
Delft Center for Systems and Control

Large-Scale Setpoint Tracking
Controller for Co-regulation of
Electric Vehicle Charging
Stations
Coordinating Charging with Energy Market Dynamics

F. P. Hassan

M
as

te
ro

fS
cie

nc
e

Th
es

is





Large-Scale Setpoint Tracking
Controller for Co-regulation of Electric

Vehicle Charging Stations
Coordinating Charging with Energy Market Dynamics

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

F. P. Hassan

March 07, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) ⋅ Delft University of
Technology



The work in this thesis was supported by Greenflux. Their cooperation is hereby gratefully
acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Large-Scale Setpoint Tracking Controller for Co-regulation of

Electric Vehicle Charging Stations
by

F. P. Hassan
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: March 07, 2023

Supervisor(s):
dr. P. M. Esfahani

ir. B. Elders

Reader(s):
dr.ir. S. Grammatico

dr. P. P. Barrios





Abstract

This research explores the feasibility of building a large-scale setpoint tracking controller for
the co-regulation of Electric Vehicle (EV) charging stations, aiming to coordinate charging
with energy market dynamics and minimize the error between a power setpoint and the aggre-
gated consumption of charging stations while capitalizing on developments in the imbalance
market. The study examines the roles of actors in the energy market, the characteristics of the
EV charging infrastructure, and the information provided by TenneT regarding the imbalance
market. Using historical charging data and information provided by TenneT regarding the
imbalance market, an optimization problem is formulated and a method for coordinating EV
charging is proposed. Our sensitivity analysis of the weight parameters and reduction factor
shows their significant impact on the performance of the controller.

In this study, we evaluate the performance of the proposed co-regulation controller by tuning
the weight parameters to find the optimal balance between financial benefits and customer
satisfaction. Our sensitivity analysis of the weight parameters demonstrates that changing
them can have a significant impact on the performance of the controller. We also consider the
impact of the reduction factor on the performance of the controller and find that increasing
it enhances financial benefits but reduces customer satisfaction. Our simulation results indi-
cate that the proposed co-regulation controller can effectively balance financial benefits and
customer satisfaction by using appropriate weight parameters. We estimate a yearly profit of
e266.45 per EV user, which is equivalent to 13.2% reduction in cost.

In conclusion, our research demonstrates the feasibility and effectiveness of using co-regulation
to manage the charging demand of electric vehicles in a cost-effective and sustainable way.
Our findings provide valuable insight for the development of smart charging strategies that
balance the needs of the EV driver, the grid, and other stakeholders, and have important
implications for the energy market. Further research is needed to evaluate the effectiveness
and robustness of the proposed solution under varying degrees of uncertainty in the input data.
Our proposed solution provides a practical and scalable method for managing the charging
demand of electric vehicles and has the potential to contribute significantly to global efforts
to reduce carbon emissions.
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Chapter 1

Introduction

This thesis examines the feasibility of aligning the charging of Electric Vehicles (EVs) with
the dynamics of the energy market. With the increasing market share of EVs, the current
energy infrastructure is struggling to meet the growing energy demand. Both challenges and
opportunities have arisen for the energy market. This research aims to address the challenges
and seize the opportunities by developing a large-scale setpoint-tracking controller that mini-
mizes the difference between a power setpoint and the aggregated capacity of charging stations
while leveraging the flexibility of EVs to regulate the energy market. The introduction of this
report is structured into four sections.

In the first section, we discuss the relevance of this research and emphasize the importance of
coordinating the charging of EVs with the energy market. In the second section, we explore
the flexibility of EVs as energy consumers and their potential for balancing the energy market
In the third section, we discuss the services provided by GreenFlux and their contributions
to this research. Third, we discuss the services of GreenFlux and their contribution to this
research. Finally, we present the problem statement, outlining the focus and objectives of
this research.

1-1 Relevance; Solving a Real World Problem

According to a report by International Energy Agency [1], EVs accounted for nearly 10% of
global car sales in 2021, which is four times the market share in 2019. This increase in the
adoption of EVs presents both challenges and opportunities for the energy sector. Replacing
traditional combustion engines with electric powertrains and battery packs has several benefits
for society, including reducing greenhouse gas emissions and improving air quality in densely
populated areas [2]. While the transition appears promising, the growing market share of EVs
posed significant challenges to the current energy infrastructure as the grid is insufficiently
equipped to handle the rising demand for energy. In addition to the challenges, the increase
also offers opportunities for the energy sector. The feedback controller developed in this

Master of Science Thesis F. P. Hassan



2 Introduction

research enables the coordination between EV charging stations and the dynamics of the
energy market.

Castrol’s research on the widespread adoption of EVs has highlighted the charging problem
as one of the biggest challenges [3]. As the Netherlands has taken the lead in the introduction
of electric vehicles, with a share of 19.8% of fully electric vehicles sold in 2021, the charging
problem is becoming more pressing [4]. Several studies have shown how uncontrolled charging
of EVs can jeopardize the stability and reliability of the electricity grid [5, 6, 7, 8, 9]. Tradi-
tionally, the solution to this problem was the physical expansion of the energy infrastructure,
but as the development is happening much faster than the energy and utility sectors are ac-
customed to, this is not sustainable, making it a costly and labor-intensive solution. Instead,
the focus should be on developing a smarter energy system through the utilization of the the
flexible capacity of electric vehicles [10, 11].

Making the energy system "smarter" offers opportunities. Based on Price Waterhouse Coop-
ers’ forecast for the passenger vehicle fleet in 2030, there will be 1.9 million fully electric cars
on the road in 2030 [12]. This equated to a capacity 20.9 GW when they are fully electric
with an average charging rate power of 11 kW. To put that into perspective, the combined
output of all coal-fired power plants, solar and wind farms, and other sources was 43 GW
in 2020 [13]. However, cars will not always be parked at charging points, but even if only
20% are connected to the grid, that would still provide about 4.18 GW of flexible capacity,
or about 10% of the total production capacity in the Netherlands. This flexible capacity may
play an important role in stabilizing the grid. This research may be of importance to the
industry, policymakers, and society as a whole, as it has the potential to shape the future of
sustainable energy and energy balancing.

1-2 Flexibility of Electric Vehicles

The flexible capacity of EVs refers to the ability to charge and discharge the vehicles’ batteries
as needed. In addition to the conventional use of EVs as personal transportation, EVs can be
integrated into the energy system as units for energy storage. Given that the charging and
discharging of EVs can be managed and controlled, they are a valuable source of flexibility
for the energy system and an interesting asset for grid management. The potential of EVs to
provide grid services has been extensively studied and demonstrated in literature, Sortomme
and El-Sharkawi [14], Codani et al. [15], Druitt and Früh [16].

The quick response times, low costs, and scalability of EVs make them a promising technology
for supporting the stability and reliability of the grid. EVs can be charged during periods of
low energy demand, and during periods of high energy demand, their energy consumption can
be reduced, or their energy can be used to supply the grid. This way, the flexibility of EVs
can support the energy grid, especially during peak periods of energy demand. However, the
full potential of EV flexibility can only be realized if charging and discharging are effectively
managed and coordinated. This requires the development of control and optimization algo-
rithms to balance energy supply and demand, while taking into account real-time constraints
of the energy grid and customer needs.

In summary, the adoption of EVs has the potential to significantly reduce greenhouse gas
emissions and promote decarbonization. Furthermore, smart charging solutions that effec-
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1-3 GreenFlux 3

tively manage and coordinate the charging of EVs can enhance the stability and reliability of
the energy grid, particularly during peak periods of energy demand

1-3 GreenFlux

GreenFlux is a cloud-based platform provider based in Amsterdam. They offer solutions for
charging operations, including roaming and billing services, fleet management, and smart
charging. Smart charging is an essential part of their services, allowing more charge points
to be connected to the same grid connection without requiring upgrades to the grid. Green-
Flux’s customers (e.g., Charge Point Operator (CPO), Balance Responsible Party (BRP), or
Balancing Service Provider (BSP)) have a vested interest in using EV charging to optimize
their daily energy portfolio. The goal is to reduce costs or generate additional revenue. This
is an important business opportunity for GreenFlux, as it can provide flexibility on a large
scale to these customers, generating income and strengthening GreenFlux’s market position.

Smart charging is necessary for utilizing the flexibility of EVs. Although a significant amount
of literature shows that this flexibility can be used through balancing markets, most research
assumes that the driving parameters and charging characteristics are known, while this is
usually not the case.

For the research of this thesis, the knowledge and experience of GreenFlux regarding EV
charging are valuable resources. As a leading provider of smart charging solutions, Green-
Flux offers unique perspectives on the practical challenges facing the industry. The relevance
of GreenFlux to this thesis is also highlighted by their enormous amount of data. To un-
derstand the trends, charging behavior, and charging landscape of EVs, tens of millions of
charging sessions from their databases were available. This has enabled the development
of a more realistic charging controller that takes into account the uncertainties in charging
characteristics and driving parameters, in contrast to what is often assumed in the current
literature. Providing this valuable data for this research has been a testament to GreenFlux’s
commitment to advancing the field.

The literature study in this report is crucial as it provides a comprehensive understanding
of the energy and balancing markets and the associated requirements and limitations. This
information is essential in making informed decisions on the implementation of smart charging,
to ensure that the flexibility potential of EVs is utilized to the fullest extent. For instance, the
uncertainty in the inputs used for smart charging presents challenges for balancing markets,
which have strict regulations and do not tolerate uncertainty.
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4 Introduction

1-4 Problem Statement

The focus of this research is on the feasibility of building a large scale setpoint-tracking
controller to regulate EV charge points and coordinate charging with energy market dynamics
through co-regulation. This research aims to develop and evaluate the performance of this
controller and provide insight into the impact of the proposed solution on the energy market.
To achieve this goal, the roles of the actors in the energy market, the characteristics of the
EV charging infrastructure, and information provided by TenneT about the imbalance market
have been thoroughly investigated. By utilizing the flexibility of EVs, the proposed method
has the potential to revolutionize the energy market and contribute to the global effort to
reduce carbon emissions. The proposed solution uses information that is available in practice,
thus providing a practical and scalable solution for a rapidly growing problem.

1-4-1 Research question

Is it possible to develop a large scale setpoint-tracking controller that optimizes the balance
between the power setpoint and the aggregated consumption of electric vehicle charge points
while aligning with the dynamics of the energy market?

1-4-2 Sub-questions

1. How can smart charging be effectively implemented within the context of the energy
market?

2. How can a simulation environment be developed to test the performance of a controller
using real-world electric vehicle charging session data?

3. How can a feedback controller be designed to track a power setpoint in real-time while
accounting for the potential impact of flexible charging schedules on future events,
without relying on assumptions about travel patterns or charging characteristics?

4. What are the challenges and limitations of the proposed solution, and what recommen-
dations can be made for future research in this area?

The findings of this research contribute to the Systems & Control and Electrical Engineering
fields by presenting a method for aligning EV charging with the fluctuation of the energy
market.

1-5 Report Outline

The remainder of this report is structured into several chapters. Chapter 2 introduces the
electricity markets and balancing markets, exploring the best use case for using EV flexibility
to restore system imbalances and generate revenue. Next, Chapter 3 describes the research
design, including the methods and techniques used to collect and analyze data for the sim-
ulation environment. Moreover, the steps taken to conduct the research and the reasoning
behind the choices made are explained. Next, the algorithm and controller design are ex-
plained in Chapter 4. Additionally, the findings of the research, including tables, graphs, and
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images, are presented in Chapter 5. Chapter 6 will interpret the results and discuss their
implications, including limitations and areas for future research. It will provide a critical
evaluation of the findings and assess their validity. Finally, the conclusions of the research
are presented in Chapter 7.
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Chapter 2

Smart Charging and balancing Services
for Electric Vehicles

Integrating Electric Vehicles (EVs) into the power grid could revolutionize the way electricity
is generated, distributed and consumed. Smart charging, which is a way of controlling EV
charging patterns, can optimize the use of EVs as a distributed energy source. However, the
most efficient and cost-effective implementation is still debatable, as many different control
strategies have been proposed in literature. Formalizing an optimization strategy requires a
thorough understanding of the different use cases for smart charging and the key technologies,
protocols and market mechanisms that enable it.

This chapter is divided into several sections, each covering a specific aspect of the energy
ecosystem and smart charging. Navigating the energy market can be overwhelming, as it
involves multiple technical terms and various stakeholders. To make it easier for readers, we
have compiled several glossary tables per topic in Section 2-1, including the key terminologies,
the different parties involved in the electricity market, and the various balancing markets.
With this glossary, we hope to provide a clear and concise reference guide for readers to
better understand the intricacies of the energy industry. In Section 2-2, a comprehensive
and clear overview of the energy market is provided, highlighting clear interrelationships
between actors. Section 2-3 then introduces the topic of smart charging and explains why the
choice between ancillary services and co-regulation is important. Moving on to Section 2-4,
potential revenues for each use are discussed. Finally, the chapter concludes with a discussion
of the practicalities of implementing smart charging, including the trade-offs and challenges
to consider, in Section 2-5 and Section 2-6.

Overall, this chapter serves as a comprehensive introduction to the topic of smart charging
controllers for balancing services with EVs and provides a clear understanding of the research
objectives.

Master of Science Thesis F. P. Hassan



8 Smart Charging and balancing Services for Electric Vehicles

2-1 Glossary

Actor Acronym Description

Transmission
System Operator

TSO Is accountable for the management and stability of the
high-voltage grid, as well as the functioning of the mar-
ket and the integration of sustainable energy.

TenneT TSO of the Netherlands.

Balance
Responsible
Party

BRP Is responsible for maintaining the balance between the
energy they produce or consume and the amount of
energy they sell or purchase on the energy market.

Balancing Service
Provider

BSP is responsible for delivering balancing services to BRPs
to assist them in maintaining their energy balance.

Charge Point
Operator

CPO A company that operates and manages charging sta-
tions for electric vehicles.

GreenFlux GFX Company that provides cloud-based back-office capabil-
ities to its clients. They are now expanding their smart
charging business. This research is done in collabora-
tion with GreenFlux.

Table 2-1: Glossary of Electricity Market Related Actors.

Terms Acronym Description

Balancing market A platform where grid operators can buy or sell energy
reserves to balance electricity supply and demand in
real-time.

Day Ahead
Market

DAM The Day Ahead Market is an energy market where elec-
tricity transactions are concluded for the delivery of
electricity on the following day.

Intraday market Is an energy market where electricity transactions are
concluded for the delivery of electricity on the same
day as the transaction. The market also corrects the
imbalance created in the DAM.

Imbalance
settlement Period

ISP A period of 15 minutes during which the actual en-
ergy production and consumption are measured and
compared with the planned energy production and con-
sumption for settlement of any deviations.

Table 2-2: Glossary of Electricity Market Related Terms.

;laksj;df lakjdsf;

F. P. Hassan Master of Science Thesis



2-1 Glossary 9

Services Description

Ancillary services Services purchased by Transmission System Operators
(TSOs) to ensure the reliability and stability of the
electricity network. Only Balancing Service Provider
(BSP)’s.

