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Abstract

Third-party verified credentials (e.g. passports, diplomas) are essential in our daily life. The usage of

third-party verified credentials bring us convenience in authentication. The Verifiable Credential (VC)

data model is a new standard proposed by the W3C association to ease the expression and verification of

third-party verified credentials on the Internet. The issuance and presentation of verifiable credentials

are tamper-evident and privacy-preserving by design. However, the current verifiable credential data

model lacks an explicit revocation design that guarantees the secure operations of the system. The lack

of a revocation mechanism significantly limits the application of verifiable credentials.

This thesis studies the revocation mechanisms of existing verifiable credential implementations. The

existing revocation mechanisms are either tamper-evident or privacy-preserving. None of them can

achieve the two properties together. To evolve the revocation mechanism to be both tamper-evident

and privacy-preserving by design, we propose a new method which combines the BBS+ signature, a

cryptographic accumulator and the blockchain. Our design enables the verifier to verify the presented

credential’s revocation status without compromising the credentials holders’ privacy.

We implement a proof-of-concept of our revocation mechanism to show it is practical in the real

world. The experimental results show that after adding our revocation mechanism, the presentation

time of a five-attribute credential changes from 22.22ms to 62.11ms (+39.89ms), and the verification

time changes from 13.36ms to 44.56ms (+31.86ms). Moreover, the scalability analysis shows that our

revocation mechanism can satisfy the need for revocation in the real world.
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1
Introduction

1.1. Third-party verified credentials
Third-party verified credentials are certificates issued by trustworthy authorities. We can prove we

satisfy specific requirements to pass authentications using a third-party verified credential. For example,

we show driver’s licenses to assert we can operate a vehicle, present our diplomas to state our education

level, and use passports to travel across countries. Exploiting these credentials provides convenience to

us when used in the physical world. As the Internet has become more indispensable, we also want

to enjoy the same comfort on the Web. However, two factors make it challenging to use third-party

verified credentials on the Internet.

The first factor is the difficulty in presenting third-party verified information on the Internet. The

lack of a uniform presentation format and a consistent verification method makes employing third-party

verified information on the Internet ineffective. To address it more clear, let’s take the Spotify student

discount as an example. If a student wants a student discount from Spotify, she must upload the photo

of her student ID to SheerID[1] to verify that she is indeed a student. Because there are a significant

number of schools worldwide, and their student IDs are in different formats, it is incredibly challenging

to write a program to censor these uploaded student IDs. In other words, these uploaded student

ID photos are not machine-verifiable. Thus, SheerID checks the validity of uploaded student IDs

manually[2]. The participation of humans will increase the processing time and the risk of audit errors,

which will make the verification unproductive.

The second factor is the concern of privacy leakage. Using paper-based credentials will expose all

the information included in the credential to the verifier, although we only need to disclose part of that

information in most cases selectively. Specifically, when we use our ID to buy alcohol, the seller only

needs our age; nonetheless, the ID card exposes our name, date of birth, address and other private

information to the seller. Malicious sellers may store this personal information and use it to correlate

data from other platforms, which is a severe privacy concern. Thus, paper-based credentials are not

privacy-preserving. What’s worse, the persistence of digital data and the ease with which disparate

digital data sources can be collected and correlated make the privacy concerns even more severe when

using digital third-party verified credentials on the Internet.

1.2. Verifiable Credentials
To ease the presentation of third-party verified credentials on the Internet and relieve the privacy

concerns, the W3C proposes the Verifiable Credential data model. The verifiable credential data model

provides a mechinism to express third-party verified credentials in a way that is cryptographically secure,

privacy respecting and machine-verifiable[3]. There are two components in the verifiable credential

data model: the verifiable credentials and the verifiable presentations. Verifiable crendentials and

verifiable presentations are encoded in the JSON-LD[4] format, providing a good machine-readability

while ensuring global interoperability between a heterogeneous set of software systems.

The general scheme of verifiable credentials is shown in figure 1.1. A verifiable credential is composed

of credential metadata, claim, and proof. Credential Metadata refers to the data used to describe

properties of the credential, such as the issuer, the expiry date and time, a representative time and so on.

1



1.2. Verifiable Credentials 2

A claim is a statement about a subject. Claims are expressed using subject-property-value relationship.

For example, the claim "Peter-studentOf-TU Delft" expresses that peter is a student of TU Delft. Proofs

are the zero-knowledge proof that proves the issuer signs the claims. The addition of zero-knowledge

proof techniques and cryptographic signature make the verifiable credentials more tamper-evident

than their physical counterparts. Here, tamper-evident means that the verifiable credentials can resist

forgery and cannot be modified after the issuance.

Verifiable Credential

Credential Metadata

Claim(s)

Proof(s)

Figure 1.1: Basic components of verifiable credential

A verifiable presentation is the expression of a subset of one or more credentials. The basic scheme

of verifiable presentation is shown in figure 1.2. The verifiable presentation has three components:

presentation metadata, verifiable credential(s), and proof(s). Presentation metadata explains the usage

of the presentation (e.g., the presentation is used to pass the age check when buying alcohol). The

proofs in the verifiable presentation contain data required to check the validity of the presented claims.

While using verifiable credentials to generate the verifiable presentation, the verifiable credential holder

can choose to disclose part of the claims contained in the verifiable credentials. This is called the

selective disclosure of verifiable credentials. The selective disclosure enables the holder to hide private

information when presenting the verifiable credentials, enhancing the privacy of expressing credentials

on the Internet.

Verifiable Presentation

Presentation Metadata

Verifiable Credential(s)

Proof(s)

Figure 1.2: Basic components of verifiable presentation

Figure 1.3 shows the basic ecosystem of the verifiable credential data model. The ecosystem specifies

the related actors in the verifiable credential data model and the supported operation. There are four

actors and three operations in a verifiable credential ecosystem. The four actors are: issuer, holder,

verifier and the verifiable data registry. The three operations are: issuance, presentation and verification.

Issuance refers to the process that the issuer issues the verifiable credential to the holders. Presentation
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describes the procedure that holders use verifiable credentials to generate verifiable presenations.

Verification indicates the verifiers check the validity of the verifiable presentations.

Figure 1.3: Ecosystem of verifiable credentials

1.3. Revocation
Aside from issuance, presentation and verification, a credential system can also support the revocation

operation. Revocation allows the issuer to rescind the validity of the issued credentials when the user

misbehaves or the credentials are broken (e.g. stolen or lost). In a system with revocation, a credential

will have two revocation statuses after issuance: revoked or non-revoked. Only non-revoked credentials

can pass the verification. The term “Revocation mechanism" refers to the process how revocation is

operated in the system. A revocation mechanism includes the following operations:

• Revoking a credential.

• Updating a credential’s revocation status

• Verifying a credential’s revocation status

The employment of revocation can be an enabler to guarantee the secure operation of credentials.

Nowadays, credential fraud has become an unignorable problem in our society. Criminals and terrorists

may use lost and stolen credentials to commit fraud or terrorist attacks. Statistics show that, by 2015,

there were 34,085,965 lost and stolen passports in Europe, which caused a passport fraud “epidemic"

around Europe[5]. According to Europol Director Rob Wainwright, this credential fraud facilitates

cross-border terrorism[5], which has been a severe menace to public safety. Revocation is an ideal

solution to credential fraud as the issuer can invalidate the stolen or lost credential to prevent further

malicious behaviors. Therefore, adding a revocation mechanism to the credential system is vital.

1.4. Concerns on adding revocation mechanisms for Verifiable Cre-
dentials

Currently, the official verifiable credential data model does not provide a standard design for the

revocation mechanism. The lack of a revocation mechanism limits the application of verifiable credentials

in the scenario that needs a rigid validity check (e.g. applying loan from the bank). Nonetheless, adding

a revocation mechanism to the verifiable credential data model is not an open-and-shut operation. Two

concerns making the addition of revocation mechanisms challenging:

Privacy leakage. The risk of privacy leakage lies in the verification of revocation status. In the traditional

revocation mechanism such as Certificate Revocation List (CRL) and Online Certificate Status Protocol

(OCSP), the verifier use identifiers such as the credential’s serial number to check the credential’s
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revocation status. The use of identifiers violates the selective disclosure of the verifiable credential data

model.

Replacement Fraud. The problem of replacement fraud is a potential consequence of the anonymity

of verifiable presentation. If the verifiable presentation reveals no personal information about the

presented credentials, it is difficult to bind a credential with its associated revocation status. There

are chances that malicious users can fool the verifier by replacing the revocation status of a revoked

credential with the one from a non-revoked credential. Moreover, this is another form of replacement

fraud, in which the attackers can hack in the central server to replace the revocation information with

their own version.

To get over the abovementioned concerns, we need to design a revocation mechanism that can check

whether an anonymous credential is revoked and avoid the replacement fraud. To put it another way,

the revocation mechanism for verifiable credentials should be privacy-preserving and tamper-evident.

Therefore, I structure my research question as:

How to design a privacy-preserving tamper-evident revocation mechanism for verifiable
credentials?

1.5. Decomposition of Research Question
The first task of our research question is to find a privacy-preserving way to check the verifiable

credential’s revocation status and find a solution for the replacement fraud. Therefore, the first two

sub-question are:

RQ1 How to achieve privacy-preserving in revocation status check?

RQ2 How to make the revocation status check tamper-evident?

After knowing the solutions, the third question is to discover how to combine the two good properties

into our system;

RQ3 How to combine tamper-evident and privacy-preserving for revocation mechanism?

1.6. Contribution
To the best of our knowledge, this is the first academic work that proposes a privacy-preserving and

tamper-evident revocation mechanism for verifiable credentials. Our contributions can be summarized

as follows:

• We propose the first privacy-preserving and tamper-evident revocation mechanism for verifiable

credentials. Our revocation mechanism can ensure: 1. the revocation and the revocation status

check do not leak any identifying information about verifiable credentials and the holder of

verifiable credentials; 2. malicious attackers can not pass the revocation status check by replacement

fraud.

• We implement a proof of concept of our revocation mechanism in Rust. The efficient bilinear-

pairing-based accumulator we use makes our revocation mechanism more storage-saving and

faster than the related works by design. Our experimental results show that adding our revocation

status check to the verifiable credential system only adds 40ms runtime overhead to presentation

and 30ms runtime overhead to verification. We also test the scalability of our proof-of-conception,

the transaction per second(TPS) is 70 transaction per second which is far larger than the real world

need. Since the absolute figure of the runtime overhead is limited to tens of milliseconds and the

system is scalable for read world application, our revocation mechanism is practical in the real

world.

1.7. Outline
The rest of the thesis is organized as follows. Chapter 2 introduces the preliminaries needed to

understand related works and our system. Chapter 3 gives a brief description of the related works.

Chapter 4 describes the requirements of being tamper-evident and privacy-preserving. Chapter 5

presents the algorithm and protocols that constructs the revocation mechanism. Chapter 6 analyze the

security and performance of the system. Chapter 7 shows the experiments result of our proof-of-concept

implementation. Chapter 8 concludes this work and outlines future work.



2
Preliminaries

This chapter describes the necessary preliminaries to understand our solution and the building blocks

of the proposed verifiable credential protocol (see Chapter 5). The building blocks consist of Signature

Proof-of-Knowledge (SPK) protocols (see section 2.1), an elliptic-curve-based cryptographic commitment

(see section 2.4). a pairing-based signature scheme (see section 2.5) and a pairing-based accumulator

(see section 2.6).

Table 2.1 explains the notations we use in this chapter.

Table 2.1: Notations

Notation Meaning

←$ random sampling

← assign operation

𝑙 The length of a value. For example, 𝑙𝑐 means the length of 𝑐

𝑅{0, 1}𝑙𝑐 The set of random bitstrings of length 𝑙𝑐
ℋ𝑠 cryptographic hash function

Z𝑞 Integer group with order q

Z∗𝑞 Non-zero integer group with order q

2.1. Zero Knowledge Proof
Zero-knowledge proof is a notion first introduced by Goldwasser et al.[6]. In general, a proof of a theory

contains more knowledge than the fact that the theorem is true. For instance, we show a Hamiltonian

tour to prove a graph is Hamiltonian. This Hamiltonian tour contains more knowledge than a single

bit of Hamiltonian/non-Hamiltonian because the verifier can know about the graph’s topology from

the given Hamiltonian tour. The graph’s topology learned from the Hamilton tour is called additional

knowledge conveyed by the proof. In the definition of Goldwasser et al., the zero-knowledge proof is

the proof that gives no additional knowledge other than the proof’s correctness.

Goldwasser et al.’s definition of zero-knowledge proof is very intuitive; they didn’t define the explicit

properties of zero-knowledge proof. Goldreich et al.’s work[7] supplied the essential properties for

zero-knowledge proof. Goldreich et al. assume that there are two actors in the zero-knowledge proof

protocols. One is the actor who gives the proof, called the prover; the other is the actor who verifies

the presented proof, called the verifier. Let 𝐿 be a language, (𝑃,𝑉) are the predetermined program of

prover and verifier, and 𝑥 is a string. For a zero-knowledge proof system to prove 𝑥 ∈ 𝐿, whenever the

verifier is following the predetermined program, note as V, the following two conditions always hold:

• Completeness If the prover runs its predetermined program P, then, for every constant 𝑐 > 0 and

large enough 𝑥 ∈ 𝐿, the verifier accepts the common input 𝑥 with probability at least 1 − |𝑥 |−𝑐 . In

other words, the honest prover can convince the verifier of 𝑥 ∈ 𝐿.

5



2.1. Zero Knowledge Proof 6

• Soundness For every program 𝑃∗, run by the prover, for every constant 𝑐 > 0 and large enough

𝑥 ∈ 𝐿, the verifier rejects 𝑥 with probability at least 1 − |𝑥 |−𝑐 . In other words, the malicious prover

can not fool the verifier.

A protocol that satisfies completeness and soundness is called "proof of knowledge", which means

using this protocol, the prover can prove a specific statement is true to the verifier. If the soundness of

a protocol relies on a computational assumption, e.g. hardness of strong Diffie-Hellman assumption

the protocol is referred to as arguments of knowledge. Σ-protocols are protocol constructions that yield

efficient arguments of knowledge.

Definition 1. Σ-protocol A three-move protocol <P,V> is said to be a Σ-protocol for relation R if P sends a message
a,V sends a random challenge 𝑒 and P responds with a message z and the protocol further satisfies

• Completeness If P,V follow the protocol on input 𝑥 and P has a private input 𝑤 where (𝑥, 𝑤) ∈ 𝑅, the
verifier always accepts

• Special Soundness From any 𝑥 and any pair of accepting conversations on input 𝑥, (𝑎, 𝑒 , 𝑧), (𝑎, 𝑒′, 𝑧′),
where 𝑒 ≠ 𝑒′, one can efficiently compute 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

• Special Honest-Verifier Zero-Knowledge There exists a polynomial-time simulator 𝑀, which on input 𝑥
and a random 𝑒, outputs an accepting conversation of the form (𝑎, 𝑒 , 𝑧), with a probability distribution
indistinguishable from conversations between the honest P,V on input 𝑥.

Schnorr identification protocol can be seen as an example of Σ-protocol. The Schnorr identification

protocol proves knowledge of a discrete log 𝑦 = 𝑔𝑤 (mod 𝑝) in a group of order 𝑝. The protocol use a

subgroup of order 𝑝, and requires 𝑝 to be prime and 𝑞 divides 𝑝 − 1. Both the prover and verifier know

the group generator 𝑔, group order 𝑞, subgroup order 𝑞 and the input 𝑦. The prover starts by choosing

a random value 𝑟 from the subgroup Z∗𝑞 , and computes 𝑡 ← 𝑔𝑟 mod 𝑝. Then the prover sends 𝑡 to the

verifier, and the verifier randomly picks a challenge for the prover. Then the prover uses the received

𝑐 to compute 𝑠 ← 𝑟 + 𝑐𝑤 mod 𝑞 and sends 𝑠 to the verifier. Finally, the verifier checks if 𝑔𝑠 ≡ 𝑡𝑦𝑐
(mod 𝑝) holds.

