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Abstract

Process synthesis experiences a disruptive transformation accelerated by artificial

intelligence. We propose a reinforcement learning algorithm for chemical process

design based on a state-of-the-art actor-critic logic. Our proposed algorithm repre-

sents chemical processes as graphs and uses graph convolutional neural networks to

learn from process graphs. In particular, the graph neural networks are implemented

within the agent architecture to process the states and make decisions. We imple-

ment a hierarchical and hybrid decision-making process to generate flowsheets,

where unit operations are placed iteratively as discrete decisions and corresponding

design variables are selected as continuous decisions. We demonstrate the potential

of our method to design economically viable flowsheets in an illustrative case study

comprising equilibrium reactions, azeotropic separation, and recycles. The results

show quick learning in discrete, continuous, and hybrid action spaces. The method is

predestined to include large action-state spaces and an interface to process simula-

tors in future research.

K E YWORD S

artificial intelligence, graph convolutional neural networks, graph generation, process synthesis,
reinforcement learning

1 | INTRODUCTION

The chemical industry is approaching a disruptive transformation

toward a more sustainable and circular future.1–3 As a major contribu-

tor to global emissions, tremendous changes are required and the

chemical industry needs to face a paradigm shift.1 This also requires

rethinking regarding the conceptualization of novel processes.2,4

Simultaneously, innovations are pushed by new possibilities due to

emerging digital technologies. Digitization and in particular artificial

intelligence (AI) offer new possibilities for process design and there-

fore have the potential contribute to the transformation of chemical

engineering.1,3,5

In the last decade, reinforcement learning (RL) has demonstrated

its potential to solve complex decision-making problems, for example,

by showing human-like or even superhuman performance in a

large variety of game applications.6–8 RL is a subcategory of machine

learning (ML) where an agent learns to interact with an environment

based on trial-and-error.9 Especially since 2016, when DeepMind's

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; BFGS, Broyden,

Fletcher, Goldfarb, and Shanno; CNN, convolutional neural network; DA, dual annealing;

GCN, graph convolutional network; GCPN, graph convolutional policy network; GNN, graph

neural network; H2O, water; HOAc, acetic acid; MDP, Markov decision process; MeOAc,
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AlphaGo10 succeeded against a world-class player in the game Go, RL

has attracted great attention. In recent developments, RL applications

have proven to successfully compete with top-tier human players in

even real-time strategy video games like StarCraft II11 and Dota 2.12

The accomplishments of RL in gaming have initiated significant

developments in other research fields, including chemistry and chemi-

cal engineering. In process systems engineering, RL has been mainly

applied to scheduling13,14 and process control.15–19 After first appear-

ances of RL for process control in the early 1990s,15 the development

was pushed with the rise of deep RL in continuous control in games20

and physical tasks.21 Spielberg et al.16 first transferred deep RL to

chemical process control. In recent works, the satisfaction of joint

chance constraints17 and the integration of process control into pro-

cess design tasks18,19 via RL were considered.

In contrast to continuous process control tasks, RL in molecule

design is characterized by discrete decisions, such as adding or removing

atoms. Several methods use RL for the design of molecules with desired

properties.22–26 First applications generate simplified molecular-input line-

entry system (SMILES) strings using RL agents with pretrained neural net-

works.23,26 Zhou et al.24 introduced a method solely based on RL, thereby

ensuring chemical validity. Recently, RL based molecule design has been

further enhanced in terms of exploration strategies27 or by combining RL

with orientation simulations.28 In another approach, You et al.22 intro-

duced a graph convolutional policy network (GCPN) that represents mole-

cules as graphs. It allows using graph neural networks (GNNs) to

approximate the policy of the RL agent and to learn directly on the molec-

ular graph. Using GNNs on molecule graphs to predict molecule

properties29–32 has also shown promising results besides RL. For example,

Schweidtmann et al.29 achieved competitive results for fuel property pre-

diction by concatenating the output of a GNN into a molecule fingerprint

and further passing it through a multilayer perceptron (MLP).

Graph representation and RL are also applied in other engineering

fields. For example, Ororbia and Warn33 represent design configura-

tions of planar trusses as graphs in an RL optimization task.

Recently, important first steps have been made toward using RL to

synthesize novel process flowsheets.34-39 Midgley34 introduced the “Dis-
tillation Gym”, an environment in which distillation trains for non-

azeotropic mixtures are generated by a soft-actor-critic RL agent and sim-

ulated in the open-source process simulator COCO. The agent first

decides whether to add a new distillation column to the intermediate

flowsheet and subsequently selects continuous operating conditions. In

an alternative approach to generate process flowsheets, Khan and

Lapkin35 presented a value-based agent that chooses the next action by

assessing its value, based on previous experience. The agent operates

within a hybrid action space, that is, it makes discrete and continuous

decisions. In a recent publication, Khan and Lapkin40 introduced a hierar-

chical RL approach to process design, capable of designing more

advanced process flowsheets, also including recycles. A higher level agent

constructs process sections by choosing sub-objectives of the process,

such as maximizing the yield. Then, a lower level agent operates within

these sections and chooses unit types and discretized parametric control

variables that define unit conditions. Due to the discretization, the agent

operates only in a discrete action space. As another approach to

synthesize flowsheets with RL, Göttl et al.36 developed a turn-based two-

player-game environment called “SynGameZero.” Thereby, they reused

an established tree search RL algorithm from DeepMind.8 Recently, Göttl

et al.37 enhanced their work by allowing for recycles and utilizing convolu-

tional neural networks (CNNs) for processing large flowsheet matrices.

