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An Energy-Efficient 3.7-nV/
√

Hz Bridge
Readout IC With a Stable Bridge

Offset Compensation Scheme
Hui Jiang , Student Member, IEEE, Stoyan Nihtianov , Senior Member, IEEE,

and Kofi A. A. Makinwa , Fellow, IEEE

Abstract— This paper describes an energy-efficient bridge
readout IC (ROIC), which consists of a capacitively coupled
instrumentation amplifier (CCIA) that drives a continuous-time
delta–sigma modulator (CT��M). By exploiting the CCIA’s abil-
ity to block dc common-mode voltages, the bridge’s bias voltage
may exceed the ROIC’s supply voltage, allowing these voltages
to be independently optimized. Since bridge output is typically
much smaller than bridge offset, a digital to analog converter
(DAC) is used to compensate this offset before amplification and
thus increase the CCIA’s useful dynamic range. Bridge loading
is reduced by using a dual-path positive feedback scheme to
boost the CCIA’s input impedance. Furthermore, the CCIA’s
output is gated to avoid digitizing its output spikes, which would
otherwise limit the ROIC’s linearity and stability. The ROIC
achieves an input-referred noise density of 3.7 nV/

√
Hz, a noise

efficiency factor (NEF) of 5, and a power efficiency factor (PEF)
of 44, which both represent the state of the art. A pressure
sensing system, built with the ROIC and a differential pressure
sensor (AC4010), achieves 10.1-mPa (1σ) resolution in a 0.5-ms
conversion time. The ROIC dissipates about 30% of the system’s
power dissipation and contributes about 6% of its noise power.
To reduce the sensor’s offset drift, a temperature compensation
scheme based on an external reference resistor is used. After a
two-point calibration, this scheme reduces bridge offset drift by
80× over a 50 °C range.

Index Terms— Beyond the rails, bridge offset compensation,
bridge sensor, capacitively coupled (CC) chopper, CC instrumen-
tation amplifier (CCIA), continuous-time delta–sigma modula-
tor (CT��M), energy efficient, readout IC (ROIC), temperature
compensation.

I. INTRODUCTION

WHEATSTONE bridges are widely used to read out
impedance sensors that monitor physical parame-

ters such as temperature, pressure, and humidity [1]–[12].
As shown in Fig. 1, their output can be digitized by a readout
IC (ROIC), which consists of an instrumentation amplifier (IA)
and an analog to digital converter (ADC). To maximize the
accuracy of the resulting sensing system, the ROIC should
have low input-referred noise, low-temperature drift, high
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Fig. 1. Precision sensing systems.

Fig. 2. Bridge readout using a CCIA.

input impedance, high linearity, and high common-mode rejec-
tion ratio (CMRR) [2], [13]. It should also have high energy
efficiency to facilitate its use in battery-powered applications
and in precision mechatronic systems where self-heating may
be an issue [14].

An ROIC’s energy efficiency will usually be determined
by its IA, since this sets its input-referred noise. Recently,
capacitively coupled (CC) IAs have been shown to be par-
ticularly energy efficient [3]. As shown in Fig. 2, a CCIA
consists of an input chopper, which up-modulates differential
input voltages to a chopping frequency, fchop, allowing them to
be amplified by an inverting amplifier with capacitive feedback
elements. Since they only require one noise-critical input
stage, CCIAs are generally more energy efficient than three-
Opamp and current-feedback (CF) IAs [15]. Moreover, their
input capacitors naturally block common-mode (CM) input
voltages, allowing them to handle CM levels much larger than
their supply voltages [4]. In bridge readout applications, this
means that the bridge and the ROIC can be powered from
different voltage supplies, allowing the ROIC’s supply voltage
to be optimized for energy efficiency. Last but not the least,
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since CCIAs are inherently chopped, their 1/ f noise and offset
are also quite low.