Schnorr Protocol

Prover Verifier
𝑔, 𝑞, 𝑝, 𝑦 𝑔, 𝑞, 𝑝, 𝑦

𝑤

𝑟←$Z∗𝑞
𝑡 ← 𝑔𝑟 (mod 𝑝)

𝑡

𝑐←$ {0, 1}𝑙𝑐

𝑐

𝑠 ← 𝑟 + 𝑐𝑤 (mod 𝑞)

𝑠

Verify 𝑔𝑠
?≡ 𝑡𝑦𝑐 (mod 𝑝)

Protocol 2.1: Schnorr protocol

We called it an interactive protocol because the verifier gives the challenge of Σ-protocol. Using

Fiat-Shamir transformation, we can transform the Σ-protocols into a non-interactive signature scheme.

The non-interactive signature scheme of Σ-protocol is called Signature Proof-of-Knowledge (SPK).

2.2 is the non-interactive version of the schnorr identification protocol. The only difference between



2.2. Bilinear Pairing 7

the non-interactive and interactive versions is that the challenge 𝑐 is generated by the prover using a

cryptographic hash function. To simplify the description of a signature proof of knowledge, we use the

notation introduced by Camenisch and Stadler. As an example, the signature proof-of-knowledge of the

Schnorr identification protocol is noted as 𝑆𝑃𝐾(𝑤) : 𝑦 ≡ 𝑔𝑤 (mod 𝑞)(𝑚), with 𝑤 the secret value held

by prover and 𝑚 the messages that are signed. Using SPK can reduce the communication cost of the

proof and reduce the attack surface for the protocols.

Non-interactive Schnorr Protocol

Prover Verifier
𝑔, 𝑞, 𝑝, 𝑦, 𝑚 𝑔, 𝑞, 𝑝, 𝑦, 𝑚

𝑤

𝑟←$Z∗𝑞
𝑡 ← 𝑔𝑟 (mod 𝑝)
𝑐 ←ℋ𝑠 (𝑔, 𝑞, 𝑝, 𝑦, 𝑡 , 𝑚)
𝑠 ← 𝑟 + 𝑐𝑤 (mod 𝑞)

𝑠, 𝑐

Verify 𝑔𝑠
?≡ 𝑡𝑦𝑐 (mod 𝑝)

Protocol 2.2: Non-interactive Schnorr protocol

2.2. Bilinear Pairing
Bilinear pairing is a type of mathematical operation that are used to construct cryptographic schemes.

For multiplicative groups G1, G2, G𝑇 with prime order p, a bilinear pairing is map e: G1 × G2 −→ G𝑇 ,

satisfying the following properties:

• bilinearity: ∀𝑢 ∈ G1 , 𝑣 ∈ G2 : 𝑒(𝑢𝑎 , 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 for 𝑎, 𝑏 ∈ Z
• non-degeneracy: For 𝑔1 being a generator of G1, 𝑔2 being a generator of G2 holds that: 𝑒(𝑔1 , 𝑔2) ≠ 1

Galbraith et al.[8] distinguish three types of pairings: ifG1 = G2, it is called type-1 pairing; ifG1 ≠ G2

and there exists an efficient isomorphism 𝜙 : G2 −→ G1, it is called type-2 pairing; and type-3 pairing, in

which G1 ≠ G2 and no such isomorphism from G1 to G2.

Type-3 pairings currently allow for the most efficient operations in G1 given a security level using

BN curves with a high embedding. Therefore, it is desirable to describe a cryptographic scheme in a

type-3 setting.

2.3. Strong Diffie Hellman Assumption
The computational hardness assumption of our work is the q-Strong Diffie Hellman (q-SDH) assumption.

The q-SDH assumption has two versions. The first version by Boneh and Boyen is called the Eurocrypt

version, and it is defined in a type-1 and type-2 pairing setting. This version states the following problem

is computationally difficult for probabilistic polynomial time adversary:

Given a q+2-tuple (𝑔1 , 𝑔2

𝑥 , 𝑔2

(𝑥2) , ..., 𝑔2

(𝑥𝑞 )) ∈ G1

(𝑞+1) × G2

2

with 𝑔1 = 𝜙(𝑔2), output a pair

(𝑐, 𝑔1

(1/(𝑥+𝑐)) ∈ Z𝑝 ∗ ×G1.

Boneh and Boyen created a new version of the q-SDH problem to support type-3 pairing settings.

This version is called the JOC version. It states the following problem is computationally difficult for

probabilistic polynomial time adversary:

Given a q+2-tuple (𝑔1 , 𝑔1

𝑥 , 𝑔1

(𝑥2) , ..., 𝑔1

(𝑥𝑞 ),𝑔2 ,𝑔2

𝑥 ) ∈ G1

(𝑞+1)×G2

2

, output a pair (𝑐, 𝑔1

(1/(𝑥+𝑐)) ∈
Z𝑝 {−𝑋} ×G1.
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Boneh et al. present a protocol for proving possession of a solution to an SDH problem in zero-

knowledge. In the protocol, the public values are 𝑔1 , 𝑢, 𝑣, ℎ ∈ G1, and 𝑔2 , 𝑤 ∈ G2. Here 𝑢, 𝑣, ℎ are

random values in G1, 𝑔2 is a random generator of G2, 𝑤 equals 𝑔
𝛾
2

for secret value 𝛾 ∈ Z𝑝 . The protocol

proves possesion of a pair (A,x), where 𝐴 ∈ G1 and 𝑥 ∈ Z𝑝 , such that 𝐴𝑥+𝛾 = 𝑔1. Such ad pair satifies

𝑒(𝐴, 𝑤𝑔𝑥
2
) = 𝑒(𝑔1 , 𝑔2). The protocol is a standard generalization of Schnorr’s protocol for proving

knowledge of discrete logarithm in a group of prime order. Figure 2.3 shows the protocol. In this

A zero-knowledge protocol for SDH

Prover Verifier
𝑔

1
, 𝑢, 𝑣, ℎ ∈ G

1
𝛼, 𝛽←$Z𝑝 𝑔, 𝑞, 𝑝, 𝑦, 𝑚 𝑐

𝑇
1
← 𝑢𝛼 , 𝑇

2
← 𝑣𝛽

𝑇
3
← 𝐴ℎ𝛼+𝛽

𝛿
1
← 𝑥𝛼, 𝛿

2
← 𝑥𝛽

𝑟𝛼 , 𝑟𝛽 , 𝑟𝛿1
, 𝑟𝛿2
←$Z𝑝

𝑅
1
← 𝑢𝑟𝛼 , 𝑅

2
← 𝑣𝑟𝛽

𝑅
3
← 𝑒(𝑇

3
, 𝑔

2
)𝑟𝑥 · 𝑒(ℎ, 𝑤)−𝑟𝛼−𝑟𝛽 · 𝑒(ℎ, 𝑔

2
)−𝑟𝛿1

−𝑟𝛿
2

𝑅
4
← 𝑇

𝑟𝑥
1
· 𝑢−𝑟𝛿1 , 𝑅

5
← 𝑇

𝑟𝑋
2
· 𝑣−𝑟𝛿2

(𝑇
1
, 𝑇

2
, 𝑇

3
, 𝑅

1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑅

5
)

𝑐

𝑠𝛼 ← 𝑟𝛼 + 𝑐𝛼, 𝑠𝛽 ← 𝑟𝛽 + 𝑐𝛽
𝑠𝑥 ← 𝑟𝑥 + 𝑐𝑥, 𝑠𝛿1

← 𝑟𝛿1
+ 𝑐𝛿

1

𝑠𝛿2
← 𝑟𝛿2

+ 𝑐𝛿
2

(𝑠𝛼 , 𝑠𝛽 , 𝑠𝑥 , 𝑠𝛿1
, 𝑠𝛿2
)

𝑢𝑠𝛼
?≡ 𝑇𝑐

1
· 𝑅

1

𝑣𝑠𝛽
?≡ 𝑇𝑐

2
· 𝑅

2

𝑒(𝑇
3
, 𝑔

2
)𝑠𝑥 · 𝑒(ℎ, 𝑤)−𝑠𝛼−𝑠𝛽 · 𝑒(ℎ, 𝑔

2
)−𝑠𝛿1

−𝑠𝛿
2

?≡ (𝑒(𝑔
1
, 𝑔

2
)/𝑒(𝑇

3
, 𝑤))𝑐 · 𝑅

3

𝑇
𝑠𝑥
1
· 𝑢−𝑠𝛿1

?≡ 𝑅
4
· 𝑅

1

𝑇
𝑠𝑥
2
· 𝑣−𝑠𝛿2

?≡ 𝑅
5
· 𝑅

1

Protocol 2.3: ZKP for SDH

protocol, Alice, the prover, selects exponents 𝛼, 𝛽←$Z𝑝 , and computes a Linear encryption of A. She

also computes two helper values 𝛿1 and 𝛿2. Alice and Bob then undertake a proof of knowledge of

values (𝛼, 𝛽, 𝑥, 𝛿1 , 𝛿2) satisfying the following five relations:

𝑢𝛼 = 𝑇1

𝑣𝛽 = 𝑇2

𝑒(𝑇3 , 𝑔2)𝑥 · 𝑒(ℎ, 𝑤)−𝛼−𝛽 · 𝑒(ℎ, 𝑔2)−𝛿1−𝛿2 = 𝑒(𝑔1 , 𝑔2)/𝑒(𝑇3 , 𝑤)
𝑇𝑥

1
· 𝑢−𝛿1 = 1

𝑇𝑥
2
· 𝑣−𝛿2 = 1
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The proof of knowledge of (𝛼, 𝛽, 𝑥, 𝛿1 , 𝛿2) proceeds as follows. Alices picks random blinding values

𝑟𝛼 , 𝑟𝛽 , 𝑟𝑥 , 𝑟𝛿1
, 𝑟𝛿2

and computes five values (𝑅1 , 𝑅2 , 𝑅3 , 𝑅4 , 𝑅5) based on the blindings. She then sends

(𝑇1 , 𝑇2 , 𝑇3 , 𝑅1 , 𝑅2 , 𝑅3 , 𝑅4 , 𝑅5) to the verifier. Bob, the verifier, sends a challenge value 𝑐 to Alice. Alice

computes (𝑠𝛼 , 𝑠𝛽 , 𝑠𝑥 , 𝑠𝛿1
, 𝑠𝛿2
) and sends them back to Bob. Finally, Bob verifies the values received from

Alice. He accepts the proof of knowledge if all five equations in the protocol hold.

2.4. Cryptographic Commitment
The cryptographic commitment scheme is a method to keep the input value hidden and unchangeable

before revealing it. Committing means that the user chooses a value to submit, and she can no longer

change the submitted value after the commitment. Later, the user can choose to reveal her secret input

by sending some auxiliary information to the verifier. A cryptographic commitment provides binding

and hiding for the committed value. Binding means that two different committed values are impossible

to generate the same commitment value. Hiding means given two commitment value, we can not tell

if they are from the same committed value or different committed value. Binding and hiding enable

commitment to a suitable tool to seal a secret value.

Pedersen commitment[9] is an elliptic-curve based commitment scheme which supports efficient

zero-knowledge proof. The Pedersen scheme works in the following steps:

Setup Let 𝑔 and ℎ be elements of G𝑞 such that nobody knows 𝑙𝑜𝑔𝑔ℎ. 𝑔, ℎ are the public key of

Pedersen commitment.

Commit Let 𝑥 ∈ Z𝑞 be the value to be committed, 𝑟 ∈ Z𝑞 is a randomly chosen value. The

commitment is generate by the algorithm 2.1. The committer stores the 𝑥, 𝑟 and send the commitment 𝑐
to the receiver.

𝐶𝑜𝑚𝑚𝑖𝑡(𝑥, 𝑟)
1 : 𝑐 ← 𝑔𝑥 ℎ𝑟

2 : return 𝑐

Algorithm 2.1: Issuer Key Generation

Open To open the commiment 𝑐, the committer sends the paired 𝑥, 𝑟 to the receiver. The receiver

verifies that 𝑐
?≡ 𝑔𝑥ℎ𝑟

Using Pedersen commitment, the prover can prove that she knows the committed value of a

commitment to the verifier without opening the commitment. Protocol 2.4 shows the zero knowledge

proof of a committed value. Frist, the prover randomly choose two value 𝑎, 𝑏 ∈ Z𝑞 , and then use 𝑎, 𝑏 to

generate a new commitment 𝑐′. After that, using Fiat-shamir transformation to generate the challenge 𝑡,
and use 𝑡 to compute 𝑎′, 𝑏′. Then the prover sends 𝑎′, 𝑏′, 𝑐′, 𝑡 to the verifier. Finally, if 𝑔𝑎

′
ℎ𝑏
′≡𝑐′ + 𝑡𝑐

holds, the verifier accepts the proof of knowledge.
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ZKP for Pedersen

Prover Public Verifier
𝑥, 𝑟 𝑔, ℎ, 𝑐

𝑎←$Z∗𝑞
𝑏←$Z∗𝑞

𝑐′← 𝑔𝑎 ℎ𝑏

𝑡 ←ℋ𝑠 (𝑔, ℎ, 𝑐′)
𝑎′← 𝑎 + 𝑡𝑥
𝑏′← 𝑏 + 𝑡𝑟

𝑎′, 𝑏′, 𝑐′, 𝑡

Verify𝑔𝑎
′
ℎ𝑏
′ ?≡ 𝑐′ + 𝑡𝑐

Protocol 2.4: Zero-knowledge proof for Pedersen Commitment

2.5. BBS+ Signature
BBS+ signature is a pairing-based signature that support selective disclosure of signed messages. The

name BBS comes from the original authors’ family name: Boneh, Boyen, Shacham. Au et al. improved

the signature, so it is called BBS+ signature. The basic scheme of the signature is like:

Key Generation Take (ℎ0 , ..., ℎ𝐿)
$←− G𝐿+1

1
, 𝑥

$←− Z∗𝑝 , 𝑤 ←− 𝑔𝑥2 , and set 𝑠𝑘 = 𝑥 and 𝑝𝑘 = (𝑤, ℎ0 , ..., ℎ𝐿).

Sign On input message (𝑚1 , ..., 𝑚𝐿) ∈ Z𝐿𝑝 and secret key 𝑥, pick 𝑒 , 𝑠
$←− Z𝑝 and compute 𝐴 ←−

(𝑔1ℎ
𝑠
0

∑𝐿
𝑖=1

ℎ𝑖𝑚𝑖)(
1

𝑒+𝑥 ).

Verify On input a public key (𝑤, ℎ0 , ..., ℎ𝐿) ∈ G2 × G𝐿+1

1
, message (𝑚1 , ..., 𝑚𝐿) ∈ Z𝐿𝑝 , and signature

(𝐴, 𝑒, 𝑠) ∈ 𝐺1 × Z2

𝑝 , check 𝑒(𝐴, 𝑤𝑔𝑒
2
) = 𝑒(𝑔1ℎ

𝑠
0

∑𝐿
𝑖=1

ℎ
𝑚𝑖

𝑖
, 𝑔2).