Additionally, the company Intemic38 has recently developed a “flowsheet

copilot” that generates flowsheets iteratively, embedded in a 1-player-

game. Intemic offers a web front-end in which raw materials and desired

products can be specified. Then, a RL agents selects unit operations as

discrete decisions using the economic value of the resulting process as

objective. Furthermore, Plathottam et al.39 introduced a RL agent that

optimizes a solvent extraction process by selecting discrete and continu-

ous design variables within predefined flowsheets.

One major gap in the previous literature on RL for process syn-

thesis is the state representation of flowsheets. We believe that a

meaningful information representation is key to enable breakthroughs

of AI in chemical engineering.5 Previous works represent flowsheet in

matrices comprising thermodynamic stream data, design specifica-

tions, and topological information.37 However, we know from com-

puter science research that passing such matrices through CNNs is

limited as they can only operate on fixed grid topologies, thereby

exploiting spatial but not geometrical features.41 In contrast, graph

convolutional networks (GCNs) handle differently sized and ordered

neighborhoods42 with the topology becoming a part of the network's

input.43 Since flowsheets are naturally represented as graphs with

varying size and order of neighborhoods, GCNs can take their topo-

logical information into account. Another gap in the literature con-

cerns the combination of multiple unit operation types, recycle

streams and a larger, hybrid action space. While previous works pro-

posed these promising techniques in individual contributions,34–40

they have not yet been combined to a unified framework.

In this contribution, we represent flowsheets as graphs consisting

of unit operations as nodes and streams as edges (cf., References

44,45). The developed agent architecture features a flowsheet finger-

print, which is learned by processing flowsheet graphs in GNNs.

Thereby, proximal policy optimization (PPO)46 is deployed with modi-

fications to learn directly on graphs and to allow for hierarchical deci-

sions. In addition, we combine a hybrid action space, hierarchical

actor-critic RL, and graph generation in a unified framework.

2 | REINFORCEMENT LEARNING
FOR PROCESS SYNTHESIS

In this section, we introduce the methodology and the architecture of

the proposed method. To apply RL to process synthesis, the problem

is first formulated as a Markov decision process (MDP) which is

defined by the tuple M = {S, A, T, R}. An MDP consists of states s � S,

actions a � A, a transition model T : S�A! S, and a reward function

R.9 In the considered problem, states are represented by flowsheet

graphs, while actions comprise discrete and continuous decisions.

More specifically, the discrete decisions consist of selecting a new

unit operation as well as the location where it is added to the

2 of 14 STOPS ET AL.
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intermediate flowsheet. The continuous decisions are to define one or

several specific continuous design variables per unit operation. For

the environment, we implemented simple functions in Python to sim-

ulate the considered flowsheet. Finally, a reward is calculated and

returned to the agent.

While most RL methods can be divided into value-based and policy-

based approaches, actor-critic RL takes advantage of both concepts.9 In

contrast to value-based RL methods that cannot be easily adapted to con-

tinuous actions,21,47 actor-critic approaches can learn policies for both,

discrete and continuous action spaces and are thus also suitable for

hybrid tasks.48 Subsequently, several recent state-of-the-art policy optimi-

zation methods propose an actor-critic setup.21,46–50 As shown in

Figure 1, actor-critic agents consist of a critic that estimates the value

function and an actor that decides for actions by approximating the

policy.9

The RL framework presented in this work is derived from the

actor-critic PPO algorithm by OpenAI.46 In PPO, the objective func-

tion is clipped to prevent a collapse of the agent's performance during

training. To favor exploration, an entropy term51 is added to the loss

function. Additionally, the generalized estimation of the advantage
bA52 is used for updating the networks.

2.1 | State representation

The main feature of the proposed method is the representation of the

states by directed flowsheet graphs. This characteristic allows us to

process the states in GNNs, thereby taking topological information

into account.

Figure 2 demonstrates the graph representation of flowsheets.

Feeds, products, and unit operations are represented by nodes, stor-

ing the type of unit operation and design variables. The edges include

thermodynamic information about process streams, like temperature,

molar flow, and molar fractions.

Intermediate flowsheets feature nodes of the type “undefined.”
Whenever a new unit operation is added to the flowsheet, the result-

ing open streams are considered as such “undefined” nodes. In subse-

quent steps, they represent possible locations for placing new unit

operations. Consequently, adding a new unit operation practically

means replacing an “undefined” node with a defined one.

2.2 | Agent

At the heart of the proposed RL method stands a hierarchical, hybrid

actor-critic agent composed of multiple GNNs and MLPs. Its charac-

teristics are introduced hereinafter.

2.2.1 | Hierarchical, hybrid action space

The architecture of the agent is decisively affected by the considered

hierarchical and hybrid action space. The decision-making process is

illustrated in Figure 3. Every action consists of three levels of deci-

sions: (i) select a location, (ii) add a new unit operation, and (iii) define

a continuous design variable.

In the first level, the agent decides for an open stream and thus

for the location of the next flowsheet expansion. As discussed previ-

ously, open streams are identified by “undefined” nodes. In the sec-

ond level, the agent decides which type of unit operation will be

added. Thereby, the agent can choose to add a distillation column, a

heat exchanger, or a reactor. Furthermore, it can decide to add a recy-

cle by introducing a splitter and a mixer into the flowsheet. As a fifth

option, the agent can declare the considered stream as a product. If a

unit operation is added, the third level decision is to specify the design

variables of the corresponding unit operation. Although it is possible

to set multiple design variables in this step, we chose to only set one

variable for simplification reasons. Thus, one characteristic variable for

Environment
Flowsheet simula�ons

Agent

Reward
Net cash flow of the 

final process

Observa�on of the state 
Flowsheet graph

Ac�on
Add unit opera�ons and 
specify design variables

Actor Cri�c

Value

F IGURE 1 Agent–environment interaction in an actor-critic
policy optimization approach for flowsheet synthesis. The agent

approximates the policy and makes decisions. Meanwhile, the critic
estimates the value of the environment's state using the flowsheet
graph, which is used to evaluate the agent's decisions. Here, actor and
critic both deploy graph convolutional neural networks.

