
Low-Power Gesture Recognition Using Convolutional Neural Networks and
Ambient Lighting

Arne de Beer1

Supervisor(s): Qing Wang1, Ran Zhu1, Mingkun Yang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Arne de Beer
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Ran Zhu, Mingkun Yang, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at https://repository.tudelft.nl/.



Abstract
This paper presents a study focused on developing
an efficient signal processing pipeline and identify-
ing suitable machine learning models for real-time
gesture recognition using a testbed consisting of an
Arduino Nano 33 BLE and three OPT101 photodi-
odes. Our research aims to address the challenges
of limited computational power whilst maintaining
a high inference accuracy.
Experiments were conducted to optimise the signal
processing and explore various machine learning
model architectures, specifically revolving around
convolutional neural networks. The data used
for these experiments was gathered by creating a
dataset of gestures from left- and right-handed par-
ticipants. We took ethical considerations regarding
participant recruitment and data security into ac-
count and we made sure to balance the dataset with
both left- and right-handed participants as much as
possible.
We obtained accurate gesture recognition results,
surpassing the goal of a 75% success rate. Our ma-
chine learning models, trained on pre-processed 2D
data, achieved near real-time inference times while
running on the resource-constrained Arduino Nano
33 BLE.
The findings of this study contribute to the field of
gesture recognition by providing insights into ef-
ficient signal processing techniques and identify-
ing suitable machine learning models for resource-
constrained devices. The developed system can
be applied in various applications, ranging from
games to healthcare. Furthermore, a dataset is con-
tributed which can be used for further research.

1 Introduction
Recognising gestures has been of interest for over thirty years
[1] [2]. The main limiting factors of gesture recognition sys-
tems were related to computing power and machine learning
(ML) knowledge, specifically deep learning. With today’s ad-
vances, however, we can detect and recognise hand gestures
more efficiently, faster and in more compact form factors [3].

Meanwhile, humans have been putting artificial lighting
infrastructures in as many places as we can, and these days
artificial lighting can be found in almost all buildings. The
abundance of this technology calls for other ways of using
it and only recently have we started to transform these in-
frastructures to support other services besides lighting. For
example, high-speed internet, or accurate indoor localisation,
which is difficult to achieve with today’s global navigation
satellite systems like GPS, may finally be realised by this
transformation of our lighting infrastructure [4].

Gesture recognition can be a powerful way to include
human-computer interaction in a system. Including such a
system allows users to control their computers, smartphones

0Parts of this paper were corrected by AI tools, such as ChatGPT.

or other devices by performing specific gestures [5]. It can
also be used for gaming, sign language recognition and even
in healthcare for patients with physical disabilities [2] [6] [7].

Unlike other projects which made use of cameras or hard-
ware that needs to be worn by the user [5] [1], this project
aims at using the existing lighting infrastructure to imple-
ment a low-power system to recognise several gestures using
the reflection of ambient light and simple photodiodes such
as the OPT101 photodiodes [8]. This works because by per-
forming specific gestures, the movement of our hands and
fingers causes the surrounding ambient light to be reflected or
blocked and then changes the amount of light which gets cap-
tured by the photodiodes. Using a machine learning model
running on a microcontroller, the patterns of the changing
captured light can be recognised and decoded into the per-
formed gesture.

This study uses Tiny Machine Learning (TinyML) to run
ML models on smaller, less powerful devices, such as micro-
controllers [9]. We specifically make use of the TensorFlow
Lite (TF Lite) library to build the models used in this study.1

In 2022, a similar project for the CSE3000 course at the
Technical University of Delft (TUD) was started from the
ground up. Since there were no real expectations and prepa-
rations a large amount of time was spent researching ways to
approach the problem and designing hardware [10] [11] [12]
[13] [14]. This year, however, this study was able to build
off of what they created by reusing the Printed Circuit Board
(PCB) they designed and learn from their mistakes by thor-
oughly going through their papers. Whilst the focus of last
year was mostly on the optimal placement of photodiodes,
this year, the focus was on experimenting with various ways
to increase the overall performance of the gesture recognition
system in terms of inference accuracy, inference latency and
model space and also improve the overall pipeline.

The main question answered in this research is: ”Given a
testbed with one Arduino Nano 33 BLE and three OPT101
photodiodes, how to detect and process the signals efficiently,
which model could be used for gesture recognition based on
2D pre-processed data and how to compress the used deep
learning model to make it run in real-time and be small
enough in size to be able to be deployed on the microcon-
troller?”

This main question is divided into three subquestions:

• How to efficiently read the signals from three OPT101
photodiodes and process them into 2D data?

• What kind of machine learning model is best to use for
gesture recognition, such as swipe left or right, based
on 2D pre-processed data, when the inference time must
be near real-time and computational processing power
is limited, whilst trying to keep the success rate above
75%?

• How to compress a machine learning model to make
it real-time on an Arduino Nano 33 BLE? Real-time is
considered to be below 200 milliseconds.

In this paper, various machine learning model architectures
focused on convolutional neural networks (CNNs) are evalu-

1https://www.tensorflow.org/lite



ated and compared and the effects of various pre-processing
and data augmentation techniques are analysed. Furthermore,
a dataset with over 2300 performed gestures to train the mod-
els is presented. Finally, a microcontroller program as a proof
of concept is contributed.

To achieve these goals, this paper is organised as follows.
The next section will give a brief background on some of the
lesser-known terms mentioned in this paper. After this, sec-
tion 3 outlines the general methodology and steps taken dur-
ing this research. Section 4 presents the contributions of our
work, where the key findings and insights that can be valuable
to the field of gesture recognition are discussed. Next, sec-
tion 5 delves into the experimental setup and results, where
the hardware and software setup is described in detail and
the results of the analyses are presented. After this, in the
responsible research section, the ethical considerations in-
volved in this study are addressed, including participant re-
cruitment and data security and anonymity.
In the discussion section, the strengths and limitations of our
approach are examined, the findings with related studies are
compared, and the implications of this research are high-
lighted.
Finally, the paper is concluded with a summary of the main
findings and an outlining of possible future research in the
field of gesture recognition.