A major drawback of CCIAs is that they generate output
spikes at their chopping transitions, i.e., at 2 fchop [3]. These
should not be digitized since their amplitude is usually not a
linear function of the input signal. In the case of a discrete-
time ADC, this can be readily achieved by sampling the output
of the CCIA just before the chopping transitions [3]. The
CCIA’s bandwidth then needs to be wide enough to ensure
complete settling, which increases noise aliasing and thus
degrades the ROIC’s overall energy efficiency [5]. Further-
more, the ADC’s sampling frequency fs is now the same
as 2 fchop, which limits design flexibility. In [6], a dynamic
filter has been used to limit the noise bandwidth while main-
taining settling accuracy, but at the expense of increased design
complexity.

This paper describes a pressure sensing system that consists
of an energy-efficient ROIC and a bridge-type pressure sensor
[16]. The ROIC uses a gated continuous-time delta–sigma
modulator (CT��M) to digitize the CCIA’s output while
avoiding its output spikes. To maximize the CCIA’s useful
dynamic range, the bridge offset is compensated by a passive
digital to analog converter (DAC) referred to the bridge
biasing voltage. This ratio-metric approach ensures that the
compensating signal only depends on capacitor and resistor
ratios, and so is stable over temperature and bias voltage
variations. Implemented in a standard CMOS 180-nm process,
the ROIC achieves a state-of-the-art noise efficiency factor
(NEF) of 5. It dissipates about 30% of the system’s power
and contributes about 6% of its noise power, resulting in a
resolution of 10.1 mPa (rms) with a range of ±100 Pa in a
0.5-ms conversion time.

The rest of this paper is organized as follows. Section II
discusses the main techniques used in the ROIC to achieve
high energy efficiency and high precision. Section III describes
the implementation details of the ROIC, while the experi-
mental results of the ROIC and pressure sensing system with
temperature calibration are presented in Section IV. Section V
provides the conclusion.

II. SYSTEM DESIGN OF THE ROIC

Differential pressure sensors with a range of ±100 Pa
are required in air gages for industrial applications [7]. The
AC4010 is a high-resolution bridge-type piezo-resistive pres-
sure sensor that can cover this range. To achieve a resolution of
10 mPa (rms) over 1-kHz bandwidth, its biasing voltage Vbias
should be at least 5 V, thus resulting in a sensitivity of
about 45 μV/Pa. However, this will be superimposed on a
bridge offset of about 100 mV, due to the mismatch of its
piezo-resistive elements (nominally 3.7 k� each), to ensure
that the ROIC does not limit the sensor’s performance,
it should be designed to meet the specifications in Table I.

A. Dual-Supply Sensing System

Conventionally, the supply voltage of an ROIC must be
somewhat larger than the bridge’s CM level, despite the fact
that the bridge’s output is quite small [2], [9], [10], [17]. This

TABLE I

TARGET SPECIFICATIONS OF THE ROIC

Fig. 3. (a) Proposed dual-supply sensing system (single-ended representa-
tion). (b) CCIA’s CC input chopper.

constraint leads to a tradeoff between bridge sensitivity and
ROIC power dissipation.

One way of avoiding this tradeoff is to exploit the beyond-
the-rails capability of a CCIA. As shown in Fig. 3(a), the
bridge can then be powered from a 5-V supply, while the
ROIC can be powered from a 1.8-V supply voltage. The only
active components exposed to the bridge’s 2.5-V CM voltage
are the switches of the CCIA’s CC input chopper [Fig. 3(b)],
which can be realized with deep n-well CMOS (DMOS) tran-
sistors or I/O devices [18]. The CCIA’s input capacitors can
be implemented by metal–insulator–metal (MIM) capacitors,
which, in most processes, are capable of handling even higher
voltages.

B. Compensating the Bridge Offset

Due to bridge mismatch, however, increasing Vbias will also
increase bridge offset. Since this can be quite large, it will limit
the IA’s useful output range, and hence its gain. As a result,
the succeeding ADC will need to have a wider dynamic range
and lower input-referred noise, both of which will result in
increased power dissipation.

