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Abstract 
Conventional rubble mound structures such as breakwaters, seawalls, and revetments are the most common 
type of coastal structures around the world used to protect harbour basins and embankments from wave action. 
To have a safe and economic design, two aspects need to be considered. The first one is the structural stability 
where the required armor size (weight) must be determined. The second aspect is the safety, where the crest 
freeboard of the structure is usually determined based on the allowable mean wave overtopping rate. Several 
semi-empirical formulas have been developed for these purposes. These formulas, which have evolved over 
time, are generally semi-empirical and based on the small-scale laboratory experiments where both incident 
wave characteristics and the structure configuration are considered.  
 
This paper aims to provide a comprehensive overview of the performance of existing formulas developed for 
the assessing the stability and mean overtopping rate of conventional rubble mound structures, while also 
introducing the recent ones. The Rock Manual formulas for the slope stability and EurOtop formula for 
estimating the mean overtopping rate will be discussed, and their performances will be compared with those 
of more recent and comprehensive ones using both lab and field data. It will be shown that the recent formulas 
that utilize  the spectral energy mean period for  stability analysis and run-up for the mean overtopping rate 
are more robust and physically sound. Finally, design formulas and uncertainty estimates are presented, along 
with guidance for practitioners. 
 
Keywords: mean overtopping discharge, armour stability, seawall, breakwaters, shallow water 
1. Introduction 
Conventional rubble mound structures such as 
breakwaters, seawalls, and revetments are the 
most common type of coastal structures around the 
world used to protect harbour basins and 
embankments from wave action. Two aspects need 
to be considered to have a safe and economical 
design. The first aspect is structural stability, where 
the required armour size (weight) must be 
determined. The second aspect is safety, where the 
crest freeboard of the structure is usually 
determined based on the allowable mean wave 
overtopping rate. Several semi-empirical formulas 
have been developed for these purposes. These 
formulas, which have evolved in time, are generally 
semi-empirical and based on the small-scale 
laboratory experiments where both incident wave 
characteristics and structure configuration are 
considered. 
This paper aims to provide an overview of the 
performance of formulas developed in the literature 
for the estimation of mean overtopping rate and 
stability of conventional (simple sloped) rubble 
mound structures under both head-on and oblique, 
multi-directional waves; and to discuss their 
performances. 

2. Background 
2.1 Mean Overtopping Rate of Rubble Mound 

Structures 
The safety of rubble mound structures, such as 
breakwaters and seawalls, is mainly determined by 
the mean overtopping rate. Excessive overtopping 
may damage properties, hazard to people on the 
crest of structure, and erosion as well as instability 
of the rear and crest of structures. Hence, the crest 
level of coastal structures is usually determined 
based on the allowable mean overtopping rate. 
Design manuals such as EurOtop (2018) specify the 
allowable mean overtopping rates. These allowable 
overtopping rates depend on the function of the 
structure and wave height; and are determined 
based on the structural stability and 
property/operation aspects (EurOtop, 2018). 
Different tools have been developed to predict the 
mean overtopping rate at rubble mound structures. 
These tools are primarily developed based on either 
traditional curve fitting (e.g., TAW, 2002; EurOtop, 
2018) or data mining ones (e.g., Van Gent et al, 
2007; Jafari and Etemad-Shahidi, 2012; 
Hosseinzadeh et al., 2021). The developed models 
are based on small-scale laboratory experiments 
and scaling arguments in both approaches. The 
pioneer study of mean overtopping rate was 
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conducted by Owen (1980) on seawalls and the 
following formula was proposed: 
 