2 Background
This paper assumes basic knowledge of machine learning,
deep learning, and more specifically, convolutional neural
networks. For a good explanation of how convolutional neu-
ral networks work please see [15]. Besides common machine
learning terminology, the paper also focuses on 2D collected
data, which may not be a familiar term. The data collected
from the three photodiodes, which can be seen as a multivari-
ate time series, can be interpreted as an image with the reso-
lution being the number of samples by the number of photo-
diodes and the brightness of each pixel representing the value
at that particular part of the sample. An example is illustrated
in figure 1.

Figure 1: An example of a multivariate time series formatted as an
image with the 3 photodiodes as its rows and the 100 samples as
columns. A higher value, represented as a brighter pixel, means
more light reached the photodiode. Before pre-processing, these val-
ues are the raw values coming from the sensors.

In this study, quantization was used to compress machine
learning models. Quantization is a compression procedure
where all weights and activation functions are converted from
32-bit floats to 8-bit integers. Although this sacrifices a bit on
the inference accuracy, it greatly decreases inference time and
model size, making it suitable for microcontrollers.

3 Methodology
This section goes over the methodology used for this re-
search. Specifically, the steps followed to achieve the re-
search objectives.

• Data collection: Participants were recruited to perform a
range of hand gestures, such as swiping left or right. The
OPT101 photodiodes on the PCB captured the changes
in light intensity, generating raw data for further analy-
sis. Participants were asked to perform the gestures with
their dominant hand and were asked to perform them
with their other hand if they were still willing. This way
we were able to still get left-handed data, without solely
relying on finding left-handed participants. More spe-
cific details on data collection can be found in subsection
5.3.

• Data pre-processing and augmentation: Data pre-
processing and augmentation techniques play a crucial
role in improving the performance of any ML model.
Exploring various techniques and combinations, and
comparing the performance of models allows one to find
the most suitable combination of them and to get the
most out of the collected data. Pre-processing steps can
for example remove noise, rescale and normalise the sig-
nals. This makes it easier for the model to extract usable
features and increase its accuracy. Data augmentation is
used to modify existing data and generate new data from
it by randomly adjusting the contrast and performing
small translations. This allows machine learning mod-
els to improve performance even further [16].

• Constructing ML models: Several machine learning
model architectures focused on CNNs were adapted to
recognise multivariate time-series-based data. The mod-
els employed a deep learning architecture, consisting of
several convolutional layers. This step is closely related
to the next step, as an iterative approach was used where
architectures underwent small adjustments depending on
the results in the next step. Besides, new architectures
were constructed using the knowledge gained from pre-
viously analysed architectures and papers such as [15].

• Training and evaluating: The constructed ML models
were trained, evaluated and tuned. In CNNs, multi-
ple hyper-parameters can be tuned in order to achieve
the best inference accuracy. These hyper-parameters in-
clude the loss function, learning rate, number of epochs
and batch size. Finally, accuracy, inference time and to-
tal model size were compared and analysed. Inference
accuracy was measured by performing stratified K-fold
cross-validation and data was split on a per-hand basis.
Inference time was measured by getting the difference



between the current time before and after running infer-
ence on the microcontroller. The total model size was
inspected both before and after quantizing. To have a
fair comparison between the non-quantized and quan-
tized models both are saved as TFLite files and the file
sizes are then compared.

By following these steps we aimed to develop an accurate
and reliable gesture recognition system using OPT101 photo-
diodes and the Arduino Nano 33 BLE microcontroller. Sub-
sequent chapters will present the results and analysis based
on this methodology.

4 Contributions
This study makes several contributions to the field of gesture
recognition. The key contributions of our research are as fol-
lows:

1. Dataset
An anonymised dataset with over 2300 performed ges-
tures is contributed.

2. Pre-processing and data augmentation techniques
This research proposes and explores various combina-
tions of pre-processing techniques, like rescaling, nor-
malisation and a low pass filter, to enhance the quality
of the collected data and increase the ML model’s ac-
curacy. Additionally, the research explores some data
augmentation techniques, which should improve the ro-
bustness and generalisation capabilities of the machine
learning models.

3. Analysis of various CNN ML models
In this paper an evaluation and comparison of differ-
ent CNN ML models for gesture recognition is made.
Through extensive experimentation the inference accu-
racy, inference time, and model size of each architecture
is assessed, taking into account the effects of the pre-
processing pipeline and data augmentation.

4. Microcontroller program
A program that can be deployed to a microcontroller is
contributed, specifically tailored for the Arduino Nano
33 BLE. The program incorporates a gesture start detec-
tor, the pre-processing pipeline, and the ability to incor-
porate and invoke inference on a compressed ML model.
This program enables real-time gesture recognition di-
rectly on the microcontroller.

5 System Design
This section provides a comprehensive overview of the hard-
ware setup and software tools that were used and the machine
learning model architectures constructed during this study.
The primary goal of this section is to present the experimental
procedures and outcomes, showing the effectiveness and per-
formance of various pre-processing pipelines and ML model
architectures.

5.1 Hardware Setup
The microcontroller on which the final model runs is the
Arduino Nano 33 BLE. It uses three OPT101 photodiodes

placed on the custom-made PCB designed last year as its in-
put. The PCB includes several digital switches that are able
to change the sensitivity of the photodiodes using different
combinations of resistors. The mentioned PCB can be found
in figure 2.

Figure 2: The PCB that was designed last year. It consists of a
microcontroller on the top right, three OPT101 photodiodes in the
middle, and some digital switches for adjusting the sensitivity of the
photodiodes on the left side.

