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Abstract

In the recent development of wireless communication several applications, such as spec-
trum sensing for cognitive radio are only interested in the power spectrum. These
applications do not require the reconstruction of the original analog signal. Accord-
ing to the Whittaker-Kotelnikov-Shannon-Nyquist theorem, the sampling rate must
be at least twice the maximum frequency present in the signal if we want to recover
the signal from its samples. If we estimate the power spectrum directly by using a
high-rate analog-to-digital converter, we will find that such high-rate ADCs consume a
large amount of power because of its high sampling rate. To reduce the burden on the
ADCs, we investigate compressive power spectrum sensing. Since the power spectrum
is calculated based on the autocorrelations of the signal, we do not need to recover
the signals. This allows a reduction of the sampling rate compared with the Nyquist
rate while maintaining perfect power spectrum reconstruction. In this thesis, we study
power spectrum estimation of a wide-sense stationary signal. In general, the signal,
whose power spectrum is to be estimated, is sampled by multi-coset sampling. The
parametric method to estimate the power spectrum of the signal is also evaluated and
the study of the performance of non-uniform sampling is explored as well.
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Introduction 1
In this thesis, we study compressive power spectrum estimation using non-uniform
sampling. Power spectrum estimation is the problem of determining the distribution of
the power of a signal over frequency. The word ”compressive” means that the number
of samples we used to estimate the power spectrum of the signal is less than the one
produced by the Nyquist rate sampling. The purpose of this chapter is to introduce
the problem addressed in the thesis, motivate the need for studying compressive power
spectrum estimation and explain the organization and content of the following chapters.

1.1 Motivation

Nowadays, due to the development of the wireless technologies, the demand for spec-
trum resources has been rapidly increased. Wireless systems require spectrum to oper-
ate, but interference is likely to happen if radios operate on the same band at a certain
place. Therefore, spectrum is a potentially scarce resource. In most of the countries,
spectrum is regulated and most bands are allocated to licensed users in given locations.
On one hand, such static spectrum allocation policies lead to significant underuse of
spectrum [15]. On the other hand, most of the spectrum has already been allocated to
licensed users. Take the United States frequency allocations for instance. From Fig. 1.1
we can see that National Telecommunications and Information Administration’s (NTI-
A) frequency allocation chart indicates full allocations over all of the frequency bands.

With the current spectrum allocation, no available bandwidth is left for future
wireless systems. And the Federal Communications Commission (FCC) has started
considering dynamic approaches for spectrum sharing and the IEEE has launched the
802.22 standards process to use TV-band spectrum holes for wide-area Internet service
[8], [25]. A statistical nation-wide perspective is given by the plot overlaid on the
Midwest. Sampling the USA uniformly by area, on average 56% of the 67 television
channels are free [24].

The background of Fig 1.2 is a map of the USA with the shading representing the
population density. The red dots indicate the locations of all TV transmitters while
the purple dots correspond to transmitters for channel 40. The green zone on the left
zooms in on the San Francisco Bay Area to show the footprints where different stations
can be received with an electric field strength above 41.19dBu for 50% of the locations
more than 90% of the time. From this picture, it is clear that spectrum holes are
inevitable. There is always going to be room for non-interfering radio transmissions
in the interstices between channel footprints [27]. The plot along the top of Fig 1.2
shows the number of free television channels on a simulated drive from Berkeley, CA to
Washington, DC along Interstate 80. The upper blue curve is the size of the opportunity
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Figure 1.1: The NTIA frequency allocation chart [18]

Figure 1.2: The nature of spectrum holes in the television bands [24]

based on International Telecommunications Union (ITU) models for wireless signal
propagation. The lower tan curve illustrates the challenge in using cognitive radios,
which is about making such radios smart enough to share spectrum [24].

Cognitive radio, first proposed in [19], is a technology with great promise to ex-
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ploit the under-utilized spectrum. It is expected to be booming in the next wireless
communication development. The cognitive radio has the ability to sense the com-
munication environment dynamically and it can intelligently adapt the communication
parameters (carrier frequency, bandwidth, power, coding schemes, modulation scheme
etc.) [14]. The unused portion of licensed spectrum is called as white space. White s-
pace could be defined by time, frequency and maximum transmission power at a specific
location. Cognitive user should be able to sense the environment for available white
space. Besides, cognitive user should be able to know the application requirements and
adopt their performance parameters based on user request and available resources [16].
Secondary (cognitive) user can utilize the white space in licensed spectrum without
affecting the utilization of the spectrum by primary user. As we can see, it maximizes
the efficiency of licensed spectrum utilization indeed.

In order to protect the primary users from unlicensed users, spectrum sensing is a key
function. With the spectrum sensing, secondary users are able to decide whether a fre-
quency band is empty or not. There are several spectrum sensing methods for cognitive
radio, such as energy detector based sensing, waveform-based sensing, cyclostationarity-
based sensing, radio identification based sensing, matched-filtering and other alternative
spectrum sensing method. [32]. Cyclostationarity feature detection method detects pri-
mary user transmissions by making use of the cyclostationarity features of the received
signals. Cyclostationary features like mean and autocorrelation, can be intentionally
induced to calculate power spectrum estimation. The accuracy and complexity compar-
ison of main sensing methods is showed in Fig 1.3. In our thesis, our power spectrum
estimation also use the autocorrelations of the received signals, like cyclostationary
feature detection. However, our power spectrum estimation method is different. The
main difference is that the signal we used in our thesis is wide-band signal.

Figure 1.3: Main sensing methods in terms of their sensing accuracies and complexities
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According to the classical Shannon-Nyquist-Whittaker-Kotelnikov sampling theo-
rem [26], a band limited real signal x(t) (which means the frequency domain of the
signal meet X(f) = 0 for f > fmax and f < −fmax(Hertz), where fmax is a positive
number) can be fully reconstructed from its samples x(nT ) if the sampling frequency
fs =

1
T
, where T is the sampling time, satifies fs ≥ 2fmax. This indicates that the sam-

pling rate of a real analog signal should be at least twice as the maximum frequency of
the signal. When the signal bandwidth is very large, the sampling rate, according to the
Nyquist criterion (called Nyquist rate), should also be large. Hence sampling process
executed by ADC will need a high power consumption. Our works in the thesis are
aiming at estimating the power spectrum of the wide-band wide-sense stationary(WSS)
signals. The outline and contribution of the thesis is showed in the next section.

1.2 Outline and Contributions

Here we would like to provide an overview of the work described in this thesis. The first
contribution is the parametric power spectrum estimation. When using the parametric
power spectrum estimation, we achieve a less compression rate comparing with the
non-parametric estimation, which indicates that we can estimate the power spectrum
of the signal with less samples. The second contribution is the sub-optimal minimal
sparse ruler we have presented and the comparison between the sub-optimal rulers we
presented and the existing sub-optimal rulers. The last contribution is the analysis of
the normalized mean square error (NMSE) of the compressive power spectrum estima-
tion of Gaussian white noise signal using alternative time domain approach discussed
in [1]. The main content of each chapter in the thesis is outlined as follows.

Chapter 1: Introduction

In this chapter, an introduction is given to describe the background of the power spec-
trum estimation. The motivation for the compressive power spectrum estimation is
presented. We generally state that the spectrum resources we have could not match
the demand of the wireless devices, and one of the solution is cognitive radio. To let
the unlicensed user shares the spectrum resources with the licensed user, the unlicensed
user have to detect whether the frequency band is occupied or not. Therefore, power
spectrum estimation is needed. Moreover, the current analog-to-digital converter could
not offer such a high speed sampling performance, thus compressive power spectrum
estimation is proposed.

Chapter 2: Background discussion

In this chapter we present a literature review of some specific compressive power spec-
trum estimation techniques. We end the chapter by describing the alternative time
domain approach of [1] which we adapt in our thesis as the theoretical foundation. Our
work is based on this approach.

Chapter 3: Comparative analysis on Parametric and

Non-parametric estimation
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Based on alternative time domain approach, we compare the performances of paramet-
ric method and the non-parametric method for power spectrum estimation. In this
chapter, no matter what method we employ, we need to calculate the autocorrelations
of the original signal first. In non-parametric method we directly use the autocorre-
lations to estimate the power spectrum. However, in parametric method presented in
this chapter, we use the calculated autocorrelations to estimate the parameters in the
AR model which we use to model the signal. After that, we can calculate the power
spectrum with the parameters in AR model. Moreover, we propose an simple sampling
pattern to replace the minimal sparse ruler.

Chapter 4: Parametric Estimation of Power Spectrum

using AR model

In this chapter, we present a new parametric methods to estimate the parameters in
the signal model we adapt. Different from the method used in previous chapter, the
parametric methods use the compressed signal directly, without calculating the auto-
correlations of the original signal. We calculate the autocorrelations of the compressed
signal, and determine the theoretical autocorrelations of the compressed signals using
AR or ARMA models. Then, we can use the optimization methods to estimate the
parameters. Using those methods, we can decrease the compression rate compared to
what can be achieved by the non-parametric power spectrum estimation.

Chapter 5: Sub-optimal sparse ruler

In this chapter, we focus on the problem of designing sampling matrices for compressive
sampling. The important rule for the sampling pattern is that the lags between samples
should cover the desired autocorrelation range while the number of samples should be
as less as possible. Certainly, the minimal sparse ruler offers the best compression.
Unfortunately, there exists no quick procedure to find minimal sparse rulers: one must
perform a brute-force search over the space of length-N − 1 sparse rulers to find a
minimal one [22]. Therefore, we design some sub-optimal sparse rulers with certain
procedure. The comparison of the sub-optimal sparse rulers we present and the existing
sub-optimal sparse rulers has also been presented.

Chapter 6: Performance Analysis of Alternative Time

Domain Approach and cosets selection

In this chapter, we study the performance of alternative time domain approach using
non-parametric method for Gaussian white noise signal. We determine the normalized
mean square error of the non-parametric method using M -branches sampling device.
Then we analyse the relation between NMSE and the sampling pattern to determine
the cosets selection. Besides, we study the performance of our approach for other kinds
of wide-sense stationary signal and for different cosets selection.

Chapter 7: Conclusion and future works

This chapter summarizes the work described in the thesis and provides some suggestions
for the further research and development on this topic.

5
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Background discussion 2
The goal of power spectrum estimation is to describe the distribution over frequency of
the power of the signal we estimate, based on a finite set of data. The power spectral
density (PSD) is the concept to describe the frequency distribution of the power of the
signal. The PSD of a stationary random process x[n] is mathematically related to the
correlation sequence rx(n) by the discrete time Fourier transform, which is given by

Sx(e
jw) =

+∞∑
n=−∞

rx(n)e
−jwn − π < w ≤ π (2.1)

with
rx(n) = E[x∗(m)x(m+ n)]. (2.2)

2.1 Review of Compressive power spectrum estimation

The main methods for wideband power spectrum estimation can be divided into non-
parametric methods and parametric methods [11].

1 Nonparametric methods are those in which the power spectrum density is esti-
mated directly from the signal itself. Two common non-parametric methods are
periodogram method and correlogram method [26]. In periodogram method, the
power spectrum is estimated as

ϕ̂x,p(w) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[t]e−jwn

∣∣∣∣∣
2

, (2.3)

while in the correlogram method, the power spectrum is estimated as

ϕ̂x,c(w) =
N−1∑

k=1−N

r̂x[k]e
−jwk, (2.4)

where

r̂x[k] =
1

N − k

N−1∑
n=k

x[n]x∗[n− k] 0 ≤ k ≤ N − 1. (2.5)

2 Parametric methods are those in which the power spectrum density is estimat-
ed from a signal that is assumed to be the output of an LTI system driven by
white noise. Examples are the autoregressive (AR) and the autoregressive mov-
ing average (ARMA) methods. These methods first estimate the parameters of
the system model used to describe the signal. Then according to the parameters,
power spectrum is calculated.

7



Compressive power spectrum estimation has been carried out several years ago. It has
been showed that the analog and the digital models can be treated and analyzed in a
uniform way in the frequency domain [7]. Therefore we only need to pay attention to
the digital model. There are several compressive power spectrum estimation for specific
cases. If we have already known the detailed information about the transmitted signals,
such as the carrier frequency, the bandwidth, the waveform of the signal and the second
order moments of the signal, we can estimate the power spectrum by making use of
those prior information [23].

Power spectrum estimation is useful in wireless sensor network applications. One
example is in a cognitive radio network, where a cognitive radio user is allowed to bor-
row an unused licensed spectrum from licensed user. Here the CR has to perform power
spectrum sensing to find the unused spectrum that can be borrowed. However, some-
times, the sensor, the CR user, may suffer from multipath fading or severe shadowing,
leading to a wrong power spectrum estimation result. Therefore, multi sensor receivers
can cooperate with each other, exchange results, to improve the power spectrum esti-
mation accuracy [2]. Cooperative compressive power spectrum sensing can also be used
to reduce the sampling rate for the sensors in the cooperative group [3]. Cooperative
distributed compressive spectrum sensing can be used to reduce the data acquisition
costs by exploiting the signal sparsity [33]. Here, however, we focus on one CR us-
er, without any prior information, and we focus on some approaches discussed in [1],
which basically classify their approaches into time domain, alternative time domain,
and frequency domain reconstruction approaches.

2.2 Alternative time domain approach of [1]

In this thesis, all the work is based on the alternative time-domain approach discussed
in [1]. The following is a short introduction to the alternative time-domain approach.