To avoid this problem, bridge offset should be compensated
before amplification. This can be done by using: 1) an external
offset compensation network to trim the bridge [19] and
2) a current DAC to inject a programmable current into
the bridge [20]. However, the bridge and the compensation
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Fig. 4. Block diagram of the CCIA illustrating the operation of the bridge
offset compensation and dual-path input impedance boosting loops.

circuitry will inevitably have different temperature dependen-
cies, leading to significant temperature drift.

In this paper, the CCIA is used to implement a ratio-metric
offset-compensation scheme (Fig. 4). The bridge output Vin
is added to an offset-compensating signal generated by a
capacitive DAC (CDAC1), which is referred to Vbias via a
resistive divider. By implementing both Cin (input capacitor of
the CCIA) and CDAC1 with MIM capacitors, both the bridge
output Vin and the divider’s output kVbias will respond in the
same way to temperature and Vbias variations.

Note that the residual bridge offset and bridge sensitivity
will still drift over temperature. As shown in Fig. 1, such errors
can be absorbed by an overall system calibration. However,
the proposed bridge offset compensation minimizes the errors
contributed by the ROIC, ensuring that the overall system
accuracy is mainly limited by the bridge sensor.

C. Dual-Path Input Impedance Boosting Scheme
A known drawback of CCIAs is that they output spikes at

twice the chopping frequency (2 fchop) [3]. This is because
Cin must be rapidly charged and discharged at the chopping
transitions. To reduce the amplitude of these spikes, most
of the required charge can be provided from the output
of the CCIA via a positive feedback path [3] or by an
auxiliary pre-charge path [6], which also boosts the CCIA’s
input impedance. Although the boosting effect of a positive
feedback path is limited by parasitic capacitors and stability
considerations [3], it is more appealing in this design, as a pre-
charge path requires active buffers which would compromise
the CCIA’s beyond-the-rails capability.

As shown in Fig. 4, a positive feedback path can be
realized with an extra capacitor Cpf which should provide a
compensation charge Qcom [3], given by

Qcom = CpfVout ≈ CinVin = Qin (1)

where Vin consists of two parts, the useful bridge signal Vsig
and the bridge offset Vos. However, in the proposed design
(Fig. 4), Vos will be partially canceled by CDAC1 before
amplification. To still provide a charge proportional to the
compensated offset, a capacitive DAC (CDAC2) is added, and

Fig. 5. Different ways to avoid digitizing the spikes of a CCIA by (a) using
fs = 2 fchop, (b) oversampling at quiet moments, and (c) using gated
continuous-time integration.

driven by the same code as CDAC1. The total compensation
charge is now given by

Qcom = CpfVout + QDAC

≈ Cin(Vsig + Voff) = Qin. (2)

D. Gating the Output of the CCIA
The CCIA’s residual output spikes can be avoided by

using a discrete-time �� modulator (DT��M) to synchro-
nously sample the CCIA’s output. The modulator’s sampling
frequency fs will then be equal to 2 fchop, as shown in
Fig. 5(a) [3], [5]. Assuming that the CCIA is a single pole
system without slew rate limitations, a minimum bandwidth
BW is needed to achieve sufficient settling [21]

BW ≥ 2 · (m + 1) · fs · ln 2 (3)

where m is the target resolution of the ROIC in bits. Due to the
sampling process, noise within a bandwidth of π /2•BW will
fold back to baseband, increasing the CCIA’s in-band noise
power density. This significantly decreases the ROIC’s energy
efficiency [5]. A dynamic RC filter can be used to limit the
noise bandwidth before sampling [Fig. 5(b)] at the expense of
increased design complexity [6].

In this design, the CCIA’s residual spikes are avoided by
gating the input of a CT��M [4]. As shown in Fig. 5(c),
the input of the CT��M is connected to the CM voltage for
the duration of the spikes, after which it is connected to the
output of the CCIA. In this way, the errors associated with the
CCIA’s spikes are reduced without noise fold back. Compared
to a switched-capacitor (SC) load, the resistive load presented
by the modulator significantly relaxes the requirements on
the CCIA’s driving capability and thus further improves the
ROIC’s energy efficiency. Since the CCIA’s output is effec-
tively duty cycled, these benefits are acquired at the expense
of a small reduction (2.5%) in its effective gain.
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Fig. 6. Simplified circuit diagram of the bridge ROIC.