F IGURE 2 Example of a flowsheet displayed as a graph. Unit
operations, feeds, and products are represented as nodes, whereas
streams are represented as edges.
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each unit operation is defined in this step while all other variables are

fixed. For the current implementation of the agent, the recycle stream

is always inserted into the feed stream. Whereas the first two levels

are discrete decisions, the third level decisions are continuous. This

combination of discrete and continuous decisions is referred to as

hybrid action space.

2.2.2 | Using GNNs to generate flowsheet
fingerprints

In RL, every iteration of the agent-environment interaction starts with

the observation of the environment's state s, as shown in Figure 1. In

other approaches,34,36,37,40 states or rather flowsheets are repre-

sented by vectors or matrices and, for example, passed through CNNs

for the observation step.37 Instead, in the herein presented approach,

states are represented by flowsheet graphs (cf., in Section 2.2.1). To

observe and process the therein stored information, the flowsheet

graphs are passed through GCNs and encoded into a vector format

called flowsheet fingerprint. The advantage of using graphs and GCNs

is that it allows operating in variable neighborhoods with different

numbers and ordering of nodes, thereby taking spatial and spectral

information into account.41–43 Thus, we believe that graphs and GCNs

are better suited for representing and processing the branched con-

nectivity of flowsheets than passing matrices through CNNs.

For this step, we transfer the method introduced by Schweidt-

mann et al.,29 who apply GNNs to generate molecule fingerprints, to

flowsheets. The approach utilizes the message passing neural network

(MPNN) proposed by Gilmer et al.30

The overall scheme to process a flowsheet graph is displayed in

Figure 4 and consists of a message passing and a readout phase. First,

the flowsheet graph is processed through a GCN with several layers

to exchange messages and update node embeddings. Afterward, a

pooling function generates a vector format, the flowsheet fingerprint,

in the readout phase. After several steps of message passing, sum-

pooling is deployed for the subsequent readout phase. Thereby, the

node embeddings of the last layer are concatenated into a vector for-

mat, the flowsheet fingerprint.

For every step in the message passing phase, first the node and

edge features of the neighborhood of each node in the flowsheet

graph are processed. Therefore, GCNs are utilized to exchange and

update information in the message passing phase. The functionality of

a graph convolutional layer is illustrated in Figure 5, following

Schweidtmann et al.29 The figure visualizes the procedure to update

the node embeddings of the blue node. Therefore, the information

stored in the yellow neighboring nodes and the corresponding edges

is processed and combined to a message through the message func-

tion M. Then, the considered node is updated through the message in

the update function U. In each layer of a GCN, this procedure is con-

ducted for every node of the graph.

2.2.3 | Hierarchical agent architecture

For the architecture of the agent, a structure suggested by Fan et al.48

for hierarchical and hybrid action spaces is used. Thereby, individual

MLPs are applied for each level of decisions and one MLP is applied

as a critic to evaluate the decisions.

The architecture of the actor-critic approach is illustrated in

Figure 6. In the “fingerprint generation” step, the state represented by

a flowsheet graph is processed to a flowsheet fingerprint through a

GCN (cf., in Section 2.2.2).

Additionally, the updated graph resulting from the message pass-

ing phase of the fingerprint generation is passed to the “actor” step.

Therein, the updated graph is further processed by an additional GCN.

This represents the first level of the actor, which is to select an open

stream to further extend the flowsheet. Thereby, the method takes

advantage of the graph representation in which open streams end in

“undefined” nodes. In the GCN of the first level decision, the number

of node features is reduced to one (cf., related literature on node clas-

sification tasks42). Furthermore, all nodes which do not correspond to

open streams are filtered out. The remaining node feature of each

nodes in the last GCN layer represents its probability to be chosen as

the location for adding a new unit. Then, the ID of the selected node

is concatenated with the previously computed flowsheet fingerprint

before it is passed on to the second and third level actors as input.

The ID of a node is a numerical counter, which is assigned to the node

when it is created and acts as a unique identifier.

Reactor

Column

Heat exchanger

Length 

Level 1:
Select an open stream 

(discrete decision)

Level 2:
Select a unit opera�on 

(discrete decision)

Level 3:
Specify design variables 

(con�nuous decision)

Product
No third decision

Dis�llate to 
feed ra�o

/

Water inlet 
temperature

water
in

water
in

Feed

Undefined

Column

Undefined

Reactor

Recycle
Split ra�o 

F IGURE 3 Hierarchical decision levels of the agent, starting from
an intermediate flowsheet. In the first level, the agent selects a
location where the flowsheet will be extended. Possible locations are
open streams, represented by “undefined” nodes. In the presented
flowsheet, both streams leaving the column can be chosen. Then, the
agent selects a unit operation. Thereby, the options are to add a heat
exchanger, a reactor, a column, a recycle, or to sell the stream as a
product. Finally, a continuous design variable is selected for each unit

operation. This third decision depends on which unit operation was
selected previously.
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The second level actor consists of a MLP that returns probabilities

for each unit operation to be chosen. For each type of unit operation,

an individual MLP is set up as the actor for the third level decision.

Thereby, the third level MLPs take the concatenated vector including

the flowsheet fingerprint and the ID of the selected location as an

input. They return two outputs which are interpreted as parameters, α

and β, describing a beta distribution B α, βð Þ.53 Based on this distribu-

tion, a continuous decision regarding the respective design variable

is made.