5.2 Software Setup
The microcontroller’s code is compiled using the Plat-
formIO2 framework and uses the TF Lite3 library to load the
model and run inference on collected data.

All ML models were created in Python using the Tensor-
Flow library and then converted to a quantized version. How
quantization works is explained in section 2. To deploy the
quantized model on the microcontroller, the quantized model
is exported to a C array using the Linux ”xxd” command.4

5.3 Data Collection
The dataset that was built for this study was created by us-
ing a bare-bone Arduino program which communicates with
a simple interface over a serial connection. On command, the
Arduino reads the output of the three photodiodes at a fre-
quency of 100 Hz and sends the data over the serial connec-
tion, where the data is labelled and stored. 100 Hz was chosen
as it was found to give a good balance between precision and
redundancy [11]. After finding that all gestures can be prop-
erly and naturally performed within 1 second the time frame
for data collection was set to 1 second. The recording time
of 1 second and the sample rate of 100 Hz gives us 100 sam-
ples per recorded gesture. The participants were shown an
example of how the gestures should be performed and were
told to perform them as naturally as possible. Participants
were initially asked to perform the gestures with their domi-
nant hand. After collecting the data with one hand, they were
asked whether they were also willing to perform all gestures

2https://platformio.org/
3https://www.tensorflow.org/lite
4https://linux.die.net/man/1/xxd



with their other hand. To perform the gestures, each partici-
pant was requested to repeat each gesture 5 times. In the end,
the dataset consists of over 2300 performed gestures by 17
left and 26 right hands. The dataset consists of both male and
female participants of varying ages, this metadata is not anal-
ysed or stored anywhere due to restrictions set by the ethics
committee. For any further ethics-related concerns regarding
participant recruitment and data collection, see section 7.

5.4 Model Construction and Configuration
For this study, multiple ML model architectures were con-
structed. The final model from last year [13] was used as
a starting point and small modifications were made to ex-
plore and find out what changes increased the inference ac-
curacy, whilst maintaining a reasonable model size. These
small changes included trying out different amounts of filters
per convolutional layer, trying out different kernel sizes, and
adding or removing some convolutional or other types of lay-
ers. After this, architectures were constructed from scratch
with inspiration from well-known image classification mod-
els such as LeNet [17] and AlexNet [18].

5.5 Model Analysing
All results were obtained through stratified K-fold cross-
validation. Unless stated otherwise, the data was split on a
per-hand basis, ensuring that gestures performed with each
hand were treated separately during training and evaluation.
This means that if a candidate performed all gestures with
both hands, the gestures from one hand were separated from
the other hand. This approach accounts for variations in how
gestures are performed between hands, whilst making sure no
data leakage occurs.

Throughout the experiments, a batch size of 256 and a fixed
number of 768 epochs were utilised as the default settings.
These settings were determined as the best-performing con-
figuration, as discussed in detail later in this section. Any
variations from these default settings are explicitly mentioned
when discussing specific experiments.

5.6 Pre-processing and Data Augmentation
To improve the inference accuracy, a pre-processing pipeline
was constructed to improve the quality of the data. Several
techniques were explored and their effects on the model per-
formance are discussed in the results subsection. To visu-
alise the effects of the pre-processing techniques, appendix A
shows the same sample with different combinations of pre-
processing steps combined. The pre-processing techniques
were applied individually to each photodiode signal. The
first technique involved rescaling the data range from approx-
imately [200, 800] to [0, 1] by dividing each value by the max-
imum value in the sample. This rescaling step ensured that
all signals were within a consistent range for more effective
model training.

Another technique employed was data normalisation,
where the mean of the data was subtracted and then divided
by the standard deviation. This is beneficial because it adds
further interpretability by bringing the values to a standard
distribution. Finally, to mitigate noise in the signals, a low-
pass filter was utilised. Specifically, the Butterworth filter

was implemented to attenuate high-frequency components
and preserve the essential signal information. This noise re-
duction step aimed to improve the overall signal quality and
allow the model to focus on the important patterns of the data
instead of unwanted noise.

There are two versions of the pre-processing pipeline.
First, during the model training phase, the data underwent
the aforementioned transformations using a Python pipeline.
This ensured that all data points experienced the same pre-
processing steps. After deploying the machine learning
model to the microcontroller, a separate pipeline was em-
ployed to process the incoming sensor data in near real-time,
maintaining consistency with the training pipeline.

In addition to the pre-processing techniques, data augmen-
tation methods were also explored to even further enhance
the performance of models [16]. Specifically tailored for the
2D data, two data augmentation techniques were employed.
Firstly, the random contrast techniques introduced variability
by adjusting the magnitude of the signal’s dips and peaks by
a factor between [0.05, 1.95]. By randomly scaling the am-
plitude of the gesture, the models were exposed to a wider
range of heights at which the gestures were performed. Sec-
ondly, the random translation technique introduced positional
shifts within the gesture. By randomly shifting parts of the
signal by a factor between [-0.3, 0.3] vertically and [-0.25,
0.25] horizontally, the model was exposed to slight temporal
displacements, mimicking natural variations in gesture exe-
cution. The technique mainly aimed to improve the model’s
robustness on gestures that are performed slightly faster or
slower.

While time warping is another commonly used data aug-
mentation technique for time series data, it was not used in
this study. Future investigations could explore this further.

By incorporating these data augmentation techniques, the
study aimed to expand the diversity of the training data and
improve the model’s ability to handle variations and gener-
alise better to unseen data. The effects of these data aug-
mentation techniques on the performance of the models are
discussed in the subsequent results subsection.

