Laboratory evolution and physiological analysis of Saccharomyces cerevisiae strains dependent on sucrose uptake via the Phaseolus vulgaris Suf1 transporter

Marques, Wesley; van der Woude, Lara; Luttik, Marijke; van den Broek, Marcel; Nijenhuis, Janine Margriet; Pronk, Jack; van Maris, Ton; Mans, Robert; Gombert, Andreas K.

DOI
10.1002/yea.3357

Publication date
2018

Document Version
Accepted author manuscript

Published in
Yeast

Citation (APA)
https://doi.org/10.1002/yea.3357

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.
Laboratory evolution and physiological analysis of *Saccharomyces cerevisiae* strains dependent on sucrose uptake via the *Phaseolus vulgaris* Suf1 transporter

Wesley Leoricy Marques\(^a,b\), Lara Nin van der Woude\(^a\), Marijke A. H. Luttik\(^a\), Marcel van den Broek\(^a\), Janine Margriet Nijenhuis\(^a\), Jack T. Pronk\(^a\), Antonius J. A. van Maris\(^a,1\), Robert Mans\(^a\), Andreas K. Gombert\(^b,\ast\)

\(^a\) Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands

\(^b\) School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas-SP 13083-862, Brazil

\(^1\)Current address: Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 106 91 Stockholm, Sweden

\(^\ast\)corresponding author. Email: gombert@unicamp.br
ABSTRACT

Knowledge on the genetic factors important for efficient expression of plant transporters in yeast is still very limited. Here, we investigated if laboratory evolution could improve the expression a sucrose transporter in yeast and which mutations were crucial for the evolved phenotype. *Pvsuf1* (*Phaseolus vulgaris* sucrose facilitator 1) was key in a previously published strategy aimed at increasing ATP yield in *S. cerevisiae* since it has been described as an uniporter. However, attempts to construct yeast strains in which sucrose metabolism was dependent on *Pvsuf1* led to slow sucrose uptake. Here, *Pvsuf1*-dependent *S. cerevisiae* strains were evolved for faster growth. Of five independently evolved strains, two showed an approximately two-fold higher anaerobic growth rate on sucrose than the parental strain (*μ* = 0.19 h⁻¹ and *μ* = 0.08 h⁻¹, respectively). All five mutants displayed sucrose-induced proton uptake (13-50 μmol H⁺ (g biomass)⁻¹ min⁻¹). Their ATP yield from sucrose dissimilation, as estimated from biomass yields in anaerobic chemostat cultures, was the same as that of a congenic strain expressing the native sucrose symporter Mal11p. Four out of six observed amino acid substitutions encoded by evolved *Pvsuf1* alleles removed or introduced a cysteine residue and may be involved in transporter folding and/or oligomerization. Expression of one of the evolved *Pvsuf1* alleles (*Pvsuf1*¹²⁰⁹F C²⁶⁵F G³²⁶C) in an unevolved strain enabled it to grow on sucrose at the same rate (0.19 h⁻¹) as the corresponding evolved strain. This study shows how laboratory evolution can be used to improve sucrose uptake via heterologous plant transporters; sheds light into the importance of cysteine residues for efficient plant transporter expression in yeast and warrant reinvestigation of *Pvsuf1*’s mechanism in a plant context.

KEY WORDS: plant transporter expression, laboratory evolution, yeast physiology, plant sucrose facilitator, sucrose uptake.
INTRODUCTION
Sucrose (α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside) is an intensively used carbon source in microbial biotechnology (Maiorella, Blanch, & Wilke, 1984; Marques, Raghavendran, Stambuk, & Gombert, 2016; Peters, Rose, & Moser, 2010) and plays a vital role as a carbon and energy carrier in plants (Salerno & Curatti, 2003). In plants, sucrose exits source cells via plasmodesmata as well as via membrane transport mediated by sucrose uniporters (Doidy et al., 2012).

In Saccharomyces cerevisiae, a yeast employed in many different industrial bioprocesses, the predominant pathway for sucrose catabolism starts with its extracellular hydrolysis, catalysed by invertase. The free energy available from sucrose hydrolysis ($\Delta G^0 = -29 \text{ kJ/mol}$) (Goldberg, Tewari, & Ahluwalia, 1989) is not conserved by the yeast cells. The resulting monomers glucose and fructose are subsequently transported into the cells by facilitated diffusion. Alternatively, after its uptake via proton symporters, sucrose can also be hydrolysed in the cytosol (Marques et al., 2017; Stambuk, Silva, Panek, & Araujo, 1999).