Fig. 7. Schematic of the CCIA main amplifier with demodulating chopper.
(Bias circuits and CM feedback loop circuits are not shown.)

III. ROIC IMPLEMENTATION DETAILS

A simplified circuit diagram of the proposed ROIC is
shown in Fig. 6. It consists of a CCIA with bridge offset-
compensation circuitry and a gated CT��M. In this section,
the implementation of these blocks will be discussed in detail.

A. CCIA

The gain of the CCIA is set at 40 dB. To achieve high linear-
ity, the CCIA is built around a two-stage Miller compensated
amplifier, with a dc gain of about 124 dB. The bridge has
an equivalent source resistance of 3.7 k�, corresponding to a
noise density of 7.8 nV/

√
Hz. The CCIA’s input-referred noise

should then be lower than this, which is quite challenging. The
first stage consists of a chopped folded-cascode amplifier with
a very large PMOS input pair (1280 μm/0.2 μm) that is biased
in weak inversion to efficiently realize a trans-conductance of
about 6.7 mS. As shown in Fig. 7, the input pair consuming
most of the current of the amplifier. To mitigate the noise gain
penalty due to the input pair’s parasitic capacitance (1.3 pF),
the CCIA’s input capacitors Cin were set to 10 pF [3].

In this design, the offset and 1/ f noise of the 1st stage is
mitigated by chopping, while that of the 2nd stage is sup-
pressed by the gain of the 1st stage. Often [2], [22], and [23],
the demodulating chopper (drawn with dotted lines in Fig. 7)
is located at nodes A and B and C and D. In this case,

Fig. 8. Simulation results. (a) Amplifier’s input-referred noise PSD.
(b) Amplifier’s open-loop gain.

Fig. 9. Simplified circuit diagram of the offset compensation DAC.

the cascodes are not chopped and their 1/ f noise becomes
dominant, as shown in Fig. 8(a).

This can be addressed by moving the chopper to the output
of the 1st stage, i.e., nodes E and F in Fig. 7. As shown
in Fig. 8(a), chopping at 200 kHz results in a simulated
3.2 mHz 1/ f noise corner. However, the chopped parasitic
capacitors (Cp1,2) at these nodes will form an SC resistance,
which, in turn, will reduce the gain of the 1st stage. To mit-
igate this, the cascode transistors were made relatively small
(M7,8: 24 μm/1.8 μm and M9,10: 60 μm/1.2 μm), and the
layout was optimized. In this way, chopping only reduces the
open-loop gain by 2 dB [Fig. 8(b)].

To minimize their noise contribution, the CCIA’s bias resis-
tors Rb should be in excess of 250 M�. To conserve area,
they are implemented as SC resistors to achieve good linearity
and stability over process and temperature variations [18].
The input chopper consists of capacitively driven DMOS
transistors, allowing the input of the CCIA to handle bridge
CM voltages up to 3.3 V (limited by the ESD-protection
diodes) while operating from a 1.8-V supply.

B. Offset Compensation DAC
The bridge offset-compensation circuit consists of a

5-bit (D5−1) binary weighted DAC with a redundant LSB (D0)
and a bank of chopper switches (Fig. 9). It is controlled by
an external trimming code (D5−0). The DAC compensates
the bridge offset by effectively adding a scaled and chopped
version of Vbias to the output of the bridge.

The total DAC capacitance should be kept small to minimize
its impact on the CCIA’s noise gain [18]. With a 5-V bias,
a ±100-mV bridge offset can be expected. To bring the
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Fig. 10. Gated 2nd-order CT��M.

offset into the input range of the CCIA, two references,
k1Vbias (1.25 V for D5−3) and k2Vbias (0.625 V for D2−0), are
derived from Vbias by a resistive divider. In this way, the DAC
capacitance is reduced from 1.6 to 0.87 pF, 11.4× smaller
than Cin, ensuring that the divider’s noise contribution is much
less than the CCIA. The unity capacitances are 49.1 fF for
D5−1 and 35.6 fF for D0 (the smallest in the process).