Q* = 𝑎 exp (−𝑏
𝑅𝑐

𝐻𝑚0
√

𝑠𝑜𝑧

2𝜋

1

𝛾𝑓
)              (1)  

  
where Q* = q/(gHm0 Tz), q = the mean overtopping 
rate (m3/s/m), g is gravity acceleration, Tz = mean 
zero crossing wave period, soz = the fictious wave 
steepness, Hm0 = the (significant) spectral wave 
height, and Rc = the crest freeboard.  
The roughness (and permeability) reduction factor, 

 f accounts for the roughness and permeability of 
different armour layers. Here, a and b are empirical 
coefficients which depend on the seaward slope of 
the structure. 
De Waal and Van der Meer (1992) found that this 
formula performs poorly for all wave-breaking 
conditions. Hence, they suggested a more physical-
based approach, i.e., a mean overtopping formula 
based on the difference between the max run-up 
and crest height (Rumax - Rc). This parameter has 
been used for the estimation of the mean 
overtopping rate by some other researchers (e.g., 
Hedges and Reis, 2004; Ibrahim and Baldock, 
2020).  
Later on, Van der Meer and Janssen (1994) 
considered the effects of structure slope explicitly 
and proposed different formulas for low and high 
Iribarren numbers as: 
 

If  𝐼𝑟𝑜𝑝 < 2 then 𝑞 ∗=

 √
𝑡𝑎𝑛 𝛼

𝑆𝑜𝑝
0.06 𝑒𝑥𝑝 (−5.2

𝑅𝐶

𝐻𝑚0

√𝑆𝑜𝑝

𝑡𝑎𝑛 𝛼
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𝛾𝑓⋅𝛾ℎ⋅𝛾𝛽
)            (2a) 

If  𝐼𝑟𝑜𝑝 ≥ 2 then 𝑞 ∗=

  0.2 𝑒𝑥𝑝 (−2.6
𝑅𝐶

𝐻𝑚0

1

𝛾𝑓⋅𝛾ℎ⋅𝛾𝛽
)                       (2b) 

 

Where q*= q/(gHm0
3)1/2, Irop = tan  / sop 

1/2, q*= q/(g 

Hm0
3)1/2, h = shallow water reduction factor (unity in 

deep water) and  = wave obliquity  reduction 
factor.   
In a more recent study, EurOtop (2018) used 
another functional form and recommended the 
following formula for steep slopes ( 1:2 to 1:1.33):  

q*= 0.09 . exp[−(1.5
𝑅𝑐

𝐻𝑚0.𝛾𝑏𝛾𝑓.𝛾
𝛽

)1.3]             (3) 

 = −  ≥  and surprisingly, the effects 

of the wave period, crest wall and structure slope 
(Figure 1) are omitted in this formula. However, the 
effect of crest width has been considered using the 
following reduction factor: 
 
Cr= 3.06 exp (-1.5 Gc/Hm0) < 1 for Gc > 3 Dn50 (4) 
 
Where Dn50  = nominal rock diameter and Gc = the 
crest width.  
Koosheh et al. (2022), extended the existing 
seawall database by conducting 2D experiments 

and showed that the inclusion of wave period (in 
terms of wave steepness) improves the accuracy of 
the prediction formula. 

 
Figure 1 Typical cross-section of rubble mound structure 
( after Etemad-Shahidi et al. 2022). 
 
Finally, Etemad-Shahidi et al. (2022) scrutinised 
and extended the existing databases of EurOtop 
(2018) and provided a more comprehensive one for 
the rubble mound structures. The utilized dataset 
was the extended CLASH-database (also known as 
the EurOtop 2018 database), which was 
supplemented with the latest measurements from 
Koosheh et al. (2022). Initially, a thorough 
examination of the database's references was 
conducted to ensure accurate reporting or proper 
estimation of wave characteristics. Most of the 
references prior to 2000 provided values for H1/3 

(significant wave height based on time-domain 
analysis) and Tp. Therefore, in order to create a 
standardized database containing the required 
parameters, H1/3  values were converted to Hm0 for 
shallow water tests that had not been corrected. 
Subsequently, Tm-1,0 was estimated using the 
method proposed by Hofland et al. (2017). Finally, 
the recent dataset from Koosheh et al. (2022) was 
incorporated into the database, consisting of 
approximately 140 small-scale records of relatively 
steep rock armoured seawalls with an impermeable 
core. They provide an improved prediction and a 
compact formula for the mean overtopping rate 
given below: 
 

q*=1.2×10-4exp [3.50(
𝑅𝑢2%−𝑅𝑐

𝐻𝑚0
) − 0.64 (

𝐺𝐶

𝐻𝑚0
)]  (5)  

