Wideband Doherty Power Amplifier Design
for Base Station Application

Thesis submitted to the Office of Graduate Studies of
Delft University of Technology
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in
Microelectronics

By

Xiaobo Deng
Student Number: 1530445

Supervisors:
Associate Prof. Dr. ing. Leo de Vreede, TU Delft
John Gajadharsing, NXP Semiconductors
Dr. Edmund Neo, NXP Semiconductors

August 2010
Abstract

Doherty Power Amplifier (DPA) is employed to improve the efficiency when operated with complex modulated signals. Due to its simplicity and high efficiency performance, it has become the preferred choice of industry. However, practical implementations of DPA only provide limited RF bandwidth, especially at high power level. The traditional narrow band device matching network, required phase shift for proper load modulation and impedance inverter seriously limit the bandwidth of DPA.

In this work, the frequency behavior of the ideal 2-way symmetrical DPA is analyzed in detail, followed by the introduction of two new impedance inverters used to improve the bandwidth of DPA. In order to fully exploit the wideband potential of the new impedance inverters, the phase relation between the main and peak amplifier should be adjusted according to the power level at every frequency, which can be stored in a lookup table. Based on a previous wideband 20W DPA with mixed-signal input drive, in which the device output capacitance is incorporated into the impedance inverter, a modified DPA using the idea of compensated impedance inverter is designed and simulated. The prototype DPA design is implemented with NXP LDMOS bare die device. Simulation results have shown more than 50% 6dB back off efficiency from 1.5GHz to 2.2GHz, compared with the original case whose 50% efficiency bandwidth is from 1.9GHz to 2.3GHz.

Since the prototype DPA is implemented at a low power level with bare die devices and mixed-signal input drive, it cannot be used for the practical base station applications. Traditional high power discrete DPA design method is introduced and the frequency behavior is analyzed. It is found that for the high power DPA, the matching network and the offset line are more important than the impedance inverter for the narrow bandwidth of DPA. A new DPA structure was proposed for wideband operation. Simulation results show smaller gain and power added efficiency spread in a 200MHz frequency band from 2.04GHz to 2.24GHz than the traditional DPA.
Acknowledgments

Completion of this project and this thesis will be an unforgettable experience in my life. I have not only gained a lot of knowledge about power amplifier design, but more importantly, I have learnt how to do a project in a structured way with a great deal of patience, through the opportunity to face and overcome the challenges. There is no doubt that this would not have been possible without the support of a great number of people, of whom, I can mention only a few here.

First of all, I would like to express my deep-felt gratitude to my supervisor, Dr. Leo de Vreede, for giving me this opportunity to do such a project about Doherty power amplifier. I wish to thank him for his encouragement, guidance and valuable discussion throughout my master project.

I am also deeply grateful to Mr. John Gajadharsing, Senior Principle Engineer, NXP Semiconductors, for sponsoring this project and the inspiring discussion during the project. As my daily mentor at NXP, Dr. Edmund Neo has offered me great help from the beginning to the end of this project. He has shown great patience during the discussion with me. My heartfelt thanks to him.

I would like also to thank all the other staff in the base station group of NXP Semiconductors. Many thanks to Ji Zhao and Yilong Shen, not only for helping me get used to the company life, but also for their valuable discussion. Special thanks to Igor Blednov, Jordan Svechtarov, Komo Sulaksono and Lex Harm who sit in the same room with me for teaching me a lot about power amplifier design. Besides, I will never forget the discussion about life, money or even Kalashnikov with Igor Blednov. Jordan Svechtarov is a very good teacher, who is always very kind for discussion. Through his support and encouragement, I have proposed a patent during my project. Sjoerd van Nederveen and Ton Schouten have helped me prepare the PCB, and Jawad Qureshi and Marco Pelka have helped me during the measurement. I would like to thank them very much.