The critic that estimates the value of the original state is displayed

in the upper half of Figure 6. Therefore, the flowsheet fingerprint is

passed through another MLP. This value is an estimation of how much

reward is expected to be received by the agent until the end of an epi-

sode when starting at the considered state and further following the

current policy.9 In our approach, we utilize the value to compute the

generalized advantage estimation bA introduced by Schulman et al.52 It

tells whether an action performed better or worse than expected and

is used to calculate losses of the actor's networks. By comparing the

value to the actual rewards, an additional loss is computed for the

critic.

2.3 | Agent–environment interaction

The interaction between the environment and the hierarchical actor-

critic agent is further clarified in Algorithm 1. After the environment is

initialized with a feed, the flowsheet is generated in an iterative

scheme. The agent first observes the current state s of the environ-

ment and chooses actions a for all three hierarchical decision levels by

sampling. The agent returns the probabilities and the selected actions

as well as the value v of the state.

In the next step, the actions are applied to the environment. There-

fore, the next state s0 is computed by simulating the extended flow-

sheet. Additionally, the environment checks whether any open stream is

left in the flowsheet, indicating that the episode is still to be completed.

Since the weights of the agent's networks are randomly initialized, early

training episodes can result in very large flowsheets. Thus, the total

number of units is limited to 25 as additional guidance. If a flowsheet

exceeds this number, all open streams are declared as products.

Additionally, the environment calculates the reward that depends

on whether the flowsheet is completed or not. If the net cash flow is

positive, the reward equals the net cash flow. If the net cash flow is

Graph convolu�ons

.

.

.

.

.

.

.

.

.

Pooling

Flowsheet 
fingerprintFlowsheet 

graph

… …

F IGURE 4 Flowsheet fingerprint generation derived from Schweidtmann et al.29 The flowsheet graph is processed through several GCN
layers to perform message passing and update node embeddings. In the readout step, a pooling function is applied, resulting in a vector format,
the flowsheet fingerprint.

Flowsheet 
graph

Edge feature 
vectorsNode feature 

vectors

M

U
Message

Layer l - 1 Layer l

Update

F IGURE 5 Update of the node embeddings during the message passing phase in a graph convolutional layer. The considered node is marked
in blue and its neighbors in yellow. First, the information stored in the neighboring nodes and the respective edges is processed and combined
through a message function M. Then, a message is generated to update the information embedded in the considered node through the update
function U. The approach and its illustration follow a method proposed by Schweidtmann et al.29
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negative, the reward equals the net cash flow divided by a factor 10.

This procedure is implemented in order to encourage exploration of

the agent. For the intermediate steps during the synthesis, process

rewards of zero are given to the agent. After each iteration, the transi-

tion is stored in a batch and later used for batch learning. Thereby, the

states in the transition tuples store the full flowsheet graphs using the

Deep Graph Library.54

2.4 | Training

The presented method, including the flowsheet simulations, is implemen-

ted in Python 3.9. The training procedure is adapted from PPO by

OpenAI.46 It consists of multiple epochs of minibatch updates, whereby

the minibatches result from sampling on the transition tuples stored in

the memory. The agent's networks are thereby updated by gradient

descent, using a loss function derived from summing up and weighting all

losses of the individual actors, their entropies, and the loss of the critic.

2.5 | Case study

The proposed method is demonstrated in an illustrative case

study considering the production of methyl acetate (MeOAc), a low-

boiling liquid often used as a solvent.55 In an industrial setting, MeOAc

is primarily produced in reactive columns by esterification of acetic

acid (HOAc).56,57 For illustration, we consider only simplified flow-

sheets that use separate units for reaction and separation.

2.6 | Process simulation

For computing new states and rewards, the flowsheets generated

by the agent are simulated in Python. Therefore, we implemented

a model for each type of unit operation that can be selected in

the second level decision. In our case study, the agent can decide

to place reactors, distillation columns, and heat exchangers.

Furthermore, the agent can add recycles or sell open streams as

products.

2.6.1 | Reactor

The reactor is modeled as a plug flow reactor (PFR), in which the

reversible equilibrium reaction shown in Equation (1) takes place.

HOAcþMeOH⇌MeOAcþH2O ð1Þ

MeOAc and its by-product water (H2O) are produced by esterifi-

cation of HOAc with methanol (MeOH) under the presence of a

strong acid. To calculate the composition of the process stream leav-

ing the PFR, we formulated a boundary value problem, depending on

the reaction rate, and manually implemented a fourth-order Runge–

Kutta method with fixed step-size as solver. Thereby, the reactor is

modeled isothermal, based on the temperature of the inflowing

stream. The reaction kinetics are based on Xu and Chuang.58

The length of the PFR is specified by the agent as the continuous

third level decision within the range of 0.05–20 m. Thereby, the relation

Actor level 1: 
Select an open stream

(discrete decision)

ID of the
selected

node

Actor level 2: 
Select a unit opera�on

(discrete decision)

Actor level 3: 
Specify design variables 

(con�nuous decision)

Actor

Ac�on

Cri�c
Graph convolu�ons

Flowsheet 
graph

… …

Value

Flowsheet 
fingerprint

.

.

.

.

.

.

.

.

.

Fingerprint genera�on

.

.

.

.

.

.

.

.

.

Po
ol

in
g

F IGURE 6 Architecture of the deployed actor-critic agent. First, a GNN is used to process the graph representation of the flowsheet into a
flowsheet fingerprint. While the critic estimates the value of the fingerprint in one linear MLP, the actor takes three levels of decisions. The first
decision is to choose a location for expanding the flowsheet. Practically, this means selecting the ID of a node representing an open stream. The
selected node ID is combined with the flowsheet fingerprint and passed through an MLP for the second level decision of choosing a type of unit
operation. Finally, a continuous design variable of the unit is chosen. Thereby, a different MLP is used for each unit type.
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of the cross-sectional area A of the PFR to the molar flow _N passing

through it is fixed to A=N
_

¼0:1m2smol�1. Notably, the length of

the reactor significantly influences the conversion in the PFR. In addi-

tion, the equilibrium of the considered reaction depends on the

temperature of the process stream, which thus affects the reaction

rate and the conversion in the PFR. Thereby, the temperature of the

process stream can be influenced by heat exchangers upstream of the

reactor.

