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Abstract

An important component of question answering systems is question classification. The
task of question classification is to predict the entity type of the answer of a natural
language question.
Question classification is typically done using machine learning techniques. Different
lexical, syntactical and semantic features can be extracted from a question. In this work
we introduce two new semantic features which improve the accuracy of classification.
Furthermore, we developed a weighed approach to optimally combine different features.
We also applied Latent Semantic Analysis (LSA) technique to reduce the large feature
space of questions to a much smaller and efficient feature space. We adopted two different
classifiers: Back-Propagation Neural Networks (BPNN) and Support Vector Machines
(SVM). We found that applying LSA on question classification can not only make the
question classification more time efficient, but it also improves the classification accuracy
by removing the redundant features. Furthermore, we discovered that when the original
feature space is compact and efficient, its reduced space performs better than a large fea-
ture space with a rich set of features. In addition, we found that in the reduced feature
space, BPNN performs better than SVMs which are widely used in question classification.
We tested our proposed approaches on the well-known UIUC dataset and succeeded to
achieve a new record on the accuracy of classification on this dataset.

Categories and Subject Descriptors:
Question Answering Systems
Natural Language Processing
Machine Learning

Key words:
Question Classification, Question Answering Systems, Lexical Features, Syntactical Fea-
tures, Semantic Features, Combination of Features, Feature Reduction, Latent Semantic
Indexing, Support Vector Machines, Back-propagation Neural Networks



Contents

1 Introduction 1

1.1 Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Question Classification 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Why Question Classification? . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Question Classification Approaches . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Question Type Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Decision Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Performance Metrics in Question Classification . . . . . . . . . . . . . . . 8

3 Classification Model 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Back-Propagation Neural Networks . . . . . . . . . . . . . . . . . . 14

3.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Syntactic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.3 Semantic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.4 Combining Features . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.5 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experimental Results and Analysis 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Classifiers Parameters Setup . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Incremental Features Combination . . . . . . . . . . . . . . . . . . 37

4.2.5 Weighted Combination of Features . . . . . . . . . . . . . . . . . . 40

4.2.6 Comparison in the Reduced Space . . . . . . . . . . . . . . . . . . 42



4 Contents

4.3 Stability of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Related Work 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Supervised Learning Approaches in Question Classification . . . . . . . . 49

5.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Advanced Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Maximum Entropy Models . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Sparse Network of Winnows . . . . . . . . . . . . . . . . . . . . . . 52
5.2.5 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.6 Other Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.7 Combining Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Comparison of Supervised Learning Approaches . . . . . . . . . . . . . . . 57
5.5 Semi-Supervised Learning in Question Classification . . . . . . . . . . . . 57

5.5.1 Co-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions and Future Works 61
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix A: Part of Speech Tags 65



Chapter 1

Introduction

By the rapidly increasing amount of knowledge in the Web, search engines need to be more
intelligent than before. In many cases the user only needs a specific piece of information
instead of a list of documents. Rather than making the user to read the entire document,
it is often preferred to give the user a concise and short answer. Question Answering (qa)
systems are aimed to provide the exact piece of information in response to a question. An
open domain question answering system should be able to answer a question written in
natural language, similar to humans.

The study to build a system which answers natural language questions backs to early
1960s. The first question answering system, baseball, (Green et al., 1961) was able to
answer domain-specific natural language questions which was about the baseball games
played in American league over one season. This system was simply a database-centered
system which used to translate a natural language question to a canonical query on
database.

Most of other early studies (Simmons, 1965; Woods, 1973; Lehnert, 1977) was mainly
domain-specific systems or have many limitation on answering questions. Due to lack of
enough back-end knowledge to provide answer to open domain questions, the research on
question answering systems lay dormant for few decades until the emergence of the web.
The huge amount of data on the web on one hand and the need for querying the web
on the other hand, brought again the task of question answering into focus. The focus
on question answering research increased specially when the Text REtrieval Conference
(trec) began a qa track in 1999 (Voorhees and Harman, 2000).

The simplest type of question answering systems are dealing with factoid questions
(Jurafsky and Martin, 2008). The answers of this type of questions are simply one or
more words which gives the precise answer of the question. For example questions like
“What is a female rabbit called?” or “Who discovered electricity?” are factoid questions.
Sometimes the question asks for a body of information instead of a fact. For example
questions like “What is gymnophobia ?” or “Why did the world enter a global depression
in 1929?” are of these type. To answer these questions typically a summary of one or
more documents should be given to the user.

Many techniques from information retrieval, natural language processing and machine
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learning have been employed for question answering systems. Some early studies were
mainly based on querying structured data while the others used to apply pattern matching
techniques. Androutsopoulos et al. (1995) provides an overview of the early question
answering systems. Recent studies on open-domain qa systems are typically based on
Information Retrieval (ir) techniques. The ir-based question answering systems try to
find the answer of a given question by processing a corpus of documents, usually from the
web, and finding a segment of text which is likely to be the answer of that question.

Some other recent works are founded on some pre-defined ontologies. These systems
are based on semi-structured knowledge-bases and can not directly process free form docu-
ments on the web. They often demand the web documents to be represented in structured
or semi-structured formats. Semantic web (Berners-Lee et al., 2001) was the most suc-
cessful attempt to represent the web documents in a structured way; although it never
achieved its desired state (Anderson, 2010). Systems such as start (Katz et al., 2002), and
True Knowledge1 are two question answering engines working on top of semi-structured
data and semantic-web-based technologies. These systems have their own knowledge bases
which are mainly created by semi-automated data annotation.

What is referred as a true automated question answering system, is an ir-based system
which can understand natural language question, process free form text and extract the
true answer from text documents. A qa system which finds the answers directly from
documents is called shallow system. If the system is capable to do inference on the facts,
it is referred as deep qa system. Majority of current research on question answering try
to come up with ideas to build such an intelligent systems, either shallow systems or deep
systems.

Typically an automated qa system has tree stages (Jurafsky and Martin, 2008): ques-
tion processing, passage retrieval and answer processing. Figure 1.1 illustrates the common
architecture of a factoid qa system. Below the task of each component is briefly described:

• Question Processing: the task of question processing is to analyze the question
and create a proper ir query as well as detecting the entity type of the answer, a
category name which specifies the type of answer. The first task is called query
reformation and the second is called question classification.

• Passage Retrieval: the task of passage retrieval is to query over the ir engine,
process the returned documents and return candidate passages that are likely to
contain the answer. Question classification comes handy here: it can determine the
search strategy to retrieve candidate passages. Depending on the question class, the
search query can be transformed into a form which is most suited for finding the
answer.

• Answer Processing: the final task of a qa system is to process the candidate
passages and extract a segment of word(s) that is likely to be the answer of the

1www.trueknowledge.com
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Figure 1.1: The common architecture of a factoid question answering system

question. Question classification again comes handy here. The candidate answers
are ranked according to their likelihood of being in the same class as question class
and the top ranked answer(s) will be considered as the final answer(s) of the question.

In this work we have focused on question classification, an important component of
question answering systems. The task of question classification is to predict the entity type
or category of the answer. This can be done by different approaches. Most of the early
studies use hand-crafted rules to classify question. However, successful approaches are
based on statistical learning methods. In these approaches different type of features from
the lexical, syntactical and semantic structure of questions are extracted. In the supervised
methods a classifier is trained on a training set and the accuracy of the classifier is tested
with an independent test set.

1.1 Contributions of This Work

There are many challenges on question classification problem and there are many issues
needed to be answered in this area. The main motivation of this work is to improve
the performance of learning-based question classifier systems to contribute on the next
generation of question answering systems. Following are the main challenges (research
questions) in qc problem that we addressed in this work:

1. What kind of features can be extracted from a question written in natural language
and what is the contribution of each feature in question classification?

2. How these features can be extracted?

3. Can combination of features always improve the accuracy of question classification?
How can we efficiently combine features?

4. Can features reduction techniques be applied in the area of question classification?
Can these techniques improve the classification accuracy?
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5. What classifier(s) is suitable for question classification?

6. Why some questions are usually misclassified by a machine? Which kind of questions
are more likely to be misclassified and what is the reason of misclassification?

One important question that we address in this thesis is to investigate the contribution
of third party information sources such as WordNet in question classification. Third party
information sources can help to understand the semantic of a natural language sentence.
The following questions are also going to be addressed in this thesis:

7. Does a question alone have enough information to be classified and understand
correctly by a machine?

8. Can adding information from WordNet help machine to better understand a natural
language question? i.e. can it help to better classifying a question?

9. How can we effectively exploit information from WordNet?

10. Is it possible to expand feature vector with WordNet Hypernyms? If yes how? Can
it help?

To answer these questions, we implemented a question classifier system. Many tech-
niques from pattern recognition, machine learning, natural language processing and infor-
mation retrieval have been used to implement this system. In this work we succeeded to
introduce the following contributions on the qc problem:

1. More efficient set of features for question classification

2. A better way to combine features in question classification

3. A better way (or at least an alternating way) to exploit semantic information from
WordNet

4. Using the Back-propagation Neural Network for question classification for the first
time

5. Reducing the feature space to more efficient and effective space by successfully ap-
plying the latent semantic indexing method

6. Better understanding of misclassification causes in question classification

And:

7. A more accurate question classifier than previous works

This report is organized as follows: in chapter 2 we give an introduction on question
classification problem and introduce necessary concepts in this area. Chapter 3 explains
our question classification approach in details. We explain our experiment and implemen-
tation details as well as discussion on the results on chapter 4. In chapter 5 we introduce
related work on question classification and compare our method with them. The conclu-
sions and future directions are discussed in chapter 6.



Chapter 2

Question Classification

2.1 Introduction

The task of a question classifier is to assign one or more class labels, depending on clas-
sification strategy, to a given question written in natural language. For example for the
question “What London street is the home of British journalism?”, the task of ques-
tion classification is to assign label “Location” to this question, since the answer to this
question is a named entity of type “Location”. Since we predict the type of the answer,
question classification is also referred as answer type prediction. The set of predefined cate-
gories which are considered as question classes usually called question taxonomy or answer
type taxonomy. In this section we discuss about motivations and some basic concepts in
question classification.

2.2 Why Question Classification?

Question classification has a key role in automated qa systems. Although different types
of qa systems have different architectures, most of them follow a framework in which
question classification plays an important role (Voorhees, 2001). Furthermore, it has
been shown that the performance of question classification has significant influence on the
overall performance of a qa system (Ittycheriah et al., 2001; Hovy et al., 2001; Moldovan
et al., 2003).

Basically there are two main motivations for question classification: locating the an-
swer and choosing the search strategy.

• Locating the answer: knowing the question class can not only reduce the search
space need to find the answer, it can also find the true answer in a given set of
candidate answers. For example knowing that the class of the question “who was
the president of U.S. in 1934?” is of type “human”, the answering system should
only consider the name entities in candidate passages which is of type “human” and
does not need to test all phrases within a passage to see whether it can be an answer
or not.
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• Choosing search strategy: question class can also be used to choose the search
strategy when the question is reformed to a query over ir engine. For example
consider the question “What is a pyrotechnic display ?”. Identifying that the ques-
tion class is “definition”, the searching template for locating the answer can be for
example “pyrotechnic display is a ...” or “pyrotechnic displays are ...”, which are
much better than simply searching by question words.

Even in non-ir-based qa systems, question classification have an important role.
Popescu et al. (2003) for example, developed a qa system over a structured database
which uses question class to generate proper sql query over the database.

2.3 Question Classification Approaches

There are basically two different approaches for question classification: rule-based and
learning based. There is also some hybrid approaches which combine rule-based and
learning based approaches (Huang et al., 2008; Ray et al., 2010; Silva et al., 2011).

Rule based approaches try to match the question with some manually hand-crafted
rules (Hull, 1999; Prager et al., 1999). These approaches however, suffer from the need
to define too many rules (Li and Roth, 2004). Furthermore, while rule-based approaches
may perform well on a particular dataset, they may have quite a poor performance on a
new dataset and consequently it is difficult to scale them. Li and Roth (2004) provided
an example which shows the difficulty of rule-based approaches. All the following samples
are same question which has been reformulated in different syntactical forms:

• What tourist attractions are there in Reims?

• What are the names of the tourist attractions in Reims?

• What do most tourist visit in Reims?

• What attracts tourists to Reims?

• What is worth seeing in Reims?

All the above questions refer to same class while they have different syntactical forms
and therefore they need different matching rules. So it is difficult to make a manual
classifier with a limited amount of rules.

Learning-based approaches on the other hand, perform the classification by extract-
ing some features from questions, train a classifier and predicting the class label using
the trained classifier. Many successful learning-based classification approaches have been
proposed. Later in chapter 5 we will discuss about learning-based approaches in more
details.

There are also some studies that use both rule-based and learning based approaches
together. The study of Silva et al. (2011), which is one of the most successful works on
question classification, first match the question with some pre-defined rules and then use
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the matched rules as features in the learning-based classifier. The same approach is used
in the work by Huang et al. (2008).

Since learning-based and hybrid methods are the most successful approaches on ques-
tion classification and most of the recent works are based on these approaches, in this
paper we mainly review the learning and hybrid approaches of question classification.

2.4 Question Type Taxonomies

The set of question categories (classes) are usually referred as question taxonomy or ques-
tion ontology. Different question taxonomies have been proposed in different works, but
most of the recent studies are based on a two layer taxonomy proposed by Li and Roth
(2002). This taxonomy consists of 6 coarse-grained classes and 50 fine-grained classes.
Table 2.1 lists this taxonomy.

Table 2.1: The coarse and fine grained question classes.

Coarse Fine

ABBR abbreviation, expansion
DESC definition, description, manner, reason
ENTY animal, body, color, creation, currency, disease, event, food, instrument,

language, letter, other, plant, product, religion, sport, substance, symbol,
technique, term, vehicle, word

HUM description, group, individual, title
LOC city, country, mountain, other, state
NUM code, count, date, distance, money, order, other, percent, percent, period,

speed, temperature, size, weight

There are also other well-known question taxonomies use for question classification.
The taxonomy proposed by Hermjakob et al. (2002) consists of 180 classes which is the
broadest question taxonomy proposed until now.