Inspired by previous studies on free-energy conservation by S. cerevisiae during maltose consumption (de Kok et al., 2011), Marques et al. (2018) replaced yeast invertase by an intracellular sucrose phosphorylase from the bacterium Leuconostoc mesenteroides. Sucrose phosphorylase converts sucrose and inorganic phosphate into fructose and glucose-1-phosphate (glucose-1P) (Weimberg & Doudoroff, 1954), which can subsequently be isomerised to glucose-6P via the S. cerevisiae phosphoglucomutase (Pgm2). By circumventing the ATP-requiring hexokinase reaction for one of the monomers, this phosphorolysis pathway saves one mole of ATP per mole of sucrose consumed. However, since phosphorolysis takes place in the cytosol and uptake of sucrose in yeast involves proton symport via α-glucoside transporters (e.g. Mal11, Mal21, Mal31, Mph2, Mph3) (Badotti et al., 2008; Stambuk et al., 1999), protons have to be exported back to the extracellular space via plasma membrane H⁺-ATPase (Pma1), which has a H⁺/ATP stoichiometry of 1:1 (Van Leeuwen, Weusthuis, Postma, Van den Broek, & Van Dijken, 1992). For this reason, the overall free-energy conservation in the engineered 'phosphorolytic'
strain did not change relative to a wild-type strain: in both cases, anaerobic fermentation of sucrose yielded 4 mol ATP per mol of sucrose. To gain one additional mol of ATP per mol of sucrose consumed, the native sucrose transporters should be replaced by a transporter that mediates facilitated diffusion (de Kok, Kozak, Pronk, & van Maris, 2012). If the ATP yield of sucrose fermentation by *S. cerevisiae* could be increased to 5 mol of ATP per mole of sucrose, this could theoretically expand the range of products that can be made in anaerobic yeast-based processes. Such anaerobic production processes have considerable cost advantages relative to aerated processes since less power has to be devoted to air compression, reactor agitation and cooling (de Kok, 2012; Weusthuis, Lamot, van der Oost, & Sanders, 2011; Mans, 2017).

Many studies have demonstrated functional expression of heterologous transporters in *S. cerevisiae* (He, Wang, & Yan, 2014; Kim, Lee, Galazka, Cate, & Jin, 2014; Lin et al., 2014; Ton & Rao, 2004). However, efficient transporter sorting, folding and stability in yeast cells can be a major challenge (Froissard et al., 2006; Hernández, 2005). Therefore, functional characteristics of plant transporters expressed in *S. cerevisiae* cannot always be derived from *in planta* results (Bassham & Raikhel, 2000). Few previous studies have investigated the expression of plant sucrose uniporters in yeast (Chen, 2014; Lin et al., 2014; Zhou, Grof, & Patrick, 2014; Zhou, Qu, Dibley, Offler, & Patrick, 2007). Marques et al. (2018) expressed 5 candidate genes for sucrose uniporters in *S. cerevisiae*, of which only one, encoding the *Phaseolus vulgaris* Sucrose Facilitator 1 (*PvSUF1*), supported growth of a strain (after one week time) in which extracellular invertase and sucrose symport have been eliminated. However, the anaerobic specific growth rate on sucrose of this strain was only 0.05 h⁻¹, which was six-fold lower than that of the reference strain CEN.PK113-7D. Indeed, rates of uptake of radiolabelled sucrose by the *PvSUF1*-expressing strain were close to the detection limit. While some YPet-tagged *PvSuf1* was found at the yeast plasma membrane, it also accumulated in intracellular compartments, suggesting poor intracellular targeting and/or high turnover of heterologously expressed *PvSuf1* (Marques et al., 2018).

In view of the potential relevance of expressing *PvSUF1* and other plant sugar transporter genes in the metabolic engineering of *Saccharomyces cerevisiae*, this study aimed at investigating...
genetic factors involved in optimal functional expression of *Pvsuf1* in this yeast. To this end, we used laboratory evolution to select for *Pvsuf1*-dependent *S. cerevisiae* strains with improved sucrose-uptake kinetics and analysed causal mutations for improved sucrose consumption by evolved strains. To study the energy coupling of sucrose transport by evolved and unevolved *Pvsuf1* variants, we analysed sucrose-induced proton-uptake by reference and evolved strains and measured biomass yields of yeast strains expressing different *Pvsuf1* variants in anaerobic, sucrose-limited chemostat cultures.

