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Abstract

The estimation of probability densities of variables described by systems of stochas-
tic differential equations has long been done using forward time estimators, which
rely on the generation of realizations of the model, forward in time. Recently, an
estimator based on the combination of forward and reverse time estimators has been
developed. This estimator has a higher order of convergence than the classical ap-
proach. In this article, we explore the new estimator and compare the forward and
forward-reverse estimators by applying them to a biochemical oxygen demand model.
Finally, we show that the computational complexity of the forward-reverse estima-
tor is superior to the classical approach, and discuss the algorithmic aspects of the
estimator.
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1 Introduction

Many environmental models used today are based on deterministic differential equa-
tions (Loucks, Stedinger, and Haith 1981). However, the abilities of these models
for prediction in real life applications, are often hampered by uncertainties in initial
conditions, model parameters and/or sources. Decision makers have also recognized
the inherent uncertainty in all modeling efforts. Therefore, they are more and more
asking for risk estimates. For example, in a water pollution problem, they want to
know what is the probability of exceeding a critical concentration of a substance.

Uncertainties can be included into the model by introducing noise processes as
forcing terms. As a result a stochastic differential equation is obtained (Jazwinsky
1970). In general stochastic differential equations cannot be solved analytically and
have to be approximated numerically to derive a discrete stochastic model (Kloeden
and Platen 1992).

A well-known technique for estimating probabilistic characteristics of a stochastic
model is Monte Carlo simulation (Hammersley and Handscomb 1964). Here many
different realizations of the stochastic model are generated to get information about
the probability density of the model results. This approach is conceptually very
simple and can be applied for many different types of (highly nonlinear) problems.
However, Monte Carlo techniques do consume a large amount of CPU time. One of
the reasons for this is that many of the realizations hardly contribute to the final risk
estimate and that this is known only after the samples have been generated. Another
reason is that the accuracy of the estimates improves only slowly with the increase
of sample size.

The efficiency of Monte Carlo methods can be improved by variance reduction
(Kloeden and Platen 1992). Here an approximation of the Kolmogorov backwards
equation is required. In some simple applications analytical approximations of this
partial differential equation can be used. In general, however, a numerical solution
is required. For high dimensional systems this may become very time consuming
(Schoenmakers, Heemink, Ponnambalam, and Kloeden 2002), (Milstein and Schoen-
makers 2002).

Recently, (Milstein, Schoenmakers, and Spokoiny 2002) introduced the concept
of reverse time diffusion. The classical Monte Carlo estimate is based on forward
realizations of the original stochastic model. (Milstein, Schoenmakers, and Spokoiny
2002) derived a reverse system from the original model and showed that the classical
Monte Carlo estimate can also be based on realization of this reverse system. For
many applications it is more efficient to use realizations of the reverse system instead
of the original model. The most efficient implementation is, however, obtained if
the forward realizations and the reverse system realizations are combined. (Milstein,
Schoenmakers, and Spokoiny 2002) called this the Forward Reverse Estimator.

In this paper we apply the forward reverse method to estimate the probability
density of a stochastic Biochemical-Oxygen Demand (BOD) model. In Section 2 we
describe the classical Monte Carlo estimation, present a general probabilistic repre-
sentation of this estimator based on forward realizations and introduce the Forward
Reverse Estimator. In Section 3 the BOD model is given, and its reverse model is
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derived. We describe in detail an application of the method to estimate the proba-
bility density of the BOD model in Section 4 and compare the performance of the
forward with forward-reverse estimators in Section 5.

2 Transition density estimators for SDEs

Consider the stochastic differential equation (SDE) in the Itô sense

dX = a(s,X)ds + σ(s,X)dW (s), t0 ≤ s ≤ T, X(t0) = x0 (1)

where X = (X1, ..., Xd)>, a = (a1, ..., ad)> are d-dimensional vectors, W = (W 1, ...,W m)>

is an m-dimensional standard Wiener process, and σ = {σij} is a d × m-matrix,
m ≥ d. We assume that the d × d-matrix b := σσ>, b = {bij}, is of full rank for
every (s, x), s ∈ [t0, T ], x ∈ Rd. The functions ai(s, x) and σij(s, x) are assumed
to be sufficiently good in analytical sense (for example, their first derivatives are
continuous and bounded) such that we have existence and uniqueness of the solution
Xt,x(s) ∈ Rd, Xt,x(t) = x, t0 ≤ t ≤ s ≤ T , of (1), smoothness of the transition
density p(t, x, s, y) of the Markov process X, and existence of all the moments of
p(·, ·, ·, y).

The solution of SDE (1) may be approximated by different numerical methods,
e.g. see (Kloeden and Platen 1992), (Milstein 1995). Here we consider the Euler
scheme,

X(tk+1) = X(tk) + a(tk, X(tk))(tk+1 − tk) + σ(tk, X(tk))
√

tk+1 − tk ςk, (2)

with t0 < t1 < · · · < tK = T, and ςk ∈ Rm, k = 0, . . . ,K − 1, being i.i.d. stan-
dard normal random variables. In fact, (2) is the most simple numerical scheme for
integration of SDE (1).

2.1 Classical and non-classical density estimators

We now review some known estimators for the density p(t, x, T, y) in connection with
(1).

A. The Parzen-Rosenblatt (pure forward or classical) estimator.

Let X̄t,x be a numerical approximation of Xt,x obtained by the Euler method and let

Xn := X̄
(n)
t,x (T ) , n = 1, . . . , N , be a sample of independent realizations of X̄t,x(T ) .