Let us define x(t) as the received wide-sense stationary signal, which is sampled
using multi-coset sampling [13][17][28] with N cosets. We then define x[k] as the
N × 1 vector containing the (k + 1)-th block of N consecutive received samples, i.e.,

x[k] = [x[kN ], x[kN + 1], ..., x[kN +N − 1]]T . (2.6)

The sub-Nyquist sampling is implemented by selecting M out of N samples in each
block. This is done by activating only M cosets in the multi-coset sampler, which can
be explained by using Fig 2.1 [1]. Note that Fig 2.1 is a general sampler, which can be
used to implement multi cosets sampling by setting the entries ci[n] to 1 at particular
n and to 0 at other indices n. Based on Fig 2.1, the output at the (i+ 1)-th activated
coset is given by

yi[k] =
0∑

n=1−N

ci[n]x[kN − n], i = 0, 1, . . . ,M − 1, (2.7)

where ci[n] can be perceived as the (1−n)-th element of the (i+1)-th row of an M×N
sampling matrix C, which is a selection matrix, whose rows are selected from the rows

8



Figure 2.1: Digital interpretation of the sampling device with a bank of M branches, where
each branch consists of a digital filtering operation followed by a down-sampling operation [1]

of the N ×N identity matrix IN . Note that {ci[n]}i,n indicates which cosets out of N
cosets are selected. After rewriting the equation we have

y[k] = Cx[k] (2.8)

where

y[k] = [y0[k], y1[k], ..., yM−1[k]]
T (2.9)

C = [c0, c1, ..., cM−1]
T (2.10)

with ci = [ci[0], ci[−1], ..., ci[1−N ]]T . In our work, there is only one element of ci that
will be set to one while others will be set to zero. After calculating the autocorrelation
matrix of y[k], which is given by Ry[0] = E(y[k]yH [k]), we obtain

Ry[0] = CRxC
T (2.11)

where Rx = E(x[k]xH [k]). Then we stack all columns of Ry[0] into the M2 × 1 vector
vec(Ry[0]). We define vec(·) as an operation that stacks columns of a matrix into a
vector and define the unvec(·) as the opposite operation. We then obtain

ry[0] = vec(Ry[0]) = (C⊗C)vec(Rx). (2.12)

Since all columns of Rx contain the same information, vec(Rx) can also be presented
by

vec(Rx) = Trx (2.13)

where rx = [rx[0], rx[1], ..., rx[N − 1], rx[1−N ], ..., rx[−1]]T and T is a special N2 ×
(2N − 1) repetition matrix with the i-th row of T given by the ((i − 1 + (N −
2)
⌊
i−1
N

⌋
) mod (2N − 1) + 1)-th row of the identity matrix I2N−1. By rewriting (2.12),

we obtain

ry[0] = (C⊗C)Trx = Rcrx. (2.14)
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In practice, the autocorrelation ry[0] has to be estimated as r̂y[0], whose elements can
be written as

r̂yi,yj [0] =
1

K

K−1∑
k=0

yi[k]y
∗
j [k], i, j = 0, 1, . . . ,M − 1. (2.15)

The estimate of rx is then given by r̂x, which can be computed from r̂y[0] by consider-
ing (2.14) and using least squares method if Rc has full column rank, i.e.,

r̂x = (RT
c Rc)

−1RT
c r̂y[0] (2.16)

As we know, the relationship between the estimated autocorrelation and the estimated
power spectrum of the signal is given by

P̂x(e
jw) =

N−1∑
k=1−N

r̂x[k]e
−jkw (2.17)
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Comparative analysis on
Parametric and
Non-parametric estimation 3
3.1 Autoregressive (AR) model parameters estimation

While we can use the computed r̂x to estimate the power spectrum of the signal by
directly using non-parametric method, we are here also interested in power spectrum
estimation using parametric method. In the latter case, we also use the computed r̂x
above. Note that the parametric approach models the signal as a filtered white noise
signal. Here we assume that the filter is an AR model filter with the system function
given by

H(z) =
b[0]

1 +
p∑

k=1

a[k]z−k

. (3.1)

In order to estimate the parameters in the AR model, we use the Yule-Walker equa-
tions [12], which is given in matrix form as

r̂x[0] r̂x[−1] . . . r̂x[1− p]
r̂x[1] r̂x[0] . . . r̂x[2− p]
...

. . .
...

r̂x[p− 1] r̂x[p− 2] . . . r̂x[0]



a[1]
a[2]
...

a[p]

 = −


r̂x[1]
r̂x[2]
...

r̂x[p]

 . (3.2)

We can also express it as Σ̂xa = −ˆ̄rx, where Σ̂x is the p × p matrix and ˆ̄rx is
the p × 1 vector. Using the LS method we can estimate the parameters vector

â = −(Σ̂
H

x Σ̂x)
−1Σ̂

H

x
ˆ̄rx. Then we can also estimate b̂[0] in (3.1) as

b̂[0]
2
= r̂x[0] +

p∑
k=1

â[k]r̂x[k]. (3.3)

3.2 Two options in parametric power spectrum estimation

To estimate the p parameters in the AR model, we only need to know the corresponding
autocorrelation of the signal from lags 1 − p to p − 1. In Fig 3.1, the red area is the
autocorrelations we have to obtain. In our thesis, all signals we used are wide-sense sta-
tionary (WSS) signals, which have symmetry property, rx[k] = r∗x[−k]. Therefore, once
we obtain the autocorrelation of the signal at lag k, we also obtain the corresponding
autocorrelation at lag −k. Of course we can focus on more than 2p − 1 lags auto-
correlations (in the blue area in Fig. 3.1) to estimate the parameters, but it does not
make remarkable difference. Since we do not need to know the entire autocorrelations
of the N signal samples, we can make a lossy compressive sampling. We only need to
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collect autocorrelations at at least 2p− 1 consecutive lags over N signal samples. Here
we assume that we collect autocorrelation from lags −N̄ + 1 up to lags N̄ − 1, with
p ≤ N̄ ≤ N .

Figure 3.1: The autocorrelations picked to estimate parameters

After computing the AR parameters, we have two options to estimate the power
spectrum. One option is to directly estimate the power spectrum by using the estimated
parameters in (3.1) since the power spectrum can be written as

P̂x(e
jw) = σ2

∣∣∣b̂[0]∣∣∣2
|1 +

∑p
k=1 â[k]e

−jkw|2
(3.4)

where σ2 is the variance of the white noise (whose value usually be set as 1) we used
to genetic the WSS signal by passing the filter. Another option is to predict the
autocorrelations of the signal starting from lags ±N̄ − 1 up to lags ±N − 1. Then we
can estimate the power spectrum of the signal with all the estimated and predicted
autocorrelation values using (2.17).

3.3 Formulation of the experiments

Recall from [1] that the implementation of the non-parametric approach for estimating
the power spectrum in [1] sets the multi-coset sampler to operate over each block of N
samples, i.e., the multi-coset sampler in [1] is designed to theoretically collect M < N
samples from every possible block of N samples according to the (N−1)-length minimal
sparse ruler. In addition, [1] focuses to compute the autocorrelation of the signal of
interest at lags from 1−N to N − 1.

Before we proceed, we would like to introduce the concept of (N−1)-length minimal
sparse ruler. Let us introduce S as a set that consists of M indices selected from
{0, 1, . . . , N − 1} and ΩS as the set of differences of the indices, written as ΩS =
{|ni − nj| |∀ni, nj ∈ S}. The length-(N − 1) sparse ruler problem is then about finding
the set S such that {0, 1, . . . , N − 1} ⊂ Ω. If we want to minimize |S| (the cardinality
of S), the problem becomes the minimal length -(N − 1) sparse ruler problem given by

min |S| s.t.{0, 1, ..., N − 1} ⊂ ΩS. (3.5)

12



Specifically, S that satisfies (3.5) is the (N − 1)-length optimal sparse ruler.
In this chapter, we focus on parametric power spectrum estimation approaches.

And as indicated in the previous section, we would like to investigate if we can exploit
the general properties of parametric power spectrum estimation approach to reduce
the sampling rate while maintaining the ability to reconstruct the power spectrum. In
order to do that, we re-emphasize our intention to first focus on the computation of the
autocorrelation values at lags from 1 − N̄ to N̄ − 1 (instead of from 1 −N to N − 1)
with N̄ < N . Here, we perform the comparative analysis between the non-parametric
and parametric approaches by conducting two main experiments, Experiment I and II.

Experiment I consists of three sub-experiments explained as follows:

• Experiment I.A: We basically apply non-parametric approach labeled as alterna-
tive time domain approach in [1]. We reconstruct {r̂x[n]}N−1

n=1−N from compressive
samples and compute the power spectrum by applying discrete Fourier Trans-
form (DFT) on the resulting {r̂x[n]}N−1

n=1−N . This experiment plays a role as a
benchmark.

• Experiment I.B and I.C: We implement parametric approaches. Here, out of every
N samples, {x[kN+n]}N−1

n=0 , we only focus on the first N̄ samples {x[kN+n]}N̄−1
n=0

and collect M < N̄ < N samples from these N̄ samples. In other words, we have
our M ×N matrix C for these experiments given by

C = [C̄ 0M×(N−N̄)] (3.6)

with 0M×(N−N̄) the M × (N − N̄) containing zeros. Observe that, in this case,
the resulting Rc in (2.16) does not have full rank, because some columns of Rc

only contain zeros. Note that we are only interested in the reconstruction of
{r̂x[n]}N̄−1

n=1−N̄
and thus, instead of forming the M2× (2N−1) matrix Rc, we could

form another matrix Rc̄ having size of M2 × (2N̄ − 1). Here Rc̄ is formed from
Rc by removing its columns that contain only zeros. From here, we can rewrite
ry[0] in (2.14) as

ry[0] = Rc̄r̄x (3.7)

with r̄x = [rx[0], . . . , rx[N̄ − 1], rx[1 − N̄ ], . . . , rx[−1]]T . To ensure that Rc̄ is
full rank, we design the sampling pattern C̄ based on (N̄ − 1)-length minimal

sparse ruler. After obtaining the autocorrelation {r̂x[n]}N̄−1
n=1−N̄

, we estimate the
parameters in the AR model. In Experiment I.B, we use the estimated model
parameters â[k] and b̂[0] to compute the power spectrum estimate by using (3.4).

In Experiment I.C, once we obtain the model parameters â[k] and b̂[0], we use
them to predict the autocorrelation estimate r̂x[n] at lags 1−N ≤ n ≤ −N̄ and
lags N̄ ≤ n ≤ N − 1. We then compute the power spectrum estimate by applying
DFT on the resulting {r̂x[n]}N−1

n=1−N .

Experiment II also consists of three experiments.

• Experiment II.A: The experiment here is the same as what we do in Experiment
I.A, i.e., using non-parametric approach as a benchmark.
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• Experiment II.B and II.C: We implement parametric approaches. Here, out of
every N samples, {x[kN + n]}N−1

n=0 , we collect M̄ < N̄ < N samples from these
N samples, based on the algorithm we designed, showed below. In other words,
we have our M̄ ×N matrix CM̄ for these experiments. Different from the M ×N
matrix C in Experiment I.B and I.C, the matrix CM̄ here may also collect the M̄
samples from {x[n]}N−1

n=N̄
even though we again only focus on first reconstructing

the autocorrelation {rx[n]}N̄−1
n=1−N̄

. Note that besides {rx[n]}N̄−1
n=1−N̄

, we may also

obtain some of the autocorrelations {rx[n]}N−1
n=N̄

or {rx[n]}−N̄
n=1−N . We then use CM̄

to reconstruct M̄2 × (2N − 1) matrix RcM̄
by using procedure similar to (2.14).

After removing all zero columns in RcM̄
, just like in Experiment I.B and I.C, we

obtain a new matrix Rc̄M̄
. Here, we can rewrite ry[0] in (2.14) as

ry[0] = Rc̄M̄
r̄xM̄

, (3.8)

where all elements of r̄x in (3.7) exist as elements of r̄xM̄
. After obtaining the

autocorrelation values in r̄xM̄
, we first only pick {r̂x[n]}N̄−1

n=1−N̄
. Then, we use them

to estimate the parameters â[k] and b̂[0] in the AR model. In Experiment II.B, we

use the estimated model parameters â[k] and b̂[0] to compute the power spectrum
estimate by using (3.4). In Experiment II.C, once we obtain the model parameters

â[k] and b̂[0], we use them to predict the autocorrelation estimate r̂x[n] at lags
1−N ≤ n ≤ −N̄ and lags N̄ ≤ n ≤ N−1. We then compute the power spectrum
estimate by applying DFT on the resulting {r̂x[n]}N−1

n=1−N .

In Experiment II.B and II.C, the algorithm that is used to decide the selection of
M̄ samples from every N consecutive Nyquist-rate samples is given as:

1. Define SN as the set of the selected indices and first initialize SN as SN = {0, 1}.

2. We then compute ΩSN
as ΩSN

= {|ni − nj||∀ni, nj ∈ SN} but we also remove
all elements that are larger than N̄ − 1 from ΩSN

. Compute fSN
as fSN

=
{0, 1, . . . , N̄ − 1}\ΩSN

.

3. If fSN
= ∅ then SN is what we need otherwise, we do the following steps. If |SN |

is odd, then we select the median of SN and call it ñi. If |SN | is even, we sort the
elements of SN , select the two elements in the middle, and set ñi to the smallest
of these two elements. We then update SN as Sw = SN ∪ {ñi + min(fSN

)} and
repeat step 2.

3.4 Simulation study

To calculate the autocorrelations from the received signals, we adopt K = 2000 seg-
ments. In Experiment I, we have N̄ = 11 and N = 20. We use the solution for
length-(N̄ − 1) minimal sparse ruler to determine M and this leads to M = 6 and
compression rate M

N
= 6

20
. For Experiment I.C, we use {r̂x[n]}10n=−10 to predict the r̂x[n]

at lags N = −20 < n < 1− N̄ = −10 and lags N̄ − 1 = 10 < n < N = 20.
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The simulated received signal is generated by passing a white Gaussian noise through
a filter. Note that the filter that is used to generate the wide-sense stationary (WSS)
signal does not always match the examined AR model in experiments I.B and I.C. We
generally have four cases. In the first case, the filter that is used to generate the WSS
signal is given by

H(z) =
1

1 + 0.5z−1 + 0.4z−2 + 0.6z−3
. (3.9)

Meanwhile, the AR model that is assumed for the parametric approach in Experiments
I.B and I.C has order of 3 (i.e., we set p in (3.1) to p = 3). In this case the assumed
AR model accurately models the received signal. As shown in Fig. 3.2, the results of
Experiments I.B and I.C have better quality than that of Experiment I.A. It seems
that the best result is found in Experiment I.C.

Figure 3.2: Experiment I, Case 1

In the second case of Experiment I, the filter that is used to generate the signal is
the same as the one used in the first case. On the other hand, the order of the AR
model assumed for Experiments I.B and I.C is now set to p = 2. It is obvious that the
assumed AR model now does not accurately model the received signal. As shown in
Fig. 3.3, it is clear that the quality of the result in Experiment I.B is not acceptable
compared to the ones in the other two sub-experiments. The results of Experiments
I.A and I.C have nearly the same quality.

