Simulation of twin boundary effect on characteristics of single grain-silicon thin film transistors

F. Yan
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

P. Migliorato
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, United Kingdom,

R. Ishihara
Laboratory of Electronic Components, Technology and Materials (ECTM), Delft Institute of Microelectronics and SubmicronTechnology (DIMES), Delft University of Technology, Feldmannweg 17, 2600 GB Delft, The Netherlands

(Received 20 May 2007; accepted 18 July 2007; published online 14 August 2007)

The influence of twin boundaries on the characteristics of single grain-silicon thin film transistors has been analyzed by three-dimensional simulation. The simulations show that the orientation and the location of a twin boundary could affect the field-effect mobility and the leakage current of a device. The field-effect mobility increases with the increase of the angle between the normal direction of the twin boundary and the channel direction. A single twin boundary in contact with the drain can lead to higher leakage current because electron-hole generation is greatly enhanced by the trap states in the twin boundary. © 2007 American Institute of Physics. [DOI: 10.1063/1.2769951]

Thin film transistors have been widely used in flat panel displays. Excimer-laser crystallization of amorphous silicon films is a well-established method for producing large-grain polycrystalline-silicon thin film transistors (poly-Si TFTs) on glass substrates, which makes it possible to achieve the system-on-panel active matrix liquid crystal display. Poly-Si TFTs have much higher field-effect mobility, typically about 100 cm²/V s, compared to that of standard laser-crystallized poly-Si TFTs. However, it is still much lower than that of metal-oxide-silicon transistors formed on bulk Si wafers. Recently, thanks to device nonuniformities are sometimes observed and attributed to the presence of twin boundaries, which is very similar to the case found in poly-Si devices with big grain size. Thin film transistors have much higher field-effect mobility, typically about 100 cm²/V s, compared to that of amorphous silicon TFTs.

In order to account for hot carrier effect, the hydrodynamic model has been adopted in the simulation. In this model, the current densities are defined as follows:

\[
\nabla e \cdot \nabla \psi = -q(p-n + N_{D^+} - N_{A^-}), \tag{1}
\]

where \(N_{D^+}\) and \(N_{A^-}\) are the number of ionized donors and acceptors, respectively, \(n\) and \(p\) are the electron and hole density, and \(\varepsilon\) is the electrical permittivity.

The electron and hole continuity equations are written as follows:

\[
\nabla \cdot \mathbf{J}_e = qR + \frac{\partial n}{\partial t}, \tag{2}
\]

\[
\nabla \cdot \mathbf{J}_p = qR + \frac{\partial p}{\partial t}, \tag{3}
\]

where \(R\) is the net electron-hole recombination rate and \(J_n\) and \(J_p\) are the electron and hole current density.

In high electric field, free carriers gain very high energy. Thus their temperature is not equal to the lattice temperature. In order to account for hot carrier effect, the hydrodynamic model has been adopted in the simulation. In this model, the current densities are defined as follows:

\[
\mathbf{J}_n = \mu_n(n \nabla E_C + kT_n \nabla n + f_n^{el}kT_n \ln T_n - 1.5nkT_n \nabla \ln m_n), \tag{4}
\]

\[
\mathbf{J}_p = \mu_p(p \nabla E_V - kT_p \nabla p - f_p^{el}kT_p \ln T_p - 1.5pkT_p \nabla \ln m_p), \tag{5}
\]

where \(E_C\) and \(E_V\) are the conduction and valence band energies, respectively, and \(T_n\) and \(T_p\) are the temperature of electrons and holes, respectively. \(m_n\) and \(m_p\) are effective masses of electrons and holes. \(f_n^{el}\) and \(f_p^{el}\) are parameters for electrons and holes.

Figure 1(a) shows a n-channel SG-TFT structure used in the simulation. The thickness of gate oxide is 100 nm and the gate size is \(W/L=2 \mu m/2 \mu m\). The active thickness of Si film is 250 nm, which is similar to that of the real devices reported before. In the cross-sectional view, as shown in

\(^a\)Electronic mail: apafyan@polyu.edu.hk
indicating in the following equation:

$$N(E) = N_{at}e^{(E-E_{at})/E_{at}} + N_{ad}e^{(E-E_{ad})/E_{ad}} + N_{dt}e^{(E-E_{dt})/E_{dt}},$$

where the subscripts a and d refer to acceptorlike and donorlike states, respectively, and the subscripts t and d refer to tail and deep states, respectively. Figure 1(c) shows the DOS in the twin boundary we used for the simulation, which was generated with the data below:

$$N_{at} = 5 \times 10^{15} \text{cm}^{-2} \text{eV}^{-1},$$
$$E_{at} = 0.05 \text{ eV},$$
$$N_{ad} = 2 \times 10^{12} \text{cm}^{-2} \text{eV}^{-1},$$
$$E_{ad} = 0.33 \text{ eV},$$
$$N_{dt} = 5 \times 10^{15} \text{cm}^{-2} \text{eV}^{-1},$$
$$E_{dt} = 0.05 \text{ eV},$$
$$N_{dd} = 4.5 \times 10^{14} \text{cm}^{-2} \text{eV}^{-1},$$
$$E_{dd} = 0.33 \text{ eV}.$$

To accurately simulate the off current, the Shorkley-Read-Hall generation-recombination model has been adopted in the simulation. The capture cross sections of trap states are assumed to be $\sigma_{ad}=10^{-13} \text{ cm}^{2}$, $\sigma_{at}=10^{-15} \text{ cm}^{2}$, $\sigma_{pd}=10^{-13} \text{ cm}^{2}$, and $\sigma_{pa}=10^{-13} \text{ cm}^{2}$. $\sigma_{n(p)d(t)}$ is the electron (hole) capture cross section of donor (acceptor) states.