Camenisch et al. prsent a proof of knowledge for BBS+ signature. Using their protocol, the prover

can prove knowledge of a BBS+ signature while selectively disclosing the signed messages.
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A zero-knowledge protocol for BBS+ protocol

Prover Verifier
𝑔

1
, 𝑔

2
, (ℎ

0
, ..., ℎ𝐿) 𝑔

1
, 𝑔

2
, (ℎ

0
, ..., ℎ𝐿)

(𝐴, 𝑒, 𝑠)

𝑟
1
, 𝑟

2
←$Z∗𝑝

𝐴′← 𝐴𝑟1

𝑟
3
← 1

𝑟
1

𝑏 ← 𝑔
1
ℎ𝑠

0

𝐿∏
𝑖=1

ℎ
𝑚𝑖

𝑖

𝐴̄← 𝐴′−𝑒 · 𝑏𝑟1

𝑑← (𝑔
1
ℎ𝑠

0

𝐿∏
𝑖=1

ℎ
𝑚𝑖

𝑖
)𝑟
1
· ℎ−𝑟2

0

𝑠′← 𝑠 − 𝑟
2
· 𝑟

3

𝑠 ← 𝑟 + 𝑐𝑤 mod 𝑞

𝜋← 𝑆𝑃𝐾{(𝑚𝑖 𝑖∉𝐷 , 𝑒 , 𝑟2 , 𝑟3 , 𝑠′) :

𝐴̄/𝑑 = 𝐴′−𝑒 · ℎ𝑟2
0
∧ 𝑔

1

∏
𝑖 ∈ 𝐷ℎ𝑚𝑖

𝑖
= 𝑑𝑟

3
ℎ−𝑠

′
0

∏
𝑖 ∉ 𝐷ℎ

−𝑚𝑖

𝑖
}

(𝐴′, 𝐴̄, 𝑑,𝜋)

𝑒(𝐴′, 𝑋) ?≡ 𝑒(𝐴̄, 𝑔
2
)

Verify 𝜋

Verify 𝐴′ ≠ 1G1

Protocol 2.5: ZKP for BBS+ signature

Figure 2.5 shows the zero-knowledge proof of BBS+ signature. The protocol is used to prove that the

prover knows the BBS+ signature while selectively disclosing messages {𝑚𝑖} with 𝑖 ∈ 𝐷. The signature

is randomized by taking 𝑟1 , 𝑟3 and set 𝐴′← 𝐴𝑟1 . The key step of the protocol is to prove signature proof

of knowledge 𝜋 = 𝑆𝑃𝐾{(𝑚𝑖 𝑖∉𝐷 , 𝑒 , 𝑟2 , 𝑟3 , 𝑠
′) : 𝐴̄/𝑑 = 𝐴′−𝑒 · ℎ𝑟2

0
∧ 𝑔1

∏
𝑖 ∈ 𝐷ℎ𝑚𝑖

𝑖
= 𝑑𝑟

3
ℎ−𝑠

′
0

∏
𝑖 ∉ 𝐷ℎ

−𝑚𝑖

𝑖
}.

To verify the proof, the verifier checks 𝐴′ ≠ 1G1
, 𝑒(𝐴′, 𝑋) = 𝑒(𝐴̄, 𝑔2) and verifies 𝜋. The algorithm

of genearating and verifying 𝜋 are given in 2.2 and 2.3 respectively. The generation of 𝜋 takes the

messages {𝑚𝑖}, the indexes of revealed messgaes 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠, the signature (𝐴, 𝑒, 𝑠) and the

public key of BBS+ signature 𝑝𝑘𝐵𝐵𝑆 as inputs. First, the prover computes the indexes of unrevealed

messages (𝑗1 , 𝑗2 , ..., 𝑗𝑢). Then the prover randomly pick blindings 𝑟1 , 𝑟2 , 𝑒
∼ , 𝑟∼

2
, 𝑟∼

3
, 𝑠∼ and {𝑚∼

𝑗
}. Using

these blindings, the prover can compute 𝐴′, 𝐷, 𝑠′, 𝐶1 , 𝐶2. Then the prover applies the Fiat-Shamir

transformation to generate the challenge value 𝑐 herself. Finally the prover computes 𝑒 , 𝑟2 , 𝑟3 , 𝑠 and send

them to the verifier with 𝐴̄, 𝐴′, 𝐷, 𝐶1 , 𝐶2 together. As for the verification of 𝑝𝑖, the verifier computes the

challenge value 𝑐 by using the values received from the prover. Then the verifier computes 𝐶′
1

and 𝐶′
2
,

the verifier accepts 𝜋 if 𝐶1 = 𝐶′
1

and 𝐶2 = 𝐶′
2
.
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𝐵𝐵𝑆.𝑆𝑝𝑘𝐺𝑒𝑛({𝑚𝑖} ∈ Z𝐿𝑝 , 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠, 𝐴, 𝑒 , 𝑠, 𝑝𝑘𝐵𝐵𝑆)
1 : (𝑖

1
, 𝑖

2
, ..., 𝑖𝑟 ) ← 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠

2 : (𝑗
1
, 𝑗

2
, ..., 𝑗𝑢) ← [𝐿]\𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠

3 : (𝑔
1
, ℎ

0
, ℎ

1
, ..ℎ𝑙) ← 𝑝𝑘𝐵𝐵𝑆

4 : 𝑟
1
←$Z∗𝑝

5 : 𝑟
2
←$Z∗𝑝

6 : 𝑒∼←$Z∗𝑝
7 : 𝑟∼

2
←$Z∗𝑝

8 : 𝑟∼
3
←$Z∗𝑝

9 : 𝑠∼←$Z∗𝑝
10 : for 𝑗𝑖 in (𝑗

1
, 𝑗

2
, ..., 𝑗𝑢) do

11 : 𝑚∼
𝑗
←$Z∗𝑝

12 : endfor 𝑏 ← 𝑔
1
ℎ𝑠

0

𝐿∏
𝑖=1

ℎ
𝑚𝑖

𝑖

13 : 𝑟
3
= 𝑟−1

1

14 : 𝐴′ = 𝐴𝑟1 𝐴̄ = 𝐴′(−𝑒)𝑏𝑟1

15 : 𝐷 = 𝑏𝑟1 ℎ
𝑟2
0

16 : 𝑠′ = 𝑠 + 𝑟
2
∗ 𝑟

3

17 : 𝐶
1
= 𝐴′ ∗ 𝑒∼ + ℎ

0
𝑟∼
2

18 : 𝐶
2
= 𝐷 ∗ (−𝑟∼

3
)ℎ𝑠

0

∼
𝑢∏
𝑗=0

ℎ
𝑚∼
𝑗

𝑗

19 : 𝑐 = ℋ𝑠 (𝑝𝑘𝐵𝐵𝑆 | |𝐴̄| |𝐴′ | |𝐷 | |𝐶1
| |𝐶

2
)

20 : 𝑒 ← 𝑒∼ + 𝑐 ∗ 𝑒
21 : 𝑟

2
← 𝑟∼

2
+ 𝑐 ∗ 𝑟

2

22 : 𝑟
3
← 𝑟∼

3
+ 𝑐 ∗ 𝑟

3

23 : 𝑠 ← 𝑠∼ + 𝑐 ∗ 𝑠′

24 : for 𝑗𝑖 in (𝑗
1
, 𝑗

2
, ..., 𝑗𝑢) do

25 : 𝑚̂𝑗 = 𝑚∼
𝑗
+ 𝑐 ∗ 𝑚𝑗

26 : endfor
27 : 𝜋 = (𝐴̄, 𝐴′, 𝐷, 𝐶

1
, 𝐶

2
, 𝑒 , 𝑟

2
, 𝑟

3
, 𝑠)

28 : return 𝜋

Algorithm 2.2: The generation of 𝜋
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𝐵𝐵𝑆.𝑆𝑝𝑘𝑉𝑒𝑟𝑖 𝑓 𝑦(𝜋)
1 : (𝐴̄, 𝐴′, 𝐷, 𝐶

1
, 𝐶

2
𝑒 , ˆ𝑟

2𝐵𝐵𝑆 , 𝑟3 , 𝑠) ← 𝜋

2 : 𝑐 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝐵𝐵𝑆 | |𝐴̄| |𝐴′ | |𝐷 | |𝐶1
| |𝐶

2
)

3 : 𝐶′
1
= (𝐴̂ − 𝐷)𝑐𝐴′𝑒 ℎ ˆ𝑟2𝐵𝐵𝑆

0

4 : 𝑇 = ℎ𝑠
0

∼
𝑅∏
𝑗=0

ℎ𝑖𝑅
𝑚𝑖𝑅

∼

5 : 𝐶′
2
= 𝑇𝑐𝐷−𝑟3

𝑈∏
𝑗=0

ℎ 𝑗𝑈
ˆ𝑚𝑗𝑈

6 : return (𝐶′
1

?

= 𝐶
1
∧ 𝐶′

2

?

= 𝐶
2
)

Algorithm 2.3: The verification of 𝜋

BBS+ signature has two significant advantages over the RSA-based CL-signature[10] used by most

existing verifiable credential implementations: the key generation and signing are faster, and the size of

keys and claims are smaller[11]. Furthermore, combining BBS+ signature and JSON-LD grant good

interoperability to verifiable credentials[11]. Therefore, the BBS+ signature is now the most suitable

signature for verifiable credentials.

2.6. Cryptographic Accumulator
The cryptographic accumulator scheme is first introduced by Benaloh and de Mare[12]. A cryptographic

accumulator allows the user to hash a large set of elements into one short, constant value. Each element

in the set has a corresponding value called the witness to prove its (non-)membership. Dynamic

cryptographic accumulators refer to accumulators that allow addition and deletion from the given

set. Known dynamic accumulators can be categorized as Merkle-tree-based[13], RSA-based[10], [14]

and pairing-based[15]–[18]. Each time an element is added (or removed), the accumulator should

update witnesses for other elements in a dynamic accumulator. Cryptographic accumulators allow

users to prove membership for an element while keeping the value and associated witness hid using

cryptographic commitment. Among the proposed accumulators, pairing-based accumulators are the

most efficient. They can reach the same level of security as RSA-based accumulators with shorter

key-size and faster computation[19].

The pairing-based accumulator proposed by Karantaidou and Baldimtsi[17] is the current state of

art pairing-based accumulator. For reference convenience, we called it KB accumulator in this thesis.

There are three actors in the KB accumulator: the accumulator manager, the third party, the witness

holder. The accumulator manager possesses the secret key 𝑠𝑘 of the accumulator. The witness holder is

responsible for elements accumulated in the accumulator. The third parity is an entity that is interested

in verifying membership of the elements. The basic scheme of the KB accumulator contains six parts: the

generation algorithm 𝐺𝑒𝑛(1𝜆 , 𝑆 = ∅, the addition algorithm 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥), the deletion algorithm

𝐷𝑒𝑙(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥), the witness updation algorithm 𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑣𝑡+1 , 𝑥, 𝑤
𝑥
𝑡 , 𝑢𝑝𝑚𝑠𝑔 = 𝑦), the

membership verification algorithm for the accumulator manager 𝑉𝑒𝑟𝑀𝑒𝑚𝐴(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥, 𝑤
𝑥
𝑡 ) and the

membership verification algorithm for the third party 𝑉𝑒𝑟𝑚𝑀𝑒𝑚𝑇(𝑣𝑡 , 𝑥, 𝑤𝑥
𝑡 ). These algorithms are

performed by different actors . 𝐺𝑒𝑛, 𝐴𝑑𝑑, 𝐷𝑒𝑙𝑉𝑒𝑟𝑀𝑒𝑚𝐴 are performed by the accumulator manager,

𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙 is performed by the witness holder, and 𝑉𝑒𝑟𝑀𝑒𝑚𝑇 is performed by the third party.

Figure 2.6 shows the details of the algorithms. 𝐺𝑒𝑛(1𝜆 , 𝑆 = ∅) takes the security parameter 𝜆 as input

and outputs a pairing instance (𝑝,G,G𝑇 , 𝑒 , 𝑔), where |𝑝 | = 𝜆 and 𝑝 prime, the accumulator’s domain

𝐷 = Z𝑝 − {𝑎}, the initial empty accumulator’s value 𝑣0 and the manager’s secret key 𝑠𝑘. The manager

use 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥) to add a new element 𝑥 into the accumulator. 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥) takes the secret

key, the accumulator value at the time 𝑡 and the element 𝑥 as input and outputs 𝑥’s membership

witness at the time 𝑡, 𝑤𝑥
𝑡 . 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥) does not change the accumulator value. 𝐷𝑒𝑙(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑦)

takes similar input as 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥), however, the deletion changes the accumulator value and

sends update message 𝑢𝑝𝑚𝑠𝑔 = 𝑦 to all witness holders. 𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑣𝑡+1 , 𝑥, 𝑤
𝑥
𝑡 , 𝑢𝑝𝑚𝑠𝑔 = 𝑦)
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Basic Scheme of KB accumulator

1 : 𝐺𝑒𝑛(1𝜆 , 𝑆 = ∅)
1 : Generate a pairing instance (𝑝,G,G𝑇 , 𝑒 , 𝑔), where |𝑝 | = 𝜆 and 𝑝 prime

2 : 𝑎, 𝑢0 ←$Z∗𝑝

3 : Set the initial accumulator value as 𝑣0 = 𝑔𝑢0 ∈ G, 𝑤ℎ𝑒𝑟𝑒u0 is a random value instead of the identity element.

4 : Set the domain 𝐷 = Z𝑝 − {𝑎}
5 : return 𝑠𝑘 = 𝑎, the initial accumulator value 𝑣0, public params = ((𝑝,G,G𝑇 , 𝑒 , 𝑔), 𝑔𝑎)

2 : 𝐴𝑑𝑑(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥)
1 : if x ∉ 𝐷, FAIL

2 : Let 𝑤𝑥𝑡+1
= 𝑣

1

𝑥+𝑎 and keep the same accumulator value 𝑣𝑡+1 = 𝑣𝑡

3 : return w
𝑥
𝑡+1

3 : 𝐷𝑒𝑙(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑦)
1 : if y ∉ 𝐷, FAIL

2 : Let 𝑣𝑡+1 = 𝑣
1

𝑦+𝑎
𝑡

3 : return v𝑡+1 , 𝑢𝑝𝑚𝑠𝑔 = 𝑦

4 : 𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑣𝑡+1
, 𝑥, 𝑤𝑥

𝑡
, 𝑢𝑝𝑚𝑠𝑔 = 𝑦)

1 : Compute 𝑤𝑥𝑡+1
= 𝑤

𝑥( 1

𝑦−𝑥 )
𝑡 × 𝑣

1

𝑥−𝑦
𝑡+1

2 : return w
𝑥
𝑡+1

5 : 𝑉𝑒𝑟𝑀𝑒𝑚𝐴(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥, 𝑤
𝑥
𝑡
)

1 : if v𝑡 = (𝑤𝑥𝑡 )(𝑥+𝑎), 1

2 : else return 0

6 : 𝑉𝑒𝑟𝑀𝑒𝑚𝑇(𝑣𝑡 , 𝑥, 𝑤𝑥𝑡 )
1 : if e(g,v𝑡 ) = 𝑒(𝑔𝑥 𝑔𝑎 , 𝑤𝑥𝑡 ), return 1

2 : else return 0

Protocol 2.6: Basic scheme of KB accumulator
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describes the process that the witness holders update their membership witnesses according to the

received update messages. 𝑉𝑒𝑟𝑀𝑒𝑚𝐴(𝑠𝑘 = 𝑎, 𝑣𝑡 , 𝑥, 𝑤
𝑥
𝑡 ) shows the membership verification process of

the accumulator manager who knows the secret key 𝑠𝑘, whereas 𝑉𝑒𝑟𝑀𝑒𝑚𝑇 shows the membership

verification process of the third parities.

The writer of KB accumulator also present a zero-knowledge protocol which allows the witness

holder to prove his element is accumulated to the third party without revealing the element and

associated witness. Let 𝐷 = G𝑞 =< ℎ𝑖 >, 𝑖 = 0, 1, 2,G =< 𝑔𝑖 >, 𝑖 = 0, 1 be publicly known generators to

be used for commitments. The protocol wants to prove the following relations in zero-knowledge.

𝑍𝐾𝑃 = {(𝑤, 𝑟, 𝑟) 𝑒(𝑤, 𝑔𝑟
0
, 𝑔𝑎

0
) = 𝑒(𝑣, 𝑔0) ∧ 𝐶 = 𝑔𝑟

0
𝑔𝑟

1
}

In the above proof, 𝑒(𝑤, 𝑔𝑟
0
, 𝑔𝑎

0
) = 𝑒(𝑣, 𝑔0) means the element 𝑟 is accumulated, whereas 𝐶 = 𝑔𝑟

0
𝑔𝑟

1

indicates the element 𝑟 is hid by commitment. The above ZKP still exposes the membership witness

value 𝑤, to hide 𝑤, the above ZKP can be converted into the below form:

𝑍𝐾𝑃′ = {(𝑟1 , 𝑟2 , 𝑟 , 𝛿1 , 𝛿2) : 𝑤1 = 𝑔𝑟1
0
𝑔𝑟2

1
∧ 𝑤𝑟

1
= 𝑔𝛿1

0
𝑔𝛿2

1

∧
𝑒(𝑤2 , 𝑔

𝑎
0
)

𝑒(𝑣0 , 𝑔)
= 𝑒(𝑤2 , 𝑔0)−𝑟 𝑒(𝑔1 , 𝑔0)𝛿

1
𝑒(𝑔1 , 𝑔

𝑎
0
)𝑟1

∧ 𝐶 = 𝑔𝑟
0
𝑔𝑟

1
}

where 𝑟1 , 𝑟2←$Z𝑝 , 𝑤1 = 𝑔𝑟1
0
𝑔𝑟2

1
, 𝑤2 = 𝑤𝑔𝑟1 , 𝛿1 = 𝑟𝑟1 , 𝛿2 = 𝑟𝑟2.