In the third case of Experiment I, the filter that is used to generate the WSS signal
is given by

H(z) =
1 + 3z−1 + 4z−2

1 + 0.5z−1 + 0.4z−2 + 0.6z−3
. (3.10)
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Figure 3.3: Experiment I, Case 2

We again assume an AR model for Experiments I.B and I.C with an order of p = 3.
Observe that the model does not match the actual signal, since the actual signal is
generated by an ARMA filter. As shown in Fig. 3.4, the estimated power spectrum in
the Experiments I.A and I.C is close to the actual power spectrum but the result in
Experiment I.B is not accurate.

In the fourth case of Experiment I, the filter that is used to generate the WSS signal
is the same as the one used in the third case. Meanwhile, the order of the AR model
assumed for Experiments I.B and I.C is now set to p = 2. Again there is a mismatch
between the model and the actual signal. However, the degree of the mismatch is
higher in this case because in the third case, the denominators of both the model and
the generating filter is a third order polynomial. As shown in Fig. 3.5, the results
are quite the same as the ones found in the third case. The only difference is that
in Experiment I.B, the result is even worse than the corresponding result in the third
case.

In Experiment II, we have N̄ = 11 and N = 20. We use the solution for length-(N−
1) minimal sparse ruler to determine MN and this leads to MN = 8 and compression
rate MN

N
= 8

20
for Experiment II.A. For Experiments II.B and II.C, we use the solution

of our algorithm listed in Section 3.3 to determine MN̄ and this leads to MN̄ = 6 and
compression rate MN̄

N
= 6

20
. For Experiment II.C, we use the {r̂x[n]}10n=−10 to predict the

r̂x[n] at lags N = −20 < n < 1− N̄ = −10 and lags N̄ − 1 = 10 < n < N = 20. The
simulated received signal is also generated by passing a white Gaussian noise through
a filter. And the filter used to generate the WSS signal does not always match the

16



Figure 3.4: Experiment I, Case 3

examined AR model in the Experiments II.B and II.C. As in Experiment I, we here
also examine four cases.

In the first case of Experiment II, the filter used to generate the WSS signal has
the same system function as (3.9). Meanwhile, the AR model that is assumed for the
parametric approach in Experiments II.B and II.C has order of 3 (i.e., we set p in (3.1)
to p = 3). In this case, the assumed AR model accurately models the received signal.
As shown in Fig. 3.6, all the results have good quality.

In the second case of Experiment II, the filter that is used to generate the WSS
signal is the same as the one used in the first case of Experiment II. On the other hand,
the order of the AR model assumed for Experiments II.B and II.C is now set to p = 2.
Now the assumed AR model does not accurately model the received signal. As shown
in Fig. 3.7, it is clear that the quality of the result in Experiment II.B is not acceptable,
the same as in the second case of Experiment I. The results of Experiments II.A and
II.C have nearly the same quality.

In the third case of Experiment II, the filter used to generate the WSS signal has
the system function as in (3.10). We assume an AR model for Experiments II.B and
II.C with an order of p = 3. Since the actual signal is generated by an ARMA filter,
the AR model does not match the actual signal. As shown in Fig. 3.8, the estimated
power spectrum in the Experiments II.A and II.C are nearly the same and are close
to the actual power spectrum of the signal, while the estimated power spectrum in the
Experiment II.B is not accurate.

In the fourth case of Experiment II, the filter that is used to generate the WSS
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Figure 3.5: Experiment I, Case 4

signal is the same as the one used in the third case of the Experiment II. Meanwhile,
the order of the AR model assumed for Experiments II.B and II.C is set to p = 2.
There is a mismatch between the model and the actual signal as well. But the degree
of the mismatch is higher than in the third case of Experiment II since unlike in the
third case of Experiment II, the polynomial in the denominators of the model and the
generating filter do not have the same order. As shown in Fig. 3.9, the results are quite
the same as the ones found in the third case of Experiment II. The only difference is
that the result of Experiment II.B is even worse than the corresponding result in the
third case of Experiment II.

From the above simulation results, we can find that if the model in the parametric
approach is not properly chosen and if the estimated parameters are directly used
to estimate the power spectrum, the resulting power spectrum estimate will be very
inaccurate. On the other hand, the performance of the parametric approach is quite
good when the model fits the characteristic of the actual received signal. Meanwhile,
the approach that focus on predicting the autocorrelation at higher lags leads to a
good estimate of the power spectrum and it appears to be more robust than the other
approaches. In addition, Experiment II offers a way to estimate the power spectrum
with smaller compression rate than the one in Experiment I.
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Figure 3.6: Experiment II, Case 1

3.5 Conclusion

From the two experiments we can find that the parametric compressive power spec-
trum estimation can achieve less compression compared to the one achieved by the
non-parametric estimation and it results in a good performance, when we model the
signal properly. However, this kind of parametric power spectrum estimation relies on
the calculated autocorrelations of the signal, and therefore, we need to estimate the
autocorrelations of the signal like what we do in non-parametric method first. Second,
this kind of parametric power spectrum estimation could not employ ARMA model to
estimate the power spectrum because it is quite difficult to calculate the b parameters
from the Yule-Walker equation due to the nonlinearity.
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Figure 3.7: Experiment II, Case 2

Figure 3.8: Experiment II, Case 3
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Figure 3.9: Experiment II, Case 4
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Parametric Estimation of
Power Spectrum using AR
model 4
In this section, to continue the study of parametric power spectrum estimation, we will
introduce other methods to estimate the power spectrum from the compressive samples.
The main idea of the methods is introduced as follows. First, we choose the proper
model to describe the signal. Here we assume that we have already known what kind
of model is selected to generate the original signal. Then, we estimate the parameters
in the model directly, instead of estimating the autocorrelation of the original signal
first. After obtaining the model parameters, we can calculate the corresponding power
spectrum of the original signal. As we can see, the key steps there are how to estimate
the parameters of the model we used to describe the original signal. We adopt two
methods in this chapter to achieve it. One method is Newton Raphson method, while
the other method is using nonlinear least square error algorithm. When we implement
those methods, we focus on AR model first. Then, we extend the approach for ARMA
model. The final purpose here is to reduce the compression rate compared to the one
offered by the minimal sparse ruler in previous chapter. We use the sampling pattern
with minimal sparse ruler at first. After estimating the parameters, we attempt to
change the sampling pattern that leads to a less number of samples than the one
produced by the minimal sparse ruler. Then, we compare those two estimated power
spectrum.

4.1 Implementation of the methods in AR model

As we know, once we obtain the autocorrelation of the signal, we can calculate the
power spectrum of the signal according to (2.17). On the other hand, once we obtain
the power spectrum of the signal, we can obtain the autocorrelation of the signal as
well and the equation is given by

rx[n] =
1

2N − 1

N−1∑
k=−N+1

Px(e
jwk)ejwkn, (4.1)

with wk = 2π
2N−1

k. In this chapter, the signal we used has a real value. Therefore,

the autocorrelation has a real value as well, which indicates P (ejwk) = P (e−jwk). In
addition, according to Euler’s formula, we can obtain

ej
2π

2N−1
nk + e−j 2π

2N−1
nk = 2cos

(
2π

2N − 1
nk

)
. (4.2)
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Then (4.1) can be rewritten as

rx[n] =
1

2N − 1

(
Px(e

jw0) +
N−1∑
k=1

Px(e
jwk)2cos

(
2π

2N − 1
nk

))
. (4.3)

The power spectrum of the AR model signal is introduced as follows.

Px(e
jwk) = σ2 |b[0]|2

|1 +
∑p

l=1 a[l]e
−jlwk |2

(4.4)

where σ2 (that is set to 1 here) is the variance of the white noise used to generate the
WSS signal.

Since we use the AR model to model the signal, we can plug (4.4) into (4.1) to
obtain the relation between autocorrelation and the parameters in the AR model, which
is given by

rx[n] =
1

2N − 1

N−1∑
k=−N+1

|b[0]|2

|1 +
∑p

l=1 a[l]e
−jlwk |2

ejnwk , (4.5)

with wk =
2π

2N−1
k. Then in the AR model, (4.3) can be expressed as

rx[n] =
1

2N − 1

(
|b[0]|2

|1 +
∑p

l=1 a[l]|2
+

N−1∑
k=1

|b[0]|2

|1 +
∑p

l=1 a[l]e
(−jl 2π

2N−1
k)|2

2cos

(
2π

2N − 1
nk

))
.

(4.6)
Based on the above derivations, the autocorrelations of generated signal can be ex-
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pressed as

rx(a, b[0]) =



rx[0]
rx[1]
...

rx[N − 1]
rx[1−N ]

...
rx[−1]


=

1

2N − 1

(
|b[0]|2

|1 +
∑p

l=1 a(l)|2
12N−1

+2



1 1 . . . 1
cos( 2π

2N−1
) cos( 2π

2N−1
2) . . . cos( 2π

2N−1
(N − 1))

...
...

. . .
...

cos( 2π
2N−1

(N − 1)) cos( 2π
2N−1

(N − 1)2) . . . cos( 2π
2N−1

(N − 1)(N − 1))
cos( 2π

2N−1
(1−N)) cos( 2π

2N−1
(1−N)2) . . . cos( 2π

2N−1
(1−N)(N − 1))

...
...

. . .
...

cos( 2π
2N−1

(−1)) cos( 2π
2N−1

(−1)2) . . . cos( 2π
2N−1

(−1)(N − 1))




|b[0]|2∣∣∣∣1+∑p
l=1 a(l)e

−jl 2π
2N−1

∣∣∣∣2
|b[0]|2∣∣∣∣1+∑p

l=1 a(l)e
−jl 2π

2N−1
2
∣∣∣∣2

...
|b[0]|2∣∣∣∣1+∑p

l=1 a(l)e
−jl 2π

2N−1
(N−1)

∣∣∣∣2




,

(4.7)

where 12N−1 is a (2N − 1) × 1 vector containing 1 in all of its entries. For expressing
it more succinctly, we rewrite the equation as

rx(a, b[0]) =
1

2N − 1
(αAR(a, b[0]) + 2McospAR(a, b[0])), (4.8)

where αAR(a, b[0]), Mcos and pAR((a, b[0])) present the corresponding matrix or vectors
in (4.7). As we already know that ry[0] is a linear function of rx given by (2.14), we
can insert (4.8) into (2.14). Then, we can write ry[0] in (2.14) as

ry[0] = Rcrx(a, b[0]) = Rc
1

2N − 1
(αAR(a, b[0]) + 2McospAR(a, b[0])). (4.9)

4.1.1 Two estimation methods

In order to compute the estimate for the parameters a and b[0] in the AR model, we
employ two methods. One is using Newton Raphson method, while the other one is
using nonlinear least squares. First of all, we have to calculate the autocorrelation of
the compressive samples defined as r̂y[0]. After that, we will use r̂y[0] to estimate the
parameters of the AR model.
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4.1.2 Newton Raphson method

As we know, Newton Raphson method is a method for finding successively better
approximations for the roots of a real valued function [30],

x : f(x) = 0 (4.10)

Given a function f(x) over a real variable x and its derivative f ′(x), we begin with a
first guess x0 for a root of the function f(x). Then, a better approximation x1 can be
obtained by the equation

x1 = x0 −
f(x0)

f ′(x0)
. (4.11)

Then we repeat the process as

xn+1 = xn −
f(xn)

f ′(xn)
, (4.12)

where xn is the n-th approximation. When the last approximation achieves the error
we can tolerate, the process will end. This is the definition of the Newton Raphson
method for one dimensional problem. We can extend the problem to multiple dimension
Newton Raphson method since the principle is the same as in the one-dimension Newton
Raphson method. We also need to initially guess a root for the vector-valued functions
F(x) given by x0. Then the repeated process is shown as

xn+1 = xn − ((F′(xn))
H(F′(xn)))

−1(F′(xn))
HF(xn), (4.13)

where xn is the n-th approximations, and F′(x) is the Jacobian matrix of F(x). In our
case, we define the function as

F(a, b[0]) = r̂y[0]−Rc
1

2N − 1
(αAR(a, b[0]) + 2McospAR(a, b[0])), (4.14)

where a, b[0] are the roots we want to obtain. Moreover, we can also obtain the Jacobian
matrix F′(a, b[0]), which is expressed as

F′(a, b[0]) = −Rcr
′
x(a, b[0]), (4.15)

where r′x(a, b[0]) is the Jacobian matrix of rx(a, b[0]), expressed as

r′x(a, b[0]) =



∂rx[0]
∂a[1]

∂rx[0]
∂a[2]

. . . ∂rx[0]
∂a[p]

∂rx[0]
∂b[0]

∂rx[1]
∂a[1]

∂rx[1]
∂a[2]

. . . ∂rx[1]
∂a[p]

∂rx[1]
∂b[0]

...
...

. . .
...

...
∂rx[N−1]

∂a[1]
∂rx[N−1]

∂a[2]
. . . ∂rx[N−1]

∂a[p]
∂rx[N−1]

∂b[0]
∂rx[1−N ]

∂a[1]
∂rx[1−N ]

∂a[2]
. . . ∂rx[1−N ]

∂a[p]
∂rx[1−N ]

∂b[0]
...

...
. . .

...
...

∂rx[−1]
∂a[1]

∂rx[−1]
∂a[2]

. . . ∂rx[−1]
∂a[p]

∂rx[−1]
∂b[0]


. (4.16)
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It is easy to find the expression of the elements in r′x(a, b[0]) as

∂rx[n]

∂a[l]
=

1

2N − 1

(
−2|b[0]|2

(1 +
∑p

l=1 a[l])
3
+ 2

N−1∑
k=1

cos

(
2π

2N − 1
nk

)
∂Px(e

jwk)

∂a[l]

)
, (4.17)

where ∂Px(ejwk )
∂a[l]

is expressed as

∂Px(e
jwk)

∂a[l]
=− |b[0]|2

((1 +
∑p

l=1 a[l]cos(
2π

2N−1
kl))2 + (

∑p
l=1 a[l]sin(

2π
2N−1

kl))2)2(
2

(
1 +

p∑
l=1

a[l]cos

(
2π

2N − 1
kl

))
cos

(
2π

2N − 1
kl

)

+2

(
p∑

l=1

a[l]sin

(
2π

2N − 1
kl

))
sin

(
2π

2N − 1
kl

))
.

