplitudes is obtained by the probability of
crests or troughs because the wave surface elevation is proportional with wave amplitude
[equation (2.1)]. Substitution of amplitude notation a instead of water surface notation o iN
equation (2.30), the probability density of wave amplitudes becomes
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2/, .
pla) = /\/—%[ ¢ exp(— = )} a(—)exp(——z-(—) - <I>(—'————))] (2.40)

Iva " \om 26 [m, o ymo ® ym

The probability density of amplitudes a for a random wave foliows a Rayleigh or normalf

distribution depending on the spectrum width parameter (e= 0 Rayleigh, and e= 1 normal
distribution ).

Assuming the Airy wave theory is valid, the relation H= 2a can be introduced into the

equation (2:40). Thus the probability dens1ty of H is given by the half of probability density
of amplitude a as follows

1 ‘ 2
1+o \/’27 2e? 1 e

+ou(:

)exp(——(——) }(1 @(———))] ' ' 2’.4'1
R T e

The cumulative distribution function of H is derived by integration of equation (2.41)

P =—2[-Li-a)+ d(—H - aexp(——(—) Hi-o(-2 2.42)
1+a 2 2e m,

28‘/;1; 2‘/5';

2.8 Narrow band Guassian wave

L4

For a narrow band Guassian wave, the probability density function of H is obtaned by
substitution of = 0 (or o=1) in equation (2.41)

12 '
H exp(——( '= H exp(- H ) (2.43)

2\/—_ 2\/—_ ‘/__ 4m,, 8my,

The ath moment of the function p(H) about the origin (H= 0) is given by the following
equation. It should be noticed that the moment is equal to the expected value of H in order
n.

p(H) =

E[H™ = f H"p(H)dH .44)
A |

' The integral is evaluted for odd and ‘even numbers of n separately as
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E[H™] =2**nl)m" | (2.45)

and

oy (s (2n+1)|| m& o (2.46)
n! 2

It is clear that the zeroth moment. gives the value of cumulative ,probc-b i which corresponds. |
to a unit area under probability density function that E[ H°= 1). 'Ihé mean height H is
evaluted by the first moment as follows

. H=E[H]~\/2nm, | | 2.47)

The root mean square height H,,, may be calculated by the square of second moment
={E[H?] =2,/2m, (2.48)

The variance of heights is formulated in term of the first and second moments. For this
purpose, we use the defination of variance as follows.

o'y =E[(H - E{H])*} = E[(H - H)'] @.49)

where a7 is the variance (o, is the standard deviation) and E denotes “Tthe expected value.

After expansion of equation (2.49) noting that E[H}= H, the variance of wave height is

evaluated as

o’y=E[H?] -2 EH H + H’ (2.50)

and

Because H= E[H], thus equation (2.50) is reduced to

o'y=ELH*] - (E[H))’ = EIH’}-H" . @.51)

With substitution of the first and second moment in equation (2.51), we find the variance as

oy =[8 -2n]m, 2.52)

Thus replacing m, by H,,. in equation (2.43), the probability density function of H for
narrow band spectrum becomes

- 2H H?
»p(H)= W exp(-H2 ) ' (2;537)
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2
P(H) =1 -exp( —'H—h:—f) (2.54)

rms

On the other hand, the s1gmf1cant wave height H, is often represented in term of H,, By
definition, H, is the mean of the highest of one third waves. First we find the helght H,
which correspoends with the highest of one thlrd of wave heights.

2 Hy .
(Hy) ===1-exp(-——) (2.55)
3 H2

s

ahd? H,, the corresponding height for the highest one third of wave heights is equal to
H,=1.048H, ' (2:56)

The centriod of the area for H = H,under the probability density function is used to fmd
the H, as follows

[HpEaH

H=% 2.57)
[pidaH
"0

where p(H) is given by equation (2.53). We then integrate equation (2. 57) to find H, in term
of wave spectrum parameters

H =1 AL6H,, =4 [m, 2.58)

2.9 Modified Rayleigh distribution and joint probability distribution of (H, T)

‘The probability distributtion of computed wave heights (in dimensionless form) has been

compared with the measured data by Naess [see reference 16]. He found that the modified
Rayleigh distribution with the parameter 7'= -0.71 is a better approximation for the wave
height distribution.

Theoritical distributions for wave heights are not limited to the disTheoreticalwhich have
been discussed by Cartwriglit, Longuet-Hriggms [9] and Naess [16]. Cavanié et al [16] have

~ given a distribution which is resonably in agréement with wave data for a narrow band
spectrum. Lindgren and Rychlic. [16] have formulated a distribution which is not in a closed
- form and needs more complex numerical computations. The distribution predlcts the

difference between maxima and minima as well as their time interval.
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The joint probability distribution of wave height and period has been considered to provide
useful informations for the statistics of waves. However we will not going to discuss the joint
probability distribution of wave heights and period and only it might be useful that in
application of different probability distributions for wave height and wave period two points
should be considered carefully. Firstly the definition of wave height and periods are not the
same in most of publications and they must be used with care. Secondly the joint probability
distribution of wave height and period for a broad spectrum have not been adequately
described with the update available distributions. '

2.10 Long term probability distribution of wave heights

The long term probability distribution of wave heights can be obtained either in term of
extreme individual wave heights H or the significant wave heights H,. The first choice is
often used in association with the ultimate limit state analysis while the second is usually
applied for the ultimate fatigue analysis. The importance of a long term distribution is
established by two types of storms during the design life of the structure. One is the locally
generated storm condition and other is the distant storm appearing as swells. The locally
generated storms often are random in nature while the swells are generally low- frequency
waves and regular in nature.

In evaluation of long term wave distribution, first a design life is considered for the structure.
If the wave data for the long term criterion is lacking such as many cases in offshore sites,
then the probability distribution of long-term wave data is calculated by the available
distribution functions of short term waves. The long term distribution of wave heights is
found by ascension of wave heights during design life. The individual wave height
distributions are assumed be independent and therefore it is possible to apply one of the
extreme value distributions for the long term cumulative function.

Assume that N is the number of waves in the planned service life (N= T, / T, where T, is

the return period and T is the short term period.) . The extreme value distribution of type
I is based on the maximum N individually independent random waves. The wave heights are
numbered from / to N in ascension order, thus the cumulitive probability of the largest H,.,
is defined in term of H, in which i=1,2,3, ... N

P(H,,,<H)=P(H,<H,H,<H,H,<H,...,H <H) (2.59)

Since H,; are independent, P( H,, < H) may be written by the product of cumulative
distributions as

N .
P(H,,,,<H) =] P(H,sH) = P(H,<H) P(H,<H)P(H,<H)...P(H, <H) (2.60)
i=1 ,

We assume that the cumulative probability functions are equal for any short term wave height
H;. This simplifies equation (2.60) to:

P(H__<H)=P(H).P(H).P(H).... = [P(H)]" (2.61)




37 WAVE STATISTICS

Or
pH_, <H)=N p(H) [P(H)"! ' (2.62)

Substitution of equations (2.41) and (2.42) in (2.62), the long term probablllty density functlon
of wave heights is derived as

Pl <t =™ exp( L2 e expl- L H Py -p -2 H

(L+a)V ,/’1? 2¢_ 2my 2 2/mg 28 \/m,

L1 —ars 1 H o H vy .
X[ (-0 & ) - wexpl ( Y}l - @ - /_0))] 2.63)

28\/n_2_0 2\/n_l_o

The cumulative distribution is given by the integral of equation (2.63) as follows

PH__ <H)= [——(1 - o) +P( )- aexp(——(———) N1- <I>(— 5 ))]I_v(2.64)

1+a)" 2(-:\/n_z_0 ‘/—27n—0 e ‘/nTo

Instead of using the generalized probability function, sometimes the Weibull cumulative

distribution is employed to predict the long term wave heights. In that case, the extreme value

distribution of type II may be applied in the Weibull cumulative distribution. The probability

of exceedence for P( H,,> H) is determined in term of N independent probability of
| exceedence as follows

P, .>H)=P(H>H,H>H,...,H>H) (2.65)

Since H, are independent

P(H,,>H)=QH>H) QH>H) ... QH\>H) (2.66)

Substitution of probability of exceedence for H;, H,, H;, ..., Hy, equation (2.64) is reduced to
PH_ _>H)=[1-P(H)]" (2.67)

and the cumulative probability of H,__ is written as

P(H,, <H)=1-[1-P(H)]"=1-N[1-P(H)] | (2.68)

This approximation needs to curtail for small values of wave height, otherwise the negative
values are found for the cumulative distribution function. The absolute error is almost nil for
large values of H which are inierested in the design condition. However a three parameter
Welbull dlstrlbutlon is assumed for the short term wave helght in the followmg
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P(m=1—expr—(”—;‘)cl 2.69)

The long term distribution is found by the substitution of equation (2.69) in (2.68)

P(H__<H)=1 —Nexp[—(%) Ny 2.70)

Because the number of waves N in the working life is known, so that the cumulative probability
distribution may be formulated in form of Weibull distribution

C )
PH, <H)=1 —exp[—(”TﬁA) ] (2.71)

Before application of Weibull distribution, a method for prediction of extreme wave heights was
developed by Gumbel [20]. The long term probability distribution of wave heights is sometimes
obtained by log-normal probability distribution. Ochi (1978) [reference 9] has compared the
cumulative distribution of significant wave heights from ocean weather station India in the North
Atlantic. It was concluded that log-normal distribution is fitted with the data except at the upper
extremes because it overestimates the data for large values of H,. On contrary, the Weibull
distribution compares well for large values of H, while it fails to satisfy the data in other range
than near the upper tail. Thus the generalized form of Weibull distribution was found a better
represent instead of two parameter distribution, since it encompasses two parameter distribution
and other alternative distributions as well. On the other hand, Mathisen and Bitner-Gregersen
(1990) [reference 9] have suggested a "Lonowe" (Log normal) distribution. They have shown
that L, ohoweg :distribution provides a good result in many sets of wave data. The only problem
is the position of transition point which can be selected arbitrary.

2:11 Hydrodynamic-forces

The statistics of wave amplitudes. was discussed earlier in both short term and long term
conditions. For strength analysis of an offshore structure thethatabilistic models of wave
characteristics are introduced in the wave force models. The square of Response amplitude
operator (RAO?) for each response is multiplied to the wave energy spectrum in order to find
the structure response spectrum. This method of analysis for any excitition is called the spectral
analysis method which has been discussed elsewliere with more details (see for instance [9]).
The spectral method was initially developed for the linear systems. The system is defined linear
when the excitation of the wave is prothatonal to the amplitude of wave such as for inertia
dominated wave force. In that case, the principle of superpostion may be applied for random

wave distribution. It is highly desirable that in any case the ideal linearization may not be

achieved even for the fixed structures.

The nonlinearity of the response may be arised due to the selected wave theory, the drag term

in Morison equation, the interaction.of wave and current, the nonlinearity of strength parameters
and physical conditions of sea-bed. Nevertheless in reality . ho.nlinear systems can not be

— treated without-some apprrof(imat'ions with-regarding to-the-linearization: Because in-each-case
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an unic RAO can only be obtained for a linear system, thus the application of common spectral
analysrs is restricted to the linear modelling of external wave and current forces.

With respect to the reliability analysis, it is important to seperate two classes of uncertainties
in modelling of loads [42]. The class  uncertainties are naturally inherent variables which are
random through time and space. The class II uncertainties are variables due to the modelling,
measurement and observation errors which are systematic through time and space. The class 7
variables are always independent with respect to data while the class I variables are sensetive
by data information, improvement of physical or numerical modelling and accuracy of
meseurements. The d‘istinction between two variables in statistics of loads is highly valuable for
two reasons. First the extension of uncertainties to other environmental conditions ( sea-state,
annual periods) may not be achieved without gathering the nature of characteristics. Second, the
contribution of risks due to two types of uncertainties is 1mportant in erder to making decisions
or evluting the reliability of existing structures.