2.6.2 | Heat exchanger

In the heat exchanger, heat is transferred between the process stream

and a water stream. The continuous third level decision specifies the

inlet temperature of the water and thus also whether the process

stream is cooled or heated. To avoid evaporation of the process

stream, the inlet water temperature is chosen within the range of

278.15–326.95 K, where the upper limit corresponds to the lowest

possible boiling point of the considered quarternary system. The

heat exchanger model computes the heat duty, the required heat

transfer area, and the outlet temperature of the process stream. The

model is based on a countercurrent flow, shell, and tube heat

exchanger.59 A typical heat transfer coefficient of 568 W K�1 m2 is

used.60 Additionally, we assume that the process stream always

approaches the water stream temperature within 5 K in the heat

exchanger.

2.6.3 | Distillation column

The distillation column is deployed to separate the quarternary system

MeOAc, MeOH, HOAc, and H2O. The vapor–liquid equilibrium of the

system is displayed in Figure 7. It contains two binary minimum azeo-

tropes between MeOAc and H2O, and respectively between MeOAc

and MeOH. As shown in Figure 7, the azeotropes split up the separa-

tion task into two distillation regimes. To simplify the problem, we fol-

low the assumption made by Göttl et al.37 that the distillation

boundary can be approximated by the simplex spanned between both

azeotropes and the fourth component, HOAc.

We implemented a shortcut column model using the ∞=∞

analysis.61–63 The only remaining degree of freedom in the ∞=∞

model is the distillate to feed ratio D/F. It is set by the agent in the

continuous third level decision within a range of 0.05–0.95.

2.6.4 | Recycle

The agent can also select to recycle an open process stream back to

the feed stream. Thereby, the ratio of the considered stream that will

ALGORITHM 1 Pseudocode of the agent–
environment interaction

done = False

while not done do

observe state s

actions a, probs p, value v = AGENT(s)

new state s0 , reward r, done = ENV(a)

store transition (s, a, p, r, done) in memory

end while

function AGENT(state s)

for level = 1,2,3 do

probs plevel = actor(s)

action alevel = sample(plevel)

end for

value v = critic(s)

return a, p, v

end function

function ENV(actions a)

next state s' = SimulateFlowsheet(a)

if no more open streams then

done = True

reward r = NetCashFlow(s')

if reward r < 0 then

reward r = reward r/10

end if

else

reward r = 0 €
end if

return s', r, done

end function

MeOAc

H2O

HOAc

MeOH

F IGURE 7 Vapor–liquid-equilibrium in the quarternary system
consisting of MeOAc, HOAc, H2O, and MeOH at 1 bar. The gray
surface marks the distillation boundary spanned by the two
azeotropic points and the fourth component HOAc, splitting the
diagram into two distillation regimes.
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be recycled is selected by the agent in the third level decision. For

practical reasons, the recycled ratio must always lie between 0.1 and

0.9. The recycle is modeled by adding a splitting unit and a mixing unit

to the flowsheet. First, the considered stream is split up in a recycle

stream and a purge stream. The latter one ends in a new “undefined”
node. To simulate the recycle, a tear stream is initialized. Then, the

Wegstein method64 is used to solve the recycle stream flow rate itera-

tively. When the Wegstein method is converged, the tear stream is

closed and the recycle stream is fed into the feed stream by the mix-

ing unit. This method is based on the implementation of flexsolve.65

2.7 | Reward

The reward assesses the economic viability of the generated process,

following Seider et al.60 for calculating annualized cost and Smith59

for estimating unit capital costs. After completing a flowsheet by

specifying all open streams as products, the agent receives a final

reward. This final reward r represents an approximate net cash flow of

the process within one year. If this net cash flow is negative, it is

reduced by a factor 10 to encourage exploration of the agent. The

economic value of incomplete flowsheets is more difficult to estimate

because it may depend on future actions. Thus, a reward of zero is

given after every single action since the actual value of an action can

only be assessed when an episode is complete. As shown in

Equation (2), the final reward includes costs for units and feeds as well

as revenue for sold products.

r¼
X

Pproducts�
X

Cfeed�
X

Uþ0:15 � Ið Þunits ð2Þ

The values of the products are estimated by an s-shaped price

function P, depending on the purity of the considered streams. The

pure component price C is used to compute the cost of the raw mate-

rial stream. The annualized cost is computed by adding the annual util-

ity costs U and the total capital investment I multiplied by a factor

0.15.60 Furthermore, the reward is used to teach the agent to make

feasible decisions. Whenever infeasible actions are selected that

cause the simulation to fail, for example, if the reactor simulation fails

due to bad initial values in the solver, the episode is interrupted imme-

diately and a negative reward of �10 Mio € is given. When the agent

decides to not add units at all and just sell the feed streams, the same

penalty is given to prevent the agent from falling into this trivial local

optimum.

Notably, the considered case study is meant to facilitate illustra-

tion and the considered parameter values for prices are only

approximations.

3 | RESULTS AND DISCUSSION

In this section, we present and analyze the learning behavior of the

developed agent. For investigating all single parts of the agent, the

training procedure was first conducted in a discrete action space,

consisting of the first and second hierarchical decision levels. After-

ward, the same procedure was conducted in a continuous action

space which only includes the third decision level. Finally, all decision

levels are combined to the hybrid action space. In all runs, the envi-

ronment was initialized with a feed consisting of an equimolar binary

mixture of MeOH and HOAc. The feed's molar flow rate was set to

100 mol s�1 and its temperature to 300 K.