It is not easy to live in a foreign country, especially when you are from a country with totally different culture. I wish to acknowledge and give my appreciation to all my friends in Delft and Nijmegen, without whom, I cannot imagine how boring my life will be in the Netherlands. In Delft, the big Chinese community helped me overcome my homesickness although it is not good to improve my English. I will miss the parties we had after the exam or for the Chinese festivals. Special thanks to the senior students, Xiaodong Guo, Guang Ge, Nan Li and Bo Wu who are also from USTC, for giving me so many pieces of useful advice. I have also been lucky to had many friends in Nijmegen and I will miss the enjoyable time with them.

Finally, I would like to acknowledge my parents, my sister and brother-in-law, my girlfriend Li Shen and my friends in China for their continuous support and love. Their encouragements have strengthened my confidence to face the difficulties during my master program. I appreciated everything you have done for me.
Contents

Abstract iii
Acknowledgments v

1 Introduction 1
 1.1 Background ... 1
 1.2 Wireless Transceiver 1
 1.3 Figures of Merit of Power Amplifier 1
 1.4 Design Challenges and Project Goals 3
 1.5 Thesis Structure 4

2 Theory of the Conventional and Doherty Power Amplifier 5
 2.1 Conventional Power Amplifier 5
 2.1.1 Device model 5
 2.1.2 Conventional power amplifier waveform analysis 6
 2.1.3 Ideal Class-B efficiency analysis 8
 2.2 Introduction to EER, LINC and DPA 9
 2.3 Doherty Power Amplifier 11
 2.3.1 Load modulation of DPA 11
 2.3.2 Ideal DPA characteristics 13
 2.3.3 Simulation results 15
 2.4 Conclusion .. 15

3 Frequency Behavior of the Ideal Doherty Power Amplifier 17
 3.1 Frequency Behavior of an Ideal 2-way Symmetrical DPA 17
 3.2 Two New Impedance Inverters 19
 3.2.1 Impedance transformation effects of three impedance inverters 19
 3.2.2 New impedance inverter parameters tuning 27
 3.3 DPA with Different Impedance Inverters Bandwidth Comparison 29
 3.3.1 Main and peak amplifier impedance spread with frequency 29
 3.3.2 Efficiency bandwidth comparison 31
 3.3.3 Average efficiency of DPAs with different impedance inverters 33
 3.3.4 Phase correction to improve output power 34
 3.4 Conclusion .. 36

4 A Wideband 20W LDMOS Doherty Power Amplifier 37
 4.1 Previous 20W Doherty Power Amplifier Review 37
 4.1.1 π Network quasi-QWTL 38
 4.1.2 Bias line .. 39
 4.1.3 Peak amplifier connection 40
 4.1.4 DPA performance 40
 4.2 Modified 20W Doherty Power Amplifier 42
 4.2.1 Compensated quasi-QWTL 42
List of Figures

1.1 Block diagrams of a generic transmitter and receiver 2
1.2 Generic power amplifier ... 2

2.1 Ideal device transfer characteristic ... 5
2.2 Reduced conduction angle current waveform ... 6
2.3 Optimum load impedance (a), RF power and efficiency (b) as a function of conduction angle ... 7
2.4 Envelop PDFs of differently modulated RF signals 9
2.5 EER system configuration ... 9
2.6 LINC system configuration ... 10
2.7 DPA system configuration ... 10
2.8 Simplified DPA configuration ... 11
2.9 Ideal 2-way symmetrical DPA characteristics 16