 
Where Ru2%/Hm0 = the dimensionless wave run-up 
exceeded by 2% of waves. As seen, the formula is 
very compact and simpler than those proposed by 
other researchers. In addition, it is more physically 
sound compared to previous ones as it relates the 
mean overtopping rate to the difference between 
the run-up and crest levels, i.e., excess run-up. To 
optimise the accuracy of the formula, different run-
up formulas, proposed in the literature were tested, 
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and finally, the following form suggested by EurOtop 
(2018) was selected: 

 

Ru2%/Hm0=1.65f w Irm-1,0≤ 

1.0 fsurging  w  (4.0 - 1.5/√Irm-1,0 )                    (6)   

 

Where f surging =f+(Irm-1,0-1.8)×(1- f)/8.2 with a 
maximum of Ru2%/Hm0= 2 for structures with a 
permeable core (such as breakwaters) and a 
maximum of 3 for impermeable structures (such as 

seawalls). Here  = cos2 ( -0.6 S) for S <   The 
effect of wave wall (see Figure1) was also 
considered as a reduction factor, i.e.,  

w= exp (0.10 hwall/ Rc) with a minimum of w= 1.0. 
 
2.2 Stability of Rock Armoured Structures 
In a pioneering study of the stability of armoured 
rock structures, Hudson (1959) conducted tests 
using regular waves. The following formula was 
proposed:  
 

Ns = Hs / ( Dn50) = (KD cot )                () 

 
Where Ns = stability number, Hs = significant wave 

height, Dn50 = nominal rock median size,  =the 

structure front angle,  = a /w--1 is relative buoyant 

density, a =rock density, and w = water density. 
The effects of armour type and breaking/non-
breaking wave condition were considered in the 
stability coefficient, KD. The effects of the 
permeability, wave period, damage level, and 
number of waves (storm duration) were not 
considered in the abovementioned formula. Later, 
Van der Meer (1988) conducted tests using irregular 
waves but mostly in deep water (h/Hs > 3) where h 
= water depth at the toe. By introducing the 
(nominal) permeability, P, two formulas were 
developed for plunging and surging wave 
conditions: 
 

Ns = 6.2Sd 0.2P 0.18Nw -0.1Irm
-0.5        for Irm<Irmc       (2a) 

Ns = Sd 0.2P -0.13Nw -0.1Irm
pcot     for  Irm>Irmc       (2b) 

 

Where Sd = the damage level, Irm =the Iribarren 
parameter using the mean wave period (Tm) and 

Irmc= (6.2 P0.31 tan  ) (P+)  For shallow water 
conditions, the stability number in these formulas 
was corrected using H2%./Hs=1.4. More tests in 
shallow water were conducted and analysed by Van 
Gent et al.  (2003). They recalibrated Van der Meer 
(1988) formula using Tm-1,0, the spectral mean 
energy period as: 
 
Ns=8.4Sd 0.2P0.18Nw -0.1Irm

-0.5(Hs
 /H2%) for Irm<Irmc (3a) 

Ns=1.3Sd
0.2P-0.13Nw

-0.1Irm
pcot (Hs/H2%) for Irm>Irmc  

(3b) 

Recently, Etemad-Shahidi et al. (2020) provided a 
unified design formula for the stability of rock 
armour structures. Using datasets of Van der Meer 
(1988), Van Gent et al. (2003), Thompson and 
Shuttler (1975) and  Vidal et al. (2006), they 
developed an extensive database with about 800 
records within the design range, i.e.,  2 ≤ Sd  ≤ 12 
which covers a wide range of parameters. For 
example, it covered tests in deep (h/Hs >~3), 
shallow (~1.75 < h/Hs < ~3) and very shallow (h/Hs 
< ~1.75) conditions where h= local water depth. It 
should be mentioned that the data base includes 
both small-scale and large-scale tests. The majority 
of tests conducted under depth-limited conditions 
were from  the Van Gent et al. (2003) study. These 
tests were carried out with foreshore slopes of 1:30 
and 1:100. The utilized dataset encompasses a 
wide range of wave spectra. The Thompson and 
Shuttler (1975) employed the Moskowitz spectrum, 
Van der Meer (1988) predominantly utilized peaked 
Pearson-Moskowitz spectra, while Van Gent et al. 
(2003) employed JONSWAP, TMA, and double-
peaked spectra. In certain test programs, Tm-1,0 
values were not directly measured and were instead 
estimated using standard relationships, specifically 
Tp=1.1 Tm-1,0 for standard single-peaked spectra in 
deep water. The wave steepness values indicate 
that the database covers both sea and swell 
conditions. Approximately 75% of the tests in the 
database were conducted with surging waves (Irm-