MATERIALS AND METHODS

Microbial strains and cultivation medium

The *S. cerevisiae* strains used in this study ([Table 1, Figure 1](#)) share the CEN.PK genetic background ([Entian & Kötter, 2007; Nijkamp et al., 2012](#)). Cultures were grown in an [Innova incubator shaker](#) (Eppendorf, Hamburg, Germany) at 200 rpm, 30 °C, in 500 mL shake flasks containing 100 mL of either yeast-peptone-dextrose medium (YPD) or synthetic medium ([Verduyn, Postma, Scheffers, & van Dijken, 1992](#)) with 20 g/L glucose as the carbon source (SMD). Frozen stock cultures were prepared by adding glycerol (30 % v/v final concentration) to exponentially growing cells, followed by aseptic freezing and storage of 1 mL aliquots at -80 °C.

Molecular biology techniques

PCR amplifications for strain construction were performed with [Phusion Hot Start II High Fidelity Polymerase](#) (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer's instructions. Diagnostic PCR was carried out using [DreamTaq](#) (Thermo Fisher Scientific). The primers used in this study ([Table S1](#)) were purchased from Sigma-Aldrich. Yeast genomic DNA was isolated using the [YeaStar Genomic DNA kit](#) (D2002, Zymo Research, Irvine, CA). DNA fragments obtained by PCR were separated by gel electrophoresis using 1% (w/v) agarose gels.
(Thermo Fisher Scientific) in Tris-acetate-EDTA buffer (Thermo Fisher Scientific). DNA fragments were excised from the gels and purified by gel purification kit (D2004, Zymo Research). Plasmids were isolated from *E. coli* with Sigma GenElute Plasmid kit (Sigma-Aldrich) according to the supplier’s manual and from *S. cerevisiae* using Zymoprep Yeast Plasmid Miniprep II kit (Zymo Research). Restriction analysis was performed using FastDigest enzymes (Thermo Fisher Scientific) according to the manufacturer’s manual. *E. coli* DH5α cells (18258-012, Thermo Fisher Scientific) were transformed via electroporation using a Gene Pulser Xcell Electroporation System (Bio-Rad), following the manufacturers protocol.

Sanger and whole-genome sequencing

Genome-integrated and episomal expression cassettes present in the evolved strains (IMS644, IMS646, IMS647, IMS648 and IMS649) were Sanger sequenced at BaseClear BV (Leiden, The Netherlands). Primers 6018&7822 (Table S1) were used to amplify the *Spase*-expression cassette for sequencing. Similarly, primers 5606&7827 were used to amplify the *PvSUF1* allele of strain IMS648, before Sanger sequencing. Plasmids expressing the *PGM2* and *PvSUF1* genes were extracted from yeast using Zymoprep Yeast Plasmid Miniprep II kit (Zymo Research) and transformed into *E. coli* (DH5α cells, 18258-012, Thermo Fisher Scientific) via electroporation using a Gene Pulser Xcell Electroporation System (Bio-Rad) for propagation. After extraction from *E. coli* using the Sigma GenElute Plasmid kit (Sigma-Aldrich), plasmids were used as a template to sequence the *PGM2* and *PvSUF1* cassettes. Genes were sent for Sanger sequencing using the primers listed in Table S1 resulting in a two times coverage of each base pair. The promoter and terminator regions sequenced were: 420 bp upstream and 280 bp downstream of the *PvSUF1* ORF, 500 bp upstream and 170 bp downstream of the *PGM2* ORF and 670 bp upstream and 370 bp downstream of the *LmSPase* ORF. Genomic DNA for whole-genome sequencing was extracted using the Qiagen 100/G kit following the manufacturer’s protocol (Qiagen, Hilden, Germany), from shake-flask cultures grown on SMD. Whole-genome sequencing was performed by Novogene (HK) Company Ltd (Hong Kong, China). A PCR-free insert library of
350-bp genomic fragments was created and sequenced paired end (150-bp reads). A minimum
data quantity of 2600 MB was generated per strain, representing a minimum 216-fold coverage.
Data analysis was performed by mapping the sequence reads to the CEN.PK113-7D reference
(Salazar et al., 2017) using the Burrows-Wheeler alignment (BWA) tool (Li & Durbin, 2009) and
processed with Pilon (Walker et al., 2014). The sequencing data of the parental strain IMZ630
and of the evolved isolates (IMS644, IMS646, IMS647, IMS648 and IMS649) were deposited at
NCBI under the BioProject ID: PRJNA471800.