Although the old formula for wave forces, Morison equation, originally has been derived for
oscillatory flow applied to the cylinderical members but the wave forces in inclined cylinders,

the effect of structural velocity, the interaction of current and wave forces are obtained with the
1mprovement of the Morison equation. The primary information with respect to the Morison
equation becomes available with the dimensional analysis. For dimensional description of the
wave force f{t), a group of independent parameteres has been considered by different researches
(see for instance [9]). The relatlonshlp between force on the unit length with space-time
variables is given by following expression

f(t) = (D(t: ﬂapD SD PV ) (2 . 72)

where a is the amplltude D is the characteristic dimension (such as diameter), D, is the
roughness mean size, p is the density and v is the kinematic viscosity of water.

A‘ssum‘e‘that‘-th‘e‘lﬂinear—-wave“theory“is—i'h‘;'fiirl:—:in—descripti‘on‘of‘v‘vav_e“lOad's.—"l"he“Mori'son
equation for a vertical cylinder gives the wave forces per unit length of the member with
diamater D as

fi=p 4D2CMux pDCD|u lu, | ' - (2.73)

where

f = wave force per unit length of the vertical cylinder
u = horizontal component of water particle velocity
Cy = inertia

C, = drag

If the non-dimensionalized form of equation (2.72) in term of water partlcle velocity is
compared with the Morison equation, the infulence parameters for the inertia and drag
coefficients are -obtained: The relationship between hydrodynamic coefficients and
nondrmensronallzed parameters is establllshed by usmg the foregomg expressrons
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uD D

Cc =C (0,28 07 2.74)
D v D
u,D D

C,= Cd(mtﬁ = -9 (2.75)
D v D

where u,= (2za)/T.

Note that the most common parameteres which are affecting the wave forces are Reynolds
number Re and Keulegan-Carpenter number KC (if the roughness is assumed constant). Both Re

- and KC numbeys eve defined in terms of the amplitude of velocity u, and the period T as

foll_ows.

T ' D '
KCJ% Re=0" (2.76)
v .

Returning back to the Morison equation, formula (2.73), ene of the wave theories is applied in
the estimation of hydrodynamic forces. Even with the application of linear Airy wave theory,
the drag term in Morison equation causes the deviation of the distribution of wave force from

- distribution of water surface. The result of foregoing discussion is thus. the distribution of

hydrodynamic force deviates from the water surface distribution except by the linearization of
drag term in the spectral analysis, the wave force follows the same distribution as well as the
wave surface ( Guassian distribution).

2.12 Invarient uncertainties of hydrodynamic forces

For practical application of the reliability format, the traditional methods has been developed

by the approximation of quasi-staic loading instead of dynamic one, " '
Even for the deterministic methods, two types of loadings are distinguished from each other’
which are called static and dynamic loadings. The first issues of reliability engineering in 1970
proposed the substitution of dynamic loadings with equivalent quasi-static loadings. By this way,
the time -invariant of basic varibles are formulated in general format of reliability analysis. The
push-over analysis of fixed and floating platforms is the first product of this approach and
uncertainties of this time - invarient reliability method is discussed in the following.

The first issue of class II uncertainty of wave forces is found in determination of wave heights.
Generally speaking, the uncertainty of wave forces comes from three origins which can be
defined as model uncertainty, statistical uncertainty and measurement uncertainty. The model
uncertainty indicates the fitness of one proposed distribution with the observed data. An average
value thatefficient of variation V= 0.11 has been given by Guedes Soares and Moan [19] for
the model uncertainty. The statistical uncertainty arises from the method of parameter
estimation (likelihood method, method of moments or graphical approach) and the limited
amount of data. An approximate value of uncertainty V= 0. has been given in reference [19].
The measurement uncertainty represents the errors in the source of measurements which diffefs

“"by method of ‘data collection. For observed data the bound for the coefficient of ‘variation is— ——



41 WAVE STATISTICS

taken in the interval V= 0.05-0.10 while for the instrumental measurements and handcasting
data, Pianc [43] suggests the values of V= 0.10-0.20 and V= 0.20 respectively. One reasonable
value of measurement uncertainty V= 0.09 has been given for the instrumental data which is
valid for the North sea (see reference [19]). In fact the method of data collection influences the
measurement uncertainty as well as the statistical uncertainty. The large number of data for the
visual observation causes a smaller statistical uncertainty but a larger measurement uncertainty
than instrumental data.

With all these values, the systematic uncertainty of wave heights may be found by the
multiplicative law. As described in the previous section, the systematic uncertainty is a measure
of actual variable to predicted variable and often in reliability engineering is called the bias
Jactor or the ratio of mean to nominal value (u/X,,,, ). The coefficient of variation for bias factor
is found as :

Vy, =y0.117+0.08% +0.09 =0.16 | @77

where By, is the bias factor for extreme wave height and V, is the coefficient of variation.

Olufsen and Bea [42] has been discussed the bias factors for the extreme wave heights and
significant wave heights. The distribution of bias in hindcast wave heights has been described
by log-normal distribution with a mean value and coefficient of variation equal to 0.95 and 0.15
for North Sea (NS). The corresponding values for Gulf of Mexico (GoM) has been found as 0.85
and 0.20 for the mean value and standard deviation respectively. The bias is not only the class
1T uncertainty but also a small amount of class I uncertainty. The class  variability is considered
very small with respect to the class II variability and because the contribution of each one can
not be seperated precisely thus the bias for hindcast data is estimated as class IT uncertainty.
However the wave height in the relibility analysis is described by the predicted wave height
multiplied to the bias factor.

The coefficient of variation for sytematic uncertainty of wave periods may be found seperately
or by the joint distribution of wave heights and periods [19]. The typical values for the model
uncertainty, the statistical uncertainty and measurement uncertainty for the NS are respectively
0.1, 0.05 and 0.1. Thus the coefficient of variation for bias factor in NS is evaluted as

Vj, =0.10 +0.05* +0.10% =0.15 (2.78)

where the By is the bias for wave period and V;; is the coefficient of variation.
2.13 Distribution of hydrodynamic coefficients and marine growth

The source of uncertainty for hydrodynamic coefficients are substantially located on class II
uncertainties. Due to the complex variation of hydrodynamic coefficients with wave amplitude
and phase angle, even with large amount of data which are available for the smooth circular

cylinders, the limited data on hydrodynamic coefficients for non-circular shapes with surface
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roughness and Re & KC numbers dependency can not be found in the literature. It is noticeable
that for high Reynolds numbers (say above 10°), the hydrodynamic coefficients show a -
negligible dependency to the Reynolds number. Therefore the dependency of Reynolds number

for the hydrodynamic coefficients in jack-up legs can be neglected in extreme wave conditions
[40].

For example, experiments with full scale measurements in Christchurch Buy Tower have
illustrated that the hydrodynamic coefficients diminish with increasing the depth of water but
for design purposes the condition of near surface seems to be safer [47]. For near surface
Soding et al [47] suppose the following values:

C,= 1.8 & C,= 0.66 KC > 30;
Cy and C,, both are increased when KC decreases 5 < KC < 30;
Cy= 2.0 (for KC < 5 C, is not important) ' | KC < 5.

In reference [50], the mean value and coefficient of variation for hydrodynamic coeffficients in
a jacket structure are taken with normal distribution where the mean values and coefficient of
variation are given as:

Drag coefficient Cp=10.75 Vep= 0.30
Inertia coefficient Cy= 1.80 Var= 0.30
Correlation factor between C, and C,, e =-0.90

Goedes Soares and T. Moan [19] assume that the hydrodynamic coefficients are often complied
by normal distribution with coefffieci ent of variation equal t°0.1 (both inertia and drag
coefficient). One reprort by R. Loseth and L. Hauge [36] has been applied the log-normal
distribution for hydrodynamic coefficients with taken into account the influence of non-circular
sections of lattice legs with racks and marine growth. The effect of marine growth must be
discussed for two reasons. Firstly, the increase of diameter leads to the increased projected area
and—hence increased hydrodynamic—loading-—Secondly;—the —increase—of —roughness—which—
influences the estimate of drag force and therefore increased wave force.

Cu= 2.0 m
Cp,= 0.65 for 0 mm. marine growth thickness p
Cp= 0.80 for 80 mm. marine growth thickness.

= 0.125;
= 0.200;

I
—
O\l
OM

The prediction of wave forces especially the drag coeffiecients for lattice legs has been
investigated from 1975 in engineering science data unit [46]. A great number of wind tunnel
tests have been calibrated to find the mathematical model for darg coefficient in different
configuartions of legs. Unfortunately, the tunnel wind tests are the only experimental way for
the prediction of drag coefficients because in most of cases, the wave basins are not large
enough to test full legs and the evalution of results for wide range of Re or KC numbers are
impractical. The comparison of tunnel wind tests with analytical method for both square and
triangular legs are discussed by N.P. Smith and C.A. Wendenburg [46]. It has been concluded
that when the effect of roughness on the drag coefficient is neglected, the drag coefficient is
underpredlcted by 23% for all cylmdencal legs and by 9% for the standard 116 leg w1th
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triangular chords. The difference between the test results and the calculated values is less than
4%. Therefore even with the application of high order wave theories, the effect of roughness
on the marine growth should be evaluted properly in. the prediction of drag term coefficient.
Sometimes by applying the anti-fouling coating, the effect of marine growth is restricted for a
few years but the experience have learned that the coating is not a proper way to prevent the
increasing marine growth. In Recommended practice [27] it is assumed that the severe marine
growth is net allowed for the jack-ups by the regulary cleaning of legs. Also the painting of legs
influences the roughness and therefore the drag coefficient (effect of salt water during long
period).
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3- Strength statistics
3.1 ‘I‘ntr.oduction‘

- Until recently the design of fixed offshore structures has been customarily based on the basic
allowable stresses. The AISC building code (1978) and API-RP-24 (1981) allow to use the
method of working stress in design of fixed offshore structures. On contratry, in Europe, the
limit state design philosophy has been used for the design of fixed platforms. The method
has been adopted by regulatory authorities worldwide (Chen 1985, reference [10]). The
. application of limit state design method for beth fixed and floating platforms requires

* sufficient and accurate information about the behaviour of the structure throughout the entire
range of loading up to the collapse process.

In this chapter, the uncertainty due to the strength parameters is discussed for steel offshore
structures. Given a statistical distribution for the loads (or the stresses) the most probable
largest load (or stress) amplitude during a certain time period can be determined. The
probability of exceeding a certain load (or stress) level can also be found.

For the designer of a offshore platform it would be more useful to get information about the
probability of failure. It is therefore necessary to know the strength in terms of a stress which
will cause failure. This has to be the real failure stress and not a design stress including
safety margins.

The uncertainties of strength of materials are often proposed time independent unless the
chemical compisition of the steels: will be altered during the structure life. The chemical
composition gives the reduction in the plate thickness of members by corrosion and this
increases the uncertainty which is then time dependent.

The emphasis of thischapter-is-to-investigate-the- uncertamty—of steel-in-marine- structures for
the extreme conditions. Although an overview on the strength characteristics of marine steels

as well as chemical composition, mechanical properties, weldability, fatigue strength,

hardebility, corrosion is needed but in the following sections the uncertainties due to the

predictions of strength parameteres with importance in mechanical properties of marine steels

are considered.

. 3.2 Application of steel in marine structures

According to the unified requirements of classification societies, the marine structural steels _
are divided into three principle groups. The distinction among three groups are classified by
the minimum yield stress (strength) according to the unified requirements of classification
societies as shown in Table 3.1 (see reference [25]). Muesgen et al [[41] have divided the
high strength steels in offshore structures to three groups StE355, StE460 and StE690. They
have reported the application of each type of steels in large offshore projects. Based on the
recent reports, while the majority of ships are built using the mild steels, in construction of
the offshore platforms and espe01ally the Jack -up structures, the hlgh strength steels play an
- 1mportant role - - —— e
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To obtain considerable higher strength, additional elements such as vanadium, and higher
nickel and copper contents are required. It has been shown that the probabilistic modelling
of each type of steels requires sufficient data based on ‘the tensile strength of steels.
Lindemann et al [34] have proved a negative correlation between tensile strength o, with the
plate thickness . It has been found that the yield strength is decreased with increasing the
thickness but no data on the correlation factor has not be reported. However, the sources of

uncertainties in probabilistic modells of steels are mainly influenced by many factors as well

- steel grade,

- chemical composition,

- manufacturing process,

- plate of profile and test specman thickness,
- testing procedure,

- parameter estimation method.