It has been reported that the orientation of twin boundary had pronounced influence on the field-effect mobility in SG-TFTs. To show this effect, we have simulated five n-channel devices with the same geometry and with a single twin boundary in the channel, which is perpendicular to the silicon/gate oxide interface. The devices differ in the angle between the orientation of the twin boundary and the channel direction, which is consistent with the experiment results reported by Ishihara et al. They found that changing the orientations of grain boundaries can induce a variation of field-effect mobilities of more than a factor of 2, which is comparable with our simulation results.

TABLE I. Simulated field-effect effective mobilities of 3D single grain TFTs with a single twin boundary in the middle of the channel oriented to different directions.

<table>
<thead>
<tr>
<th>Angle (deg)</th>
<th>Field-effect mobility (cm2/V s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>684</td>
</tr>
<tr>
<td>60</td>
<td>611</td>
</tr>
<tr>
<td>45</td>
<td>505</td>
</tr>
<tr>
<td>30</td>
<td>492</td>
</tr>
<tr>
<td>0</td>
<td>425</td>
</tr>
</tbody>
</table>
FIG. 3. (a) Transfer characteristics of a SG-TFT (W/L=3.2 μm/2.9 μm) for source and drain exchange. \(V_{DS}=0.1 \) V. (b) Simulation of the transfer characteristic of SG-TFT devices with a twin boundary in contact with the drain (curves 1–3) or the source (curve 4). \(V_{DS}=0.1 \) V. Curves 1–3 correspond to different densities of trap states in the twin boundary, as shown in Table II. Inset: A SG-TFT without the metal gate and the gate oxide, in which a twin boundary in the channel is in contact with the drain. (c) Simulation of the transfer characteristics of SG-TFT devices with a twin boundary in contact with the drain (curves 1–3) or the source (curve 4). \(V_{DS}=0.1 \) V. Curves 1–3 correspond to different capture cross sections of trap states in the twin boundary, as shown in Table III.

In the simulation, we have changed the density of trap states in the grain boundary. Since the main contribution of the electron-hole generation comes from the midgap states, as shown in Table II, \(N_{at} \) and \(N_{dd} \) are kept constant, while \(N_{ad} \) and \(N_{nd} \) are changed for two orders of magnitude. So the relative change of midgap states is big, while tail states (the trap states near the conduction band and valence band) have little change. As shown in Fig. 3(b), the off current changes for two orders of magnitude when the twin boundary is in contact with the drain, while there is no obvious change in the transfer characteristics when the twin boundary is in contact with the source. We can find that there is little enhancement in off current by the twin boundary in contact with the drain when the density of trap states in the twin boundary is small (curve 3).

The effect of capture cross section on the off current has also been simulated in the same device. The density of trap states in the twin boundary is given by Eqs. (6) and (7). However, the capture cross sections were changed for three orders of magnitude, as shown in Table III. The corresponding off current, as shown in Fig. 3(c), changes for two orders of magnitude when the twin boundary is in contact with the drain, while there is no change when the boundary is near the source. Therefore, density of states in the midgap and the capture cross section of these traps are important for the off current, which is consistent with the theory for off current reported before. In conclusion, the 3D simulation indicates that an asymmetry in the off current for source-drain swapping will result if a twin boundary is in contact with the drain but not with the source.

![Image](https://via.placeholder.com/150)

TABLE II. Different densities of trap states assumed in the twin boundary in the simulation of single grain TFTs.

<table>
<thead>
<tr>
<th>Curves</th>
<th>(N_{at}) (cm(^{-2})eV(^{-1}))</th>
<th>(N_{ad}) (cm(^{-2})eV(^{-1}))</th>
<th>(N_{dd}) (cm(^{-2})eV(^{-1}))</th>
<th>(N_{nd}) (cm(^{-2})eV(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(5 \times 10^{15})</td>
<td>(2 \times 10^{11})</td>
<td>(5 \times 10^{10})</td>
<td>(4.5 \times 10^{11})</td>
</tr>
<tr>
<td>2</td>
<td>(5 \times 10^{15})</td>
<td>(2 \times 10^{12})</td>
<td>(5 \times 10^{10})</td>
<td>(4.5 \times 10^{12})</td>
</tr>
<tr>
<td>3</td>
<td>(5 \times 10^{15})</td>
<td>(2 \times 10^{13})</td>
<td>(5 \times 10^{10})</td>
<td>(4.5 \times 10^{13})</td>
</tr>
</tbody>
</table>

In the simulation, we have changed the density of trap states in the grain boundary. Since the main contribution of the electron-hole generation comes from the midgap states, as shown in Table II, \(N_{at} \) and \(N_{dd} \) are kept constant, while \(N_{ad} \) and \(N_{nd} \) are changed for two orders of magnitude. So the relative change of midgap states is big, while tail states (the trap states near the conduction band and valence band) have little change. As shown in Fig. 3(b), the off current changes for two orders of magnitude when the twin boundary is in contact with the drain, while there is no obvious change in the transfer characteristics when the twin boundary is in contact with the source. We can find that there is little enhancement in off current by the twin boundary in contact with the drain when the density of trap states in the twin boundary is small (curve 3).

The effect of capture cross section on the off current has also been simulated in the same device. The density of trap states in the twin boundary is given by Eqs. (6) and (7). However, the capture cross sections were changed for three orders of magnitude, as shown in Table III. The corresponding off current, as shown in Fig. 3(c), changes for two orders of magnitude when the twin boundary is in contact with the drain, while there is no change when the boundary is near the source. Therefore, density of states in the midgap and the capture cross section of these traps are important for the off current, which is consistent with the theory for off current reported before. In conclusion, the 3D simulation indicates that an asymmetry in the off current for source-drain swapping will result if a twin boundary is in contact with the drain but not with the source.