𝑍𝐾𝑃′ can been as a variant of the ZKP for SDH (see section 2.3),

2.7. Blockchain
A blockchain is a list of records, called blocks. These blocks are sequentially linked in the order of time.

In 2008, Nakatomo Satoshi proposed the bitcoin[20] which signs the advent of blockchain. Although

there are many different blockchains now, they share similar block structure with the bitcoin. Figure

2.1 shows the structure of the bitcoin. In the bitcoin, each block contains a cryptographic hash of the

previous block, a timestamp, a nonce, and transaction data (generally represented as a Merkle tree,

where only the leaf nodes store the transactions). The timestamp proves that the transaction data existed

when the block was published to get into its hash. As blocks each contain information about the block

previous to it, they form a chain, with each additional block reinforcing the ones before it. Therefore,

blockchains are tamper-resistant because once recorded, the data in any given block cannot be altered

retroactively without altering all subsequent blocks.

Block 11

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 10

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 12

Prev_Hash

Tx_Root

Timestamp

Nonce

Hash01 Hash23

Hash0 Hash1 Hash2 Hash3

Tx0 Tx1 Tx2 Tx3

Figure 2.1: Blockchain structure[21]

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger,

where nodes collectively adhere to a protocol to communicate and validate new blocks called consensus.
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As blockchains are distributed, they can prevent negative influence caused by centralization (e.g. service

lost caused the crashdown of central server).

Figure 2.2 shows that according to different access and validation permissions, blockchains can be clas-

sified as public-permissionless, public-permissioned,private-permissionless, and private-permissioned.

Here public means that everyone can participant the blockchain, whereas private indicates that only

pre-approved users can participate the blockchain. Permissionless means everyone can modify the

blockchain, while permissioned means only pre-approved users can modify the blockchain. Therefore,

public-permissioned means that everyone can read the blockchain’s contents, but only pre-approved

participants can validate transactions. Public-permissioned blockchains are ideal tools to apply in

authentication[22]. Because in the scenario of authentication, only the issuer needs to modify the

credential data, while the credenital holders and verifiers can finish their operations by just querying

the blockchain.

Blockchain

Public Private

Permissionless Permissioned N/A Permissioned

Figure 2.2: Blockchain classification



3
Related Work

In the past few years, several implementations of verifiable credential data model have been proposed,

but many of them have not support revocation mechanism yet[23]–[26]. In this paper, we focus on the

verifiable credential implementations that already supported revocation mechanisms. We evaluate the

existing works in three dimensions: 1. privacy-preserving performance; 2. tamper-evident performance;

3. revocation information storage cost. In this chapter, privacy-preserving means the revocation

mechanism should not leak identifying information about the verifiable credential, and tamper-evident

means the system should resist the influence of the central server’s breakdown.

3.1. OpenAttestation
OpenAttestation (OA)[27] is an open-sourced framework to endorse and verify verifiable credentials

based on Ethereum Smart Contracts. OpenAttestation provides two ways to revoke verifiable credentials:

using a document store or using the Online Certificate Status Protocol (OCSP).

The document store is a smart contract on the Ethereum network that records the issuance and

revocation status of the OpenAttestation documents. The appliance of Ethereum block ensure that OA’s

revocation mechanism is tamper-evident. The issuer can revoke an OA credential by operating the

document store of that credential. The revocation by the document store requires the issuer to know the

address of the credential’s document store.

As for OCSP, a tool called the OCSP responder is designed to assist the revocation. The OCSP

responder records the revocation statuses of the issued verifiable credentials. The verifier can check the

revocation status of a verifiable credential by querying the hash of the verifiable credential to the OCSP

responder.

The address of the document store used by the document store and the hash of the verifiable

credentials are unique identifiers for the verifiable credentials. The verifier can use these identifiers

to correlate different presented verifiable credentials. For example, suppose a user disclosed different

claims in two presentations. In that case, the attacker can use the identifiers to correlate the different

claims to the same credential, violating the verifiable credential data model’s selective disclosure.

The document store and OCSP need to record the revocation status for each credential. Thus their

storage cost is linear with the number of credentials.

3.2. Veramo
Veramo[28] is the open-source version of uPort project[29]. Veramo aims to enable the user to create

and manage verifiable credentials without worrying about interactive operations and vendor lock-in.

Veramo is based on the Ethereum network, and it uses a smart contract called ethr-status-registry to

carry out the revocation mechanism. Same as OA, the employment of smart contracts ensures the

revocation to be tamper-evident. The ethr-status-registry takes the hash value of a credential as input

for the revocation status check. Since the hash value of a credential is static, attackers can employ it to

correlate verifiable credentials. Therefore the revocation mechanism of veramo can cause leakage of

user’s personal information, which is to say it is not privacy-preserving. Veramo also needs to maintain

17



3.3. Sorvin 18

revocation status for all credentials it issues. Therefore, the storage cost is linear with the number of

credentials.

3.3. Sorvin
Sorvin[22] is a Self-Sovereign Identity (SSI)[30] solution based on HyperLedger Indy[31] public

permissioned blockchain. Sorvin supports the user to use of verifiable credentials as the authentication

method. The revocation of Sovrin’s verifiable credentials is done by using the CKS accumulator[16]

and the Indy blockchain. The CKS accumulator indexes the accumulated values and publishes a

list that records the current valid indices. Each time a new member joins or an old member leaves,

the accumulator should add/delete an index. Thus, the CKS accumulator suffers from join-revoke

linkability[18], which means others can determine that the revoked credential is the same credential

that was issued before. In particular, the verifier can compare the current index list to stored previous

index lists to determine whether the credential revoked just now was issued at a certain previous point.

For that reason, the revocation mechanism of Sovrin is not privacy-preserving. Sorvin’s revocation

mechanism is tamper-evident as it uses CL-signature and the blockchain to guarantee the authenticity

of published information. As the result of using the CKS accumulator, the revocation information of

Sorvin contains the valid index list and the accumulator value. The storage cost is linear with the valid

credentials.

3.4. IRMA
I Reveal My Attributes (IRMA)[32] is a verifiable credential project developed and supported by

the Dutch government. IRMA project develops a mobile application to interact with the credentials.

All operations about verifiable credentials (issuance, store, presentation) are carried out with the

IRMA app, which means the user can use one single app to control her identity. The revocation of

IRMA is done based on the CL-RSA-B accumulator[18]. The CL-RSA-B accumulator only requires

updating the accumulator value and witnesses for users when revocation happens. It has reached the

optimal communication complexity of accumulators[13]. In addition, updating witnesses of CL-RSA-B

accumulator does not need the knowledge about current valid credentials, preventing the joint-revoke

attack. In addition, the update of witnesses in CL-RSA-B accumulator does not require the knowledge

about the indices of valid credentials

IRMA successfully achieved protecting users’ privacy. However, the IRMA project uses a central

server to process and store the data and once it crashes - which could happen through malicious

censorship, a hacking or natural calamity. Although IRMA says they evolve their service stateless by

employing Redis as the data storage, a single Redis datastore still suffers the tampers above.

3.5. VCJ
Verifiable-Credential-Java (VCJ)[33] is an implementation of the verifiable credential data model based

on Java. VCJ employs Revocation List 2020 as its revocation mechanism. In Revocation List 2020, the

issuer keeps a bitstring list of all its issued verifiable credentials. Each verifiable credential is associated

with a position in the list, called the revocation list index. If the binary value of the position in the list is

1, the verifiable credential is revoked, if it is 0 it is not revoked. One significant benefit of Revocation List

2020 is the bitstring they use can be compressed to save storage. However, the revocation list index is a

kind of identifier that can correlate the verifiable credentials. Therefore the revocation mechanism of

VCJ is not privacy-preserving. VCJ employs a blockchain to guarantee the proofs are tamper-evident.

The storage cost of VCJ is linear with the number of credentials as it records all credentials in the

revocation list.

3.6. Gravity
Gravity[34] is a decentralized cloud platform through which individuals can easily receive, store, and

share verifiable credentials in a secure wallet that they fully control. The decentralization of Gravity

achieves tamper-evident for revocation, but Gravity suffers from correlation since it employs Revocation

List 2020 as its revocation mechanism. The storage cost of Gravity is linear with the number of credentials

as a result of using Revocation List 2020.
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Table 3.1: Revocation comparison with related works

Project Methods Privacy-

preserving

Tamper-

evident

Storage

com-

plex-

ity

OpenAttestation smart contracts and

OCSP

× ✓ O(n)

Veramo smart contracts × ✓ O(n)

Sorvin CKS accumulator × ✓ O(v)

IRMA CL-RSA-B accumu-

lator

✓ × O(1)

Verifiable-

Credential-Java

Revocation List

2020

× ✓ O(n)

Gravity Revocation List

2020

× ✓ O(n)

Table 3.1 lists the summary of the related works. In this table, n means the number of issued

credentials, and v implies the number of valid (unrevoked) credentials. From the table, we can see that

the existing revocation mechanisms for verifiable credentials fail to achieve privacy-preserving and

tamper-evident simultaneously. How to establish a privacy-preserving and tamper-evident revocation

mechanism remains an open question.



4
Requirements

This section presents the requirements of our solution. We first introduces the privacy and security

considerations of the verifiable credential data model, and verifiable credential’s trust model. Based on

these considerations and the trust model, we propose the requirements for our revocation mechanism.

In this section, we use the following terms: “revocation handler" refers to the value accumulated in the

accumulator; “revocation information" represents the auxiliary information required by the revocation

mechanism; “proof of unrevocation" indicates the proof generated by the verifiable credential’s holder

to state the verifiable credential is not revoked.

4.1. Privacy consideration for verifiable credentials
The verifiable credential data model has proposed a spectrum of privacy from pseudonymous to strongly

identified. Figure 4.1 shows the privacy spectrum. According to this spectrum, information can be

roughly classified to three categories: highly correlatable, correlatable via collision and non-correlatable.

Highly correlatable information often refers to global IDs, such as Government ID, shipping address

and credit card info. These Global IDs are generally globally unique and are used repeatedly, allowing

attackers to pinpoint the user’s identity. The information which is correlatable via collusion is also called

personally identifiable info. Typically, name, birthday and zipcode are common personally identifiable

info. This information is not required to be globally unique as two persons may share the same name or

birthday. However, if the attackers group this information, they may be able to recognize the user’s

identity. An easy example is to group names with birthdays. Although two people sharing the same

name is ordinary, two people sharing the same birthday and name is rare. Therefore, grouping names

with birthdays can help attackers correlate the user’s information. Non-correlatable, also known as

pseudonyms, is the most privacy-preserving type of information. Pseudonyms are randomly generated

one-time-use information. Since pseudonyms are only used once, they have limited contribution to

correlation.

Figure 4.1: Privacy spectrum ranging from pseduonymous to fully identified[3]

20
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Privacy considerations are use case specific. Depending on the use case, people have different

comfort levels about what inforamtion they are willing to provide and what information can be derived

from the provided information. For revocation, the verifiable credential data model suggests that

the issuers are urged to not use mechanisms, such as credential revocation lists that are unique per

credential, during the verification process that could to lead to privacy leakage.

4.2. Security consideration for verifiable credentials
The verifiable credential data model also proposed several security considerations. Among the proposed

security consideration, there is no security consideration designed for revocation mechanism specifically.

But the security consideration for "bundling dependent claims" and "Device Theft and Impersonation"

can be transferred to the scenario of revocation.

"Bundling dependent claims" describes the problem that issuer may group different claims to fool

the verifier. In the verifiable credential data model, it is considered best practice for issuers to atomize

information in a credential, or use a signature scheme that supports selective disclosure. In this case

of atomization, the holder might bundle together diffirent credentials in a way that was not intended

by the issuer to fool the verifier. For example, a university might issue two verifiable credentials to a

person, each containing two properties, which must be taken together to to designate the "role" of that

person in a given "department", such as "Staff Member" in the "Department of Computing", or "Post

Graduate Student" in the "Department of Economics". If these verifiable credentials are atomized to put

only one of these properties into each credential , then the university would issue four credentials to the

person, each containing one of the following designations: "Staff Member", "Post Graduate Student",

"Department of Computing", and "Department of Economics". The holder might then transfer the "Staff

Member" and "Department of Economics" verifiable credentials to a verifier, which together would

comprise a false claim. The bundle dependent claims attack is similar with the replacement fraud we

mentioned in section 1.4. As the issuer atomizes revocation status as a single claim, the attacker may

bundle a valid revocation status with a revoked credential to pass the validity check.

"Device Theft and Impersonation" indicates that the case that when verifiable credentials are stored

on a device and that device is lost or stolen, it might be possible for an attacker to commit malicious

behaviours by using the victim’s verifiable credentials. As for the case of revocation, "Device Theft"

refers to the situation that the central server is hacked and the attacker can modify the revocation

information. This may cause the following attacks:

• The first possible attack we call it revocation information pollution. In this situation, the attackers

add fake information to the published information. For example, the attacker’s credential is

revoked but they replace the published revocation information with a version which his credential

is not revoked. He can still pass the authentication.

• The second possible attack we call it revocation information deletion. The attackers will delete

the revocation information of the credential system, making the system break down. The deletion

may also caused by natural calamity like flood or earthquake.

4.3. Trust model
The trust model identifies the specific requirements that are necessary to run the verifiable credential

system correctly. The verifiable credentials trust model is as follows:

• The verifier trusts the issuer to issue the credential that it received. To establish this trust, a

credential is expected to either: Include a proof establishing that the issuer generated the credential

(that is, it is a verifiable credential), or have been transmitted in a way clearly establishing that

the issuer generated the verifiable credential and that the verifiable credential was not tampered

with in transit or storage. This trust could be weakened depending on the risk assessment of the

verifier.

• All entities trust the verifiable data registry to be tamper-evident and to be a correct record of

which data is controlled by which entities.

• The holder and verifier trust the issuer to issue true (that is, not false) credentials about the subject,

and to revoke them quickly when appropriate.
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• The holder trusts the repository to store credentials securely, to not release them to anyone other

than the holder, and to not corrupt or lose them while they are in its care. Here repository refers to

a program, such as a storage vault or personal verifiable credential wallet, that stores and protects

access to holders’ verifiable credentials.

This trust model differentiates itself from other trust models by ensuring the:

• Issuer and the verifier do not need to trust the repository.

• Issuer does not need to know or trust the verifier.

4.4. Our requirements
Our revocation mechanism follows the trust model, the privacy considerations and the security

considerations of the verifiable credential data model. Based on principles mentioned above, we give

our definition of tamper-evident and privacy-preserving:

Definition 2 (Tamper-evident). A revocation mechanism is tamper-evident if only the issuer can generate the
verifiable credentials’ revocation handler and only the issuer can publish the revocation information. Furthermore,
being tamper-evident also requires the revocation mechanism can resist certain degree of hacking and disaster.

Definition 3 (Privacy-preserving). A revocation mechanism is privacy-preserving if the revocation status check
does not leak any identifying information about the verifiable credentials and verifiable credentials’ holders.

To achieve the properties we define, we set the following requirements:

Requirements of tamper-evident:

(1) A verifiable credential’s proof of unrevocation should include proof that the issuer generates the

revocation handler and the revocation handler is associated with this verifiable credential. This

property is called unforgeability.