Plasmid construction

Plasmid assembly was performed by *in vivo* homologous recombination in *S. cerevisiae*
transformed according to Gietz and Woods (2002) using 0.5 - 1.0 µg of DNA. Construction of the
"empty" vector plasmid pUDE690 (Table 2) was done by amplifying pUDE486 in two parts,
leaving out the *PvSUF1* ORF. Both parts were amplified using primers 11846 & 5975 and 5974 &
11847 (Table S1). The ends of the amplified fragments shared 60 bp homology regions and
were joined *in vivo* (Kuijpers et al., 2013) by transforming both parts in strain IMZ630 (Table 1).
Plasmids pUDE544, pUDE546, pUDE547, pUDE559 and pUDE560 were extracted from sucrose-
evolved strains IMS644, IMS646, IMS647, IMS648 and IMS649, respectively, and transformed
into *E. coli* DH5α cells for plasmid multiplication and storage (Table 1, Table 2). *PvSUF1-
expression cassettes from pUDE413 and pUDE486 were replaced by *PvSUF1-expression
cassettes containing mutations in the *PvSUF1* ORF. For this purpose, pUDE413 or pUDE486
backbone was amplified using primers 9041&5975 and assembled *in vivo* with *PvSUF1-
expression cassette amplified from pUDE545 or pUDE546 using primers 2889&10307 in strain
IMZ630, resulting in plasmids pUDE565 and pUDE566, respectively, when pUDE413-backbone
was used, and plasmids pUDE567 and pUDE568, respectively, when backbone from pUDE486
was used (Table 2). pUDE691 was constructed in the same way as pUDE567 and pUDE568 with
the exception that, for construction of this plasmid, the *PvSUF1-expression cassette was
amplified from pUDE560 (Table 2).
Strain construction

Strain IMZ730 was constructed by transforming pUDE690 into IMZ630 (Figure 1). Plasmids present in the evolved strains, IMS644, IMS646, IMS647, IMS648 and IMS649, were removed by overnight cultivation on YPD medium followed by selection on SMD agar plates supplemented with 0.15 g/L uracil and 1 g/L 5’-fluoroorotic acid (Boeke, La Croute, & Fink, 1984), resulting in strains IMS652, IMS653, IMS654, IMS655 and IMS656, respectively (Figure 1). Expression cassettes (TEF1p-PvSUF1-CYC1t) were extracted from the evolved strains, cloned into a 2-μm plasmid (with and without PGM2) resulting in plasmids pUDE565, pUDE566, pUDE567, pUDE568 and pUDE691, which were subsequently transformed into an unevolved strain background (IMZ630), resulting in strains IMZ712, IMZ713, IMZ714, IMZ715 and IMZ729, respectively. Similarly, the PvSUF1-containing plasmids extracted from the evolved strains (pUDE545, pUDE546 and pUDE560) were transformed into an evolved background, IMS656 (obtained after plasmid removal from strain IMS649), resulting in strains IMZ724, IMZ725 and IMZ727, respectively (Figure 1).

