EUROPEAN PATENT SPECIFICATION

Method of making a foamy film
Verfahren zur Herstellung eines schäumbarren Filmes
Procédé pour préparer un film expansible

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Date of publication of application:

Proprietor: TECHNISCHE UNIVERSITEIT DELFT
2628 BL Delft (NL)

Inventors:
• Kluit, Pieter Willem Prov
 2512 CB Den Haag (NL)
• Beukers, Adriaan
 2106 EG Heemstede (NL)

Representative:
Smulders, Theodorus A.H.J., Ir. et al
Vereenigde
Postbus 87930
2508 DH Den Haag (NL)

References cited:
EP-A- 0 345 855
US-A- 4 613 629

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] This invention relates to a method of making a foamable film of at least one thermoplastic resin with at least one liquid blowing agent incorporated therein.

[0003] The film described in the first-mentioned patent application has a number of uses, including bonding materials to each other with foaming. Another use of such a film is the manufacture of sandwich materials, for example as described in EP-A 264,495.

[0004] Such materials are entirely thermoplastic and consist of a core material which comprises a thermoplastic foam and two top layers consisting of a fibre-reinforced synthetic material such as polycarbonate or polyetherimide.

[0005] A foamable film as described in EP-A 345,855 can be used well for the manufacture of such sandwich materials, by providing the film in unfoamed form between two reinforced top layers and then heating the assembly, so that the film foams and a sandwich material is formed.

[0006] In EP-A 345,855 a number of methods are given for manufacturing such a film, such as "solvent coating". The methods described amount to either removing the solvent (= blowing agent) only partly from the synthetic material or afterwards incorporating an amount of blowing agent in the synthetic material.

[0007] In the practice of methods wherein the film is made starting from a solution or dispersion of the synthetic material in a solvent or softening agent for the synthetic material, a number of problems may occur. It has been found that for a number of thermoplastic resins it is very difficult or even impossible to find a blowing agent that can be incorporated in the film by existing methods, such as solvent casting, vapour impregnating, or swelling. Also there are a number of resins wherein a blowing agent can be incorporated, but where the only possible blowing agents are environmentally less suitable, requiring either very laborious processing methods or long drying after the production of the materials. Also some of the blowing agents may be toxic and/or inflammable, which makes them less suitable for use on a commercial scale.

[0008] It is an object of the invention to provide a method for preparing a foamable film, having incorporated therein a liquid blowing agent, which method makes it possible to use a wide variety of blowing agents.

[0009] The method of the present invention is based thereon, that first a film of a thermoplastic resin is prepared, in which film a liquid swelling agent is incorporated, which swelling agent is subsequently replaced by the blowing agent.

[0010] Accordingly the method of the invention comprises forming the thermoplastic resin and a liquid swelling agent for the thermoplastic resin into a layer, contacting the said layer with the liquid blowing agent and replacing at least part of the swelling agent in the resin by the liquid blowing agent.

[0011] In US 4,813,629 a method is disclosed of forming foamed thermoplastic polymer rods which includes immersing a solid polymer rod in a solution consisting essentially of a carrier solvent compatible with the polymer and an infusing solution containing a liquid blowing agent incompatible with the polymer for a time sufficient to infuse the polymer; selectively extracting the carrier solvent from the polymer so as to leave behind the infusion solution with the blowing agent entrapped in the polymer; and subsequently heating the polymer to expand it into a foamed state. This method is complex and laborious. When the carrier solvent and/or the infusion agent are environmentally less suitable or less volatile, the processing methods will be even more laborious.

[0012] Replacing the swelling agent by the blowing agent can surprisingly easily be accomplished by simply contacting the swollen film with the liquid blowing agent, as a result of which a diffusion equilibrium is obtained between the swelling agent and the blowing agent. As the blowing agent is present in a large excess, the swelling agent is substantially expelled from the film and replaced by the blowing agent. It is an advantage if the swelling agent and the blowing agent are miscible, at least under the conditions of treatment, and in the relative amounts involved.

[0013] The selection of blowing and swelling agents depends on the type of thermoplastic resin that is used, and the requirements on the final product. As swelling agents generally solvents for the thermoplastic resin may be used, whereas the blowing agent often will not have a good dissolving capacity for the resin.

[0014] Suitable swelling agents are, among others acetone, mono-, di-, and trichloromethane, hydrocarbons, such as butane, pentane, hexane, n-decane, cyclic aromatic and aliphatic hydrocarbons. The blowing agents are preferably less toxic and/or less flammable.