(2) Only the Issuer can publish the revocation information to the verifiable data registry.

Requirement (1) is to convince the verifier that the revocation status of a given verifiable credential is

trustworthy. Requirement (2) ensure that revocation information publishing and updating is correct.

Combining requirements (1) and (2), our revocation mechanism achieves tamper-evidence.

Requirements of privacy-preserving:

(3) The proof of unrevocation of a verifiable credential should be unlinkable for the verifier and

untraceable for the issuer when the verifiable credential is presented multiple times.

(4) The revocation information should be join-revoke unlinkable.

Requirement (3) gurantees the proof of unrevocation is unlinkable. The holder repeatedly presents

the verifiable credential; thus, she needs to generate multiple proofs of unrevocation for the same

verifiable credential. Multi-show unlinkable here means the verifier can not use the proof of unrevocation

to link verifiable credentials. In other words, given two different proofs of unrevocation, the verifier

can not determine if they are generated from the same verifiable credential or two different verifiable

credentials. Because there are chances that the verifier collides with the issuer, the revocation mechanism

should also avoid the issuer distinguishing the verifiable credential from the proofs of unrevocation,

which is to say the proof of unrevocation should be untraceable for the issuer. Additionally, since

revocation information may suffer from the join-revoke linkability, we set the requirement (4) to prevent

it.

4.5. Security game
This section describes the security games we propose to satisfy the requirements we propose. The

security of a cryptographic algorithm can be phrased as a game played between an adversary (or

attacker) and a hypothetical entity called the challenger. Both adversary and challenger are probabilistic

processes that communicate with each other, and so we can model the game as a probability space.

Typically, the definition of security is tied to some particular event 𝑆. In this context, security means

that for every efficient adversary, the probability that event 𝑆 occurs is very close to some specified

target probability: typically, either 0, 1/2, or the probability of some event in some other game in
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which the same adversary is interacting with a different challenger[35]. For the requirements of being

privacy-preserving, we propose the security game for multi-show unlinkability and issuer untraceability.

For the requirements of being tamper-evident, we first introduces two possible attacks of forgery, then

we define the security games to mitigate the attacks. The notations we use in this section is shown in 4.1.

Table 4.1: Notations

Notation Meaning

𝒜 Probabilistic Polynomial Time (PPT) adversary

𝑉𝐶 verifiable credential

𝑉𝑃 verifiable presentation

𝑃𝑈 proof of unrevocation

𝑏 The correct result of a security game

𝑏′ The guess result of the PPT adversary

𝑠𝑡 stored information

𝑆𝑃𝐺𝑒𝑛 The generation algorithm of system parameters

𝑠𝑝𝑎𝑟 system parameters

𝜆 security parameter

Multi-show Unlinkability
Multi-show unlinkability means that it is impossible to determine if two given proof of unrevocation are

generated from the same VC or two different VC. Here we give a game-based definition of multi-show

unlinkability. The security game means that given a security parameter 𝜆, algorithm 𝑆𝑃𝐺𝑒𝑛 use 𝜆
to generate the system parameters 𝑠𝑝𝑎𝑟. The probabilistic polynomial time attacker 𝒜 has already

got two verifiable credential 𝑉𝐶0 and 𝑉𝐶1 in his stored information 𝑠𝑡. 𝒜 generates two proof of

unrevocation 𝑃𝑈0 and 𝑃𝑈1. Assume a honest user randomly choose a number 𝑏 from {0, 1}, and use

the corresponding verifiable credenital 𝑉𝐶𝑏 to generate a new proof of unrevocation 𝑃𝑈𝑏 . The attacker

𝒜 use the known information (𝑃𝑈0 , 𝑃𝑈1 , 𝑃𝑈𝑏 , 𝑉𝐶0 , 𝑉𝐶1 , 𝑠𝑡) to guess the value of 𝑏. The guess result

of 𝒜 is noted as 𝑏′. If 𝑏′ = 𝑏, then 𝒜 wins the game. The probability of 𝒜 wining the game should

less than
1

2
+ 𝑛𝑒𝑔𝑙(𝜆), which means if 𝜆 is big enough, the honest user always has advantage over the

attacker𝒜 for this game. Advantage here means that even though the adversary knows the auxiliary

information, the chance of winning this game is same as random guess.

Definition 4. Revocation token unlinkability: Revocation tokens are multi-show unlinkable, if for every efficient
adversary𝒜 there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that the following holds

𝑃𝑟[𝑏′ = 𝑏 :

𝑠𝑝𝑎𝑟 ← 𝑆𝑃𝐺𝑒𝑛(1𝜆),
(𝑉𝐶0 , 𝑉𝐶1) ← 𝒜(𝑠𝑡),
𝑃𝑈0 ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶0 , 𝑠𝑝𝑎𝑟),
𝑃𝑈1 ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶1 , 𝑠𝑝𝑎𝑟),
𝑏 ←𝑅 {0, 1}, 𝑃𝑈𝑏 ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶𝑏 , 𝑠𝑝𝑎𝑟),

𝑏′←𝒜(𝑃𝑈0 , 𝑃𝑈1 , 𝑃𝑈𝑏 , 𝑉𝐶0 , 𝑉𝐶1 , 𝑠𝑡)] ≤
1

2

+ 𝑛𝑒𝑔𝑙(𝜆)

Issuer Untraceability
Issuer untraceability means that given a proof of unrevocation and a verifiable credential, it is impossible

for the issuer to determine if the proof of unrevocation is generated by the given verifiable credential.

We also give the security game about issuer untraceability. The security game also employs 𝑆𝑃𝐺𝑒𝑛 and

𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 to compute system parameters 𝑠𝑝𝑎𝑟 and proof of unrevocation 𝑃𝑈 . The adversary𝒜
already knows a credetnial 𝑉𝐶0 and a proof of unrevocation 𝑃𝑈0. The adversary wants to check if 𝑃𝑈0

is generated by 𝑉𝐶0, and he is able use 𝑉𝐶0 as the input of 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 to generate a new proof of
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conception 𝑃𝑈′
0
. 𝑏 is a bit that represents the fact if 𝑃𝑈0 is generated by 𝑉𝐶0, 𝑏′ is the bit generated by

𝒜 by using all the auxiliary information he gets. Given a big enough security parameter 𝜆, the chance

for𝒜 to win the game is equal to random guess.

Definition 5. Issuer untraceability: Proofs of unrevocations are untraceable for the issuer, if for every efficient
adversary𝒜 there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that the following holds.

𝑃𝑟[𝑏′ = 𝑏 :

𝑠𝑝𝑎𝑟 ← 𝑆𝑃𝐺𝑒𝑛(1𝜆),
(𝑉𝐶0 , 𝑃𝑈0) ← 𝒜(𝑠𝑡),
𝑃𝑈0 ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶0 , 𝑠𝑝𝑎𝑟),

𝑏′←𝒜(𝑃𝑈0 , 𝑃𝑈
𝑝

0
𝑟𝑖𝑚𝑒, 𝑉𝐶0 , 𝑠𝑝𝑎𝑟)] ≤

1

2

+ 𝑛𝑒𝑔𝑙(𝜆)

4.5.1. Unforgeability
There are two possible way to forge the proof of unrevocation:

• The first possible attack is forge-1 attack, which means the attackers can counterfeit a proof of

unrevocation to pass the revocation mechanism for a revoked credential or a fake credential that is

not issued by the issuer. For example, if the terrorist can forge a fake passport that can pass the

authentication of the boarder, it is a successful forge-1 attack.

• The second possible attack we call it forge-2 attack, which means the attackers use a valid PU from

another credential or a previous valid PU pass the revocation status check for a revoked credential.

Forge-2 attack is very similar with the replay attack in authentication, the attackers do not change

the revocation status of their credentials but they try to use valid proof of unrevocation from other

source to fool the verifier.

To ensure the unforgeability, the proof of unrevocation we generate should resist the two forge attacks

we mentioned above. Here we give the definition of forge-1 attack resistancy and the definition of

forge-2 attack resistancy based on the computational complexity theory.

The negligible function in definiton 6 means that given a big enough security parameter 𝜆 , using

the verifiable presentation 𝑉𝑃∗ and the proof of unrevocation 𝑃𝑈∗ generatecd by a invalid verifiable

credential 𝑉𝐶∗ to pass the verification is impossible.

Definition 6. Forge-1 attack resistancy: The proof of unrevocation can resist forge-1 attack, if for every efficient
adversary𝒜 there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that the following holds.

𝑃𝑟[𝑠𝑝𝑎𝑟 ← 𝑆𝑃𝐺𝑒𝑛(1𝜆),
𝑃𝑈∗ ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶∗ , 𝑠𝑝𝑎𝑟),
𝑉𝑃∗ ← 𝑉𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶∗ , 𝑠𝑝𝑎𝑟),
𝑉𝑒𝑟𝑖 𝑓 𝑦(𝑉𝑃∗ , 𝑃𝑈∗ , 𝑅𝐼) = 𝑝𝑎𝑠𝑠] ≤ 𝑛𝑒𝑔𝑙(𝜆)

The negligible function in definition 7 means that given a big enough security parameter 𝜆 , using

the verifiable presentation 𝑉𝑃∗ generatecd by a invalid verifiable credential 𝑉𝐶∗ and the proof of

unrevocation 𝑃𝑈0 generated by a valid verifiable credential 𝑉𝐶0 to pass the verification is impossible.

Definition 7. Forge-2 attack resistancy: The proof of unrevocation can resist forge-2 attack, if for every efficient
adversary𝒜 there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that the following holds.

𝑃𝑟[𝑠𝑝𝑎𝑟 ← 𝑆𝑃𝐺𝑒𝑛(1𝜆),
𝑃𝑈0 ← 𝑃𝑈𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶0 , 𝑠𝑝𝑎𝑟),
𝑉𝑃∗ ← 𝑉𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝐶∗ , 𝑠𝑝𝑎𝑟),
𝑉𝑒𝑟𝑖 𝑓 𝑦(𝑉𝑃∗ , 𝑃𝑈0 , 𝑅𝐼) = 𝑝𝑎𝑠𝑠] ≤ 𝑛𝑒𝑔𝑙(𝜆)
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System Design

This section introduces the design of our Verifiable Credential system. Our design is based on the BBS+

signature, KB accumulator and a role-based permissioned blockchain. The BBS+ signature ensures the

selective disclosure and unforgeability of claims. The KB accumulator enables the prover to prove a

committed value is in a specific set. We use a permissioned blockchain to guarantee only the issuer

can publish data on the blockchain and the published data are tamper-evident. Integrating the above

three building blocks empowers our revocation mechanism to prove a committed revocation handler is

signed and accumulated by the issuer in a tamper-evident and privacy-preserving manner.

An overview of the system is showed in figure 5.1. Our system has five components: accumulator,

issuer, holder, verifier and permissioned blockchain. In practice, like the original ecosystem of verifiable

credentials (figure 1.3), there should be only four actors. The accumulator is part of the issuer. We put

it on the system overview because we want to explicitly show that the accumulator is a module that

actually performs the function of recording the revocation status of verifiable credentials. The functions

of the actors are:

• The issuer can issue verifiable credentials to the holder and revoke issued credentials. Only issuer

can operate the accumulator and the permissoned blockchain.

• The holder can use obtained VCs to generate a verifiable presentation and send it to the verifier for

authentication. The holder can query the permissoned blockchain to update the witnesses of their

credentials.

• The verifier can query the permissioned blockchain to get the newest revocation information and

use it to check the validity of the proof of unrevocation given by the holder.

• The accumulator deletes a verifiable credential’s revocation handler and updates the accumulator’s

value when that verifiable credential is revoked.

• The permissioned blockchain performs the same role as the verifiable data registry in figure 1.3.

It works as a tamper-evident ledger of the revocation information. Only the issuer can write.

Holders and verifiers can merely read the ledger.

25
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Figure 5.1: The overview of our system

To run our revocation mechanism, the issuer should first set up the KB accumulator and publish the

initial accumulator value on the blockchain at the system initialization step. Each time the issuer issues

a verifiable credential, the issuer assigns a revocation handler to the verifiable credential. The issuer

signs the revocation handler with other claims contained in that verifiable credentials and accumulates

it in the KB accumulator. If the issuer wants to revoke an issued verifiable credential, that verifiable

credential’s revocation handler will be deleted from the KB accumulator, and a new accumulator value

will be published. Whenever the holder wants to present a verifiable credential, the holder does not

reveal the revocation handler. Instead, the holder sends the committed revocation handler to the verifier.

With the help of the revocation information published on the blockchain, the verifier can determine if

the committed revocation handler is bound with other given claims and accumulated by the issuer.

The detailed algorithms and protocols for the abovementioned operations are shown in the rest of

the chapter. Section 5.1 introduces the algorithm for initializing the system. Section 5.3 presents the

issuance protocol. Section 5.2 describes the procedure of revocation. Section 5.4 and section 5.5 explains

the algorithms of presentation and verification respectively.

5.1. System initialization
The system initialization is composed of three parts: the generation of BBS+ signature key pairs, the

setup of the KB accumulator, and the setup of the Pedersen commitment. Algorithm 5.1 describes the

algorithm 𝑆𝑃𝐺𝑒𝑛(1𝜆) generates the necessary keys with length of 𝜆 bits. 𝑆𝑃𝐺𝑒𝑛(1𝜆) consists of three

sub-algorithm, namely 𝐵𝐵𝑆.𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆 , 𝐿), 𝐴𝑐𝑐.𝑆𝑒𝑡𝑈𝑝(1𝜆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔) and 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡.𝑆𝑒𝑡𝑈𝑝(1𝜆).
The Issuer applies the 𝐵𝐵𝑆.𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆 , 𝐿) algorithm to generate BBS+ signature key pairs according

to the credential scheme. A credential scheme contains the description of claims contained in the

credential. 𝐵𝐵𝑆.𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆 , 𝐿) takes the security parameter𝜆 and the number of claims in the credential

scheme 𝐿 as input. First, the issuer generate a type-3 pairing instance called 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔 . Using the

pairing instance, the issuer can compute the public key 𝑝𝑘𝐵𝐵𝑆 and secret key 𝑠𝑘𝐵𝐵𝑆. The pairing instance

𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔 will be used as input of the other two algorithms.

The original KB accumulator works in the type-1 setting. We transform it to the type-3 setting to

obtain better security property while facilitating the implementation. The 𝐴𝑐𝑐.𝑆𝑒𝑡𝑈𝑝(1𝜆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔)
algorithm takes the security paramete 𝜆 and the pairing instance 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔 as input. The following two

points are the differences between our 𝐴𝑐𝑐.𝑆𝑒𝑡𝑈𝑝 algorithm and the original generation algorithm of

the KB accumulator (see section 2.7):

• The public key changes from ((𝑝,G,G𝑇 , 𝑒 , 𝑔), 𝑔𝑎) to (𝑝,G1 ,G2 ,G𝑇 , 𝑒 , 𝑔1 , 𝑔2), 𝑔𝑎
1
)

• The initial accumulator value changes from 𝑔𝑢0
to 𝑔

𝑢0

2
.
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The commitment scheme generation algorithm 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡.𝑆𝑒𝑡𝑈𝑝(1𝜆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔) also takes

𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔 as input. Because the commitment scheme should use a group with the same order as

the BBS+ signature and the KB accumulator, we use theG1 in 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔 for implementation convenience.