Cultivation conditions

Shake flask cultivations were carried out in 500 mL flasks containing 100 mL synthetic medium with 20 g/L initial sucrose (SMS) (if not stated, sugar concentration in SMD or SMS was 20 g/L), in an Innova incubator shaker (New Brunswick Scientific, Edison, NJ) set at 200 rpm and 30 °C. For growth rate determinations, frozen stock cultures were first inoculated in a shake flask containing SMD. After reaching stationary phase, cultures were transferred to SMS (initial OD_{660nm} ≤ 0.2) and incubated under an anaerobic atmosphere (5% H₂, 6% CO₂ and 89% N₂) in a Bactron X anaerobic chamber (Shell Lab, Cornelius, OR) until exponential growth was observed. Inside the anaerobic chamber, exponentially growing cultures were then transferred to fresh SMS (initial OD_{660nm} = 0.2) and samples were taken hourly until stationary phase was reached. Specific growth rates were calculated from at least five OD measurements evenly distributed.
over the exponential growth phase. For anaerobic cultivations, synthetic medium was supplemented with 10 mg/L ergosterol and 420 mg/L Tween 80. Since stock solutions of these anaerobic growth factors were prepared with ethanol, the initial ethanol concentration in media for anaerobic growth was 0.67 g/L. Chemostat cultivations were performed in 1.5 L bioreactors (800 rpm, 30°C) (Applikon, Delft, The Netherlands) with 1 L SMS supplemented with 0.15 g/L Antifoam C (Sigma-Aldrich), which was autoclaved separately (120 °C for 20 min) (Verduyn et al., 1992). The culture pH was maintained at 5.0 by automated addition of 2 M KOH. For aerobic cultivation, 500 mL min⁻¹ compressed air was sparged in the reactor. To maintain anaerobic conditions, the bioreactors were sparged with 500 mL N₂ min⁻¹ (<5 ppm O₂) (also the medium vessels were sparged with N₂) and equipped with Norprene tubing to minimize oxygen diffusion. After the batch phase, medium pumps were switched on, resulting in the continuous addition of SMS containing 25 g/L sucrose to the cultures. The working volume was kept constant at 1.0 L using an effluent pump controlled by an electric level sensor, resulting in a constant dilution rate. The exact working volume and medium flow rate were measured at the end of each experiment. Chemostat cultures were assumed to be in steady state when, after five volume changes, the biomass concentration and the CO₂ production rate varied by less than 4.5 % over at least another 2 volume changes.

Laboratory evolution

Repeated batch cultivation (SBRs) of strains *S. cerevisiae* IMZ636 and IMZ696 was initiated by serial transfers in shake flasks (5 to 11 transfers). Shake flask cultures were grown in an anaerobic chamber with 20 mL SMS in 30 mL shake flasks incubated at 30 °C and 200 rpm. After this initial phase, evolution was continued in N₂-sparged reactors of 500 mL total volume (Infors HT Multifors 2, Infors AG, Switzerland) with 100 mL SMS (50 mL min⁻¹ N₂ gas, 400 rpm, 30 °C). The 100 mL working volume was possible due to manufacturer's special modifications on the vessel and jacket size. For strain IMZ636, three evolution lines were carried out in parallel. For IMZ696, two parallel evolution lines were performed. Culture pH was maintained at 5.0 by
automatic addition of 2 mol L⁻¹ KOH. Growth rate was estimated from each batch based on the variation of CO₂ concentration in the off-gas. In yeast, CO₂ production is directly proportional to cell concentration in the reactor since the production of this gas is linked to glycolysis activity.

Empty-refill cycles were programmed using the Iris 6 bioprocess software (Infors AG, Switzerland). When the off-gas CO₂ concentration achieved 0.4 %, the empty-refilling sequence was started. Such CO₂ concentration was lower than the maximum of 0.9 % that would be produced at the end of the exponential growth phase (this value was measured before starting the empty-refill cycles to better adjust evolution settings), which guarantees that a new cycle was started before the cells entered stationary phase, which otherwise could delay the evolutionary process. In each cycle, 90 % of the medium was substituted by fresh medium. For evolution of strain IMZ696, the cultivation method was changed from SBRs to accelerostat cultivation (Bracher et al., 2017), after the growth rate did not increase further with the SBR strategy. Accelerostat cultivation, which was conducted in the same reactors used for the SBR cultivations, were continuously fed with SMS containing 25 g/L sugar, while culture liquid was removed to keep the working volume constant. The dilution rate, which was initially set at 0.09 h⁻¹, was automatically increased in response to the CO₂ concentration in the off-gas. This means that the speed of the feed pump (thus the dilution rate) was increased or decreased if the off-gas CO₂ profile showed consistent increase or decrease over a period of 24 h. Four single-colony isolates from each evolution line were obtained by restreaking thrice on plates containing selective SMS medium, which were incubated anaerobically at 30 °C. To prepare frozen stock cultures of sucrose-evolved strains under selective conditions, cells from a single colony were inoculated in 20 mL liquid SMS medium in 30 mL shake flasks, which were incubated under anaerobic conditions (Bactron X anaerobic chamber, Shell Lab, Cornelius, OR, 200 rpm, 30 °C).