(4.18)

And the ∂rx[n]
∂b[0]

is expressed as

∂rx[n]

∂b[0]
=

1

2N − 1

(
2|b[0]|

(1 +
∑p

l=1 a[l])
2
+ 2

N−1∑
k=1

cos

(
2π

2N − 1
nk

)
∂Px(e

jwk)

∂b[0]

)
, (4.19)

where ∂Px(ejwk )
∂b[0]

is expressed as

∂Px(e
jwk)

∂b[0]
=

2|b[0]|
((1 +

∑p
l=1 a[l]cos(

2π
2N−1

kl))2 + (
∑p

l=1 a[l]sin(
2π

2N−1
kl))2)

. (4.20)

Then, we can estimate the parameters by Newton Raphson method as showed in 4.12.

4.1.3 Nonlinear Least Squares

Besides Newton Raphson method, we also implement the Nonlinear Least Squares as
well. In this method, we also need to calculate r̂y[0] at first. From (4.7), the estimated
parameters can be obtained from

min
a,b[0]

∥∥∥∥ry[0]−Rc
1

2N − 1
(αAR(a, b[0]) + 2McospAR(a, b[0]))

∥∥∥∥2
2

. (4.21)

However, what we have known is only the estimated r̂y[0], so we replace ry[0] in (4.21)
with r̂y[0]. Then we obtain

min
a,b[0]

∥f(a, b[0])∥22 , (4.22)

where

f(a, b[0]) = r̂y[0]−Rc
1

2N − 1
(αAR(a, b[0]) + 2McospAR(a, b[0])). (4.23)
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Then, we can use the optimization tools in Matlab to estimate the parameters. After
we obtain the vector-valued function f(a, b[0]), we can write this optimization problem
as

min
a,b[0]

∥f(a, b[0])∥22 = min
a,b[0]

(f1(a, b[0])
2 + f2(a, b[0])

2 + · · ·+ fn(a, b[0])
2) (4.24)

where f1(a, b[0]), f2(a, b[0]), . . . , fn(a, b[0]) are elements of f(a, b[0]).

After that, we can use the optimization tools in Matlab to estimate the parameters.
To solve this, the trust region algorithm is implemented. The trust region approach
is strongly associated with approximation. Assume that we have a current guess of
the solution of the optimization problem, an approximate model can be constructed
nearby the current point. A solution of the approximate model can be taken as the
next iteration point. In a trust region algorithm, the approximate model is only trust-
ed in a region nearby the current iterate. This seems reasonable, because for general
nonlinear functions, local approximating models (such as linear approximation and
quadratic approximation) can only fit the original function locally. The region where
the approximating model is trusted is called the trust region. A trust region is nor-
mally a neighbourhood centered at the current iterate. The trust region is adjusted
from iteration to iteration. Roughly speaking, if the computation indicates that the
approximating model fits the original problem well, the trust region can be enlarged.
Otherwise, when the approximating model does not work well enough (for example,
a solution of the approximating model turns out to be a bad point), the trust region
should be reduced [31].

4.1.4 Simulation result

In our simulation study, the variance of the white Gaussian noise used to generate the
signal is set to 1. The parameters in the AR model filter are a = [1, 0.5, 0.4, 0.3]T

and b[0] = 2, respectively. First of all, we estimate the parameters in the AR mod-
el from the compressive signals which are obtained by sampling using sampling pat-
tern based on minimal sparse ruler. The estimated parameters in AR model are
â = [1, 0.5013, 0.3916, 0.3048]T and b̂[0] = 2.0041. We obtain the same results from
the experiments using the Newton Raphson method and using the Nonlinear Least
Square Error method. Then, we changed the sampling pattern such that we have less
samples than the number of samples that is produced by sampling pattern based on
optimal sparse ruler. The results produced by two methods are still same. The esti-
mated parameters in this case are â = [1, 0.5008, 0.4005, 0.2961]T and b̂[0] = 2.0056.
The estimated power spectrums for all the parameters are showed in the Fig 4.1.
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Figure 4.1: Comparison of power spectrums in AR model

4.2 Implementation of the methods in ARMA model

After implementing the methods in AR model, now we extend the model to ARMA
model. First of all, we generate the signal by using a white Gaussian noise signal
passed into an ARMA model filter. Because we do not need to obtain the variance of
the white Gaussian noise signal, we assume that the variance of the noise is 1. Then
we estimate the parameters in ARMA model from the compressed signal. After that
we can calculate the estimated power spectrum of the generated signal based on the
parameters we obtained. As expressed in AR model, we can obtain the autocorrelations
of the signal when we know its power spectrum (4.1). In our case, the values of the signal
are real, which implies that the autocorrelations are real. So we can also adopt (4.3)
here. In the context of ARMA model, we can rewrite (4.1) as

rx[n] =
1

2N − 1

N−1∑
k=−N+1

|
∑q

l=0 b[l]e
−jlwk |2

|1 +
∑p

l=1 a[l]e
−jlwk |2

ejnwk , (4.25)

where wk =
2π

2N−1
k. After employing (4.2), the equation can be rewritten as

rx[n] =
1

2N − 1

(
|
∑q

l=0 b[l]|2

|1 +
∑p

l=1 a[l]|2
+

N−1∑
k=1

|
∑q

l=0 b[l]e
−jlwk |2

|1 +
∑p

l=1 a[l]e
−jlwk |2

2cos

(
2π

2N − 1
nk

))
.

(4.26)
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Based on the above derivations, the autocorrelations of generated signal can be ex-
pressed as

rx(a,b) =



rx[0]
rx[1]
...

rx[N − 1]
rx[1−N ]

...
rx[−1]


=

1

2N − 1

(
|
∑q

l=0 b[l]|2

|1 +
∑p

l=1 a[l]|2
12N−1

+2



1 1 . . . 1
cos( 2π

2N−1
) cos( 2π

2N−1
2) . . . cos( 2π

2N−1
(N − 1))

...
...

. . .
...

cos( 2π
2N−1

(N − 1)) cos( 2π
2N−1

(N − 1)2) . . . cos( 2π
2N−1

(N − 1)(N − 1))
cos( 2π

2N−1
(1−N)) cos( 2π

2N−1
(1−N)2) . . . cos( 2π

2N−1
(1−N)(N − 1))

...
...

. . .
...

cos( 2π
2N−1

(−1)) cos( 2π
2N−1

(−1)2) . . . cos( 2π
2N−1

(−1)(N − 1))




∣∣∣∣∑q
l=0 b[l]e

−jl 2π
2N−1

∣∣∣∣2∣∣∣∣1+∑p
l=1 a[l]e

−jl 2π
2N−1

∣∣∣∣2∣∣∣∣∑q
l=0 b[l]e

−jl 2π
2N−1

2
∣∣∣∣2∣∣∣∣1+∑p

l=1 a[l]e
−jl 2π

2N−1
2
∣∣∣∣2

...∣∣∣∣∑q
l=0 b[l]e

−jl 2π
2N−1

(N−1)
∣∣∣∣2∣∣∣∣1+∑p

l=1 a[l]e
−jl 2π

2N−1
(N−1)

∣∣∣∣2




.

(4.27)
For expressing it more succinctly, we rewrite (4.27) as

rx(a,b) =
1

2N − 1
(αARMA(a,b) + 2McospARMA(a,b)) , (4.28)

where αARMA(a,b), Mcos and pARMA(a,b) present the corresponding matrix or vectors
in (4.27). As we already know that ry[0] is a linear function of rx given by (2.14), we
can insert (4.28) into (2.14). Then, we write ry[0] as a function of the parameters in
the ARMA model, i.e.,

ry[0] = Rcrx(a,b) = Rc
1

2N − 1
(αARMA(a,b) + 2McospARMA(a,b)). (4.29)

4.2.1 Newton Raphson method

The principle of the Newton Raphson method has been introduced in section 4.1.2.
Now, the model used to generate the signal is changed. The most significant change
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from the Newton’s method in AR model is the roots. The roots we are going to obtain
becomes a,b. Then, the function we defined turn to be

F(a,b) = r̂y[0]−Rc
1

2N − 1
(αARMA(a,b) + 2McospARMA(a,b)). (4.30)

We can follow the derivation in section 4.1.2, where the Jacobian matrix F′(a,b) can
be expressed using (4.15), However r′x(a,b) here is not the same as the one in 4.15.
Here we have

r′x(a,b) =



∂rx[0]
∂a[1]

∂rx[0]
∂a[2]

. . . ∂rx[0]
∂a[p]

∂rx[0]
∂b[0]

∂rx[0]
∂b[1]

. . . ∂rx[0]
∂b[q]

∂rx[1]
∂a[1]

∂rx[1]
∂a[2]

. . . ∂rx[1]
∂a[p]

∂rx[1]
∂b[0]

∂rx[1]
∂b[1]

. . . ∂rx[1]
∂b[q]

...
...

. . .
...

...
...

. . .
...

∂rx[N−1]
∂a[1]

∂rx[N−1]
∂a[2]

. . . ∂rx[N−1]
∂a[p]

∂rx[N−1]
∂b[0]

∂rx[N−1]
∂b[1]

. . . ∂rx[N−1]
∂b[q]

∂rx[1−N ]
∂a[1]

∂rx[1−N ]
∂a[2]

. . . ∂rx[1−N ]
∂a[p]

∂rx[1−N ]
∂b[0]

∂rx[1−N ]
∂b[1]

. . . ∂rx[1−N ]
∂b[q]

...
...

. . .
...

...
...

. . .
...

∂rx[−1]
∂a[1]

∂rx[−1]
∂a[2]

. . . ∂rx[−1]
∂a[p]

∂rx[−1]
∂b[0]

∂rx[−1]
∂b[1]

. . . ∂rx[−1]
∂b[q]


.

(4.31)
It is easy to find the expression of the elements in r′x(a,b) as

∂rx[n]

∂a[l]
=

1

2N − 1

(
−2|

∑q
l=0 b[l]|2

(1 +
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l=1 a[l])
3
+ 2

N−1∑
k=1

cos

(
2π

2N − 1
nk

)
∂Px(e

jwk)

∂a[l]

)
, (4.32)

where ∂Px(ejwk )
∂a[l]

is expressed as

∂Px(e
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∂a[l]
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(4.33)

And the ∂rx[n]
∂b[l]

is expressed as

∂rx[n]

∂b[l]
=

1

2N − 1

(
2|
∑q

l=0 b[l]|
(1 +

∑p
l=1 a[l])

2
+ 2
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k=1
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(
2π
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nk

)
∂Px(e

jwk)

∂b[l]

)
, (4.34)

where ∂Px(ejwk )
∂b[l]

is expressed as

∂Px(e
jwk)

∂b[l]
=
2(b[0] +

∑q
l=1 b[l]cos(

2π
2N−1

kl))cos( 2π
2N−1

kl) + 2(
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l=1 b[l]sin(
2π

2N−1
kl))sin( 2π
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2π
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kl))2)
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(4.35)
Then, we can estimate the parameters by Newton Raphson method.

31



4.2.2 Nonlinear Least Square Error estimation

Since we have known (4.27) already, the estimated parameter can be obtained when it
satisfies the condition as

min
a,b

∥∥∥∥ry[0]−Rc
1

2N − 1
(αARMA(a,b) + 2McospARMA(a,b))

∥∥∥∥2
2

. (4.36)

However, what we have known is only the estimated r̂y[0], so we replace ry[0] in (4.21)
with r̂y[0]. Then we obtain

min
a,b

∥f(a,b)∥22 (4.37)

where

f(a,b) = r̂y[0]−Rc
1

2N − 1
(αARMA(a,b) + 2McospARMA(a,b)). (4.38)

Then, we can use the optimization tools in Matlab to estimate the parameters. After
we obtain the vector-valued function f(a,b), we can write this optimization problem as

min
a,b

∥f(a,b)∥22 = min
a,b

(f1(a,b)
2 + f2(a,b)

2 + · · ·+ fn(a,b)
2) (4.39)

where f1(a,b), f2(a,b), . . . , fn(a,b) are elements of f(a,b). The optimization problem
is solved using trust region algorithm, which is the same used in AR model case.

4.2.3 Simulation result

In this simulation study, the variance of the white Gaussian noise used to generate the
signal is set to 1. The parameters in the ARMA model filter are a = [1, 0.5, 0.4, 0.3]T

and b = [1, 0.5]T respectively. First of all, we estimate the parameters in the ARMA
model from compressive signals which are obtained by sampling using sampling pattern
based on minimal sparse ruler. The estimated parameters in ARMA model are â =
[1, 0.5447, 0.3860, 0.3249]T and b̂ = [0.9971, 0.5507]T . We obtain the same results from
the experiments using the Newton Raphson method and using the Nonlinear Least
Square Error. Then, we changed the sampling pattern such that we have less samples
than the number of samples that is produced by sampling pattern based on optimal
sparse ruler. The results produced by two methods are still same. The estimated
parameters in this case are â = [1, 0.5714, 0.3753, 0.3399]T and b̂ = [1.0048, 0.5819]T .
The estimated power spectrums for all the parameters are showed in Fig 4.2.
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Figure 4.2: Comparison of power spectrums in ARMA model

4.3 Conclusion and analysis

Newton Raphson method is one of the methods having fastest convergences to the root,
and it is easy to convert for handling multi-dimensions cases. However, this method
must meet some conditions. The gradient of the function of interest could not be zero
or very close to zero. Besides, since the Newton Raphson method is a local convergence
method, we have to carefully pick the starting point. If the initial point is far away
from the actual roots, the method may not converge [29]. Different from the Newton
Raphson method, the trust region algorithm aims for finding the minima. Trust region
algorithms are reliable and robust and they can be applied to ill-conditioned problems.
Moreover, they have very strong convergence properties [31]. However, trust region
algorithm is also a local optimization algorithm [9], which means the final result we
find may not be accurate.