Co-regulation The ability of a consumer to adjust their own energy
demand in response to signals from the energy market
or grid operator in order to balance supply and demand
and maintain the stability of the electricity system.

Table 2-3: Glossary of Balancing services. This table provides definitions for the two types of
balancing services, ancillary services and co-regulation, that are relevant to the use of Electric
Vehicles as a distributed energy source in the electricity market.

Prices Description

Capacity price Price paid to guarantee the availability of energy ca-
pacity.

Energy price Price paid for the actual delivery of energy.

Upward regulation price Price paid for the contribution to inject energy in the
network (or withdraw in a lesser extent).

Downward regulation price Price paid for the contribution to withdraw energy from
the network (or inject to a greater extent).

Regulation price The price for imbalances in an imbalance settlement
period.

Regulation state State in which the electricity market is when the pro-
duction and consumption of electricity are balanced.

Table 2-4: Glossary of Electricity Market Prices.
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10 Smart Charging and balancing Services for Electric Vehicles

2-2 Electricity Market Operations

The integration of renewable energy sources into the power grid has brought new challenges
to maintaining a stable and reliable electricity system. One of these challenges is balancing
electricity supply and demand in real time. The wholesale electricity market plays a role in
this, but it is not sufficient on its own. The power grid relies on a combination of wholesale
electricity markets, balancing markets and a market mechanism called imbalance settlement to
balance the market. Each of these mechanisms plays a distinct role in maintaining balance in
the power grid. This section provides an overview of all electricity market activities, including
the day-ahead and intraday markets, the different types of balancing services, the imbalance
settlement system, and a schematic overview of the energy market and its different actors. It
is important to note that in this context, the terms ’(wholesale) electricity market’ and ’energy
market’ are often used interchangeably, but they do have a subtle difference in meaning. The
(wholesale) electricity market refers specifically to the market for buying and selling electricity
among electricity generators, traders, and suppliers. While these mechanisms work together
to balance the market, this section focuses on providing an overview of all electricity market
activities, including the day-ahead and intraday markets, the different types of balancing
services, the imbalance settlement system, and a schematic overview of the energy market
and its different actors

Balancing markets are an important mechanism used to maintain the stability of the power
grid by balancing the electricity supply and demand in real time. These markets allow for
the procurement of balancing services, which help to regulate the grid and ensure that the
electricity supply matches the demand at any given time. These balancing markets are an
essential component of the electricity market, as they help to ensure that the electricity grid
remains stable and reliable.

2-2-1 Energy system diagram

The energy market is a complex system with many actors from the financial, energy and
technical sectors, each with their own objectives and motivations, however its functioning
relies on their cooperation and coordination. Figure 2-1 provides a clear and understandable
representation of the organization of the energy market where the interdependence between
the actors and the time factor involved are emphasized through the use of color coding and
clear illustrations of the interrelationships. The figure presents the complex web of actors in
an accessible and informative way.

However, the dynamics of the energy market can be difficult to grasp without prior knowledge.
The schematic and colored overview is accompanied by detailed explanations in Section 2-2.
Because each individual explanation may not provide complete clarity, it is recommended
that both the figure and accompanying text be studied together for a full understanding of
energy market dynamics.
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The different colors in the figure are used to distinguish the main components of the energy
system. The colors and components of the figure are explained below:

• The green top layer shows the relationship between GreenFlux, its customers, and the
energy market.

• The blue part includes all energy and balancing markets, which are discussed further in
Section 2-2-3.

• The bottom red layer represents the physical layer of the electricity grid.

• The color-coded arrows indicate the flow of information, energy (both trading informa-
tion and physical energy), and money within the system.

• The timeline on the right illustrates the activation time of the markets. Three activation
times are distinguished: the day-ahead (D-1), real-time, and ISP.

The Epexspot market serves as a centralized platform for wholesale electricity trading. It
enables electricity producers to match their supply with the demand of consumers. At gate
closure (noon of the day-ahead), each producer is notified of the amount of electricity they are
required to provide to consumers. Through the real-time assessment of the system imbalance
TenneT calculates the balancing volume required in each balancing market to bridge the
difference between total power generation and total load. The regulation state and price
reflect the current market conditions. The settlement of the system imbalance is based on
the state of the market and the discrepancy between the commercially agreed trade schedule
and the actual load per Balance Responsible Party (BRP).

In the figure, GreenFlux and the controller are represented as part of the same block. That
is because the controller would be a product of GreenFlux or a similar actor that helps it
achieve its objectives. The necessary operations for the effective functioning of the controller,
typically performed by GreenFlux, a similar actor or the Charge Point Operator (CPO), are
outlined as follows:

• GreenFlux collects sessions information from the Charge Points (CPs), including session
duration and total energy consumption.

• This information is processed and sent to the CPO.

• A forecast of the unsteered demand for the day-ahead is generated based on this infor-
mation.

• Based on a day-ahead market price forecast, an optimization problem is solved to create
an energy profile that meets the needs of each charge session at the lowest possible cost.
A simplified optimization was performed in Section 3-2-6 for simulation purposes.

• Based on this profile, the CPO submits energy bids to the day-ahead market and receives
the contracted amount of energy at gate closure.

• GreenFlux turns this power setpoint into a new allocation profile with individual control
signals for each charge point.

It is important to note that the operations described in the list above may not always be per-
formed by the specific actors mentioned. This representation is the most common structure,
and provides a general understanding of how the CPO and GreenFlux operate.
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2-2-2 Wholesale electricity market

The electricity market is a platform for buying and selling electricity, where market partic-
ipants can trade energy based on their forecasts for supply and demand. The day-ahead
market is used to secure the necessary amount of electricity for the following day by balanc-
ing supply and demand through the auction of available capacity. The intraday market is
used to balance supply and demand in real-time and correct any imbalances that occurred
in the day-ahead market. The prices for electricity in these markets are determined by the
market, providing a mechanism for energy scheduling and incentivizing market participants
to optimize their production and consumption. The day-ahead market and intraday market
are explained below

Day-ahead Market The day-ahead market is used to secure the necessary amount of elec-
tricity for the following day. This market is used to balance supply and demand through the
auction of available capacity. On the day-ahead market, market participants can buy and
sell one-hour electricity contracts in a pan-European auction for the next day. Producers and
consumers submit their offers and bids respectively, based on their expected production and
consumption. The day ahead price is based on a marginal pricing system, resulting in the
same price per MW h during that time frame for everyone. After market closing, the market
participants have to send their contracted power schedule to the TSO themselves or through
a chosen BRP. After handing in the commercial trade schedule, the BRP is responsible for
abiding by their contracted volume.

Intraday Market The intraday market is another important component of the electricity
market, which allows for the balancing of electricity supply and demand on the day of delivery.
The prices in the intraday market tend to be higher than in the day-ahead market, due to
the increased complexity and expense of short term energy delivery. The intraday market
provides a mechanism for market participants, such as generators and retailers, to adjust
their positions in the market by buying or selling electricity to align their schedules with their
expected production and consumption. This helps to ensure that the electricity supply and
demand are more evenly balanced in real time. The 15-minute energy contracts available in
the Dutch market can be traded up to 5 minutes before delivery, providing increased flexibility
in energy trading and supporting the balancing of the grid.

For further clarity and to aid understanding of the energy market concepts discussed in this
section, intuitive examples have been provided in Appendix A. Readers are encouraged to
refer to this appendix, particularly if these general concepts require further explanation.

2-2-3 Balancing services and imbalance settlement system

Energy trading on the electricity markets is based on predictions, which can lead to imbal-
ances in real time. To address these imbalances, balancing markets come into play, where
balancing capacity can be bought from pre-qualified BSPs [17]. The pre-qualification pro-
cess is explained in Section 2-6. Balancing services are typically provided by conventional
generators. However, with the increasing penetration of renewable energy, it has become
more challenging to adjust generation, making it necessary to shift balancing services to the
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14 Smart Charging and balancing Services for Electric Vehicles

demand side. Balancing services are generally divided into two main categories: ancillary
services, which actively balance the grid, and co-regulation (also known as passive steering),
which uses demand-side resources such as electric vehicles EVs.
Ancillary services include services such as frequency control, voltage control, and reserve ca-
pacity, and are typically provided by conventional power plants. Detailed descriptions on
how these specific balancing market work are given in Appendix B. On the other hand,
co-regulation services, such as demand response, use demand-side resources to adjust con-
sumption to match supply.
As the penetration of renewable energy sources continues to increase, the demand for bal-
ancing services is likely to shift towards the demand side, as renewable energy resources such
as wind and solar power are more difficult to adjust. This trend has led to new market
opportunities for demand-side response services, including the use of EVs as mobile storage
devices.

Ancillary services The TSO, TenneT in the Netherlands, is responsible for maintaining a
country’s grid’s power balance, and procure balancing capacity from pre-qualified BSPs to
maintain the balance. Several balancing markets, primarily distinguished by their activation
method and response time, cooperate to restore imbalances in the power system. The order
in which the different products are activated is shown in Figure 2-2.
In continental Europe, the target frequency is set at 50 Hz. Note that "frequency" in the
context of the power grid refers to the rate at which the alternating current in the grid, changes
direction and frequency deviations can occur when there is an imbalance between electricity
supply and demand in the power grid. To maintain this frequency, BSPs must continuously
measure it and adjust their output power automatically to compensate for deviations from
the target frequency. The balancing market responsible for frequency containment is the
Frequency Containment Reserve (FCR), which is also known as primary reserve. It is the
first line of defense for TenneT in maintaining balance in the grid, and BSPs are required to
have their contracted reserves fully activated within 30 seconds. The FCR helps to stabilize
the frequency across borders for the entire synchronous grid of continental Europe.
The FCR product has the fastest response time and must therefore be available for future
imbalances. Secondary control is used to balance the power system over longer timescales.
The automatic Frequency Restoration Reserve (aFRR) gradually replaces the FCR when
imbalances are expected to last longer than 15 minutes. The ramp rate for aFRR is at least
20%/min, resulting in full activation within 5 minutes. The aFRR is the most frequently
activated market to restore regional grid imbalances. A part of the imbalance is automatically
regulated by activating aFRR, which is available after 30 seconds. If the available aFRR
falls below a threshold or the imbalance is expected to remain longer than a few Imbalance
Settlement Periods (ISPs), additional measures are required. Through a manual procedure,
TenneT can activate manual Frequency Restoration Reserve scheduled activated (mFRRsa)
to support or partially substitute the aFRR until sufficient aFRR capacity becomes available
or the balance is sufficiently restored. And finally, the manual Frequency Restoration Reserve
direct activated (mFRRda) is used in the event of an emergency when all mFRRsa and aFRR
reserves have been depleted.
The payment for balancing services in the Netherlands, as well as in most European countries,
is based on two forms of remuneration: capacity price for keeping capacity available and energy
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2-2 Electricity Market Operations 15

Figure 2-2: Activation schedule for different balancing markets. Note that symmetrical activation
is illustrated to accentuate the symmetrical nature of balancing markets, but actual activation
will always be one-sided.

price for actually providing the balancing energy. The merit order list is used to rank bids
and determine which bids will be accepted, with the most competitive bids having a higher
likelihood of being activated. This system encourages competitive bidding.

When smaller end-users participate in balancing services, their demand is aggregated [18].
Numerous research initiatives have shown that EVs can provide ancillary services through
balancing markets [14, 15, 16, 19, 20, 21, 22, 23, 24, 25]. On the other hand, the reality
may be more challenging than what is presented in literature and this will be discussed in
Section 2-6.

Imbalance settlement The imbalance settlement system works by comparing the amount
of energy that each BRP contracted to deliver or consume with the actual amount of energy
that was consumed or produced. If there is an imbalance between the contracted and actual
amounts of energy, the TSO will activate the balancing markets to correct the imbalance.
After the imbalance has been settled, TenneT calculates the imbalance settlement price using
marginal-cost pricing, which ensures that all BSPs are charged equally per energy volume
per imbalance settlement period. The BRP is then responsible for settling any imbalances
between the contracted and actual energy consumption or production with their customers.
This system transfers some balancing responsibilities to BRPs. The imbalance settlement
price serves as an incentive for BRPs to balance their portfolio using their assets and electricity
markets.

The imbalance settlement is determined by the combination of the current market conditions
and the surplus or deficit of energy, which is represented by the regulation state. When the
BRPs’s imbalance reduces the overall system imbalance, the imbalance price is paid out to
the BRP.
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16 Smart Charging and balancing Services for Electric Vehicles

When both upward and downward regulation occurs during an ISP, the series of balance deltas
determines the regulation state. The balance delta is the power of the activated upward bids
minus the power of the activated downward bids. The different regulation states are:

• Regulation state 0 : No regulation.
• Regulation state -1 : Only downward regulation or continuously decreasing or

constant series of balance deltas.
• Regulation state +1 : Only upward regulation or continuously increasing or constant

series of balance deltas.
• Regulation state 2: : If the series of balance deltas both decreases and increases.

Co-regulation Co-regulation, also known as passive steering, is a type of balancing service
that refers to the process of changing consumer energy consumption to balance the grid
Warren [26]. TenneT, the transmission system operator in the Netherlands, publishes live
information about the regulation state and regulation price, which enables BRPs to offer bal-
ancing services without actively participating in the official imbalance markets [17]. Strategies
to promote co-regulation include financial incentives and education to encourage changes in
consumer behavior and reduce demand and supply peaks [27]. Financial incentives have been
shown to be effective in promoting consumer participation in co-regulation and achieving the
desired changes in energy demand, which helps to balance the grid and maintain grid stability
[28, 29].

2-3 Smart Charging Use Cases

The section aims to explore the potential use cases of smart charging for the power grid and
discuss different communication protocols for smart charging. Smart charging has gained
increasing attention, especially due to the fast increase of EVs on the roads. Essentially,
smart charging optimizes the charging of EVs through advanced technologies and algorithms
to balance different objectives. Aggregators have a vital role in providing balancing services
by grouping a large number of EVs and offering them as a single entity to Tennet, known as
a Virtual Power Plant (VPP). As EV integration into the power grid continues to progress,
standardizing communication protocols is crucial to ensure compatibility between parties
involved in EV charging. The most relevant protocols for smart charging are Open Charge
Point Protocol (OCPP), Open Smart Charging Protocol (OSCP), and IEC 15118.

• The OSCP is an open-source communication protocol that CPOs use to communicate
with the local electricity grid operator. It aims to prevent grid overloading by providing
capacity forecasts for the local grid. Developed by Enexis and GreenFlux, the OSCP is
an essential protocol for smart charging.

• The OCPP is the most widely used protocol for smart charging. It enables CPOs to
manage and control charge station operations remotely, and it is hardware-agnostic,
which means it can be used with a wide range of charging station types. The protocol
allows for the sending of real-time charging session data, such as charge point status,
total energy consumed, and total connection time.
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• The International Electrotechnical Commission (IEC)15118 is a more advanced com-
munication protocol that enables high-level bi-directional communication between the
EV and the charge point. It allows for the transfer of information such as the vehicle’s
(acSoC and maximum charging rate. The standard also includes provisions for secure
payment, load management, and load balancing to help prevent grid overloading. How-
ever, the use of the more advanced IEC 15118 is not yet widespread in the industry,
and it is common for information about the battery characteristics of the EV to not be
exchanged between the charge point and the grid operator.