Most of the recent learning-based and hybrid approaches use the taxonomy proposed
by Li and Roth (2002) since the authors published a valuable set of 6000 labeled questions.
This dataset consists of two separate set of 5500 and 500 questions in which the first is
used as training set and the second is used as an independent test set. This dataset1

which first published in University of Illinois Urbana-Champaign (uiuc) usually referred
as the uiuc dataset and sometimes referred as the trec dataset since it is widely use in
the Text REtrieval Conference (trec).

Metzler and Croft (2005) enhanced uiuc taxonomy with two more classes namely
list and yes-no-explain. They created a separate dataset of 250 questions collected from
MadSci2 questions archive. MadSci is a scientific website which provides a framework in
which users can ask a scientific question and receive an answer from an expert.

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://www.madsci.org/
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2.5 Decision Model

Many supervised learning approaches have been proposed for question classification (Li
and Roth, 2002; Blunsom et al., 2006; Huang et al., 2008). These approaches mainly differ
in the classifier they use and the features they extract.

Most of the studies assume that a question is unambiguous, i.e., it has only one class
and therefore assign the question to the most likely class. Some other studies (Li and
Roth, 2002, 2004) on the other hands, have more flexible strategy and can assign multiple
labels to a given question.

If the set of possible classes represented by C = {c1, c2, ..., cm} then the task of a
question classifier is to assign the most likely class ci to a question qj if the question can
only belong to one class. If a question can belong to more than one class then the decision
model will be different. For example in the work of Li and Roth (2002), they rank the
classes according to posterior probabilities and select top k classes as class labels of a
given question. The value of k will be chosen based on the following criteria:

k = min(t, 5) s.t.

t∑
i=1

pi ≥ T (2.1)

such that pi is the posterior probability of the i-th chosen label. The indexes are set in
such a way that p1 ≥ p2 ≥ ... ≥ pm. The parameter T is a threshold parameter in [0, 1]
which is chosen experimentally. In their work, Li and Roth (2002), considered T as 0.95
implying that with probability of 95% the true label of the question is one of the k chosen
labels.

Most of the studies however, consider only one label for a given question (k = 1)
(Zhang and Lee, 2003; Huang et al., 2008; Silva et al., 2011).

2.6 Performance Metrics in Question Classification

Typically, the performance of a question classifier is measured by calculating the accuracy
of that classifier on a particular test set. The accuracy in question classification is defined
as follow:

Accuracy =
no. of Correctly Classified Samples

Total no. of Tested Samples
(2.2)

There are also two class-specific performance metrics: precision and recall, which can
be used in question classification problem. The precision and recall of a classifier on a
particular class c are defined as follow:

Precision[c] =
no. of Samples Correctly Classified as c

no. of Samples Classified as c
(2.3)

Recall[c] =
no. of Samples Correctly Classified as c

Total no. of Samples in Class c
(2.4)
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For the systems in which a question can only have one class, a question is correctly
classified if the predicted label is the same as the true label. But for the systems which
allow a question to be classified in more than one class (Li and Roth, 2002, 2004), a
question is correctly classified, if one of the predicted labels is the same as the true label.
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Chapter 3

Classification Model

3.1 Introduction

Question classification can be done by different approaches as it described in the previous
chapter. In this work we developed a statistical learning-based question classifier which
outperforms state-of-the-arts works on this task. In this chapter we provide a detailed
explanation of our system and give a close examination of the techniques that we used to
obtain the optimal classifier. In the next chapter we explain our experimental results and
evaluate the performance of our system against a standard dataset.

In this chapter we first give a mathematical definition of question classification and
describe the architecture of our system. We then describe our motivations to choose
Support Vector Machines (svm) and Back-propagation Neural Networks (bpnn) as our
classifiers and give an explanation of their structure. After that, we give a detailed
explanation of the features we used and propose a weighted approach to combine them.
Furthermore, we propose an alternating approach for our system by applying a feature
reduction technique and finally we give a summary of our system.

3.2 System Architecture

Given a question, our classifier extracts different features out of it, combine them and
classify it to one of the predefined classes. Suppose that the combined feature space has d
dimensions. A question can be represented as x = (x1, ..., xd) in which xi is the i

th feature
in combined space. The classifier is a function which maps the question x to a class ci
from the set of classes C = {c1, ..., cm}. This function is learned over a training set of
labeled questions. Figure 3.1 illustrates the overall architecture of our question classifier
system. The system first extracts different set of features from a question and then
optimally combines them. The combined features will be given to the trained classifier
and it predicts the most likely class label.

To build such a classifier system, two main challenges should be addressed: 1)what
type of classifier to choose and how to train that, 2)how to extract features and optimally
combine them. We tested two different classifiers: support vector machines and back-
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Figure 3.1: The overall architecture of our supervised question classifier system

propagation neural networks. We later describe our motivations for choosing these two
classifiers. We extracted different type of lexical, syntactical and semantic features from a
question. What make our system different from the state-of-the-art methods, are the richer
feature space that is extracted from questions and the wighted approach to combine them.
We also used neural networks for question classification for the first time. We provide a
detailed comparison of our system with the state-of-the-art systems in chapter 5.

3.3 Classifiers

Question classification has been studied by using different type of classifiers. Most of
the successful studies on this task uses support vector machines (Zhang and Lee, 2003;
Huang et al., 2008; Silva et al., 2011; Loni et al., 2011). svms are very successful on high
dimensional data since they are timely efficient especially when the feature vectors are
sparse. Question classification has also been done by Maximum Entropy models (Huang
et al., 2008; Blunsom et al., 2006), Sparse Network of Winnows (snow) (Li and Roth,
2004) and language modeling (Merkel and Klakow, 2007).

In this work we adopted svms as well as back-propagation neural networks. Training
a neural network with high dimensional vectors such as questions, demands very large
networks which make them very costly to train. However, by applying lsa feature re-
duction technique, we can train smaller yet efficient networks in a reasonable time which
makes them suitable to be used for question classification. To our knowledge this is the
first work which uses neural networks for question classification. In this section we briefly
describe the classifiers we used.

3.3.1 Support Vector Machines

Support vector machine is a supervised learning method for classifying data. It is espe-
cially successful for high dimensional data. svm is a linear discriminant model which tries
to learn a hyperplane with maximum margin for separating the classes.

Suppose we are given a training set (xi, yi), i = 1, ..., n, in which xi = (xi1, ..., xid)
is a d-dimensional sample and yi ∈ {1,−1} is the corresponding label. The task of a
support vector classifier is to find a linear discriminant function g(x) = wTx + w0, such
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that wTxi + w0 ≥ +1 for yi = +1 and wTxi + w0 ≤ −1 for yi = −1. Therefore we seek
for a solution such that the following condition holds:

yi(w
Txi + w0) ≥ 1 i = 1, ..., n (3.1)

The optimal linear function is obtained by minimizing the following quadratic program-
ming problem (Vapnik, 1995):

min
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + w0)− 1) (3.2)

which leads to the following solution:

w =

n∑
i=1

αiyixi (3.3)

where {αi, i = 1, ..., n;αi ≥ 0} are Lagrange multipliers. To be able to linearly separate
data, typically the feature space should be mapped to a higher dimensional space. The
mapping is done with a so-called kernel function.

The kernel is a function k : X ×X → R which takes two samples from input space and
map it to a real number indicating their similarity. For all xi, xj ∈ X , the kernel function
satisfies:

k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ (3.4)

where ϕ is an explicit mapping from input space X to a dot product feature space H
(Hofmann et al., 2008).

To apply kernel functions on svm classifier, typically the dual form of (3.2) is solved:

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi.xj (3.5)

where xi.xj is the inner product of two samples which is an implicit kernel in the equation
measuring similarity between xi and xj . This inner product can be replaced by another
kernel function leading equation (3.5) to be in the following form:

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) (3.6)

There are four types of basic kernel functions: linear, polynomial, radial basis function
and sigmoid. Other types of custom kernel functions can also be applied for question
classification. The simplest type of linear kernel for two question xi and xj is defined as
follows:

KLINEAR(xi,xj) =

d∑
l=1

xilxjl (3.7)
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which is simply the inner product of the two questions.

Based on experimental results we noticed that linear kernels had higher performance
compare to other types of kernel functions; therefore we choose linear kernels in the final
model. We provide a comparison between different types of kernels in the next chapter.

Support vector machines have been widely used in question and text classification due
to its good performance, both in time and accuracy, compare to other type of classifiers
(Zhang and Lee, 2003; Metzler and Croft, 2005; Huang et al., 2008; Silva et al., 2011).

In qc problem, as you will see in the next section, questions are typically represented
in a very high dimensional space although the feature vectors are very sparse. svms
usually have good performance for high dimensional data. They are computationally
cheap, because the main operation of a svm is to calculate inner product of two vectors
which is an easy process particularly when the vectors are sparse. Since svms are only
applied in two-class classification problems, typically a so-called one-against-all strategy
is chosen when number of classes is more than two (Webb, 2002).

For the cases where data are non-separable, the constrain (3.1) can be relaxed as
follows:

yi(w
Txi + w0) ≥ 1− yiξi i = 1, ..., n (3.8)

where ξi is a positive slack variable. For an error to occur, the corresponding ξi should
be increased unity. So

∑
i ξi is an upper bound for the number of training errors (Burges,

1998). To minimize the training error this sum should be considered in the objective
function. So equation (3.2) can be rewritten as follows:

min
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + w0)− 1) + C

n∑
i=1

ξi (3.9)

where C is a penalty parameter for the errors on training set. We experimentally found
that C = 1 obtains the best classification accuracy (see chapter 4).

In this work, we adopted libsvm (Chang and Lin, 2001), a library for support vector
machines which is implemented in Java.

3.3.2 Back-Propagation Neural Networks

Back-propagation neural networks are multi-layer feed forward neural networks which are
trained with the back-propagation learning rule (Hu, 2000). They consist of an input layer,
an output layer and one or more hidden layers. Each neuron has a forward connection
to all neurons in the subsequent layer and the importance of connections is reflected by
weight parameters. The input of each neuron is weighted sum of its input signals and the
output is calculated as a function of input signals and an optional threshold parameter.

Training the BBNN

Consider we are given a dataset {(xi, yi)}ni=1 such that xi = (xi1, ..., xid) is a d-dimensional
input vector and yi is its corresponding class label which takes one of the values from the
set of labels C = {c1, ..., cm}. To build a network based on our training set, the number
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Figure 3.2: The structure of network we used in this work.

of input neurons should be equal to d, the number of features, and the number of output
neurons should be set to m, the number of classes. The number of hidden layers and
neurons in each layer should be learned or specified in advance. Figure 3.2 depicts the
structure of a network with one hidden layer in which the number of hidden neurons is
equal to the number of output neurons. For an input vector xi = (xi1, ..., xid), the input
of each neuron in input layer is fed with exactly one feature of xi. The network generates
m outputs. The class label of xi is determined by a max rule:

c = arg
m

max
k=1

Fk(xi), (3.10)

where Fk(xi) is the output value generated by neuron k in output layer and c is the index
of the predicted class.

According to the defined notations, for a given input vector xi, the input of a hidden
node j is defined as the following weighted sum:

ϕj =
d∑

k=1

wkjxik, (3.11)

where wkj indicates the weight in the link between input neuron k and hidden neuron j.
The output of a hidden unit is calculated as follow:

ψj = f(ϕj + θj), (3.12)

such that θj is the threshold parameter of hidden unit j and f is a non-linear transforma-
tion which is referred as the activation function. Our experimental results show that the
sigmoid activation function performs better than other types of functions (see chapter 4).
The sigmoid function is defined as:

f(x) =
1

1 + exp(−x)
(3.13)

The input and output of the output layer are also calculated using (3.11) and (3.12).
The back-propagation learning rule initializes weight and threshold parameters randomly
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and iteratively updates these, using a gradient descent method such that the error on the
training set converges to a small value. The error on the training set is defined as:

E =

m∑
k=1

n∑
i=1

(Fk(xi)− Yk(xi))
2 (3.14)

where Fk(xi) is the output generated by neuron k in the output layer for sample xi and
Yk(xi) is the desired output of the same neuron for xi which is defined as follows:

Yk(xi) =

{
1 if yi = k
0 o.w.

(3.15)

The gradient descent method updates the weight values as follows:

W t+1 =W t +∆W t+1 (3.16)

such that:

∆W t+1 = α
∂E

∂W t
+ β∆W t−1 (3.17)

whereW t is the matrix of weights in iteration t, α ∈ [0, 1] is the learning rate which speci-
fies how fast the gradient descent method should update the weight values and β ∈ [0, 1] is
a constant which specifies the contribution of previous iteration. The weights are updated
until the error converges to a small value or the algorithm reaches the maximum number
of iterations. We used Neroph1, a Java framework for neural networks, to implement our
classifier.

3.4 Features

In question classification problem, different set of features can be extracted. The features
in question classification can be categorized into 3 different types: lexical, syntactical and
semantic features.

In order to obtain the best feature space for question classification, we extracted several
lexical, syntactical and semantic features from a question. In this section we explain our
approach to extract features from a question and investigated the role of each feature in
question classification.

3.4.1 Lexical Features

Lexical features of a question are generally extracted based on the context words of the
question, i.e., the words which appear in a question. In question classification task, a
question is represented similar to document representation in vector space model, i.e., a
question is a vector which is described by the words inside it. Therefore a question x can
be represented as:

1http://neuroph.sourceforge.net/
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x = (x1, x2, ..., xN ) (3.18)

where xi is defined as the frequency of term i in question x whereas N is total number
of terms. Due to sparseness of feature vector only non-zero valued features are kept in
feature vector. Therefore sometimes the question is also represented by the following form:

x = {(t1, f1), ..., (tp, fp)} (3.19)

where ti is the i
th term in question x and fi is its frequency in the question, respectively

given that the question x has p unique terms. This feature space is called bag-of-words
features. As the name suggests, the order of the words is the question is not important in
this form of representation. Representing the questions in the form of (3.19) makes the
size of samples quite small despite the huge size of feature space. As an example consider
the question “How many Grammys did Michael Jackson win in 1983 ?” This question
can be represented as follows based on representation (3.19):

x = {(How, 1), (many, 1), (Grammys, 1), (did, 1), (Michael, 1), (Jackson, 1),
(win, 1), (in, 1), (1983, 1), (?, 1)} (3.20)

The frequency of the words in question (feature values) can be viewed as a weight
value which reflects the importance of a word in a question. We later exploited this
characteristic to weight the features based on their importance when we combine different
feature sets.