Table 3.1 Characteristics of marine structural steels

Type ~ Abbreviation Yield strength (N/mm?)
1 " Normal strehgth steels | MS » 235 < ¢, minimum
2 | Higher strength steels | HTS 315 < g, minimum > 390
(3) - Very high strength steels VHTS 420 < ¢, minimum .

3.3 Steel in jack-up platforms

The characteristics_of steels for jack-up platforms are usually verified by the same methods

in other types of offshore structures. The specifications of steels are generally given from the
existing standards in the world like ASTM, API, BSI, AWS, IIW, ASM and other International
Codes that are used in the classification of structural steels. Sometimes the operators of
offshore platforms are using their own specifications that are the modified versions of
national standards (see reference [29]).

The application of high strength steels is attributed more interest in recent offshore
structures. It is well known that in deep water the applications of high strength steels have
saved the weight and the cost of oil and gas platforms. Since last four years, many studies
have been made for the application of materials which can be used in deep waters. High
strength steel is only one of the them. Others may be found in the literature as the application
of composite materials of steel and concrete or the high strength concrete.

3.4 Importance of probabilistic modelling for strength of steel members

If we consider the common reliability methods in the literature, it may be concluded that the

_statistic of strength parameters has a minor effect on the overall reliability analysis. To

illustrate the importance of statistical characteristics for strength™ parameters;consider-the
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diagrams of Fig. 3.1.

The influence of material model on the Hasofer - Lind reliability index has been calculated
for the pressure in the semisubmersible hull with D= 2000 mm and A= 600 m (see reference
[25]). The mean and coefficient of variation have been assumed equal to 420 MPa and 0.06
respectively. The numbers on the figures indicate the state of limit condition. While the case
No. (1) is valid for the membrane yielding, the other two cases with No. (2) and (3)
represent the ultimate state of elastic instability and elastic/plastic instability respectively. By
comparison of diagrams, it is explicitly resulted that the yield stress modifies the reliability
index more than the Young’s Modulus.
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Fig. 3.1 The influence of material model on the
the Hasofer-Lind reliability index of a
spherical semisubmersible hull

3.5 Probabilistic modelling of mill steels in tension and compression

Julian (1957) has considered the uncertainty of test results for ASTM A-7 structural mill steels
(see reference [29]). According to his investigation, the statistical distribution of ultimate
strength and yield strength pertains the normal distribution. The data has been collected from
3982 tests for the ultimate strength and 3974 tests for the yield strength representing 33000
tons of steels used on nine projects between 1938 and 1951. Figs. 3.1 (a) and (b) are given
by Julian using the results of ultimate strength and the yield strength of structural steels. The
ordinates of the histrograms shown as cells drawn in dash lines represent the relative

- ~-frequency- of the test results occuring with the.cell widths_indicated by the abscissas at their
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bases. ‘To achieve a standard for comparison, the width of the cells in graphs has been
arbltrary chosen as one probable deviation according to the normal distribution.

The plots are also representing the percentages for the deviation from medium. The figures
in circles indicate the number of test results pertainting to each cell of the histograms. The
solid lines represent the cumulative frequency or probability of occurance or P.(X < x). The
ordinates should be interpreted by two separate occurance. For the left of the median, the
percentage of total number of samples testing below the value indicated by the corresponding
abscissa. For the right of the medium, the percentage of total number of samples testing
above the value indicated by the corresponding abscissa.
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Fig. 3.2 Histogram and probability curve of ultimate and yield strength of ASTM A-7
structural steels (From Oliver G. Julian 1957)

The histogram and probability curve of ultimate strength and yield strength have been
transformed into a histogram for the member compression strength by P.S. Tromans and
J.W. Van de Graaf [51]. They have performed the risk assessment fora jacket structure
_ located in the Gulf of Mexico (GOM). They assumed that the member compression strength

will be reduced according to the Toma and Chen’ equation (see reference [10])In that-case; — —— ~

the reduced slenderness was equal to A= 0.55 and it was assumed that it has a coefficient

L



~——which-causes-to a-d ifference-about 5-7 0% in the results
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of variation of 10 % according to the investigation of J.W. Cox. The reduced slenderness

A is defined in term of the yield strength and the slenderness parameteres of member as
follows:

P, with the reduced slenderness parameter \ in the risk assessment of a platform prepared
by P.S. Tromans and J.W. Van de Graaf [51]:

P, =(1.0-0.091), —0.22)c.2)Py 0<A<1.41 (3.2)

the collapse of six comprssion members. First they assume that the compression strength of
the six members are uncorrelated. For six strength values and six critica] members, the
required collapse analysis has been performed 6°= 46656 times with the push over analysis
based on an efficient method described by Stewart and Van de Graaf (1991). However if the.

membe‘r—strengths~are—statisticajlily"’independent,—t’he coefficient of variation of the collapse
strength will reduce [51], because the Simultaneous failing of the several compression
members should be occured. The coefficient of variation for the fully uncorrelated strength

evaluated equal to 3.5%. The risk analysis has been performed for determinitic strength
charcteristics and the results have been compared with the results for the fully correlated
member strength /0% and fully uncorrelated member strength 3.5%.

3.6 Comments on the common distribution functions for strength parameters

The uncertainty of strength parameteres for steels are substantially originated due to the
following reasons:

1- The unstable upper yield strength is considered rather than the stable lower yield strength
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2- The strain rate for tests are considerably higher than the practical experience wthh makes
approxnmately 10% deviation from the mean test results.

3- At cross sections consisting of webs and flanges, the result indicates the yield strength of
the web rather than the strength of thicker metal in the flanges. To account the effect of
thicker flanges a difference about 5-10% is proposed.

The values for three uncertainties are added to find the uncertainty of strength parameteres
for mill steels. The combined uncertainty is evaluted equal to 20-30% for the yield strength.
By an mean value of 25% the reduced strength for an average yield strength of 40 ksi is
found to be 30 ksi. It should be noted that these values are glven as examples and they may
not be typical (Julian 1957).

Lindemann et al 1977 (see reference [34]) has proved a negative correlation of the yield
stress o, with the plate thickness 7 based on the material tests by Augestad. They showed that
the yield stress will decrease with increasing thickness. They poved that the normal
~ distribution is not a good representation for the histograms and they proposed the double
exponential distribution. They pointed out that the distribution tails in most of the cases are
largely contributing to the computed of failure. This means that the truncation of the
probability density functions should be considered very carefully because the probability of
failure depends particularly on the shape of the tails of the probability density functions.

Mansour et al 1984 (see reference [38]) discussed the steel properties and their uncertainties
on the base of more than 60000 samples of various steel types and test methods. The
calculated weighted average of coefficient of variation for the yield strength was 0.089. They
also remarked that Galambos in reviewing much the same data suggests that any numerical
analysis is probably worthless since the measurements are so varied. They conclude that for
__rolled shapes the mean yield stress be taken as 1.05 o, in flanges and /.10 o, in webs with

SIS

samples) were more significant when compared, since this measurement is not so affected
by strain rate. The weighted average of the coefficient of variation representing several
different types of steel was 0.068. In the same paper they presented the results for the
Young’s modulus (300 samples) by the mean and the weighted average of the coefficient of
variation as follows

coefficient of variations of 0-10and 0-11 respectively- The results-for-ultimate- strength (4200

p = 207.2 X 10? MPa and COV = 0.031

Huther et al 1992 (see reference [25]) recalculated the same data (given in [38]) and they
proved that the results for ultimate strength (4200 samples) were more significant when
compared, since the measurement is not so affected by strain rate. They also considered the
effect of steel grade on the results of mean and coefficient of variation for three parameters
(the yield strength, the ultimate strength and the Young’s Modulus) and by this investigation,

they proved that the mean of the yield strength strongly depends on steel quality. In the same
paper, they summarized statistical results given by Stiansen et al (1980). The analysis of =~ .°
available data from Staugaitis for the tensile yield and ultimate strength in ABS.grade B and' " - -~
~C steel plates of 79 and 32 mm have been-calculated. The-normal-distribution was. acceptable____ﬂ,-
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at any resonable significance level for al} grades investigated except for the tensijle strength
of the: C steel. The calculated coefficient of variation were 4.4 to 6.9% against 6-89
proposed by ISSC.

3.7 Proposed model using the new statistical data

In chapter one, the difficulties encounters with the choice of a distribution have been
discussed briefly. We already established that the normal distribution is compateble with the
data when a large number of data are available. Hutler et aj (1992) have compared four
common probabilistic models for the strength parameters. The probabilistic models were:

Normal law, Log Normal law, Gumbe] and Weibull law.

rupture) strength results that the standard deviation is particulary independent of the nominal
characteristics. About 1000 test samples were considered in the recent investigation by
Huther et al. The following are the results obtained from their calculations:

Table 3.2 Probabilistic models and basic variables for marine steels [25]

’ Type of Distribution Mﬁlﬂi@mfm_‘ _Ultimate_Strength(-NlmeZ-)f
Parameters | a b a b !
F Normal | 38 | 16 | sit | 10 | . _J
| Logmormal | 254 | 40 | oom | 468 | 374 0.058
| Gumbel | 378 | 15 | . 507 | 94 |
Weibull | 335 | s 3.5 414 | 43 4.4

In Table 3.2, the parameteres a, b and c are defined by the type of distribution. For normal
distribution a and p represent the mean p and standard deviation ¢ of distribution type while
for log-normal distributiop a, b and c are the Origin parameter, the mean and the standard
deviation of log-normal distribution, i.e. x 1and gy, as defined in section 1.7. For Gumbe]
distribution a and p represent the Mode parameter and the Scale parameter which are

e

- *In original paper the parameter has beer given by b = 40 / mm*2!

e e
i



The concerned parameters foi‘r the evaluation of parameters were g,, g,, the strain at rupture,
the steel thickness and the steel strength. According to their investigations, the log-normal
distribution can be used for the probabilistic modelling of the yield strength of (MS) and
(HTS) steels classified in table 3.1, It is extremely important to note that the data for the
yield strength have been collected from the test of (MS) and (HTS) steels and due to the

~ lackage of data for the (VHTS) steels, Hutler et al proposed that the (VHTS) steels can be

better modelled with the normal distribution. The coefficient of variation for the yield

strength of mild steels and higher tensile steels are calculated to be 0.100 and 0.080. The

bias factor are assumed to be 1.725 and 1.100 for the mild steels and the high tensile steels

-respectively.

- For the tensile (of rupture) strength, they concluded thafj_ the hypothesis of the log normal

distribution can be rejected, then it has been recommended to use the normal distribution

instead of log normal distribution. The coefficient of variation for the tensile strength of the

MS and HTS steels are evaluted to be 0.050 and 0.040. The bias factor are also' computed
equal to 7.700 and 1.050 for the mild steels and the high tensile steels respectively. However
for the very high strength steels (VHTS), there is not sufficient statistical data available at

least in the present time and their suitable probalistic models are the subject of future
investigation.
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Figure 3.3 Implementation of normal distribution for Yield Strength
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Figure 3.4 Implementation of log-normal distribution for Yield Strength
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Figure 3.5 Implementation of Gumbel distribution for Yield Strength
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Figure 3.6 | Implementation of Weibull distribution for Yield Strength




54 STRENGTH STATISTICS

Company : TUD /
Progran : SUPER-FORM 1.1
Koster Enginearing Software

M. Daghigh

«11.000—e........