The Dutch energy system is complex due to its various interrelated trading and balancing
markets.The system is designed to incentivize all actors to maintain the balance. An aggre-
gator of a fleet of EVs can offer balancing capacity in several ways, such as::

1. Power setpoint-tracking:
Controlling the charging rate of EVs to adjust aggregated power consumption and follow
contracted power from the day-ahead to avoid creating an imbalance and incurring fines.

2. Ancillary services:
Offering flexibility in one or more balancing markets and receiving payment in the form
of a capacity fee for making capacity available and an energy fee for actual activation.

3. Co-regulation:
Adapting the aggregated charging power of the EV fleet in near real-time based on the
regulation state and regulation price.

Conventional power plants typically provide ancillary services. However, simulations have
shown that EVs acting as smart storage can provide fast and accurate responses for frequency
regulation [30, 31, 32]. Using EVs for ancillary services offers several advantages over conven-
tional generators, including fast response time, low operating costs, and increased utilization
of battery capacity that can reduce the overall cost of EV ownership. Through co-regulation,
EVs can provide accurate and fast grid balancing by adjusting their charging in near real-time.
Co-regulation is a proactive approach to managing the power grid that involves coordinating
the activities of grid participants, including EVs, to regulate energy consumption. CPOs
can offer co-regulation services by combining this information to understand how to use their
assets in order to receive the imbalance price.

However, it is important to consider the trade-offs and practicalities of implementing both
use cases for smart charging, which will be discussed in further detail in Section 2-5 and
Section 2-6.

2-4 Economic Viability of Smart Charging

The economic viability of smart charging is an important aspect to consider when determin-
ing its most valuable and promising use case. In this section, we will analyze the costs and
benefits of providing ancillary services and co-regulation with EVs. Unlike generators, EV
batteries have virtually zero fixed costs as they have already been purchased for the owner’s
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transportation needs and they have fewer moving parts, which means they have lower main-
tenance costs. Furthermore, while plugged in, EV batteries can provide regulation services
with relatively low additional operating cost. Most studies have shown that batteries, includ-
ing those in electric vehicles, are well-suited for providing regulatory services, particularly
primary reserves such as FCR, due to their high revenue potential.

Studies conducted in different countries have estimated the potential profits from utilizing
EVs for ancillary services. In the United States, a large-scale study conducted by Sortomme
and El-Sharkawi [14], predicted an annual profit between $161 and $635 per EV. In France,
the potential profit is estimated to be between e193 and e593 per year per EV according
to Codani et al. [15]. In the United Kingdom, research by Pavić et al. [23] found that using
EVs to balance the energy system benefits not only the EV driver and aggregator, but also
the entire system by reducing the overall price of energy. The study showed that when EVs
provide balancing capacity to the secondary reserves, they can do so at competitive prices,
reducing the total cost of the secondary reserve by an estimated e122 to e540 per EV. This
means that with an increasing number of EVs used for balancing services, the total cost of
the secondary reserve can be significantly reduced, making the system more efficient and cost-
effective. Druitt and Früh [16]’s research concluded that depending on the number of EVs
the benefits of balancing range from £150 to £400. In summary, utilizing EVs for balancing
services has been shown to be a profitable and cost-effective solution in various countries.

Utilizing electric vehicles for co-regulation has the potential to generate revenues similar to
those obtained through ancillary services as all the flexibility can be used when it is available.
However, co-regulation misses out on the capacity fee and steering in regulation state 2 can
be challenging. It is important to evaluate the regulatory frameworks, technical requirements,
and practical considerations of the targeted markets, as these factors can have a major impact
on expected revenues and must be taken into account when determining the most valuable
and promising use case. These will be discussed in Section 2-5 and Section 2-6.

The effectiveness of utilizing Co-regulation as a profitable and cost-effective solution for bal-
ancing services using EVs remains uncertain. This study aims to investigate the potential
profits and practicalities of implementing Co-regulation and its trade-offs compared to ancil-
lary services.

2-5 Trade-offs of Smart Charging

Although implementing smart charging presents benefits for ancillary services and co-regulation,
it also involves a series of trade-offs that must be carefully considered when building a con-
troller, in order to ensure the best possible outcome for the energy grid, CPOs, and EV
user

First trade-off Smart charging for electric vehicles involves a trade-off between the needs of
the power grid and the needs of EV users. On the one hand, smart charging can improve grid
stability by spreading out demand for electricity and providing balancing services on a smaller
scale. However, on the other hand, smart charging requires some control over the charging
process, which can sometimes conflict with the preferences of EV users. For example, users
may want to charge their vehicles at specific times or locations that are not optimal for grid
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stability. In some cases, it may be necessary to prioritize user satisfaction over grid stability.
Therefore, it is important to develop smart charging systems that strike the right balance
between these competing demands.

Second trade-off The use of bidirectional power flow between EVs and the grid, known
as Vehicle to grid (V2G) technology technology, is a popular option for providing ancillary
services [14, 16, 20, 21, 22, 24]. However, V2G has some drawbacks, such as battery degrada-
tion, hardware costs, and conversion losses. Alternatively, unidirectional charging can achieve
similar benefits without these issues. When the charging of EVs is reduced or stopped, the
overall demand on the grid decreases, which is similar to the effect of discharging power back
to the grid. According to Fasugba and Krein [33], almost all the benefits of V2G can be
obtained through unidirectional charging if the VPP of charging stations is large enough. In
addition to avoiding conversion losses, unidirectional charging also minimizes the negative
impact of frequent charging and discharging cycles on the battery’s lifespan and performance,
leading to decreased maintenance costs.

Overall, while bidirectional charging through V2G may sound promising, unidirectional charg-
ing can achieve similar effects while avoiding some of the associated drawbacks.

2-6 Practicalities of Smart Charging

The implementation of smart charging for EVs involves a range of technical and regulatory
requirements that need to be carefully considered to ensure practicality and efficiency. Some
of the practical considerations for implementing smart charging for ancillary services and
co-regulation include the following:

• Capacity availability. Only the minimum expected capacity can be offered, and it must
always be available.

• Ancillary services involve making agreements with TenneT on the amount of capacity
made available. If the agreed-upon capacity cannot be delivered, penalties must be
paid.

• To account for uncertainty, an uncertainty buffer must be included to make sure that
in the event of unforeseen circumstances (e.g, unexpected events such as major public
events, road closures, or accidents may divert traffic away from the charge points, re-
sulting in lower demand). According to [34], a buffer of 25% should be factored in to
deliver the required capacity.

• Symmetrical bidding requirements. For ancillary services the system should be able to
deliver and retrieve the capacity offered. This can be a challenge for EVs, as charging
is often a priority. To be able to take energy from the grid, the EV charge rate as to be
structurally below the maximum to be able to increase the charging rate.

In addition to the above considerations, there are specific requirements that TenneT imposes
to meet the pre-qualification status. For instance, Infrastructure must be in place to measure
the frequency of the network accurately and quickly, and communication with TenneT’s sys-
tems must be possible. Furthermore an algorithm must be approved that demonstrates the
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ability to deliver the capacity. Failure to deliver the agreed-upon capacity may result in the
withdrawal of the pre-qualification status.

Another practical issue is that there is considerable academic attention on smart charging,
yet industry collaboration is limited. Assumptions of availability of information on vehicle
attributes (e.g., State of Charge (SoC), maximum charge rate, and required energy) and travel
data parameters (e.g., departure time and arrival time). The most common assumptions are
that the SoC is known in advance [14, 35, 36, 37] and that the driving profiles or (expected)
arrival and departure time are known [38, 39, 40, 41, 42].

Implementing smart charging for EVs requires managing various practical considerations. By
taking into account trade-offs and regulatory requirements, it is possible to optimize the use
of smart charging technology for ancillary services and co-regulation.

2-7 Conclusion

In conclusion, this chapter has provided a detailed examination of the various use cases
for smart charging. Through the analysis of literature and examination of the potential
revenue, trade-offs, and practicalities, it has become clear that co-regulation presents the
most promising opportunity for smart charging in a practical and beneficial way for both
consumers and the power grid.

The trade-offs that were considered are; balancing grid stability and EV user satisfaction,
and optimizing energy use versus maximizing profit. While V2G has the potential to provide
additional benefits, the trade-offs in terms of potential impact on battery life and degradation,
as well as the lost energy due to conversion losses, make it clear that the benefits do not
outweigh the downsides in this particular case with a large VPP. Therefore, this study will
focus on the benefits and challenges of unidirectional co-regulation for smart charging.

While ancillary services and co-regulation both have the potential to provide grid balancing
services, despite slightly lower profits per EV, co-regulation has the potential to provide more
accurate and faster grid balancing. Therefore, for an aggregator looking to provide balancing
services with a fleet of EVs, co-regulation may be the more attractive option. When it comes
to co-regulation, there are a number of practical implications that must be taken into account,
including the need for standardized communication protocols, and the need to balance the
interests of various parties involved in EV charging. Despite these challenges, o-regulation
has several advantages over ancillary markets, including no penalties for failing to supply
contracted capacity, no additional infrastructure investment or pre-qualification requirements,
and real-time decision-making. Co-regulation eliminates the need for an uncertainty buffer
and allows the aggregator to focus solely on their goals. As a result, co-regulation can be
an effective solution for managing the increasing demand for electricity from EVs while also
providing benefits to the grid and EV users.
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Chapter 3

Modeling the Simulation Environment:
Methodology and Implementation

This chapter provides a detailed overview of the methodology used to create the simulation
environment. The simulation environment was an essential component of this study, where
the data collected from Greenflux and TenneT was processed and analyzed to model the
interaction of Electric Vehicles (EVs) with the charging infrastructure and the Charging
Management System (CMS). The simulation environment was created using Azure Data
Studio, Excel, and MATLAB and was based on data collected from real-world sources such
as Greenflux and TenneT. The data was pre-processed to meet specific requirements, including
filtering based on charge session duration, volume charged, time period, and location. The
components that had to be modeled were:

1. User behavior
2. Charge characteristics
3. Unsteered Power Profile
4. Unsteered Energy Profile
5. Contracted power setpoint
6. Energy market information
7. Battery model

These components were combined to form a simulation environment capable of simulating
the interaction of EVs with the charging infrastructure and the CMS.

The chapter contains several sections, each addressing a specific aspect of the simulation
environment. Section 3-1 provides an outline of the data collection and processing steps.
Section 3-2 focuses on modeling the charge sessions, including sampling a set of representative
sessions from the data, generating the unsteered power and energy profiles, computing the
contracted power setpoints, and energy market information. The EV charging model and
battery model are discussed in Section 3-2. Finally, the models are validated in Section 3-3.
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Figure 3-1: Data Processing, Simulation, and Optimization for Energy Market Analysis.

The aim of this chapter was to provide a comprehensive and transparent explanation of the
simulation environment to allow for easy replication and extension of the study. For reference,
a schematic of the simulation environment is shown in Figure 3-1, with the section numbers
indicating in which section that part of the simulation environment will be discussed.

3-1 Data Collection and Processing

To create a comprehensive understanding of EV charging behavior and its impact on the
energy market, this study utilized real-world data obtained from GreenFlux and energy mar-
ket information from TenneT. The GreenFlux data provided details on arrival and departure
times, charged energy, ChargePointID, and AuthenticationID. Meanwhile, the energy market
information from TenneT furnished data on the energy market in the Netherlands, including
day-ahead price, regulation state, and regulation price.

Information on the number of EVs of each type in the Netherlands and their market share
was sourced from the Netherlands Enterprise Agency [4]. To accurately model the charging
behavior of these EVs, charge characteristics for each model were obtained from technical
specifications, and manufacturers’ datasheets.

The data has been preprocessed to meet specific criteria to ensure its representativeness. The
preprocessing step involved the following filters:

• Charge session duration between 15 minutes and 36 hours.
• Volume charged between 1 and 100 kWh.
• Charge sessions between 01-08-2021 and 31-07-2022.

F. P. Hassan Master of Science Thesis
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• Charge sessions within the Netherlands.

• Removal of fast chargers, as they cannot use the same smart charging algorithms.

3-1-1 User Behavior

The GreenFlux database contains a wealth of information on EV charging sessions dating
back to 2012. The Charge Detail Record (CDR) table, in particular, is of interest as it
provides information on a single session level. The parameters that are relevant for this study
are listed in Table 3-1. The goal of processing and interpreting EV charging data from CDRs
is to gain valuable insights into user behavior and charging patterns. To accurately simulate
these patterns in charging sessions, it is crucial to maintain the correlation between the arrival
time, duration, and volume charged. This reflects real-life patterns and relationships present
in the data. If these correlations are lost, the resulting model will not be representative of
actual user behavior, which will negatively impact the accuracy of the results.

To simulate user behavior in charging sessions, a probabilistic approach was used to generate
the arrival times. The resulting CDRs have been validated in Section 3-3.

Parameter Example Explanation
dStart 2019-01-08 09:04:53.000 Start of the session
dEnd 2019-01-08 16:04:18.000 End of the session
Duration 06:59:25 Session duration
Volume 16,6570 Charged energy in kWh
AuthenticationId 970DF570EAC8F Unique ID of charge card

Table 3-1: Charge Detail Records.

3-1-2 Charge Characteristics

In order to reflect the diversity of charging characteristics among different EVs, the most
commonly registered EV types in the Netherlands were analyzed. Data on battery capacity,
number of phases (nphase), maximum current (Imax), and maximum power (Pmax) were col-
lected from [43]. This information was then used to create a categorical distribution of EV
types. The top 10 most registered EVs in the Netherlands on 15-08-2022, along with their
respective charge characteristics, are presented in Table 3-2.

To simulate a charge session, the number of registrations for each EV model was first normal-
ized to calculate its market share. Then, an EV model was selected based on its market share.
If the selected EV’s battery size was less than the volume charged in the charge session, the
process was repeated until a suitable EV model was found and added to the charge session.
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Model Registrations Battery [kWh] nphase Imax[A] Pmax[kW]
Tesla Model 3 42235 70 3 16 11
Kia Niro 18367 65 1 31 7.2
Hyundai Kona 16588 57 3 16 11
Volkswagen ID.3 3585 68 3 16 11
Renault ZOE 12618 38 3 32 22
Nissan Leaf 12087 40 1 16 3.6
Tesla Model S 11382 80 3 24 16.5
Skoda Enyaq 10633 76 3 16 11
Audi E-Tron 10489 89 3 16 11
VW Golf 5047 36 2 16 7.2

Table 3-2: Top 10 most registered EVs in the Netherlands on 15-08-2022, along with their
respective charge characteristics.

3-2 Simulation modeling

3-2-1 Clustering

We used a Gaussian Mixture Model (GMM) to cluster charging sessions into three main clus-
ters: short stay, daytime/business, and overnight charging. We evaluated several clustering
techniques and found that the GMM produced the best results, in line with prior literature
[44, 45].