[0015] Suitable swelling agents are, among others, 1,1,1-trichloroethane, or products like water and ethanol.

[0016] It is also possible to use a solution of a chemical blowing agent in water or another solvent to replace the swelling agent. After removal of the liquid the chemical blowing agent will remain in the film. As indicated previously the actual selection of the agents and the resin is interrelated.

[0017] In principle, any thermoplastic resin may function as a synthetic base for the film to be used in the method according to the Invention. The thermoplastic resin of the film is preferably selected from the group consisting of polyetherimide, polycarbonate, acrylate polymers, olefin polymers, styrene polymers, polyether sulfone, polyether ketone, polyether-ether ketone, polyphenylene oxide, polyphenylene sulfide, and mixtures of two or more of these synthetic
materials. Any preference is to a large extent determined by the use the article is intended for. For use in field where a high mechanical load of the materials may occur, or where strict requirements are set as to the fire-retardant properties of the materials, there is a preference for polyetherimide, polycarbonate, polyether sulfone, polyether ketone, polyether ether ketone, and mixtures of two or more of these synthetic materials.

[0018] When polyetherimide is used as a thermoplastic resin, it is preferable to start from acetone as a swelling agent, because with this combination optimum swelling can be obtained. Subsequently it is possible to replace the swelling agent with, for example, water, by soaking the film in water.

[0019] According to another interesting embodiment, the thermoplastic resin is polypropylene or a propylene copolymer. It is known that it is very difficult to make proper foams of polypropylene. The present invention, however, provides for a method to foam polypropylene using ethanol as a blowing agent. In the first step of this process a film of polypropylene is swollen with cyclohexane. The swollen sheet is subsequently soaked in ethanol, resulting in a replacement of the cyclohexane by ethanol. The ethanol is an excellent blowing agent for polypropylene, however, up to now it was not possible to incorporate ethanol in polypropylene in useful amounts, such as up 12 wt. %.

[0020] According to the simplest embodiment of the invention, the film consists of two components, namely the resin and the blowing agent. It is possible, however, that additives are incorporated in the film. Examples of such additives are selected inter alia from the group of existing stabilizers, antioxidants, fillers such as fibres and/or liquid crystalline polymers, pigments, flame-retardant additives, other inert additives and mixtures of two or more of the components. Further, a softening agent may be incorporated in the system, the purpose of the softening agent being to lower the temperature at which foaming occurs.

[0021] Suitable softeners include the fatty acids and metallic soaps thereof. APP, polybutylene, bitumen, or extender oil such as naphtalenic and paraffinic oil can also be used. For this purpose, it is also possible to use waxes, such as microcrystalline waxes.

[0022] The film according to the invention can be produced in different ways. According to a first method, the starting product is an already existing, extruded or moulded film, which is then provided with a liquid swelling agent by impregnation of the film with the liquid or through exposure to the vapour thereof. Since this method is rather labious, it is not preferred. It is also possible to produce a film by extruding or otherwise shaping a mixture of the thermoplastic resin, the swelling agent and any other components that may be present. According to a third method the film can be produced by the method of "solvent-casting", wherein a solution of the thermoplastic resin is formed into a film.

[0023] The blowing agent content in the finished film may vary within wide limits. The lower limit is determined by the fact that proper bonding requires a certain degree of foaming. Naturally, this is dependent on the specific combination of materials, but a suitable lower limit is a proportion of at least 0.5 % by weight of blowing agent, calculated on the weight of the thermoplastic resin and the blowing agent together. Typical content rates range between 1 and 50 % by weight. The upper limit is mainly determined by the fact that the film must still permit handling and must not be too weak. In a preferred embodiment the blowing agent content is chosen such that the film, after free foaming, possesses at least 10 % by volume of pores.

[0024] After manufacture of the film, if so desired, it is cut to size and processed further or stored. When volatile blowing agents are used, it is preferable to provide the film with a protective film of a different material, which is preferably hardly permeable, if at all, to the blowing agent. Suitable materials for that purpose are the known barrier materials such as EVA and co-extruded multi-layer films, for example provided with at least one layer of a polyamide.

[0025] The film obtained using the method according to the invention can be employed for the same uses as set forth in EP-A-345,855. Examples of such uses are the so-called "hotmelt adhesives", filler glues, but also the manufacture of sandwich materials as discussed hereinbefore.