Variable : ULTDHRFE—STRENGTH(N/nMﬂZ)
Dist. Typa = Normal

. h e S AL L LT ET PP P PPy,
i i
$10..000—........... i
3 4
9,000 meieeiitnnne. SRR :
A i i
X 8.000—...... At SERRIE: S R LTI (U S ,
- i H i
L 7.000—........... ferarennes : I L SRS S k
0 i i :
~ 6.000-] } i Sieieermens
2 . ' :
% Fe000—f it e A Y SR T S SO §
X ‘ 3
b 4.000—f e i : _
3.000—} - ee...... ; F i feoeernan frrrenenennt
T S— A
1.000~} i, SR i : - N
| H : E E R i
0.000——mn i i t t oo e i
460 470 480 490 500 510 S20 530 sS40 S350

ULTIMATE-STRENGTH(N/Mn~2 )

A= 5.1E+0002 B=
C= '0,0E+0000 D=

*% Strength Distributions *n

1.0E+0001
0.0E+0000

note ! f(x) is scaled :

mnax fi(x) is set to 1

Prob. Density Function
X F(x{=K> Cunul. Density Function

Figure 3.7 Implementation of normal distribution for Ultimate Strength

Company ! TUD / M. Daghigh
Program ! SUPER-FORM 1.1
Koster Engineering Software

Variable ! ULTIMATE-STRENGTH(N/nn~2)

ﬂu:.000—--------------------a:---- e e ne e preeeeesietiainann,
! : :
f,,'.e 2000 el f— TPV,
T s ) i s
X 9,000} i, deeemnene e, : T E PP RSl USRI :
~ H E i :
X 8,000 criionnann. e, R ST CT RN S TP Feertetnanenna
~ : : :
- H : :
L‘ 7-000_ """""""""" ': ':"""""""" """ :’ """"""""""
o : _
A 6.000—]ceenea ... i
X i ‘ s i
; 5000l 3 feeeeneiaseoniaiaiall :
N : : : :
L 4,000 ccuiiinninnnnn.. Areeermeiieieeaeenn, 3 S eemmeeeeiieicienaad :
3.000—feeeeeiieaeae... RN i
2.,000—Fmiiieneennnn. L eeeiteeeeneeneanas 4
| 1000 i, feeesiieenrene. i SO i
0.000 % 2 , o—|
495 500 505 510 515 520 525
ULTIMATE-STRENGTH{(N/n~2)
A= 4.7E+0002 B-= 3. 7E+0000 " note f(x) is scaled
C= 5.8E-0002 = 0.0E+000 max f(x> is set to 1 o
LT T T T e e 0.0 F(X  Prob, Density Function -

*n Strength‘Distributlons *a

H————HF(x{=X) Cumul. Density Function

Figure 3.8 Implementation of log-normal distribution for Ultimate Strength




STRENGTH STATISTICS

35

Daghigh

D TUD 7 M.

Conmpany
Progaran

SUPER-FORM 1.1

Gumbel

ULTIMATE-STRENGTH(N/Mn~2)>
Type

Dist.

Variable

Koster Engineering Software

. : d
. : H
H : H
: : :
H : H
H : H
H . H
: . :
: b 4 :
H H
H H
H :
H H
H H
H H
H H
H H
H H
: H
H H
H H
H H
H :
: H
H H
H :
H .
: H
H H
H :
: :
RN P

eeecccccencccccccnnncene ohae

LT PR

eeccccccemcctttehenctcscctcccnncccnen

H N
. .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . H
H H .
. . .
. . .
. . [T
. . oo
i RETL
—ety .
. .
. .
.
.
H
H .
H .
. .

eecccceccecstonacne

Jeofeccccaaas

Seecccccctcccnccccnctcccccccssnccnanne

<

7.000 s
=30 o 1o 1o T

S 3o 1o 1o T RO
4.000— i

>3 40 (KIX)H

3.000—-cmimmminanni

0.000

650

600

450

ULTIMATE-STRENGTH(N/1nn"2)

9 .4E+0000
0.0E+0000

f(x) is scaled

note

S5.1E+0002 B

A=

t to 1

is se
Prob.

H———x F(x<{=X) Cunmul.

max fdix)

0.0E+0000 D

C=

Density Function

Q-eeneeecec0 FUX)

Density Function

*% Strength Distributions »x

Strength

imate

for Ult

istribution

Figure 3.9 Implementation of Gumbel d

Daghigh

TUD 7/ M.
SUPER-FORM 1.1
Koster Engineering Software

Company
Programn

ULTIMATE-STRENGTH(N/nn~2)

Dist.

Variable

= Heibull

Tupe

. 3 0 :
. H . .
. H . .
. . . .
H . . .
. . . .
. . . H
. H . .
. . . .
. U . .
. . .
. . .
. . .
tececccteccadeccccccccccbtocacaceancn dececcnccnan 4
. T < .
. ¢ . .
. . .
. . .
. . .
. . .
. . .
. . .
' . .
. . .
H . .
. . .
. . .
teececciccccdeccccccccccloccccccccadecccnccannn 4
- < :
. H .
. . .
. . .
. . .
. . .
. q . .
. o . .
. . H .
. . . .
. . . .
. . . .
. . . .
fecennnncnnn .
. H 3
i . .
. . . .
. . . .
. . . .
. . . .
. . H .
. . . .
H H - .
. . . . .
. . . .
. . H .
. . . .
. dececensedeeteMenacccan desescccnnen 4
h . . " .
. H . H .
. . H H .
. . . . .
. . . . .
. o . .
H H h .
. t : H H
. . . .
. » H . .
. .- . . .
. .. . . .
. o e . .
. S H . )
teccsccccaan qeee= geoeee Fecccccceae qeccccccccan H
H . .~ . H .
. . . . :
. . . .
. . s H .
. . e . .
. . . . . H
H . . LI
H H H .. H
. . . -, H
. H . %o, .
. . . . - .
. . H H .. .
. : . 3 P
teeccccccane fecccccccaes fecccccccan Qeeenceaal -
. . H . h
. . . H H
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
H 3 t eccccccncen i
teeccccccann feccccccncen feeecccaaan Qe 3
. H . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. H . . .
. . . H .
. . . . .
H H . . .
. . H . :
. . . s
teecccceacns fecccccccane feecccccaae < H

.

.

.

.

.

.

.

.

.

.

i H

i
560

: * o
..... Lecescocons ofun 5
0

Neeecescctcccccpennnncacennan

i i T
510 520 530 540

i
S00
ULTIMATE-STRENGTH(N/nn~2)

4 .3E+0001
0.0E+00Q0

T
490

]
480

O~0T %

1.200—-.-c........

1.000-
0.800—-ceeeen
0.600—}eueeneee

(X>3 20 (K>X>d

0.400—}cceeeeeeeens

0.200

470

0.000

: F(X) is scaled :
t to 1

note

4.7E+0002 B

A=

4.4E+0000 D:

is se
Prob.

H————K F(x<=X) Cunul.

max f(x)

C=

Density Function

Qecccececee FIX)D

Density Function

*% Strength Distributions #x

Figure 3.10 Implementation of Weibull distribution for Ultimate Strength



56

4- Limit states design - First order methods
4.1 Introduction

The accuracy of a stochastic analysis for an offshore structure depends on the reliable data
for determinig the design loads, the fatigue loads and the operational aspects. J.R. Lloyd in
the second offshore symposium has been related the probability of occurance of the design
sea-state to the projected life of the structure (see reference [35]). He has mentioned the so-
called ’5 times rule’ which states that the design condition should have a probability of
occurance of 5 times the projected life of the structure. For example a structure with a 30
year projected life should be designed to withstand a sea-condition with a probability of
occurance of once in 150 years. '

The design loads are often specified as the ’most probable maximum value or (mpm) value’
being the load value coincides with the peak of the distribution of the extreme loads.
Regardless of analysis method (either in frequency domain or in time domain), the common
way for extreme dynamic analysis of the structure has been explained in all of the
Classification Notes (take for example DnV Classification Notes, Joint Industry Jack-up
Comnmittee, etc.). There are three different dynamic amplification factors for determining of
the inertial loadsets. The first dynamic amplification factor (DAF, ) is expressed by the ratio
of the standard deviation of dynamic response ., to the standard deviation of static response
0gs- The dynamic amplification factor 2, (DAF,), is defined by the ratio of the most probable
maximum value of the dynamic response to the most probable maximum value of the static
one. The third dynamic amplification factor , (DAF, ), is calulated in term of the extreme
most probable maximum value or (mpme) value of the dynamic and static responses. At last
by taking into account the third dynamic amplification factor, the inertial loadsets for base
shear, overturning moment are evaluated by the procedure described in the classification
notes.

On the other hand, the nen-linearities in the restoring force characteristics are a major of the
deviation of the distribution function from predictions based on the assumption of a narrow
band spectrum (i.e. Rayleigh distribution). In principle, it is concluded that analytical
methods which are aimed at obtaining statistical data directly from knowledge of the equation
of motion and the statistics of the forces, while giving insight in the main factors determinig
the behaviour and loads, are as yet inadequate for application te many practical cases.

4.2 Probabilistic basis of structural reliability

A physical model for reliability expression is an abstract, simplified, practical one for
studying the mechanism of failures. This model implies an assumption that the probability
density functions for stress and strength are known. Let the density function for the stress
be denoted by f and for the strength by f,. In principle, R is a variable representing the
variations in resistance between nominally identical structures, whereas S represents the
maximum, load effects within a period of time, say successive T years. Let, for the time
being, assume that the distribution of R and § are both independent of time. Then the
- —reliability is defined.as the probability that the strength will exceed the stress during any
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reference period of duration 7 years. The mathematical expression is determined by equation
(4.1) pr (4.2) depending to the model whether jt is the true reliability model (indicated by
the small letters) or the idealized reliability model (indicated by the large letters).

Pp=Pr(r>s)=Pr(r-s>0) (4.1)
Pp=Pr(R>S)=Pr(R-5>0) 4.2)
z
z
§ Stress [5(3) } Strength [(r)
i ( !
! |
ok o
S

/ —

interference region

Fig. 4.1 Stress f,(s), and strength, f.(r), ditributions with interference region [34]

o
a ,
g
Fal
3 (s)
£ \
fy(5.)

27

» — l*'d‘s 7 s T
L—'so

Fig. 4.2 Enlarged portion of interface region for deriving integral form of reliability

where Pr(.) is the probability and S, R are the random variables for the stress s and the
strength r respectively. For the simplicity we assume that there is no difference between the
true reliability and idealized reljabil ity and both are represented by Py in the ongoing context.

‘Thus the shaded region in Figure 472 can be used to find the probablity of strength 7 being
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greater than s, by integration of £.(r) in the interval s,<r< oo :

»

Pr(r>sy)- [fnrar 4.3)

On the other hand, the probability of the given stress s, is equal to the small area with width
ds; that is,

Pr (so—% <85S, +‘%) =f(s,) ds | | 4.4)

The probability that the stress in the small interval ds and the strength r exceeding the stress
can be calculated by the product of two probabilities calculated earlier as follows

f(s,)ds. f f(r)dr 4.5)

The reliability is the probability that the strength 7 is greater than the stress s for all values
of stress s (i.e. r = ) and is calculated by double integral of equation (4.5) as follows

P,= f f.(®) P (x)dx 4.6)

where in equation (4.6) the parameter x represents the strength or stress variable and P,
indicates the chance of exceedance (or the probability of exceedance) for strength r. To find
the_probability of failure, equation (4.6) is used as follows

Py= [£®)[f(dr1ds 4.7
P.=F=Pr(r<s)=1 —f;;(s),[ff,(r)dr]ds 4.8)

By substitution of new bounds for the integral (4.8) we will have

F=[f()[ [ £(rdrids | 4.9
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F= [ ;g.(x).,F,(x)dx (4.10)

where F,(.) denotes the cumulative distribution function of strength parameter.

The probability of failure F in equ. (4.10) is a measure of justification for the acceptance of
a design. If this probability is less than a small value, ¢, the "socially acceptable” probability
of failure, the design is acceptable (Hasofer and Lind [21]). In second moment or Level II
methods, the criterion Pr (R < §) < e is replaced by a criterion involving the mean and
standard deviation of two randem variables i.e. the resistance (or strength) R and the stress
(or load) S. :

In some reliability engineering books (see for instance reference [11), the reliability
expression is formulated with the probability that the stress will not exceed by the strength.
The mathematical expression is determined by an equation similar to equation (4.1) or (4.2)
and in this case the probability of Pr (s < r) is evaluted for an interface region of ry - dr/2
< r < r, + dr/2. By the same way, the reliability expression is found as

P,= [ JAGNI [ f.(s)ds]dr @.11)
Or
Py= [£,(0.F (x)dx (4.12)

where Py is the probability that the strees will not exceed by the strength (or reliability) and
F(.) denotes the cumulative distribution function of stress parameter. The probability of

failure is then found by a similar function in term of reliability expression given in equation -

(4.11) and we have

F=Pr(ry<s)=1- [ £ [f(s)dsldr 4.13)

By using new boundary conditions for the integral (4.13), the probability of failure is
formulated as

F= [£,@).1[f(s)ds]dr @.14)
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And finally by substitution of chance of exceedance for stress distribution in equation 4.14),

the probability of failure is determined by equation 4.15):

F=[f(x).P(x).dx (4.15)

where the parameter x represents the strength or stress variable and Py(.) indicates the chance

of exceedance for stress §. Which formulation is to be chosen depends on the nature of the
problem.