Clustering is a useful technique to gain additional knowledge. It was employed for two main
purposes:

1. To realistically emulate the charging behavior: It has been an important component to
determine the arrival State of Charge (SoC) [see Section 3-2-2], which was crucial for
the battery modeling. Once the arrival SoC was determined, the battery development
could be simulated using the battery model from Section 3-2-4.

2. To use historical charge session information for controller decision making: In the clus-
ters, it was determined whether a certain relationship exists between the arrival time
and duration. The goal of utilizing solely EVs with adequate steering flexibility is to be
able to lower the charging rate while still ensuring that the vehicle can be fully charged
later in the session. This so-called flexibility represents the idle time within a charging
session, which implies the period during a charging session when an EV is not actively
charging.

Several clustering techniques were evaluated, ultimately the GMM was selected as it pro-
duced the best results, in line with prior literature [44, 45]. GMM is particularly suitable for
modeling complex data distributions. It outperforms k-means clustering, as it offers greater
flexibility in cluster shape and thereby better captures the variability of charging sessions.

A GMM assumes that the data is generated by a mixture of K Gaussian distributions, with
each distribution corresponding to a different cluster. The probability density function of a
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GMM is defined as:

p(x) =
K

∑
k=1

πkN (x∣µk,Σk),

where πk is the mixing coefficient for the kth component, which represents the proportion of
data points that belong to the kth cluster. The parameters µk and Σk are the mean vector
and covariance matrix of the Gaussian distribution for the kth cluster, respectively. The
symbol N (x∣µk,Σk) represents the probability density function of a multivariate Gaussian
distribution with mean µk and covariance matrix Σk.
The goal of clustering using a GMM is to estimate the parameters ϑ = π1,µ1,Σ1, ..., πK ,µK ,ΣK

that maximize the log-likelihood function of the data, which is given by:

log p(X∣ϑ) =
n

∑
i=1

log
K

∑
k=1

πkN (xi∣µk,Σk),

where X is the set of observed data points. This objective function was then optimized
using the Expectation-Maximization (EM) algorithm, which is an iterative algorithm that
alternates between computing the posterior probabilities of the data points given the current
estimates of the parameters (E-step) and updating the parameters based on the posterior
probabilities (M-step).
The implementation of the GMM clustering involved selecting the optimal number of clusters
by balancing model complexity and cluster separation. We fit GMM models with varying
numbers of components and used the Akaike Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC) to determine the optimal number of clusters. Subsequently, the
parameters of Gaussian distributions were estimated for each cluster, yielding the means and
standard deviations of arrival time and charge duration variables within each cluster.
In Chapter 5 the clustering results are shown and discussed.

3-2-2 Determining the arrival State of Charge

As mentioned in the previous section, the Constant Current Constant Voltage (CCCV) charg-
ing strategy is commonly used for charging Lithium-ion batteries. This method involves di-
viding the charging process into two stages: a constant current stage followed by a constant
voltage stage. During the constant current stage, the charging current is kept constant until
the battery reaches a certain voltage level. The charging process switches to the constant
voltage stage once the desired voltage level is reached, where the charging voltage is kept
constant and the charging current gradually decreases. By using the CCCV charging profile,
the battery can be charged efficiently and safely, while minimizing the risk of overcharging.
Because the charging rate depends on the SoC, it is important to accurately determine the
SoC at the time of arrival at a charging station. However, because the SoC could not be
measured or communicated to the charge station, this information was not present in the
CDRs provided by GreenFlux. To overcome this challenge, a mathematical method was
developed to assign an estimated arrival SoC to each EV.
First, we determine which EVs in the GreenFlux database are "hot unplugs." A hot unplug
occurs when a vehicle stops charging before the battery is fully charged. To determine hot
unplugs, the following steps were taken:
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1. The average power for each charging session was calculated by dividing the charged
volume by the duration of the session.

2. The maximum power was determined for each Authentication ID, while removing IDs
with less than 30 charging sessions to increase the accuracy of identifying the max
charging power. This maximum power value was used to determine when a charge
session was a hot unplug.

3. The most common charge rates in the market data on EV types were then identified;
3.6 kW, 6.6 kW, 7.2 kW, 7.4 kW, 11 kW, and 22 kW.

4. A charging session was labeled a hot unplug when it charged at its maximum power
and also at a common charge rate.

After performing the above steps to determine the hot unplugs, we analyzed the results to
identify the percentage of hot unplugs for each cluster session. The number of hot unplugs for
each cluster session is shown in Table 3-3. We found that the percentage of hot unplugs varied
significantly across different cluster. The Cluster Short Stay had the highest percentage of
hot unplugs at 24.49%, while the Cluster Overnight had the lowest at 0.27%. These results
indicate that hot unplugs are not evenly distributed across different charging sessions, and
that some clusters have a higher risk of hot unplugs than others.

Cluster Hot Unplugs (%)

Cluster Daytime 3.91
Cluster Overnight 0.27
Cluster Short Stay 24.49

Table 3-3: Number of hot unplugs per cluster session.

Because we knew the other group was fully charged, we could determine the arrival SoC with
the following formula.

ArrSoC = ⌊100 ⋅ battery capacity −VolumeKwh
battery capacity

⌋

In this formula, the ⌊⋅⌋ notation represents the floor function that rounds down to the nearest
integer.

From this group, we calculated the arrival SoC distribution, which was then used to assign the
arrival SoC to the hot unplug group. We took the arrival SoC per cluster, as we expect it to
differ due to differences in charging behavior between clusters, which was visually confirmed in
Figure 3-2. For the hot unplugs, the Arrival SoC distribution from the fully charged sessions
was used and randomly assigned to the hot unplug sessions.

3-2-3 Final charge session simulation

To model a day of charging, the N individual charge sessions needed to be generated. These
were created by following the steps explained in this section and a consist of the following
information:
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Figure 3-2: Arrival State of Charge distribution by cluster.

• Arrival time

• Charge duration

• Volume charged

• Arrival SoC

• Battery size

• Number of phases for charging

• Max current

The unsteered energy profile and unsteered power profile can be generated using the infor-
mation listed above. The term "unsteered" refers to the charging strategy where the EVs are
charged at full rate until they are fully charged or leave the charging station. The energy
profile refers to the amount of energy charged in each session at each time step, while the
power profile represents the accumulated energy from all the charging sessions. For these
profiles we did also use the battery model discussed in Section 3-2-4.
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3-2-4 EV Charging Model

To calculate the battery SoC over time, you would need to take into account the battery’s
current state of charge, the amount of energy being added to the battery, and the time over
which this energy is being added. A common approach to modeling the battery SoC is to use
the following formula:

SoC(k + 1) = SoC(k) + ∆E

Qnom
,

where SoC(k) is the current state of charge at time k, Qnom is the nominal battery capacity,
and ∆E is the energy added or removed from the battery over the time period ∆k. The
energy ∆E can be calculated from the current I and voltage V of the battery, as well as the
charging efficiency η:

∆E = I ⋅ V ⋅ η ⋅∆k.

So the final equation to calculate the updated SoC is:

SoC(k + 1) = SoC(k) + I ⋅ V ⋅ η ⋅∆k
Qnom

.

I is the current assigned by the controller. But in practice the actual consumed current
during the charging process also depends on the SoC. If the assigned current is below the
maximum current capacity of the battery, then the consumed current is equal to the assigned
current. However, if the assigned current is higher than the maximum current capacity, then
the consumed current is limited by the upper bound, which is based on the SoC of the battery.
The upper bound is calculated using the formula:

I =min(I, fcccv(SoC)),

where fcccv is a functions that are used to model the relation between the battery state of
charge and the maximum charging current. One common formula for this relation is given
by [46]:

fcccv(SoC) =
Imax

1 + e−k(SoC−SoC50)
,

where Imax is the maximum charging current, k is a constant that controls the steepness of
the function, SoC50 is the state of charge at which the function reaches half its maximum
value, and e is the natural logarithm base.

This function models a sigmoidal relation between the battery SoC and the maximum charging
current as shown in Figure 3-3. It is important to note that the form of the function depends
on the specific battery chemistry, charging conditions, and other factors, and as such, the
best form of the function may vary between different systems.

The following assumptions are made:

• The battery cell voltage is constant.
• No Peukert effect on the capacity of the battery as a result of charge current.
• No impact of temperature or humidity on battery behavior.
• No self-discharge present in the model.
• CCCV relation is the same for each EV model.
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Figure 3-3: Arrival time distribution with a bin size equal to the Sampling time.

It should also be noted that this equation assumes a constant current and voltage during the
time period ∆k. In practice, the current and voltage may vary, and more complex models
may be necessary to accurately capture the behavior of the battery over time. However, it is
sufficiently accurate for this study.

3-2-5 Energy market and contracted power setpoint simulations

This section provides details how information about the energy market and the contracted
power setpoint were retrieved and calculated. Historical data of the energy market was
available from TenneT to test the controller. Figure 3-4 presents the Day-ahead price of
energy and all the information required for the imbalance settlement The figure provides a
visualization of the market conditions during one day. Further details can be found in the
figures caption.

3-2-6 Contracted Power Setpoint

The contracted power setpoint is the energy that will be bought on the day-ahead market
based on the expected charging profile for the next day. The contracted power setpoint was
determined by optimizing the charging process to minimize costs while ensuring that the
client’s charging demands were met (Time of Use (ToU) optimization). The forecasts for the
energy prices are out of scope of this research and therefore not included, but instead, the
prices for the particular simulation day are retrieved from the day-ahead market and used in
the cost function of the optimization problem.
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Figure 3-4: An orange rectangle in the plot represents regulation state 2. A grey rectangle
indicates regulation state 0. Green up and down backgrounds correspond to regulation state 1
and -1 respectively.

Note that the optimization problem is a simplified approximation of the real-life optimization
that considers multiple factors such as power constraints, charging preferences, and grid
constraints. The final contracted power setpoint would normally be supplied by a third party
or the customer itself. In the simplified optimization, only the Day Ahead Market (DAM)
price forecast is taken into account to create an energy profile that meets the needs of each
charge session at the lowest possible cost. Without a price optimization component, the
optimal solution would be to charge the EVs at full charge rate from the moment they arrive.
This is known as the unsteered power profile, and it represents the maximum amount of power
that can be supplied to the EV without violating any constraints. By incorporating the price
optimization component, the optimization algorithm considers both the energy consumption
of the EVs and the energy prices, and adjusts the power setpoint accordingly. This results in
an overall cheaper charging profile, while still ensuring that the EVs are sufficiently charged.
The price optimization component provides a more realistic scenario for testing the smart
charging controller.
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For the optimization problem, Let there be n = {1 . . .N} ∈ N charge sessions and h =
{1 . . .H} ∈H time slots, where every time slot represents 15 minutes. Then for a full day, we
have H = 96 time slots. As a result, our decision variable vector scales proportionally to N
and is given by:

P = [pn
1 , p

n
2 . . . p

n
H . . . pN

1 , p
N
2 . . . pN

H] ∈RNHx1.

A complete list of the variables is give in Table 3-4. The optimization problem formulation
is:

minimize
P

N

∑
n=1

K

∑
h=1

Pn
h ψ

n
hT

sλh

subject to Pn
h ≥ P

lb,

Pn
h ≤ P

max n = 1, . . . ,N, h = 1, . . . ,H,

K

∑
k=1

Pn
k ψ

n
h ≥

En

T s
− ε n = 1, . . . ,N,

K

∑
k=1

Pn
k ψ

n
h ≤

E

T s
+ ε n = 1, . . . ,N ,

where, ψn
h =
⎧⎪⎪⎨⎪⎪⎩

1, Tn
arr ≤ h ≤ Tn

dep.
0, otherwise

The objective is to minimize the total cost, which is the product of the day-ahead price and
the energy consumed in that timeslot. The constraints include non-negativity and an upper
bounds on the charging power, and the requirement that the total energy charged by each
EV should match its required energy demand within a certain tolerance.

Inputs

N Number of EVs
H Number of Imbalance Settlement Periods (ISPs)
ε Small number that acts as as tolerance on energy constraint
T s Sampling time
U Mains voltage
λk Day ahead energy price at time k
En The energy demand of EV n
Pmax Upper bound on power
P lb Lower bound on power
Tn

Arr Arrival time h of EV n
Tn

Dep Departure time h of EV n

ψj,k Auxiliary binary variable, whether an EV is connected at time k
Decision Variables

Pn
k Power consumption by EV n at time h

Table 3-4: Inputs and decision variables for the optimization model.
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The optimization problem involves a linear objective function and linear constraints with
continuous decision variables. The presence of binary indicator variables in the objective
function and constraints makes it a is a mixed-integer linear program that. We use the Gurobi
solver, a popular optimization software that can efficiently solve these type of problems [47].

3-3 Validation of Simulation Environment

In order to accurately represent real-world charging patterns and user behavior, it is im-
portant to validate the simulation environment used in this study. This section focuses on
the validation of two key aspects of the simulation environment: user behavior and charge
characteristics.

Validation of user behavior The probabilistic approach used to generate the arrival times
for the charging sessions was based on the GreenFlux database and its CDR table.

The validation was done by comparing arrival time distributions of the original data with a
sampled set of sessions. A plot comparing the arrival time distributions is shown in Figure 3-5,
which validates that the distributions are similar.

In addition to this, a heat map of the correlation between the arrival time and duration, as
well as the arrival time and volume charged, was created to further validate the approach. The
resulting heat maps in Figure 3-5 demonstrate the clear relationship between these variables in
the original data and that the correlations have been successfully preserved in the simulation.

The high degree of similarity suggests that the probabilistic approach has accurately cap-
tured real-life patterns and relationships present in the data and provides confidence that the
simulation accurately reflects user behavior and charging patterns.
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Figure 3-5: Sample analysis results showing the distribution of EV charging patterns over a
24-hour period.
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Chapter 4

Smart Charging Controller Design

This chapter explores the technical aspects of the smart charging controller design, with a
particular focus on the setpoint-tracking controller. The controllerontroller is intended to
balance the charging demands of individual electric vehicles and the grid, while ensuring
fair allocation of charging resources and minimizing data consumption. The co-regulation
component is presented, as a separate optimization problem, which is essential to the overall
efficiency of the system. The chapter provides a comprehensive overview of the mathematical
models and methodology used to design the smart charging controller.

In the approach proposed in this research, a central controller (also referred to as the Charging
Management System (CMS)), with system-wide information, determines the optimal course
of action for the aggregator. The aggregator’s goal is to maximize its flexibility potential
by offering balancing services to TenneT, which will result in lower overall charging costs
for the customers. To maximize the aggregator’s profit, this research focuses on three key
topics: generate revenue, reducing data costs, and preserving customer satisfaction. However,
there will be several challenges to overcome in all three areas, which will be discussed in the
following sections.