As we can see, those two methods can work well in our implementations. From the
figures we can find that we can estimate the power spectrum well with less number of
samples than the one produced by optimal sparse ruler. This means that we indeed
reduced compressive rate. However, there are still some problems left. The first one is
that when we estimate the parameters in ARMA model, we have to use more samples of
each segment than we used in AR model. That is because the number of parameters in
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ARMA model is more than the one in AR model. The second problem is that, we have
to collect more autocorrelations comparing with the autocorrelations we collect in the
parametric approach in previous chapter. Because the problem is nonlinear, we have to
obtain more equations to estimate the parameters in the models. The last problem is
that the two methods we used here are not suitable for all cases, which means that they
may fail when the parameters are changed. In Newton Raphson method, one limitation
is that the method only works well when the step size is small. Another limitation is
that if the Jacobian matrix of the function we defined is singular or poorly conditioned,
the problem can not be solved. Compared to Newton’s method, the Nonlinear Least
Square is better. It can still work in some cases when the Newton’s method fails.
However, it is not always as good as we want. In some cases, the results of estimation
using the Nonlinear Least Square are not accurate. The the Nonlinear Least Square
Error method here is based on trust region reflective least square algorithm. The
Jacobian matrix is also used here, and we have to avoid that the Jacobian matrix will
be singular.
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Sub-optimal sparse ruler 5
In this chapter, we want to optimize the sampling pattern in non-parametric power
spectrum estimation. At first we attempt to design a sparse ruler with less compression
compared to (N − 1)-length minimal sparse ruler. It is impossible to achieve the
goal if we select from N -sample blocks, hence, in the sparse ruler we designed, we
extend the sampling range from N to W to cover the lags within N lags. Then, we
focus on sub-optimal sparse ruler for N samples. In the current time, there is no
approach to obtain an optimal sparse ruler other than a brute force approach. In
order to reduce the compression rate for the non-parametric method, we attempt a
genetic algorithm. Then, in this section, we attempt to design some sub-optimal sparse
ruler algorithms. Compared to the minimal sparse ruler, those algorithms generally
lead to a larger number of marks for a given length N but they consume consid-
erably less amount of time. Therefore, these algorithms might be useful whenN is large.

5.1 Attempt to Reduce the Compression

As we know from previous chapters, in order to estimate the autocorrelation lags from
0 up to N − 1, the minimal number of samples we need to select from the indices
range [0, 1, . . . , N − 1] is M , where M is the number of marks in the (N − 1)-length
minimal sparse ruler. It is impossible to further reduce the number of samples if we
collect indices samples from 1 up to N to cover the autocorrelation lags from 0 up to
N − 1. Therefore, we have to make some changes in order to reduce the compression
rate. Here we attempt to reduce the compression rate from the one offered by optimal
sparse ruler after adding some conditions. We are wondering whether it exists such a
case where we can cover the autocorrelation lags from 0 up to N − 1 with less samples
when we selected the samples from a larger indices range [1, 2, . . . ,W ] with W larger
than N . It seems that we have more freedom than before. To achieve this, we adopt
genetic algorithm to solve the optimal solution in this case.

Genetic algorithm is a search heuristic that mimics the process of natural selection.
This heuristic is used to generate useful solutions to optimization. In a genetic algo-
rithm, the candidate solutions are called individuals, the population consists of a set of
solutions. In our case, what we want is to cover the autocorrelation lags from 0 up to
N − 1 after collecting samples at indices between 1 and W . Hence, the set of indices
that satisfies the condition is the individual. According to our definition, we can notice
that the number of samples corresponding to each individual are different. Our purpose
is to find the individual that corresponds to minimal number of samples. The genetic
algorithm simulates the evolution in nature. First, we build a population by selecting
the individual from all the solutions randomly. The number of individuals in a popula-
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tion is defined by ourselves. When the number of individuals in the population is too
large, it will cost too much running time. However, when the number of individuals
in the population is too small, the solution may fall into a local optimal solution and
the optimal solution may be missed. After selecting the initial population, we need to
adopt some rules to evolve the population toward better solutions. The main methods
there are simulating crossover and mutation. As we know, crossover and mutation in
nature are processed by exchanging the genes and changing the genes respectively. In
our case, we define a gene as a indices pair. For instance, for lag 1, there are W − 1
genes such as {1, 2}, {2, 3}, . . . , {W−1,W}. An individual consists of N genes covering
lags from 0 up to N − 1. The crossover means we need to exchange some genes cor-
responding to the same lags between two individuals (where the crossover probability
is Pc), and the mutation means that we need to change some genes corresponding to
the same lags (where the mutation probability is Pm). Here we notice that in order to
operate crossover and mutation, we repeat some indices in the solution. When we find
the optimal solution, we need to remove the repeated samples. By so far, we know how
to build a population, how to do crossover and mutation operation, but do not know
how to evaluate the quality of the individuals. Therefore, we need a fitness function to
do it. Fitness function determines the possibility of the individual to be chosen as the
next generation. In our case, if the individual in the experiment has less number of ele-
ments, it will get a higher fitness value in the evaluation of whether it will be chosen as
the next generation or not. In evolution, we also need to use fitness function to decide
which individuals can be selected as the next generation. This is the genetic algorithm
we adopt. After a number of times of evolution, we can get an optimal solution.

The pseudo-code of the genetic algorithm is given in Algorithm 1.
First of all, we need to build a gene bank. The gene bank consists of N groups

representing N lags. For example, group-1 represents a collection of pairs of indices
selected from [0, 1, . . . ,W − 1], whose indices difference is 1. See Algorithm 1. Genetic
algorithm is a good method to find a optimal solution in many cases, but if we do
not choose the proper fitness function and proper parameters such as the scale of the
population, the crossover probability and the mutation probability, we may fail to find
the optimal solution and just find a local optimal solution. However, after trying many
times and trying different parameters, we find that the minimal number of samples we
have found is equal to the number of samples in optimal sparse ruler with indices range
from 1 up to N . Although we can not theoretically demonstrate that we can not reduce
the compressive rate in our case, with many experiments, it seems that we can not find
a less number of samples even if we increase the indices range.

5.2 Sub Optimal Sparse Ruler Algorithms

Sampling pattern is one of the key part in compressive power spectrum estimation.
The important rule for the sampling pattern is that the desired autocorrelation range
should be covered while the number of samples should be as less as possible. Certainly,
the minimal sparse ruler sampling pattern offers the best compression. Unfortunately,
there exists no quick procedure to find minimal sparse rulers: one must perform a
brute-force search over the space of length-(N − 1) sparse rulers to find a minimal one
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Algorithm 1 Genetic algorithm for selecting samples

Build an M individuals population named POPULATION, whose individual is made up
by randomly selecting an indices pair from each group in gene bank
while Number of samples is larger than what we want do

Create a fitness function to select the individual
Initialize a new M -individuals population named NEWPOP
for times= 1 to times= M/2 do

Choose two individuals from POPULATION according to fitness function
if randm(0, 1) < Pc then

Do crossover with two selected individuals
end if
if randm(0, 1) < Pm then

Do mutation with two selected individuals
end if
Add those two individuals into NEWPOP

end for
Replace POPULATION with NEWPOP
Find the individuals in POPULATION with minimal number of samples

end while

[22]. Therefore, we design some sub-optimal sparse rulers with certain procedure.

5.2.1 The first algorithm (Algorithm Sparse Ruler-1)

1. We define Sm as the set of the selected indices and first initialize Sm as Sm =
{0, N − 1}. We then compute ΩSm as ΩSm = {|ni − nj||∀ni, nj ∈ Sm}. We define
fSm as fSm = {0, 1, . . . , N − 1}\ΩSm .

2. Given A = {a0, a1, . . . , aN−1} and B = {b0, b1, . . . , bN−1}, we define

A⊕B = {a0 + b0, a0 + b1, . . . , a0 + bN−1,

a1 + b0, a1 + b1, . . . , a1 + bN−1, . . . ,

aN−1 + b0, aN−1 + b1, . . . , aN−1 + bN−1}
(5.1)

and
A⊖B = {a0 − b0, a0 − b1, . . . , a0 − bN−1,

a1 − b0, a1 − b1, . . . , a1 − bN−1, . . . ,

aN−1 − b0, aN−1 − b1, . . . , aN−1 − bN−1} .
(5.2)

We then first define

S̄m = (Sm ⊕ fSm) ∪ (Sm ⊖ fSm), (5.3)

where S̄m is a special set that allows for repeated elements. Also note that we
then remove all elements of S̄m that are larger than N − 1 and smaller than 0.
For example, if we have Sm = {3, 5, 7}, N = 11 and fSm = {2, 6}, then we have

S̄m = {1, 1, 3, 5, 5, 7, 9, 9} (5.4)
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3. Set ñg to the value that most frequently appears in S̄m. If there are more than
one most frequent values in S̄m then set ñg to the smallest one. For example, if
S̄m = {1, 2, 2, 3, 3, 4, 4, 5} then ñg = 2. We then perform Sm = Sm ∪ {ñg}.

4. Recompute fSm as fSm = {0, 1, . . . , N − 1} \ ΩSm .

5. If fSm = ∅, Sm is what we want. Otherwise, we repeat step 2 to step 5.

5.2.2 The second algorithm (Algorithm Sparse Ruler-2)

1. We define Sm as the set of the selected indices and first initialize Sm as Sm =
{0, N − 1}. We then compute ΩSm as ΩSm = {|ni − nj||∀ni, nj ∈ Sm}.

2. We define S ′
m as the set of remaining indices and compute S ′

m as S ′
m =

{0, 1, 2, . . . , N − 1}\Sm.

3. Let us then find n̄i such that:

n̄i = arg max
ni∈S′

m

∣∣ΩSm∪{ni}
∣∣ . (5.5)

If there are multiple n̄i that lead to the same maximum value of
∣∣ΩSm∪{ni}

∣∣, then
we pick the smallest value of them as our n̄i. For example, if S ′

m = {1, 2, 3, 4}
and Sm = {5, 6}, then ni = 1, ni = 2 and ni = 3 will maximize the value of∣∣ΩSm∪{ni}

∣∣, which is
∣∣ΩSm∪{ni}

∣∣ = 3. In this case, we set n̄i = 1. We then perform
Sm = Sm ∪ {n̄i} and recompute S ′

m and ΩSm .

4. If {0, 1, 2, . . . , N − 1} \ ΩSm = ∅, Sm is what we want. Otherwise, we repeat step
3 to step 5.

5.2.3 The convex optimization based algorithm (Algorithm Sparse Ruler-
3)

In this algorithm, first of all, we adopt an iterative algorithm [5] to obtain the com-
pressive samples. We define a vector v as the transpose of the sum of the rows of

sampling matrix C. For instance, if the sampling matrix C =

1 0 0 0
0 1 0 0
0 0 0 1

, then the
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Figure 5.1: Illustration of sum of the diagonals in matric V

v = [1, 1, 0, 1]T . In other words v is an N × 1 vector, and the indices of the elements
with value 1 in v constitute the selected indices set Sm.

From Fig 5.1 we can see that the diagonals of matrixV, which is defined asV = vvT ,
indicate autocorrelation lags. For example, if v[i]v[j] = 1, it means that rx[i − j] is
collected, otherwise, if v[i]v[j] = 0, it means that rx[i − j] is not collected due to the
nature of the sampling pattern. Note that our goal is to minimize the compression rate
which is equiralent to minimizing ∥v∥0. However, we do relaxation and minimizing
∥v∥1. In fact, we try to follow [5] and minimize wTv where w is a N ×1 weight vector.

The iteration algorithm to find the proper v for the sampling matrix is introduced
as follows, where w = [w[0], w[1], . . . , w[N − 1]]T .

1. Set the iteration count l to zero and initialize all the elements in weight vector
w(l), with l = 0, to 1.

2. Solve the weighted minimization problem: We want to minimize w(l)Tv over the
vector v, with the constraint that the index differences set ΩSm covers all integers
from 1−N up to N − 1.

3. Update the weights w[i] for each i = 0, 1, 2, . . . , N − 1

w(l+1)[i] =
1

|v(l)[i]|+ ϵ
(5.6)

where ϵ is a small value in order to provide stability and ensure that a zero-valued
component in v(l) does not strictly prohibit a nonzero estimate at the next step.

4. Terminate on convergence or when (l) attains a specified maximum number of
iterations lmax. Otherwise, increment (l) and go to step 2.

Using this iteration algorithm, we can obtain the vector v as we expect. However,
it is hard to implement the algorithm for the minimization in step 2. To solve this, we
adopt convex optimization after relaxing some conditions. From [10] we can find that,

for any symmetric matrix, M, of the form M =

(
A B
BT C

)
, and for invertible matrix

C, the following properties hold:

1. M ≻ 0 iff C ≻ 0 and A−BC−1BT ≻ 0.
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2. If C ≻ 0, then M ≽ 0 iff A−BC−1BT ≽ 0.

Now we are doing some relaxation on the equation V = vvT . Since V− vvT = 0,
we can relax it to obtain V− vvT ≽ 0. Using the properties above, we can obtain(

V v
vT 1

)
≽ 0. (5.7)

From Fig 5.1 we know that in order to obtain the index differences cover from 1−N
up to N − 1, we have to satisfy that for each diagonal, there should be at least one
entry with value 1. Here, we use a new convex optimization expression instead of the
equation in step 2. The convex optimization expression is as follows.

min
v

wTv

subject to

v ≤ 1N×1,

v ≥ 0N×1,

sum(diag(V,i)) ≥ 1, for each i = 1−N, . . . , N − 1

diag(V,0)=v,

(
V v
vT 1

)
≽ 0,

(5.8)

where 1N×1 is the N × 1 vector containing 1 in all entries and 0N×1 is the N × 1 vector
containing 0 in all entries. The first and second constraints v ≤ 1N×1 and v ≥ 0N×1

are the relaxation we made to turn the value of the element of v from integer value
{0, 1} to real value between 0 and 1. The second constraint is to ensure that all the
correlation lags from 1−N to N−1 are covered. The reason for this has been explained
before. The third constraint is to ensure the relation between V and v after relaxation.
The last constraint is the relaxation of V = vvT . Now we have a convex optimization
problem. The matrix V and the vector v are to be estimated.

After obtaining the final estimated v̂, we notice that the components in v̂ do not
satisfy the condition that all the elements in v should have the value 0 or 1. Actually,
the elements in v̂ are between 0 and 1. Therefore, we design two methods to obtain the
final v . The first one is very easy, we set a threshold to decide the value in v . If the
value of v̂[i] is larger than 0.5, then we set the v[i] to 1, otherwise v[i] will be zero. The
second method is little complicated than the first one. We using randomized rounding
algorithm [6]. It is as follows.

1. Generate L candidate estimates of the form vn,l = 1(l = 1, 2, . . . , L) with a prob-
ability v̂n for n = 1, 2, . . . , N . The l starts from 1.
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2. Define vl = [v1,l, . . . , vN,l]
T . Find the Sm of the vl.

3. If the index differences set ΩSm of Sm satisfying the condition that ΩSm covers all
integers from 1 − N up to N − 1, vl is the solution, otherwise go back to step 2
and move to another vl+1.

5.3 Comparison with other algorithm

Since we have proposed the sub-optimal algorithms, it is necessary to compare them
with the existing sub-optimal algorithms. Here we choose two algorithms, coprime
sampling and two levels nested array algorithm, which are also used to reduce the
sampling rate.