Then one may estimate the transition density p(t, x, T, y) from this sample by using
standard techniques of non-parametric statistics such as the classical kernel (Parzen-
Rosenblatt) estimator. The kernel (Parzen-Rosenblatt) density estimator with a
kernel K and a bandwidth δ is given by

p̂
FE

(t, x, T, y) =
1

Nδd

N
∑

n=1

K

(

Xn − y

δ

)

, (3)

see (Devroye and Györfi 1985), (Silverman 1986). For example, in (3) one could take
the Gaussian kernel K(x) = (2π)−d/2 exp(−|x|2/2).
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B. The pure reverse estimator (RE).

In order to proceed with more sophisticated density estimators we introduce a reverse
diffusion system for (1). In a more special setting the notion of reverse or adjoint
diffusion is due to Thomson (Thomson 1987). The here introduced reverse system
can be seen as a generalization of Thomson’s approach and is derived in (Milstein,
Schoenmakers, and Spokoiny 2002) in a more transparent and more rigorous way.

We first introduce a reversed time variable s̃ = T + t− s and define the functions

ãi(s̃, y) = ai(T + t − s̃, y),

b̃ij(s̃, y) = bij(T + t − s̃, y).

For a vector process Yt,y(s) ∈ IRd and a scalar process Yt,y(s) we then consider the
reverse time stochastic system

dY = α(s, Y )ds + σ̃(s, Y )dW̃ (s), Y (t) = y,
dY = c(s, Y )Yds, Y(t) = 1,

(4)

with W̃ being an m-dimensional standard Wiener process and

αi(s, y) =

d
∑

j=1

∂b̃ij

∂yj
− ãi, (5)

c(s, y) =
1

2

d
∑

i,j=1

∂2b̃ij

∂yi∂yj
−

d
∑

i=1

∂ãi

∂yi
, (6)

σ̃(s, y) = σ(T + t − s, y). (7)

It is possible to construct an alternative density estimator in terms of the reverse

system (4). Suppose that (Ȳ
(m)
0,y , Ȳ

(m)
0,y ), m = 1, ...,M, is an i.i.d. sample of numerical

solutions of (4) starting at t = 0, obtained by the Euler scheme. Then a pure reverse
estimator is given by

p̂
RE

(t, x, T, y) :=
1

Mδd

M
∑

m=1

K

(

x − Ȳ
(m)
0,y (T )

δ

)

Ȳ
(m)
0,y (T ). (8)

In fact, the reverse estimator (8) can be obtained as a side case from the forward-
reverse estimator discussed discussed in C.

C. The forward-reverse estimator (FRE).

By combining the forward (1) and reverse (4) estimators via the Chapman-Kolmogorov
equation with respect to an intermediate time t∗, Milstein, Schoenmakers, and Spokoiny
constructed the so called forward-reverse estimator,

p̂
FRE

(t, x, T, y) =
1

M

[

1

Nδd

M
∑

m=1

N
∑

n=1

K

(

X̄
(n)
t,x (t∗) − Ȳ

(m)
t∗,y (T )

δ

)

Ȳ
(m)
t∗,y (T )

]

. (9)
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In (Milstein et al. 2002) it is shown that the forward-reverse estimator (9) has
superior properties in comparison with density estimators based on pure forward (3)
or pure reverse (8) representations. Obviously, by taking t∗ = T and t∗ = 0, the
estimator (9) collapses to the pure forward estimator (3) and pure reverse estimator
(8), respectively.

Remark. In (Milstein, Schoenmakers, and Spokoiny 2002) a forward-reverse
projection estimator is also studied. Although the projection estimators has in some
sense additional advantages, we only consider applications of (9) in this article, and
refer to (Milstein, Schoenmakers, and Spokoiny 2002) for details with respect to
projection estimators.

2.2 Accuracy and complexity of the different estimators

In general, for estimating a target value p by an estimator p̂ it is natural and usual
to define the accuracy of the estimator by

Accuracy(p̂) := ε(p̂) :=
√

E(p̂ − p)2 =
√

Deviation2(p̂) + Bias2(p̂). (10)

Loosely speaking, for a second order kernel applied in (9) and any choice of 0 < t∗ <
T , the FRE has root-N (O(N−1/2)) accuracy for dimension d ≤ 4. For d > 4 root-N
accuracy is lost but then the FRE accuracy order is still the square of the FE/RE
accuracy order (see Table 1). Moreover, it can be shown that root-N accuracy of (9)
can also be achieved for d > 4 by using higher order kernels in (9).

By definition (10) it is possible to relate the “expected” accuracy of the differ-
ent density estimators to the number of simulated trajectories involved. However,
simulating trajectories is not the only costly issue in the density estimation. For all
estimators one has to evaluate a functional of the simulated trajectories. In case of
the FE and RE estimators, this functional consists of a single summation, whereas
for the FRE estimator a more complicated double summation needs to be evaluated.
Therefore, for a proper comparison it is better to consider the complexity of the
different estimators which is defined as the required computation cost for reaching
a given accuracy ε. For instance, naive evaluation of the double sum in (9) would
require a computational cost of order O(MN) in contrast to O(N) for the FE and
RE estimators! Clearly, such an naive approach would have a dramatic impact on the
complexity of the FRE. Fortunately, smarter procedures for evaluating this double
sum exist, which utilize the small support of the kernel K. Particularly, in (Green-
gard and Strain 1991) it is shown for Gaussian kernels that this sum can be evaluated
at a cost of O(N) in case M = N . In Table 1 we summarize the results of (Mil-
stein, Schoenmakers, and Spokoiny 2002) and list the accuracy and complexity of the
forward estimator (FE), reverse estimator (RE) and the forward-reverse estimator
(FRE) where the latter is implemented with an efficient procedure for evaluating the
double sum, for instance, according to the method of Greengard and Strain. For
the FRE estimator we assumed N = M and a second order kernel. It is because of
the second order kernel that we have to distinguish for the FRE between d < 4 and
d ≥ 4.