Bag-of-word feature space is also referred as unigrams. Unigrams is a special case of
the so-called n-gram features. To extract n-gram features, any n consecutive words in a
question is considered as a feature. For example “How-many” in the above example is a
bigram features and can be added to the feature vector. All the lexical, syntactical and
semantic features can be added to the feature space and expand the above feature vector.
In fact the expanded feature vector still can be represented similar to (3.19), while the new
features can be considered as new terms. For example the bigram feature “How-many”
can be viewed as a new term and the pair {(How-many, 1)} will be added to the feature
vector when bigram features are extracted. Of course this will increase the size of feature
space and the questions will be represented with higher dimensional vectors.

Bigram features however, are very high dimensional since all two consecutive terms
in our dataset should be considered as features, of which most are redundant and do not
show up in the data. We found that considering only the first two words of a question
as bigram features, performs as good as all bigrams while the size of feature space is
much smaller. For example consider the question “How many people in the world speak
French?”. The only meaning bigram in this question is “How-many” while the rest is not
useful. That is also true in the questions in which the wh-word is one word, because the
combination of wh-word and the immediate word next to it is an informative feature in
most cases. For example most of the questions which starts with “what is/are” are asking
for a definition. In the rest of the paper, we call our limited bigrams feature space as
limited bigrams.
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Other type of lexical features can be extracted from a question. Huang et al. (2008,
2009) considers question wh-words as a separate feature. They adapted 8 types of wh-
words, namely what, which, when, where, who, how, why and rest. For example the wh-
word feature of the question “What is the longest river in the world?” is what. Considering
wh-words as a separate feature can improve the performance of classification according to
the experimental studies.

Yet another kind of lexical feature is word shapes. It refers to apparent properties of
single words. Huang et al. (2008) introduced 5 categories for word shapes: all digit, lower
case, upper case, mixed and other.

Blunsom et al. (2006) introduced question’s length as a separate lexical feature. It
is simply the number of words in a question. Table 3.1 lists the lexical features of the
sample question “How many Grammys did Michael Jackson win in 1983 ?”. The features
are represented in same form as equation (3.19).

Table 3.1: Example of lexical features

Feature Space Features

unigram {(How, 1) (many, 1) (Grammys, 1) (did, 1) (Michael, 1) (Jackson, 1)
(win, 1) (in, 1) (1983, 1) (?, 1)}

bigram {(How-many, 1) (many-Grammys, 1) (Grammys-did, 1)
(did-Michael, 1) (Michael-Jackson, 1) (Jakson-win, 1)
(win-in, 1) (in-1983, 1) (1983-?, 1) }

trigram {(How-many-Grammys, 1), (many-Grammys-did, 1),
..., (in-1983-?, 1)}

wh-word {(How, 1)}

word-shapes {(lowercase, 4) (mixed, 4) (digit, 1) (other, 1)}

question-length {(question-len, 10)}

3.4.2 Syntactic Features

A different class of features can be extracted from the syntactical structure of a question.
We extracted different type of syntactical features.

POS Tags and Tagged Unigrams

pos tags indicate the part-of-speech tag of each word in a question such as NN (Noun), NP
(Noun Phrase), VP (Verb Phrase), JJ (adjective), and etc. The following example shows
the question “How many Grammys did Michael Jackson win in 1983 ?” with its pos taggs:

How WRB many JJ Grammys NNPS did VBD Michael NNP Jackson NNP win VBP
in IN 1983 CD ? .
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pos tagging can be done with different approaches. There are many successful learning-
based approaches including unsupervised methods (Clark, 2000) and Hidden Markov Mod-
els (Schütze and Singer, 1994) with 96%-97% accuracies. In this work we used Stanford
log-linear pos tagger (Toutanova et al., 2003).

Some studies in question classification add all the pos tags of question in feature
vector (Li and Roth, 2004; Blunsom et al., 2006). This feature space sometimes referred
as bag-of-pos tags. The bag-of-pos features for the aforementioned example is as follows:

{(WRB, 1), (JJ, 1), (NNPS, 1), (VBD, 1), (NNP, 1), (NNP, 1), (VBP, 1), (IN, 1), (CD, 1)}
(3.21)

We introduced a feature namely tagged unigram which is simply the unigrams aug-
mented with pos tags. Considering the tagged unigrams instead of normal unigrams
can help the classifier to distinguish a word with different tags as two different features.
Following is the aforementioned example represented with tagged unigram features:

{(How WRB, 1), (many JJ, 1), (Grammys NNPS, 1), (did VBD, 1), (Michael NNP, 1),
(Jackson NNP, 1), (win VBP, 1), (in IN, 1), (1983 CD, 1), (? , 1)}

(3.22)
pos tag information can also be used for extracting semantic features. As you can

see in the next section, pos tags can be used to disambiguate the meaning of a word to
extract semantic features.

Head Words

A head word is usually defined as the most informative word in a question or a word that
specifies the object that question seeks (Huang et al., 2008). Identifying the headword
correctly, can significantly improve the classification accuracy since it is the most informa-
tive word in the question. For example for the question “What is the oldest city in Canada
?” the headword is “city”. The word “city” in this question can highly contribute the
classifier to classify this question as “LOC:city”. Table 3.2 lists 20 sample questions from
trec dataset together with their class label. The headwords are identified by boldface.
This table shows the strong relation between headwords and class label. As you might
see there is no suitable headword for questions of type “Definition” or “reason”.

Extracting question’s headword is quite a challenging problem. The headword of a
question usually extracted based on the syntactical structure of the question. To extract
the headword we first need to parse the question to form the syntax tree. The syntax
(parse) tree is a tree that represents the syntactical structure of a sentence base on some
grammar rules. For natural language sentences written in English language, English
grammar rules are used to create syntax tree. Figure 3.3 is an example of syntax tree for
the question “What is the oldest city in Canada?”.

There are successful parsers that can parse a sentence and form the syntax tree (Klein
and Manning, 2003; Petrov and Klein, 2007). These parsers are statistical-based parsers



20 Chapter 3. Classification Model

Table 3.2: Sample questions from trec dataset together with their class label. The
question’s headword is identified by boldface.

Question Category

What county is Modesto , California in ? LOC:city
Who was Galileo ? HUM:desc
What is an atom ? DESC:def
What is the name of the chocolate company in San Francisco ? HUM:gr
George Bush purchased a small interest in which baseball team ? HUM:gr
What is Australia ’s national flower ? ENTY:plant
Why does the moon turn orange ? DESC:reason
What is autism ? DESC:def
What city had a world fair in 1900 ? LOC:city
What is the average weight of a Yellow Labrador ? NUM:weight
Who was the first man to fly across the Pacific Ocean ? HUM:ind
What day and month did John Lennon die ? NUM:date
What is the life expectancy for crickets ? NUM:other
What metal has the highest melting point ? ENTY:substance
Who developed the vaccination against polio ? HUM:ind
What is epilepsy ? DESC:def
What year did the Titanic sink ? NUM:date
What is a biosphere ? DESC:def
What river in the US is known as the Big Muddy ? LOC:other
What is the capital of Yugoslavia ? LOC:city

which parse an English sentence based on Probabilistic Context-Free Grammars (pcfg)
in which every rule is annotated with the probability of that rule being used. The rule’s
probabilities was learned based on a supervised approach on a training set of 4,000 parsed
and annotated questions known as treebank (Judge et al., 2006). These parsers typically
maintain an accuracy of more than 95%. Jurafsky and Martin (2008) provided a detailed
overview of parsing approaches. The list of English pos tags which is used for parsing
syntax tree is listed in appendix A. In this work we used Standford pcfg parser (Petrov
and Klein, 2007).

The idea of headword extraction from syntax tree first was introduced by Collins
(Collins, 1999). He proposed some rules, known as Collins rules, to identify the headword
of sentence. Consider a grammar rule X → Y1...Yn in which X and Yi are non-terminals
in a syntax tree. The head rules specifies which of the right-hand side non-terminals
is the head of rule X. For example for the rule SBARQ → WHNP SQ, Collins rules
specifies that the head is in the SQ non-terminal. This process continues recursively until
a terminal node is reached.

To find the headword of a sentence, the parse tree is traversed top-down and in each
level the subtree which contains the headword is identified with Collins head rules. The
algorithm continues on the resulting subtree until it reaches a terminal node. The resulting
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Figure 3.3: The syntax tree of a sample question in which the head childs are specified
by boldface

node is the sentence’s headword.

For the task of question classification, however, Collins rules are not suitable since they
have preferences for verb phrases over noun phrases whereas in a question the headword
should be a noun. We modified the Collins rules to properly extract a question’s headword.
In fact, in the modified rules we set a preference of noun phrases over verb phrases. Table
3.3 lists the modified rules. The first column of the table is the non-terminal on the
left side of a production rule. The second column specifies the direction of search in the
right hand side of a production rule. The search can be either by category, which is the
default search method, or by position. If the direction of search is left by category then
the algorithm starts from the left-most child and checks it against items in priority list
(column 3 in table 3.3) and if it matches any, then the matched item will be returned as
head. Otherwise if the algorithm reaches the end of the list and the child does not match
with any of the items, it continues the same process with the next child.

On the other hand, if the search direction is left by position, then the algorithm first
starts checking the items in priority list and for each item it tries to match it with every
child from left to right. The first matched item is considered as head.

Algorithm 1 lists the headword extraction algorithm based on Collins modified rules
(Silva et al., 2011).

To follow the algorithm consider the parse tree of the question “What is the oldest
city in Canada ?”. The parse tree of this question is depicted in figure 3.3 in which the
path of finding the headword is specified by boldface. The procedure Apply-Rules, finds a
child of the parse tree which contains the headword, based on the modified Collins rules.

Now if we trace the algorithm for the sample in figure 3.3, it starts from top of the
tree with the production rule SBARQ → WHNP SQ. The direction of search for the rule
SBARQ is left by category. Therefore the algorithm starts with WHNP and checks it
against items in the priority list of the rule SBARQ. Because none of the items in this list
match with WHNP the algorithm continues with next child. Since the next child appears
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Table 3.3: Modified Collins rules for determining question’s headword

Parent Direction Priority List

ROOT Left by Category S, SBARQ
S Left by Category VP, FRAG, SBAR, ADJP
SBARQ Left by Category SQ, S, SINV, SBARQ, FRAG
SQ Left by Category NP, VP, SQ
NP Right by Position NP, NN, NNP, NNPS, NNS, NX
PP Left by Category WHNP, NP, WHADVP, SBAR
WHNP Left by Category NP, NN, NNP, NNPS, NNS, NX
WHADVP Left by Category NP, NN, NNP, NNPS, NNS, NX
WHADJP Left by Category NP, NN, NNP, NNPS, NNS, NX
WHPP Right by Category WHNP, WHADVP, NP, SBAR
VP Right by Category NP, NN, NNP, NNPS, NNS, NX, SQ, PP
SINV Left by Category NP
NX Left by Category NP, NN, NNP, NNPS, NNS, NX, S

Algorithm 1 Headword extraction algorithm

procedure Extract-Question-Headword (tree)
if IsTerminal(tree) then

return tree
else

head-child ← Apply-Rules(tree)
return Extract-Question-Headword (head-child)

end if
end procedure

in the priority list it is considered as head. With similar way the non-terminal NP will be
selected in the production rule SQ→ VBZ NP as the head child. The algorithm continues
until it reaches the terminal node “city” and return it as the headword.

The aforementioned algorithm for extracting a question’s headword can not always
determine the true headword. For example for the question “Which country are Godiva
chocolate from ?” the true headword is “country” while the algorithm will return “choco-
late” as the headword. Figure 3.4 depicts the syntax tree of this question in which the
head children are specified by boldface. Applying the trivial rules of algorithm 1 will
choose SQ in the production rule SBARQ → WHNP SQ which leads the procedure to
determine an incorrect headword.

To tackle this problem, Silva et al. (2011) introduced some non-trivial rules which
are applied to a parse tree before applying the trivial rules. For example if SBARQ rule
contains a WHXP2 child with at least two children then WHXP is returned as head child.
Considering this rule leads to correctly identifying headword in the sample of figure 3.4.

2WHXP refers to Wh-phrases: WHNP, WHPP, WHADJP, WHADVP
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Figure 3.4: The syntax tree of a sample question in which the head childs are specified by
boldface. The headword in this question can not be determined correctly using the trivial
rules

A question’s headword can not only be used directly as a feature, but it is also used
to enhance the feature space with semantic features.

Head Rules

As we mentioned before some questions inherently do not have any head word. For
example for the question “What is biosphere ?” there is no suitable head word as the
entity type of the only noun in this question (biosphere) does not contribute to classify
this question as “definition”. Same problem exist for the question “Why does the moon
turn orange ?”. None of the words in this question except the wh-word help the classifier
to classify this question as “reason”.

To define an alternate feature instead of head word for these type of questions, Huang
et al. (2008) introduces some regular expression patterns to map these types of questions
to a pattern and then uses the corresponding pattern as a feature. Table 3.4 lists the
patterns from Huang et al. (2008).