5.3.1 Coprime Sampling [21]

Consider a set IM,N of intergers given by IM,N = {Mn, 0 ≤ n ≤ N−1}∪{Nm, 0 ≤ m ≤
M − 1}, where M and N are coprime integers. The difference set of this set includes
the cross differences

SN,M = {(Mn−Nm), 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1}. (5.9)

It is shown that SM,N consist of exactly MN distinct integers in the range [−N(M −
1) M(N − 1)] but they are not in a continuous range. In order to cover integers k
continuously in the range −MN ≤ k ≤ MN , we need to meet the condition that
0 ≤ n ≤ N − 1 and 0 ≤ m ≤ 2M − 1, assuming that N > M .

5.3.2 Two Levels Nested Array [20]

For a two levels nested array, there are two kinds of arrays, inner array and outer array.
Since we want to cover the indices difference continuously, we set the space between
elements in the inter array to 1. The inter array has N1 elements with spacing 1 while
the outer array has N2 elements with spacing N1 + 1. If we apply it in sampling,
the samples can be grouped into two parts. The first part is a sample set Sinner =
{m, m = 1, 2, . . . , N1} and the second part is a sample set Souter = {n(N1+1), n =
1, 2, . . . , N2}. For a given number of samples, the optimal allocation of the inner and
outer samples are shown as follow.

N optimal N1,N2 indices difference

even N1 = N2 =
1
2N

N2−2
2 +N

odd N1 =
N−1
2 ,N2 =

N+1
2

N2−1
2 +N

Table 5.1: Optimal allocation of the inner samples and the outer samples with fixed total N
samples
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Figure 5.2: Performance of two sub optimal sparse ruler algorithms

5.4 Numerical Study

From Fig. 5.2, we can find that the performances of the first and second algo-
rithms we designed are nearly the same. Sometimes the first algorithm works better
than the second one, while sometimes the opposite is true. It depends on the value of N .

We then compare the sub-optimal sparse rulers produced by the those two algo-
rithms with the optimal sparse ruler. It is clear that the resulting sub-optimal sparse
rulers generally have a larger number of marks than the corresponding optimal sparse
ruler. Thus the compression rate offered by sub-Nyquist sampling using the sub-optimal
sparse rulers is weaker than the one offered by optimal sparse ruler based sampling.
For example, Table 5.2 shows that, for N = 124, the two sub-optimal sparse rulers offer
compression rate of 0.185 compared to 0.153 offered by the optimal sparse ruler. Note,
however, the sub-optimal sparse ruler algorithms offer a smaller amount of computation
time which will be useful for a large N .

When we use the coprime algorithm to cover the lags over a certain continuous
range, we also produce some lags that we are not interested in. For example, if we
want to cover the lags −MN = −15 ≤ k ≤ MN = 15, with M = 3 and N = 5,
we need to collect the samples set {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}, and the indices dif-
ference set is {−25,−22,−20,−19,−17,−16} ∪ {−15,−14, . . . ,−1, 0, 1, . . . , 14, 15} ∪
{16, 17, 19, 20, 22, 25}. So it is impossible to obtain a {−NM, . . . , NM} indices
differences set with the samples selected from {1, 2, . . . , NM + 1}. When we use
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Table 5.2: Comparison of sub-optimal sparse ruler algorithms and minimal sparse ruler

N samples lags range M M M M M M

N N − 1 first second cvx based coprime nested optimal
2 1 2 2 2 2 2 2
3 2 3 3 3 3 3 3
4 3 3 3 3 4 3 3
5 4 4 4 4 6 4 4
6 5 4 4 4 6 4 4
7 6 5 4 4 6 5 4
8 7 5 5 5 6 5 5
9 8 6 5 5 8 5 5
10 9 6 6 5 8 6 5
11 10 6 6 6 8 6 6
12 11 6 6 6 8 6 6
13 12 6 6 6 10 6 6
14 13 7 7 6 10 7 6
15 14 7 7 7 10 7 7
16 15 7 7 7 10 7 7
17 16 7 7 7 10 8 7
18 17 8 8 8 10 8 7
19 18 8 9 8 12 8 8
20 19 8 8 8 12 8 8
21 20 8 8 8 12 9 8
22 21 9 9 8 12 9 8
23 22 9 9 9 12 9 8
24 23 9 9 10 12 9 8
25 24 9 9 9 16 9 9
26 25 9 9 9 16 10 9
27 26 10 10 10 16 10 9
28 27 10 10 10 16 10 9
29 28 11 10 10 16 10 9
30 29 10 10 11 failed 16 10 9
36 35 11 11 11 16 11 10
37 36 12 12 12 16 12 10
44 43 12 12 13 20 13 11
47 46 13 13 14 20 13 12
51 50 14 14 16 20 14 12
58 57 15 15 18 20 15 13
59 58 15 15 16 20 15 13
69 68 16 16 19 22 16 14
80 79 17 18 19 24 17 15
91 90 19 19 28 19 16

102 101 20 20 30 20 17
113 112 21 21 30 21 18
124 123 23 23 30 22 19
139 138 24 24 32 23 20
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Figure 5.3: Comparison of sparse rulers for covering 10 correlation lags
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Figure 5.4: Comparison of sparse rulers for covering 19 correlation lags

the two-level nested array to obtain the samples, the performance is much better
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Figure 5.5: Comparison of sparse rulers for covering 27 correlation lags

than the one in coprime algorithm. We can select the samples from {1, 2, . . . , 36}
and cover the lags {−35, . . . ,−1, 0, 1, . . . , 35}, where the number of samples here is
N = 11. It appears that this algorithm is quite good. Take some examples from
Table 5.2. Here we present three cases for (N − 1)-length correlation lags, where
N equal to 11, 20 and 28 respectively. From Fig 5.3 we can see, the indices of
samples (the index starts from 1) for different algorithms are as follow. The indices
for optimal sparse ruler is {1, 2, 3, 4, 7, 11}. The indices for the first algorithm we
designed is {1, 2, 4, 6, 10, 11}. The indices for the second algorithm we designed
is {1, 2, 3, 4, 7, 11}. The indices for the convex optimization based algorithm is
{1, 2, 4, 5, 9, 11}. The indices for the coprime algorithm is {1, 3, 5, 6, 7, 9, 11, 16}.
And the indices for the two-level nested array algorithm is {1, 2, 3, 4, 8, 12}. From
Fig 5.4, the indices for optimal sparse ruler is {1, 2, 3, 4, 5, 10, 15, 20}. The indices
for the first algorithm we designed is {1, 2, 3, 4, 8, 12, 17, 20}. The indices for the
second algorithm we designed is {1, 2, 4, 8, 10, 15, 19, 20}. The indices for the convex
optimization based algorithm is {1, 2, 4, 5, 12, 14, 19, 20}. The indices for the coprime
algorithm is {1, 4, 7, 8, 10, 13, 15, 16, 19, 22, 29, 36}. And the indices for the two-level
nested array algorithm is {1, 2, 3, 4, 5, 10, 15, 20}. From Fig 5.5, the indices for
optimal minimal sparse ruler is {1, 2, 3, 4, 5, 11, 17, 23, 28}. The indices for the first
algorithm we designed is {1, 2, 4, 5, 7, 8, 13, 18, 26, 28}. The indices for the second
algorithm we designed is {1, 2, 4, 5, 7, 8, 13, 18, 26, 28}. The indices for the convex
optimization based algorithm is {1, 2, 3, 9, 11, 13, 22, 25, 27, 28}. The indices for the
coprime algorithm is {1, 4, 7, 10, 12, 13, 16, 19, 22, 23, 25, 28, 31, 34, 45, 56}. And the
indices for the two-level nested array algorithm is {1, 2, 3, 4, 5, 6, 12, 18, 24, 30}. From
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the figures we can find that, for coprime algorithm and two-level nested array algo-
rithm, sometimes we have to collect samples out of the range N for (N − 1)-length
lags. This does not occur in our algorithms. In our algorithms, we can decide the
sampling range and the corresponding indices difference range we want perfectly.
Moreover, the first half of samples in the two-level nested algorithm always need
the same sampling rate as Nyquist rate. Now let have a look at convex based
algorithm. It has a good performance for selecting sub-optimal sparse ruler, especially
when N is small, however, it cost too much time. And when N increases, the
performance of the convex based algorithm is not as good as the performances of
the first algorithm, the second algorithm and the two-level nested array algorithm.
Moreover, we notice that the convex optimization tool fail to obtain the optimal result
since N = 29, so the results after N = 29 may be not the optimal solution of the
problem. That is also the reason why its performance becomes worse when N increases.
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Performance Analysis of
Alternative Time Domain
Approach in [1] and Cosets
Selection 6
It is clear that when we use the minimum sparse ruler to construct sampling matrix
C, with compression M

N
, we can reconstruct the power spectrum of the original signal

using Least Square method (LS). However, we can improve the performance of the
power spectrum estimation by adding X additional cosets to the selected M cosets.
Now the compression becomes M+X

N
. Let us now analyze how the cosets addition

affect the performance of the estimated power spectrum. However, the analysis is still
performed for the Gaussian white noise signal.

6.1 Theoretical Analysis

Since the signal is white noise, the estimated power spectrum is unbiased which we will
explain later in the simulation study. Here we focus on the variance analysis. From
equation (2.14), we can use LS method to construct r̂x,LS from estimated r̂y[0] in (2.16)
as

r̂x,LS = (Rc
TRc)

−1
Rc

T r̂y[0] = (Rc
TRc)

−1
Rc

T (C ⊗C)vec(R̂x), (6.1)

where the element of R̂x is given by [R̂x]i+1,j+1 = r̂x[i − j] =
1
K

∑K−1
k=0 x[kN + i]x∗[kN + j]. We define the set M = {n0, n1, ..., nm−1} selected

from {0, 1, . . . , N − 1} as the indices which are used to construct the sampling matrix
C. The indices {{1 + ni}|∀ni ∈ M} are the indices of the identity matrix IN which is
used to construct C.

Since C is constructed by selecting the rows of IN , and Rc = (C ⊗C)T in (2.14),
we can find that the rows of Rc are given by (Nni + nj + 1)-th and (Nnj + ni + 1)-th
rows of T, where ni, nj ∈ M. T is a special N2 × (2N − 1) repetition matrix with
the i-th row of T given by the ((i − 1 + (N − 2)

⌊
i−1
N

⌋
) mod (2N − 1) + 1)-th row of

the identity matrix I2N−1. As a result, we can find that the rows of Rc is given by the
((ni − nj) mod (2N − 1) + 1)-th and ((nj − ni) mod (2N − 1) + 1)-th rows of identity
matrix I2N−1, where ni, nj ∈ M.

Observe that(Rc
TRc)

−1
is a (2N−1)×(2N−1) diagonal matrix. The k-th diagonal

element of (Rc
TRc)

−1
is 1

γk
, where γk is the number of times the k-th row of I2N−1

appears in Rc, which also indicates the number of times the corresponding k-th element
of rx in (2.14) appears in Ry[0] in (2.14). Since the total number of the elements of

Ry[0] is M
2, it is clear that

∑2N−1
k=1 γk =M2 and γ1 = M .

Now let us have a look at Rc
T (C ⊗ C) in (6.1), which can also be rewritten as

TT (C⊗C)T (C⊗C). It is easy to find that (C⊗C)T (C⊗C) is a N2 ×N2 diagonal
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matrix whose (Nni + nj + 1)-th diagonal elements are equal to one for all ni, nj ∈ M
and zero elsewhere. We define ρ̂x = (C⊗C)T (C⊗C)vec(R̂x), and the element of ρ̂x

can be written as

[ρ̂x]Nn+n′+1 =

{
[vec(R̂x)]Nn+n′+1 = [R̂x]n′+1,n+1, if n, n′ ∈ M

0, otherwise
(6.2)

Then, because T is a special N2 × (2N − 1) repetition matrix with the i-th row of
T given by the ((i− 1+ (N − 2)

⌊
i−1
N

⌋
)mod (2N − 1)+1)-th row of the identity matrix

I2N−1, we can find that for i = 1−N, ..., 0, ..., N − 1, the ((imod (2N − 1))+ 1)-th row

of TT contains ones only at the {1 + i+ (N + 1)n}N−1+min(0,−i)
n=|min(0,i)| -th elements. Then, we

can write the element of r̂x,LS in (6.1) as

r̂x,LS[i] = [r̂x,LS]((imod (2N−1))+1)

=
1

γ((imod (2N−1))+1)

[TT ρ̂x]((imod (2N−1))+1)

=
1

γ((imod (2N−1))+1)

N−1+min(0,−i)∑
n=|min(0,i)|

[ρ̂x]Nn+n+i+1

=
1

γ((imod (2N−1))+1)

N−1+min(0,−i)∑
n=|min(0,i)|

[unvec(ρ̂x)]n+i+1,n+1 (6.3)

Because the signal is definitely a WSS signal, we can write [vec(R̂x)]Nn+n′+1 =

[R̂x]n′+1,n+1 = r̂x[n− n′] = r̂∗x[n
′ − n]. As we know, the power spectrum can be written

as

ŝx,LS = [P̂x,LS(0), P̂x,LS(2π
1

2N − 1
), . . . , P̂x,LS(2π

2N − 2

2N − 1
)]
T

= F2N−1r̂x,LS, (6.4)

where F2N−1 is the (2N − 1)× (2N − 1) DFT matrix. The covariance matrix of ŝx,LS
can be expressed as

Cŝx,LS
= E[ŝx,LS ŝ

H
x,LS]− E[ŝx,LS]E[ŝx,LS]

H = F2N−1Cr̂x,LS
FH

2N−1, (6.5)

where Cr̂x,LS
is the covariance matrix of the r̂x,LS which is given by

Cr̂x,LS
= E[r̂x,LS r̂

H
x,LS]− E[r̂x,LS]E[r̂x,LS]

H = (Rc
TRc)

−1
TTCρ̂xT(Rc

TRc)
−1
, (6.6)

where Cρ̂x is the covariance matrix of the ρ̂x. Cρ̂x is given by

Cρ̂x = E[ρ̂xρ̂
H
x ]− E[ρ̂x]E[ρ̂x]

H = (C⊗C)T (C⊗C)CR̂x
(C⊗C)T (C⊗C), (6.7)

where CR̂x
is the covariance matrix of the vec(R̂x) expressed as

CR̂x
= E[vec(R̂x)vec(R̂x)