The proposed learning process and the agent architecture include

several hyperparameters that are listed in Table S1. The selected

hyperparameters are based on literature 29,30,46,66.

3.1 | Flowsheet generation in a discrete action
space

To investigate the agent's behavior in a discrete action space, the third

level actor was deactivated and only the first and second level deci-

sions were conducted. Thus, in each step, the agent selected a loca-

tion for a new unit operation as well as its type. Thereby, fixed values

for the unit's continuous design variables were used. They are dis-

played in Table 1.

Throughout the presented case study, constant pressure of 1 bar

was assumed. The agent was trained 20 times in 10,000 episodes

each, with the procedure described previously.

Figure 8 shows the learning curve of the agent in the discrete

action space. The plotted curve represents the mean learning curve of

all 20 single runs and the gray area displays the standard deviation.

Thereby the curves are smoothed by taking the average score over

50 episodes.

The displayed scores correspond to the reward, which is the esti-

mated net cash flow of the final process. Thus, they are a measure of

the economic viability of the final process.

During the first 2000 episodes, the learning curve rises steeply.

In this early training stage, the agent produces predominantly long

flowsheets and often reaches the maximum allowed number of unit

operations. However, throughout the training the agent learns that

shorter flowsheets are economically more valuable. Soon, the agent

mainly produces flowsheets with a positive score, meaning that the

final process is economically viable. After approximately 4000 epi-

sodes, the learning curve converges to a mean score of approxi-

mately 22.

The best flowsheet the agent generated throughout the 20 train-

ing runs is displayed in Figure 9. The depicted process first uses a

reactor (R1) to produce MeOAc and its side product H2O from the

feed (F1). Then, the resulting quarternary mixture is split up in two

distillation columns. The distillate (P1) of the first column (C1) is

enriched with MeOAc but also includes MeOH and H2O. The bottom

product of the first column is further split up in a second column

(C2) to produce a mixture of H2O and HOAc in the distillate (P2) and

pure HOAc in the third product stream (P3). Ninety percent of the lat-

ter product is recycled and mixed with the feed stream. During the

training, the agent learned, for example, that heat exchangers do not

add value to the flowsheet. This flowsheet scored a reward of 39.86.
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All 20 individual training runs found similar best flowsheets, with the

mean best flowsheet scoring a reward of 39.85.

3.2 | Flowsheet generation in a continuous action
space

The third level actor was investigated by deactivating the first and second

level actors and thus only including continuous decisions. Therefore, the

sequence of unit operations in the flowsheet was fixed, as shown in Fig-

ure 10, and only the continuous design variables defining each unit were

selected by the agent. Within this structure, the agent was trained for

10,000 episodes each in 20 runs. Similar to the findings in the discrete

action space, the agent learns quickly at the beginning of the training.

After a steep increase, the policy starts to converge to a score of approxi-

mately 43 and is almost constant after 5000 episodes. The mean learning

curve of the continuous agent and its standard deviation are displayed in

Figure 11, showing the scores of the flowsheets, smoothed by taking the

average over 50 episodes.

The best flowsheet the agent found throughout all 20 training

runs scored a reward of 44.25. The mean best flowsheet of all 20 runs

scored a slightly lower reward of 44.23. Generally, the continuous

agent shows a very stable and reproducible learning behavior. How-

ever, the considered continuous action space problem is rather simple

and could also be solved with established optimization algorithms. To

assess the performance of the RL method in the continuous variable

space, the problem was reformulated as an optimization problem with

TABLE 1 Fixed continuous design
variables for each unit type during the
training in a discrete action space

Unit operation Design variable Symbol Unit Fixed value

Heat exchanger Water inlet temperature Tin
water

K 305

Reactor Reactor length l m 10

Column Distillate to feed ratio D/F — 0.5

Recycle Recycling ratio — — 0.9

Note: This selection replaces the third level decision.

10,000

F IGURE 8 Learning curve of the agent in a discrete action space.
The mean learning curve and its standard deviation from 20 training
runs over 10,000 episodes each are displayed. The learning curve
shows the scores of the generated flowsheets, averaged over 50
episodes. The score of each episode corresponds to the reward,
which is the estimated net cash flow. An episode is a sequence of
actions to generate a flowsheet, starting with a feed.

F1 R1

C1

C2

P1

P2

P3

F IGURE 9 Best flowsheet generated by the agent in a discrete
action space within 20 training runs of 10,000 episodes each. In a
reactor (R1), MeOAc, and its side product H2O are produced from the
feed (F1). Then, the resulting quarternary mixture is split up in two
columns (C1 and C2). Parts of the third product stream (P3) are
recycled and mixed with the feed stream.

F1 R1

C1

P1

P2

HEX1

F IGURE 10 Fixed flowsheet structure during the training in a
continuous action space. It consists of a heat exchanger (HEX1), a
reactor (R1), and a column (C1). The bottom product (P2) is split up
and partially recycled.
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four variables and solved using the “optimize” library from SciPy.67