We have also implemented head-rules with the same set of rules to investigate the
contribution of this feature space in our classifier. The above 8 patterns are considered as
8 features. If a question matches with any of the above rules the corresponding feature
will be true. The representation of these features is similar to (3.19), i.e., the pattern
name can be viewed as a term and the feature vale would be 1 if the question match with
that pattern. For example for the question “What is biosphere ?”, its head rule feature
can be represented as follows:

{(DESC:def-pattern1, 1)} (3.23)

Table 3.5 lists the syntactical features discussed in this section for the sample question
“What is the oldest city in Canada ?”. The features are represented same as equation
3.19.
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Table 3.4: Regular expression rules to identify pattern in questions; taken from Huang
et al. (2008)

Name Pattern

DESC:def pattern 1 the question begins with a what is/are and follows by an
optional a, an or the and then follows by one or two words

DESC:def pattern 2 the question begins with what do/does and ends with mean
ENTY:substance pattern the question begins with what does and end with do
ENTY:term pattern the question begins with what do you call
DESC:reason pattern 1 the question begins with what causes/cause
DESC:reason pattern 2 the question begins with what is/are and ends with used for
ABBR:exp pattern the question begins with what does/do and ends with

stand for
HUM:desc pattern the question begins with who is/was and follows by a word

starting with a capital letter

Table 3.5: Example of syntactic features

Feature Space Features

tagged unigram {(What WP, 1) (is VBZ, 1) (the DT, 1) (oldest JJS, 1)
(city NN, 1) (in IN, 1) (Canada NNP, 1) (? , 1)}

pos tags {(WP, 1) (VBZ, 1) (DT, 1) (JJS, 1) (NN, 1) (IN, 1)
(NNP, 1)}

headword {(city, 1)}

head rule {}

3.4.3 Semantic Features

Semantic features are extracted based on the semantic meaning of the words in a question.
We extracted different type of semantic features. Most of the semantic features requires
a third party data source such as WordNet (Fellbaum, 1998), or a dictionary to extract
semantic information for questions.

Hypernyms

WordNet is a lexical database of English words which provides a lexical hierarchy that
associates a word with higher level semantic concepts namely hypernyms. For example a
hypernym of the word “city” is “municipality” of which the hypernym is “urban area”
and so on. Figure 3.5 shows the hypernym hierarchy of sense 3 of the word “capital”.

As hypernyms allow one to abstract over specific words, they can be useful features
for question classification. Extracting hypernyms however, is not straightforward. There
are four challenges that should be addressed to obtain hypernym features:
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Figure 3.5: WordNet Hypernyms hierarchy for sense 3 of the word “capital”

1. For which word(s) in the question should we find hypernyms?

2. For the candidate word(s), which part-of-speech should be considered?

3. The candidate word(s) augmented with their part-of-speech may have different
senses in WordNet. Which sense is the sense that is used in the given question?

4. How far should we go up through the hypernym hierarchy to obtain the optimal set
of hypernyms?

To address the first challenge we considered two different scenarios: either to consider
the headword as the candidate word for expansion or expanding all the words in the
question by their hypernyms. We found out that the second approach can introduce noisy
information to the feature vector and therefore decided to consider only the headword of
a question, if it has, as the candidate for expansion.

For the second issue the pos tag which extracted from syntactical structure of question
is considered as the target pos tag of the chosen candidate word.

To tackle the third issue, the right sense of the candidate word should be determined
to be expanded with its hypernyms. For example the word “capital” with noun pos can
have two different meanings. It can either interpreted as “large alphabetic character” or
“a seat of government”. Each sense has its own hypernyms. For example “character” is
a hypernym of the first sense while “location” is a hypernym of the second sense. In the
question “What is the capital of Netherlands ?” for example, the second sense should be
identified.

We adopted Lesk’s Word Sense Disambiguation (wsd) algorithm to determine the true
sense of word according to the sentence it appears. The Lesk’s algorithm (Lesk, 1986) is
a dictionary-based algorithm which works based on the assumption that words in a given
context tends to share common topic. Algorithm 2 is the adopted Lesk’s wsd algorithm
which is borrowed from Huang et al. (2008). We used WordNet to find the definition of
the words in this algorithm.
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Algorithm 2 Adopted Lesk’s WSD algorithm taken from Huang et al. (2008)

procedure Lesk-WSD (question, headword)
int count ← 0
int maxCount ← -1
sense optimum = null
for each sense s of headword do

count ← 0
for each contextWord w in question do

int subMax← maximum no. of common words in s definition and definition of any
sense of w
count ← count + subMax

end for
if count > maxCount then

maxCount ← count
optimum ← s

end if
end for
return optimum

end procedure

For a given headword of a question, algorithm 2 computes the maximum number of
common words between the gloss (definition) of each sense and the gloss of all senses of
all context words. The sense with the maximum common words is considered the true
sense.

To address the fourth challenge we found that expanding the headword with hyper-
nyms of maximum dept 6 will have the best result. In the next chapter we will show the
influence of hypernym’s dept on classification accuracy.

Now consider for example the headword of the question “What is the capital of Nether-
lands ?”. The true sense of the word “capital” according to its context is sense 3 of Word-
Net. The hypernym features of this word according to representation (3.19) with value 6
as the maximum dept will be as follow:

{(capital, 1)(seat, 1)(center, 1)(area, 1)(region, 1)(location, 1)} (3.24)

The word “location” in the above features in fact can contribute the classifier to classify
this question to LOC.

Related Words

Another semantic feature that we implemented is related words which was based on the
idea of Li and Roth (2004). They defined groups of words, each represented by a category
name. If a word in the question exists in one or more groups, its corresponding categories
will be added to the feature vector. For example if any of the words {birthday, birthdate,
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day, decade, hour, week, month, year} exists in a question, then its category name, date,
will be added to the feature vector.

To expand the feature vector with related words, still we can choose to only consider
the head word or the whole question. Our experimental results show that considering the
whole question would have better results.

Question Category

We extracted a successful semantic feature namely question category which is obtained
by exploiting WordNet hierarchy based on the idea of Huang et al. (2008).

We used WordNet hierarchy to calculate the similarity of question’s headword with
each of the classes. The class with highest similarity is considered as a feature and will
be added to the feature vector. In fact this is equal to a mini-classification although the
acquired class will not be used as final class; since it is not as accurate as the original
classifier.

The similarity of the words will be calculated based on an information content metric
using WordNet hyponyms. The subordinates of a particular word in WordNet hierarchy
are called hyponyms. For example “city” is a hyponym of “municipality” based on the
WordNet hierarchy. We used the metric proposed by Seco et al. (2004) to calculate words
similarity. To obtain the similarity of two words, we first obtain theMost Specific Common
Abstraction (msca) using WordNet hierarchy. The similarity then will be calculated on
how much informative the msca word is. The similarity of two words w1 and w2 based
on this idea is calculated as follows:

simmsca = max
w∈S(w1,w2)

icwn(w) (3.25)

where S(w1, w2) are the set of words which subsumes w1 and w2 and icwn(w) is the
information content of the word w and is calculated as follows using WordNet hierarchy:

icwn(w) =
log(hypo(w)+1

maxwn
)

log( 1
maxwn

)
= 1− log(hypo(w) + 1)

log(maxwn)
(3.26)

where hypo(w) returns the number of hyponyms of a given word and maxwn is the total
number of word entries in WordNet. In order to calculate similarity of two words w1 and
w2 we first extract the list of hypernyms of each word, i.e S(w1, w2). The information
content of the word which has the largest ic value will be considered as the similarity of w1

and w2. The information content of each element is calculated based on equation (3.26).
The ic value will be a number in [0,1]. The larger the ic value is, the more informative it
is. Based on the above equation the top node of WordNet hierarchy will have an ic value
of 0. The words which are closer to this top node have smaller value compare to the node
which are close to the leaf nodes. In fact the nodes which are located near the bottom of
the hierarchy are more specific and consequently should be more informative compare to
the top nodes.

To calculate the number of hyponyms of a given word, we first use Lesk’s wsd al-
gorithm to disambiguate the meaning of the word and then we recursively count the
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hyponyms of the disambiguated word. We already calculated the hyponym counts of all
the words in WordNet so that this value can simply be retrieved by a simple lookup.

Now consider the example “What metal has the highest melting point ?”. The head-
word of this question is “metal”. To find the question category feature, the similarity
of this word will be compared with the similarity of all question categories. The cate-
gory with the highest similarity will be added to the feature vector. In this example the
most similar category is “substance” and therefore the question category feature will be
{(substance, 1)}.

Query Expansion

We introduce a feature namely query expansion which is basically very similar to hypernym
features. As we explained before, we add hypernym of a headword to the feature vector
with maximum distance of 6 from the original headword in the WordNet hierarchy. Instead
of imposing this limitation, we defined a weight parameter which decreases by increasing
the distance of a hypernym from the original word. Consider that ti is the headword in
question x. We define the set of hypernyms of ti as follows:

H(ti) = (hti,1, ..., hti,q) (3.27)

such that hti,j is a hypernym of ti with distance j from it and q is the total number of
hypernyms of ti. For example based on figure 3.5, H(capital) =(seat, center, area, region,
location, object, physical-object, entity) where hcapital,1 = city and q = 8. Using the
distance parameter j we define the weight value for hti,j as follows:

W (hti,j , j) =W0(ti)γ
d(ti,j) (3.28)

whereW0(ti) is the weight (frequency) of ti in feature vector, d(ti, j) is a distance function
which calculates the distance of ti from its jth hypernym and γ is a constant in [0,1]. There
are different possibilities to define the distance function d(ti, j), but we simply defined it
as the path length from ti to hti,j , that is d(ti, j) = j given that j ≤ q. Therefore in
the mentioned example, the distance between “capital” and city is 1 while the distance
between “capital” and “entity” is 8. Having the γ value in [0,1], makes sure that the
weight value of hypernyms will be decreased when the distance from the main word is
increased. Our experiments shows that considering γ = 0.6 will obtain the best results.

Now consider the question “What river in the US is known as the Big Muddy ?” whose
headword is “river”. The query expansion features of this question will be as follows, given
that the weight of “river” is considered as 1:

{(river, 1)(stream, 0.6)(body-of-water, 0.36)(thing, 0.22)(physical-entity, 0.13)(entity, 0.08)}
(3.29)

The hypernym features of the above example will be the same as (3.29) but all the
feature values would be 1. The advantage of query expansion to the hypernym features is
that the importance of the features is reflected by the weight values and this causes that
the noisy information have less contribution on classification.
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Table 3.6 lists the semantic features discussed in this section for the sample question
“What is the oldest city in Canada ?”. The features are represented same as equation
(3.19).

Table 3.6: Example of semantic features

Feature Space Features

headword hypernyms {(city, 1) (municipality, 1) (urban area, 1)
(geographical area, 1) (region, 1) (location, 1)}

related words {(Rel be, 1) (Rel location, 2) (Rel InOn, 1)}

question category {(city, 1)}

query expansion {(city, 1) (municipality, 0.6) (urban area, 0.36)
(geographical-area, 0.22) (region, 0.13) (location, 0.08)
(physical-object, 0.05) (physical-entity, 0.03) (entity, 0.02) }

3.4.4 Combining Features

The three types of features we described, each takes a different perspective on the ques-
tion. We explored whether combining different feature sets will improve the classification
accuracy. Unlike related work in which the augmented features are blindly added to the
feature vector, we suggest a weighted concatenation of the various feature sets:

f = (w1f
T
1 , . . . , wmf

T
m)T (3.30)

where fi is the ith feature set, wi is its weight, m is the number of feature sets that are
extracted and f is the final feature set. In total we implemented 12 types of different
features, i.e, m = 12. If wi = 0 it means that the ith feature set will not be added to the
final feature set.

An important question that may rise now is how to learn the optimal values for the
weight parameters. To optimize the weight values in equation (3.30), we would need an
exhaustive search of all possible weight assignments. As this is time-consuming, we chose
a greedy approach instead. For each feature set we searched for the optimal weight when
it was combined with the unigram features only. The weight value with highest accuracy
will be chosen as the weight parameter of the corresponding feature space. In the next
chapter we show what is the best combination of weight values and lists our classification
results.

3.4.5 Feature Reduction

Features in question classification are very high dimensional which typically is due to
n-grams over vocabularies. We applied a feature reduction technique namely Latent Se-
mantic Indexing (lsa) (Deerwester et al., 1990), to see whether it can improve the per-
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Figure 3.6: The alternative architecture of our question classifier system using lsa feature
reduction technique.

formance of our classifier or not. Figure 3.6 illustrates the alternative architecture of our
question classifier system when we apply the lsa technique to reduce the feature space.

lsa maps the features space to a reduced space using singular value decomposition
(svd). This technique have been widely used in text classification (Yu et al., 2008; Lam
and Lee, 1999; Zelikovitz and Hirsh, 2001).

To apply svd to question classification, we define the feature-by-question matrix Q
in which the rows represent the features and the columns represent questions. That is, if
our feature space has d dimensions and the total number of training samples is n, then
Q would be a d × n matrix in which Qi,j represents the frequency (weight) of feature
fi in question xj . svd decomposes Q into tree matrices: Q = UΣVT , where U and V
are orthogonal matrices whose columns are eigenvectors of QQT and QTQ respectively
and Σ is a diagonal matrix containing the eigenvalues of QQT in the diagonal which are
sorted in descending order. To reduce the feature space to k dimensions, we define matrix
Uk to be a d× k matrix containing the first k column of U. We now defined the reduced
matrix as follows:

R = QTUk (3.31)

where R is the n× k reduced matrix, in which each row corresponds to a question which
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is described by k features. This technique is very similar to principle component analysis.
The reduced space is called latent semantic space and matrix U is used to transform a
vector to this space.

Once we train our classifiers with the reduced questions, for a given independent
question x, it first transforms to the reduced space as follows:

x̂ = xTUk (3.32)

where x̂ is a 1 × k vector in the reduced space. This vector then is fed to our classifier,
and the output is generated.
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Chapter 4

Experimental Results and
Analysis

4.1 Introduction

In this chapter we explain our experiment on a well-known dataset step by step. Our goal is
to investigate the contribution of different features on question classification. Furthermore,
we want to test our weighted approach on combining features to see whether it is a good
alternative for combining features or not. We also want to see whether reducing the
feature space with the latent semantic analysis method can improve the performance of
our classifier or not.

Our step by step experiments start by a brief explanation of the dataset we used. We
explain our method to represent features and our implementation details in section 4.2.2.
We setup the parameters of our classifiers by testing all possibilities and choosing the
best parameters. In section 4.2.3 we explained our tested scenarios to find the optimal
classifiers. In section 4.2.4 we investigate the contribution of different lexical, syntacti-
cal and semantic features when they are combined together. The experiments to test
our weighted approach is discussed in section 4.2.5. In section 4.2.6 we investigate the
lsa feature reduction technique for question classification. We finally discuss about the
obtained results in section 4.4.