Remark. Naturally, all estimators FE, RE and FRE have a bias which involves
a component due to application of the Euler scheme. Using results of (Bally and
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Estimator δN Accuracy Complexity
Compl.{FE,RE}
Compl.{FRE}

FE/RE N−1/(4+d) O(N−2/(4+d)) O(ε−2−d/2)

FRE d ≤ 4 N−1/d log1/d N O(N−1/2) O(| log ε|ε−2) | log ε|−1ε−d/2

FRE d > 4 N−2/(4+d) O(N−4/(4+d)) O(| log ε|ε−1−d/4) | log ε|−1ε−1−d/4

Table 1: Summary of accuracy and complexity of the forward (FE), reverse (RE), and
forward-reverse (FRE) estimators.

Talay 1996b) and (Bally and Talay 1996a), it is proven in (Milstein, Schoenmakers,
and Spokoiny 2002) that for all estimators the accuracy loss due to the Euler scheme
applied with time discretization step h is of order O(h) where, most importantly, the
order coefficient may be chosen independent of the bandwidth δ.

2.3 The choice of t∗ in the Forward Reverse Estimator

The results concerning the order of accuracy and complexity of the FRE estimator
in Section 2.2 do not depend on the particular choice of t∗ with t < t∗ < T. However,
the order coefficients do depend on this choice. To investigate this in more detail we
consider Theorem 6.1. in (Milstein, Schoenmakers, and Spokoiny 2002) for d < 4.
According to this theorem we have for M = N and δN = N−1/d log1/d N ,

E(p̂
FRE

− p)2 =
D

N
+ o(N−1)

with

D : =

∫

r(u)λ2(u)du +

∫

r2(u)µ2(u) q(u) du − 2p2

=

∫

r(u)q2(u)µ2(u)du − p2 +

∫

r2(u)µ2(u) q(u) du − p2

= D(1) + D(2), (11)

where r(u) := p(t, x, t∗, u) is the density of the random variable Xt,x(t∗), q(u) denotes
the density of Yt∗,y(T ), µ(u) is defined as the conditional mean of Yt∗,y(T ) given
Yt∗,y(T ) = u, λ(u) := q(u)µ(u), and µ2(u) := E(Y2

t∗,y(T ) | Yt∗,y(T ) = u). We so have
in (11),

D(1) =

∫

r(u)q2(u)µ2(u)du −

(
∫

r(u)q(u)µ(u)du

)2

= V ar (q(Xt,x(t∗))µ(Xt,x(t∗)) =: f(t∗)

and

D(2) =

∫

r2(u)E[Y2
t∗ ,y(T ) | Yt∗,y(T ) = u] q(u) du − p2

= E[r2(Yt∗,y(T ))Y2
t∗,y(T )] − (E[r(Yt∗,y(T ))Yt∗,y(T )])2

= V ar(r(Yt∗,y(T ))Yt∗,y(T )) =: g(t∗).
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Since for t∗ ↑ T, q → δy and for t∗ ↓ t, r → δx, it follows that

lim
t∗↑T

f(t∗) = +∞,

lim
t∗↓t

g(t∗) = +∞.

Further,
lim
t∗↑T

g(t∗) = lim
t∗↓t

f(t∗) = 0.

Therefore, there exists an optimal choice t∗opt which satisfies

f(t∗opt) + g(t∗opt) = min
t<t∗<T

{f(t∗) + g(t∗)}.

However, determination of such an exact optimum is not easy and in practice not
necessary also. One rather should seek by experiment for a t∗ such that both f(t∗) and
g(t∗) are small. For instance, one could choose some candidates for t∗ and compare
them by estimating the variances f(t∗) and g(t∗) roughly via classical (e.g. Parzen-
Rozenblatt) approximations for q and r using small sample sizes. In Section 4.3 a
heuristic method for the determination of t∗ will be presented.

Without going into detail we note that similar considerations concerning a proper
choice of t∗ apply for the case d > 4.

3 Test case: a stochastic BOD model

The biochemical oxygen demand model presented in this section is often used in
water quality modeling of river and estuarine systems and is an extension of the so-
called Streeter-Phelps model. In this model, the concentration levels of Carbonaceous
Biochemical Oxygen Demand (CBOD), Dissolved Oxygen (DO), and Nitrogenous
Biochemical Oxygen Demand (NBOD) are related to each other by a set of differential
equations. With b, o, and n representing the levels (mg/l) of CBOD, DO, and NBOD,
respectively, the system is given by





db/dt
do/dt
dn/dt



 =





−kb 0 0
−kc −k2 −kn

0 0 −kn









b
o
n



+





s1

s∗2
s3



 . (12)

where we defined kb := kc + k3 and s∗2 := k2ds + p − r + s2. A description of the
parameters used in the model, along with their units and typical values is given in
Table 2. Although the concentrations are time dependent, the intention behind the
model is often to monitor the concentration levels within a fixed volume of water,
flowing downstream a river. An underlying assumption is that the velocity of the
water flow is constant and thus time and distance are linearly related. For more
information about the model and its background, the reader is referred to e.g. (Stijnen
2002).
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Par. Description Unit Value
kc Reaction rate coefficient (l/day) 0.763
k2 Reaeration rate coefficient (l/day) 4.250
k3 Sedimentation and adsorption loss rate for CBOD (l/day) 0.254
kn Decay rate of NBOD (l/day) 0.978
p Photosynthesis of oxygen (l/day) 7.280
r Respiration of oxygen (l/day) 7.750
ds Saturation concentration of oxygen (l/day) 10.00
s1 Independent source for CBOD (l/day) 3.000
s2 Independent source for OD (l/day) 0.000
s3 Independent source for NBOD (l/day) 0.000

Table 2: Description and typical values for the parameters used in the BOD model

3.1 Forward BOD model

As for many environmental models, the BOD model is also subject to various un-
certainties. These uncertainties can be incorporated into the model by adding white
noise processes to each of the three equations of the model, effectively changing
deterministic sources and sinks into stochastic ones:




dB
dO
dN



 =





−kb 0 0
−kc −k2 −kn

0 0 −kn









B
O
N



 dt +





s1

s∗2
s3



 dt +





σB 0 0
0 σO 0
0 0 σN



 dWt,

(13)
where the dWt term denotes the Wiener process increment at time t. The stochastic
BOD model is Markov and its variables Gaussian. Because the noise terms added do
not depend on the values of B, O, or N , the model can be interpreted in both the
Itô and Stratonovich sense. The stochastic equation (13) is linear, and an analytical
solution is easily found.