Based on the anaerobic growth profile of the four single colony isolates on SMS (e.g. shortest lag phase and/or highest growth rate), one colony was selected and named as representative of the correspondent evolution line. Stocks in SMD were also prepared, to be used in characterization experiments, such as measurement of the growth rate on sucrose-based medium.
Analytical methods

Optical density of cultures at 660 nm was monitored using a Libra S11 spectrophotometer (Biochrom, Cambridge, United Kingdom). Culture dry weight measurements and rapid quenching of culture samples were carried out as described by Marques et al. (2018). HPLC analysis of the supernatant and residual sugar determination were performed as described previously (de Kok et al., 2011; Marques et al., 2017). Off-gas CO₂ concentrations were measured with an NGA 2000 Rosemount gas analyser (Emerson, St. Louis, MO).

Proton translocation assay

Cells used in proton translocation assays were harvested from aerobic sucrose-limited chemostat cultures. The same culture conditions as described for anaerobic chemostats above were used, with the following changes: reactors were sparged with 500 mL min⁻¹ air, the sucrose concentration in the medium vessel was decreased to 7.5 g/L, the dilution rate was set at 0.03 h⁻¹ and Tween 80 and ergosterol were omitted from the medium. After 5 volume changes, when CO₂ concentrations in the off-gas were stable, cells were harvested by centrifugation at 5 000 x g for 5 min, at room temperature, washed with distilled water and resuspended in potassium phthalate buffer (1.25 mM, pH 5) to a final concentration of 12 g dry weight L⁻¹. 5 mL of the cell suspension were incubated at 30 °C in a magnetic stirred vessel with a S220 SevenCompact™ pH/Ion electrode attached (Mettler Toledo, Greifensee, Switzerland). After stabilization of the pH signal, 100 µL of a 1 mol L⁻¹ sugar (sucrose, maltose, glucose or fructose) solution was added (final concentration 20 mM) and changes in the pH were recorded using the LabX™ pH Software (Mettler Toledo, Greifensee, Switzerland). Calibration was performed by addition of 5 µL aliquots of 10 mM NaOH to the cell suspensions.

RESULTS
Increased growth rates of *PvSUF1*-dependent yeast strains after laboratory evolution in a sucrose-based medium

In the engineered *S. cerevisiae* strain IMZ636 (*malΔ mphΔ suc2Δ imaΔ sga1Δ LmSPase PvSUF1*), sucrose metabolism is strictly dependent on uptake via the plant transporter *PvSuf1* and subsequent intracellular cleavage by a bacterial sucrose phosphorylase. In anaerobic shake flask cultures, strain IMZ636 grew on SM (synthetic medium with 20 g/L sucrose as sole carbon source) at a specific growth rate of 0.05 h\(^{-1}\) (Table 3). This growth rate is much lower than that of the reference strain CEN.PK113-7D (0.29 h\(^{-1}\), Table 3). To select for faster growth on sucrose, strain IMZ636 was grown in anaerobic sequencing-batch bioreactors (SBR). In three independent evolution lines, the specific growth rate increased from 0.05 h\(^{-1}\) to 0.10-0.17 h\(^{-1}\) (estimated from off-gas CO\(_2\) profiles) after 56-80 cycles (approximately 150 generations, Figure 2). When no further increase in the growth rate was observed, four single colonies were isolated from each experiment and characterized in anaerobic shake-flask cultures on SMS. Differences in growth rate among the four colonies isolated from each evolution line indicate heterogeneity in the evolved population (results not shown). The fastest isolate of each evolution line displayed specific growth rates of 0.07 h\(^{-1}\) (IMS644 from reactor "A"), 0.09 h\(^{-1}\) (IMS646 from reactor "B") and 0.08 h\(^{-1}\) (IMS647 from reactor "C") (Table 3). These growth rates were consistently higher than those of the unevolved IMZ636 strain, but differed slightly from those estimated from CO\(_2\) profiles in the SBR experiments. These differences may have been caused by the different methods used to access growth rate (optical density measurements versus on-line CO\(_2\) data; shake flasks versus bioreactors). Additionally, the shake-flask experiments were performed with single cell lines while the specific growth rates estimated from the SBR experiments represented growth of an evolving and probably heterogeneous population.