The resistive divider has a total resistance of 36 k�, and
is made from polysilicon resistors, which can handle bridge
bias voltages up to 6.6 V. The chopper switches are protected
by connecting the node P to an ESD-protected pad to ensure
that the chopper gates are not exposed to voltages above the
supply (Fig. 6). The polarity of the compensating signal can
be inverted via the choppers, so the CCIA’s output can be
expressed as (VinCin± QDAC1)/Cfb. The simulations show that
the CCIA, including the DAC, achieves an input-referred noise
density of 3.4 nV/

√
Hz and a 1/ f noise corner of 18 mHz.

C. Gated CT��M
As shown in Fig. 10, the CT��M employs an energy-

efficient 2nd-order feedforward topology. It consists of a gated
RC integrator (1st stage), a Gm–C integrator (2nd stage),
a 1-bit quantizer, and a resistive feedback DAC. The mod-
ulator’s sampling frequency fs = 2 MHz, which is enough to
achieve the target resolution.

The 1st integrator, consuming about 190 μA, employs
a folded-cascode OTA (A) with an 82-dB dc gain and a
trans-conductance of about 0.86 mS. Rin and RDAC, each
200 k�, are the main thermal noise sources of the CT��M.
RZ1 (0.74 k�) is added, in series with Cint1 (35 pF), to com-
pensate the right-half plane zero of OTA-based RC integrator.
The 1st integrator is also chopped to reduce the impact of
its 1/ f noise on the ROIC’s input-referred noise. Its chop-
ping frequency is set at fs to minimize quantization noise
fold back [24]–[26]. Although this is much higher than the
1st integrator’s 1/ f corner, the associated drawbacks, such
as reduced input impedance, reduced output impedance, and
increased residual offset, are suppressed by the gain of the
preceding CCIA.

The 1st integrator is gated by periodically swapping its input
between the CCIA’s output and the CM voltage. For linearity,
the associated switches are located at the integrator’s virtual
ground to ensure that their ON-resistance is signal independent.
As shown in Fig. 10, the gating scheme ensures that the

Fig. 11. Source degenerated OTA of the 2nd integrator.

CCIA’s output is always loaded by the input resistors Rin,
and thus minimizes gating transients. In this paper, the gating
period is 2.5% of each chopping phase, resulting in a pro-
portional decrease in the CCIA’s equivalent gain. This gain is
well-defined as φgate, φchop, and φs are derived from a 16-MHz
external clock.

As shown in Fig. 11, the 2nd integrator employs a Gm–C
topology based on a 310 source degenerated OTA (Gm in
Fig. 10). The 2nd integrator employs a Gm–C topology based
on a source degenerated OTA (Gm in Fig. 10). Since the
2nd integrator’s noise will be suppressed by the gain of the
1st, the OTA only draws 20 μA.

The feedforward path of the 2nd-order ��M is realized
by adding Rz2 (110 k�) in series with integration capac-
itor Cint2 (8 pF), with the value of the coefficient being
well-defined by the ratio between the degeneration resis-
tors Rs (100 k�) and the feedforward resistors Rz2. Thus,
the transfer function H (s) from the input to the output of
2nd integrator can be expressed as

H (s) = gm2

(
RZ2 + 1

sCint2

)
≈ Rz2

Rs
+ 1

s RsCint2
(4)

where gm2 is the transconductance of the OTA Gm shown
in Fig. 10.

The jitter of the sampling clock will translate into input-
referred noise, thus degrading the signal-to-noise ratio (SNR)
of the CT��M. However, the jitter requirement is relaxed by
the relatively narrow signal band. The SNRjdac determined by
the sampling clock jitter σjdac is given by [1]

SNRjdac = 10 · log

(
1

16 · OSR · f 2
b · σ 2

jdac

)
(5)

where over sampling ratio (OSR) is 1000, and fb is 1 kHz.
Assuming 10-ps (rms) jitter, SNRjdac is 118 dB, which is
sufficient for bridge readout. In the worst case, 42-ps (rms)
jitter would result in a noise level close to that of the ROIC.
However, this noise power contribution, caused by clock jitter,
to the pressure sensing system is less than 6%.