First, the problem was analyzed using the local optimizer “minimize”
and the method by Broyden, Fletcher, Goldfarb, and Shanno (BFGS),

which is a quasi-Newton method with good performance for non-

smooth optimizations.68 Since the considered problem contains mul-

tiple local optima, the results from the BFGS optimization highly

depend on the initial values. As the RL agent does not require any

initial values but chooses the first investigated variables randomly, a

similar procedure was chosen for the BFGS method. The optimiza-

tion was conducted 20 times, using random initial values within the

boundaries of the considered design variables. The mean optimal

reward and the standard deviation of the BFGS method and the RL

agent are compared in Table 2. The local optimizer shows a poorer

and less reproducible performance than RL. Even though the best of

the 20 optimization runs matched the optimal reward of 44.25 found

by RL, the mean optimal score of the BFGS method was significantly

lower with a reward of 38.29. Table 2 also shows a much higher

standard deviation of the BFGS method. These results elucidate the

high dependency of the local optimizer on the initial values and the

requirement for global optimization strategies. Thus, the problem

was also optimized using the global optimization algorithm dual

annealing (DA) by SciPy67 to generate a benchmark for the consid-

ered continuous task. DA is derived from the generalized simulated

annealing algorithm by Xiang et al.69 and combines a stochastic

global optimization algorithm with local search. Analogously to the

RL and BFGS methods, the optimization with DA was conducted

20 times. In each run, the number of function evaluations was lim-

ited to 10,000 to ensure comparability to the RL agent. The mean

optimum and the standard deviation of the DA method is also dis-

played in Table 2 and compared with the results from BFGS and

RL. The best optimum found in the 20 optimization runs scored a

reward of 44.27, thereby exceeding the best reward from the RL

agent by 0.045%. The mean optimum from all 20 runs also marginally

exceeds the RL agent with a score of 44.25. Even though the DA

optimization slightly outperforms RL, Table 2 shows that the devia-

tions between RL and DA are almost neglectable whereas both

clearly outperform the local optimization with BFGS. While optimi-

zation with DA led to similar results in the presented continuous var-

iable space, neither DA nor BFGS can cope with the discrete or

hybrid decision tasks of the RL agent since this would require a com-

plex reformulation of the problem to a superstructure

optimization task.

Table 3 lists the continuous design variables of the best flowsheet

the RL agent observed throughout the training runs and compares

them with the optimum found by DA, which can be assumed to be

the global optimum of the continuous action space problem. The com-

parison shows only slight deviations in the design variables. In the

heat exchanger (HEX1), the feed is only slightly heated before enter-

ing the reactor for both methods. With a length of 7.33 and 7.88 m,

respectively, the reactor (R1) is relatively short compared to the

allowed length range of 0.05 m to 20 m. A shorter reactor means a

lower conversion but also lower costs. The column (C1) is character-

ized by the distillate to feed ratio D/F of 0.58. As a result, MeOAc is

enriched in the distillate which also contains MeOH and H2O. The

bottom product is a mixture of MeOH and HOAc. In the investigated

flowsheet shown in Figure 10, the bottom product is partially recycled

to the feed. Remarkably, the recycled ratio is set to the lower bound-

ary value of 0.1 by both, RL and DA. These results indicate that the

recycle does not add significant value to the illustrative flowsheet

used for this study.

10,000

F IGURE 11 Learning curve of the agent in a continuous action
space. Analogously to Figure 8, the mean learning curve and its
standard deviation from 20 training runs over 10,000 episodes each
are displayed. It shows the scores of the generated flowsheets,

averaged over 50 episodes.

TABLE 2 Mean and standard deviations of the optimal scores
found by the RL agent and optimization with BFGS and DA

RL BFGS DA

Mean optimum 44.23 38.29 44.25

Standard deviation in % 0.034 38.58 0.021

Note: For all methods, the optimization was conducted 20 times with a

maximal episode number of 10,000.

TABLE 3 Optimal continuous design
variables found by the continuous RL
agent and the global optimizer DA after
20 runs of 10,000 episodes each

Unit operation Design variable Symbol Unit RL DA

Heat exchanger (H1) Water inlet temperature Tin
water

K 308.8 305.0

Reactor (R1) Reactor length l m 7.33 7.88

Column (C1) Distillate to feed ratio D/F — 0.58 0.58

Recycle Recycled ratio — — 0.10 0.10
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3.3 | Flowsheet generation in a hybrid action
space

After the previous sections have shown that all three actors are able

to learn separately, they are combined hereinafter. Therefore, the

hybrid agent, combining all previously described elements, is trained

20 times for 10,000 episodes each.

The resulting mean learning curve of the 20 individual

runs is displayed together with the standard deviation in

Figure 12, showing the scores of the flowsheets generated dur-

ing the training, smoothed by taking the average over

50 episodes.

Despite the complexity of the hybrid problem, the agent is

learning fast and quickly produces flowsheets with a positive

value. After a steep increase, the learning curve slowly converges

to a score of approximately 27. As expected, the standard

deviation is significantly larger compared to the solely discrete and

continuous problems. Still, the agent converged toward positive

scores in all single training runs, meaning that the generated

flowsheets are economically viable. The best flowsheet the agent

found during the training scored a reward of 44.67, which exceeds

the scores of all flowsheets found during the solely discrete and

continuous considerations. However, the mean optimum found by

the hybrid agent in the 20 training runs is lower, with a score

of 38.78.

The best flowsheet the agent observed during training is shown

in Figure 13. The continuous design variables the agent selected for

this best flowsheet are shown in Table 4.

The feed (F1) is fed directly into a reactor (R1) where

MeOAc and H2O are produced from esterification of HOAc with

MeOH. With a length of 10.23 m, the reactor is larger compared

to the best flowsheet generated with the continuous agent which

results in a higher conversion but also higher costs. In the next

step, the resulting quarternary mixture is split up in a column

(C1). Thereby, the split ratio used by the hybrid agent corre-

sponds to the results from the continuous agent. In the distillate

of the column (P1), MeOAc is enriched but it also includes

MeOH and residues of H2O. The bottom product of the column

(P2) contains HOAc and MeOH. Thereby, 10% of the bottom

product are recycled and mixed back to the feed. Whereas 10%

are the lower boundary of the split ratio in the recycle, the agent

also had the option to not use a recycle at all. Thus, the agent

found that the recycle does add value to the flowsheet, however

only when small amounts are recycled. The sequence of unit

operations found by the hybrid agent slightly differs from the

best flowsheet generated by the discrete agent, were two col-

umns were used. The desired product MeOAc is completely in

the distillate and the bottom product consists of less valuable

chemicals. Thus, the agent learnt that the second column does

not add economic value.