3.1 Efficiency Vs. frequency of DPA at different input drive amplitudes 17
3.2 Real and imaginary part of Z_m Vs. normalized frequency 19
3.3 Coupled line impedance inverter .. 19
3.4 Compensated impedance inverter ... 20
3.5 Impedance transformation effects comparison schematic of 3 different impedance inverters (Up to down: QWTL, Coupled line, Compensated impedance inverters) ... 21
3.6 Impedance transformation of 3 different impedance inverters with different effective load impedance $(R_L=0.5\Omega, 1\Omega)$ 22
3.7 Impedance transformation effects comparison schematic of 3 different impedance inverters (Up to down: QWTL, Coupled line, Compensated impedance inverters) ... 23
3.8 Impedance transformation effects of 3 different impedance inverters at back off (6dB back off, when $I_m=0.5$ and $I_p=0$) 23
3.9 Impedance transformation effects of 3 different impedance inverters between back off and full power (3.1dB back off, when $I_m=0.7$ and $I_p=0.4$) 24
3.10 flattest impedance transformation of 3 different impedance inverters between back off and full power (3.1dB back off, when $I_m=0.7$ and $I_p=0.4$) 25
3.11 flattest impedance transformation of 3 different impedance inverters between back off and full power (0.46dB back off, when $I_m=0.9$ and $I_p=0.8$) 26
3.12 Flattest impedance transformation of 3 different impedance inverters at full power ($I_m=1$ and $I_p=1$) .. 26
3.13 Performance of compensated impedance inverters with different Z_{sh} compared with QWTL impedance inverter ... 27
3.14 DPA with LC compensated impedance inverters 28
3.15 Impedance transformation of LC compensated impedance inverter compared with QWTL impedance inverter (Red: QWTL when $R_L=0.5$; Black: QWTL when $R_L=1$; Blue: LC compensated inverter when $R_L=0.5$; Magenta: LC compensated inverter when $R_L=1$) .. 28
3.16 QWTL transformation effect .. 29
3.17 Compensated impedance inverter transformation effect .. 29
3.18 Impedance seen by the main amplifier of DPAs with different impedance inverters at different frequencies(from f_0 to 1.4f_0 with a step of 0.1f_0) 30
3.19 Impedance seen by the peak amplifier of DPAs with different impedance inverters at different frequencies(from f_0 to 1.4f_0 with a step of 0.1f_0) 31
3.20 Eff and Pout Vs. Freq of DPA with 3 different impedance inverters when drive voltage=0.5, 1 .. 32
3.21 Eff Vs. Pout @ 1.2f_0(Red line: QWTL, Magenta line: Coupled line, Blue line: Compensated) .. 33
3.22 WCDMA signal PDF and average efficiency of DPA with different impedance inverters at different frequencies calculated with this PDF 33
3.23 Impedance seen by the main and peak amplifier of DPAs with different impedance inverters and optimized phase at different frequencies(from f_0 to 1.4f_0 with a step of 0.1f_0) 35
3.24 Efficiency of DPA with two new impedance inverters before (blue line) and after (red line) phase optimization at 1.2f_0 .. 36

4.1 Simplified block diagram of the 20W NXP Gen6 wideband DPA 37
4.2 Simplified output network of 10W bare die LDMOS device output 38
4.3 π-network quasi QWTL .. 38
4.4 Original QWTL and quasi-QWTL .. 40
4.5 Drain efficiency versus output power at different frequencies for the original wideband 20W DPA ... 41
4.6 Drain efficiency of the original 20W DPA at 6dB back off and full power at different frequencies ... 41
4.7 Compensated quasi-QWTL schematic .. 42
4.8 Compensated quasi-QWTL .. 42
4.9 Impedance transformation of original QWTL and quasi-QWTL(Blue line: original QWTL; Red line with circles: quasi-QWTL; Magenta line: compensated quasi-QWTL) ... 43
4.10 LDMOS with 28V supply voltage loss mechanism 44
4.11 Shunt short circuited QWTL’s impedance ... 44
4.12 Modified shunt short circuited TL’s impedance ... 45
4.13 Impedance transformation of original QWTL and quasi-QWTL(Blue line: original QWTL; Red line with circles: quasi-QWTL; Magenta line: modified compensated quasi-QWTL) ... 46
4.14 The schematic of peak device with compensation line 47
4.15 Drain efficiency versus output power at different frequencies(Red line: original DPA; Blue line: DPA with compensation line) ... 48
4.16 Original output network with compensation line(upper part) and new output network(lower part) ... 49
4.17 New output network microstrip line structure .. 49
4.18 New input matching network microstrip line structure 49
4.19 Modified DPA efficiency versus output power compared with original DPA(Red line: modified DPA; Blue line: original DPA) ... 50
4.20 Drain efficiency versus output power at 6dB back off (a) and full power (b)
comparison between original and modified DPA; Peak output power of two
DPAs (c) ... 51
4.21 Main amplifier loading impedances at back off and full power 52
4.22 Layout of the modified DPA .. 53