A disadvantage of the simple additive white noise terms, is the possibility of
getting negative concentration levels. This problem can be solved by scaling the
noise term using a suitably chosen function, eg.:

s(x) =























0 x < 0
1
2

(

2x
τ

)d
0 ≤ x < τ/2

1 − 1
2

(

2(τ−x)
τ

)d
τ/2 ≤ x < τ

1 τ ≤ x

with d > 0 the order of the polynomial used, and τ the threshold below which
the noise should be damped. Applying this to the BOD model would result in the
following set of equations





dB
dO
dN



 =





−kb 0 0
−kc −k2 −kn

0 0 −kn









B
O
N



 dt+





s1

s∗2
s3



 dt+





s(B)σB 0 0
0 s(O)σO 0
0 0 s(N)σN



 dWt,
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Although this solves the problem of negative concentrations, the linearity of the
model is lost, along with the analytical solution and the Gaussian property. Being a
test case for the forward-reverse estimator, the presence of an analytical solution of
the presented model outweighs the disadvantage of a reduced practical meaning, as
it allows for verification of the outcome. Therefore, it was decided to keep the simple
stochastic model despite its obvious shortcoming.

Given this model, we want to determine p(t, x, T, y), i.e. the probability density
associated with the transition between a given start (x) and end point (y) indicated
by two (B,O,N)T vectors, at two distinct times t ≤ T . Based on the forward model,
it is possible to apply (3), which requires a set of realizations of the model. These
can be obtained from numerical integration of (13), as shown in Figure 1a.

3.2 Reverse BOD model

In order to apply a forward-reverse estimator (Section 2.1C), the reverse represen-
tation of the forward model needs to be derived. Since the presented BOD model is
already given in the form prescribed by (1), straightforward substitution yields,

a(t,X) =





−kbX
(1) + s1

−kcX
(1) − k2X

(2) − knX(3) + s∗2
−knX(3) + s3



 ,

and

σ(t,X) =





σB 0 0
0 σO 0
0 0 σN



 , b = σσT =





σ2
B 0 0
0 σ2

O 0
0 0 σ2

N



 .

Next, using equations (5) and (6), the expressions for α and c can be derived to be
as follows:

α(t,X) =





kbX
(1) − s1

kcX
(1) + k2X

(2) + knX(3) − s∗2
knX(3) − s3



 ,

c = kb + k2 + kn.

with X(1) = B, X(2) = O, and X(3) = N . For the reverse σ process we have σ̃ = σ.
Now, with all variable terms in equation (4) known, the final reverse process becomes

dY =





kbX
(1) − s1

kcX
(1) + k2X

(2) + knX(3) − s∗2
knX(3) − s3



 ds +





σB 0 0
0 σO 0
0 0 σN



 dW̃ (s), (14)

with initial condition
Y (t0) = y, (15)

and
dY = (kb + k2 + kn)Ydt, (16)

with
Y(t0) = 1. (17)
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Figure 1: Realization tracks of (a) the forward process X, and (b) the X and Y processes
used in the forward-reverse approach. The asterisk symbols indicate the end-points of the
respective tracks, i.e. the realizations that are used in the Monte Carlo estimator.

With all constants in the reverse model positive, both the Y and Y processes are
instable, and grow exponentially. This relation is true in general; processes that are
stable in the forward formulation will be instable in the reverse formulation and vice
versa, while oscillating processes will remain so in both formulations.

As for the forward formulation of the given BOD model, the reverse formulation is
a linear system of equations, and the closed-form analytical solution is easily derived.

How exactly the forward-reverse estimator is applied to obtain the probability
density given earlier, is explained in the next section.

4 Application of the Forward-Reverse Estima-

tor

One way to carry out the forward-reverse estimation as presented in Section 2.1 is
by means of a Monte Carlo simulation. To do so, a number of realizations for both
the forward and reverse models are generated (eg. for the CBOD model this is done
by numerically integrating Equation (13) for the forward part and Equations (14)
and (16) for the reverse part). Based on the forward realizations, kernel estimation
techniques are used to evaluate the transition density from the starting point of the
simulation to the end point of each of the realizations of the reverse part, as illustrated
by Figure 1. There are a number of choices to be made for the implementation of
the algorithm. These will be discussed below.

10



4.1 Numerical integration

It is important to note that in the context of forward-reverse estimation, two sources
of errors other than the kernel estimation exist. The first one is due to the use of
numerical schemes, while the other originates from the use of Monte Carlo simula-
tion. Numerous integration schemes can be used to generate numerical solutions of
a stochastic differential equation. For our experiments, we used the Euler scheme,
which was given by (2). The error of the numerical scheme can be reduced by using
higher order schemes. The statistical error of the Monte Carlo simulation can be
reduced by increasing the number of tracks generated. Obviously, there should be a
balance between these two sources of error. Reducing only one of the two will not
always attribute to a reduction of the global error. As such, there should also be a
balance between the stepsize used in the numerical scheme and the number of tracks
generated, which is discussed in more detail in (Schoenmakers and Heemink 1997).