Similarly, the jitter of the gating clock σjgate in the 1st inte-
grator also degrades the modulator’s in-band noise perfor-
mance. SNRjgate determined by this jitter is given by [27]

SNRjgate = 10 · log

⎛
⎝ 1

4 · (
VIAO/Vref

)2 · fb · fgate · σ 2
jgate

⎞
⎠ (6)
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Fig. 12. Micrographs of the ROIC.

Fig. 13. Measured PSD of the ROIC’s bitstream with 2 × 107 samples.
(8× averaging was applied, and the residual offset was subtracted.)

whereVIAO is the CCIA output signal, and fgate is 400 kHz.
In the worst case, when VIAO is ±1 V, the resulted SNRjgate
with 10-ps (rms) jitter is 133 dB, 15 dB lower than
the SNRjdac.

IV. MEASUREMENT RESULTS

The ROIC was implemented in a 180-nm standard CMOS
technology and has an active area of 0.73 mm2 (Fig. 12).
The core of the ROIC, including the CCIA, CT��M, CDAC1,
CDAC2, and clock generator, consumes 1.2 mA from a
1.8-V supply. The on-chip resistive divider is supplied by the
bridge bias voltage Vbias, which may be as high as 6.6 V.

The performance of the ROIC and that of the entire
pressure sensing system have been characterized experimen-
tally. The digital processing of the calibration has been done
in MATLAB. The results will be described in Sections IV-A
and IV-B.

A. Electrical Measurements

The fast Fourier transform (FFT) plots of the ROIC’s output
bitstream, based on 2 × 107 samples, is shown in Fig. 13.
It can be seen that the modulator’s 1st integrator must, indeed,
be chopped to ensure that the ROIC’s noise spectrum becomes
flat from 0.1 Hz to 2 kHz. The spectrum corresponds to a
3.7-nV/

√
Hz noise level. By decimating the ROIC’s output

with an off-chip sinc3 filter and then acquiring 2×108 samples
of the filter’s output over 100 s, its 1/ f corner frequency was
found to be about 0.04 Hz.

Fig. 14. Measured relative gain error, offset voltage, offset current, and the
input impedance of the ROIC.

Fig. 15. Measured CMRR of (a) ROIC and (b) INL.

Measurements on 10 samples show that the ROIC achieves
0.3% relative gain error and 7-μV voltage offset (Fig. 14).
Enabling CDAC2 reliably boosts its input impedance by a
factor of 5 (Fig. 14). The CMRR of the ROIC is shown in
Fig. 15(a).

To test the effectiveness of the gating technique, a 118-mV
signal with 2-k� source impedance was applied to the inputs
of the ROIC when the resistive voltage divider was biased
at 6 V. Gating the CT��M reduces the ROIC’s gain tem-
perature drift from 74.6 to 8.9 ppm/°C, and reduces its
offset temperature drift from 105 to 12.5 nV/°C. As shown
in Fig. 15(b), gating the CT��M also improves the ROIC’s
INL from 105 to 28 ppm.

The ROIC’s performance is summarized in Table II and
compared with the state of the art. It achieves both high
accuracy and energy efficiency for ±10-mV bridge sig-
nals, while accommodating up to 3.3-V input CM voltage.
With a 3.7-nV/

√
Hz input-referred noise PSD, it achieves an

NEF (in [28]) of 5 and a power efficiency factor (PEF) (in [29])
of 44.

B. System Measurements and Temperature Calibration
The ROIC was combined with an AC4010 pressure sensor

to realize a pressure sensing system. As shown in Fig. 16(b),
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TABLE II

STATE-OF-THE-ART ROICS

Fig. 16. (a) AC4010. (b) Differential pressure measurement setup.

the water-level difference in a U-tube manometer was precisely
controlled by a linear stage to create a well-defined differential
pressure [30].