4.3 Generalization of the reliability expression

representing the nominal strength and stress. Usually R and § are functions of many random
variables, i.e.

Xp=R(X[*, X% g o X ey (4.16)
K= S(X050, X mes yomes g omessy @.17)

Thus the probability of failure for the general case is similar to the equations given in the last
section . The generalized reliability expression will depend on the all basic variables which

is represented by a multi-dimensional integral (instead of double-integral with basic variables
of strength and stress) ; that is

PF;f
©r

i

i f(x)dx,  (4.18)

i=1

where H indicates the
multiplication  of probability
distribution function of basic
var}ables apd Ve denotes the fallpre Figure 4.3 Illustration of probability of failure
region which is the corresponding

margin represented by M < 0 in

E(M] m
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formulation of probability of failure it is usual to. integrate the joint density function of x,,
X3, ...,7X, 0 the coordinate of basic variables as follows

Pe=[ f,...4,ffx(xl,xz,....,x,,)dxldxz...dx" | (4.19)

By this equation, the determination of the probability of failure comes down to calculating
an n-fold integral, n being the number of basic variables. Integration of the equation (4.18)
or (4.19) requires the probability knowledge for the resistance and load parameteres and also

by application of modern computers, it is found that the integration of this diffrential
equation consumes a lot of CPU time even for the simple engineering problems. However
there are two convenient approximate methods for the evaluation of this integral which are
called the transformation methods and the simulation methods. These methods have been
classified as follows (see M.J. Marley [53)).

In the transformation method, the original integral is transformed to the integral in

boundary of independent standard normally distributed variables. The first
transformation is used for the transformation of correlated basic variables to
uncorrelated variables that often requires the determination of Jacobian matrix. The
second transformation is usually carried out by the Rosenblatt transformation that is used
to find the ‘independent standard normal varieties from the initial probability density
functions (note that they are not necessarily normally distributed). By this formulation,
the safety index can be evaluated by the so-called Hohenbichler algoritm.

In the simulation method, the integral is approximated by random Monte Carlo
integration. For this purpose, a repeating process involves in the equation of integral
which is simualted by a set of random variables generated in accordance with the
corresponding probability distribution functions. It has been concluded that Monte

Carlo method from finite samples in analysis are not ’exact’ enough and the results of
Monte Carle simulation is questionable when we are dealing with low probability of
failures (see Ang and Tang [54)).

The transformation methods are often splited to FORM and SORM methods. In the next
section, we will discuss the linear transformation methods (or a so-called FORM procedure).
It should be emphasised that the use of FORM/SORM or MCS (Monte Carlo Simulation)
methods does require some caution, insight, and experience in reliability computation. The
methods may be compared with the structural analysis methods whether in one problem the
common sttiffness matrix theory or the finite element approach will lead to accurate results.
Like structural engineering problems, it is useful to start with the classical and usual methods
(i.e. the transformation methods in the relaibility analysis) for better understanding of the
advanced methods (advanced MCS methods). '
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4.4 The mean-value first order second-moment (M VFOSM) method (Level II)

¥

‘The closed form solutions for the i’ntegrals in equations (4.10) and (4.15) only exists for

failure surface and only the first-order (FO) terms are retained in Taylor series expansion.

mean and standard deviation of random variables and up to second moment (SM) of the
random variables (means and Ccovariances) are used in the reliabity measure. For application
of MVFOSM method, the non-normal distributions for the stress and strength variables should
-be converted to the equivalent normal distributions. If § is a random variable representing
the stress and R is a random
variable representing the strength
of the structure, then the safety
margin is defined as

M=g(R,8)=R-S . (4.20)

Failure occurs when the total - |
applied stress § exceeds the
ultimate capacity R, i.e., when the
margin M is negative. Considering |
the_safety_mar-g-i-n—ifnuﬁig—urei—4.—3, if—{ : ~ y
R and § are normally distributed _ 7 g>0:safe
then- the probability of failure P g < 0: failure '
or F is bounded in the safety s

margin M < 0. The mean and the L — _ __|
standard deviation of the margin Figure 4.4 The R - § model,  the marginal

17 . distribuitions, the joint distribution and Domain of the
(M! UM) [Ol' (.U'M$ UM) H (E[ML JM)] e . ’ _
are calculated by equations (4.21) limit state surface G(r,s) = 0

and (4.22):
M=R-§ | (4.21) s
Oiu:azlf' O?S'_ZPR,SOROS _ (4'.22)‘ - : 3'

where R, §, oz and gy are the mean and the standard deviation of strength and' stress -
'variables and p is. the correlation coefficient of two random variables. The Limi\t‘state‘surfaCc T
~ - . -&(r, 8) = 0-is_shown in Figure-4.4-together-with -the"marginal*and"j‘o‘i‘n‘t‘d'iSt“r"ibitibn of (R, ~ L
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).

Vv

The correlation coefficient is. defined by the ratio of covariance of R and S to the product of
the standard deviation of strength and stress.
COV{(R,S}
Prs=— 4.23)

OR'OS

where COV{R, S} is the covariance of R and § which is defined by
COVIR,S}=E[R-E(R))E[S-E(S)] 4.24)

Using equations (4.21) and (4.22), the standardized margin ¥ which has a zero mean and
a unit standard deviation can be written as (see reference [38]);

M= - 4.25)

The probability of failure is calculated in term of the safety margin M by equ. (4.26).
P.=F=Pr{iM <0} (4.26)

With substitution of M = 0 in equ. (4.25), the standardized margin becomes M= - M / g,
and thus the limit state for failure condition is determined in term of the standardized safety
margin and we have

¢ ¥ (e
v}

Po=PriM < -1 )-0,-M, @.27)

O M O'm

where ®y, which is often denoted by ® in the literature, is the standard normal distribution
function. The ratio of M / oy 18 the so-called the safety index 8 which is the inverse of the
coefficient of variation of the safety margin (C, = 0, / M). The function & (-B8) must be
looked up in Table 4.1.

Using equations (4.21) and (4.22), the safety index is formulated in term of four
characteristics values i.e. the mean and covariance of the strength and stress variables.

p-At - RS - (.28)
Om (°R+°s‘2PR,-s°R°‘s),2

Strem STR ’
In a comprehensive literature survay presented by‘ Faulkner et ali(reference [17]), a central
safety factor 0 is defined by the ratio of the mean value of the stress to the the mean value

e

of the strength # = R / S. This model is used in many situations for the comparison of

strength withrespect to-the stress.-The§-parameter -is-often-defined-as-the-safety factor_and- - -
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may be used by other convenient symbols as it has been used in literature (for example K
parameter). Whether the component or system bahaves safely (8 > 1), the safety factor must
therefore be treated probabilistically, i.e. what is the probability that the event (8 > 1)
occurs. Introducing the 6 parameter into the equation (4.28), an alternative definition of the
safety index may be expressed by equation (4.29) written below:

M 0-1
BA= =

Op

4.29)

| -

[ 3

(6202R + °2s ~2pgs00,0y)

Table 4.1 Cumulative distribution function for standard normal distribution

$(-6) |

a(-6) |

0.0 5.0000 x 10 _ ' |
0.1 4.6018 x 10" | 2.1. 1.7864 X 107 | 4:1 2.0658 X 10°
0.2 4.2075 x 10" | 2.2 1.3903 x 107 | 4.2 1.3346 x 10°
0.3 3.8209 x 10" | 2.3 1.0724 x 102 | 4.3 8.5399 X 10
Il 0.4 3.4458 x 10" | 2.4 8.1975 X 10% | 4.4 - 5.4125 x 10°
o5 3.0854 x 10" | 2.5 6.2097 X 10° [ 4.5 3.3977 x 10

0.6 2.7426 x 10" | 2.6 4.6612 x 10° | 4.6 2.1125 x 10

0.7 2.4197 X 10" [ 2.7 - 3.4670 x 107 | 4.7 1.3008 x 10

0.8 2.1186 x 10" | 2.8 2.5551 x 102 | 4.8 7.9330 x 107
Il 0.9 1.8407 x 10" | 2.9 1.8658 X 107 | 4.9 4.7920 x 107

1.0 1.5866 x 10" | 3.0 1.3500 x 10° | 5.0 2.8665 x 107"

1.1 1.3567 x 10" | 3.1 9.6760 X 10* [ 5.1 =1.7000 X 107
1.2 1.1507 x 10" | 3.2 6.8714 x 10* [ 52 - =1.0000 x 107
113 9.6800 x 102 | 3.3 4.8342 x 10* | 5.3 ~5.8000 x 10
13 8:0757 X 1034 3:3693-%—10%-{-5-4 ~3.3000-x-102
Il 1.5 6.6807 X 102 3.5 2.3263 X 10 [ 5.5 ~1.9000 x 10°

1.6 5.4799 x 102 | 3.6 1.5911 x 10* | 5.6 ~1.1000 x 10*
| 1.7 4.4565 x 107 | 3.7 1.0780 x 10* | 5.7 ~6.0000 X 10°
| 1.8 3.5930 x 102 3.8 7.2348 X 10° | 5.8 ~3.3000 x 10°
119 2.8717 X 102 3.9 4.8097 x 10° | 5.9 ~1.8000 x 10°
120 2.2750 X 10? | 4.0 3.1672 x 10° | 6.0 - 9.8660. x 107

- 4.5 The advanced first-order second moment method (AFOSM) method (Le&el-[[)

The issue of MVFOSM method was the first step on the mathematical formulation of-the
Level two reliability methods. Historically the probabilistic calculation of failure by use of
a computational model has been considered' at the mean value of basic variables. Thus. the

_ basic varible space w was divided into two sets called the failure region w, and the safe
region w,. In reliability analysis, the seperation of the two regions w and w, is called the-
Jfailure surface and is defined by a failure function. : '

"It should be emphasized that the"failure “function concept isdeterministic- and-is- usually-———--
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determined by the traditional structural analysis methods. On the other hand, one important
issue to bear in mind is that the same failure surface can be described by a number of
different failure functions and thus the results obtained from the structural reliability as-
sessments are more likely to be nominal rather than actual. Now the question is arising that
what can we do in order to find the best approximation (or at least one better approximation)
for the failure surface? In other words, because the margin is not unique for a given failure
surface, what is ‘the effect of different approximation in the evaluation of failure surface?
This and many other questions have been discussed in the rest of this section. -

Consider the definition of safety margin in term of basic variables (strength and stress) as has
been given by equation (4.20). This is the one formulation for the evaluation of the reliability

of a componant, or a collection of componants (or a system). Since in general we do not have .

enough information on the tail of the distributions of R and (or) S, thus we replace the
criterion of "socially acceptable probability of failure, i.e., P (M < 0) < ¢" (where ¢ is a
small value) by a criterion involving the mean and standard deviation of R and § (In genral
all characteristics of probabilistic distribution of random variables R, S as well as skewness,
kurtosis and etc.).