5.7 Microcontroller Program
As a proof of concept, a microcontroller program was de-
veloped to be deployed together with the quantized machine
learning model on the Arduino Nano 33 BLE. This microcon-
troller utilises various buffers to detect when to start gather-
ing data and adjust activation thresholds on the fly. After all
data for a gesture is collected, the data from each photodiode
individually goes through the aforementioned pre-processing
pipeline. After this pipeline is finished the data is passed to
the model and an inference is made. Finally, when the model
inference is finished, the gesture with the highest confidence
is selected. This program was used to collect the inference
and processing times for the various models discussed in the
results subsection.

6 Performance Evaluation
This section presents the key results of this study, which in-
cludes a range of experiments and analyses related to ges-



Non-Quantized Quantized
Architecture 5-Fold Acc. and Loss 10-Fold Acc. and Loss Size (bytes) Size (bytes) Inference Time (ms)
BeerNet 74.5%± 4.1%, 2.20± 1.04 75.6%± 7.7%, 1.99± 0.79 962,720 251,760 -
BeerNet Lite 76.2%± 3.9%, 1.19± 0.42 76.8%± 5.8%, 1.31± 0.59 494,752 131,744 38.3± 0.04
Last year’s model* 72.9%± 4.1%, 0.94± 0.28 72.8%± 6.4%, 0.90± 0.29 19,472 10,232 21.2± 0.02

Table 1: This table compares the various architectures by average accuracies and losses over 5 and 10 folds on a non-quantized version and
also reports the model’s size. For the quantized versions, it reports the model size and the time it takes to run an inference. The comparison
was made with the same pre-processing, data augmentation and hyperparameters. The inference time is recorded on the Arduino Nano 33
BLE, except BeerNet, which did not fit on the microcontroller. *The final model from last year was called ’NLCPP’ [13].

ture recognition. The subsections that follow compare differ-
ent model architectures, explore the effects of varying input
shapes, investigate the effects of pre-processing and data aug-
mentation techniques, examine the influence of different hy-
perparameter values, evaluate gesture confusion, assess the
performance impact of handedness, and finally, analyse the
effects of different data splitting approaches. Through these
investigations, the study aims to provide a comprehensive un-
derstanding of the factors that contribute to gesture recogni-
tion performance in resource-constrained environments.

6.1 Comparing Different Architectures
In table 1 the different architectures that were experimented
with are compared by looking at their respective 5-fold and
10-fold accuracy, quantized model size and inference time.
As one can see the architecture ”BeerNet Lite” performs best
in terms of both 5-fold and 10-fold accuracy. The model beats
the non-lite version by around 1%, showing that using more
filters per layer is not always beneficial. This architecture
was constructed during this study and has a standard struc-
ture commonly seen with convolutional neural networks. The
structure can be seen in figure 5.

It is interesting to note that the model architecture from
last year reaches comparable inference accuracies when us-
ing the best-performing input shape and pre-processing and
data augmentation steps that were experimented with during
this study. The model only reached around 65% with the un-
modified input shape (100, 3, 1), which was used last year.
So, without changing the architecture and only by improving
the pre-processing pipeline, adding data augmentation and
changing the input shape, the inference accuracy improved
greatly. With the miniature size of this architecture, this archi-
tecture may actually be preferred over the architectures with
higher inference accuracies for some applications.

Even though the quantized model size of BeerNet Lite is
over ten times as big as the model from last year, the infer-
ence time is only about 1.8 times as long. With both infer-
ence times still well below 50 milliseconds, the difference is
almost indistinguishable to humans [19].

6.2 Comparing Different Input Shapes
Going further, only the results from the BeerNet Lite archi-
tecture are shown for further analysis. In order to find the
input shape giving the best performance, many different in-
put shapes were explored as one can see in table 2. The
right-most number indicates the number of channels used as
input to the model, and the other two numbers indicate the
width and height of the input. The most obvious way of in-

Input Shape 5-Fold Accuracy 10-Fold Accuracy
(100, 3, 1) 71.6%± 3.5% 72.9%± 5.5%
(25, 4, 3) 74.6%± 4.6% 75.8%± 6.2%
(20, 5, 3) 76.2%± 3.9% 76.8%± 5.8%
(10, 10, 3) 72.0%± 3.5% 71.1%± 8.0%

Table 2: The best-performing architecture, BeerNet Lite, is used to
inspect the effects of different input shapes. Other architectures had
similar responses to the different input shapes.

putting the data is in the shape (100, 3, 1). This is simply done
by adding a third dimension to the original data, indicating
the usage of a single channel. However, as experimentation
showed, this is not the most optimal input shape. Instead, us-
ing (20, 5, 3) gave the best results. This is most likely due to
it having a good balance between the number of consecutive
samples next to each other and the relation with samples later
in the gesture that got put ’below’ each other. The (10, 10, 3)
input shape most likely broke the signal down too much, end-
ing up with a decreased performance.

6.3 The Effects of Pre-processing and Data
Augmentation

In table 3 various combinations of pre-processing operations
are compared to using no pre-processing at all. The results
demonstrate the critical role of pre-processing in improving
the model’s performance. When no pre-processing is applied,
the inference accuracy drops to around 10%, making it no
better than random guessing. This poor performance is most
likely due to the varying signal ranges observed in different
lighting conditions. Without pre-processing, the model strug-
gles to learn effectively from the data. That is also why only
using the low-pass Butterworth filter is not making any im-
provements at all. In contrast, rescaling and normalisation
separately both dramatically increase the inference accura-
cies to around 74% and 73% respectively. When combined,
they mostly increase the 10-fold accuracy up to 74.5%. With
rescaling and normalisation in place the low-pass Butterworth
filter now actually does help and improves the accuracy for
both 5-fold and 10-fold by around 2%. It is worth mentioning
that all pre-processing step combinations are in the magni-
tude of microseconds, with all three operations together tak-
ing slightly over half a millisecond. These processing times
are not the lower bound and further optimisation could still
be done if desired.