Moving the right leg of the U-tube manometer relative to
the left one by ±10 mm with a 2.5-mm step, then results
in ±100-Pa pressure change. The real-time response of the
sensing system is shown in Fig. 17(a). The pressure sensing
system has a pressure sensitivity of 0.0025 (1/Pa). To eval-
uate the system’s resolution, the inputs of the differential
pressure sensor were shorted to avoid mechanical interference
from the environment. The pressure resolution, obtained from
the standard deviation of 5000 samples (decimated by sinc3

filter with a length of 1000), is found to be 10.1 mPa

Fig. 17. Measurement results of the sensing system. Decimated output
of the ROIC (a) with swept pressure input (the residual offset has been
subtracted) and (b) with zero pressure input (shorted, the residual offset has
been subtracted).

with a 0.5-ms conversion time for each decimated sample
[Fig. 17(b)].

In practice, the temperature drift of a bridge sensor can
be corrected by system calibration (Fig. 1). This usually
involves exposing the bridge sensor to at least two well-defined
temperature levels and measuring its output. The sensor’s drift
can then be corrected if the ambient temperature is known,
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Fig. 18. Bridge sensor with reference resistor for temperature calibration.

Fig. 19. Measured bridge offset drift (a) before and after calibrations and
(b) residual offset drift.

e.g., by realizing a temperature sensor in the ROIC. However,
the accuracy of this approach is limited by bridge self-heating,
which can create temperature differences between the bridge
and temperature sensor.

A more accurate approach is to use the bridge itself as a
temperature sensor, by measuring its temperature-dependent
resistance. To calibrate the bridge resistance over temperature,
both the bridge sensor and the ROIC were placed in an
oven-stabilized aluminum block next to a PT100 thermometer
(Fig. 18). A reference resistor (100 �, ±3 ppm/°C [31]) was
placed in series with the bridge as a shunt current sensor.
The voltage across the reference resistor was read out by
Keithley 2002. In this way, the bridge resistance, and thus,
the temperature on the bridge can be measured.

The effectiveness of the resulting calibration was tested by
measuring the bridge sensor’s offset drift over temperature.
After a two-point calibration, the offset drift decreases from
244 μV over a 50 °C range, to about 3 μV [Fig. 19(a)].

To compare the results of both methods and the output of
the bridge is measured by both the ROIC and a Keithley
2002 (Fig. 18). As shown in Fig. 19(b), the residual offset
with monitoring the bridge resistance (red curves) is about 2×
better than that obtained by monitoring the bridge temperature
using PT100 thermometer (black curves). The residual errors
obtained by the ROIC (solid curves) are in good agreement
with that obtained by the Keithley 2002 (dashed curves).

V. CONCLUSION

An energy-efficient ROIC for a differential pressure sensing
system has been presented. To maximize bridge sensitivity
with high energy efficiency, the beyond-the-rails capability of a
CCIA is exploited to allow the bridge biasing voltage to exceed
the ROIC’s supply voltage. A bridge offset compensation is
implemented in a ratio-metric manner, which is robust to
variations in temperature and bridge biasing voltage. A dual
positive feedback path scheme is used to boost the input
impedance of the ROIC. A gated-input CT��M is proposed
to digitize the amplified signal and avoid the error caused
by the output spikes of the CCIA. Measurements show that
the ROIC achieves both precision and energy efficiency with
an NEF of 5, which represents the state of the art. The
ROIC was tested together with a piezo-resistive differential
pressure sensor. The experimental results show that the applied
techniques are effective. The resulting pressure sensing system
achieves 10.1-mPa (1σ) resolution with a 0.5-ms conversion
time. The ROIC dissipates about 30% of the system’s power
dissipation and contributes about 6% of its noise power.
Moreover, a temperature calibration, to reduce the bridge tem-
perature dependence, has shown a factor of 80× improvement
on the system’s offset drift over a 50 °C range.
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