4.2 Kernel estimation

The two most important aspects of kernel estimation are the kernel shape used, and
the scale of it, as determined by the bandwidth parameter. These aspects are in
close connection with the computational effort required to carry out a kernel estima-
tion. Although of minor importance for single point evaluations, as used in forward
density estimation, where a kernel estimation based on N realizations can easily be
implemented in O(N) time complexity, it is of major importance in cases where the
approximated density function needs evaluation at a large number of points. This
is the case for forward-reverse density estimation. Based on N forward realizations,
it produces the first part of the transition density for M reverse realizations, which
are themselves the second part of the density estimation. Naive algorithms easily
lead to an O(N · M) computational time, which is clearly prohibitively expensive.
Greengard and Strain (Greengard and Strain 1991) developed an optimal algorithm
for Gaussian kernels, based on the properties of Gaussian curves, that leads to an
O(N + M) time complexity. One known drawback of their method, however, is the
large constant multiplication factor. Unless the number of sample and evaluation
points is very large, this constant will cause the computational time to be exceed-
ingly long. We therefore decided to aim for a more modest O(M log N) algorithm,
with lower overhead, instead.

By using a parabolic kernel, the domain of influence of a realization is limited,
as opposed to the Gaussian kernel which has an unlimited support. Because of this
limited support, most of the N · M kernel evaluations will be zero, which means
that those realizations will not contribute to the probability density estimation at
the given location. Based on this observation and the fact that our parabolic kernel
only has a support radius of, say, φ, it is possible to group the realizations in such
a way that most of the zero kernel evaluations can be avoided, saving a lot of work.
Given a set of N forward realizations, xi, in a d-dimensional space, with 1 ≤ i ≤ N ,
we proceed as follows.

1. Find the bounding box enclosing all realizations;

11



2. Create a regular grid such that the length of each side equals the kernel support,
φ;

3. Record which realizations are contained in which grid cell;

Once this information is known, the kernel estimation of a point at location y can be
obtained by following the procedure outlined below

1. Determine the cell containing y. Note that this cell does not necessarily be an
existing cell, nor does it need to be inside the bounding box;

2. Find all cells that share at least one cornerpoint with the aforementioned cell.
This way, a total of 3d cells are selected, including the cell containing y.

3. Retrieve all samples stored in the selected cells and use them to get a kernel
estimation.

The distance from y to a particle contained in any other cell is guaranteed to exceed
the support range, φ, because of the choice of cell size. Therefore, no information
is lost, and the resulting kernel estimation is exactly the same as the one obtained
using a ‘brute-force’ approach. In case of the forward-reverse estimator, the above
three steps are simply repeated for each of the reverse realizations.

Some remarks regarding the part of the algorithm where the datastructure is set
up are appropriate. This datastructure stores the cells and the realizations contained
in them. Once constructed, the datastructure can be used to support fast evaluation
of the kernel estimation based on these realizations.

It is important to realize that only those cells containing realizations should be
stored, which means a maximum of N cells. Especially when the diffusion of realiza-
tions is large, compared to the kernel support, and the dimension of the problem is
high, the potential number of cells that would otherwise be stored is enormous. To
allow for both the selective storage and fast lookup of cells, a hashtable construction
was used. Each entry in the table contains cells sharing the same hash value. The
hash value is based on the coordinates of the cell which are carefully combined to
allow for an even distribution of cells over table entries. Because the number of cells
stored in each table entry is not known a priory and differs between entries, each
entry merely contains a pointer to a linked list of cells. For similar reasons, each cell
only contains a pointer to a linked list of the realizations it encloses, as shown in
Figure 2.

Retrieval of cells from the datastructure proceeds in a series of steps. First, the
hash value based on the cell’s coordinates is computed. This value is then used
to index the hashtable and access the list of all cells stored under that particular
number. Next, the list is traversed and the coordinates of each cell compared to the
given coordinates, until either a match was found, or the end of the list reached. The
realizations stored by the given cell can be retrieved likewise.

Although the above algorithm can be shown to have a worst-case O(N ·M) time
complexity, it performed well in our experiments, showing the desired O(M log N)
behavior in most cases. In the cases where this time complexity was not achieved,
the support to realization dispersion ratio was found to be high. That is, either the
support of the kernel was too large or the realizations were highly concentrated in

12



.

.

.

Cell (.,...)

.

.

.

Cell (.,...)

x(...)

x(...) x(...)

x(...) x(...)

x(...) x(...)

Cell (.,...)

Cell (.,...)

Cell (.,...)

x(...) x(...)

Entry N−2

Entry N−1

Entry 0

Entry 1

Entry 2

Entry k

Entry +1k

Hashtable Cell list

Realisation list

Figure 2: Datastructure used for storing realizations on which a kernel evaluation is based.

a small region. Ultimately, it comes down to the problem that all realizations are
contained in a small number of adjacent cells. When a kernel evaluation is made
in nearby regions, most, if not all, realizations are included in the kernel evaluation
leading to worst-case times. In the forward-reverse estimator, the optimal bandwidth
used for kernel estimation depends on the number of forward realizations:

δ
N

= N−1/d log1/d N. (18)

When the number of realizations is increased, the bandwidth and cellsize decrease
and, as a result, the number of kernel evaluations made is reduced. Even for our
three dimensional BOD model, O(M log N) kernel estimations were made with N
well below 10, 000.