10,000

F IGURE 12 Learning curve of the agent in a hybrid action space.
Analogously to Figures 8 and 11, the mean learning curve and its
standard deviation from 20 training runs over 10,000 episodes each
are displayed, showing the scores of the generated flowsheets,
averaged over 50 episodes.

F1 R1

C1

P1

P2

F IGURE 13 Best flowsheet generated by the agent in a hybrid
action space within 20 training runs of 10,000 episodes each. First,
MeOAc and its side product H2O are produced from the feed (F1) in a
reactor (R1). Then, the mixture is split up in a column (C1).The first
product (P1) is enriched with MeOAc but also includes MeOH and
residues of H2O. The second product (P2) is a mixture of HOAc and
MeOH. Thereby, 10% of P2 are recycled and mixed to the feed
stream.

TABLE 4 Continuous design
variables selected by the hybrid agent in
the best flowsheet observed during
training

Unit operation Design variable Symbol Unit Best run

Reactor (R1) Reactor length l m 10.23

Column (C1) Distillate to feed ratio D/F — 0.58

Recycle Recycled ratio — — 0.10
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4 | DISCUSSION

Overall, the learning curves shown in the previous sections indicate

that all parts of the agent learn quickly. A comparison with local

and global optimization methods showed that the RL agent

clearly outperforms local optimization in continuous action space

tasks and almost reaches the performance of the global optimizer

DA. However, in contrast to the optimizers, RL is also capable of

solving discrete and hybrid tasks without further need for complex

reformulation of the problem. Furthermore, it has been shown that

the results from the RL agent are reproducible in all considered

tasks. Still, the standard deviations are becoming larger when con-

sidering the complex task of finding an optimal flowsheet in a hybrid

action space. It is assumed that the learning behavior is not yet opti-

mal since the hyperparameters have not been optimized for this first

fundamental study. In future works, it is advised to conduct an

extensive hyperparameter study to investigate their influence on

the learning behavior.

Compared to other approaches, the main contribution of the

presented method is the representation of flowsheets as graphs

and combining GNNs with RL. GNNs have already shown promis-

ing performance in various deep learning tasks.42 One of their key

advantage is that they are able to process the topological informa-

tion of the graphs.43 Since the structural information about flow-

sheets is automatically captured in the graph format, GNNs can

take advantage of this structure. Deriving fingerprints from graphs

with GNNs has already shown promising results in the molecule

field.29,70,71 Here, we transfer the methodology to the flowsheet

domain. During the implementation and analysis of the training

procedure, the graph presentation of the flowsheets has proven to

be handy. The graphs generated by the agent can be visualized

easily and thus immediately give an insight into the process and its

meaningfulness. An additional advantage of the approach is its

flexibility. Through its hierarchical structure, the different compo-

nents of the agent can be easily decoupled and new parts can be

added. By using a separate MLP for each unit operation in the third

level decision, the number of the continuous decisions can vary for

the different unit operations. In the presented work, only one con-

tinuous decision is made for each unit operation but the agent

architecture allows including more decisions within this step. By

allowing for more unit operations and setting more design vari-

ables, the action space and thus the complexity of the problem

should be increased for future investigations.

Furthermore, the reward function will require additional atten-

tion. Giving rewards is not straightforward in the considered prob-

lem since it is hard to assess the value of an intermediate flowsheet.

Still, it is crucial for the performance of the RL algorithm. In the pre-

sented work, the reward function is only an estimation of economic

assessments that neglects multiple cost factors in real processes.

However, for future developments, investigating ways of reward

shaping72 will be an interesting aspect that can stabilize the training

process especially when the size of the considered problem gets

larger.

5 | CONCLUSION

We propose the first RL agent that learns from flowsheet graphs using

GNNs to synthesize new processes. The deployed RL agent is hierar-

chical and hybrid meaning it takes multiple dependent discrete and

continuous decisions within one step. In the proposed methodology,

the agent first selects a location in an existing flowsheet and a unit

operation to extend the flowsheet at the selected position. Both

selections are discrete. Then, it takes a continuous decision by select-

ing a design variable that defines the unit operation. Naturally, each

sub-decision strongly depends on the previous one. Thereby, flow-

sheets are represented as graphs, which allows us to utilize GNNs

within the RL structure. As a result, our methodology generates eco-

nomical valuable flowsheets only based on experience of the RL

agent.

In an illustrative case study considering the production of methyl

acetate, the approach shows steep, mostly stable, and reproducible

learning in discrete, continuous, and hybrid action spaces. Further-

more, a comparison with established optimization algorithms for the

exclusively continuous action space was conducted. It was shown that

RL outperforms local optimization with BFGS and almost matches the

results from global optimization with DA. However, in contrast to the

optimization algorithms, RL is applicable to the discrete and hybrid

action spaces without need for any problem reformulation. This work

is a fundamental study that demonstrates that graph-based RL is able

to create meaningful flowsheets. Thus, it encourages to incorporate

AI in chemical process design.

A further advantage of the presented approach is that the pro-

posed architecture is a good foundation for further developments like

enhancing the state-action space. Thus, the selected structure of the

agent is predestined for increasing the complexity and solving more

advanced problems in the future. A subsequent step following this

paper should be to implement an interface to an advanced process

simulator. This will tremendously increase the complexity of the prob-

lem but also allow for easier extension of the action space and more

rigorous simulations.
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