Generate revenue Effective energy management requires minimizing energy costs, which
can be achieved through the implementation of co-regulation and power setpoint-tracking.
While power setpoint-tracking alone may reduce the risk of incurring significant imbalance
settlement prices, it is not a guarantee of cost savings. The imbalance settlement price is
determined by a complex set of factors, including the difference between actual consump-
tion and contracted power setpoint, market energy prices, energy production costs, market
volatility, weather conditions, and technical issues. Therefore, to minimize energy costs, it is
crucial to implement co-regulation, which involves determining the optimal power setpoint to
minimize the aggregator’s costs, while considering future regulation states and prices. Once
the optimal power setpoint is identified, power setpoint-tracking can be employed to ensure
that actual electricity consumption matches the optimal power setpoint. By implementing
co-regulation and power setpoint-tracking, the aim is to create a planned imbalance between
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the contracted and actual consumption, based on market conditions, to receive the imbalance
settlement price, which can be viewed as balancing revenue.

Reducing Data Costs The Electric Vehicle (EV) fleet presents an opportunity for power
distribution flexibility. To exploit this potential, the CMS must receive information about
charging sessions and send control commands. However, this data transmission incurs costs.
One way to reduce these costs is by minimizing the frequency of updates.

Maintain customer satisfaction Maintaining customer satisfaction is crucial for the success
of an aggregator’s service, even though it cannot be directly quantified in financial terms.
To ensure customer satisfaction, it is necessary to distribute available energy fairly among
connected EVs when demand exceeds capacity. Several studies propose charging schemes that
consider power allocation fairness among EVs [48, 49, 50]. However, since future arrival and
departure times, energy demand, and charging time for individual EVs are unknown, creating
a deterministic charging schedule does not always align with real-world scenarios [40]. For
example, EVs may unplug earlier than expected, leading to a lower state of charge than
desired when unplugging. To mitigate this inconvenience, a priority metric can be included
in the charging schedule, which would distribute available power fairly in real-time, even
without knowledge of future plans.

In summary, the primary goals of the proposed method are:

1. Generate aggregator’s revenue by determining the optimal power setpoint.
2. Ensure precise tracking of the power setpoint.
3. Minimize data transmission costs by reducing the frequency of changes to the allocation

profile.
4. Ensure fair real-time allocation of power to maintain customer satisfaction, despite

limited information about future travel plans.

4-1 Problem Formulation

This section presents an overview of the notation and terminology used in this chapter, as
well as the system architecture, including data partitioning, time granularity, and decision
variables. The aim is to ensure clarity and consistency in the mathematical expressions
and understanding of the problem at hand. This information is important for the reader to
comprehend subsequent sections, where the optimization problem is formulated.

We consider a Virtual Power Plant (VPP) consisting of N Charge Points (CPs), where each
CP can host one EV. Time is discretized into constant intervals, indexed by k. The CP keeps
track of the number of connected EVs at each time step k. Information about future arrivals,
expected departures, and future demands is unknown. The Control Station (CS) has access
to the measured current Ĩ(k) of EV i at every time k. The CP is able to control the charging
current of an EV by sending the upper bound Ii(k) to EV i at time k. The CMS receives
an aggregated setpoint P setpoint(k) from the grid controller, and in return sends its updated
status.
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Our contributions to the field are as follows:

1. We consider a control scheme that has no internal knowledge of battery charging pa-
rameters or actual departure times of EVs, which is a more realistic scenario as modern
charging stations lack this information.

2. We model the battery charging power in a realistic manner, where an EV can either be
switched OFF with a charging power of 0 W, or be switched ON with a charging power
within nonzero bounds.

3. We introduce a fair allocation metric to ensure customer satisfaction and retention.
4. We present a novel co-regulating controller for balancing the energy consumption of

EVs.

4-1-1 Nomenclature and Terminology Overview

"x, y and z" are used as placeholder examples in the following descriptions.

Notation

• Sets are indicated by calligraphic letters X
• Indices are denoted as Roman subscripts xy

• Dimensions are indicated by Roman subscript indices in square brackets x[x,y]

• Extended variable names are noted in Roman superscripts xxyz

• Measured data is indicated with a hat symbol x̂

• Estimated values are denoted by a tilde x̃

Mathematical Operations

• The cardinality operator is represented by ∣x∣
• The rounding operator is indicated by ⌈x⌉ and rounds a value to the closest integer

4-1-2 System Architecture

This section provides an overview of the system architecture and the data partitioning of the
CPs.
Decision Variables The current assigned to each electric vehicle EV, represented by Ij , is
the decision variable in this problem. Previous research has often assumed that the charging
power of an EV is a continuous value between 0 and the maximum charging power [50, 51,
52]. However, this is not always the case in reality as an EV can be turned off and not
consume any power or can charge at a power that falls between non-zero bounds, with the
minimum charging power being limited. While Zheng et al. [53] developed a control scheme
that supports the ON-OFF states, it is limited to a constant power when the EV is turned
ON.

To address this, we introduced a second decision variable, ωj , as the on/off decision for the
CPs. Specifically, ωj is equal to 1 when the CP is on and 0 when it is off. The charging current
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Ij is constrained by the minimum and maximum charging rates, I lband Iub. This approach
considers both the ON-OFF possibilities and continuous charging power, which falls between
an upper and lower bound when the EV is turned on. This results in the decision variables
being represented as:

Ijωj ∈ 0 ∪ [I lb, Iub].

The presence of the binary variable ωjmakes this a mixed-integer optimization problem. Fur-
thermore, the multiplication between the two decision variables results in a bilinearty between
them, making this a non-linear mixed-integer optimization problem.
Time Granularity EVs arrive and depart at continuous times, represented by the variable
ttsj . However, the optimization problem is solved by the CMS at regular intervals, represented
by the sampling interval T s. To map the continuous information about EVs to a discrete time
step, each day (D=24 hours) is divided into a set of discrete time steps, K = 1,2, . . . , k, . . . ,K,
where K =D/T s. For example, if an EV connects to a CP at time ttsj , its arrival time will be
calculated by rounding ttsj to the nearest time step, tarr

j = ⌈ttsj /Ts⌉. In addition, imbalances in
the energy market are settled per Imbalance Settlement Period (ISP). Each day is therefore
divided into a set of equal-length intervals, H = 1,2, . . . , h, . . . ,H, each with duration ∆h= 15
min. For one day, H = 96.

Data Partitioning The system considers a group of CPs that is controlled by an aggregator
that aggregates the energy consumption of the entire fleet as one entity in the real-time energy
market. The CP in the system are divided into four subsets based on the state.

• E collects all CPs without an EV plugged in.
• L is the collection of EVs whose charging rate is temporarily locked.
• C collects all the controllable EVs.
• F is the collection of fully charged EVs.

The CMS controls a network of CPs, indexed by (j).

Inputs
1. Charging Limits:

This refers to the initial upper bound, Iub, which is determined by ub =min(Iub
EV , I

ub
CS).

Note: In a practical scenario, the upper limit on the charging current cannot be directly
communicated to the CP. To address this issue, the information must be collected. One
approach is to assign the maximum capacity to the CP of newly arrived vehicles. The
actual charging current is then determined by Iub = min(Imax, Îj), where Îj is the
measured current drawn by the EV.

2. Energy market data:
This includes the information about the energy market, including the wholesale energy
price, the regulation state and the regulation price.

3. Time horizon:
This includes the time horizon over which the optimization problem, in this case a day.

4. Optimization parameters:
This includes the parameters required for the optimization algorithms.
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With these inputs, the optimization problem can be formulated and solved to determine the
optimal charging schedule for the fleet of EVs, while balancing the energy market and ensuring
customer satisfaction.

Constraints

Given the context of the charging management system and its objectives, the optimization
problem is subject to a number of constraints that must be satisfied. These constraints ensure
that the charging system operates within the bounds of feasibility and optimizes the objectives
defined in the problem:

1. Maximum charging power constraint:
Ensures that the charging power of each EV does not exceed its maximum charging
capability.

The upper bound, Iub, is continuously updated whenever new session information is
received, Ĩ. The process of updating the upper bound is outlined in Algorithm 1

Algorithm 1 Update upper bound; Iub

1: if Îj < Ijωj and Ijωj = Iub then
2: Iub = Îj

3: end if

The algorithm first checks if Îj is less than Ijωj and Ijωj is less than the current value
of Iub. If this condition is true, then the value of Iub is updated to be equal to Îj . This
update ensures that the value of Iub is always less than or equal to Ijωj , which is a
necessary condition for the optimization algorithm to converge.

2. Minimum charging power constraint:
Ensures that the charging power of each EV does not fall below a certain threshold.
The Renault Zoe car got the lowest threshold and goes into safety mode if the charging
power falls below 13 A. Since the type of EV connected to the CS is unknown, we can
only avoid this by setting 13 A as the lower bound for all EVs.

3. Temporal constraint:
Ensure that EVs can only charge between their arrival and departure times, this is
handled by moving the CSs to different sets. Only set C is included in the algorithm.

4. Power allocation constraints:
These constraints ensure that the total energy charged by all connected EVs does not
fall below a certain minimum threshold of the available energy potential. This helps
to maintain a certain level of energy utilization efficiency in the system. It is for the
objective of customer satisfaction.

These constraints must be satisfied in order for the optimization problem to be feasible and
to achieve the desired objectives. The optimization problem will result in a solution that
balances the trade-off between these constraints and the objectives of the system.
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4-2 Optimization Problem

The CMS optimizes the resource allocation for all EVs in C, at time k. The different objectives
are incorporated with the different terms in the objective function. The weights, c1 and c2,
are added in front of the objective function terms to reflect the relative importance of each
term. The objective function is a linear combination of the two terms, where each term
represents a different objective to be optimized. The weights control the trade-off between
the two objectives, and can be used to adjust the balance between them.

minimize
I,ω

c1f1 (I, ω,ψ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Power setpoint-tracking

+ c2f2 (I, ω,ψ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fair allocation

(4-1a)

subject to I lb ≤ Ij ≤ Iub,∀j ∈ C, (4-1b)

ωj ∈ {0,1},∀j ∈ C, (4-1c)

ωj = 0,∀j ∈ F , (4-1d)

ωj = 0,∀j ∈ E , (4-1e)

ωj[k] = ωj[k − 1], ∀j ∈ L, (4-1f)

Ij[k] = Ij[k − 1], ∀j ∈ L, (4-1g)

I ∈ RN , ω ∈ ZN , (4-1h)

where:
• Equation 4-1a is the objective function to be minimized over the 2×N decision variable

vector [I[1,N], ω[1,N]]⊺, which consists of both real-valued and integer-valued decision
variables.

• The vector of parameters, ψ, acts as inputs to the controller.
• Due to Constraints 4-1b and 4-1c, the possible range of the joint contribution of the

decision variables is given by
Ijωj ∈ 0 ∪ [I lb, Iub].

• Constraints 4-1d, 4-1e, 4-1f and 4-1g ensure that the decision variables for sets F , Eand
L are set to the correct values, respectively.

• Constraint 4-1h limits the extent to which the controller’s decisions can negatively
affect the ratio between the actual charged energy and the potential charged energy, by
establishing a minimum threshold of ζ lb.

4-2-1 Power setpoint-tracking
The first term in Equation 4-6 is responsible for tracking the aggregated power setpoint,
P req[k]. The locked EVs must be removed from the calculation of the aggregated setpoint
because the power consumption is equal to the previous time step and thus known. For
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practical reasons, newly connected EVs will be charged at maximum power for one time step,
these practical reasons are not included in this research. However, as this is a common practice
in real-life situations, it is still used in this study to ensure a more realistic representation of
the system.

f1 (I, ω) =
⎛
⎝
P req + PCo_reg[k] + PComp[k] − ∑

j∈L[k]
Pj[k − 1] − ∑

j∈N [k]
Pj[k] − ∑

j∈C[k]
UIjωjϕj

⎞
⎠

2

The number of phases that the jth EV can charge with is represented by the parameter ϕj .
The mains voltage, which is assumed to be constant at 230 V in this research, is represented
by the parameter U 1.

If the energy consumption deviates from the contracted volume, the remaining charging time
in the ISP can be used to compensate for this error. The calculation of the compensation
power, PComp, is presented in Equation 4-2. This is calculated at each time step as the
difference between the sum of the scheduled power, P req, and the regulation power, PCo_reg,
and a term accounting for the deviation, ERT

h [k].

PComp = P req[k] + PCo_reg[k] −
(P req + PCo_reg) ⋅ xisp[k] −ERT

h [k]
k

(4-2)

The variable xisp[k] in Equation 4-2 serves to track the progression through one ISP, with the
number of time steps in an ISP given by T = ∆h

Ts
. xisp[k] cycles through the values 1,2,⋯, T −1

and then back to 0 every T time steps, with the time index k and the congruence operator ≡.

xisp[k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k ≡ 1 (mod T )
2 if k ≡ 2 (mod T )
⋮
T − 1 if k ≡ T − 1 (mod T )
0 if k ≡ 0 (mod T )

(4-3)

Furthermore, we have

ERT
h =

⎛
⎝
ERT

h [k − 1] +
N

∑
j

Pj (k)
⎞
⎠

(4-4)

and ERT
h [k] = 0 for k ≡ 0 (mod T ). In other words, the energy consumed in real-time, ERT

h , is
calculated as the sum of the previous energy consumed, ERT

h [k−1], and the power consumed
at each time step, Pj[k]. At the end of each ISP, when k ≡ 0 (mod T ), the energy consumed
in real-time, ERT

h , is reset to zero.

1Even though the permitted deviation from mains voltage is large, (U = 230 V± 10%) [54], it is assumed to
be constant for this research.
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4-2-2 Fair allocation
The fair allocation of smart charging resources is an important aspect for the implementation
of smart charging systems. Ensuring fair allocation of power in smart charging systems is cru-
cial when the contracted power is insufficient to meet the demand of all electric vehicles EVs.
There are two main approaches to fair allocation in smart charging: market-based mecha-
nisms and priority-based mechanisms. Market-based mechanisms allow EV owners to bid for
charging resources based on their needs and preferences, leading to a more efficient allocation
of resources. However, this approach requires active customer involvement, which can be a
challenge to implement. In order to participate in a market-based mechanism, customers
must be educated and motivated to engage, which can be difficult to achieve. Priority-based
mechanisms, on the other hand, allocate charging resources based on priority levels such as
time of day or location. This approach helps ensure that charging resources are allocated to
those who need them most. Besides, it is more passive and broadly implementable, as it does
not require customer involvement.

In real-time charging allocation, it is also important to strive for fairness [40, 48, 49, 50, 55,
56, 57]. A fair allocation of resources strives to satisfy the charging needs of each EV to the
best possible extent. However, simply providing each EV with the same amount of energy
may not result in a fair distribution of charging resources. It is important to consider factors
such as each EV’s State of Charge (SoC), battery capacity, and departure time. These factors
can impact the satisfaction of the EV owners. However, this information is often unknown
and can vary greatly between EV owners. As a result, finding a way to ensure fair allocation
of charging resources without knowing these factors can be challenging.