[0026] The invention will now be illustrated in and by nonlimiting Examples.

EXAMPLE 1

[0027] An 135 μm film of polyetherimide (Litrex (TM)) was swollen with acetone, resulting in an acetone equilibrium concentration of 20 wt. %. Immersion of one sample of the film in 1,1,1-trichloro-ethane resulted after a short period of time in an unfoamed film of a 1,1,1-trichloro-ethane content of 8.2 % by weight, whereas immersion of a second sample in ethanol gave a PEI-film having an ethanol content of 17.2 wt. %.

EXAMPLE 2

[0028] The unfoamed films obtained according to example 1 were subsequently provided between two layers of a glass-fibre-reinforced polyetherimide. After heating in a mould a sandwich construction was obtained, built up from three layers and having the following properties:
EXAMPLE 3

[0029] An 136 μm film of polyetherimide (Litrex™) was swollen with acetone, resulting in an acetone equilibrium concentration of 20 wt.%. Immersion of the film in water resulted after a short period of time in an unfoamed film of a liquid content of 8.5% by weight.

EXAMPLE 4

[0030] The unfoamed films obtained according to example 3 were subsequently provided between two layers of aluminium. After heating in a mould various sandwich constructions were obtained, built up from three layers, the foam having densities varying between 72 and 97 kg/cm³.

Claims

1. A method of making a foamable film of at least one thermoplastic resin with at least one liquid blowing agent incorporated therein, said method comprising forming the thermoplastic resin and a liquid swelling agent for the thermoplastic resin into a layer, subsequently contacting said layer with the liquid blowing agent and replacing at least part of the swelling agent in the resin by the liquid blowing agent.

2. A method according to claim 1, wherein the liquid swelling agent and the liquid blowing agent are miscible with each other.

3. A method according to claim 1 or 2, wherein the liquid blowing agent is immiscible with the thermoplastic resin.

4. A method according to claims 1-3, wherein the film is prepared by casting a film of the thermoplastic resin, followed by swelling the film by contacting it with the swelling agent.

5. A method according to claims 1-4, in which the thermoplastic resin is selected from the group consisting of polyetherimide, polycarbonate, acrylate polymers, polyolefins, styrene polymers, polyether sulfone, polyphenylene sulfide, polyether ketone, polyether-ether ketone, polyphenylene oxide and mixture of two or more of said resins.

6. A method according to claims 1-5, wherein the blowing agent content is chosen such that the film, after free foaming, possesses at least 10% by volume of pores.

7. A method according to claims 1-6, wherein the swelling agent is selected from the group consisting of acetone, mono-, di-, and trichloromethane, hydrocarbons, such as butane, pentane, hexane, n-decane, cyclic aromatic and aliphatic hydrocarbons.

8. A method according to claims 1-7, wherein the blowing agent is selected from the group consisting of water, ethanol and 1,1,1-trichloroethane.

9. A method according to claims 1-8, wherein a film is made consisting as to 50-99% by weight of thermoplastic synthetic material, 1-50% by weight of blowing agent, and 0-15% by weight of additives selected from the group of stabilizers, antioxidants, fillers such as fibres and/or liquid crystalline polymers, pigments, flame-retardant additives, other inert additives and mixture of two or more of the components.

10. A method of making a sandwich material, comprising providing a foamable film between two layers, foaming, through heating, the foamable film obtained using the method according to any one of the claims 1-9.
Patentansprüche

1. Verfahren zur Herstellung eines schäumbareren Films aus wenigstens einem thermoplastischen Harz mit wenigstens einem darin eingearbeiteten flüssigen Treibmittel, wobei das Verfahren die Schritte umfaßt, daß man das thermoplastische Harz und ein flüssiges Quellmittel für das thermoplastische Harz zu einer Schicht formt, anschließend die Schicht mit dem flüssigen Treibmittel in Kontakt bringt und wenigstens einen Teil des Quellmittels in dem Harz durch das flüssige Treibmittel ersetzt.

2. Verfahren nach Anspruch 1, in dem das flüssige Quellmittel und das flüssige Treibmittel miteinander mischbar sind.

3. Verfahren nach Anspruch 1 oder 2, in dem das flüssige Treibmittel mit dem thermoplastischen Harz unmischbar ist.

4. Verfahren nach den Ansprüchen 1 bis 3, in dem der Film hergestellt wird durch Gießformen eines Films des thermoplastischen Harzes und anschließendes Quellen des Films, indem man diesen mit dem Quellmittel in Kontakt bringt.