As a final remark it should be noted that the above technique can also be applied
to Gaussian kernels, as long as their support is limited. This is done by cutting off
the kernel at a distance of several standard deviations from the kernel center, where
the influence is considered not to significantly attribute to the kernel estimation. In
contrast to the use of the parabolic kernel, this speedup is realized at the expense
of a loss in accuracy. Besides, the parabolic kernel shape was shown to be optimal
by (Silverman 1986). Finally parabolic kernel evaluations only require a few basic
floating point operations, making them even more efficient.
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4.3 Combination point t∗ and number of tracks

The remaining parameters to be discussed are the number of realizations generated
and the location, t∗, where these realizations are combined using a kernel estima-
tion. The effect the number of realizations have on the forward-reverse estimator
is well known, at least, in terms of orders of convergence. Given a d-dimensional
problem, the overall estimator accuracy is of order O(N−1/2) for d ≤ 4 and of order
O(N−4/(4+d)), otherwise, with N = M the number of forward and reverse realiza-
tions, respectively. Until now, the influence t∗ has on the estimator has not been
thoroughly studied, probably because its exact value is irrelevant for theoretical pur-
poses, provided of course that the estimator retains its forward and reverse parts. In
this section, we will show that in practice, this parameter is of utmost importance
to the efficiency of the estimator.

The experimental results given below are all based on the application of the
forward-reverse estimator on the BOD model. Although many experiments were
done to validate results, we only selected a single set of parameters to illustrate our
results. The parameter settings are summarized in Table 3. The parabolic kernel was
used for kernel evaluations, with a bandwidth of (N/ log N)−1/3, which is equivalent
to a support of

√

7/3(N/ log N)−1/3.

Parameter Value

Start time (t) t = 0
End time (T ) T = 4
Model parameters σB = 1.5, σO = 1.5, σN = 1.0, see further Table 2
Initial point Bt = 15, Ot = 8.5, Nt = 5
Default evaluation point BT = 3, OT = 9, NT = 0.1
Exact transition density 0.13477720...

Table 3: Default parameter settings for the BOD model.

In our first experiment, we determined the influence of t∗ on the estimator. The
continuous parameter space of t∗ was first discretized, and only values of t∗ between
0.01 and 3.99, inclusive, at a regular interval of 0.01 were considered. For each of those
values, 100 independent density estimations were done, to determine the mean and
variance of the estimator. To avoid errors due to the use of a numerical integration
scheme, the exact solution was sampled to provide realizations of the forward and
reverse processes. Not only does this reduce the noise in the estimator, thus showing
the influence of t∗ more clearly, it also greatly reduces the time requirement for
the 39, 900 estimations that were made. The results obtained for these runs, with
N = M = 1, 000, are summarized in Figure 3.

For small t∗, the results show that many estimations are not very accurate, com-
pared to the known answer of approximately 0.13. A closer look at the results for
t∗ ∈ [2.7, 4), given by Figure 4, however, shows that the forward-reverse estimator is
indeed capable of giving accurate results for a range of t∗ values. Reassuring as this
is, the question remains what exactly causes the highly inaccurate answers for small
t∗? The most obvious answer is to say that N and M are insufficiently large, and
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Figure 3: Range and mean of p values for different t∗ ∈ (0, 4), based on 100 forward-reverse
estimations at each of the t∗ locations, with N=M=1,000 and BOD parameters as given
by Table 3.

indeed, increasing them will result in more accurate estimations. In fact, all other
reasons given below can be reduced to the lack of realizations in either direction.
Nevertheless, they give valuable insight in the application of the FRE and therefore
deserve mentioning.

Given the limited number of realizations used, one reason behind the erratic
outcome of the FRE is the kernel estimation. During each density estimation the
number of reverse realizations that fell within the kernel support was counted. The
support domain was taken to be the smallest box enclosing all forward realizations,
enlarged at both sides in each dimension by the bandwidth of the kernel. This way,
only those reverse realizations that are within the support can eventually attribute
to the probability density. In Figure 5 the average and range of these counts are
plotted to t∗. For values of t∗ less than 2.5, the number of reverse realizations is zero
in all but a few cases, causing the summation of all kernel estimations to evaluate
to zero as well. In those cases where some kernel estimations were done, the density
estimation is often exceedingly large. This is caused by a combination of factors.
First, the process is instable (see Figure 14 for the covariance trace of the reverse
process) which leads to an extremely flat Gaussian distribution. Combined with the
small sample size, a realization that does end up inside the support domain can do
so virtually anywhere. In addition, the already inaccurate estimation will then be
inflated by the scaling factor Y, which grows exponential in reverse time for the BOD
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Figure 4: Range and mean of p values for different t∗ ∈ [2.7, 4), based on 100 forward-
reverse estimations at each of the t∗ locations, with N=M=1,000 and BOD parameters as
given by Table 3.
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Figure 5: Range and mean of number of reverse realizations that fall within the support
of the kernel estimation at different t∗ ∈ (0, 4). Based on 100 forward-reverse estimations
with N=M=1,000 and BOD parameters as given by Table 3.

model, resulting in the worst case in massive overestimation of the probability density.
It is important to note that this phenomenon also occurs when the forward part of
the estimator, including the kernel estimation, is replaced by a function evaluating
the exact density, as shown in Figure 6.

For the above problem, two solutions exist; (a) use more realizations to improve
accuracy, and (b) avoid values of t∗ where the problem occurs. Both solutions will
be considered below as we work towards a practical approach.

The influence of the number of realizations on the estimation is perhaps best
studied by looking at the variance in the estimation observed for different values of
N and M . Because of the results found earlier, we will henceforth only consider
t∗ ∈ [2.8, 4).