In order to increase the inference accuracy even further,
several data augmentation techniques were tried out. In table
4, the effects of the two augmentation techniques are shown
separately and combined. It is interesting to see how only us-



Pre-proc. steps 5-Fold Acc. 10-Fold Acc. Processing Time
No pre-processing 10.9%± 0.7% 10.6%± 1.2% 0µs
Rescaling 74.4%± 4.6% 73.5%± 7.2% 209µs± 12µs
Normalisation 73.1%± 3.4% 72.3%± 5.6% 277µs± 16µs
Butterworth filter 10.8%± 0.7% 10.7%± 1.2% 179µs± 14µs
Rescaling & norm. 74.3%± 2.4% 74.5%± 7.3% 436µs± 11µs
All 3 combined 76.2%± 3.9% 76.8%± 5.8% 554µs± 12µs

Table 3: The best-performing architecture is used to inspect the ef-
fects of different combinations of pre-processing steps. The process-
ing time is recorded on the Arduino Nano 33 BLE.

Data augmentation steps 5-Fold Accuracy 10-Fold Accuracy
None 72.0%± 4.1% 74.5%± 7.1%
Contrast 73.0%± 3.7% 74.2%± 6.8%
Translation 75.1%± 5.5% 75.4%± 5.9%
Contrast, Translation 76.2%± 3.9% 76.8%± 5.8%

Table 4: The best-performing architecture, BeerNet Lite, is used to
inspect the effects of different data augmentation steps.

ing contrast augmentation decreases the 10-fold accuracy by
a small fraction, although this is almost negligible. The trans-
lation augmentation adds a bit to both the 5-fold and 10-fold
accuracies, but especially the two augmentation techniques
together add a noteworthy amount to both accuracies. With
these two data augmentation techniques applied, the variation
of the inference accuracy between folds seems to decrease as
well, making the model have a more stable performance.

6.4 Experimenting with Different
Hyperparameter Values

Finally, various values for the hyperparameters, batch size
and the number of epochs, were explored and evaluated. The
results are shown in table 5. The BeerNet Lite model was
trained multiple times, whilst keeping the pre-processing and
data augmentation techniques consistent. Among the differ-
ent batch sizes tested (64, 128, 256, and 512), the batch size
of 256 showed the highest inference accuracy of 76.8% in the
10-fold cross-validation run. Additionally, across all tested
batch sizes, the runs with 768 epochs consistently demon-
strated lower overall loss scores compared to those with 1024
epochs. These findings suggest that a batch size of 256 with
768 epochs yields the best performance in terms of accuracy
and loss, and has a decent training time as well.

6.5 Evaluating Confusion Between Gestures
Figure 3 presents the confusion matrix obtained from evaluat-
ing the best-performing architecture and settings. The results
demonstrate high accuracy for the four swipe gestures and
the double tap gesture, with inference accuracy levels hover-
ing around 90%. However, the rotational gestures, clockwise
and counter-clockwise, show a moderate level of confusion,
achieving accuracies of approximately 81% and 74%, respec-
tively. Although the tap gesture performs reasonably well, it
shows a considerable amount of confusion with the two zoom
gestures, which only achieve accuracies of 50% and 40%.
Moreover, the confusion matrix demonstrates significant con-
fusion between these two zoom gestures, misclassifying be-
tween them approximately 25% of the time. These findings

Figure 3: This confusion matrix shows the fraction of how many
times the model predicted a sample to have label Y, whilst it is actu-
ally labelled X. In this confusion matrix, one can see that the model
is pretty confused between the two zoom gestures.

highlight the strengths of the model in accurately recognising
swipe gestures and the double tap gesture. However, further
improvement is needed to enhance the distinction between
the zoom in, zoom out and tap gestures.

6.6 Performance Impact of Handedness

Exploring the impact of training the model on only left- or
right-handed data offers valuable insights into gesture perfor-
mance. Table 6 presents the results of training the model ex-
clusively on one-handed data. Training solely on left-handed
data leads to an overall performance decrease of approxi-
mately 8%, likely due to the reduced dataset size and pos-
sibly due to less consistent gesture performance because of
right-handed participants performing the gestures with their
left hand. Additionally, the loss increases significantly, indi-
cating challenges in properly capturing the patterns of left-
handed gestures. Furthermore, the confusion between the
zoom gestures intensifies even further, with the model mis-
classifying the zoom out gestures as zoom in gestures more
frequently, as shown in appendix C. Surprisingly, training the
model exclusively on right-handed data yielded similar per-
formance to using the entire dataset, although slightly lower.
This outcome suggests that certain gestures exhibit less vari-
ation between hands, and the slight decrease in performance
can again be attributed to the reduced sample size when train-
ing exclusively on one hand. Moreover, the decreased varia-
tion between folds when only using right-handed data can be
attributed to the more consistent manner in which gestures are
performed, as the model does not need to account for varia-
tions arising from using left-handed data as well. These find-
ings highlight the importance of accounting for handedness
in gesture recognition systems.



Hyperparameters 5-Fold 10-Fold
Batch size Epochs Accuracy Loss Train Time Accuracy Loss Train Time

64 768 75.6%± 2.4% 1.62± 0.41 22min 75.6%± 7.0% 1.79± 0.87 49min
128 768 74.9%± 4.0% 1.74± 0.72 10min 75.8%± 7.4% 1.57± 0.75 22min
256 768 76.2%± 3.9% 1.19± 0.42 6min 76.8%± 5.8% 1.31± 0.59 13min
512 768 75.3%± 5.7% 1.07± 0.47 4min 75.2%± 7.7% 1.13± 0.55 10min
64 1024 73.6%± 3.8% 2.14± 0.73 23min 76.0%± 7.2% 1.98± 1.00 58min

128 1024 76.0%± 3.4% 2.01± 0.72 13min 75.1%± 7.2% 1.84± 0.85 32min
256 1024 75.6%± 3.6% 1.57± 0.51 8min 75.6%± 7.3% 1.59± 0.78 18min
512 1024 75.7%± 3.5% 1.36± 0.54 5min 76.2%± 5.9% 1.36± 0.54 11min

Table 5: The best-performing architecture, BeerNet Lite, is used to inspect the effects of different values for the batch size and the number of
epochs.