Using a linear safety margin M defined by equation (4.20) and assuming that the strength R
and the stress § or in general all basic variabies X,i=1.23,..,n,are normally distributed,
the probability of failure is then given by

0-p,,

O M

P=PriM <0)}-0( )=®(-p) (4.30)

where p,, and o, are the mean and standard deviation of linear safety margin of n basic
variables and g is the safety (or reliability) index. The mean value first order second moment
(MVFOSM) reliability approach is implemented by expanding the safety margin M in a
Taylor series about the linearization point. This elementary reliability index can be given a

 the stength and the stress variables as follows.

simple geometrical interpration. First assume that the basic variables X,1=1273,. . nare
trnasformed to the stochastically independent normally distributed variables Z, while i =
1,2,3,...;n. The standardized variables are calculated as follows

Z-p, Z -p Z -p
U,,U,,.. . U)=(—2,2 "5 T 7z, 4.31)
()Zl Ozz O-Z .

n

where U,, U,, ..., U, are n independent standard normal variables. Inserting the
corresponding expressions for Z,, Z,, ..., Z, we have

(Zlf’ZZL""’anz(pZi+Ul'021 , pzz+U2.oZ2 e 'P‘Z,.J'U"'OZ.) 4.32)

The principle of limit state design requires that the basic variables would be the functions of
the resistance R and the stress § as given by equations (4.16) and (4.17). Thus the basic
variables are mainly two types and the safety margin should be evaluated in term of both of




66 LIMIT STATES DESIGN

M=d,+a3"Zy-b"Zg=a,+(@a,Z,+a,Z,+..+a,Z )~ (b Z,, +b,Z

m+2

e A (4.33)

where a" = [a,a, ... a,}, " = [b, b, ... b,,]] and Z = (Z,, Z,, ..., Z,) are the constants
and normally dlstrlbuted basic variables respectively. The vectors a and b are assumed to
be positive real values and the vectors Zp and Zg are represented the basic variables
corresponding to the strength and stress parameters respectively.

Substitution of M = 0 in equation (4.33) leads to the failure surface equation, which i* now
indicates a straight line in the coordinates of R and S. By the vector symbols introduced in
equation (4.33), the mean and the variance of safety margin are obtained as

E(M}=a,+aT.E{Z)-b" . E{Z,) | (4.39)
Var{M}=lE”a,.2.o§I + z b} oz (4.35)
i-1 f=m+1

where the mean value and the variance (the square of standard deviation) of the safety margin
are represented by E{ M } (is also called the expected value) and Var{ M }.

By substitution of reduced variables, i.e. equation (4.32), in the equatlon of safety margin
(4.33), the following expression may be expressed for the safety margin

M-=[a, +ET.E{ZR}—b .E{Zs}] +[(a.cZR)T. UR —(b.'ozf. US] (4.36)

To implement an invariable measure, both sides of equation (4.36) are divided by the
standard deviation of the safety margin a),. By substitution of equation (4.34) into (4.36), the v

expresion for the normalized-safety-margin-is-obtained-by

\T T
Vi By , (a..oZR) i —(b,ozs) i 4.37)

Ou Oy Oy

In use of equation (4.37), the following notations are mainly substituted and a common
equation is derived for the normalized safety margin as given in literature [55]. Consider the
following expressions

p-tx =
Om
T
ER=cos(6R)=—M 4.39)
Onm
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_ (b.o,)T ,
aS:’COS(eS):‘ZL) (440)
Ou
‘The normalized safety margin is rewritten by
M=ﬂ—’(ER ﬁR+ES ﬁs)=p_ET.6 (4.41)

where o = [ar ag], T = [Ty Us] are the vectors of sensivity measures and the
uncorrelated basic variables respectively. In the (R,S) coordinate system space, cos(fy) and
cos(f) are the direction cosines of the unit outward normal vector for R and § respectively.
Also « is a unit outward normal vector to the limit state surface in U-space. Thus in
dimension of n reduced basic variables U, , the shortest distance from the origin to this linear
failure surface (i.e. M = 0) is equal to B because .« =1,

In a FORM approach (First Order Reliability Method), the linear safety margin M is
obtained in terms of basic variables in a general expression as given by equation (4.41) and
the elementary reliability index can be interpreted as the distance from the origin (mean value
point) to the limit state surface in the standardized U-space. In MVFOSM method, the point
closest to the origin in U coordinates, the most likely failure point, which is :also known as
the design point, is found by the zero safety margin or

T b (4.42)
Clearly, the 8-value obtained for a non-linear safety margin will depend on the choice of

linearization point. The resulting B-value will also depend on the choice of failure function.
(for_example, compare the results for M = R? - S, M = (R-S),... with the safety margin

given in-equation (4.20)). In other words, the choice of the mean value point for expanding
Taylor series causes the invariance problem. Since the distance from the linearization points
increases, thus some errors will be introduced at increasing distance by neglecting higher
order terms in expanding Taylor series. In addition, even for certain linear forms of the
safety margin, such as when the loads counteract one another, significant errors may be
introduced in reliability problem. This shortcomings are avoided by using a procedure usually
attributed to Hasofer and Lind [21].

Hasofer and Lind in 1974 have suggested a new definition for the safety index instead of that
given by equation (4.38). They supposed that if the basic variables of a system X = (X|, X,
X, ..., X;) are uncorrelated, the first step is to transform the non-normal variables to the
equivalent normal distributions. This can be down by both the normal tail approximation
prodecure or by the weighted fractile approximation [11]. The normal tail approximation is
often called the Rosenblatt transformation and has been originally introduced by M.
Rosenblatt in 1952 [54]. The Rosenblatt transformation includes transformation of a set of
multivariate random v.ariables]}mto a set of independent random variables, each normally

distributed. The weighted fractile approximation was introduced by Paloheimo and Hanus
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Py at the design point. It can be interpreted as follows. The design point is equal to the
weighted average of the mean value and the probability of failure Py, or (1 - Pp), fractile
of each variable X;, using sensivity factor o as the weighting factor. After the transformation
was performed to the equivalent normal distributions, the second step would be the linear
transformation of a normalized set of random variables Z = (Z,, Z,, Z, ..., Z) to the
standardized normally distributed random variables U = (U, U,, U, ..., U) by the
following equation

(1974) [11] for an equivalent normal distribution in accordance to the probability of failure

. Zi -
U=—""2 =123, (4.43)
OZ,'

When the basic variables X = (X,, X, X;, ..., X)) are correlated it is necessary as a first step
to obtain a set of uncorrelated variables Y = (Y,, Y,, Y5, ..., ¥,) and then normalize this set
of variables. It means that the non-normal stochastic quanteties (Y,, Y,, ¥;, ..., ¥.) which are
characterised by a distribution type and a number of parameters (eg. the mean and the
standard deviation and etc.) can be always transformed to the normally distributed variables
(2, Z,, Z,, ..., Z,) by the Rosenblatt transformation or similar transformation methods [50].
By the linear transformation as given in equation (4.31), the standardized normally
distributed variables (U,, U,, U, ..., U,) are calculated where in equation (4.31) it has been
already assumed that the basic variables (2, Z,, Z,, ..., Z) are normally distributed (i.e. the
set of basic variables which are used as the input data for linear transformation). Finally, the
reliability index 8 has been defined by Hasofer and Lind in the u-coordinate system, namely
as the smallest distance from the
origin to the failure surface (see
Figure 4.5).

reliability index in this method can be
calculated independently of the distri- |
bution types of the basic variables, |
while the one-to-one relation
expressed by equation (4.30), is inva-
lid when the failure surface is non-
linear. Experience shows that a good
approximation to the probability of
fatlure, P, , can usually be obtained
by using equation (4.30) and the
Hasofer and Lind reliability index
even for non-linear safety surfaces. In
each case, the reliability index for a
single structural element with respect

Failure set

to a single failure mode can be | /
estimated by implementation of
-uncorrelated normalized variables in

Figure 4.5 Hasofer and Lind reliability index
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failure surface function and Calculation of the distance, A, from the origin of the failure
surface. Thus the second-moment reliability criterion will now be:

A>p | (4.44)

In which, 8 is given by the ratio of mean and covariance of the strength and stress variables
as indicated' in equation (4.30). If the mean value of X (both R and ) are adopted, a so

called mean value approximation is obtained. By this procedure, a more accurate

boundary where the probability density is greatest. Such as the MVFOSM method, the point
which corresponds to the shortest distance from linear failure surface is reffered to as the.
checking point or design point or B-point, In the AFOSM method, the distance 8 (or the
corresponding design point) can be determined.by solving by iteration the n+ 7 equations in
term of standardized variables

¢ (U, Uy,..,UN =¢ (Ba,,Bu,,..., Pa =0 | (4.45)
and
%
al]l U,"
U,-*= a;‘. = - —.B ;1=1,23,...n (4.46)

| [‘.S(av,. U.]

i

where «; represents the relative effect of the corresponding random variable on the total
variation and 2 indicates the safety margin in standardized coordinates. Equations (4.45) and
(4.46) can be directly used for the estimation_of _ saf_ety_mdex._EOLthis_p.unpose_some-

additional parameters are often used to simplify the expressions of design point. For example
the following notation is introduced in equation (4.46) to obtain a unit vector in term of the
sensivity factors.

[V, )]U:, U, v B de, (Be®)

‘- ) . : (4.47)
VEUDE e g, b i s p

SINCS MR )y i AR
i=1 aUg Ui ) i=1 paa; !

where VZ(U) is the gradient vector for the reduced safety margin 2(U). The expression (4.45)
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expresses that the point 4 is on the failure surface as indicated on Figure 4.5. Thus by
substitdtion of equation (4.47) in equation (4.46), the set of equations are simplified to the
safety margin equation (4.45) plus the following n equations

[VE(UNT ,
Ur- -p — % i=123,.n | (4.48)
|Vg(U™)| :

As a practical approach, the set of n+ 1 nonlinear equations (in general case) are often solved
by an alternative procedure. Let the uncorrelated normalized basic random variables in the
design point may be found by

Z - p . o
U= %= cos(@}) =p™. o' ' (4.49)
Ozl

where " , cos(6y") and o are the reliability index, cosine direction and the sensivity
factors in the n-th iteration (7 means the number of iterations). The so-called sensivity
factors o™ and reliability index 8™ are used to calculate the design point in the system
coordinates of uncorrelated standardized basic variable U as follows

Z;" =y +B" cos(87) .0, (4.50)
Z,-""i=|.tz,+[i"".a';'..ozi (4.51)
ZMm- by * U oz (4.52)

At last with substitution of equation (4.48) into equation (4.52), the set of n equations are
obtained as

VEWU™] .
Z.*(’"'"'l) - i - Bm' [ g( l )]U,-'" Ol (4.53)
! Ve

The equation (4.53) together with equations (4.45) and (4.49) form a set of n+1 equations
which can be solved for the parameteres 3 and Z (or U).

In general, for a linear limit state function, the Hasofer/Lind (or AFOSM) method will yield
the same result for 8 as the MVFOSM method. For nonlinear state functions, this method
yields a safety index 8 which is invariant to the formulation of the limit state function. The
full procedure of the AFOSM method is summarized as follows:

1. Define an appropraite limit state function in term of basic random variables X).

-~2. Implement a transformation for the basic variables in case of correlated variables ().
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3. Implement the second transformation for the basic variables in case of non-normal
distributions (Z).

4. Transform the approximaite limit state function (step 1) by use of new basic random
variables.

3. Compute the mean and the standard deviation of the basic variables, i.e. pzi and oy .

4. Compute the mean and the standard deviation of the transformed limit state function PM
and oy by equations (4.34) and (4.35).

5. Compute the initial reliability index by the ratio of mean and standard dev1at10n of M.

6. Define a set of standardized variables (I) in term of basic variables obtained in step 3
by using equation (4.31).

7. Identify the limit state function in the coordinates of reduced basic variables U,.

8. Compute the sensivity factors «; by equation (4. 46) or the partial derivatives 92/dU, from - -

~ equation (4.45) . _

9. With the initial variables at design point Z*™ [in the first step Z*° = p,(Z,)] the safety
index B, the sensivity factors o; or the partial derivatives from step 8, determme
Z*"*! [in first step Z*'] values from equation (4.53). |

10. Check the calculated safety index 8 by equation (4.53) until a satisfactory result is
calculated on the basis of successive iteration.

11. Repeat steps 8 to 10 until convergence has been attained.

12. Determine the probability of failure P by the results of last computation in step 10 and
the cumulative standard normal distribution from equation (4.30).