1,0 > 1.8).  
They resolved the issue with the physical 
justification of the functional form and role of the 
nominal permeability in Van der Meer (1988) type 
formulas as: 
 
Ns=4.5CpNw

-1/10Sd
1/6Irm-1,0

-7/12  for Irm-1,0<1.8         (4a) 

Ns=3.9CpNw
-1/10Sd

1/6Irm-1,0
-1/3   for  Irm>1.8           (4b) 

Interestingly, their splitting criteria for breaking type 
is much simpler than previous one and is in line with 
the recently suggested value in EurOtop (2018). 
Here Cp = the coefficient of permeability defined as: 
 
Cp = [1+ (Dn50c/Dn50)3/10]3/5                (5) 
 
Where Dn50c = the median nominal size of the core 
material. As seen,  the permeability of the 
conventional layer composite was quantified using 
the relative core size, which is physically sound. 
Etemad-Shahidi et al. (2020) also showed that for 
shallow water conditions where the water depth is 
less than three times of significant wave height, the 
stability number could be multiplied by (1-3 m), 
where m is the foreshore slope.  
In many real cases, incident waves are neither 
head-on (normal to the structure) nor unidirectional. 
Hence, several studies have been conducted to 
resolve these effects on the stability of rubble 
mound structures. These effects are usually 
considered as a reduction factor that depends on 
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the wave angle. Table 1 summarises the wave 
reduction factor suggested in different references. 
Within them, Galland (1995) indicates the lowest 
influence of wave obliquity, while others yield more 
or less similar results for wave angles less than 450.  
 
Table 1 Wave obliquity reduction factor for rock armour 
diameter, different studies. 
 

Reference Bias 

Galland (1995) cos0.25 β 

Yu et al. (2002) cos1.16 β 

Wolters and Van Gent (2011) cos1.1 β 

Van Gent (2014) (1-cβ)cos2β + cβ      

  
 
Recently, to consider both the effects of incident 
wave obliquity and spreading on the stability of rock 
slopes, Bali et al. (2023) used lab wave basin data 
sets of Yu et al. (2002) and Van Gent (2014). They 
examined the existing formulas mentioned above 
and  suggested the following one to quantify both 
the effects of wave angle as well  as directionality: 
 

γβs = (1-cβ) cos2β + cβ ,  cβ = 0.44 +0.004S     (6)           

 

where, γβs = reduction in the nominal rock diameter, 

and S is the spreading (in degrees). Simply saying, 
the formula which is compatible with Etemad-
Shahidi et al. (2020), implies that the more the 
obliqueness of the incident wave and /or the more 
its spreading, the smaller the required rock size. 
 

3. Results and Discussions 
3.1     Mean overtopping rate 
The performance of the developed formula and 
others were evaluated using an extensive head-on 
wave database both qualitatively and quantitatively. 
Table 2 displays the accuracy metrics of the most 
well-known formulas. As shown, the formula 
developed by Etemad-Shahidi et al. (2022) has the 
minimum bias and RMSE. Interestingly, the 
formulas suggested in EurOtop different versions 
(EurOtop 2018, Van der Meer and Janssen, 1994) 
underestimate the mean overtopping rate, resulting 
in an unsafe design. 

Table 2 Accuracy metrics of different mean overtopping 
rate formulas, head-on tests 
 

Reference Bias RMSE 

Owen (1980) 0.26 0.74 

Van der Meer and Janssen (1994) -0.30 0.80 

EurOtop (2018) -0.60 0.98 

Etemad-Shahidi et al. (2022)   0.0 0.54 

  
The more recent formula is unbiased and has the 
minimum RMSE, i.e., better agreement with 

measurements. The scatter diagram of their formula 
is also shown in the following figure: 
 

 
Figure 2. Scatter plot of mean overtopping rate, small-
scale head-on tests (after Etemad-Shahidi et al. 2022). 
Dashed lines indicate 10 times under/overestimation. 