The objective function, f2 [Equation (4-6)], aims to ensure fairness in the allocation of charg-
ing resources among the EVs. It does so by incorporating the priority metric, ζj , into the
calculation. The priority metric incorporated the non-satisfied energy demand of individual
charge sessions. So it measures the degree to which the charging demand of the EVs is met.
This ratio penalized the difference between the maximum charging rate of the jth EV, Iub

j ,
and the current assigned to it by the controller, Ijωj . The priority metric captures the extent
to which the jth EV was undercharged relative to its maximum charging capacity. If ζj is
close to 1, this indicates that the jth EV was charged close to its maximum charging rate,
and therefore, has a lower priority for further charging. Conversely, if ζj is higher than 1, this
indicates that the jth EV was undercharged and has a higher priority for further charging.

Without steering, an EV plugged to an CP charges with its maximum charging rate until the
battery is full. This charging profile (Eunsteered

j ) is used as a reference value in the priority
metric, denoted as ζj . It captures the missed charging capacity due to the CMS’s decisions.
The function f2 incorporates this metric as follows:

f2(I,Z) =∑
i∈C
(Iub

j − Ijωj) ζ2
j ,

with, ζj =
Eunsteered

j

Eactual
j

=
U ⋅ Iubωj + ϕj ⋅ kct

j

Êj +∑k
kt+n Pj[k] ⋅ T s

. (4-5)

The approach could benefit customer satisfaction and reduced likelihood of complaints and
negative impact on the reputation of the charging services.
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4-2-3 Limited data
The allocation profile must be updated regularly to distribute the available power properly.
This requires the CMS to receive information about charging sessions and send control com-
mands. This data transmission involves a cost. Limiting the number of messages is a practical
issue that has not been widely considered as a constraint in current research on smart charg-
ing and ancillary services. Equation (4-1f) and (4-1 g)include a locker period of one timestep,
essentially limiting how frequent a new allocation can be sent to a CP.

4-2-4 Co-regulation
Predicting the regulation state and price is a complex task as it is influenced by various factors
such as energy demand, availability, weather conditions, fuel prices, and market trends. The
interactions between these factors make the prediction of the regulation state and price a
challenging task, however, these predictions are the inputs to the co-regulation optimization.
The CEO of Dexter Energy Services, Luuk Veen, states that over 150 exogenous parameters
are required for a complex machine learning model to predict the regulation state and price
in the energy market.

Since predicting the regulation state and regulation price is a complex task, we assume that
the predictions are supplied by a third party (e.g., Dexter Energy Services). However, it is
unclear how accurate these predictions are. As a result, we assume perfect predictions for
now so that we can use the known regulation state and price from TenneT’s historical data,
as it allows for the evaluation of the optimization method without the added complexity of
uncertainty in the input data.

The objective of the optimization problem is to minimize the energy price per MWh. This
is achieved by optimizing the combination of day-ahead price and the imbalance settlement
price. The optimization problem is formulated as follows:

minimize
P Co−Reg

∑K
k=1 (PDAkλDATs) + (PCo−RegkTs) ×wk

(PDA + PCo−Reg)Ts
(4-6a)

subject to −a1P
PDA
k ≤ PCo−Reg

k ≤ a2P
P DA
k , k = 1, . . . ,K, (4-6b)

b1
K

∑
k=1
(PDA

k ) ≤
K

∑
k=1
(PCo−Reg

k ) ≤ b2
K

∑
k=1
(PDA

k ), (4-6c)

K

∑
k=1
∣P coReg

k ∣ ≤ d1
K

∑
k=1
(PDA

k ), (4-6d)

where wk =
⎧⎪⎪⎨⎪⎪⎩

RegP riceT ake[k] if PDA[k] − (PP DA[k] + PCo−Reg[k]) < 0
RegP riceF eed[k] if PDA[k] − (PP DA[k] + PCo−Reg[k]) ≥ 0

Constraint (4-6b) limits the co-regulation power at each time step between certain bounds,
with a1 and a2 determining these bounds as a percentage of PDA[k]. Constraint (4-6c) limits
the total co-regulation that is allowed during the day. Constraint (4-6d) limits the allowable
deviation in the total energy consumption between the case with only the day ahead power
setpoint and the case with the day ahead power setpoint and the co-regulation added, ensuring
that the total energy needs of the end user are still satisfied.

Master of Science Thesis F. P. Hassan



44 Smart Charging Controller Design

It is important to note that the Regpricetake
k and Regpricefeed

k are already the result of the
combination of the regulation price and regulation state.
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Chapter 5

Results

In this chapter, we present the results of our simulation experiments for the different con-
trollers. The simulations were run multiple times with different parameters for various con-
troller designs to evaluate their performance. To assess the effectiveness of each controller,
we used several performance metrics, which mainly capture the penalties, revenue, and user
discomfort.

This chapter is organized into several sections. Section 5-1 provides an overview of the
performance metrics used in our evaluation. In Section 5-2, we provide details on how we
determined the simulation parameters. The subsequent sections focus on specific aspects
of our simulation results, with Section 5-3 discussing the impact of clustering, Section 5-
4 covering the optimization of contracted power setpoints, and Section 5-5 exploring the
revenue from co-regulation.

5-1 Performance Metrics

In order to evaluate the performance of the charging control system, the following metrics
have been used:

• Non-Satisfied Energy Demand (Ensd):
Non-satisfied Energy Demand, also referred to as ’charge loss’ in some cases, is a metric
that measures the degree to which the charging demand of the Electric Vehicles (EVs)
is met. It is calculated as the ratio of the energy that was actually charged, EC , to the
energy that would have been charged without the controller’s decisions, EU .

Ensd = 1 − E
C

EU

If Ensd is 1, then every EV was fully charged. Ensd is basically a metric for total charge
loss (energy not charged in the whole system). Moreover we use similar metrics for
cluster satisfaction and client satisfaction:
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– σA(Ensd) and σB(Ensd); The standard deviation provides information on how
evenly the energy is distributed among the EVs, with smaller values indicating a
more even and fair distribution.

– µA(Ensd) and µB(Ensd) for cluster groups A and B are metrics that track cluster
satisfaction. Cluster group A includes the short stay sessions and cluster group B
include the daytime and overnight sessions.

• Tracking Performance (εT r):
This metric is calculated as the absolute power deviation from the setpoint. Perfect
tracking is represented by a value of 1, while a value of 0.9 indicates that 10% of
the total power consumption for that day was in an imbalance position. However,
in cases where the contracted power setpoint exceeds the maximum charging capacity
of the whole population, tracking becomes impossible and other factors are to blame.
To address this issue, we introduce a new variable called P pot, which represents the
maximum charging potential of the whole population. The tracking performance is
then calculated as follows:

εT r = 1 − ∣min (PP ot, P setpoint) − PC ∣ ,

where PC is the power consumption of the whole population. In other words, if the
contracted power setpoint is higher than P_pot, the controller is expected to limit the
charging power to P_pot, and any deviation from this limit is considered a tracking
error.

– Penalty Reduction (PR):
This metric measures how well the controller’s decisions reduce the penalty cost
compared to the uncontrolled case. Mathematically, we can represent this as:

PR = 1 −
λpen

T r

λpen
U

,

where λpen
C is the penalty cost incurred with the controller’s decisions and λpen

U is
the penalty cost that would have been incurred without the controller’s decisions.
A value of PR = 1 means that the penalty cost was completely eliminated by the
controller, while a value of PR = 0 means that the penalty cost was not reduced
at all.
It is worth noting that PR can be greater than 1, meaning that there was an
imbalance that coincidentally aligned with the market needs and therefore the
imbalance price was paid out. In general, we want PR to be as close to 1 as
possible, as this indicates that the controller is effectively reducing the penalty
cost associated with any imbalances in the power consumption.

• Cost Reduction Ratio (CRR):
This is a performance metric that measures the percentage reduction in the energy
cost per MWh achieved by the controller’s decisions compared to the cost without the
controller’s interventions. It is calculated as:
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CRR = λ
Un − λAc

λUn
× 100%,

where λUn is the energy cost per MWh without the controller’s decisions, and λAc

is the energy cost per MWh after the controller’s decisions. A higher value of CRR
indicates a greater reduction in energy cost. It is important to note that this metric
does not take into account any costs associated with the controller’s operation, such as
the computational cost of running the optimization algorithm.
It should also be noted that the actual cost reduction resulting from the controller’s
decisions involves not only the co-regulation based cost reduction but also the imbalance
fines, which can be positive or negative on a random basis. To accurately measure the
co-regulation performance, we have isolated the co-regulation based cost reduction and
tracked only the cost reduction ratio resulting from co-regulation. So the resulting CRR
value tracks the co-regulation performance.

In order to facilitate comparison and interpretation of the simulation results, each metric is
scaled such that a value of 1 represents perfect performance, and smaller values represent
worse performance. This scaling approach was chosen to allow for easy comparison of results
across different simulations and scenarios.

In our analysis, we also scaled the standard deviation metric, denoted as σ(Ensd). This
scaling was performed by taking the reciprocal of the original value (σ(Ensd) = 1/σ(Ensd)),
such that a larger value now represents better performance. The reason for this modification
was to provide a more intuitive interpretation of the metric and enable better comparison
between the different scenarios.

Initially, we were hesitant to perform this scaling because the standard deviation is already in
the same units as the original quantity being measured. However, we found that the modified
metric was more effective in identifying improvements in performance and enhancing the
clarity of our analysis.

5-2 Simulation Parameters

In this section, we describe the selection process of the simulation parameters and the rationale
behind our final choices. We discuss N and x, which respectively determine the total sample
size and sampling time used in the simulations.

To determine the optimal sample size for the simulations, we aimed to select a sample size
that was large enough to mitigate the effects of randomness and stochasticity and capture
the full range of charging behaviors, while still being computationally feasible to run multiple
times for each performance analysis. Running multiple simulations is necessary because the
simulation environment involves a significant degree of stochasticity, meaning that individual
simulations may yield results that are not representative of the controller’s performance. By
running multiple simulations, we aimed to increase the reliability of the results. Randomness
refers to the fact that individual charging sessions may exhibit behavior that is difficult
to predict or model with high accuracy. Because we sampled from the real database, this
randomness is still in the simulation to some degree.
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We selected N = 3000 as the optimal sample size since it struck a balance between mitigating
the effects of stochasticity and keeping computational costs and time required to run multiple
simulations within feasible time limits. Additionally, we conducted a performance analysis
for N = 20000 to ensure that the controller could handle large-scale problems while still
maintaining a similar level of performance. As shown in Table 5-1, the performance metrics
remain fairly consistent across these sample sizes.

Performance Metric N=3000 N=5000 N=20000

Ensd 0.92371 0.93818 0.93537
µA(Ensd), µB(Ensd) 0.97212, 0.98395 1.00007, 0.98055 1.00004, 0.97857
σA(Ensd), σB(Ensd) 0.06412, 0.04812 0.00281, 0.05754 00390, 0.06421
TP 0.98783 0.98165 0.98160
PR 0.05746 0.04141 0.04161
CRR 0.08089 0.08089 0.08224

Table 5-1: Performance metrics for the controller for different sample sizes. The table compares
the performance metrics of the controller for sample sizes of N = 3000, N = 5000, and N = 20000.

The sampling time was determined to limit the number of new allocation profiles that must be
sent to the controller. Rather than introducing a locking period, we analyzed the controller’s
performance for different sampling times. Because the imbalance is calculated over a 15-
minute period, a small sampling time and including a locker period would complicate the
process unnecessarily.

In order to select an appropriate sampling time for our study, we conducted a series of
experiments using different sampling times. While the results for various sampling times
were obtained, we found that the differences between them were negligible and hence, it
was not necessary to include all of them in our report. Because one ISP is 900 seconds,
and it is possible to offset ISP imbalnces in that same ISP, a must was to choose x smaller
than 900. However, we also considered the fact that a very small sampling time could make
the problem computationally complex without yielding significant benefits. Additionally, a
smaller sampling time would require more allocation signals, which would involve extra data
cost.

Therefore, a sampling time of 300 seconds was selected. This duration was deemed appropriate
because it is large enough to avoid excessive computation, while also providing a sufficient
number of time steps to compensate for any imbalances during the ISP. We concluded that
three time steps within an ISP were the minimum required to achieve accurate results in our
study.

5-3 Clustering

A clustering analysis was applied to the EV charging data in the Charge Detail Record (CDR)
database to identify various charging session types, with the aim of using these clusters to
estimate charging demand. To determine the optimal number of clusters, we used Gaussian
Mixture Model (GMM) clustering algorithm. Different GMM models were fitted with varying
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Parameter Value

Sample size (N) 3000
Sampling time (k) 1000
Charge Point (CP) clustering threshold ϑclus 80%
Repeats per performance analysis 7
Locking period -

Table 5-2: Simulation parameters used in the final simulations.

numbers of components, and the Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) were utilized to identify the optimal number of clusters.

The AIC/BIC values were plotted against the number of clusters in Figure 5-1. The plot indi-
cated that, as the number of clusters increased, the AIC/BIC values decreased; however, the
decrease slowed down at a certain point, and the AIC/BIC values plateaued. This suggested
that adding more clusters did not result in significant improvements in clustering quality and
that a lower number of clusters might be optimal. Although this approach was appropriate
for clustering individual charging sessions, our primary objective was to cluster charge points.
Therefore, we also plotted the percentage of CPs assigned to a cluster for different numbers
of clusters, and we found that assigning CPs to specific clusters became increasingly difficult
as the number of clusters increased.

Our analysis of the clustering of CPs revealed that using a larger number of clusters enabled
us to obtain more accurately defined clusters that better captured the underlying patterns
in charging behavior. When we used only three clusters for the GMM analysis, the resulting
clusters were poorly defined, with many CPs sharing their charge sessions between clusters.
To address this issue, we increased the number of clusters to eight and grouped similar clusters
to obtain three final clusters, as shown in Figure 5-2. The use of this method resulted in a
significant 26% increase in the CPs assigned to a cluster. This demonstrates the importance of
using a suitable number of clusters to accurately represent the variability of charging behavior
in CPs.

Subsequently, we determined which CPs to assign to a certain cluster. To increase the proba-
bility of identifying a pattern in the charging behavior, we applied a filtering step and excluded
all CPs with fewer than 100 recorded sessions. Such CPs are more likely to exhibit random
charging behavior instead of having an underlying pattern, or more accurately said, the un-
derlying pattern cannot be found. We established a threshold ϑclus such that if more than
a specific percentage of a CP’s sessions were associated with one cluster, we assigned that
CP to that cluster. After analyzing different thresholds, we found that ϑclus = 0.8 achieved
a satisfactory balance between having clear charging patterns in the CPs and having enough
CPs available for analysis. The distribution of charge sessions and CPs in the database for
each type of cluster can be seen in Table 5-3.