H
]− E[vec(R̂x)]E[vec(R̂x)]

H
. (6.8)
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We have obtained that [vec(R̂x)]Nn′+n+1 = [R̂x]n+1,n′+1 = r̂x[n−n′] = r̂∗x[n
′−n], so the

element of CR̂x
at the Nn′ + n+ 1-th row and the Nv′ + v + 1-th column is given by

Cov([vec(R̂x)]Nn′+n+1, [vec(R̂x)]Nv′+v+1) = Cov(r̂x[n− n′], r̂x[v − v′]), (6.9)

where n, n′, v, v′ ∈ {0, 1, 2, ..., N − 1}. From [1] we obtain for white Gaussian noise x[n]

Cov(r̂yiyj [0], r̂ywyv [0]) =
σ4δ[ni − nw]δ[nj − nv]

K
=

σ4δ[i− w]δ[j − v]

K
, (6.10)

where r̂yiyj [0] = r̂x[ni − nj]. Inserting (6.10) into (6.9) we can obtain that

Cov(r̂x[n− n′], r̂x[v − v′]) =
σ4δ[n− v]δ[n′ − v′]

K
(6.11)

It is clear that CR̂x
is a diagonal matrix with all diagonal elements equal to σ4

K
. Because

(C⊗C)T (C⊗C) is also diagonal matrix, we can see that Cρ̂x in (6.7) is also a diagonal
matrix. By considering (6.2), (6.7), (6.9) and (6.11), we can find that the (Nni+nj+1)-

th diagonal elements of the Cρ̂x are equal to σ4

K
, whenever ni, nj ∈ M. Once we obtain

Cρ̂x , we can use it in (6.6) by taking (6.3) into account. The elements of Cr̂x,LS
can be

expressed as

[Cr̂x,LS
]
(imod (2N−1))+1,(j mod (2N−1))+1

= E[r̂x,LS[i]r̂x,LS[j]
∗]− E[r̂x,LS[i]]E[r̂∗x,LS[j]]

=
1

γ(imod (2N−1))+1γ(j mod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

N−1+min(0,−j)∑
n′=|min(0,j)|

E[[ρ̂x]Nn+n+i+1[ρ̂
∗
x]Nn′+n′+j+1]

− 1

γ(imod (2N−1))+1γ(j mod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

N−1+min(0,−j)∑
n′=|min(0,j)|

E[[ρ̂x]Nn+n+i+1]E[[ρ̂x]Nn′+n′+j+1]
∗

=
1

γ(imod (2N−1))+1γ(j mod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

N−1+min(0,−j)∑
n′=|min(0,j)|

Cov([ρ̂x]Nn+n+i+1[ρ̂x]Nn′+n′+j+1)

=
1

γ(imod (2N−1))+1γ(j mod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

N−1+min(0,−j)∑
n′=|min(0,j)|

Cov([ρ̂x]Nn+n+i+1[ρ̂x]Nn′+n′+j+1)

δ[N(n− n′) + n+ i− n′ − j]

=
1

γ(imod (2N−1))+1γ(j mod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

N−1+min(0,−j)∑
n′=|min(0,j)|

Cov([ρ̂x]Nn+n+i+1[ρ̂x]Nn′+n′+j+1)

(6.12)

δ[n− n′]δ[i− j]

=
1

γ2
(imod (2N−1))+1

N−1+min(0,−i)∑
n=|min(0,i)|

Cov([ρ̂x]Nn+n+i+1[ρ̂x]Nn+n+j+1)δ[i− j], (6.13)
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where i, j = −N + 1, . . . ,−1, 0, 1, . . . , N − 1 and δ[n] is Dirac delta function. Because
matrix Cρx is a diagonal matrix, the matrix Cr̂x,LS

is also a diagonal matrix. By using
the (6.13), we can calculate the element of Cŝx,LS

as

Cov(P̂x,LS(2π
n

2N − 1
), P̂x,LS(2π

n′

2N − 1
))

=
N−1∑

i=1−N

N−1∑
j=1−N

[F2N−1]n+1,(imod (2N−1))+1[Cr̂x,LS
]
(imod (2N−1))+1,(j mod (2N−1))+1

(6.14)

[FH
2N−1](j mod (2N−1))+1,n′+1

=
N−1∑

i=1−N

N−1∑
j=1−N

e
−j2πn(i mod (2N−1))

2N−1 [Cr̂x,LS
]
(imod (2N−1))+1,(j mod (2N−1))+1

e
j2πn′(j mod (2N−1))

2N−1

=
N−1∑

i=1−N

N−1∑
j=1−N

e
−j2πni
2N−1 e

+j2πn′j
2N−1 [Cr̂x,LS

]
(imod (2N−1))+1,(j mod (2N−1))+1

=
N−1∑

i=1−N

N−1∑
j=1−N

e
−j2πni
2N−1 e

+j2πn′j
2N−1

1

γ2
(imod (2N−1))+1

N−1+min(0,−i)∑
g=|min(0,i)|

Cov([ρ̂x]Ng+g+i+1[ρ̂x]Ng+g+j+1)

(6.15)

δ[i− j]

=
N−1∑

i=1−N

e
j2πi(n′−n)

2N−1

γ2
(imod (2N−1))+1

N−1+min(0,−i)∑
g=|min(0,i)|

Cov([ρ̂x]Ng+g+i+1[ρ̂x]Ng+g+i+1)

=
N−1∑

i=1−N

e
j2πi(n′−n)

2N−1

γ2
(imod (2N−1))+1

N−1+min(0,−i)∑
g=|min(0,i)|

Var([ρ̂x]Ng+g+i+1) (6.16)

Since we have derived the (Nni+nj +1)-th diagonal elements of the Cρ̂x for all ni and

nj, which are equal to σ4

K
, whenever ni, nj ∈ M , we can obtain

Var([ρ̂x]Ng+g+i+1) =

{
σ4

K
if g, g + i ∈ M

0, otherwise
. (6.17)

Inserting (6.17) into (6.16), we can obtain

Cov(P̂x,LS(2π
n

2N − 1
), P̂x,LS(2π

n′

2N − 1
)) (6.18)

=
N−1∑

i=1−N

e
j2πi(n′−n)

2N−1

γ2
(imod (2N−1))+1

N−1+min(0,−i)∑
g=|min(0,i)|

Var([ρ̂x]Ng+g+i+1)

=
N−1∑

i=1−N

e
j2πi(n′−n)

2N−1

γ2
(imod (2N−1))+1

γ(imod (2N−1))+1
σ4

K
. (6.19)
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From (6.19), we can obtain the variance of the estimated power spectrum by setting
n = n′. Then we obtain the variance of the estimated power spectrum as follows,

Var(P̂x,LS(2π
n

2N − 1
)) =

σ4

K

2N−2∑
l=0

1

γl+1

. (6.20)

Then the problem become how to allocate γk s.t.
∑2N−1

k=1 γk =M2 and γ1 = M .

6.2 Simulation study

After obtaining the theoretical variance of the power spectrum for white Gaussian noise
case in (6.20), we can calculate the theoretical normalized mean square error (NMSE)
of the estimated power spectrum for white Gaussian noise signal. It is well known that
the NMSE of the estimated power spectrum ŝx is given by

NMSE(ŝx) =
E(∥ŝx − sx∥22)

∥sx∥22
=

tr(Cŝx) + ∥E(ŝx)− sx∥22
∥sx∥22

(6.21)

where tr(·) is the trace operator. Since the signal we used here is the white Gaussian
noise, the power spectrum of the signal at every frequency point is equal to the variance
of the Gaussian noise. Combining (6.1) and (6.4) we can find that ŝx is a linear
function of r̂y[0]. Since all the elements in r̂y[0] are computed by an unbiased estimation

using (2.15), ŝx is an unbiased estimate of sx, which indicates ∥E(ŝx)− sx∥22 = 0. Then,
the NMSE of ŝx becomes

NMSE(ŝx) =
tr(Cŝx)

∥sx∥22
. (6.22)

Then, we can obtain that the theoretical NMSE of the estimated power spectrum
reconstructed using LS method and for white Gaussian noise is given by

NMSE(ŝx,LS) =
σ4

K

2N−2∑
l=0

1

γl+1

. (6.23)

In the simulation, we focus on the M +Madd samples selected from N consecutive
Nyquist-rate samples, where M and Madd present the number of samples based on
length-(N −1) minimal sparse ruler and the number of additional samples respectively.
We here set N and M to N = 20 and M = 8. The indices set of the M samples is given
by S = {0, 1, 2, 3, 4, 9, 14, 19}. The indices set of the additional samples is defined as
Sadd. We compare NMSEs of the estimated power spectrum in four cases. In the first
case, we have Sadd = {11, 12, 13}. In the second case, we have Sadd = {5, 7, 8}. In the
third case, we have Sadd = {10, 15, 18}. In the fourth case, we have Sadd = ∅. From
the set of the indices of the collected samples, we can obtain a description about the
distribution of the appearance of the indices differences, which are shown in Fig. 6.1,
Fig. 6.2, Fig. 6.3, and Fig. 6.4.
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Figure 6.1: Distribution of indices differences in Case 1

Figure 6.2: Distribution of indices differences in Case 2
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Figure 6.3: Distribution of indices differences in Case 3

Figure 6.4: Distribution of indices differences in Case 4
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By using the aforementioned result of the distribution of the indices differences of
the collected samples, we compute the estimated NMSE and the theoretical NMSE for
each case, and see how they change with the increased measurements K. In order to
calculate the estimated NMSE, we perform 3000 Monte Carlo simulation runs. The
results are shown in Fig. 6.5 and the results in dB scale are shown in Fig. 6.6.
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Figure 6.5: Theoretical and simulated NMSE for all the four cases

From the simulation results, we can find that the theoretical NMSE is almost on
the top of the NMSE simulated in the Monte Carlo runs. It is clear that with the
increasing of the number of measurements, the NMSE will decrease. Moreover, we can
draw a conclusion from the results that the NMSE will achieve a small value if the
distribution of the indices differences of the collected samples is as equal as possible.

Note that the aforementioned results are for white Gaussian noise signals. Now, we
also examine the simulated NMSE computation for a more general Gaussian signal and
find some interesting results. First of all, we design four filters to generate the received
signal by passing the white Gaussian noise through the filter. The filters are low-pass
filter, high-pass filter, bandpass filter and the multi-bandpass filter. We also plot the
power spectrum of the filtered white Gaussian noise. We compute the theoretical power
spectrum by multiplying the square of of the magnitude of the frequency response of
the filter with the variance of the noise we used. Then we also perform the compressive
power spectrum estimation and label the results as the estimated power spectrum. The
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Figure 6.6: Theoretical and simulated NMSE for all the four cases in dB

results for the four different filters are shown in Fig. 6.7, Fig. 6.8, Fig. 6.9 and Fig. 6.10.
The received signal is generated by passing the white noise with a filter using (6.21),

where the ŝx is estimated by the compressive power spectrum estimation and the the-
oretical sx is computed by multiplying the square of of the magnitude of the frequency
response of the filter with the variance of the noise. After obtaining the filters, we
calculate the NMSE of estimated power spectrum with different filters. The results are
shown in Fig. 6.11, Fig. 6.13, Fig. 6.15, Fig. 6.17 and the results in dB scale are shown
in Fig. 6.12, Fig. 6.14, Fig. 6.16 and Fig. 6.18 for the four types of filters respectively.

From the above results, we can find that even if the received signal is not white
Gaussian noise, the NMSE of the estimated power spectrum is also reduced, if the
distribution of the indices differences of the collected sample is as equal as possible.
Besides, although for such general Gaussian signal, we have no idea about the theoreti-
cal NMSE, we also observe that the NMSE of the estimated power spectrum is reduced
when the number of measurements K is increased.

6.3 Minimal Compression Rate with certain NMSE

We have known the NMSE of the estimated power spectrum ŝx in (6.23). Then in
this section we will investigate an extended problem where we fix the NMSE of the
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Figure 6.7: Power spectrum of the WGN passed through low-pass filter

estimated power spectrum ŝx. For this fixed NMSE, we then investigate the minimal
compression rate we can achieve. We define the N -dimensions vector v as a selection
vector whose elements are 1 and 0. This selection vector illustrates which of N Nyquist-
rate samples in the original vector of samples x that have been collected. For example,
v = [1, 0, 0, 1, 0]T means that out of 5 Nyquist-rate samples, only the first and the
fourth samples have been collected while the others are not collected by the sampling
matrix C. In this case, matrix C is given as

C =

[
1 0 0 0 0
0 0 0 1 0

]
. (6.24)

Here we define the matrix V = vvT . As we know, the NMSE(ŝx,LS) =
σ4

K

2N−2∑
l=0

1
γl+1

is

given by (6.23) for white Gaussian noise signal, where γl+1 and K present the number
of times the l + 1-th row of I2N−1 appears in Rc and the number of measurements
respectively. It is easy to find that CTC is a diagonal matrix where its diagonal entries
are the same as the elements of v, i,e, CTC = diag[v]. As we have discussed, the k-th
diagonal element of (Rc

TRc) is γk. Then using (2.14), we can rewrite (Rc
TRc) as

(Rc
TRc) = TT (CTC⊗CTC)T. (6.25)

Replacing CTC with diag[v] results in

(Rc
TRc) = TT (diag[v]⊗ diag[v])T. (6.26)
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Figure 6.8: Power spectrum of the WGN passed through high-pass filter

Now let’s have a look at diag[v] ⊗ diag[v] in (6.26). It is easy to find that diag[v] ⊗
diag[v] is an N2 × N2 diagonal matrix, whose (ni − 1)N + nj-th diagonal element
is equal to v[ni]v[nj], where ni, nj ∈ {1, 2, . . . , N}. As we have discussed before, for
i = 1−N, ..., 0, ..., N − 1, the ((imod (2N − 1))+1)-th row of TT contains ones only at

the {1 + i+ (N + 1)n}N−1+min(0,−i)
n=|min(0,i)| -th elements. Let’s have a look at 1 + i+ (N + 1)n.