5.1 Conventional symmetrical 2-way distributed DPA schematic 55
5.2 DC characteristic of LDMOS BLF7G22LS-130 56
5.3 Load pull simulation result of LDMOS BLF7G22LS-130 57
5.4 The network for which equation (5.1) applies 58
5.5 Quarter wavelength transformer matching bandwidth comparison for two
impedance levels(2.2Ω and 22Ω) ... 59
5.6 Basics of an inshin output match .. 60
5.7 Single TL and multi-TLs matching effect at output and input of the device ... 61
5.8 Equivalent-load networks at a low-power operation for the DPAs without and
with offset line ... 61
5.9 Main amplifier with offset line power sweep at different load conditions ... 62
5.10 Peak amplifier off-state impedance rotation by the offset line 63
5.11 Ideal power splitter .. 64
5.12 DPA performance from 2.11GHz to 2.17GHz 64
5.13 DPA performance compared with Class-AB at 2.14GHz 64
5.14 DPA performance from 1.94GHz to 2.34GHz 65
5.15 Simplified schematic of Class-AB amplifier with offset line, impedance inverter
and 25Ω load impedance .. 65
5.16 Performance of the Class-AB amplifier with offset line and 100Ω load impedance 66
5.17 Comparison between wideband and single TL matched Class-AB 67
5.18 Performance of the wideband Class-AB amplifier with offset line and 100Ω load
impedance ... 67
5.19 Performance of the wideband output matched DPA from 2.04GHz to 2.24GHz
with a step of 0.05GHz .. 68
5.20 S parameter looking into the peak amplifier from 2.04GHz to 2.24GHz 69
5.21 Power added efficiency of the DPA with different peak offset line length from
2.04GHz to 2.24GHz ... 69
5.22 Power added efficiency of the DPA matched to different values from 2.04GHz
to 2.24GHz ... 70
5.23 DPA output matched to 25Ω without traditional QWTL impedance inverter . 71
5.24 The performance of the DPA in Figure 5.23 compared with the conventional
DPA from 2.04GHz to 2.24GHz (Red lines: 2.04GHz; Blue lines: 2.14GHz;
Magenta lines: 2.24GHz) ... 72
5.25 0.2dB asymmetry rat-race splitter and its performance 73
5.26 The performance of the DPA in Figure 5.23 with rat-race power splitter ... 74
5.27 The performance of the wideband input matched DPA in Figure 5.23 with rat
race power splitter ... 74
6.1 From discrete DPA to integrated DPA .. 79
6.2 Integrated DPA building blocks .. 79
A.1 Simplified DPA configuration ... 81

B.1 Coupled line. The port names are in agreement with directional coupler terminology for a backward-wave coupler, while the numeration is the same as that used in filter design with coupled line sections. 83

B.2 Coupled line with feedback transmission line. 84

B.3 Another configuration of coupled line with feedback transmission line. 87
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Bias point and conduction angle of different classes</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>A set of impedance inverter parameters</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>3 impedance inverters’ transformation bandwidth at back off and full power level</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Bandwidth of DPA with different impedance inverters</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Output power of DPA with different impedance inverters when $V_{\text{drive}}=1$</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Average efficiency of DPA with different impedance inverters</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Optimum phase of the peak amplifier with different impedance inverters for maximum output power when $V_{\text{drive}}=1$</td>
<td>34</td>
</tr>
<tr>
<td>5.1</td>
<td>Load-pull simulation results summary</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>Load-pull measurement results summary</td>
<td>58</td>
</tr>
<tr>
<td>6.1</td>
<td>Material properties of Si and GaN</td>
<td>78</td>
</tr>
</tbody>
</table>