𝑆𝑃𝐺𝑒𝑛(1𝜆)
1 : Publish the credential scheme 𝐶𝑟𝑒𝑑𝑆𝑐ℎ𝑒𝑚𝑒 to the ledger

2 : Generate the key for BBS+ signature

3 : 𝐵𝐵𝑆.𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆 , 𝐿)
1 : Generate a pairing instance 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑛𝑔 = (𝑝,G1 ,G2 ,G𝑇 , 𝑒 , 𝑔1 , 𝑔2), where |𝑝 | = 𝜆 and 𝑝 prime

2 : (h0 , ..., ℎ𝐿) ←$G𝐿+1

1
, 𝑥 ←$Z∗𝑝 , 𝑤 ←− 𝑔𝑥2 ,

3 : sk𝐵𝐵𝑆 = 𝑥, 𝑝𝑘𝐵𝐵𝑆 = (𝑤, ℎ0 , ..., ℎ𝐿).
4 : return 𝑠𝑘𝐵𝐵𝑆 , 𝑝𝑘𝐵𝐵𝑆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔

4 : Set up the accumulator

5 : 𝐴𝑐𝑐.𝑆𝑒𝑡𝑈𝑝(1𝜆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔)
1 : Pick random 𝑎, 𝑢0 ∈ Z∗𝑝
2 : set the initial accumulator value as 𝑣0 = 𝑔

𝑢
0

2
∈ G2, where 𝑢0 is a random value instead of the identity element

3 : Set the domain 𝐷 = Z𝑝 − {𝑎}
4 : Let 𝑠𝑘𝐴𝑐𝑐 = 𝑎, 𝑝𝑘𝐴𝑐𝑐 = ((𝑝,G1 ,G2 ,G𝑇 , 𝑒 , 𝑔1 , 𝑔2), 𝑔𝑎

1
)

5 : return sk𝐴𝑐𝑐, 𝑝𝑘𝐴𝑐𝑐

6 : Set up the commitment scheme

7 : 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡.𝑆𝑒𝑡𝑈𝑝(1𝜆 , 𝑝𝑎𝑟𝑝𝑎𝑖𝑟𝑖𝑛𝑔)
1 : G1 ←− 𝑝𝑎𝑟
2 : 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚 ∈ G1

3 : return 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚

8 : let 𝑠𝑘𝐼𝑠𝑠𝑢𝑒𝑟 = (𝑠𝑘𝐵𝐵𝑆 , 𝑠𝑘𝐴𝑐𝑐), 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 = (𝑝𝑘𝐵𝐵𝑆 , 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚 , 𝑝𝑘𝐴𝑐𝑐)
9 : return (𝑠𝑘𝐼𝑠𝑠𝑢𝑒𝑟 , 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 )

Algorithm 5.1: Issuer Key Generation

5.2. Revocation
The revocation of a verifiable credential is a two-step process. Firstly, the issuer needs to remove that

verifiable credential’s revocation handler and update the accumulator value. Secondly, the issuer needs

to publish the revoked revocation handler and the newest accumulator value, which are required to

update the witnesses for unrevoked verifiable credentials. Note that the holder should always use

the latest revocation to update her verifiable credentials’ witnesses. Otherwise, she can not generate

valid proof of unrevocation. To ensure the user always gets the latest revocation information, we add

a version number to the revocation information. Thus, the revocation information published on the

blockchain is in this format: (𝑎𝑐𝑐, 𝑟ℎ, 𝑣), here 𝑎𝑐𝑐 means the accumulator value,𝑟ℎ means the revocation

handler of the recently revoked verifiable credential, 𝑣 means the version number of the revocation

handler. Algorithm 5.2 shows the process of revocation. The issuer uses the 𝐴𝑐𝑐.𝐷𝑒𝑙 algorithm (see

section) to delete the verifiable credential’s revocation handler 𝑟ℎ and get the newest accumualtor value

𝑎𝑐𝑐𝑛𝑒𝑤 . After getting the new accumulator value, the issuer updates the verision number and publish

the newest revocation information to the blockchain.

To update the witnesses, the holder stores the last revocation information she used. When she needs

to generate a revocation handler, she compares the version number of stored revocation information

and the version number of the latest revocation information on the data registry. If the two version

number is the same, there is no need for the holder to update the witness for the verifiable credential

she wants to present. Algorithm 5.3 shows the process of using revocation information to update

the witness. 𝑅𝐼𝑙𝑜𝑐𝑎𝑙 , 𝑅𝐼𝑙𝑎𝑡𝑒𝑠𝑡 , {𝑅𝐼𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛} here refer to the local revocation information, the latest

revocation information and the set of revocation information stored on the blockchain. The detail of
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𝐴𝑐𝑐.𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 , 𝑎𝑐𝑐, 𝑟ℎ) can be found in section.

𝑅𝑒𝑣𝑜𝑘𝑒(𝑟ℎ, 𝑅𝐼𝑜𝑙𝑑 , 𝑠𝑘𝐴𝑐𝑐)
1 : 𝑎𝑐𝑐𝑜𝑙𝑑 ← 𝑅𝐼𝑜𝑙𝑑

2 : 𝑎𝑐𝑐𝑛𝑒𝑤 ← 𝐴𝑐𝑐.𝐷𝑒𝑙(𝑠𝑘𝐴𝑐𝑐 , 𝑟ℎ, 𝑣𝑜𝑙𝑑)
3 : 𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + 1

4 : 𝑅𝐼𝑛𝑒𝑤 = (𝑣𝑛𝑒𝑤 , 𝑎𝑐𝑐𝑡+1
, 𝑟ℎ)

5 : Publish 𝑅𝐼𝑛𝑒𝑤 to the blockchain

Algorithm 5.2: Revoke a verifiable credenital

𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑅𝐼𝑙𝑜𝑐𝑎𝑙 , 𝑅𝐼𝑙𝑎𝑡𝑒𝑠𝑡 , 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 , {𝑅𝐼𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛})
1 : 𝑣𝑙𝑜𝑐𝑎𝑙 ← 𝑅𝐼𝑙𝑜𝑐𝑎𝑙

2 : 𝑣𝑙𝑎𝑡𝑒𝑠𝑡 ← 𝑅𝐼𝑙𝑎𝑡𝑒𝑠𝑡

3 : if 𝑣𝑙𝑜𝑐𝑎𝑙 == 𝑣𝑙𝑎𝑡𝑒𝑠𝑡 then
4 : 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤 = 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑

5 : else for 𝑣 = 𝑣𝑙𝑜𝑐𝑎𝑙 + 1..𝑣𝑙𝑎𝑡𝑒𝑠𝑡 do
6 : Find the RI with version 𝑣 in {𝑅𝐼𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛}
7 : (𝑎𝑐𝑐, 𝑟ℎ) ← 𝑅𝐼

8 : 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤 = 𝐴𝑐𝑐.𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 , 𝑎𝑐𝑐, 𝑟ℎ)
9 : endfor

10 : endif
11 : return 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤

Algorithm 5.3: Update the witness for a verifiable credential

5.3. Credential Issuance
The credential issuance happens between the user and the issuer. The user sends the set of claims {𝑚𝑖}
to the issuer. The issuer generate a revocation handler 𝑟 and accumulates 𝑟 in the accumulator. Then the

issuer signs the claims {𝑚𝑖} and the revocation handler 𝑟 together. The issuer puts the signature and

witness in the proof part of the credential and embeds the associated witness in the credential. Finally,

the issuer sends back the verifiable credential to the user. The holder accepts the verifiable credential if

the signature and the witness are valid. Protocol 5.1 shows the credential issuance process. We assume

that the communication between the issuer and the user is operated through a secure channel. Thus,

we don’t consider man-in-the-middle and replay attacks when designing this protocol.
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Credential Issuance

Holder Issuer
{𝑚𝑖} 𝑠𝑘𝐼𝑠𝑠𝑢𝑒𝑟

{𝑚𝑖}

𝑟←$𝐷𝐴𝑐𝑐

𝑤𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐴𝑐𝑐.𝑎𝑑𝑑(𝑟, 𝑠𝑘𝐼𝑠𝑠𝑢𝑒𝑟 )
(𝐴, 𝑒, 𝑠) ← 𝐵𝐵𝑆.𝑆𝑖𝑔𝑛({𝑚𝑖}, 𝑟 , 𝑠𝑘𝐼𝑠𝑠𝑢𝑒𝑟 )

𝑉𝐶 = ({𝑚𝑖}, (𝐴, 𝑒, 𝑠), (𝑤𝑖𝑡𝑛𝑒𝑠𝑠, 𝑟)) 𝑉𝐶

Accept if both 𝐵𝐵𝑆.𝑉𝑒𝑟𝑖 𝑓 𝑦(𝐴, 𝑒, 𝑠, 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 ) and

𝐴𝑐𝑐.𝑉𝑒𝑟𝑖 𝑓 𝑦(𝑟, 𝑤𝑖𝑡𝑛𝑒𝑠𝑠, 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 ) are true

Protocol 5.1: Issuance of supreme verifiable credential

5.4. Credential Presentation
Credential presentation refers to the process of generating a verifiable presentation. When developing

the verifiable presentation, the holder selectively discloses the claims required by the verifier, whereas

the rest claims and the revocation handler are anonymous. Algorithm 5.4 depicts the procedure of

presenting a single verifiable credential. The issuer first updates the witness for the verifiable credential.

Then the issuer computes the signature proof of knowledge for the BBS+ signature 𝑆𝑃𝐾𝐵𝐵𝑆 to prove the

issuer signs the revealed claims, and the signature proof of knowledge for the KB accumulator 𝑆𝑃𝐾𝐴𝑐𝑐
to prove the credential is not revoked. The 𝑆𝑃𝐾𝐴𝑐𝑐 is the proof of unrevocation we used in Chapter 4.

The generation algorithm of 𝑆𝑃𝐾𝐵𝐵𝑆 (see algorithm 5.5) is similar to the original 𝐵𝐵𝑆.𝑆𝑝𝑘𝐺𝑒𝑛 algorithm

described in section 2.5 and the generation algorithm of 𝑆𝑃𝐾𝐴𝑐𝑐 (see algorithm 5.6) is identical to

the proof-of-knowledge of the KB accumulator(see section 2.6). The major difference between our

and original algorithms is that our algorithm only computes the intermediate blindings. We don’t

compute the challenge value separately for the two signature proof of knowledge. Instead, we merge

the blindings used in the generation of 𝑆𝑃𝐾𝐵𝐵𝑆 and the blindings used in the generation of 𝑆𝑃𝐾𝐴𝑐𝑐 to

compute a mutual challenge value 𝑐. This is because both the 𝑆𝑃𝐾𝐵𝐵𝑆 and 𝑆𝑃𝐾𝐴𝑐𝑐 need a challenge value

and blinding factor to compute the commitment value for the revocation handler (𝑟 is the revocation

handler’s commitment value in 𝑆𝑃𝐾𝐴𝑐𝑐 , 𝑚̂0 is ’s counterpart in 𝑆𝑃𝐾𝐵𝐵𝑆). If we use a mutual challenge

value 𝑐 and a mutual blinding factor 𝑚∼
0

, the revocation handler’s commitment value in the 𝑆𝑃𝐾𝐵𝐵𝑆 is

the same as the revocation handler’s commitment in the 𝑆𝑃𝐾𝐴𝑐𝑐 . Thus, the holder can prove the valid

revocation status is bundled with the presented verifiable credential. The presentation algorithm is

shown in algorithm 5.4. Notice that the {𝑚𝑖} here contains the revocation handler. For convenience,

we assume 𝑚0 is the revocation handler, which means 𝑚0 = 𝑟. Thus, 𝑚∼
0

is the blinding factor for the

revocation handler, and 𝑚̂0 is the revocation handler’s commitment value in 𝑆𝑃𝐾𝐵𝐵𝑆.
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𝑉𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(1𝜆 , 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 , 𝑟 , 𝑤𝑖𝑡𝑛𝑒𝑠𝑠, 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥, 𝐴, 𝑒 , 𝑠, {𝑚𝑖})
1 : (𝑝𝑘𝐵𝐵𝑆 , 𝑝𝑘𝐴𝑐𝑐 , 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚) ← 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟

2 : 𝑀𝑒𝑚𝑊𝑖𝑡𝑈𝑝𝑂𝑛𝐷𝑒𝑙(𝑅𝐼𝑙𝑜𝑐𝑎𝑙 , 𝑅𝐼𝑙𝑎𝑡𝑒𝑠𝑡 , 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 , {𝑅𝐼𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛}
3 : (𝐴̄, 𝐴′, 𝐷, 𝐶

1
, 𝐶

2
, 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐵𝐵𝑆) ← 𝐵𝐵𝑆.𝑆𝑝𝑘𝐺𝑒𝑛({𝑚𝑖}, 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥, 𝐴, 𝑒 , 𝑠, 𝑝𝑘𝐵𝐵𝑆)

4 : (𝑅
1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶𝑟 , 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐴𝑐𝑐) ← 𝐴𝑐𝑐.𝑆𝑝𝑘𝐺𝑒𝑛∗(𝑤𝑖𝑡𝑛𝑒𝑠𝑠, 𝑟, 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚 , 𝑝𝑘𝐴𝑐𝑐 , 𝑚∼

0
)

5 : 𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠 = ∅
6 : for i in revealedIndex do
7 : 𝑚𝑖 ∪ 𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠
8 : endfor
9 : 𝑐 = ℋ𝑆(𝐴̄, 𝐴′, 𝐷, 𝐶1

, 𝐶
2
, 𝑅

1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶𝑟 , 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 , 𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠)

10 : (𝑒∼ , 𝑟∼
2𝐵𝐵𝑆

, 𝑟∼
3
, 𝑟

2𝐵𝐵𝑆 , 𝑠
∼ , 𝑠′, {𝑚𝑗}∼) ← 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝐵𝐵𝑆

11 : 𝑒 ← 𝑒∼ + 𝑐 ∗ 𝑒
12 : ˆ𝑟

2𝐵𝐵𝑆 ← 𝑟∼
2𝐵𝐵𝑆

+ 𝑐 ∗ 𝑟
2𝐵𝐵𝑆

13 : 𝑟
3
← 𝑟∼

3
+ 𝑐 ∗ 𝑟

3

14 : 𝑠 ← 𝑠∼ + 𝑐 ∗ 𝑠′

15 : for 𝑗𝑖 in (𝑗
1
, 𝑗

2
, ..., 𝑗𝑢) do

16 : 𝑚̂𝑗 = 𝑚∼
𝑗
+ 𝑐 ∗ 𝑚𝑗

17 : endfor
18 : 𝑆𝑃𝐾𝐵𝐵𝑆 = (𝐴̄, 𝐴′, 𝐷, 𝐶

1
, 𝐶

2
𝑒 , ˆ𝑟

2𝐵𝐵𝑆 , 𝑟3 , 𝑠 , {𝑚̂𝑗})
19 : (𝑟

1
, 𝑟

2
, 𝛿

1
, 𝛿

2
, 𝑟𝑐𝑜𝑚 , 𝑟

∼
1
, 𝑟∼

2
, 𝛿∼

1
, 𝛿∼

2
, 𝑟∼ , 𝑟∼𝑐𝑜𝑚) ← 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐴𝑐𝑐

20 : 𝑟
1
= 𝑟∼

1
+ 𝑐 ∗ 𝑟

1

21 : 𝑟
2
= 𝑟∼

2
+ 𝑐 ∗ 𝑟

2

22 : 𝛿
1
= 𝛿∼

1
+ 𝑐 ∗ 𝛿

1

23 : 𝛿
2
= 𝛿∼

2
+ 𝑐 ∗ 𝛿

2

24 : 𝑟 = 𝑟∼ + 𝑐 ∗ 𝑟
25 : ˆ𝑟𝑐𝑜𝑚 = 𝑟∼𝑐𝑜𝑚 + 𝑐 ∗ 𝑟𝑐𝑜𝑚
26 : 𝑆𝑃𝐾𝐴𝑐𝑐 = (𝑅1

, 𝑅
2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶, 𝑟

1
, 𝑟

2
, 𝛿

1
, 𝛿

2
, 𝑟 , ˆ𝑟𝑐𝑜𝑚)

27 : 𝑉𝑃 = (𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠, 𝑆𝑃𝐾𝐵𝐵𝑆 , 𝑆𝑃𝐾𝐴𝑐𝑐)
28 : return 𝑉𝑃

Algorithm 5.4: The generation algorithm of verifiable presentation
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𝐵𝐵𝑆.𝑆𝑝𝑘𝐺𝑒𝑛({𝑚𝑖} ∈ Z𝐿𝑝 , 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥, 𝐴, 𝑒 , 𝑠, 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟)
1 : (𝑖