4.2 Experiment

4.2.1 The dataset

The dataset which we used in this work is the one created by Li and Roth (2002). They
provided a question dataset which is widely used in question classification studies and
known as uiuc or trec dataset. It consist of 5500 labeled question which is used as
training set and 500 independent labeled questions which is used as test set. The datasets
are simply text files in which each row consists of a label followed by a question. The
following is an example from TREC training set:
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HUM:ind Who was The Pride of the Yankees ?

The taxonomy which is used to label questions is the two layer taxonomy which is ex-
plained in chapter 2. It consist of 6 coarse grained classes and 50 fine grained classes.

4.2.2 Implementation

As we explained in previous chapter, we represent a question in the sparse form which
is described in equation (3.19). The features which are extracted from questions will
be added to the feature vector with a (feature, value) pair. If we only extract unigram
features, the above equation will be translate to the following form:

{(Who, 1)(was, 1)(the, 2)(Pride, 1)(of, 1)(Yankees, 1)(?, 1)} (4.1)

However, instead of using string, each term (feature) is mapped to a unique number,
indicating feature number. Furthermore, the class name also mapped to a unique number.
The following form is the same sample from TREC dataset which is translated to the form
which is accepted by LIBSVM library (Chang and Lin, 2001):

44 1:1 15:2 24:2 98:1 235:1 1934:1 4376:1 (4.2)

where the first number (44) indicates the class number and the rest are (feature, value)
pairs which are separated by a white space while the pairs are separated by a colon.
Furthermore, the feature pairs should be sorted ascending based on feature number.

When all the samples from training and test set are translated to the above format,
then we train our classifiers with training set and test it against the independent test set.

4.2.3 Classifiers Parameters Setup

We used two different classifiers in this work: Support Vector Machines (svms) and Back-
Propagation Neural Networks (bpnn). To obtain the best classifier, the parameters and
structure of them should be configured to its optimal values.

Support Vector Classifier

We tested our svm classifier with 4 types of kernel functions: linear, polynomial, sigmoid
and radial basis function among which linear was best. Table 4.1 lists the definition of
each kernel for two vectors xi and xj :

Table 4.1: Mathematical definition of four basic kernel functions

Kernel Definition

Linear k(xi,xj) = xi.xj

Polynomial (degree d) k(xi,xj) = (γxi.xj + C0)
d

Radial Basis k(xi,xj) = exp(−γ|xi − xj |)2
Sigmoid k(xi,xj) = tanh(γxi.xj + C0)
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Figure 4.1: The accuracy of the svm classifier on the coarse grained classes with Unigram
features based on different values of γ and different kernels.

In the above definition γ and C0 are the coefficient and the constant value which defines
the kernel functions. To obtain the best values for these two parameters we tested the svm
classifier with different values of γ and C0. If C0 is considered as 0 the resulting function
is called homogeneous kernel and otherwise it is non − homogeneous. In our case both
homogeneous and non-homogeneous kernels obtain same results. Figure 4.1 illustrates the
accuracy of linear, polynomial, sigmoid and radial basis kernels based on different values
of γ for the coarse grained classes when unigram features are used. However compare to
linear kernel function, the best accuracy of these 3 kernels still is smaller than the simple
linear kernel. Table 4.2 list the best accuracies obtained by each kernel type for the coarse
grained classes. Since in all cases linear kernel performs better, we use this kernel as the
final choice of kernel function.

Table 4.2: The accuracy of svm classifier based on different kernels for the coarse grained
classes.

Kernel Linear Polynomial(1) Polynomial(2) RBF Sigmoid

Accuracy 88.2% 88.2% 86.8% 82.6% 72.4%

Another parameter of svm classifier that can influence on classification accuracy is
the penalty parameter C (see equation 3.9). We test our svm classifier based on different
values of C. Figure 4.2 illustrates the influence of penalty parameter on classification
accuracy. This experiment is done with linear kernel function and based on unigram
features for coarse grained classes.

Figure 4.2 reveals that choosing parameter C to be equal to 1 obtains the best per-
formance.
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Figure 4.2: The accuracy of the svm classifier on the coarse grained classes with Unigram
features based on different values of penalty parameter (C).

Back-Propagation Neural Network

The second classifier we used in this work is bpnn classifier. To find the optimal bpnn
classifier, number of hidden layers, number of units in each layer, activation function,
maximum number of iterations and learning rate should be specified.

As we described in the previous chapter, in a bpnn classifier, if our samples have
d dimensions and the number of classes is m the number of input neurons and output
neurons should be set to d and m, respectively. Our bpnn classifier uses one hidden layer
in which the number of hidden units are set to the number of classes (see figure 3.2).
The reasons of choosing this architecture are both accuracy and efficiency. In the tested
scenarios, having more than 1 hidden layers do not necessarily improves the performance
while the network takes more time to be trained. The maximum number of iterations in
the gradient descend method is set to 500 and the learning rate is set to 0.7 since with
this combination of parameters in most cases the error converges to a fixed value.

For the choice of activation function we tested 4 different type of activation functions:
sigmoid, step, Gaussian and tanh among which sigmoid performs the best. Table 4.3 lists
the definition of the activation functions we used in this work.

We tested our bpnn classifier in a particular feature space with the above 4 kernels on
the coarse grained classes. Table 4.4 lists the best accuracy obtained by each activation
function.

As the above table shows, step function performs the worst since it is a discrete function
and therefore a neuron is either completely activated or completely deactivated. Gaussian
kernel also shows bad performance since its output is in the rang [0,∞] which can not
monotonically reflect neuron’s activations. On the other hand sigmoid and tanh functions
have good results since they are both concrete functions and their output is in the range
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Table 4.3: Mathematical definition of four basic activation functions

Kernel Definition

Sigmoid f(x) = 1
1+exp(−x)

Step f(x) =

{
1 x > 0
0 x ≤ 0

Gaussian f(x) = exp(− x2

2σ2 )

Tanh f(x) = e2x−1

e2x+1

Table 4.4: The accuracy of bpnn classifier on the coarse grained classes based on different
activation functions.

Kernel Sigmoid Step Gaussian Tanh

Accuracy 85.2% 18.8% 27.6% 83.2%

[0,1]. (Note that we mapped the output rang of tanh function from [-1,1] to [0,1] by adding
the output with 1 and then dividing the resulting value by 2. This leads our results to be
much better.) So in the rest of our experiments we used the sigmoid activation function.
Table 4.5 summarized the parameters that we choose for our classifiers.

Table 4.5: Summary of the configuration of our classifiers

Parameter Value

SVM
Kernel Linear
Penalty Parameter (C) 1

BPNN

Activation Function Sigmoid
Structure d−m−m
Learning Rate 0.7
Maximum Iterations 500

4.2.4 Incremental Features Combination

We did our experiments in two different scenarios: either to train the classifiers in the
original space or applying lsa feature reduction technique and train the classifiers in the
reduced space. For the first scenario we only used our svm classifier since training the
bpnn classifier in the original space demands a very large network which take much time
to train. But in the second scenario we used both svm classifier and bpnn classifier.

We totally extracted 12 different feature sets. We created different feature space by
combining these feature sets. Combining all features sets is not necessarily the best option.
We incrementally combined them to obtain the best combination of features. Table 4.6
lists the feature sets we extracted in this work together with their type, abbreviation and
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Table 4.6: All lexical, syntactical and semantic features we used in this work.

no. Feature Set Abbreviation Type #Dimensions

1 Unigrams U Lexical 9775
2 Bigrams B Lexical 30721
3 Limited-Bigrams LB Lexical 1010
4 Word-Shapes WS Lexical 5
5 Wh-words WH Lexical 8
6 Headwords H Syntactical 1964
7 Head-Rules HR Syntactical 37
8 Tagged-Unigram TU Syntactical 10391
9 Hypernyms HY Semantic 5774
10 Query Expansion QE Semantic 5791
11 Question Category QC Semantic 1967
12 Related-Words R Semantic 78

Table 4.7: The accuracy of SVM classifier on trec dataset based on different combination
of lexical features.

no. Features Dimensions Accuracy

Coarse Fine

1 U 9775 88.2 80.2
2 U+WS 9780 88.8 80.6
3 U+WH 9783 88.2 80.4
5 B 30721 86.8 75.2
6 U+WS+B 40501 91.2 81.0
7 U+WS+LB 10790 91.2 82.2

dimensionality.

Contribution of Lexical Features

In the first set of our experiments with svm classifier, we investigate the role of lexical
features on classification accuracy. While we are seeking for the highest accuracy, we
are also interested in the feature spaces with lower dimensions since they are more time
efficient. Table 4.7 lists the accuracy of svm classifier on different combination of lexical
features.

An interesting result from table 4.7 is that the limited-bigram feature set perform as
accurate as the bigram feature space although its dimension is much smaller than the
dimension of bigrams. This reveals that the main contribution of bigram feature set is
due to the first bigram of a question, i.e., the wh-word and the word next to it.
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Table 4.8: The accuracy of SVM classifier on trec dataset based on different combination
of lexical and syntactical features.

no. Features Dimensions Accuracy

Coarse Fine

1 TU 10391 87.4 80.6
2 TU+WS+LB 11406 91.4 81.8
3 U+WS+LB+H 10790 91.0 83.8
4 U+WS+LB+HR 10797 90.8 81.6
5 U+WS+LB+H+HR 10797 91.4 84.8

6 WH+WS+H 1977 88.6 77.0
7 WH+WS+H+HR 1984 88.0 77.4
8 WH+WS+LB+H 2987 87.6 77.2
9 WH+WS+B+H 32698 90.8 81.0

Adding Syntactical Features

In the next set of experiments we added syntactical features to the lexical feature sets.
Table 4.8 lists the accuracy as well as the dimensionality of different combinations of
lexical and syntactical feature sets.

In the second half of table 4.8 we used wh-word feature set instead of unigrams.
An interesting result from this table is that the combination of wh-word and headword
performs almost as good as unigrams while its dimensionality is much smaller. This result
shows that the wh-word and the headword of a question are two most informative features
of that question.

Another interesting result from the above table is that our limited bigram feature set
does not improve classification accuracy when it is combined with low-dimensional feature
sets such as wh-words and word-shapes (row 8 of table 4.8). This is most likely due to the
high dimensionality of the limited-bigram feature space compare to wh-word and word-
shapes. The interesting point is that when we use bigram instead of limited-bigram the
accuracy is improved (row 9 of table 4.8). These two results comes to the conclusion that
limited-bigram feature set is only useful when it combined with high-dimensional feature
spaces.

Adding Semantic Features

To obtain the best combination of feature sets, we added semantic features to some candi-
date feature sets. In the previous experiments the combination of unigrams, word-shapes,
limited-bigrams, headwords and head-rules obtains the best performance and the com-
bination of wh-words, word-shapes and headwords obtains a good accuracy compare to
other combinations while its number of dimensions is relatively low. We choose these two
combinations to be augmented by semantic features. Table 4.9 lists the accuracy and
dimensionality of different combination of lexical, syntactical and semantic features.



40 Chapter 4. Experimental Results and Analysis

Table 4.9: The accuracy of SVM classifier on trec dataset based on different combination
of lexical and syntactical and semantic features.

no. Features Dimensions Accuracy

Coarse Fine

1 U+WS+LB+H+HR+HY 14607 92.0 85.6
2 U+WS+LB+H+HR+QE 14614 92.0 86.4
3 U+WS+LB+H+HR+QC 10799 91.2 85.6
4 U+WS+LB+H+HR+R 10875 92.6 89.4
5 U+WS+LB+H+HR+QE+R 14692 92.8 89.4
6 U+WS+LB+H+HR+QE+R+QC 14694 93.0 90.0
7 U+WS+B+H+HR+QE+R+QC 44405 94.2 90.4

8 WH+WS+H+R 2055 89.6 87.8
9 WH+WS+LB+H+R 3065 91.4 88.2
10 WH+WS+H+QE+R 5872 90.2 88.0
11 WH+WS+H+QE+R+QC 5875 90.6 87.8
12 WH+WS+H+HR+QE+R 5879 90.8 88.0
13 WH+WS+LB+H+QE+R 6882 92.4 89.0
14 WH+WS+LB+H+HR+QE+R 6889 93.0 89.0

The results from table 4.9 shows that semantic features can significantly improve
classification accuracies. It is also worth mentioning that our query-expansion feature set
performs better than hypernyms (rows 1 and 2). So in the rest of our experiments we
used query-expansion feature set instead of hypernyms.

As it reveals from table 4.9, the combination of unigrams, bigrams, word-shapes,
headwords, head-rules, query-expansion, related-words and question-category with total
feature space of size 44405 dimensions (row 7) obtains the best classification accuracy.
Furthermore, the combination of wh-word, word-shapes, limited-bigram, headwords, head-
rules, query-expansion and related-words (row 14) obtains completive accuracies while the
size of feature space is relatively small. This result is very close to the state-of-the-art
work in this task (Silva et al., 2011) although our feature space is much smaller.

4.2.5 Weighted Combination of Features

In the previous sub-section we obtained the best combination of features when we com-
bined different feature sets with equal weights, i.e. all the feature sets have equal contri-
bution to the final classification task.

The idea of weighted combination of feature sets is to consider a biased contribution
for different feature sets. We implemented this bias by a weight parameter which reflects
the importance of feature set. Back to section 3.4, a question is represented by a vector
space model in which the values are a function of word frequencies. The larger a word
frequency (feature weight) is, the higher influence it has on the final classification.
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Figure 4.3: The classification accuracy of unigrams combined with different feature sets
based on weight values.