The clustering analysis assigned CPs to three distinct clusters: Short Stay, Daytime and
Overnight charging. None of the recorded charge sessions were assigned to the Undefined
cluster, which was comprised entirely of CPs that did not fit the charging behavior patterns
of one of the clusters. The undefined category consisted of a large share as 78% of all CPs
were assigned to it.
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Figure 5-1: AIC/BIC for GMM clustering with varying numbers of clusters, including the per-
centage of CPs assigned to a cluster as a secondary axis, and a line showing the number of CPs
assigned to a cluster.
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Figure 5-2: Two scatterplots of the same dataset with different clustering results. The left plot
shows 8 clusters, while the right plot shows 3 clusters. Note that some clusters in the left plot
have been grouped together, as indicated by the similar colors in the right plot.
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Cluster CDR’s Charge Points

Short Stay 37.72% 3.7%
Business 25.74% 12.8%
Overnight 36.54% 4.6%
Undefined 0% 78,9%

Table 5-3: Results of the clustering analysis showing the proportion of charge sessions and CPs
assigned to each cluster.

Finally, we analyzed the average charge duration for each cluster and found that vehicles in
the short stay cluster had a lower charge duration than those in the other two clusters. This
suggests that these vehicles have less idle time, which could potentially lead to them departing
with insufficient battery capacity. To address this issue, we assigned a higher priority to these
EVs in the charging controller to ensure that they receive adequate charge before departure.

We also performed clustering on weekend data, but found it difficult to distinguish distinct
clusters due to the smaller number of sessions recorded on weekends and less clear patterns.
As a result, we chose to focus only on weekdays for our controller.

Overall, our clustering analysis provides insight into the usage patterns of charging sessions
on weekdays and weekends, as well as the distribution of CPs among different categories. The
results suggest that there are significant differences in charging behavior and usage patterns
between weekdays and weekends, and that these differences should be taken into account for
designing a controller.

5-4 Contracted Power Setpoint

In the following sections we use a consistent color scheme throughout the figures and the text.
Each color will be explained before it is used. The blue color represents the day-ahead power
setpoint (blue line), which is computed and optimized based on historical charge sessions
data. The day-ahead power optimization algorithm [see: Section 3-2-6] optimizes the energy
profile such that it meets the needs of each charge session at the lowest possible cost. It is
not possible to make predictions on a session level, such as the arrival and departure times of
each individual charging session. However, since the day ahead power setpoint optimization
is for the whole Virtual Power Plant (VPP), we assumed it would be possible to incorporate
some Time Of Use optimization. In the optimization it is assumed that charge sessions with
shorter idle times charge first, as they need to be charged earlier to receive their energy
demand. And sessions with longer idle times are charged later, when the energy is cheaper,
because the arrival and departure times are unknown, the power was allocated based on
the proposed fair allocation strategy. The priority metric distributes the "charge loss" fairly
among the charging population.

Figure 5-3 shows the result of a simulation comparing the planned (blue line) and actual
(red line) power consumption. The green line shows the unsteered profile, which is the
consumption without controller intervention. The yellow line represents the potential charging
capacity (P pot), which is the maximum power capacity if all EVs were charging simultaneously
(updated in real time based on past charging behavior). The red line represents the controlled
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Figure 5-3: Day-Ahead Price Optimization for Energy Management System.

consumption, which is the actual consumption with the controller’s decisions. And the blue
line represents the desired consumption based on the contracted power setpoint.

It is immediately evident that the setpoint (blue line) cannot be followed during the nighttime
hours. That is because the maximum charging capacity (yellow line) starts to roll over which
means that sessions are either already fully charged or EVs leave a charge point. Since
it happens around midnight and the potential capacity crosses the power setpoint in the
nighttime hours, we can conclude that the former is the case.

This reason the power setpoint can’t be reached is because charge sessions with high flexibility
are charged together with sessions with lower flexibility based on the priority metric as whether
a session has high or low flexibility is unknown in real time. This has two consequences:

1. Charge session with short idle times are allocated less power and therefore have a higher
probability of departing with a higher "Charge Loss".

2. Sessions with long idle times that should be charged during the lower nightly rates are
already fully charged causing the tracking error in the night.

This illustrates the challenges of implementing price optimization methods for charging EVs
in real-life scenarios, where individual charging profiles and departure times are unknown.

To address these challenges we incorporated clustering information to prioritize short stay
sessions as this could solve both the unwanted consequences above. The performance metrics
for the controller performance with clustering with ϑclus = 0.7 and ϑclus = 0.9 are presented in
Table 5-6 and the tracking performance for ϑclus = 0.9 is shown in Figure 5-4. The inclusion
of clustering information led to a big improvement in Ensd, and significantly increased client
satisfaction in the short stay cluster. However, this improvement in performance came at
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Figure 5-4: Controller performance for Day-Ahead Price Optimization without clustering.

a cost, as client satisfaction in other clusters decreased. Additionally, a decrease in the
PR metric was observed, which is a welcome trade-off as a cost reduction of 17% is still
significant. We also identified that the slightly worse tracking performance (P error metric)
was partly responsible for the lower PR value as imbalance fines were incurred. In order to
further improve the performance, it may be necessary to optimize the power setpoint (blue
line). However, the power setpoint optimization is part of the simulation environment and
is not an accurate representation of how a real-world power setpoint would be calculated.
Optimizing this simulated profile may artificially increase the performance metrics without
reflecting actual improvements in the controller. Thus, any updates will only be considered
based on their potential to benefit the analysis rather than their capacity to improve overall
performance. This approach ensures that the research outcomes are realistic and relevant to
actual implementation scenarios.

Performance Metric Without clustering Clustering, ϑ = 0.7 Clustering, ϑ = 0.9

Ensd 0.75 0.77 0.84
µA(Ensd), µB(Ensd) 0.82, 0.76 0.99, 0.59 0.97, 0.52
σA(Ensd), σB(Ensd) 0.25, 0.36 0.05, 0.41 0.07, 0.43
P error 0.97 0.94 0.89
PR 0.22 0.21 0.17
CRR 0.22 0.21 0.17

Table 5-4: Performance Metrics Comparison Across Controllers Run in a Simulation with Day
Ahead Profile Optimized for Time of Use. The Controllers Prioritize Short Stay Sessions and
Utilize a Fair Allocation Strategy, Resulting in Slightly Improved Client Satisfaction.

After analyzing the behavior of individual charge sessions and adjusting the parameters and
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day ahead profile, we found that Time of Use (ToU) optimization, without knowledge of
arrival and departure times, resulted in a very high cost of Non Satisfied Energy Demand
Ensd. Furthermore, µA(Ensd), µB(Ensd), σA(Ensd), and σB(Ensd) metrics would always
fluctuate around the base scenario Ensd, which suggests a performance trade-off between
clusters. Since client satisfaction is one of our main goals, we concluded that day-ahead
power setpoint optimization is challenging without individual session information.

Table 5-5 provides more detailed information on the decrease in CRR and increase in Ensd

for each cluster and the client satisfaction, which is measured in the standard deviation.

Controller Change in
CRR

Change in
Ensd

Change in
Client Satisfaction

Short Stay -23% +14% +21%
Business and Overnight -23% -50% -20%
Whole Population -23% +14% -

Table 5-5: Impact of clustering on CRR, Ensd and σ(Ensd) for each cluster

As a result, we decided to focus on co-regulation, a more promising approach where knowledge
on travel characteristics is not essential. This was supported by our findings from a simulation
without contracted power setpoint optimization, which highlighted the effectiveness of co-
regulation in meeting our goals. It is worth noting that the Time of Use optimization method,
which operates on a longer time frame of typically a day or multiple hours, may be difficult
to implement without session information. In contrast, co-regulation, operating on a shorter
time frame, appears to be a more applicable approach for controllers with limited knowledge.

5-5 Co-regulation Controller

In this analysis, the performance of a co-regulation controller that balances financial benefits
with EV customer needs was evaluated. The use of a reduction factor, α, was found to allow for
co-regulation while the other parameters can mitigate the downsides of this reduction factor.
The sensitivity analysis revealed that the total charge loss metric Ensd, and the fair allocation
metrics σA(Ensd) and σB(Ensd) all have an inverse relationship to the a2 parameter, where
a smaller a2 improves performance. Additionally, scenario 4 and 5, which included a negative
b1 parameter, showed improvements in performance compared to scenario 2. The analysis
identified scenario 4 as the best balance between financial benefits and customer satisfaction.
These results demonstrate the effectiveness of the co-regulation controller in optimizing EV
charging while balancing the needs of customers and the financial benefits.

To determine the optimal settings for the co-regulation controller, a sensitivity analysis was
conducted by adjusting the weight parameters in the optimization problem. The parameters
used in the co-regulation controller, along with their symbols and descriptions, are detailed
in Table 5-7.

The performance of different weight combinations was evaluated, as shown in Figure 5-6.
Each individual axis in the polar plot was scaled to ensure that the relative difference in
the metrics between simulations could be easily discerned, facilitating the identification of
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improvements between simulations. A plot that distorts reality was not desired, but since the
metrics relative to each other do not provide direct insight into the controller performance,
the scaling of the axis does not give a distorted view.

As concluded in Section 5-4, the power setpoint is not influenced by the energy price, and
therefore the unsteered demand (green line) is used as a reference for the new setpoint (blue
line). However, this operating point places the system at the maximum capacity (yellow
line) of the VPP, making it impossible to increase the consumption beyond this point. Since
co-regulation fluctuates around the setpoint to capitalize on imbalances, it is necessary to
overcome these limits. The power setpoint was scaled down by multiplying it with a reduction
factor α. This scaling allowed for increased power consumption while ensuring that the system
stays within the VPP’s capacity limit. The role of the alpha factor is to ensure that the
system does not operate on the boundary condition, which would limit its ability to increase
consumption (and thus to co-regulate). It is not related to grid constraints, but rather to the
limitations of the VPP.

To illustrate the effect of the alpha factor, the base case is presented in Figure 5-5, with the
corresponding metrics shown in Table 5-6. The colored lines still represent the same, but
the co-regulation setpoint (black line) is added. This co-regulation setpoint fluctuates around
the power setpoint (blue line) to benefit from imbalanced prices. While the co-regulation
controller with α = 0.8 maximizes profit, it may not meet the needs of EV customers.

12:00 18:00 0:00 6:00 12:00 18:00 0:00

time [hour]

0

1

2

3

4

5

P
o
w
e
r
 
[
M
W
]

Comparison of Unsteered and Controlled Charging Profiles

Unsteered Potential Setpoint Co-Regulation Steered

Figure 5-5: Co-regulation controller with the following parameter values: alpha = 0.85, a1 =
0.45, a2 = 0.25, b1 = -0.05, b2 = 0.10, and d1 = 0.50. The black line represents the co-regulation
setpoint, which fluctuates around the power setpoint (blue line) to benefit from imbalanced prices.

Overall, the results demonstrate the effectiveness of the co-regulation controller in balancing
financial benefits with EV customer needs. The use of the reduction factor, α, allows for
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Performance Metric Base case

Ensd 0.86
µA(Ensd), µB(Ensd) 0.89, 0.93
σA(Ensd), σB(Ensd) 0.15, 0.12
P error 1.00
PR 0.18
CRR 0.45

Table 5-6: Performance Metrics for Base Case With Sole Focus On Financial Benefits.

Parameter Description Influence on the Co-Regulation Controller

a1 (a2) Lower (upper) bound
co-regulation power

Limits the amount of power that can be used for
co-regulation per time step.

b1 (b2) Lower (upper) limit
total energy deviation

Limits the amount of co-regulation that can be
used in total for the day

d1 Max deviation Limits the amount of co-regulation that can be
used in total for the day.

α Scaling factor for the
power setpoint

Scales the setpoint to ensure it does not oper-
ate on the boundary condition, allowing increased
consumption.

Table 5-7: Description of Co-Regulation Controller Parameters.

co-regulation while the other parameters can mitigate the downsides of this reduction factor.
As the energy market can vary greatly from day to day, each scenario was tested on 5 different
days to gain a better understanding of the actual performance, and the average of these days
is plotted in Figure 5-6.

In scenario 1, the base case for this analysis, moderate a1 and a2 parameters were used,
which allowed for the same upward regulation as α since the consumption level could be met.
However, in the other scenarios 2 and 3, different values were tested for a1 and a2, allowing
for more downside regulation, potentially increasing CRR, but the results were negligible.
The analysis showed that the total charge loss metric Ensd, and the fair allocation metrics
σA(Ensd) and σB(Ensd) all have an inverse relationship to a2, where a smaller a2 improves
performance.

The analysis indicates that scenario 4, which included a negative b1 parameter that sets the
total power deviation between +2% and +2.5%, achieved the best balance between financial
benefits and customer satisfaction. This finding is significant as it demonstrates the trade-off
between profit and customer needs. Although scenario 3 had the highest financial reward in
terms of CRR, it showed a significant decrease in customer satisfaction metrics. Conversely,
the base case, which focused solely on CRR, did not produce satisfactory results. Scenario 4
achieved a CRR of 15.2% while maintaining high levels of customer satisfaction. This finding
highlights the importance of considering both financial and customer satisfaction metrics in
the design of co-regulation controllers for EV charging. It also suggests that a negative b1
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Figure 5-6: Performance metrics for different values of a1, a2, b1 and b2.
(α = 0.95, d1=0.5)

parameter can be an effective tool for balancing financial benefits and customer needs in a
co-regulation setting.

Moreover, scenario 4 and 5, which included a negative b1 parameter that sets the total power
deviation between +2% and +2.5%, showed improvements in performance compared to sce-
nario 2. Specifically, scenario 4, while it does not have the highest financial reward (scenario
3 has the highest CRR), showed the best balance between financial benefits and customer
satisfaction.
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Chapter 6

Discussions

The increasing adoption of Electric Vehicles (EVs) poses significant challenges for the power
grid and the electricity market. To address these challenges, various control methods have
been proposed for managing the charging of EVs in a way that balances the needs of EV
drivers and the economic incentives of the electricity market. In this study, a simulation
environment based on real-world data to evaluate the performance of different control methods
for managing the charging of EVs has been used. Our performance metrics included non-
satisfied energy demand, tracking performance, penalty reduction, and cost reduction ratio.
The results of this study provide insights into the effectiveness of different control methods in
achieving the research objectives. The purpose of this discussion section is to interpret and
evaluate the results in the context of the research questions and prior literature. Specifically,
we will discuss the impact of clustering, the optimization of contracted power setpoints, and
the performance of co-regulation controllers in achieving a balance between financial benefits
and customer satisfaction.

6-1 Analysis of Results

6-1-1 Clustering impact

The optimal number of clusters was determined using the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), which provided an objective way to select
the number of clusters that best captured the underlying patterns in charging behavior.
As discussed earlier, the clustering analysis in our study revealed three distinct charging
behavior patterns on weekdays, and using a larger number of clusters enabled us to obtain
more accurately defined clusters that better captured the underlying patterns in charging
behavior. While many studies in the literature assume only three clusters [44, 45], recent
research has shown that using a larger number of clusters can result in a more accurate
representation of charging behavior patterns. For example, Zhang et al. [58] used a Gaussian
Mixture Model (GMM) clustering algorithm to cluster EV charging behaviors and found that
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using six clusters resulted in a more accurate representation of charging behavior patterns
than using three clusters. Similarly, Zhang et al. [59] used a hierarchical clustering algorithm
to cluster EV charging sessions and found that using four clusters resulted in a more accurate
representation of charging behavior patterns than using three clusters.