1
, 𝑖

2
, ..., 𝑖𝑟 ) ← 𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥

2 : (𝑗
1
, 𝑗

2
, ..., 𝑗𝑢) ← [𝐿]\𝑅𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐼𝑛𝑑𝑒𝑥

3 : (𝑔
1
, ℎ

0
, ℎ

1
, ..ℎ𝑙) ← 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟

4 : 𝑟
1
←$Z∗𝑝

5 : 𝑟
2
←$Z∗𝑝

6 : 𝑒∼←$Z∗𝑝
7 : 𝑟∼

2
←$Z∗𝑝

8 : 𝑟∼
3
←$Z∗𝑝

9 : 𝑠∼←$Z∗𝑝

10 : for 𝑗𝑖 in (𝑗
1
, 𝑗

2
, ..., 𝑗𝑢) do

11 : 𝑚∼
𝑗
←$Z∗𝑝

12 : endfor

13 : 𝑏 ← 𝑔
1
ℎ𝑠

0

𝐿∏
𝑖=1

ℎ
𝑚𝑖

𝑖

14 : 𝑟
3
= 𝑟−1

1

15 : 𝐴′ = 𝐴𝑟1 𝐴̄ = 𝐴′(−𝑒)𝑏𝑟1

16 : 𝐷 = 𝑏𝑟1 ℎ
𝑟2
0

17 : 𝑠′ = 𝑠 + 𝑟
2
∗ 𝑟

3

18 : 𝐶
1
= 𝐴′ ∗ 𝑒∼ + ℎ

0
𝑟∼
2
𝐶

2
= 𝐷 ∗ (−𝑟∼

3
)ℎ𝑠

0

∼
𝑢∏
𝑗=0

ℎ
𝑚∼
𝑗

𝑗

19 : 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐵𝐵𝑆 = (𝑟
2
, 𝑟

3
, 𝑟∼

2
, 𝑟∼

3
, 𝑒∼ , 𝑠∼ , 𝑠′, {𝑚∼

𝑗
})

20 : return (𝐴̄, 𝐴′, 𝐷, 𝐶
1
, 𝐶

2
, 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐵𝐵𝑆)

Algorithm 5.5: Generate blinding factors for 𝑆𝑃𝐾𝐵𝐵𝑆
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𝐴𝑐𝑐.𝑆𝑝𝑘𝐺𝑒𝑛(𝑤𝑖𝑡𝑛𝑒𝑠𝑠, 𝑟, 𝑔𝑐𝑜𝑚 , ℎ𝑐𝑜𝑚 , 𝑝𝑘𝐴𝑐𝑐 , 𝑚∼
0
)

1 : 𝑔
1
, 𝑔

2
, 𝑔𝑎 ← 𝑝𝑘𝐴𝑐𝑐

2 : 𝑟
1
, 𝑟

2
, 𝑟𝑐𝑜𝑚 ←$Z∗𝑝

3 : 𝑤
1
← 𝑔

𝑟1
𝑐𝑜𝑚 ℎ

𝑟2
𝑐𝑜𝑚

4 : 𝑤
2
← 𝑤ℎ

𝑟1
𝑐𝑜𝑚

5 : 𝐶𝑟 ← 𝑔𝑟𝑐𝑜𝑚 ℎ
𝑟𝑐𝑜𝑚
𝑐𝑜𝑚

6 : 𝛿
1
← 𝑟

1
𝑟

7 : 𝛿
2
← 𝑟

2
𝑟

8 : 𝑟∼
1
, 𝑟∼

2
, 𝛿∼

1
, 𝛿∼

2
, 𝑟∼𝑐𝑜𝑚 ←$Z∗𝑝

9 : 𝑟∼ ← 𝑚∼
0

10 : 𝑅
1
← 𝑔

𝑟∼
1

𝑐𝑜𝑚 ℎ
𝑟∼
2

𝑐𝑜𝑚

11 : 𝑅
2
← 𝑔

𝛿∼
1

𝑐𝑜𝑚 ℎ
𝛿∼

2

𝑐𝑜𝑚

12 : 𝑅
3
← 𝑒(𝑤

2
, 𝑔

2
)−𝑟∼ 𝑒(𝑔𝑐𝑜𝑚 , 𝑔2

)𝛿∼1 𝑒(𝑔, 𝑔𝑎)𝑟
∼
1

13 : 𝑅
4
← 𝑔𝑟

∼
𝑐𝑜𝑚 ℎ

𝑟∼𝑐𝑜𝑚
𝑐𝑜𝑚

14 : 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐴𝑐𝑐 = (𝑟1 , 𝑟2 , 𝛿1
, 𝛿

2
, 𝑟𝑐𝑜𝑚 , 𝑟

∼
1
, 𝑟∼

2
, 𝛿∼

1
, 𝛿∼

2
, 𝑟∼ , 𝑟∼𝑐𝑜𝑚)

15 : return (𝑅
1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶𝑟 , 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠𝐴𝑐𝑐)

Algorithm 5.6: Generate blinding factors for 𝑆𝑃𝐾𝐴𝑐𝑐

5.5. Credential Verification
Credential verification depicts the process by which the verifier checks the given verifiable presentation.

The verifier verifies the given 𝑆𝑃𝐾𝐵𝐵𝑆 and 𝑆𝑃𝐾𝐴𝑐𝑐 , and checks if the revocation handler’s commitment

is the same in the two signature proof of knowledge. If the verifiable presentation passes the three

validity checks mentioned above, the verifier accepts it. Algorithm 5.7 shows the steps of verification.
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𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑉𝑃, 𝑅𝐼, 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟))
1 : (𝑆𝑃𝐾𝐵𝐵𝑆 , 𝑆𝑃𝐾𝐴𝑐𝑐 , 𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠) ← 𝑉𝑃

2 : 𝐴̄, 𝐴′, 𝐷, 𝐶
1
, 𝐶

2
← 𝑆𝑃𝐾𝐵𝐵𝑆

3 : 𝑅
1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶𝑟 ← 𝑆𝑃𝐾𝐴𝑐𝑐

4 : 𝑐 = ℋ𝑠 (𝐴̄, 𝐴′, 𝐷, 𝐶1
, 𝐶

2
, 𝑅

1
, 𝑅

2
, 𝑅

3
, 𝑅

4
, 𝑤

1
, 𝑤

2
, 𝑤𝑟

1
, 𝐶𝑟 , 𝑝𝑘𝐼𝑠𝑠𝑢𝑒𝑟 , 𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑𝐶𝑙𝑎𝑖𝑚𝑠)

5 : Verify the 𝑆𝑃𝐾𝐵𝐵𝑆

6 : 𝐵𝐵𝑆.𝑆𝑝𝑘𝑉𝑒𝑟𝑖 𝑓 𝑦(𝑐, 𝑆𝑃𝐾𝑉𝑃)

1 : 𝐶′
1
= (𝐴̂ − 𝐷)𝑐𝐴′𝑒 ℎ ˆ𝑟

2𝐵𝐵𝑆
0

2 : 𝑇 = ℎ𝑠
0

∼
𝑅∏
𝑗=0

ℎ𝑖𝑅
𝑚𝑖𝑅
∼

3 : 𝐶′
2
= 𝑇𝑐𝐷−𝑟3

𝑈∏
𝑗=0

ℎ 𝑗𝑈
ˆ𝑚𝑗𝑈

4 : return (𝐶′
1

?

= 𝐶1 ∧ 𝐶′
2

?

= 𝐶2)
7 : Verify the 𝑆𝑃𝐾𝐴𝑐𝑐

8 : 𝐴𝑐𝑐.𝑆𝑝𝑘𝑉𝑒𝑟𝑖 𝑓 𝑦(𝑐, 𝑆𝑃𝐾𝐴𝑐𝑐)

1 : 𝑅′
1
= 𝑔𝑟1𝑐𝑜𝑚 ℎ

𝑟2
𝑐𝑜𝑚

2 : 𝑅′
2
= 𝑔

𝛿
1

𝑐𝑜𝑚 ℎ
𝛿

2

𝑐𝑜𝑚

3 : 𝑅′
3
= 𝑒(𝑤2 , 𝑔𝑎)𝑒(𝑣𝑡 , 𝑔2)−1𝑅3

4 : 𝑅3 = 𝑒(𝑤2 , 𝑔2)−𝑟 𝑒(𝑔𝑐𝑜𝑚 , 𝑔2)𝛿2 𝑒(𝑔𝑐𝑜𝑚 , 𝑔𝑎)𝑟1

5 : 𝑅′
4
= 𝑔𝑟𝑐𝑜𝑚 ℎ

ˆ𝑟𝑐 𝑜𝑚
𝑐𝑜𝑚

6 : return (𝑅′
1

?

= 𝑅1 + 𝑐 ∗ 𝑤1 ∧ 𝑅′
2

?

= 𝑅2 + 𝑐 ∗ 𝑤𝑟
1
∧ 𝑅′

3

?

= 𝑅3 ∧ 𝑅′
4

?

= 𝑅4 + 𝑐 ∗ 𝐶𝑟 )

9 : 𝑟
?

= 𝑚
0

10 : return 𝑇𝑟𝑢𝑒

Algorithm 5.7: The verification of a verifiable presentation



6
Analysis

This section analyze our revocation mechanism in three dimensions: security and privacy, performance,

and storage. For security, we analyse the unforgeablility of our revocation mechanism; for privacy, we

analyse the multi-show unlinkability and issuer untraceability our solution. As for performance, we

analyse the impact of adding our revocation mechanism to the performance of a verifiable credential

system.

6.1. Security analysis
This section illustrate how can our design satisfy the requirements of being tamper-evident we set in

Chapter 4. The first requirement is to ensure the revocation status is unforegable. We give the following

proof to prove our revocation mechanism provides unforgeabilitiy to the revocation status.

Theorem 6.1.1 (Unforgeability). Our revocation mechanism provides unforgeability to the revocation status; a
probabilistic polynomial time (PPT) adversary𝒜 is unable to derive a proof of unrevocation for revoked credentials
or use other credentials’ proof of unrevocation to pass the revocation status check.

Proof. To derive a proof of unrevocation for a revoked credential, the adversary 𝒜 needs to prove a

revoked revocation handler is accumulated in the accumulator. This is proved to be impossible under

the Strong Diffie-Hellman assumption in [18]. To pass the authentication with other valid credential’s

proof of unrevocation, the adversary𝒜 needs to prove the commitment of other credentials’ revocation

handler 𝐶′𝑟 is signed with the claims contained in this verifiable credential. The unforgeability of the

BBS+ signature ensures this is impossible under the Strong Diffie-Hellman assumption. For complete

proof, please read [36]. □

Aside from ensuring the unforgeability of revocation status. Our system should also guarantee the

unforgeability of the revocation information. We achieve the unforgeability of revocation information

by using a role-based blockchain to limit the write permission to the issuer. The tamper-resistance of

blockchain makes sure the attackers can not forge the revocation information.

6.2. Privacy analysis
This section analyse the privacy property of our solution. Our revocation mechanism can provide

multi-show unlinkability, issuer untraceability and join-revoke unlinkability. Below are the proofs:

Theorem 6.2.1 (Multi-show Unlinkability). Our revocation mechanism provides multi-show unlinkablity; a
probabilistic polynomial time (PPT) adversary𝒜 is unable to determine if two given proof of unrevocation are
generated from the same verifiable credential or two different verifiable credentials.

Proof. The multi-show unlinkability is achieved by employing the BBS+ signature’s signature proof

of knowledge 𝑆𝑃𝐾𝐵𝐵𝑆 and the KB accumulator’s signature proof of knowledge 𝑆𝑃𝐾𝐴𝑐𝑐 . 𝑆𝑃𝐾𝐵𝐵𝑆 and

𝑆𝑃𝐾𝐴𝑐𝑐 use commitment to hide the identifying information (e.g. the revocation handler). The perfect

hiding property of Pedersen commitment ensures that the attacker can not derive the revocation handler

34
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or other hidden identifiers from the commitment under the Strong Diffie-Hellman assumption. Thus,

the attacker can not use the proof of unrevocation to link a verifiable credential even though that

verifiable credential is presented multiple times. □

Theorem 6.2.2 (Issuer Untraceability). Our revocation mechanism provides issuer untraceability; given a
verifiable credential and a proof of unrevocation, a probabilistic polynomial time (PPT) adversary𝒜 is unable to
determine if the given verifiable credential generates the proof of unrevocation.

Proof. Similar to the proof of multi-show unlinkability, the perfect hiding property of Pedersen

commitment guarantees no identifying information leakage under the Strong Diffie-Hellman assumption.

Thus, the issuer cannot use proof of unrevocation to derive the original verifiable credential from a

verifiable presentation. That is to say the issuer cannot track the use of a verifiable credential through its

verifiable presentations. □

Theorem 6.2.3 (Join-revoke Unlinkability). Our revocation mechanism provides join-revoke unlinkability;
given a verifiable credential and a proof of unrevocation, a probabilistic polynomial time (PPT) adversary𝒜 is
unable to determine when did the given credential is issued.

Proof. The KB accumulator achieves the join-revoke unlinkability for our revocation mechanism. Using

the KB accumulator, the holders do not have the knowledge about the current valid members when

updating the witnesses for their verifiable credentials. Therefore, the attacker can not predict the

join time of a certain verifiable credential and cannot commit the join-revoke attack. For the detailed

description, we refer the readers to read the appendix of [18]. □

6.3. Performance analysis
Here we give the performance analysis of our solution. Figure 6.1 shows the lifecycle of a verifiable

credential. The figure shows that repeatable operations are the presentation of a verifiable credential, the

verification of presented verifiable credentials, and the revocation status check. In the credential system

with revocation system, revocation status check and the verification of presented verifiable credentials

can be merged. Thus, the system’s performance with the revocation mechanism is dominated by two

operations: verifiable credential presentation and verifiable credential verification. Our analysis mainly

focuses on the impact on the two operations mentioned above.
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Life of a single Veri able Credential

Issuer

Issue
exactly once

Revoke
up to once

Holders

Delete
up to once per Holder

Transfer
Repeateable

Present
repeatable

Veri ers

Verify
repeatable

Check Status
Does not preserve privacy

repeatable

Check Status
MAY preserve privacy

repeatable

Registry

Figure 6.1: The lifecycle of a verifiable credentials and the verification of verifiable presentations. [3]

6.3.1. Computation complexity
The verifiable credential presentation consists of generating the 𝑆𝑃𝐾𝐵𝐵𝑆 and generating the 𝑆𝑃𝐾𝐴𝐶𝐶 .

Compared to the system without a revocation mechanism, our design adds the generation of 𝑆𝑃𝐾𝐴𝐶𝐶 .

Thus, the runtime overhead equals to the generation time of the 𝑆𝑃𝐾𝐴𝐶𝐶 . [17] shows that generating the

𝑆𝑃𝐾𝐴𝐶𝐶 takes a fixed number of parameters which means the computation complexity is linear with

the size of the parameters. In our design, the size of the parameters is fixed. Therefore, the runtime

overhead caused by adding our revocation mechanism is under constant complexity 𝑂(1).
The verifiable credential verification is to verify the𝑆𝑃𝐾𝐴𝐶𝐶 . Similar to the analysis of the presentation,

we can conclude that the computation complexity of the runtime overhead for the status check is also

𝑂(1). Besides, since the computation complexity of verifying 𝑆𝑃𝐾𝐵𝐵𝑆 is constant if we use parameters

of fixed size, the overall computation complexity of verifiable credential presentation is also 𝑂(1)

6.3.2. Storage
The revocation information of our revocation mechanism contains three parts: the accumulator value,

the revoked revocation handler and the version number. Thus the storage cost is a constant value

𝑙𝑎𝑐𝑐 + 𝑙𝑟ℎ + 𝑙𝑣 . Here 𝑙𝑎𝑐𝑐 , 𝑙𝑟ℎ , 𝑙𝑣 represents the length of the accumulator value, the length of the revoked

revocation handler and the length of the version number. The storage complexity is 𝑂(1).

6.4. Discussion
The existing works use revocation mechanisms such as smart contracts, OCSP, and revocation list

2020 to manipulate identifiers to check the revocation status, which violates the verifiable credential’s

requirement of being privacy-preserving. Sorvin uses the CKS accumulator as the revocation mechanism,

which avoids the use of identifiers, but adversaries can still correlate the credentials through a join-revoke

attack. The appliance of CL-RSA-B makes IRMA outperforms other existing works on the enhancement

of privacy; however, the use of a central server makes it lose in the performance of tamper-evident. To
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achieve tamper-evident and privacy-preserving together, we propose a new revocation mechanism.