5. Verfahren nach den Ansprüchen 1 bis 4, in dem das thermoplastische Harz gewählt ist aus der Gruppe, die besteht aus Polyetherimid, Polycarbonat, Acrylpolymere, Polyolefine, Styrolpolymere, Polyethersulfon, Polyphenylen sulfid, Polyetherketon, Polyether Ether keton, Polyphenylenoxid und einer Mischung aus zwei oder mehreren der Harze.

6. Verfahren nach den Ansprüchen 1 bis 5, in dem der Treibmittel-Gehalt so gewählt wird, daß der Film nach einem freien Schäumen wenigstens 10 Vol.-% an Poren besitzt.

7. Verfahren nach den Ansprüchen 1 bis 6, in dem das Quellmittel gewählt ist aus der Gruppe, die besteht aus Aceton, Mono-, Di- und Trichlormethan, Kohlenwasserstoffen, wie beispielsweise Butan, Pentan, Hexan, N-Decan, zyklischen aromatischen und aliphatischen Kohlenwasserstoffen.

8. Verfahren nach den Ansprüchen 1 bis 7, in dem das Treibmittel gewählt ist aus der Gruppe, die besteht aus Wasser, Ethanol und 1,1,1-Trichloretan.

Reivendications

1. Procédé pour préparer un film extensible d'au moins une résine thermoplastique avec au moins un agent liquide de soufflage incorporé dans celle-ci, ledit procédé comprenant la formation de la résine thermoplastique et d'un agent liquide de gonflage pour la résine thermoplastique dans une couche, ultérieurement la mise en contact de ladite couche avec l'agent liquide de soufflage et le remplacement d'au moins une partie de l'agent de gonflage dans la résine par l'agent liquide de soufflage.

2. Procédé selon la revendication 1, dans lequel l'agent liquide de gonflage et l'agent liquide de soufflage sont miscibles l'un avec l'autre.

3. Procédé selon la revendication 1 ou 2, dans lequel l'agent liquide de soufflage n'est pas miscible avec la résine thermoplastique.

4. Procédé selon les revendications 1 à 3, dans lequel le film est préparé par moulage d'un film de la résine thermoplastique, suivi par le gonflage du film par la mise en contact de celui-ci avec l'agent de gonflage.
5. Procédé selon les revendications 1 à 4, dans lequel la résine thermoplastique est sélectionnée parmi le groupe se composant de polyétherimide, de polycarbonate, de polymères d'acrylate, de polyéthylènes, de polymères de styrène, de polyéther sulfone, de sulfure de polyéthylène, de cétone de polyéther, de polyéther-éther cétone, d'oxyde de polyphényléne et de mélange de deux ou plus des cités résines.

6. Procédé selon les revendications 1 à 5, dans lequel le contenu de l'agent de soufflage est choisi de telle façon que le film, après le moussage libre, possède au moins 10% en volume de pores.

7. Procédé selon les revendications 1 à 6, dans lequel l'agent de gonflage est sélectionné parmi le groupe se composant d'acétone, de mono-, di-, et trichlorométhane, d'hydrocarbures, tels que le butane, le pentane, l'hexane, le n-décano, des hydrocarbures aromatiques cycliques et aliphatiques.

8. Procédé selon les revendications 1 à 7, dans lequel l'agent de soufflage est sélectionné parmi le groupe se composant d'eau, d'éthanol et de 1,1,1-trichloroéthane.

9. Procédé selon les revendications 1 à 8, dans lequel un film est préparé se composant de 50 à 99% en poids d'un matériau thermoplastique synthétique, de 1 à 50% en poids d'un agent de soufflage, et de 0 à 15% en poids d'additifs sélectionnés parmi le groupe se composant de stabilisateurs, d'antioxydants, d'agents de remplissage tels que des fibres et/ou des polymères liqüides cristallins, des pigments, des additifs ignifuges, d'autres additifs inertes et d'un mélange de deux ou plus de ces composants.

10. Procédé pour préparer un matériau sandwich, comprenant l'apport d'un film extensible entre deux couches, par mousseage durant le chauffage, le film extensible obtenu utilisant le procédé selon l'une quelconque des revendications 1 à 9.