5-Fold 10-Fold
Hands used Accuracy Loss Accuracy Loss

Only left 68.5%± 10.2% 2.18± 1.63 67.6%± 17.2% 2.08± 1.53
Only right 73.6%± 2.9% 1.44± 0.18 76.6%± 4.3% 1.46± 0.58

Both 76.2%± 3.9% 1.19± 0.42 76.8%± 5.8% 1.31± 0.59

5-Fold 10-Fold
Data split Accuracy Loss Accuracy Loss

Per candidate 74.8%± 5.2% 1.43± 0.42 75.7%± 6.9% 1.44± 0.61
Per hand 76.2%± 3.9% 1.19± 0.42 76.8%± 5.8% 1.31± 0.59

Table 6: The best-performing architecture, BeerNet Lite, is used to
inspect the effects of using only the left- or right-handed parts of the
data and splitting it in different ways.

6.7 Performance Impact of Data Splitting
Approach

Additionally shown in table 6, comparing the data split-
ting approach between per-hand and per-candidate reveals
marginal performance differences. Training on a per-
candidate basis, where each participant’s data is treated as a
separate entity, shows slightly lower performance across all
metrics. Furthermore, it is important to note that this ap-
proach may introduce a small bias towards right-handed par-
ticipants, as not all participants performed gestures with both
hands.

7 Responsible Research
This section discusses the responsible research practices em-
ployed during this study. We recognise the importance of eth-
ical considerations in any research involving human partici-
pants. Therefore, we have taken several steps to ensure that
this research is done responsibly and transparently. Specifi-
cally, The section goes over obtaining informed consent, han-
dling participant privacy, handling data ethically and transpar-
ently, informing participants about potential risks and ensur-
ing the reproducibility of the study.

7.1 Ethical Aspects
Participant Recruitment and Selection
Participants were recruited based on personal acquaintances,
with no preference for age, gender, or previous experience
with technology. To ensure participation was fully voluntary
and informed, we obtained written consent from all partic-
ipants prior to their participation in the study. The consent
form, shown in appendix D, explained the purpose of the

study, how the data would be collected, and the potential risks
and benefits of participation. It also informed participants of
their right to withdraw from the study at any time. All partici-
pants were also given the opportunity to ask questions before
signing the consent form. To ensure a minimal amount of bias
or discrimination in the selection process, potential sources of
bias were carefully considered.

Bias and Fairness
We recognise that if no proper measures are taken, there may
be a potential bias towards right-handed participants in our
study. This is due to the unequal distribution of left- and
right-handed individuals in the population, which may also
be reflected in our participant distribution. The model may be
trained on data from more right-handed individuals, making
it harder to recognise some gestures performed with the left
hand. Due to the time constraints, we made use of stratified
K-fold cross-validation techniques to make sure the inference
accuracies retrieved are representative of the population and
to mitigate this bias towards one group as much as possible.
Considering other potential sources of bias, even if they seem
unlikely, is also important. Therefore, we also watched care-
fully for any biases related to age, gender, or previous experi-
ence with technology. By doing so, we aim to ensure that our
study is fair and representative of the wider population.

Privacy and Data Security
Due to the low resolution of the photodiodes used in this
study, minimal identifiable data was recorded. However, we
took appropriate measures to handle all recorded data ethi-
cally and securely. Specifically, we did not store any personal
information such as names or contact information together
with the data. During the study, only our peer group had ac-
cess to all the data and consent forms.

7.2 Reproducibility
To ensure the reproducibility of the study, the used tool for re-
ceiving and storing the data, and the minimal Arduino project
which sends the data are made publicly available together
with all data collected during the study. This enables other
researchers to verify the data collection practices and the
dataset itself and replicate the study. The repository is avail-
able on GitHub.5

5https://github.com/arnedebeer/CSE3000-DataCollection



7.3 Use of AI Tools
With the rise of AI tools that have become abundant in the
last year, a lot of new ethical considerations come into play
that were never needed before. It is crucial that Large Lan-
guage Models (LLMs) are not used as a replacement for criti-
cal thinking, especially in studies and papers. This subsection
shows the prompts that were used.

ChatGPT
ChatGPT was used a few times throughout the writing of this
paper.6 Specifically for improving word usage and spelling.

1. ”What is the right way of writing ”cross validation”?
Cross validation or ”cross-validation”?”.

2. ”Is ”skewed fraction” a good way to phrase the dif-
ference in distribution? Or would you suggest us-
ing another wording? Maybe something with ”demo-
graphic”?”.

3. ”Is this sentence grammatically correct? ”With both in-
ference times still well below 50 milliseconds, the dif-
ference is almost indistinguishable for humans.””.

GitHub Copilot
GitHub Copilot was used to greatly speed up the code-writing
part of this project.7 There are no specific prompts used since
the Copilot gives suggestions whenever possible. All sugges-
tions were thoroughly checked before applying.

8 Discussion
This study focused on developing efficient signal process-
ing techniques, exploring suitable machine learning models
and investigating compression techniques for real-time per-
formance. Through thorough experimentation and analysis,
we have uncovered valuable insights and made advancements
in the field of gesture recognition. In this chapter, we criti-
cally examine our findings, discuss their implications within
the context of previous research, address potential limitations,
and provide explanations for unexpected results.