Table 6.1 compares our revocation mechanism with the existing works. From the table we can see

that, our solution is only revocation mechanism that achieve tamper-evident and privacy-preserving

simultaneously. Besides our revocation mechanism also reaches the state of art storage complexity O(1).

Table 6.1: Revocation comparison with related works

Project Methods Privacy-

preserving

Tamper-

evident

Storage

com-

plex-

ity

OpenAttestation smart contracts and

OCSP

× ✓ O(n)

Veramo smart contracts × ✓ O(n)

Sorvin CKS accumulator × ✓ O(v)

IRMA CL-RSA-B accumu-

lator

✓ × O(1)

Verifiable-

Credential-Java

Revocation List

2020

× ✓ O(n)

Gravity Revocation List

2020

× ✓ O(n)

Our work(Chapter

5)

Efficient bilinear

pairing-based accu-

mulator

✓ ✓ O(1)
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Experiments result

Here we analyse the impact of adding our revocation mechanism to the performance of a verifiable

credential system. Figure 6.1 shows the lifecycle of a verifiable credential. The figure shows that

repeatable operations are the presentation of a verifiable credential, the verification of presented

verifiable credentials, and the revocation status check. In the credential system with revocation system,

revocation status check and the verification of presented verifiable credentials can be merged. Thus,

the system’s performance with the revocation mechanism is dominated by two operations: verifiable

credential presentation and verifiable credential verification. Our analysis mainly focuses on the impact

on the two operations mentioned above.

The verifiable credential presentation consists of generating the 𝑆𝑃𝐾𝐵𝐵𝑆 and generating the 𝑆𝑃𝐾𝐴𝐶𝐶 .

Compared to the system without a revocation mechanism, our design adds the generation of 𝑆𝑃𝐾𝐴𝐶𝐶 .

Thus, the runtime overhead equals to the generation time of the 𝑆𝑃𝐾𝐴𝐶𝐶 . [17] shows that generating the

𝑆𝑃𝐾𝐴𝐶𝐶 takes a fixed number of parameters which means the computation complexity is linear with

the size of the parameters. In our design, the size of the parameters is fixed. Therefore, the runtime

overhead caused by adding our revocation mechanism is under constant complexity 𝑂(1).
The verifiable credential verification is to verify the𝑆𝑃𝐾𝐴𝐶𝐶 . Similar to the analysis of the presentation,

we can conclude that the computation complexity of the runtime overhead for the status check is also

𝑂(1). Besides, since the computation complexity of verifying 𝑆𝑃𝐾𝐵𝐵𝑆 is constant if we use parameters

of fixed size, the overall computation complexity of verifiable credential presentation is also 𝑂(1)

7.1. Experimental results
7.1.1. Runtime of off-chain zero-knowledge proof
This section measures the experimental runtime of our revocation mechanism. The runtime is measured

by comparing the credential system with our revocation mechanism (noted as “w" in the figures) against

the credential system without a revocation mechanism (noted as“w/o" in the figures). The proof-of-

concept implementation used in the experiments is written in Rust 1.59.0. The pairing-friendly curve we

choose is Bls12-381, the random generator we use is the thread_rng(). The runtime measurements were

performed on a Macbook Air laptop with an Apple M1 chip and 8GB memory under macOS Monterey

12.2.1.

Same as the performance analysis in section 5, we compare the runtime of the two credential systems

for the following algorithms: verifiable credential presentation and verifiable credential verification. We

use credentials with 5, 10, 15, and 20 attributes to evaluate the runtime.

Figure 7.1 shows the runtime measurements of verifiable credential presentation. For the system

without a revocation mechanism, the runtime is the generation of 𝑆𝑃𝐾𝐵𝐵𝑆. For the system with our

revocation mechanism, the runtime equals the sum of generating 𝑆𝑃𝐾𝐵𝐵𝑆 and 𝑆𝑃𝐾𝐴𝐶𝐶 . Our revocation

mechanism’s average runtime overhead brought on verifiable credential presentation is 42.86ms. And

according to our analysis in section 6.3.1, the runtime overhead has a constant computation complexity.

Thus, the runtime overhead will not fluctuate significantly with the change of number claims in a

credential. Because the generation of 𝑆𝑃𝐾𝐵𝐵𝑆 is linear with the number of claims in the credentials[36],

with the number of claims in the credential increases, the generation of 𝑆𝑃𝐾𝐵𝐵𝑆 will gradually dominate

38
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the runtime of verifiable credential presentation. In other words, the impact of our revocation mechanism

on verifiable credential presentation will decrease with the increase of the claims contained in a verifiable

credential. We believe that as the application scenarios of verifiable credentials consistently extend,

there will be a need to contain more complex claims in the verifiable credential. Thus, having an

increasing number of claims in the variable credential is realistic. For this reason, the runtime overhead

on verifiable credential presentation caused by our design is acceptable in practice.
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Figure 7.1: Runtime measurements of verifiable credential presentation

Figure 7.2 shows the runtime measurements of verifiable credential verification. The runtime for the

system without a revocation mechanism is the verification of 𝑆𝑃𝐾𝐵𝐵𝑆, and the runtime for the system

with our revocation mechanism is the overall measurement of verifying 𝑆𝑃𝐾𝐵𝐵𝑆 and 𝑆𝑃𝐾𝐴𝐶𝐶 . Our

revocation mechanism brings 31.36ms average runtime overhead to the system, and the average overall

verification runtime is 45.84ms. As we analysed in section 6.3, the computation complexity of verifiable

credential verification is 𝑂(1). Therefore, the runtime of verifiable credentials verifiable should slightly

fluctuate around the average overall runtime. Since the runtime of verifiable credential verification is

limited to tens of milliseconds and the time will not change significantly with increasing claims, we

believe the 31.36ms runtime overhead is not a practical problem.
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Figure 7.2: Runtime measurements of verifiable credential verification

7.1.2. On-chain scalability
We also combine our proof of concept implementation with hyperledger Iroha[37] to test the scalability

of our system. We test the transaction per second (TPS) of our mechanism using the test tools provided

by Iroha, and the test is run on the same machine we employ in the runtime measurements of off-chain

computation. The transaction per second (TPS) result of our revocation mechanism with four nodes

is 70 transaction/second (6048000 transaction/day), which means there can be 6048000 revocations

per day in our system. We believe the TPS is big enough for practical use because revocation is a rare

operation in the real world. For example, from 2015 to 2016, even in the American state with the highest

number of revoked driver’s licenses, the annual revocation rate was only 7.57%, and the actual number

was only 41263[38]. In other words, there are only, on average, 113 revoke credentials per day. The

throughput of our revocation mechanism is far more extensive than 113 transaction/day. Therefore, our

revocation mechanism is scalable enough in the real world.



8
Conclusion and future work

This work presents a revocation mechanism based on the BBS+ signature, the KB accumulator and

a permissioned blockchain. To the best of our knowledge, this is the first privacy-preserving and

tamper-evident revocation mechanism for verifiable credentials. Our design shows that it is possible to

check the revocation status of a verifiable credntial while keeping the revocation handler anonymous

and tamper-evident. In this conclusion, we revisit each question and give an answer based on the result

of this work. Before returning to the questions, we first discuss the results and limitations of this work

chapter by chapter.

8.1. Discussion
This thesis started with the question of how a verifiable credential’s revocation mechanism can be

privacy-preserving and tamper-evident. In chapter 3, we describe why existing revocation mechanisms

cannot provide tamper-resistance and privacy. Two factors cause the previous works to fail to provide

privacy: the use of identifiers and the join-revoke attack. For the evaluation of tamper-resistance, we

assume centralized solutions are not tamper-evident as they may suffer from malicious hacking or

natural calamity. In this setting, the project IRMA does not provide an ideal revocation mechanism,

although it successfully prevents join-revoke attacks and the usage of identifiers (see Section 3.4).

To better define tamper-evident and privacy-preserving for a revocation mechanism, we propose

four requirements based on the verifiable data model’s trust model, security considerations and privacy

considerations in Chapter 4. We also give the security game for the requirements to address how to

satisfy these requirements with cryptography.

We present the design of our revocation mechanism in chapter 5. Our work’s most influential design

decision is to combine the BBS+ signature and the KB accumulator. This decision endows our system

with the following properties:

• The holder of a verifiable credential can prove the claims she presented is not revoked to the

verifier without disclosing the revocation handler. This way, our revocation mechanism prevents

privacy leakage through a revocation status check.

• The attackers cannot pass the revocation status checks if they use a revoked or forged credential.

Notice that our design in Chapter 5 is a prototype revocation mechanism. It can not be put into use

in the practice directly. To employment in practice, more work needs to be done in integrating other

standards proposed in the official verifiable data model (e.g. the standard of data preprocessing and

data encoding). Given this thesis’s limited time and scope, we cannot consider all these standards. For

simplicity, We assume the data we used in the protocol are well-processed, and the other procedures are

operated correctly.

In Chapter 6, we prove a verifiable credential’s revocation status is unforgeable, and the revocation

status check is privacy-preserving under the Strong Diffie-Hellman assumption. We cannot give

concrete proof for the unforgeability of the revocation information. Because we assume the revocation

information is unforgeable under the belief that the blockchain we use is tamper-evident. As the tamper
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resistance of the blockchain differs from the consensus protocols and node settings, the tamper resistance

of our revocation mechanism is case-specific.

We show the experimental results of our proof-of-concept implementation in Chapter 7. Our

work’s performance can not be compared directly with the related works as the testing environment,

and security assumptions differ. Besides, our proof-of-concept implementation lacks performance

optimizations, preventing us from reliably computing the additional overhead.

8.2. The answer to research questions
After discussing the results and limitations of this work, we return to the research questions.

RQ1 How to achieve privacy-preserving in revocation status check?

To achieve privacy-preserving in revocation status check, we should avoid two types of privacy leakage:

1) the privacy leakage caused by the revocation handler and 2) the privacy leakage caused by the

revocation information. The first type of privacy leakage is a consequence of using an identifier

as the revocation handler; the second type refers to join-revoke attack specifically. We employ the

KB accumulator to ensure the revocation status check is privacy-preserving. The KB accumulator

empowers us to prove a credential with an anonymous revocation handler is unrevoked and prevents

the join-revoke attack. The proof is given in Chapter 6.

RQ2 How to make the revocation status check tamper-evident?

This question equals to the question "how to avoid replacement fraud". There are two types of

replacement fraud. The first type is to replace the revoked credentials’ proof of unrevocation with

a valid proof of unrevocation. This fraud can be solved by guaranteeing the credential’s integrity

with a cryptographic signature. The second type of replacement fraud is to replace the revocation

information. Our revocation mechanism prevents this by publishing the revocation information on the

blockchain—the tamper resistance of the blockchain guarantees that revocation information can not be

replaced.

RQ3 How to combine tamper-evident and privacy-preserving for revocation mechanism?

As we mentioned in the introduction, the anonymity of the revocation handler might give the attacker

chance to commit replacement fraud. Although we use a cryptographic signature to ensure the integrity

of the credential, the signature is a fixed value, which means it might be used as an identifier to correlate

the credential. Thus, we should avoid showing the signature directly. Combining tamper-evident and

privacy-preserving means we should find a way to prove the anonymous revocation handler is signed

and accumulated by the issuer. We achieve this goal by integrating the BBS+ signature and the KB

accumulator. Our design has two signature proof of knowledge 𝑆𝑃𝐾𝐵𝐵𝑆 and 𝑆𝑃𝐾𝐴𝑐𝑐 . Both 𝑆𝑃𝐾𝐵𝐵𝑆 and

𝑆𝑃𝐾𝐴𝑐𝑐 contain the revocation handler’s commitment value. When receiving a verifiable presentation,

the verifier checks if the revocation handler’s commitment in the two signature proof of knowledge is

the same. Thus, the attacker can not fool the verifier with other credential’s 𝑆𝑃𝐾𝐴𝑐𝑐 as the revocation

handler’s commitment in that 𝑆𝑃𝐾𝐴𝑐𝑐 is different from the revocation handler’s commitment contained

in the revoked credential’s 𝑆𝑃𝐾𝐵𝐵𝑆. And the perfect hiding of commitment ensures the revocation

handler remains anonymous to avoid privacy leakage.

How to design a privacy-preserving tamper-evident revocation mechanism for verifiable
credentials?

Considering the answers we gave to the subquestions, we now return to the main research question.

In this work, we researched how a revocation mechanism for verifiable credentials can be privacy-

preserving and tamper-evident. We analysed how existing works failed to achieve these two properties

and proposed four requirements that a revocation mechanism must fulfil to become tamper-evident

and privacy-preserving. Integrating the BBS+ signature, the KB accumulator and the blockchain, we

construct a tamper-evident and privacy-preserving revocation mechanism for the verifiable credential.

Our revocation mechanism allows the verifier to verify the validity of the presented claims without

compromising the privacy of the credentials holders.
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8.3. Future work
As discussed in conclusion, due to this thesis’s limited time and scope, this work has several limitations.

Further research can be done based on our work. Here we suggest two directions for future research:

• Allow holder to revoke the verifiable credential The right of revocation of the verifiable credentials

belongs to the holder for now. However, in some cases, the issuer also needs the right of revocation.

For example, if the holder finds the device storing verifiable credentials is lost or stolen. She should

be able to revoke the verifiable credential instantly instead of informing the issuer and waiting for

the issuer to react. Currently, our revocation mechanism does not support the revocation for the

holder. How to allow the holder to revoke the verifiable credential is open to research.

• Selective revocation. Our revocation mechanism currently only considers the case of revoking the

credential, which means all the credential claims will become invalid after revocation. However,

sometimes, we only need to revoke part of the claims. Typically, selective revocation is important to

flexible access control. In the case of access control, the issuer can issue a verifiable credential that

specifies the permissions of the credential holder. For example, Alice owns a verifiable credential

that allows her to read, write and delete a specific database. If the issuer wants to prohibit Alice’s

delete permission while maintaining Alice’s read and write permissions, the issuer can selectively

revoke the claim that allows Alice to delete the database. Our revocation mechanism can achieve

selective disclosure if we assign revocation handlers for all revocable claims. However, assigning

revocation handlers for all revocable claims is inefficient because the increase of the revocable

claims might lead the blockchain to become a heavy storage burden to the system. Designing a

revocation mechanism that supports efficient selective revocation remains an open question.
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Nomenclature

Abbreviations

Abbreviation Definition

VC Verifiable credential. See Introduction.

VP Verifiable Presentation. See Introduction.

PU Proof of unrevocation. See Chapter 4.

CRL Certificate Revocation List. A list of revoked creden-

tial serial numbers (revocation handles), used in the

WebPKI.

OCSP Online Certificate Status Protocol (OCSP). A protocol

to retrieve the revocation status of a X.509 certificate

from the issuing Certificate Authority, as used in the

WebPKI.

PPT Probabilistic Polynomial-Time (PPT). The complexity

class of algorithms that run in Probabilistic Polyno-

mial Time with regards to the input size.

rh Revocation handler. See Chapter 4.

RI Revocation Information. See Chapter 4.

SPK Signature Proof of Knowledge (SPK). See section 2.1

Symbols

Symbol Definition

←$ random sampling

← assign operation

𝑙 The length of a value. For example, 𝑙𝑐 means the length of 𝑐

𝑅{0, 1}𝑙𝑐 The set of random bitstrings of length 𝑙𝑐
ℋ𝑠 cryptographic hash function

Z𝑞 Integer group with order q

Z∗𝑞 Non-zero integer group with order q

𝒜 Probabilistic Polynomial Time (PPT) adversary

𝑏 The correct result of a security game

𝑏′ The guess result of the PPT adversary

𝑠𝑡 stored information

𝑆𝑃𝐺𝑒𝑛 The generation algorithm of system parameters

𝑠𝑝𝑎𝑟 system parameters

𝜆 security parameter
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