To implement our weighted approach, consider that a question x is represented in
feature space A and B with equations (4.3) and (4.4) respectively:

x = {(t1, f1) · · · (tr, fr)} (4.3)

x = {(t′1, f ′1) · · · (t′s, f ′s)} (4.4)

where r and s are number of non-zero features of x in feature spaces A and B, respectively.
If we combine these two feature spaces with weight values of wA and wB respectively, then
the combined features are represented as follows:

x = {(t1, wAf1) · · · (tr, wAfr)(t
′
1, wBf

′
1) · · · (t′s, wBf

′
s)} (4.5)

If there is a same feature ti in both feature spaces, then their corresponding values
will be sum up:

x = {(ti, wAfi + wBf
′
i)} (4.6)

To decide on the weight values we need to do an exhaustive search to test all possible
combination of weight values and choose the one with highest accuracy. Since it is a time-
consuming procedure, we instead used a greedy approach in which each feature set is
combined with unigrams based on different weight values. The weight value with highest
classification accuracy is chosen as the final weight for the corresponding feature set.
Figure 4.3 illustrates the classification accuracy of our svm classifier when a combination
of unigrams and another feature set is used based on different wight values. Weight values
which lead to highest accuracy are chosen as the final weight parameters.

Table 4.10 lists the best combination of weight values which are obtained base on
our greedy approach for the candidate feature sets. Using the resulting weight values,
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we again tested our classifier with combination of unigrams, bigrams, word-shapes, head-
words, head-rules, query-expansion, related-words and question-category. The accuracies
improved. We reached an accuracy of 91.0% on the fine grained classes and 94.8% on
the coarse grained classes which is higher that the state-of-the-art accuracies on this task
(Silva et al., 2011).

Table 4.10: The best combination of weights obtained by our greedy approach.

Feature Set U B WS H QE QC R

Weight 1 0.4 0.6 1 0.4 1 1.3

4.2.6 Comparison in the Reduced Space

The next set of our experiment is to test our classifiers in the reduced feature space. We
first want to investigate the behavior of different feature sets in the reduced space and then
to find out what is the best size for the reduced space. We tested the accuracy of different
feature sets on the reduced space with both svm and bpnn classifiers. To do so we choose
two candidate combinations of features one with relatively high dimensionality and one
with relatively low dimensionality, both having high accuracy in the original feature space
with our support vector classifier. Table 4.11 lists these two candidate combinations. The
first combination uses unigrams while the second uses wh-words instead of it. The reasons
that we choose these two candidates are both accuracy and efficiency.

Table 4.11: Two proper combination of feature sets.

no. Features #Dimensions Coarse Fine

1 U+WS+LB+H+HR+QE+QC+R 14694 93.0 90.0
2 WH+WS+LB+H+R 3065 91.4 88.2

The next step is to reduce the dimensionality of these two candidate sets and see
the classification accuracy in the reduced space. We applied the latent semantic analysis
method to reduce the dimensionality of feature spaces. To obtain the optimal dimensional-
ity for the reduced feature space we tested our classifiers based on different dimensionalities
in the reduced space. Figure 4.4 compares the accuracy of svm and bpnn classifiers on
the candidate feature sets in table 4.11 for the coarse grained classes and figure 4.5 com-
pares the accuracy of second candidate on the fine grained classes in the reduced space.
The horizontal axes in the figures are the number of features that results from the lsa
reduction and the vertical axis are classification accuracies.

As the figures reveals, bpnn performs better in the reduced space for coarse grained
classes while for the fine grained classes svm performs better in the reduced space. Com-
pare to the original space, svm has lower accuracy in the reduced space while bpnn
performs better than svm in the original space. The most interesting result from figure
4.4, is that feature set 2 has higher accuracy than feature set 1 in the reduced space even
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Figure 4.4: Comparison of SVM and BPNN classifiers in the reduced space based on the
coarse grained classes.

Table 4.12: The accuracy of SVM and BPNN classifier on the 400 dimensional reduced
space for the coarse grained classes compare to the accuracy of SVM in the original space.

Features Original Space Reduced Space

SVM SVM BPNN

WH+WS+H 88.6 85.6 88.8
WH+WS+H+R 89.6 88.4 90.2
WH+WS+LB+H+R 91.4 90.4 93.8

though in the original space feature set 1 has a higher accuracy. The reason may be that
feature set 2 has lower dimensions and describes the samples in a more compact space
and therefore looses less information when it is reduced to a lower dimensional space.

The best accuracy which is obtained for coarse grained classes in the reduced space
is 93.8% with 400 features using bpnn classifier. This result is not only better than the
accuracy of svm in the original space (93.0%), but also uses only 400 features which is
much less than the dimensionality of the original space which is 14696. Table 4.12 com-
pares accuracies of more feature sets with svm and bpnn classifiers in the 400 dimensional
reduced space for the coarse grained classes. As this table reveals, in all cases bpnn in
the reduced space has a higher accuracy than the svm classifier in the original and the
reduced space.

Our results shows that feature reduction can improve accuracy in the question clas-
sification problem under some settings. While it can improve classification accuracy for
the coarse grained classes, it is not useful for classifying fine grained classes. This result
leads to a conclusion that when the number of classes is relatively large, more features are
needed to increase the discrimination power of classifier and therefore feature reduction is
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Figure 4.5: Comparison of SVM and BPNN classifiers in the reduced space based on the
fine grained classes.

not useful. On the other hand when the number of classes is smaller, lsa feature reduc-
tion technique can improve classification accuracy and this is most likely due to removing
redundant features.

4.3 Stability of the Results

In previous sections we did several experiments on the trec dataset based on a fixed
training set and an independent test set. A question that can be raised is that how we
can make sure that we have not been trapped in the problem of overtraining. In fact one
may ask that the features that we extracted and used to evaluate the performance of our
system can be very fitted to our training and test set and it is possible that our features
may have not such a good performance on other training and test sets.

To investigate the stability of our results we used a well-know pattern recognition
technique, known as cross validation. We applied this technique on trec dataset. The
total amount of samples (training and test samples) in this dataset is about 6000 questions
of which 500 are chosen as an independent test set. Instead of testing the performance
of our system on the independent test set, we divided our dataset to 12 random sets of
500 questions to experiment a 12-folds cross validation on this dataset. The reason that
we choose 12 folds is have the same size for cross validation test set and the independent
test set. We did 12 experiments in which one of the random sets are considered as a test
set and the rest is considered as the training set. Table 4.13 lists the mean and variance
of the 12-fold cross validation using our svm classifier based on two different combination
of features. The first feature space is unigarm which is relatively large feature space and
the second is a combination of low dimensional features.

As the table shows, expect for the coarse grain classes on the unigram feature space,



4.4. Analysis of Results 45

Table 4.13: 12-fold cross validation on trec dataset

Unigrmas WH+WS+H+R

Coarse Fine Coarse Fine

Accuracy (Test set) 88.2 80.2 89.6 87.8
Mean (12 Fold) 85.1 78.8 89.8 86.6
Var (12 Fold) 2.4 3.1 1.72 2.2

the accuracy of the independent test set falls into the cross validation accuracy interval.
Nevertheless, the differences between the independent test set accuracy and the cross
validation accuracy are insignificant which actually indicates that our results do not vary
very much on other train and test sets. However, the variance on the unigram feature space
is relatively higher than the variance on the other low dimensional feature space. This
result suggests that the results on the unigram feature space is more unstable compare to
the other feature space. The reason may lie on the fact that the unigram feature space
has higher dimensions compare to the other feature space.

4.4 Analysis of Results

Question classification is a hard problem. As you saw in the previous sections, a series
of complicated tasks should be done to extract good set of features, combine them and
possibly reduce them to a lower dimension space. Furthermore, different type of classifiers
with different parameters can be used for this task.

In previous sections we tried to find the best configuration for our classifier and the best
solution for the question classification problem. This was done by covering the following
6 challenges:

1. Choosing a proper classifier for qc problem

2. Finding the best parameters for the classifier(s)

3. Extracting good set of features from lexical, syntactical and semantic structure of
questions

4. Improving the algorithms of extracting features

5. Combining different feature sets in an optimal way

6. Possibly reducing the feature space to a more efficient and effective space

After finishing all the above 6 challenges, the next step is to analyze the obtained
results more in dept to see why our results was like that. We did this by a deep analysis
of the errors and a detail exploration of our dataset.

Metzler and Croft (2005) explored trec dataset and discovered 4 issues which cause
misclassification in the qc problem. These issues are:



46 Chapter 4. Experimental Results and Analysis

1. Inconsistent and ambiguous labeled data: some of the samples in trec dataset
have ambiguous label. For example the question “What does CNN stands for ?” is
labeled with “ABBR:exp” while it can also be labeled by “HUM:org”.

2. Inherently difficult questions: Some questions are even difficult for human to
correctly classify them. For example consider the question “What is the name of
the Lion King’s son in the movie the Lion King ?”. Classifying this question to type
“animal” is even difficult for human.

3. POS tagger and WordNet expansion error: The pos taggers, parsers and
WordNet expanders are not infallible and it happens that they have errors or intro-
duce noisy information. For example consider the question “What U.S. Government
agency registers trademarks ?”. The pos tagger may tag this question as follow:

“What WP U.S. NNP Government NN agency NN registers NNS
trademarks NNS ? .”

which incorrectly tags the word “registers” as plural noun. Consequently, the head-
word will be misidentified to “trademarks” instead of “agency” and the incorrect
headword will be expanded by WordNet which can lead to misclassification.

4. WordNet insufficiencies: Although expansion of the questions headword with
WordNet can improve classification accuracy, it always introduces a certain amount
of noise to the feature vector. Sometimes this noise can cause the question to be
misclassified. For example the question “What do bats eat ?” can be correctly
classified to “ENTY:food” using unigram features but when it’s headword, “bats”,
is expanded via WordNet, it introduce noisy information which leads the question
to be misclassified to “ENTY:sport”.

The above misclassification causes reveal that most of the errors are due to difficulties
in understanding the question. We found that some types of questions are more difficult to
be classified compare to the others. Based on the confusion matrix of the tested samples,
we found that classifying samples of type “ENTY” and “LOC” in trec dataset, is more
difficult compare to other 4 categories of coarse grained classes. Tables 4.14 and 4.15
show the confusion matrix of the trec dataset for coarse grained classes based on svm
and bpnn classifiers, and table 4.16 lists the precision and recall of the coarse grained
classes.

Huang et al. (2008) performed a detailed analysis on trec dataset and discovered that
“what” type questions are more difficult to classify compare to other type of questions.
The reasons mainly back to the ambiguity on classifying “what” type questions which is
not the case for other type of questions. For example the question “What is mad cow
disease ?” can be both classified to “ENTY:disease” and “DESC:def’. Huang et al. (2008)
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Table 4.14: Confusion matrix showing the classifications of the trec dataset for the coarse
categories based on svm classifier

Predicted labels
ABBR:* DESC:* ENTY:* HUM:* LOC:* NUM:*

True

ABBR:* 9
DESC:* 134 2 1 1
ENTY:* 10 83 1
HUM:* 1 1 63
LOC:* 1 9 71
NUM:* 3 2 108

Table 4.15: Confusion matrix showing the classifications of the trec dataset for the coarse
categories based on bpnn classifier

Predicted labels
ABBR:* DESC:* ENTY:* HUM:* LOC:* NUM:*

True

ABBR:* 6 3
DESC:* 130 4 1 1 2
ENTY:* 6 84 3 1
HUM:* 1 3 61
LOC:* 1 1 10 2 67
NUM:* 1 4 107

also listed inconsistent labeling and parse errors as two other reasons of misclassifying
“what” type questions. Table 4.17 lists the classification accuracy on trec test set based
on question types and two different classifiers. As it can be seen in this table, most of the
questions are of the type “what” while they are the most difficult questions to be correctly
classified.

4.5 Summary

In this chapter we explained the detailed steps of our experiments. We first tuned the
parameters of our classifiers and then extracted different features and combined them with
different approaches.

We found that extracting features from syntax and semantic of questions can improve
the classification accuracy by adding more information to the feature vectors.

We found that out weighted method for combining features can improve the classifica-
tion accuracy. Furthermore, we found that using neural network classifier, the lsa feature
reduction technique can improve the classification accuracy.

By a detailed exploration of our dataset, we found that the questions which are of
type “ENTY” are harder to classify compare to the other type of questions. This is most
likely due to lack of samples in this class. We expect that by increasing the size of training
data, the classification accuracy of these type of questions also increases. Furthermore,
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Table 4.16: Precision and Recall of coarse grained classes of trec dataset based on svm
and bpnn classifiers

ABBR DESC ENTY HUM LOC NUM

SVM
Precision 100% 89.9% 85.6% 98.4% 98.6% 99.1%
Recall 100% 97.1% 88.3% 96.9% 87.6% 95.6%

BPNN
Precision 85.7% 91.5% 80.0% 91.0% 98.5% 97.2%
Recall 66.6% 94.2% 89.3% 93.8% 82.7% 95.6%

Table 4.17: Classification accuracy of svm and me classifiers based on question types.
The results are taken from Huang et al. (2008)

Question type #Questions Coarse Fine

SVM ME SVM ME

what 349 90.5% 91.1% 86.2% 86%
which 11 100% 100% 90.9% 100%
when 26 100% 100% 100% 100%
where 27 100% 100% 92.6% 92.6%
who 47 100% 100% 100% 100%
how 34 100% 100% 97.1% 91.2%
why 4 100% 100% 100% 100%
rest 2 100% 50.0% 0.0% 50.0%

classifying the what type questions are more difficult than other type of questions. The
reason lie on the fact that the “what” wh-word is less informative than other wh-questions.
In other words, a broader type of questions are start by “what”, compare to other wh-
words such as “when” and “why”.



Chapter 5

Related Work

5.1 Introduction

Question classification problem has already been studied in many previous works. In
this chapter we review some previous works on question classification together with their
results. We first overview the supervised learning methods which have been used in
question classification in section 5.2. In section 5.3 we mention some other features which
are used in other studies, in addition to the features that we used. We then compare
different supervised learning studies with our work in section 5.4. In section 5.5 we review
some semi-supervised approaches on question classification.

5.2 Supervised Learning Approaches in Question Classifi-
cation

Most of the recent works on question classification are based on a supervised learning
method. Supervised learning approaches learn a classifier from a given training set con-
sisting of labeled questions. Supervised methods mainly differ in the classification model
and the features which are extracted from questions.

The choice of classifier highly influences the final question classifier system. Different
studies choose different classifiers. Support Vector Machines (svm), Maximum Entropy
Models and Sparse Network of Winnows (snow) are the most widely used classifiers in
question classification. Some studies used language modeling for question classification.
A few studies adopted other types of classifiers. In this section we categorized different
studies based on the classifiers they used and briefly describe each classifier in different
subsections.