It is easy to find that

1 + i+ (N + 1)n = N((n+ 1)− 1) + (n+ 1 + i). (6.27)

So we can rewrite the ((imod (2N − 1)) + 1)-th diagonal element in (Rc
TRc) as

γ(imod (2N−1))+1 =

N−1+min(0,−i)∑
n=|min(0,i)|

v[n+ 1]v[n+ 1 + i]. (6.28)

Then, we can rewrite the NMSE of the estimated power spectrum as

σ4

K

2N−2∑
l=0

1

γl+1

=
σ4

K

N−1∑
i=1−N

1∑N−1+min(0,−i)
n=|min(0,i)| v[n+ 1]v[n+ 1 + i]

. (6.29)

After obtaining the relation between v and NMSE(ŝx,LS), we can write the conditioned
optimization problem as

min
v

∥v∥1s.t.
σ4

K

N−1∑
i=1−N

1∑N−1+min(0,−i)
n=|min(0,i)| v[n+ 1]v[n+ 1 + i]

≤ ξ. (6.30)
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Figure 6.9: Power spectrum of the WGN passed through bandpass filter

However, it does not satisfy the requirements to be considered as a convex problem.
Recall that a convex optimization problem is defined as follows [4]. A mathematical
optimization problem, or just optimization problem, has the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(6.31)

Here the vector x = [x[1], x[2], . . . , x[n]]T is the optimization variable of the prob-
lem, the function f0 is the objective function and the functions fi are the constraint
functions, and the constants b1, . . . , bmare the bounds, for the constraints. The convex
optimization problem is one in which the objective and constraint functions are convex,
which means they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y), (6.32)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. In our case, the
objective function does not satisfy the requirements to be a convex function. In order
to solve the problem with convex optimization algorithm, we have to do some relaxation
on the objective function.

First, we define the bounds of the vector v as 1N×1 ≥ v ≥ 0N×1, where 1N×1 is
an N × 1 vector containing ones in all entries and 0N×1 is an N × 1 vector containing
zeros in all entries. Now the value of the elements of v turned to be real number, not
integer {0, 1} anymore. With this relaxation, we can prove that the condition of the
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Figure 6.10: Power spectrum of the WGN passed through multi-bandpass filter
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Figure 6.11: NMSE comparison of WGN signal passed through low-pass filter

optimization meets the requirements of convex definition (see appendix). Second, we
relax the condition V = vvT as in (5.7). Then, we obtain(

V v
vT 1

)
≽ 0. (6.33)

After relaxation, V can be different from vvT , so we need to add some condition in
addition such as diag(V, 0) = v and for each i = 1 − N, . . . , N − 1, diag(V, i) ≥ 1
ensuring all autocorrelation lags from 1−N to N − 1 have been covered.

Note that our goal is to minimize the compression rate which is equiralent to min-
imizing ∥v∥0. However, we do relaxation and minimizing ∥v∥1. In fact, we try to
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Figure 6.12: NMSE comparison of WGN signal passed through low-pass filter (in dB)
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Figure 6.13: NMSE comparison of WGN signal passed through high-pass filter

follow [5] and minimize wTv where w is a N × 1 weight vector.
The iteration algorithm to find the proper v for the sampling matrix is introduced

as follows, where w = [w[0], w[1], . . . , w[N − 1]]T .

1. Set the iteration count l to zero and initialize all the elements in weight vector
w(l), with l = 0, to 1.

2. Solve the weighted minimization problem: We want to minimize w(l)Tv over the
vector v, with the constraint that the index differences set ΩSm covers all integers
from 1−N up to N − 1.

3. Update the weights w[i] for each i = 0, 1, 2, . . . , N − 1

w(l+1)[i] =
1

|v(l)[i]|+ ϵ
(6.34)

where ϵ is a small value in order to provide stability and ensure that a zero-valued
component in v(l) does not strictly prohibit a nonzero estimate at the next step.

4. Terminate on convergence or when (l) attains a specified maximum number of
iterations lmax. Otherwise, increment (l) and go to step 2.

60



1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

10
−3.26

10
−3.23

10
−3.2

10
−3.17

10
−3.14

NMSE comparison of WGN signal passed through high−pass filter

the number of measurements K

N
M

S
E

 in
 d

B

 

 
estimated NMSE in case 1
estimated NMSE in case 2
estimated NMSE in case 3
estimated NMSE in case 4

Figure 6.14: NMSE comparison of WGN signal passed through high-pass filter (in dB)
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Figure 6.15: NMSE comparison of WGN signal passed through bandpass filter

Now we can write the problem as an optimization problem

min
v

wTv

s.t.
σ2

K

N−1∑
i=1−N

1

sum(diag(V,i))
≤ ξ.

v ≤ 1N×1,

v ≥ 0N×1,

diag(V,0)=v,(
V v
vT 1

)
≽ 0.

(6.35)

Then, we can use the convex optimization to obtain the estimated v̂. However, the
values of the components of v̂ are the real value from 0 up to 1. Therefore, we need
methods to find the v we need.

We use randomized rounding algorithm in [6] to achieve the goal. It is as follows.

1. Generate L candidate estimates of the form vn,l = 1(l = 1, 2, . . . , L) with a prob-
ability v̂n for n = 1, 2, . . . , N . The l starts from 1.
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Figure 6.16: NMSE comparison of WGN signal passed through bandpass filter (in dB)
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Figure 6.17: NMSE comparison of WGN signal passed through multi-bandpass filter

2. Define vl = [v1,l, . . . , vN,l]
T . Find the Sm of the vl.

3. If the index differences set ΩSm of Sm satisfying the condition that ΩSm covers
from 1−N up to N − 1, vl is the solution, otherwise go back to step 2 and move
to another vl+1.

6.4 Simulation Study

In our simulation, we define the ξ = 0.02, σ = 1 and K = 10000, where ξ is the certain
NMSW we set. We change the number of N to check whether we can obtain correct
results.

First of all, we set N = 15, and then, we collect 7 samples, whose indices set is
{1, 3, 4, 10, 11, 14, 15}. The index starts from 1. The NMSE of the estimated power
spectrum with this sampling pattern is 0.0022. The distribution of the correlation lags
is showed in Fig 6.19.

Then, we set N = 27, and then, we collect 10 samples, whose indices set is
{1, 2, 3, 13, 17, 19, 21, 24, 26}. The NMSE of the estimated power spectrum with this
sampling pattern is 0.0035. The distribution of the correlation lags is showed in Fig 6.20.
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Figure 6.18: NMSE comparison of WGN signal passed through multi-bandpass filter (in dB)
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Figure 6.19: The distribution of the correlation lags when N = 15

After that, we set N = 36, and then, we collect 11 samples, whose indices set is
{1, 2, 3, 7, 8, 22, 24, 25, 33, 35, 36}. The NMSE of the estimated power spectrum with
this sampling pattern is 0.0054. The distribution of the correlation lags is showed in
Fig 6.21.

Last, we set N = 58, and then, we collect 16 samples, whose indices set is
{1, 2, 3, 6, 15, 17, 21, 23, 24, 29, 47, 52, 53, 54, 57, 58}. The NMSE of the estimated power
spectrum with this sampling pattern is 0.0071. The distribution of the correlation lags
is showed in Fig 6.22.

However, we note that the NMSEs we obtain are much less than the value we set.
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Figure 6.20: The distribution of the correlation lags when N = 27

In other word, the problem is not perfectly solved. We do many relaxation to transform
the problem into convex problem, hence, the results may not perfectly agree with the
original problem.
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Figure 6.21: The distribution of the correlation lags when N = 36
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Figure 6.22: The distribution of the correlation lags when N = 58
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Conclusion and Future Works 7
In this chapter we summarize the work in the thesis, draw the final conclusion and
suggest directions for the further research.

7.1 Conclusion

In the thesis, we first present the introduction and the motivation to the compressive
power spectrum sensing, from where we can understand the purpose of the compressive
power spectrum sensing. For the demand of spectrum sharing, the information of
the power distribution over frequency band is needed. Besides, the wide-band signal
indicates a high sampling frequency if we use the uniform sampling according to the
Whittaker−Nyquist−Kotelnikov−Shannon sampling theorem. The power consumption
of the ADC with a high sampling rate is too huge for current ADCs, therefore we pay
the attention on compressive power spectrum estimation.

In the second chapter, we present the background of the compressive power spectrum
estimation. Specifically, we make a short introduction to the alternative time domain
approach, which is the theoretical foundation of our thesis. In this thesis, the signal we
implement as the original signal is always a wide-sense stationary signal. The power
spectrum is calculated by performing the Fourier transform of the autocorrelations of
the signal. Since we do not need to reconstruct the signal, we do not care about the
information in the signal itself. What we want is the information in the autocorrelation
of the signal. This allows us to estimate the power spectrum with less samples compared
to the samples needed in classical uniform sampling method.

In the third chapter, we implement the parametric method and the non-parametric
method on the alternative time domain approach. After comparing the performance
of those methods, we can draw some conclusions as follows. When we choose the
suitable signal model to estimate the signal, the performance of the parametric method
is better than the performance of the non-parametric method. Moreover, in this case,
the compression rate for the parametric method can be less than the compression
rate for the non-parametric method, because the number of parameters in parametric
approach is much less than the number of autocorrelations we need to calculate in
non-parametric approach.

In the fourth chapter, we propose the parametric method to implement the com-
pressive power spectrum estimation. Different from the parametric approach in the
previous chapter, we estimate the parameters in the model we choose directly without
calculating the autocorrelations of the signal first. From the simulations, we can see
that, the compression rate can be further decreased, because we do not need to obtain
all information of the autocorrelations at all when we still want to keep the accuracy of
the power spectrum estimation. However, the methods here is not suitable for all the
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cases. In some cases, we could not calculate the parameters, which is needed to make
further works on.

In the fifth chapter, we focus on the sampling pattern based on the alternative time
domain approach. The sampling pattern ensures the intact information in autocorrela-
tions from lags 1−N to N−1. The optimal sample selection is the minimal sparse ruler.
However it is hard to obtain unless adapting brute force procedure. We propose some
sub-optimal sparse ruler algorithms and compare them with the current sub-optimal
sparse ruler algorithms. From the comparison we can find that the performance of our
sub-optimal sparse ruler is better than the coprime sampling and nearly have the same
performance compared to the two-level nested array algorithm. When the scale of the
samples in a block is small, our cvx based sub-optimal sparse ruler algorithm has the
best performance, very close to the performance of optimal sparse ruler. The disad-
vantage here is that our cvx based sub-optimal sparse ruler algorithm is more complex,
which indicates a larger time cost when generating the sampling patterns.

In the sixth chapter, we analyse the performance of the alternative time domain
approach and study the cosets selection. We find that the NMSE of the estimated
power spectrum is related to the number of times the lags appear due to the cosets
selection. The more often the lags appear the less the NMSE is. After obtain the
relationship between the cosets selection and the NMSE, we can set the NMSE of the
estimated power spectrum to a certain desired value and then find the best cosets
selection under this condition.

7.2 Suggestion for Further Research

There are several problems remain to be solved in the future.

7.2.1 The optimization of the parameters estimation

As we have described in Chapter 4, our methods to estimate the parameters of the AR
and ARMA models are not suitable for all the cases. The optimization method in our
cases are restricted by the parameters in the models themselves. That means we still
need to find an optimization method to estimate the parameters in the models suitable
for all the cases.

7.2.2 The best solution of the cosets selection

Although we have found the relationship between the cosets selection and the NMSE of
the estimated power spectrum, we do not solve the cosets selection problem very well.
Because we make the relaxation on the problem to make it into a convex problem, the
final result can reach the requirements of the relaxed convex optimization problem, not
reach the optimal solution for the original problem. Therefore we still need to solve it
in the future.
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Appendix A
A.1 RELAXATION AND CONVEX PROOF OF CHAPTER

6

Problem setting: v is an N × 1 vector, whose element value belongs to {0, 1}, and V
is a matrix defined by V = vvT . We want to turn the constraint function A.1 which
appears in Chapter 6, to be a convex function after some relaxation.

f(V) =
N−1∑

i=1−N

1

sum(diag(V, i))
(A.1)

It is easy to know that all the elements in matrix V are non-negative, which indi-
cates that sum(diag(V, i)) is non-negative for all i from 1 − N to N − 1. Note that
sum(diag(V, i)) is related to diag(V, j) when i and j are different, because all the
sum(diag(V, i)) are calculated by the v. Therefore we do some relaxation on it. Now
we use positive pi replacing sum(diag(V, i)) in the function A.2. So we have pi for all i
from 1−N to N − 1, where all pi are independent with each other. Then the function
becomes

f(p) =
N−1∑

i=1−N

1

pi
, (A.2)

where p is a (2N − 1)× 1 vector.
According to the definition of convex function, for all scale value a and b, where

a + b = 1 and a > 0, b > 0, the function should satisfy the condition f(ap + bq) ≤
af(p) + bf(q) in order for f(.) to be convex.

In our problem,

f(ap+ bq) =
N−1∑

i=1−N

1

api + bqi
, (A.3)

af(p) = a
N−1∑

i=1−N

1

pi
, (A.4)

bf(q) = b
N−1∑

i=1−N

1

qi
. (A.5)

(A.6)

Then, take (A.6) into the condition f(ap+bq) ≤ af(p)+bf(q), our task is to prove

if
∑N−1

i=1−N
1

api+bqi
≤ a

∑N−1
i=1−N

1
pi
+ b
∑N−1

i=1−N
1
qi
.
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Now the proof is given as follows. First we prove that 1
api+bqi

≤ a 1
pi
+b 1

qi
. We assume

that 1
api+bqi

> a 1
pi
+ b 1

qi
. Note that pi qi are positive and at most one of a and b is zero.

1

api + bqi
> a

1

pi
+ b

1

qi
(A.7)

1

api + bqi
>

aqi + bpi
qipi

(A.8)

qipi > (api + bqi)(aqi + bpi) (A.9)

qipi > (a2 + b2)piqi + ab(pi
2 + qi

2) (A.10)

Because a+ b = 1, (a+ b)2 = 1, a2 + b2 = 1− 2ab. Then we obtain

qipi > (a2 + b2)piqi + ab(pi
2 + qi

2) (A.11)

qipi > (1− 2ab)piqi + ab(pi
2 + qi

2) (A.12)

2abqipi > ab(p2i + q2i ) (A.13)

2qipi > (p2i + q2i ) (A.14)

0 > (qi − pi)
2 (A.15)

which is impossible. So we have proved that 1
api+bqi

≤ a 1
pi
+b 1

qi
. Because it is suitable for

all i from 1−N to N−1, we have proved that the condition f(ap+bq) ≤ af(p)+bf(q)
is satisfied. Therefore, the problem is convex.
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