To start with, the ratio between variance obtained using N = 1, 000 and N =
10, 000, while keeping M fixed at 1, 000 was determined and is shown in Figure 7.
For t∗ < 3.5 there isn’t any notable improvement with variance ratio’s around 1. It is
only for values of t∗ near T that considerable improvements are made. These results
compare well with those shown in Figure 6, where the variance of the estimators
based on kernel estimations and exact density function are roughly proportional to
each other for t∗ < 3.5, and diverge as t∗ is moved closer to T , leaving room for
improvement. This improvement cannot have been caused by the larger distance
over which the forward realization had to be integrated, since we directly sampled
the exact distribution. Nor is it likely to be because of the increasingly diffusion
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estimations at each of the t∗ locations, with N=M=10,000 and BOD parameters as given
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Figure 7: The effect of increasing the number of forward realizations N from 1,000 to 10,000,
while retaining M = 1,000. Measured in the ratio of variance in p variables for different
t∗ ∈ (2.8, 4], before and after the change. Based on 100 forward-reverse estimations with
BOD parameters as given by Table 3.

of the forward process, because most of that occurs at the beginning of the time
spectrum. The real reason for the lack of improvement is the fast rate at which the
reverse process diffuses, and the reduction of non-zero kernel evaluations that follows.
Therefore, improving the kernel estimation accuracy will only result in marginal
improvements.

In the reverse experiment, we increase M from 1, 000 to 10, 000 while maintaining
N = 1, 000 and again determine the variance improvement. The results are shown
in Figure 8. This time, there is no improvement in the estimation for t∗ near T ,
with a ratio of 1. Better results are obtained towards t where the ratio increases
to the maximum possible value of 10. In between, the kernel estimation’s accuracy
and reverse Monte Carlo accuracy are clearly not balanced, or more precisely, their
balance was disturbed by the increase of reverse realizations. In case both M and N
are simultaneously increased to 10, 000, the results are as given by Figure 9. Here,
the results are good overall with variance improvement ratio’s of around 10.

Increasing the number of realizations adds to the computation time of the estima-
tor. Therefore, we would like to know the best combination of N , M , and t∗ to reach
a certain level of accuracy in the estimation. Going back to the results obtained with
N = M = 1, 000, we will explain how this can be done. In Figure 10 the variance
in 100 estimations is plotted to t∗ along with a dotted line indicating the minimum
level of variance. Given the number of realizations, this is clearly the best result we
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Figure 8: The effect of increasing the number of reverse realizations M from 1,000 to 10,000,
while retaining N = 1,000. Measured in the ratio of variance in p variables for different
t∗ ∈ (2.8, 4], before and after the change. Based on 100 forward-reverse estimations with
BOD parameters as given by Table 3.
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Figure 9: The effect of simultaneously increasing the number of forward and reverse real-
izations from 1,000 to 10,000. Measured in the ratio of variance in p variables for different
t∗ ∈ (2.8, 4], before and after the change. Based on 100 forward-reverse estimations with
BOD parameters as given by Table 3.

21



can obtain, but at what expense? Because of the sampling, we could only measure
the kernel estimation times for each run. The average runtime in seconds for each t∗
is given by Figure 11. It can be seen that the kernel time at the assumed optimal t∗

is high, compared to those for lower valued combination points. This raises the ques-
tion whether the given t∗ is indeed optimal, or if lower variations could be reached
using a different t∗ and more realizations, at the same computational time.

Suppose that it is possible to decrease variance linear with the number of forward
and reverse realizations (we assume N = M from now, unless specified otherwise)
infinitely, and that such increase will affect the computation time linearly. The fact
that this is practically impossible, with the kernel evaluation order and the need
to decrease the numerical integration stepsize, will only strengthen our reasoning.
Then, based on the minimum variance seen in Figure 10, it is possible to determine
the factor by which the number of realizations be multiplied to achieve the same
level of variance, as shown in Figure 12. By multiplying the kernel times with this
factor, we obtain optimistic computation time for kernel evaluation to get iso-variance
estimations. The location where this time is minimum, say t∗

Low
, is shifted towards

t slightly from the location of the original minimum variance, t∗
High

. Under the
assumption that evaluation of the numerical integration scheme for the forward and
reverse is equally expensive in terms of computational cost, the real optimum, t∗

Opt
,

is limited as follows:

t∗
Low

< t∗
Opt

≤ t∗
High

. (19)

The lower bound will shift further towards t∗
High

when numerical integration is
included and the kernel evaluation times are determined more realistically. In case
the reverse process is much more expensive per timestep than the forward process,
the lower bound may shift a little towards t.

Normally, it is not practically feasible to use the above approach to determine
a near-optimal t∗, because of the computational effort required, at least, not in a
similar level of detail. As suggested earlier the process can be done coarsely but that
will result in an equivalently coarse selection of t∗. It would be better if, somehow, we
could determine this location directly from the two processes. For the BOD process,
and other Gaussian processes in general, it was noted that the difference in variance
(for higher dimensional systems, the covariance matrix’ trace) between the forward
and reverse processes was reflected in the variance in the estimation, as can be seen by
comparing Figures 14 and 10. This would lead to a simple and elegant solution to the
problem of finding a good value for t∗. Simply generate a small set of realizations and
repeatedly advance them by use of the numerical integration scheme. While doing
so, maintain the sum of the variance of each component of the realizations, for each
timestep. Next, find t∗ where the absolute difference between the obtained forward
and reverse variances is at its minimum and use this location as the combination
point for the full-run. The results from experiments based on a simple diffusion
algorithm (see Milstein, Schoenmakers, and Spokoiny 2002 for further information)
where the analytical variance is known, were very promising as the values found for
t∗ proved to be good indications of the optimal location.
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Figure 10: Variance in p values for different t∗ ∈ [2.8, 4), based on 100 forward-reverse
estimations at each of the t∗ locations, with N=M=10,000, parabolic kernel estimation,
and BOD parameters as given by Table 3
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Figure 11: Average kernel estimation times recorded for different t∗ ∈ [2.8, 4). Based
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5 Performance evaluation of FRE versus FE

In this section, the FRE and FE are compared to each other both in terms of order
of convergence of the error in the estimation, and in terms of accuracy to computing
time.