5.2.1 Support Vector Machines

Support vector machines are non-probabilistic learning models for classifying data. They
are especially successful for high dimensional data. svm is a linear discriminant model
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which tries to find a hyperplane with maximum margin for separating the classes. The
detailed explanation of svms can be found on chapter 3.

5.2.2 Advanced Kernel Methods

Some studies adopt svms with customized kernel function. Zhang and Lee (2003) defined
a tree kernel which is constructed based on the syntactical structure of question. In their
approach, a given question first is parsed to its syntactic tree and then the question will be
represented based on some tree fragments which are subtrees of the original syntax tree.
They define a custom kernel function which maps the feature vector to a higher dimension
space. In section 4.2 we will further discuss the syntactical structure of a question.

A similar approach is used to define kernel function in the study of Pan et al. (2008).
They defined a semantic tree kernel which is obtained by measuring the semantic similar-
ities of tree fragments using semantic features. They reported an accuracy of 94.0% on
coarse-grained classes while Zhang and Lee (2003) obtained an accuracy of 90.0% on the
same dataset.

Kernel methods have also been applied in semi-supervised style. Tomas and Giuliano
(2009) defined a semantic kernel for question classification which is obtained by using
unlabeled text. They used latent semantic indexing method (Deerwester et al., 1990) to
reduce the feature space to much more effective space by defining a latent semantic kernel.

In their experiment, Tomas and Giuliano (2009) reduced the feature space to 400
dimensions. They also defined a semantic kernel function based on a manually constructed
list of related words. The semantic related kernel KRel is defined as follow:

KRel(xi,xj) = xiPPTxT
j = x́ix́

T
j (5.1)

where P is proximity matrix which reflects the similarity between the words in the list.
Tomas and Giuliano (2009) do their experiment on trec dataset by applying different
kernels on the input feature space. Table 5.1 lists the accuracy of their experiment on
trec dataset with different combination of kernels (KLS is the latent semantic and Kbow

is the bag-of-words kernel). The best result is obtained by combination of all three kernels.

Table 5.1: The accuracy of kernel methods on trec dataset based on different kernel
functions. The results are taken from Tomas and Giuliano (2009)

Kernel Accuracy

Coarse Fine

Kbow 86.4% 80.8%
KLS 70.4% 71.2%
Kbow +KLS 90.0% 83.2%
Kbow +KRel 89.4% 84.0%
Kbow +KLS +KRel 90.8% 85.6%
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5.2.3 Maximum Entropy Models

Maximum Entropy (me) models which are also known as Log Linear models is another
successful classifier used in question classification. In contrast to svms, maximum-entropy
model is an statistical approach which can calculate the probability of belonging to each
class for a given sample. Additionally, me models can be used for multiple class assign-
ment strategy (see equation 2.1) while svms can only be used for single class assignment.
Furthermore the uncertainty of the assigned label can be used later to rank the final
answer.

me models are very useful when there are many overlapping features, i.e., when the
features are highly correlated. In the case of question classification as you will see in the
next section, it often happens that features are very dependent.

In memodel the probability that sample xi belongs to class yj is calculated as following
(Berger et al., 1996):

p(yj |xi, λ) =
1

Z(xi|λ)
exp

n∑
k=1

λkfk(xi, yj) (5.2)

where fk is feature indicator function which is usually binary-valued function defined
for each feature; λk is weight parameter which specifies the importance of fk(xi, yj) in
prediction and Z(xi|λ) is a normalization function which is determined by the requirement∑

j p(yj |xi, λ) = 1 for all xi:

Z(xi|λ) =
∑
j

exp

n∑
k=1

λkfk(xi, yj) (5.3)

Typically, in question classification fk is a binary function of questions and labels and
defined by conjunction of class label and predicate features (Blunsom et al., 2006). The
following equation is a sample of feature indicator function in question classification:

fk(x, y) =

{
1 if word who in x & y=HUM:individual
0 otherwise

(5.4)

To learn the parameters of the model (λ), me tries to maximize the log-likelihood of
the training samples:

LL =
∑
i

log
exp

∑N
k=1 λkf(xi, yi)∑

j exp
∑N

k=1 λkf(xi, yj)
(5.5)

where N is number of features, xi is the ith training sample, yi is its label respectively.
To avoid overfitting in me model, usually a prior distribution of the model parameters is
also added to the above equation. Blunsom et al. (2006) defined a Gaussian prior in their
model:

p(λk) =
1√
2πσ2

exp(−
λ2k
2σ2

) (5.6)
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By considering the Gaussian prior, the log-likelihood objective function will be as
follows:

LL =
n∑

i=1

log
exp

∑N
k=1 λkfk(xi, yi)∑

j exp
∑N

k=1 λkfk(xi, yj)
+

n∑
k=1

log p(λk) (5.7)

The optimal parameters of the model (λ) will be obtained by maximizing the above
equation.

Several studies adopted me model in their work. Kocik (2004) did his experiment on
trec dataset and obtained accuracy of 85.4% on fine and 89.8% on coarse-grained classes.
By extracting better features, Blunsom et al. (2006) reached an accuracy of 86.6% on fine-
grained and 92.0% on coarse-grained classes on same dataset. In more recent work, Huang
et al. (2008) yet obtained better results due to better feature extraction techniques. They
reached an accuracy of 89.0% on fine and 93.6% on coarse-grained classes on the same
dataset.

Le Nguyen et al. (2007) proposed a sub-tree mining approach for question classification.
In their approach a question is parsed and the subtrees of the parsed tree are considered
as features. They used me model for classification and reported an accuracy of 83.6% on
the fine-grained classes of trec dataset. They used more compact feature space compare
to other works. With same feature space their result outperforms the svm with tree kernel
(Zhang and Lee, 2003).

5.2.4 Sparse Network of Winnows

Sparse Network of Winnows (snow) is a multi-class learning architecture which is spe-
cially useful for learning in high dimensional space (Roth, 1998). It learns separate linear
function for each class. The linear functions are learned by an update rule. Several up-
date rules such as naive Bayes, Perceptron and Winnow (Littlestone, 1988) can be used
to learn the linear functions.

Li and Roth (2002, 2004) used snow architecture to learn a question classifier. They
introduced a hierarchical classifier which first assigns a coarse label to a question and then
uses the assigned label together with other features, as input features for the next level
classifier.

Similar to me model, snow can assign density values (probabilities) to each class for
a given sample and therefore make it possible to assign multiple labels to a given sample
(equation 2.1). Li and Roth (2002, 2004) used the multiple class assignment strategy
in their model. They used same model in both studies but in the latter they extracted
reacher semantic features. They obtained an accuracy of 89.3% on fine-grained classes
of trec dataset in the latter work. They also reported an accuracy of 95.0% on fine
and 98.0% on coarse-grained classes when multiple labels can be assigned to a question
according to decision model in equation 2.1.
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5.2.5 Language Modeling

The basic idea of language modeling is that every piece of text can be viewed as being
generated by a language. Language modeling has been widely used for document classifi-
cation (Ponte and Croft, 1998; Jurafsky and Martin, 2008). The idea is that a documentD
is viewed as a sequence w1, ..., wN of words and the probability of generating this sequence
is calculated for each class. The class label is determined using the Bayes rule.

Same idea have been used for question classification (Li, 1999; Murdock and Croft,
2002; Merkel and Klakow, 2007). A question x can be viewed as a sequence w1, ..., wm of
words such that wi is the i

th word in the question. In fact a question can be viewed as a
mini-document. The probability of generating question x by a language model given class
c, can be calculated as follow:

p(x|c) = p(w1|c)p(w2|c, w1)...p(wn|c, w1, ..., wm−1) (5.8)

such that p(wi|c, w1, ..., wi−1) is the probability that the word wi appears after the sequence
of w1, ..., wi−1 given class c. Since learning all these probabilities needs a huge amount
of data usually a unigram assumption is made to calculate the probabilities, i.e., the
probability of appearing wi in a question only depends on the immediate words before wi.
Applying this assumption to (5.8) will lead to the following simpler form:

p(x|c) =
m∏
i=1

p(wi|c, wi−1) (5.9)

The most probable label is determined by applying the Bayes rule:

ĉ = argmax
c
p(x|c)p(c) (5.10)

where p(c) is the prior probability of class c which usually is calculated as a unigram lan-
guage model on the specific class c (Merkel and Klakow, 2007) or can simply be considered
equal for all classes (Zhai and Lafferty, 2001).

Li (1999) used this approach for question classification. He compared the result of
language modeling classification with a rule based regular expression method on the old
trec dataset and the results reveal that language modeling approach perform much bet-
ter than traditional regular expression method. Merkel and Klakow (2007) proposed same
approach for question classification and reported an accuracy of 80.8% on trec dataset.
The main difference of language modeling method compare to other classification ap-
proaches is that there is no need to extract complex features from a question. To obtain
better results, it would be useful if the language model is trained with larger training sets.

5.2.6 Other Classifiers

In addition to the mentioned classifiers, other types of classifiers have also been used
for question classification. Li et al. (2008) adopted the svm together with Conditional
Random Fields (crfs) for question classification. crfs are a type of discriminative prob-
abilistic model which is used for labeling sequential data. In the model proposed by Li
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et al. (2008), a question is considered as a sequence of semantically related words. They
use crfs to label all the words in a question and the label of the head word is considered as
the question class (head word extraction is described in section 4). Their approach differs
with other question classification approaches in the sense that a question is considered as
sequential data. Therefore it can extract features from transition between states as well
as other common syntactic and semantic features. They reported an accuracy of 85.6%
on fine-grained classes of trec dataset.

Zhang and Lee (2003) compared the accuracy of question classification by 5 different
classifiers on same feature space. They compared svms with Nearest Neighbor (nn), Naive
Bayes (nb), Decision Tree (dt) and snow among which svm performed the best. Their
results on fine-grained classes of trec dataset is listed in table 5.2.

Table 5.2: The accuracy of 5 different classifiers on trec dataset with bag-of-word features; taken
from Zhang and Lee (2003)

Approach Accuracy(fine) Accuracy(coarse)

NN 68.4% 75.6%
NB 58.4% 77.4%
DT 77.0% 84.2%
SNoW 74.0% 66.8%
SVM 80.2% 85.8%

The results from table 5.2 reveal that svms perform better compare to other classifiers
when same feature space are used. However, depending on the extracted features, other
classifiers may perform better. For example svms perform better rather than me when
semantic features are used (Huang et al., 2008), but on the other hand me shows better
performance when syntactical sub-trees are used as features (Le Nguyen et al., 2007).
Therefore no specific classifier can always be preferred to other classifiers for question
classification. Depending on feature space and other parameters, the optimal classifier
can be different.

5.2.7 Combining Classifiers

Question classification has also been studied by combining different classifiers. Combina-
tion of classifiers can be done by different approaches. Xin et al. (2005) trained four svm
classifier based on four different type of features and combined them with various strate-
gies. They compared Adaboost, (Schapire, 1999), Neural Networks and Transition-Based
Learning (tbl) (Brill, 1995) combination methods on the trained classifiers. Their result
on trec dataset reveals that using tbl combination method can improve classification
accuracy upto 1.6% compare to a single classifier which is trained on all features.
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5.3 Features

Different studies extracted different lexical, syntactical and semantic features. In addition
to the features that we mentioned in chapter 3, still there are some features that are used
in other works. Blunsom et al. (2006) introduced question’s length as a separate lexical
feature. It is simply the number of words in a question. For example for the question
“How many Grammys did Michael Jackson win in 1983 ?” the following feature represents
the question-length features based on the vector space model:

{(question-len, 10)} (5.11)

Different syntactical features are also extracted in different studies. Some studies
added the pos tags of all the word in the feature vector and consider this as a feature set.
This feature set is also referred as bag-of-pos tags. For the same question its bag-of-pos
features are as follow:

{(WRB, 1) (JJ, 1) (NNPS, 1) (VBD, 1) (NNP, 1) (NNP, 1) (VBP, 1) (IN, 1) (CD, 1)}
(5.12)

In addition to the mentioned syntactic features, Blunsom et al. (2006) also considered
the pos tag of the headword as a separate feature. Li and Roth (2004) introduced head
chunk as a syntactical feature. The first noun chunk and the first verb chunk after the
question word are considered as head chunk. For example for the question “What is the
oldest city in Canada ?” the first noun chunk is “the oldest city in Canada” since it is
the first noun phrase appearing after question word.

Krishnan et al. (2005) introduced a feature namely informer span which is defined
as short subsequent of words that are adequate clue for question classification. They
extract it based on a sequential graphical model with features derived from parse tree.
For example for the question “What is the tallest mountain in the world ?” the informer
span is “tallest mountain”. Informer span and head chunks features are added to feature
vector in the same way as unigrams, i.e., all the words in head chunk or informer span
are considered as a feature (table 3.5). Williams (2010) also considered the bigram and
trigram of informer span as separate features.

Head chunks and informer span are very similar to headwords but they are usually a
sequence of words instead of a single word. The extra words usually can introduce noisy
information leading to lower accuracy rate. For example consider the question “What is
a group of turkeys called ?”. The headword of this question is “turkeys” while both head
chunk and informer span are “group of turkeys” (Huang et al., 2008). The word “turkeys”
can truly contribute to the classification of type ENTY:animal while the word group can
mislead the classifier to classify this question to HUM:group. Therefore usually a single
and exact headword is preferred to head chunk or informer span.

Xin et al. (2005) introduced a feature namely words dependency which is extracted
using syntactical structure of question. Dependent words are very similar to Bigram but
they are not limited to consecutive words. For example in the question “Which company
created the Internet browser Mosaic ?”, “Internet” and “Mosaic” are two dependent word
that can not be determined by Bigram. Dependency features are treated similar to Bigram
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when they added to feature vector. In the mentioned example “Internet-Mosaic” is a single
feature that can be added to feature vector.

In addition to the semantic features that we used in this work, there are still some
semantic features which are used in other studies. Since they are not powerful features for
question classification, we have not used them in our work. One of these features which is
used in some studies (Li and Roth, 2004; Blunsom et al., 2006) is named entities. Named
entities are semantic categories which can be assigned to some words in a given sentence.