The study was able to build upon the foundations estab-
lished by the previous project conducted last year. We were
able to use their PCB design, which saved us a significant
amount of time and has contributed to the overall success of
our gesture recognition system. Furthermore, the previous
project also explored the application of CNNs and Recurrent
Neural Networks (RNNs) for gesture recognition. Their ex-
perimentation and analysis provided us with a good starting
point on which we were able to refine the machine learning
models employed in our research.

During our discussions with the authors of the previous
project, we uncovered an important aspect related to the re-
ported accuracies of their gesture recognition model. It was
revealed that their method of splitting the dataset into train
and test partitions introduced a potential data leakage issue,
which must be considered when interpreting their reported re-
sults. Instead of splitting the dataset per candidate, the dataset
was shuffled and randomly split. This approach resulted in a

6https://openai.com/chatgpt
7https://github.com/features/copilot

form of data leakage, where the model was exposed to infor-
mation from the test set during the training process. Because
of this, their reported accuracies may have been inflated and
were not really representative of the model’s performance on
never-before-seen participants.

To ensure the integrity of any reported accuracies in this
study, the splitting strategy was carefully designed to make
sure the dataset was split on a per-hand basis. Doing so will
provide a more robust and unbiased evaluation of our gesture
recognition model’s performance. One should still note that,
due to the limited time span of this project, the collected data
for the results is based on a single 5- and 10-fold run. Because
of this, and the randomness involved with machine learning,
the results may not have fully converged yet.

Finally, the reader should also note that the conclusions of
this study are based on the results shown in section 5 and
are by no means fixed, as various applications may require
different characteristics. The reader is therefore encouraged
to draw their own conclusions from the results.

9 Conclusions
The purpose of this study was to address the challenges of
developing efficient signal processing techniques, identify-
ing suitable machine learning models for gesture recognition
with real-time constraints and limited computational power,
and exploring model compression techniques for deployment
on an Arduino Nano 33 BLE with three OPT101 photodi-
odes. Through extensive experimentation and analysis, this
research provides insights into the effectiveness of various ap-
proaches and proposes practical solutions for gesture recog-
nition in resource-constrained environments.

This research successfully demonstrated the effectiveness
of the employed signal processing techniques on the micro-
controller. The proof of concept program uses adaptive acti-
vation thresholds, enabling the system to operate in various
and constantly changing lighting conditions. The constructed
pre-processing pipeline, along with data augmentation, sub-
stantially improved the inference accuracy of all explored
model architectures. Furthermore, the significance of con-
sidering handedness in gesture recognition models was high-
lighted and different data-splitting strategies were explored,
with per-hand splitting showing marginal performance im-
provements.

As discussed in section 5 various model architectures were
experimented with and compared to each other. As different
applications may need to prioritise differently, there is no best
model. However, if we were to focus on selecting a model
that is deployable to an Arduino Nano 33 BLE specifically,
and select on a high inference accuracy as well, the simple
model shown in figure 5 came out on top.

The final results showcased a well-performing architecture
with an inference accuracy of 76.8%± 5.8%. Various hyper-
parameters were experimented with and the final model was
trained with 768 epochs, a batch size of 256 and a reshaped
input shape from (100, 3) to (20, 5, 3), separating the different
photodiode signals into their own respective channel.

Although no data was collected in direct sunlight, the study
demonstrated the applicability of the developed system in



different indoor environments and the findings of this re-
search have practical implications in real-world scenarios,
such as deployment in patient rooms in hospitals or residen-
tial elevators. The proposed solutions, including efficient sig-
nal processing techniques, well-performing machine learning
models given real-time constraints and limited computational
power, and model compression, can be employed in resource-
constrained environments to enable real-time gesture recog-
nition.

In summary, this study contributes to the field of gesture
recognition by providing insights into efficient signal pro-
cessing techniques, well-performing machine learning mod-
els, and model compression for resource-constrained environ-
ments. This research furthers the development of practical
and reliable gesture recognition systems in various real-world
applications.

10 Future Work

Based on the analysis of the confusion matrix shown in figure
3, it is evident that the zoom gestures (zoom in and zoom out)
have the lowest performance compared to other gestures. To
enhance the overall performance of any model, it is recom-
mended to focus on improving the recognition of these two
gestures. This could be achieved by collecting more data,
specifically for zoom gestures, or by redefining the gestures
themselves, considering alternate ways of performing them
or replacing them with two completely different gestures.

The dataset created and used in this study covers varying
conditions in terms of the number of light sources, light in-
tensity, and placement. In future research, it would be in-
teresting to see the effects of specialised datasets tailored to
specific application scenarios or environments on model per-
formance. By focusing on a specific use case, one can assess
how models perform under targeted conditions, which may
provide insights into their suitability for real-world applica-
tions.

On a similar note, adding more data to this dataset will al-
ways be beneficial. With even more data, a model will be able
to capture a larger variety of how gestures are performed and
work better in more different environments. Specifically, col-
lecting more data from a diverse set of participants in terms of
age and technological knowledge, and different environments
will improve the dataset’s quality greatly.

Further refinement and experimentation with model archi-
tectures and their parameters should be explored. This could
involve investigating even more different network architec-
tures and optimising hyperparameters. Doing so may lead to
even higher inference accuracies and lower inference times,
and improved model size requirements. A promising-looking
paper by Chien-Liang Liu et al. [20] on creating a CNN
specifically for multivariate time series may be worth look-
ing into.

By researching these aspects in future work, the perfor-
mance, robustness and applicability of the gesture recogni-
tion system using three OPT101 photodiodes may be further
enhanced.

References
[1] D.L. Quam. Gesture recognition with a dataglove. In

IEEE Conference on Aerospace and Electronics, pages
755–760 vol.2, 1990.

[2] R. Beale and A.D.N. Edwards. Gestures and neural net-
works in human-computer interaction. In IEE Collo-
quium on Neural Nets in Human-Computer Interaction,
pages 5/1–5/4, 1990.