 
They also showed that their formula outperforms 
existing ones in oblique waves, prototypes and 
model scaled cases with headwall. 
 
3.2 Stability of Rock Armoured Structures 
3.2.1  Head-on waves 
Visual comparison of measured and predicted 
stability numbers using Etemad-Shahidi et al (2020) 
formula set is shown in Figure 3. As seen, the 
formula performs well for a wide range of stability 
number with no bias regarding any specific data set. 
It should be mentioned that the 90% confidence 
band is ±0.19 for Eq. 4a and ±0.15 for Eq. 4b, 
respectively. 
The following accuracy metrics, i.e.  scatter index 
and discrepancy ratio were used to evaluate the 
performances of formulas qualitatively: 
 

𝐷𝑅 =
1

𝑛
∑ (𝑝𝑖/𝑚𝑖)

𝑛
𝑖=1                                       (7) 

𝑆𝐼 =
√

1

𝑛
∑ (𝑝𝑖−𝑚𝑖)2𝑛

𝑖=1

𝑚̄𝑖
× 100                                      (8) 

 
where pi = precited value,  mi =the measured value, 
and n = number of measurements, and the bar 
denotes the mean value. DR = discrepancy ratio 
and SI = scatter index. Results of different formulas 
shown in Table 3, also imply the skilfulness of 
Etemad-Shahidi et al. (2020) approach with a 
minimum Scatter Index and no bias. 
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(a) 

 
 
(b) 

 
 
Figure 3 Scatter plot of stability numbers, (A) small scale 
test, ( b) large scale tests of Van der Meer (1988). Dashed 
line indicates 90% confidence band. 

 

Table 3 Accuracy metrics of different stability formulas, 
small-scale tests 

Reference SI (%) DR 

Van Der Meer (1988) 13.4 1.02 

Van Gent et al. (2003) 12.8 0.96 

Etemad-Shahidi et al. (2020) 11 1.00 

 
 
3.2.2  Oblique and multi-directional waves 

The comparison between the measured and 
predicted stability numbers, using Bali et al. (2023) 
obliquity reduction factor, is displayed in Figure 4.  

As seen, the data collapse well. The performance of 
the developed reduction factor was also evaluated 

quantitatively using accuracy metrics such the 
scatter index and correlation coefficient, for different 
data sets in Table 4. As seen the results are 
consistent for different data sets. 
 

 
Figure 4 comparison between observed and calculated 

stability numbers using the new reduction factor. 

 

Table 4 Accuracy metrics of Bali et al. (2023) formula, 
different stability formulas, small scale tests 

Data base SI (%) CC 

Van Gent (2014) 17.4 0.80 

Yu et al. (2002) 16.6 0.81 

  

4. Summary  
This paper reviews and summarises recent findings 
regarding conventional armoured coastal 
structures' safety and structural design. It was 
shown that the newly developed formulas which are 
developed based on the extended databases, are 
more accurate both in small-scale and large-scale 
tests; and outperform existing ones. In addition, 
they are more physically sound as they include 
effects of all governing parameters. These formulas 
are well-suited for both the (conceptual) design of 
uncomplicated conventional rubble mound 
structures and the evaluation of existing structures 
regarding damage and wave overtopping. They are 
valuable tools for engineers and practitioners, 
enabling them to effectively address the design 
requirements and assess the performance of such 
structures, ensuring their resilience against damage 
and minimizing wave overtopping risks. It should be 
noted that practitioners need to consider the 
uncertainty in the design equations used. All the 
abovementioned formulas were obtained by best 
fitting and are based on the mean approach (see 
EurOtop 2018 for details). The adopted design 
approach should be semi-probabilistic with a partial 
safety factor, especially if physical modeling is not 
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conducted. Otherwise, the chance of failure (say by 
using Eq. 4) is about 50%, which is too high. 
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