Example 4.1 (Reliability analysis of a beam ; Excefpted from [11])

In this example we consider a beam which is only calculated for pure bending moment. The -
beam is designed in accordance with the Euler-Cauchy equilibrium condition. Let the critical
stress-is-deneted-by-o-the-maximum moment and _the inverse of the section modulus by M

and Z" respectively. With application of these notations, the equilibrium condition can be
stated by

o ,=MZ"! » (4.54)

- Assume that all variables of g,, M and Z' are normally distributed. The mean and the
standard deviation of basic variables are given in Table E4.1.1. Find the reliability index .and
the probability of failure Pp by the MVFOSM and AFOSM methods.

Table E4.1.1 Probabilistic characteristics of the design parameteres

| L Mean Standard deviation
Critical stress 7 oo = 700 N/n? 0. = 140 Nim?
Maximum moment py = 18,750 Nm oy = 28125 N.m
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rInverls‘e of the‘section prt = 0.024 m3 \ o, = 0.00144 m>
. modulus ‘ , ,

Solution

The limit state function is. formulated as follows

g(o M, Z)=0 _-M.Z"" 4.55)

The example has been solved by an iteration procedure in reference [11] with an initial
reliability index B = 2.5, and the final solution was B = 1.58, with the probability of failure
Py = 5.7026 x 10 With the Super-Form program written by Koster Engineering, the
relaibility index and the probability of failure have been calculated by the same procedure
discussed earlier. The results are demonstrated in Table E4.1.2 which are comparable with
the solutions of Dai and Wang [11] (pp. 84-85).

Table E4.1.2 The reliability indices and the probabilities of failure with FORM methods

| Used method

‘ MVFOSM I |
| Arosm ]L 1.580 i 5.707 x 102 I

1.585 5.651 x 10°

The AFOSM method gives a better estimate on the reliability approach. Using the
characteristics of the iteration procedure for this method, a relatively accurate solution is
obtained by 2 itertions. The final result for the design point and the square of the sensivity
factors_are_indicated in Table E4.1.3.

~ Table E4.1.3 Design point and square of the sensivity factors for design point

Design point value

* : 5.049 x 10* N/m? |
L M 1 207 x1008Nm T olo
" Z 2443 x 107 m® | 0.04 "

By comparison of the sensivity factors for different designs, it can be concluded that the
major importance for probabilistic design are attributed for the critical stress o. and the
maximum moment M respectively. The sensivity of the design with respect to the section
modulus can be ignored in case of complicated limit state design. '
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Example 4.2 (Reliability analysis of a fillet weld in compression and bending ;
Excerpted from [11])

The reliability of a joint with fiilet weld is considered in the combined effect of the bending
moment and the axial loading. The structure is a rectification column and the fillet weld
attachs the skirt of tank to the rectification column. The allowance stress of fillet S, is a
characteristic value which is assumed to have the
following values expressed in MPa.

60 - 62 - 64 - 66 - 68 - 70 - 72 - 74 - 76 - 78 - 80 Tor M

The throat area of the fillet weld is 4 = 267 cm* and
its section modulus is Z = 13,800 cm’. The column is
operating under combined effect of axial force and
flextural bending as shown in Figure E4.2.1.

The axial load Q includes the total weight of the
column and reacting medium under operation and is
assumed to consistent with the normal distribution. The
maximum bending moment M is obtained from the L — —
environmental effects and it is assumed to be log- Fig. E4.2.1 Af,ﬂlet weld attaching
noramlly distributed.The geometrical and physical skirt to column
characteristics of the joint together with the external '

load effects are given in Table E4.2.1.

Table E4.2.1 Probabilistic characteristics of the axial load and bending moment

Standard deviation

. Axial load 0 e =33X10°N 0 =3.3 X 10'°N

Bending moment M § 4, =591 x 10° N.m | on =591 X 10°N.m

Solution
A limit state. function is defined as
O M
X)=8§ -(X+2 (4.56)
g(X)=8, (A Z)

It has been stated that the bending moment obeys from a log-normal distribution. In order
to implement the characteristics parameteres of both distributions in the Super - Form
program, it is necessary to find the mean and the standard deviation of log-normal
distribution. In section 1.7, it has been. explained that the mean and the standard deviation
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of random variable x, (hier bending moment M), is related to the probabilistic characteristics
of random variable x,, (hier M,) which obeys from log-normal distribution. The coefficient

of variation of random variable M is defined by the ratio of its standard dev1at10n to its mean
[equation (4.57)]

a
=M | 4.57)
T |

Thus the mean and the standard deviation of log-normal distribution are obtained from

oy, =yLn(1+Cj) =0.09975 | (4.58)

g, = L0 % 0,2 =Ln(5.91x10%) - %(0.09975)2 ~13.2846 (4.59)

With substitution of the characteristics of the fillet area and the section modulus, the limit
state function can be rewritten as

g(X)=8,-3.74532x107°Q-7.2464 x 10> M =0 (4.60)

The characteristics of both distributions of Q and M are used in Super-Form program. The
results of calculation together with the diagram of the probability of failure for MVFOSM
and AFOSM methods are shown in Figures (E4.2.2) - (E4.2.5). In Super - Form program
for the case of MVFOSM method, the mean value and the standard deviation of the limit
state function is found for each critical stress: §,. Moreover the reliability index and the
probability of failure are calculated in the analysis way. For the case of AFOSM method, in
addition_to_the_above_mentioned parameteres, the number of iterations and the value of
reliability function in the calculated design point and finally the difference between the last
two iterations for probability of failure are calculated. In addition the sensivity factors for
each variable are established in both methods while for the AFOSM method, the sensivity

_fa‘ctors indicate the solution for the last iteration.

For our example it has been found that the AFOSM method needs to evaluate the safety
margin for three times. Similar to the Example 4.1, the results of calculation for relaibility
index (or the probability of failure) are conservative by using the AFOSM method than the
MVFOSM method. As much as the allowance stress for the fillet weld increases, the
probability of failure comes down. and thus by estimating a criteria for the probability of
failure (or for the reliability index), the appropraite allowance ‘stress of the fillet weld can
be obtained. AISC specifications for a fillet weld can be used here. Depending on the
particular load combination used, the criteria for the target reliability index will be varied for
the given fillet weld. With the notations of D for dead load, L for live load and W for wind
load (or alternatively earthquake load) it can be assumed that the following ratios are valid
in this example as
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Thus the target reliability should be greater or equal to 8 = 3.3 (see Table C.7.7, pp. 164
in reference [56]). Searching the results of Super-Form program it can be easily found that
for the allowance stress of S, = 72 MPa the desired reliability index is revealed. Therefore
the design point is obtained at the point that the probability of failure is smaller than P, =
4.856 x 10* where the difference between the last two iterations for probability of failure
is equal to AP, = 7.024 X 107. Other characteristics of the desired design are summarized
in Table E4.2.2. '

Table E4.2.2 Design point and square of the sensivity factors for design point

Design point value

| 3.525 x 10° N ,_
| M 8.114 x 10° N.m | 0.96 |

It can be concluded that the marginal effect of the bending moment M on the reliability
design has a greater influence than from the axial load Q. However the results for the
allowance stress of §, = 60 MPa are identical with the results of Dai and Wang [11] when
the solution is performed untill 3 iterations.
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4.6 Relaibility analysis for simplified systems
)

The procedure of reliability analysis for single elements by FORM method has been
discussed in sub-sections 4.4 & 4.5. Moreover Examples 4.1 & 4.2 have been proposed to
illustrate the main concepts for the computational method of reliability analysis of single
elements. In general , for a structural element, several different failure modes are usually of
importance. As an example for truss and plane frame structures, the most important failure
modes are failure iq,geggsion/compression due to axial loads and failure in bending and large
deflections. It has hé proved that a sequence of member failures can be represented by a
parallel system. On the other hand, the total structural collapse occurs if any such failure
sequence occur, i.e., the structure can be modelled as a series system of parallel sub-systems.
In reliability analysis the statically determinate (Isostatic) structures will fail as a series
system while for a statically indeterminate (hyperstatic or redundant) structure the system
will fail by a mechanism of failure in a parrallel system. The failure modes are then
combined in a series system to obtain the total probability of failure. The experience shows
that in order to reduce the number of variables and calculation time it is satisfactory to find
the probability of failure for the most dominant mechanisms. It has been shown that how the
B-unzipping method and the branch and bound method are used to identify the significant
mechanisms of failure [50].

Consider a structural element
with two potential failure modes
defined by margins M, =
&, U) and M, = g(U,
U,), where U, and U, are stan-
dardized basic variables. The
corresponding failure surface
and reliability indices 3, and 3,
are_ shown in Figure (4.6). The

probability of failure is found
by integration of the joint
bivariate normal density
function for the random vari- £yu) = 0 Y
ables in the failure region w, (if
the random variables are
normally distributed).

PF=ff(ul,u2,0).dl-t- @.61)

7

Figure 4.6 The probabilsitic of failure for a series system

where f is the bivariate normal density function for the random vector U = (U,, U,). The
shortest distance from the origin O to the failure surface is defined by the reliability index
B = B, as shown in Figure (4.6). Thus the probability of failure is estimated by integration
of the distribution function over the hatched area (the "right" of the tangent t,). Such a
modelling of the system reliability has been called systems modelling at level O by P. Thoft-
Christensen and Y. Murotsu [50], which is in fact an element reliability modelling and gives
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an upper bound for the reliability index. They have proved that a better choice for the proba-
bility of failure can be found by modelling the reliability problem by a series system. In a
series system, the probability of failure P; of the element is

P.=P, UP, (4.62)

In fact, in this case the probability of two failure elements (or two modes of failure for one
element) and the correlation factor between them are taken into account which is called
system modelling at level 1. However the probability of failure for the series system of
Figure 4.6 can be obtained by the probabilities of survival (or reliabilities) of two (elements
or modes) Py, and P, as follows (see Hohenbichler and Rackwitz [57])

Pp=1-[Py NPy ] (4.63)

Because U, and U, are the independent standardized normal variables and the safety margins
M, and M, are approximated by the linearized margins in their design points 4, and A4,, thus
the safety margins can be formulated as follows

M,=a,U +a,U,+B, ’ (4.64)

M,=b U, +b,U,+B, (4.65)

where a,, a,, b, and b, are the cosine direction of the unit vectors and- B, and @, are the
corresponding reliability indices to the safety margins. The correlation coefficient p can be
obtained by calculation of the cos(v) where v is the angle between the unit vectors ¢ and 7.
The safety margins M, and M, are also standardized normally distributed and the correlation
factor between two safety margins M, and M, are simply obtained by the following
expression:

p =22; a,.b, (4.66)

In section 1, it was shown that the reliability measure (or the probability of survival) and the
probability of failure are complementary, thus if the reliability index for an element is given
by 8; then in case of normal distribution, the reliability (or the probability of survival) can
be found by the cumulative distribution function as given by

P‘R, =@ (B, 4.67)

The bivariate normal distribution function, defined in section 1, can be used in order to

obtain the probability of failure for a series system with two elements as shown in Figure -
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4.6. Thus the probability of failure for the series system is obtained by the cumulative joint
probability distribution of two elements as follows

PF=1“F(:Bx’Bzr~rP)=1""Dz(Ber;;P) (4.68)

where F and ®, are represented for the cumulative bivariate probability of uncorrelated
reliability indices 8, and 8, while the correlation cofficient of safety margins are given by
p. When the probability of failure determined by a level 1 approxiamtion of P;, the reliability
index may be calculated by

B=-27(P) | (4.69)

where ¢ denotes the cumulative distribution function for the uni-variate standard normal
distribution.