Successful approaches such as Markov Models (Punyakanok and Roth, 2001) and un-
supervised methods (Collins and Singer, 1999) have been employed for Named Entity
Recognition (ner). Punyakanok and Roth (2001) introduced 34 semantic categories for
named entity recognition and reported an accuracy of more than 90.0% on determining
named entities. For example for the question “Who was the first woman killed in Vietnam
War ?”, their ner system identifies the following named entities: “Who was the [number
first] woman killed in [event Vietnam War] ?”

In question classification the identified named entities can be added to the feature vec-
tor. Based on the representation (3.20) the named entity features for the aforementioned
sample will be as follow: {(number, 1) (event, 1)}.

Blunsom et al. (2006) considered the named entity of the headword as a separate
feature set due to importance of this word.

In addition to the mentioned semantic features, some studies indirectly used WordNet
to extract semantic features. Huang et al. (2008) measured the similarity of question’s
headword with all question classes using WordNet hierarchy and considers the most similar
category as a semantic feature.

Li and Roth (2004) uses WordNet to extract synonyms of the context words of a
question and adds them to feature vector. Ray et al. (2010) uses Wikipedia to find the
description of the words in a question and identifies semantic categories (named entities)
of them with a rule-based algorithm

Table 5.3 lists the semantic features discussed in this section for the sample question
“What is the oldest city in Canada ?”. The features are represented same as equation
(3.20). Note that if a feature value is larger than 1, it means that the corresponding feature
is extracted from more than one word. For example in the mentioned sample there are
two different words (city and Canada) both have name entity “location”. Therefore the
named entity features of this question will be {(location, 2)}.

Table 5.3: Example of semantic features

Feature Space Features

named entities {(location, 2)}

headword named entity {(location, 1)}

indirect hypernym {(LOC:city, 1)}
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5.4 Comparison of Supervised Learning Approaches

All the methods described till now are supervised learning approaches which mainly differ
in the classifier they used and the features they extract. Table 5.4 compares some studies
on supervised learning question classification with our work. All of these studies uses
trec dataset for evaluation. Our weighted approach to combine features achieves the
highest accuracy.

From the result in table 5.4 it is not easy to say which classifier or which combination of
features is the best choice for question classification as each method has its own advantages
and disadvantages. It is however obvious that when the classifiers are trained on a richer
feature space (not necessarily higher dimensional feature space), they can give a better
performance. Syntactical and semantic features can usually add more information to
feature space and improve classification accuracy. Since features in question classification
are very dependent, usually combining all features together is not an optimal choice of
features and depending on the decision model the best combination of features can be
differ.

5.5 Semi-Supervised Learning in Question Classification

Providing labeled questions is a costly process since it needs human effort to manually
label questions while unlabeled question can be easily obtained from many web resources.
Semi-supervised learning tries to exploit unlabeled information as well as labeled data. In
this section we introduced semi-supervised techniques which have been used for question
classification.

5.5.1 Co-Training

A successful semi-supervised learning algorithm which is widely used in natural language
processing is Co-training (Blum and Mitchell, 1998). Consider we are given a training set
D which consist of a labeled part {(xi, yi)}li=1 and unlabeled part {xj}l+u

j=l+1. Co-training

makes the strong assumption that each instance xi has two views: xi = [x
(1)
i ,x

(2)
i ] such

that each view consists of separate features. The co-training algorithm trains two different
classifiers with labeled data for each view. The remaining unlabeled samples are classified
with both classifiers and the top most-confident predictions of first view will be added to
the labeled samples of second view and vice versa. The classifiers then will be re-trained
and the same process continues until all unlabeled samples are used up. Algorithm 3 lists
the co-training style semi-supervised learning (Zhu and Goldberg, 2009).

Yu et al. (2010) applied co-training to question classification. They adopted two tree-
based classifiers each of which are trained based on separate features. Their result on a
Chinese questions dataset reveals that under 40% rate of unlabeled data, the classification
accuracy can improve up to 4 percent compare to supervised approach.

A slightly different version of co-training which have also been used in question clas-
sification is Tri-training (Li et al., 2008). Tri-training uses 3 classifiers instead of two. If
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Algorithm 3 Co-training Algorithm

input labeled data {(xi, yi)}li=1 and unlabeled data {xj}l+u
j=l+1, a learning rate k

L1 = L2 = {(x1, y1), ..., (xl, yl)}
repeat

train a view-1 classifier f (1) from L1 and a view-2 classifier f (2) from L2

classify the remaining unlabeled data with f (1) and f (2) separately
add top k most-confident prediction (x, f (1)(x)) to L2

add top k most-confident prediction (x, f (2)(x)) to L1

remove the added samples from unlabeled data
until unlabeled data is used up

two of the three classifiers agree to label an unlabeled instance, that instance is used for
re-training other classifier.

Thanh et al. (2008) adopted tri-training for question classification. In their experiment
they trained tree different classifiers: the first classifier is an svm classifier with bag-
of-word features, the second is another svm classifier with bag-of-pos features and the
third classifier is a maximum entropy classifier with both bag-of-words and bag-of-pos
features. They divided trec dataset into labeled and unlabeled parts. They compared
the classification accuracy when only labeled instances are used with the situation where
both labeled and unlabeled instances are used. The result shows that irrespective to
the ratio of unlabeled data, the classification accuracy always increases when unlabeled
samples are exploited. Table 5.5 lists the classification accuracy on trec dataset when
only labeled data is used and when both labeled and unlabeled data are used with tri-
training algorithm.

5.6 Summary

In this chapter we introduced some related studies on question classification. The nu-
merous studies on question classification show the importance of this problem in question
answering systems. We briefly introduced different statistical learning approaches which
have been used in other works together with features which have been extracted in differ-
ent studies.

We compared the performance of related works with our work based on their accuracy
on the standard trec dataset. Our linear svm classifier achieved the highest accuracy on
this task. Furthermore, we tried to represent the question as much compact as possible.
Our bpnn classifier achieves a competitive accuracy compare to other works, given that
it only uses 400 features which is much less than the size of feature space in other works.



5.6. Summary 59

Table 5.4: Comparison of different supervised learning studies on question classification
on trec dataset. The abbreviation of features are:
U: Unigrams, B: Bigrams, LB: Limited-Bigrams, T: Trigrams, NG: N-grams, WH:
Wh-word, WS: Word-Shapes, L: Question-Length, P: POS-tags, H: Headword, HC:
Head-Chunk, IS: Informer-Span, HY: Hypernyms, IH: Indirect-Hypernyms, QE: Query-
Expansion, QC: Question-Category, S: Synonyms, NE: Name-Entities, R: Related-Words

Study Classifier Features Accuracy

Coarse Fine

Li and Roth (2002) SNoW U+P+HC+NE+R 91.0% 84.2%

Zhang and Lee (2003) Tree kernel SVM U+NG 90.0% -

Li and Roth (2004) SNoW U+P+HC+NE+R+S - 89.3%

Metzler et al. (2005) RBF kernel SVM U+B+H+HY 90.2% 83.6%

Krishnan et al. (2005) Linear SVM U+B+T+IS+HY 94.2% 88.0%

Blunsom et al. (2006) ME U+B+T+P+H+NE+more 92.6% 86.6%

Merkel et al. (2007) Language U+B - 80.8%
Modeling

Li et al. (2008) SVM+CRF U+L+P+H+HY+NE+S - 85.6%

Pan et al. (2008) Semantic tree U+NE+S+IH 94.0% -
kernel SVM

Huang et al. (2008) ME U+WH+WS+H+HY+IH 93.6% 89.0%

Huang et al. (2008) Linear SVM U+WH+WS+H+HY+IH 93.4% 89.2%

Silva et al. (2011) Linear SVM U+H+HY+IH+more 95.0% 90.8%

Loni et al. (2011) Linear SVM U+B+WS+H+HY+R 93.6% 89.0%

This Work Linear SVM U+B+WS+H+QE+QC+R 94.8% 91.0%

This Work BPNN WH+LB+WS+H+R 93.8% -

Table 5.5: Comparison of classification accuracy of supervised and semi-supervised learn-
ing based on different ratio of unlabeled data.

no. labeled no. unlabeled Supervised Tri-training

1000 4452 71.0% 71.2%
2000 3452 76.4% 78.2%
3000 2452 79.0% 79.2%
4000 1452 80.8% 81.4%
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Question classification is a hard problem. In fact the machine needs to understand the
question and classify it to the right category. This is done by a series of complicated steps.
In this work we extracted 12 different lexical, syntactical and semantic features and used
two different classifiers, support vector machines and back-propagation neural networks,
to classify a natural language question to a pre-defined category.

Enhancing the feature space with syntactic and semantic features can usually improve
the classification accuracy. However, augmenting the feature space with more complicated
features can sometimes introduce noisy information to the feature space leading to mis-
classification. Furthermore, due to high correlation of syntactical and semantic features,
combining all possible feature spaces does not necessarily lead to higher classification
accuracy.

In this work we found that semantic information which is obtained from third party
sources are in fact useful to better classify questions. However they can also add redundant
information to the feature vectors. To reduce the influence of redundant features and to
intensify the influence of useful features, our weighted mechanism is employed.

In this work we tested different combination of features to see the contribution and
influence of each feature set in classification accuracy. We introduced two enhanced semitic
features namely query-expansion and question-category. These features perform better
than similar semantic features such as hypernyms which introduced in Huang et al. (2008).
Furthermore, we introduced a weighted approach to combine different lexical, syntactical
and semantic features in an optimal way. Our weighted method also improves the accuracy
of classification. In fact, considering a weight parameter for features which reflects the
importance of features can better represent the questions. Our query-expansion feature
set also benefits from this assumption.

In this work we used neural networks for question classification for the first time. Our
back-propagation neural network classifier performed better than the linear svm, on the
reduced space for the coarse grained classes.

An interesting result that we obtained from the lsa feature reduction technique is
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that when the original feature space is compact, its reduced space performs better than a
rich feature space with many dimensions. In fact reducing a compact feature space to a
smaller space can loose less information while the redundant information is removed.

Analyzing the misclassification causes reveals that “what” type questions are typically
more difficult to be classified compare to other type of questions. More accurate feature
extraction techniques are needed to deal with this type of questions. Similar to the study
of Li et al. (2008), a separate classifier can be used for classifying what type questions.

Analysis of the results also reveals that some samples which are misclassified by a
particular classifier can be correctly classified when another classifier is used. A dynamic
classifier selection approach can be applied for qc problem in future works to deal with
this issue.

6.2 Future Works

Question classification still attracts a notable amount of research and different extension to
this work can be made. One possible extension to the current works is to extract features in
a dynamic way so that the questions which have enough information for classification not
been expanded by more complicated features. For example, we found a few samples which
are correctly classified with simple unigrams but they are misclassified when semantic
features are added to them. It is of course not simple for our classifier to decide which
samples are augmented with semantic features and which not, but one can for example
introduce a confident value for the assigned label and using this value, only the samples
whose confident is lower than a threshold are expanded with semantic features.

Another extension to this work is to augment our latent semantic space with semantic
information from third party sources to make our semantic space more informative. Our
weighted method can also be applied in the latent semantic space to reflect the importance
of features in the reduced space. Also a combination of original and latent semantic space
can be examined in the future works. For example for the high dimensional features
such as unigrams and bigrams we can apply the lsa technique to reduce them to a small
space and then combine this space with low dimensional features such as word-shapes,
head-words and related words.

In this work we obtained better performance by combining different feature sets. Com-
bining different classifiers can also be done in future studies to see whether they can
improve classification accuracy or not. For example,we found some samples which are
misclassified with our svm classifier while they are correctly classified with our bpnn clas-
sifier. Classifier combination strategies such as dynamic classifier selection can be used to
benefit from both classifiers.

Exploiting unlabeled data with semi-supervised approaches can usually improve the
classification accuracy. It should be noticed that unlabeled information can sometimes
introduce noisy samples to the training samples and this noise can be amplified by re-
training the classifiers. Therefore semi-supervised approaches should always been used
with a proper percentage of labeled and unlabeled samples on a certain amount of confi-
dent. The co-training method has been successfully applied on question classification. It is
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still possible to apply other semi-supervised approaches such as expectation maximization
on question classification to see whether they are useful for this task or not.

The problem of question classification still is in the cutting edge of question answering
systems. By extracting richer set of features and improving current feature extraction
techniques together with more advance techniques such as semi-supervised learning, we
hope that more powerful systems can be developed for question classification.
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Appendices

Appendix A: Part of Speech Tags

Tables 1, 2 and 3 list clause-level, phrase-level and word-level pos tags of English grammar,
respectively1. Bies (1995) provided a detailed overview of English pos tags and their
application in natural language parsing.

Table 1: The list of clauses-level pos tags

1 S simple declarative clause
2 SBAR Clause introduced by a (possibly empty) subordinating conjunction
3 SBARQ Direct question introduced by a wh-word or a wh-phrase
4 SINV Inverted declarative sentence
5 SQ Inverted yes-no question, or main clause of a wh-question,

following the wh-phrase in SBARQ

1http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
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Table 2: The list of phrase-level pos tags

1 ADJP Adjective Phrase
2 ADVP Adverb Phrase
3 CONJP Conjunction Phrase
4 FRAG Fragment
5 INTJ Interjection
6 LST List marker
7 NAC Not a Constituent
8 NP Noun Phrase
9 NX Used within certain complex NPs to mark the head of the NP
10 PP Prepositional Phrase
11 PRN Parenthetical
12 PRT Particle Category for words that should be tagged RP
13 QP Quantifier Phrase
14 RRC Reduced Relative Clause
15 UCP Unlike Coordinated Phrase
16 VP Vereb Phrase
17 WHADJP Wh-adjective Phrase
18 WHAVP Wh-adverb Phrase
19 WHNP Wh-noun Phrase
20 WHPP Wh-prepositional Phrase
21 X Unknown, uncertain, or unbracketable
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Table 3: The list of word-level pos tags

1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential ”there”
5 FW foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP proper noun, singular
15 NNPS proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PP Personal pronoun
19 PP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO “to”
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rdperson singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverb
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