The order of convergence of the accuracy of the estimated probability density can
be approximated by running a number of estimations for each of a set of values for
N . The standard deviation and bias of the estimation are then determined for each
N , and the results plotted on a log-log scaled figure. From this figure, the order of
convergence corresponds directly to the slope of the plotted line and can hence be
easily determined.

We did a large number of experiments with different choices for t∗ and location of
the evaluation point y, in p(t, x, T, y). Because of the similarity of the results, we only
show the results for the BOD model with parameters as given by Table 3. For the
FRE, we used N = M = 2i, with i = 5, . . . , 15, and t∗ = 3.803800, while for the FE,
n = 2j , with j = 5, . . . , 18 was used. In both estimators, the transition density was
estimated 10, 000 times to get accurate values for the standard deviation and bias. In
addition, the numerical integration was replaced by sampling the known distributions.
Figures 15 and 16 respectively show the standard deviation and squared bias in
the forward and forward-reverse estimations, along with dotted lines indicating the
theoretical orders of convergence, plotted to the number of realizations.

The results match the theoretical results very closely, with the exception of
the squared bias for the forward-reverse estimator which shows a convergence of
O(N−1.1), more than the O(N−1) plotted. It is known (Milstein, Schoenmakers, and
Spokoiny 2002) that the squared bias for problems with d < 4, is o(N−1). There-
fore, the results still match the theory, although the convergence rate found may be
overestimated because of the relatively small number of realizations used.

Needless to say, the values of t∗ and y, did not affect the order of convergence of
the standard deviation and bias, although, they did influence the absolute accuracy
of the estimation. The choice of numerical scheme used to generate realizations of
the forward and reverse processes with, cannot improve the order of convergence.
It can however prevent improvement in the accuracy, regardless of the number of
realizations used, when the stepsize is taken too large.

For a realistic comparison between the two estimators, the numerical integration
scheme has to be taken into account since it accounts for a major part of the total
computational cost. For example, the run-time of the forward estimation can be
expressed as follows

runtime
FE

= τ
integration step

N · (T − t)

∆
+ τ

kernel eval
· N (20)

where the constants τ
integration step

and τ
kernel eval

represent the execution time of a nu-
merical integration step and a kernel evaluation respectively, and ∆ is the timestep
used in the integration scheme. The constants will differ slightly for each implemen-
tation and computer platform, but are easily measured. The value for τ

integration step

was found to be several times larger than τ
kernel eval

, mostly because of the cost of
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Figure 15: Convergence of the standard deviation in the estimated transition density.
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Figure 16: Convergence of squared bias in the estimated transition density.
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Stepsize 0.1 0.01 0.001
N 574,950 293,389 266,052

Table 4: Number of realizations that can be used in the FE to obtain a run time similar
to the FRE, when using N = M = 262,144, and a stepsize as indicated.

generating random numbers. As a result, even at a moderate timespan (T − t) and
large ∆, most of the computation time will be spent on generating realizations.

The run-time for the forward-reverse estimator is more difficult to express because
it is not linear to the number of realizations used. Especially the kernel estimation
time is hard to predict because it depends on the forward and reverse distributions at
the combination point, which in turn depend on the x and y in the density function.
Despite this, we still want to compare the FE and FRE in terms of computation time.
This can be done by recording the simulation time of a forward-reverse estimator.
This time can then be substituted in (20) to determine the matching number of
realizations in the FE simulation. After running an equivalent FE simulation, the
results of the two estimators be compared.

The above approach was applied to the BOD model with parameters as given
by Table 3. For numerical integration, the Euler scheme as given by (2) was used
with stepsize, ∆, of 0.1, 0.01 and 0.001. The number of realizations used in the FRE
was N = M = 2i, with i = 7, . . . , 18. The value of t∗ was related to the stepsize,
resulting in value of 3.8, 3.80, and 3.804, respectively. As an example, Table 4 gives
the equivalent number of realizations to be used in the FE, in case i = 18, or similarly,
N = M = 262, 144; The results of the experiments are given by Figures 17 and 18.
Curves with smaller timesteps will have larger associated run-times and will hence
start more to the right in the plot. Both the standard deviation and squared bias of
the FRE are consistently smaller than those of the FE, while obtained at a similar
computational effort. Therefore we can conclude that the FRE is indeed superior to
FE, even for small numbers of realizations.

6 Conclusions

We have applied the recently introduced forward-reverse model (Milstein et al. 2002)
to a stochastic environmental BOD model. After the derivation of the forward re-
verse representation of the model, we investigated a number of issues that required
special attention in order to make application of the forward-reverse method efficient
in a practical sense. We argued that the calculation of the kernel estimator must
be implemented with care and presented an O(M log N) scheme. In Section 4.3, the
relation between combination point t∗ and the computational efficiency has been an-
alyzed. We presented an efficient practical approach for determining the appropriate
value for t∗. It was then shown that the forward-reverse estimator indeed achieves
an O(N−1/2) accuracy when applied to the BOD model, compared to an O(N−2/7)
accuracy for the forward estimator. The comparison of the estimation error to the
run-time clearly shows the advantage of using the forward-reverse estimator. Espe-
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Figure 17: Standard deviation in transition density estimation for the forward and forward-
reverse estimators, plotted to simulation time.
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Figure 18: Squared bias in transition density estimation for the forward and forward-reverse
estimators, plotted to simulation time.
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cially for problems where a high accuracy is required, the FRE will be substantially
faster than the FE, as seen in Figure 17. These results are encouraging and show the
practical use of the forward-reverse approach for density estimation in environmental
risk analyses.
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