Example 4.3 (Reliability analysis of a simple structural system ; Excerpted from [50])

Assume that the simple structural system shown in Figure
E4.3.1 loaded by a single concentrated load p. The collapse
of system may be occurred by structural failure of elements
1 and (or) 2. The lead-carrying capacity in the elements 1
and 2 are represented by 1.5 X ng and ny respectively. Both
of the basic variables are realizations of independent normally
distributed random variables P and N, with the following

2¢

characteristics. »- 7 — ;
o Fig. E4.3.1 Plane truss
structure

Table E4.3.1 Probabilistic characteristics of P and N,

Mean Standard deviation

Concentrated load P

Measure of capacity N, wap = 4 KN " o =04KN

Find the probability of failure and the reliability. index for the structural system.
Solution

The performance function (limit state function) can be defined for elements 1 and 2 as
follows :
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M-3N_L2p (4.70)
2 2
M2=NF—'—‘?P (4.71)

Suppose that the characteristics of basic variables are used in order to find the safety margins
in term of the standardized random variables U, = (Ny-4)/0.4and U, = (P-4)/0.8

M,=0.728 U, -0.686 U, +3.486 4.72)
M,=0.577U,-0.816 U, +1.691 4.73)
By comparison with equations (4.64) and (4.65), the reliability indices are 3, = 3.846 and
B, = 1.691. The correlation coefficient between two safety margins is determined by

equation (4.66) as follows _
p =0.728 x0.577 +0.686 x0.816.~0.98 | (4.74)

Thus the probability of failure of the system is determined by equation (4.68)
Pp=1-F(B,,B,;p)=1-2,(3.846,1.691,0.98) 4.75)
where @, is represented for the standard bivariate normal distribution function (i.e zero

means and unit standard deviations for both random values). In section 1, it has been
discussed-that-thecalculation of_the_uni-variate normal distribution have been performed

numerically without any difficulties and a number of of tables exist for this purpose in the
appendix of any probabilistics handbook [1,9,11,44,50,52]. M. Zelen and N.C. Severo [52]
have been given a number of plots for approximate calculations of standard bivariate normal
function (see Figs. 26.2-26.4 pp. 937-939 from referenec [52]). Although the solution has
been performed by numerical integration methods but the Figures are not accurate especially
for boundary values of the correlation coefficient p eg. for p = -1 , 0, +1. Moreover the
Hermite polynomial expansion method is also used for calculating the bivariate normal
distribution function [50]. In author’s opinion, it will be more appreciated if the numerical
method -is developed for the standard bivariate normal distribution. For this reason the
cumulative function is expanded by the Taylor series with respect to the correlation
coefficient near the origin (i.e. p = 0). By this method the integral is reduced from the
double integral (for the random variables) to the single integral [50]. By the same notations
used in section 1, the standard bivariate nermal density function is rewritten as
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2 2
4+ -2p10,

f(t,,’iz,p)={2n»/1—pZ}"exp[—g( o 4.76)
1-p

The function f can be integrated for the variables ty and ¢, in order to find the joint
cumulative distribution function as given by

h ow

. F(ul-’uz,’p)=f ff(tl’tZ"p)dtldtz (477)

Let we assume that both variables t, and ¢, are represented by constant parameteres and the
function f be the first order derivative of the cumulative function F with respect to p. By
differentiation of equation (4.77) to the variable p, the standard bivariate normal density
function can be written as follows

FF(uy,4,0) _ OF (uy,4,,p)
du, ou, ap

(4.78)

Thus for the uni-variate function F , the Taylor series can be derived at the point by bivariate
function with p = 0 . ‘

| fOF(u,,u,,2)
F(upuzmp) ='F(u1’u2’0]) +I#I
0 b

dp 4.79)

A=p

Obviously;the_fipst-panbon_the-pight-side»-of-equatiiOn-(4.~79)-ca-n-be—represented—by—th&product
of the two uni-variate normal distribution functions and we have

P OF (u,,u,,A
F(ul,uz,p)=<I>(u1)‘I>(u2)*f%l

0

dp (4.80)
A=p

Returning back to .our example, we only need to determine the single integral or second
expression on the right hand side of equation (4.80). For this purpose a lot of numerical
methods have been used in literature (for example Hermite polynomial expansion method)
but hier we consider the PFD (Polynomial Finite Difference) method which has been reported
by the author on earlier report [58].

In the PFD method, we could eliminate the errors which are arising from the simplifications
of the conventional finite difference method. Brifely, in the traditional (or conventional) finite
difference method, the derivatives of a function. are obtained from the minimum required
degree of function and for example if the differential equation involves the second derivatives

of function. then a parabolic_function is_passed ;thmugh_,each__three_assumedz.points._-'lrn:the'_'

traditionary method, using the direct substraction methods or exapansion methods on series
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In order to integrate equation (4.80), it is hecessary to divide the variable domain into some
finite distances. For our example p = 0.98 and it has been assumed that the variable domain
is divided by 7 equivalent distances each equal to Ap = 0.14. The first expression on the
right side of equation (4.80) forms one the boundary conditions for the differential equation.
Thus the product of two uni-variate normal functions is detremined as follows

F(B,,B,,0)=®(3.846)d (1.691)=(9.999409411 D-1) x (9.544224341:333685D—1‘)(4" 81

where D denotes the double precision real data type. Note that the cumulative uni-variate
normal function is excerpted from reference [52]. The product in equation (4.81) is
calcualted by a simple program in FORTRAN with 15 accuracy decimal digits which is
represented by the double precision variable as follows .

F( B1,P;,0)=9.543660669942732 D-1 - (4.82)

The boundary conditions for the differential equation (4.80) are defined as follows

F(3.846,1.691,0) = 9.543660669942732 D1 (4.83)
and
: - 2 , 2 - {’ : I
aF(3.8466, 1.691,p) _ /157 1exp[_ % (3.846)% + (1.691) 22_p4(3.846).(1.691)](4;8.4)
p 2 ‘1‘ - p

Equation (4.84) holds for p=1[0.14,028, 0.42,0.56 , 0.70 , 0.84 , 0.98] . Thus

equation (4.83) together with the Tequations obtained from equation (4.84) form a set of §
linear systems of equations. The output will be the cumulative bivariate normal distribution
for defferent parameters of p and the answer for p = 0.98 is.obtained by

F(B,,B,,p) =®,(3:846,1.691;0.98) =9.54417356 D -1 (4.85)

And the probability of failure Py is determined by equation (4.75) as follows
Pp=1-9,(3.846,1.691 ;0.98) =0.045582644 (4.86)

~_The reliability index for the series system in.Figure (4.6). is-calculated by the FORM-method-—————:-+

by



84 LIMIT STATES DESIGN

p=-@(P,)~1.6893" 4.87)

In reference [50], the Ditlevsen bounds for this example have been calculated and the
probability of failure is expected to be close the the lower bound of Ditlevsen. The lower
bound is the maximum probability of failure of any element and in this example the lower
bound and the corresponding reliability index have been given by Py, = 0.04557757 and Bi
= 1.691. :
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5- Conclusions and further recommendations
The follbwing conclusions can be drawn from the reliability analysis methods:

1. The main objective of the research has been discussed in the first section of this report.
A risk analysis has been reported for the jack-up failures vs. jacket failures by M. Efthymiou
[15] and S.F. Leijten & M. Efthymiou [33]. The detailed investigation of the platform
failures in two parts including the total loss and the environmental loading and foundation
failure has been studied. The hazard rate for both type of platforms has been compared and
it has been concluded that regardless of the selection of type of loss, the failure rate does not
differ from the failure rate of previous decade for jack-up platforms. It included the loss of
jack-up platform in case of total loss or loss due to the environmental loading and foundation
failure.

2. Developments on the dynamic analysis of jack-up platforms has been outlined in the first
section. This is due to large dynamic amplification for moderate and deep waters combined
with the structural flexibility for jack-up structures. The method is implemented on the
extreme load effect that will need the contribution of joint probability distribution of
significant wave height and spectral peak period as discussed in the second section. The
nonlinearities in the structural response due to the flexibility of the structure (so-called p-6
effect) may introduce highly dynamic behavior. Even with the advances for the reliability
analysis methods it seems that most of the reliability approaches are not consistent with the
state-of-the-art structural analysis techniques. For example in the estimation of reliability
measure for dynamically sensitive offshore platforms, it has been assumed that the dynamic
amplification factor (DAF) can be assumed as a deterministic parameter in the reliability
analysis.

3. One of the promising applications of probabilistic methods is for reliability updating based

onm improved-or- new-information.-This-can_be_implemented for the strength characteristics
including the reliability updating based on improved or new information with respect to
fatigue crack growth in weldings of platform. The reliability model may be improved by
improved information about the environmental characteristics, the dynamic properties of the ..
structure, the improved model for probabilistics characteristics of strength of materials and
all geometrical restrictions.

4. A well known technique from classical methods of reliability analysis is the first order
second moment (FOSM) methods in which a complex system reliability model is
approximated by linear functional relationship between the output safety margins and the
input basic variables. An efficient repeated computation is adopted which allows the
determination of design point, probability of failure and reliability index. As the structural '
reliability is governed by the tail behavior of the normal probability distribution, it is
apparent that the FORM methods based on second moment characteristics may not be
sufficient in reliability studies. Adoptive techniques that combine FORM (or even SORM) '
calculations.on the Monte Carlo Simulation (MCS) with point evaluations of the true fallure
function has been suggested e.g. in [59].
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5. As indicated by P, Thoft Christensen [60], the safety margin for most failure elements
is in general dependent on the stress effect history. There are some techniques for the
formulation of reliability under combined random load Sequences, but. the stochastic model

system.

7. The above mentioned factors need to be balanced to the type of platform, its side and
the mode of operation, in order to optimize its overall performance and ensure the integrity
of the platform during its service life. Some optimal design procedures regarding to the

weight_ofﬂplat-f,or,m_ha.v_e_beenAstudied_b_y_E_T_hoft_ChriStensen_[60]_but,also_iLis-not-a-fully

optimization variables (shape optimization). On the other hand, in case of deep water fixed
platforms, the inspection and maintenance of the deeply submerged parts of the structure may
be difficult if not impossible. In this case, it may be necessary to build more redundancy into
the structure in order to ensure its long term integrity. However the structure has to be able
to continue its design operation or to provide sufficient time for safe evacuation and repairs.
Sometimes it is much better to design the platform in such a way that sufficient safety is
ensured during the total installation time of the structure than to rely on repair when needed.

8. The equivalent linear safety margin concept can be used in order to approximate the

system reliability of complex structure. The method is often referred as the Hohenbichler &

developed in simulation methods which is called the Response Surface Methodology (RSM).
In this method the complex system is directly approximated by a simple functional
relationship between the reliability quantities (for example reliability indices) and the basic
variables. As well as the transformation methods, the linear and quadratic functions are
applied with an efficient repeated computation. Adaptive techniques_ that_combine

FORM/SORM calculation on the response surface function with point evaluations of the true
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failure function has been reported by

P. Bjerager [55].




NOMENCLATURE

6- Nomenclature

n(t) = an ergodic record representing the
water surface

= wave amplitude

phase angle

= wave number

wave length

2«f = wave frequency

water depth

= E [f"] = nth moment of spectrum

= mean zero upcrossing period

= mean crest period

= number of zero upcrossing points

= number of crest points

- spectral width parameter

spectrum width parameter

p(.) = probability density function
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(p.d.f.)
g = x = mean value
o, = standard deviation of variable x
N\; = skewness
N, = kurtosis
&(x) = standard normal distribution of x
H, = nth order of Hermite polynomial

b, = Hermitian moments
H, = H, = significant wave height

H,_=root-mean-square-height

KC = Keulegan-Carpenter number

B, = bias factor for extreme wave
height

Vg = coffiecient of variation for By

g, = yield strength (N/mm?)

o, = rupture strength (N/mm?)

N = slenderness parameter of an
element

E = Young’s Modulus

DAF = dynamic amplification factor

Pr{X < x} = probability of the event
"X < x"

F(x) = uni-variate cumulative distribution

function (c.d.f.)

f, = point probability at ponit n

exp() = exponential of ...

partial differentiation

= safe space region

failure space region

X,, X,, X;, ..., X,) random vector

= covariance matrix of random

vector X

transpose of matrix A

correlation factor

logaritms of x in exponential base

coefficient of variation

I
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=
o

N = number of waves in planned
service

T, = short term period

T, = long term return period

RAO = response amplitude operator

D =characteristic dimension(diameter)

D, = roughness mean size

P = density of water

7 = viscosity of water

fity = wave force per unit length of
vertical cylinder

u = horizontal component of water
particle velocity

C,, = inertia

C, = drag

Re = Reynolds number

standardized variable
resistance (or) strength
stress (or) load

idealized reliability

true reliability

safety margin

standardized margin

F = probability of failure
safety (or) reliability index
= central safety factor
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