[3] Taegeun Yoo, Van Loi Le, Ju Eon Kim, Ngoc Le Ba,
Kwang-Hyun Baek, and Tony. T. Kim. A 137-µw area-
efficient real-time gesture recognition system for smart
wearable devices. In 2018 IEEE Asian Solid-State Cir-
cuits Conference (A-SSCC), pages 277–280, 2018.

[4] Qing Wang and Marco Zuniga. Passive visible light net-
works: Taxonomy and opportunities. In Proceedings of
the Workshop on Light Up the IoT, LIOT ’20, pages 42–
47, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[5] Kirti Aggarwal and Anuja Arora. An approach to con-
trol the pc with hand gesture recognition using computer
vision technique. In 2022 9th International Conference
on Computing for Sustainable Global Development (IN-
DIACom), pages 760–764, 2022.

[6] Yande Li, Taiqian Wang, Aamir khan, Lian Li, Caihong
Li, Yi Yang, and Li Liu. Hand gesture recognition and
real-time game control based on a wearable band with
6-axis sensors. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–6, 2018.

[7] Kalpana Lamb and Swati Madhe. Hand gesture recog-
nition based bed position control for disabled patients.
In 2016 Conference on Advances in Signal Processing
(CASP), pages 170–174, 2016.

[8] Texas Instruments. OPT101 Monolithic Photodiode and
Single-Supply Transimpedance Amplifier, 1 1994. Re-
vised June 2015.

[9] Pete Warden and Daniel Situnayake. Tinyml: machine
learning with tensorflow lite on arduino and ultra-low-
power microcontrollers, 2019.

[10] Femi Akadiri. Constructing a dataset for gesture recog-
nition using ambient light, Jul 2022.

[11] Dimitar Barantiev. Designing a software receiver for
gesture recognition with ambient light, Jul 2022.

[12] Matthew Lipski. Hand gesture recognition on arduino
using recurrent neural networks and ambient light, Jul
2022.

[13] William Narchi. Recognising gestures using ambient
light and convolutional neural networks: Adapting con-
volutional neural networks for gesture recognition on
resource-constrained microcontrollers, Jul 2022.

[14] Stijn van de Water. Designing an adaptable and low-
cost system for gesture recognition using visible light,
Jul 2022.

[15] Saad Albawi, Tareq Abed Mohammed, and Saad Al-
Zawi. Understanding of a convolutional neural network.



In 2017 International Conference on Engineering and
Technology (ICET), pages 1–6, 2017.

[16] Siham Tabik, Daniel Peralta, Andrés Herrera-Poyatos,
and Francisco Herrera Triguero. A snapshot of image
pre-processing for convolutional neural networks: case
study of mnist, 1 2017.

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, may
2017.

[19] Charles Arthur Nagler and William Merle Nagler. Reac-
tion time measurements. Forensic Science, 2:261–274,
1973.

[20] Chien-Liang Liu, Wen-Hoar Hsaio, and Yao-Chung Tu.
Time series classification with multivariate convolu-
tional neural network. IEEE Transactions on Industrial
Electronics, 66(6):4788–4797, 2019.



A Pre-processing Techniques

(a) Graph and image representations of a performed double tap gesture with no pre-processing applied.

(b) Graph and image representations of a performed double tap gesture with only rescaling applied.

(c) Graph and image representations of a performed double tap gesture with only normalisation applied.

Figure 4: Graph and image representations of a performed double tap gesture with the combinations of the pre-processing steps that are
discussed in the results subsection.



(d) Graph and image representations of a performed double tap gesture with only a low-pass Butterworth filter applied.

(e) Graph and image representations of a performed double tap gesture with rescaling and normalisation applied.

(f) Graph and image representations of a performed double tap gesture with all three pre-processing steps applied.

Figure 4: Graph and image representations of a performed double tap gesture with the combinations of the pre-processing steps that are
discussed in the results subsection. (cont.)



B Model Architectures

Figure 5: Model architecture BeerNet Lite. The first two layers are only used during training and take care of the data augmentation.



C Confusion Matrices

(a) Left-handed data only. (b) Right-handed data only.

Figure 6: The confusion matrices of architecture BeerNet Lite, trained on only the left- or right-handed parts of the dataset.

Figure 7: The confusion matrix of architecture BeerNet Lite, trained on data by splitting data per candidate instead of per hand.



D Consent Form

(a) The first page of the consent form includes an introduction of the study and roughly explains what the participant is asked to do for this
study.

Figure 8: The consent form participants needed to fill in before data was collected.



(b) The second page of the consent form requests the participant to explicitly check all the consent points in order to take part in the study.

Figure 8: The consent form participants needed to fill in before data was collected. (cont.)



(c) The third and final page of the consent form asks the participant to sign the consent form and also includes the signature of the researcher.

Figure 8: The consent form participants needed to fill in before data was collected. (cont.)


	Introduction
	Background
	Methodology
	Contributions
	System Design
	Hardware Setup
	Software Setup
	Data Collection
	Model Construction and Configuration
	Model Analysing
	Pre-processing and Data Augmentation
	Microcontroller Program

	Performance Evaluation
	Comparing Different Architectures
	Comparing Different Input Shapes
	The Effects of Pre-processing and Data Augmentation
	Experimenting with Different Hyperparameter Values
	Evaluating Confusion Between Gestures
	Performance Impact of Handedness
	Performance Impact of Data Splitting Approach

	Responsible Research
	Ethical Aspects
	Participant Recruitment and Selection
	Bias and Fairness
	Privacy and Data Security

	Reproducibility
	Use of AI Tools
	ChatGPT
	GitHub Copilot


	Discussion
	Conclusions
	Future Work
	Pre-processing Techniques
	Model Architectures
	Confusion Matrices
	Consent Form