Our study contributes to this literature by showing that careful consideration of clustering
parameters is important for accurately identifying charging behavior patterns, and that us-
ing a suitable number of clusters can result in more accurately defined clusters that better
capture the underlying patterns in charging behavior. Our analysis resulted in 26% more
Charge Points (CPs) being assigned to clusters, highlighting the importance of selecting an
appropriate number of clusters to accurately represent the variability of charging behavior in
CPs. These results have important implications for the design of controllers that prioritize
charging for vehicles with specific charging behavior patterns.

The results also suggested that there are significant differences in charging behavior and
usage patterns between weekdays and weekends. When including weekends, 96% of CPs were
undefined for ϑclus = 0.8, while only 78.9% was undefined when excluding weekends in the
analysis. Our results showed that, by setting ϑclus at a relatively high value, we could strike
a good balance between estimation accuracy and charge point availability.

These findings are important for informing the design of the controller. By understanding
the charging behavior patterns of CPs, the controller can make more informed decisions
that result in better performance metrics, such as higher client satisfaction and a more even
distribution of energy among the EV. Clustering was particularly important in this research
because our key objectives was to perform smart charging without knowing travel and charging
characteristics that are not widely available.

In summary, the clustering analysis provides valuable information for designing a controller
that prioritizes charging for vehicles in the Short Stay cluster, who have a lower charge
duration and potentially depart with insufficient battery capacity. Prioritizing the Short Stay
cluster did also improve the client satisfaction. It also highlights the importance of careful
consideration of clustering parameters in accurately identifying charging behavior patterns.

6-2 Contracted power setpoint optimization

In this section, we analyze the performance of the controller using the contracted power
setpoint optimization method and the impact of clustering information on the controller’s
performance.

Firstly, the contracted power setpoint optimization method has been evaluated. The day-
ahead power setpoint optimization method is challenging without individual session informa-
tion, moreover the simulations showed that it could not be followed during nighttime hours
due to the maximum charging capacity being reached. Despite analyzing the behavior of
individual charge sessions and adjusting the parameters and day ahead profile, we found that
the Time of Use (ToU) optimization method resulted in a very high cost of Non Satisfied En-
ergy Demand Ensd. In addition, the µA(Ensd), µB(Ensd), σA(Ensd), and σB(Ensd) metrics
were found to fluctuate around the base scenario Ensd, which suggests a continuous per-
formance trade-off between clusters. Based on these findings, we concluded that day-ahead
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power setpoint optimization is challenging without individual session information, and alter-
native approaches, such as co-regulation, may be more promising for controllers with limited
knowledge. Although clustering improved the performance, the client satisfaction remained
unacceptably low, making it impractical to implement in real life as we anticipate noticeable
drawbacks for the end user.

After evaluating the performance of the contracted power setpoint optimization method, the
impact of clustering information on this controller was analyzed. The results showed that
clustering information improved the performance of the controller. Specifically, the Non Sat-
isfied Energy Demand (Ensd) metric increased from 0.75 to 0.84, which translates to a 25%
charge loss without clustering and a 16% charge loss with clustering. This represents a 36%
decrease in non-satisfied energy demand between the two scenarios, which in a positive out-
come. However, this improvement in performance came at a cost, as the client satisfaction
spread between different clusters increased significantly. In addition, a decrease in the PR
metric was observed, suggesting a trade-off between performance metrics and client satisfac-
tion in different clusters. These findings underscore the importance of carefully balancing
performance metrics and client satisfaction in the design of controllers that optimize EV
charging.

From the clustering impact, presented in Table 5-5, it is clear that Short Stay Cluster benefits
from clustering, with a significant increase in client satisfaction and a decrease in non-satisfied
energy demand. On the other hand, the other clusters experience a decrease in client sat-
isfaction and an increase in non-satisfied energy demand. These results indicate that the
clustering information should be carefully considered when designing a controller to optimize
EV charging. Also CRR has drop 23%, which negatively impacts all clusters.

Finally, we discuss the trade-offs between performance metrics and client satisfaction in differ-
ent clusters. The clustering information was used to assign CPs to certain clusters, resulting
in a satisfactory balance between having clear charging patterns in the CPs and having enough
CPs available for analysis. The trade-offs between performance metrics and client satisfaction
in different clusters are important considerations for designing an effective controller. The
results suggest that prioritizing charging for vehicles in the Short Stay cluster, who have a
lower charge duration and potentially depart with insufficient battery capacity, which can
significantly lower client satisfaction. However, this approach may come at the cost of de-
creasing client satisfaction in other clusters. The findings highlight the importance of carefully
considering the impact of clustering information on the performance of the controller and the
trade-offs between performance metrics and client satisfaction in different clusters.

6-3 Co-Regulation

In this section, we evaluate the performance of the co-regulation controller, which balances
financial benefits and customer satisfaction. The methodology involves tuning the weight
parameters, a1, a2, b1, and b2, to find the optimal balance between financial benefits and
customer satisfaction. We conducted a sensitivity analysis on the weight parameters to assess
the impact of their variations on the performance metrics of the co-regulation controller.

The analysis highlighted that the co-regulation controller’s performance is significantly influ-
enced by the weight parameters, which are crucial to achieving a balance between customer
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satisfaction and financial benefits. The flexibility of the system was found to be less intuitive
than expected and challenging to grasp over time, which emphasizes the importance of per-
forming a flexibility analysis before tuning the weight parameters. Our findings suggest that
the co-regulation controller can effectively balance financial benefits and customer satisfaction
with appropriate weight parameters.

Moreover, the impact of the reduction factor, α, on the performance of the co-regulation
controller was analyzed. The reduction factor determines the degree to which the co-regulation
controller reduces the charging power setpoints of the charge points. The results show that
increasing the reduction factor enhances the financial benefits because more upside flexibility
is added. However, the customer satisfaction decreases with an increase in the reduction
factor. Therefore, the reduction factor should be carefully optimized to strike a balance
between financial benefits and customer satisfaction.

Overall, the co-regulation controller demonstrates promising results in achieving a balance
between financial benefits and customer satisfaction in the smart charging of EVs. The
weight parameters and reduction factor have a significant impact on the performance of the
controller, and their optimization is essential to achieve the desired balance. The co-regulation
controller’s success in balancing financial benefits and customer satisfaction highlights its
potential as a practical and scalable solution for managing the charging demand of EVs in a
cost-effective and sustainable way.

6-4 Comparing with Related Work

Our study estimated a yearly profit of e266.45 per EV, which is consistent with other studies
in the literature. For example, research in France estimated potential profits between e193
and e593 per year per EV [15], and a study in the United States predicted annual profits
between 161and635 per EV when providing ancillary services [14]. In the United Kingdom,
research found that using EVs to balance the energy system can lead to cost savings for the
entire system [23]. However, it’s important to note that direct comparisons across studies
can be challenging due to variations in factors such as location, scale, pricing structure,
and specific smart charging strategies. Our results are consistent with previous findings and
provide valuable insight for the development of smart charging strategies that balance the
needs of the EV driver, the grid, and other stakeholders.

6-5 Simulation Environment

The simulation environment used in this study was a crucial tool for modeling the interaction
of EVs with the charging infrastructure and the Charging Management System (CMS). The
process of pre-processing and filtering the data was complex and required significant effort,
but was essential to ensure the accuracy of the simulation results. The resulting simulation
environment was able to accurately model user behavior, charge characteristics, unsteered
power and energy profiles, contracted power setpoints, and energy market information. By
using a simulation environment, we were able to test and refine the co-regulation controller
in a controlled and repeatable setting, and to identify areas for improvement.
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Overall, the development of the simulation environment was a critical component of this
research, and highlights the importance of utilizing appropriate tools and techniques to ensure
the accuracy and validity of simulation results. The insights gained from the simulation
environment provide valuable information for future research in this area, and can inform the
development of new and improved solutions for managing the charging demand of electric
vehicles.

6-6 Recommendations

In terms of future recommendations, we suggest that clustering based on arrival time and
charge duration of individual sessions alone might not be sufficient for capturing the com-
plexity of the charging behavior. Instead, we propose using clustering methods that incor-
porate additional features such as energy demand, duration since the last session, and time
of day to obtain more meaningful and robust clusters that accurately represent the charging
behavior of individual charge points. This could potentially improve the performance of the
setpoint-tracking controller and enhance the overall user experience.

Furthermore, a potential recommendation for future work is to offer end-users the option
to select slow charging, which allows for the session to be charged at a lower rate without
risk of client dissatisfaction. This recommendation has the potential to benefit both the end-
users and the grid operators in terms of cost savings and energy efficiency. By choosing slow
charging, end-users can avoid peak charging periods, and the system can be better optimized
to balance the energy supply and demand while reducing costs. Another potential direction
for future research is to create a separate algorithm for each cluster and run them separately.
This could be beneficial, especially when dealing with a large number of charge points in the
Virtual Power Plant (VPP).
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Chapter 7

Conclusions

The increasing adoption of Electric Vehicles (EVs) presents significant challenges for the power
grid and the electricity market. In this study, we investigated the feasibility of developing a
large-scale setpoint-tracking controller to regulate EV charge points and coordinate charging
with energy market dynamics through co-regulation.

We addressed the following sub-questions to answer the research question:

1. How can smart charging be effectively implemented within the context of the energy
market?

2. How can a simulation environment be developed to test the performance of a controller
using real-world electric vehicle charging session data?

3. How can a feedback controller be designed to track a power setpoint in real-time while
accounting for the potential impact of flexible charging schedules on future events,
without relying on assumptions about travel patterns or charging characteristics?

4. What are the challenges and limitations of the proposed solution, and what recommen-
dations can be made for future research in this area?

Through our simulations, we have evaluated the performance of the proposed controller and
its impact on the charging cost, while taking into account various factors such as client
satisfaction, penalty reduction, and cost reduction ratio. Our investigation revealed that co-
regulation is a promising solution for managing the charging demand of EVs in a cost-effective
and sustainable way. By utilizing a simulation environment based on real-world data collected
from GreenFlux and TenneT, we evaluated the performance of the proposed controller and
its impact on the charging cost. The performance metrics included non-satisfied energy
demand, client satisfaction, tracking performance, penalty reduction, and cost reduction ratio.
Our findings highlight the importance of considering both upside flexibility and optimization
parameters while implementing the controller.

We performed clustering on both weekends and weekdays, but found it difficult to distinguish
clusters on weekends. Therefore, we focused only on weekdays to accurately represent the
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charging behavior of individual charge points. The results demonstrated the effectiveness
of the co-regulation controller in achieving the research objectives of client satisfaction and
cost-effectiveness. Our findings highlight the significance of considering both upside flexibility
and optimization parameters while implementing the controller. By incorporating additional
features such as energy demand and duration since the last session into the clustering analysis,
we expect that clusters will more accurately represent the charging behavior of individual
charge points.

We also estimated a yearly profit of e266.45 per EV user, which is equivalent to 13.2%
reduction in cost. This demonstrates the potential financial benefits of co-regulation and
suggests that it could be a practical and scalable solution for managing the charging demand
of EVs in the future.

In conclusion, our research has demonstrated the feasibility and effectiveness of using co-
regulation to manage the charging demand of electric vehicles in a cost-effective and sustain-
able way. Our findings have important implications for the development of smart charging
strategies and provide a practical and scalable solution for a rapidly growing problem.

F. P. Hassan Master of Science Thesis



Appendix A

Examples of Wholesale Electricity
Market Operations

Day-ahead Market
Imagine that it’s Monday and the day-ahead market is used to secure the necessary
amount of electricity for Tuesday. Market participants, including producers and con-
sumers, submit their offers and bids respectively, based on their expected production and
consumption. The auction results in a single day-ahead price for the next day, and after
market closing, market participants have to send their contracted power schedule to the
Transmission System Operator (TSO) themselves or through a chosen Balance Respon-
sible Party (BRP). The BRP is then responsible for abiding by their contracted volume.
For example, a producer might offer to sell 10 MW of electricity at a price of e50 per
MWh, while a consumer might bid to buy 5 MW of electricity at a price of e60 per MWh.
The auction would then determine the clearing price, which might be e55 per MWh, and
each participant would be required to abide by their contracted volume.

Intraday Market
Imagine that it’s Tuesday and the intraday market is being used to balance supply and
demand in real-time. Throughout the day, market participants such as generators and
retailers adjust their positions in the market by buying or selling electricity to align their
schedules with their expected production and consumption. For example, a generator
might have expected to produce 5 MW of electricity at a certain time, but due to unex-
pected circumstances, they are only able to produce 4 MW. To correct this imbalance,
the generator would need to purchase 1 MW of electricity from the intraday market. Sim-
ilarly, a retailer might have expected to consume 3 MW of electricity at a certain time,
but due to unexpected circumstances, they are only able to consume 2 MW. To correct
this imbalance, the retailer would need to sell 1 MW of electricity on the intraday market.
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Case study of energy scheduling and optimization:
To illustrate the concept of energy scheduling and optimization, a case study could be
used to demonstrate how a company might optimize their energy consumption to reduce
costs. For example, a manufacturing plant might use a predictive analytics tool to forecast
their energy consumption over the next day, and then use this information to schedule
their production processes in the most energy-efficient way possible. By optimizing their
production processes, they could reduce their energy consumption and lower their energy
costs. The company might also use an energy management system to monitor their
energy consumption in real-time and make adjustments as necessary. These tools could
help the company to participate more effectively in the day-ahead and intraday markets
by allowing them to better predict and control their energy consumption.
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Figure B-1: FCR marketF. P. Hassan Master of Science Thesis
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Figure B-2: aFRR market
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Figure B-3: mFRRsa market
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Figure B-4: mFRRda market
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Glossary

List of Acronyms

EV Electric Vehicle
V2G Vehicle to grid
CDR Charge Detail Record
CCCV Constant Current Constant Voltage
CMS Charging Management System
CS Control Station
CP Charge Point
SoC State of Charge
ToU Time of Use
GMM Gaussian Mixture Model
OSCP Open Smart Charging Protocol
OCPP Open Charge Point Protocol
IEC International Electrotechnical Commission
DAM Day Ahead Market
CPO Charge Point Operator
TSO Transmission System Operator
BRP Balance Responsible Party
BSP Balancing Service Provider
FCR Frequency Containment Reserve
aFRR automatic Frequency Restoration Reserve
mFRRsa manual Frequency Restoration Reserve scheduled activated
mFRRda manual Frequency Restoration Reserve direct activated
ISP Imbalance Settlement Period
ToU Time of Use
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VPP Virtual Power Plant
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
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j Index of Control Station (CS)
E Set of empty EVSE
L Set of locked EVSE
C Set of controllable EVSE
F Set of fully charged EVSE
k Index of time step
h Index of Imbalance Settlement Period (ISP)
Contact geometry
T s Sampling interval [TBD]s
∆h Duration of one ISP 900 s
U Mains voltage 230 V

Iub Upper bound charging current W
PCo_reg Regulation power W
PComp Compensation power W
tarr
j Arrival time -

Eactual
j Actual charged energy W h

Eunsteered
j Uncontrolled charging rate W h

ERT
h Energy consumed in real-time MW h
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