The anaerobic specific growth rates on sucrose of the evolved, IMZ636-derived strains were still 3-4 fold lower than that of the congeneric reference strain CEN.PK113-7D (Table 3). Marques et al. (2018) showed that overexpression of phosphoglucomutase (*PGM2*) in a unevolved *PvSUF1*-SPase-expressing strain increased its growth rate from 0.05 to 0.07 h\(^{-1}\) (IMZ696). To investigate
whether in the laboratory evolution experiments, specific growth rates were limited by phosphoglucomutase levels, a new sequential batch cultivation evolution was initiated with a PGM2-expressing strain (IMZ696-PvSUF1, SPase, PGM2). In two independent evolution lines, the specific growth rate on sucrose increased from 0.07 to 0.15-0.20 h⁻¹ (calculated from the off-gas CO₂ concentration from each reactor) after 52 cycles (ca. 120 generations in reactor A and 190 generations in reactor B, Figure 3A and 3B). Since no further increase in growth rate was observed in this reactor's configuration, laboratory evolution was continued using accelerostat cultivation, with an initial dilution rate of 0.09 h⁻¹. In accelerostats, the selective pressure is on growth rate but also on substrate affinity (Bracher et al., 2017). The feed rate was automatically increased or decreased based on on-line analysis of the CO₂ concentration in the off-gas. After 20-30 days (approximately 130 generations), the dilution rate in the two reactors had increased to 0.25 h⁻¹ and 0.17 h⁻¹ (Figures 3C and 3D), while the residual sucrose concentration had decreased from 8 g/L to approximately 2.5 g/L after accelerostat selection (results not shown). These dilution rates were close to the anaerobic specific growth rate on sucrose reported for a LmSPase-dependent strain expressing the native MAL11 sucrose symporter (0.23 h⁻¹, Marques et al. 2018). Single colony isolates from each reactor (IMS648 from reactor shown in Figure 3A and IMS649 from reactor shown in Figure 3B) exhibited specific growth rates of 0.19 h⁻¹ and 0.23 h⁻¹, respectively (Table 3). These specific growth rates were close to that of IMZ709 (MAL11, SPase, PGM2), and almost three times higher than that of the unevolved parental strain IMZ696 (Table 3).

Sucrose/H⁺ symport activity of evolved PvSuf1 transporters as revealed by proton-uptake studies and biomass yields on sucrose

Although PvSUF1 has been reported to encode a sucrose uniporter (Zhou et al., 2007), a recent study (Marques et al. 2018) on the expression of PvSUF1 in S. cerevisiae casts doubt on the actual mechanism of sucrose transport: sucrose-dependent proton uptake rates of 8.2 ± 2.2 µmol H⁺ (g biomass)⁻¹ min⁻¹ were measured with cell suspensions of S. cerevisiae strain IMZ696 (PvSUF1,
Spase, PGM2) grown in aerobic, sucrose-limited chemostat cultures (Figure 4, data extracted from Marques et al. 2018). This measured uptake rate would in principle be more than sufficient to account for all sucrose uptake in the aerobic chemostat cultures. If we considered the residual sucrose concentration in the bioreactor negligible, a specific sucrose uptake rate of $3.7 \pm 0.1 \, \text{µmol sucrose (g biomass)}^{-1} \text{min}^{-1}$ would be calculated. In replicate chemostat experiments with strain IMZ696, different mutations were found in $PvSUF1$ ($PvSuf1^{T302I}$ in one culture and $PvSuf1^{E308K \, V323F}$ in the other). Since the frozen stock cultures from which the chemostats were inoculated did not contain mutations in $PvSUF1$, these mutations probably conferred a selective advantage during sucrose-limited chemostat cultivation (Marques et al. 2018).

All evolved strains (IMS644, IMS646, IMS647, IMS648 and IMS649) obtained in the present study displayed sucrose-induced H$^+$ uptake (Figure 4). Strain IMS644 showed an initial H$^+$ uptake rate that was close to that of the unevolved parental strain IMZ696 ($13 \pm 3.7 \, \text{µmol H}^+ \text{min}^{-1} \, \text{(g cell)}^{-1}$ for IMS644 vs. $8 \pm 2.2 \, \text{µmol H}^+ \text{min}^{-1} \, \text{(g cell)}^{-1}$ for IMZ696) (Figure 4), but all other strains showed an at least three-fold higher H$^+$ uptake rate compared to IMZ696 ($25-40 \, \text{µmol H}^+ \text{min}^{-1} \, \text{(g cell)}^{-1}$ for IMZ696) (Figure 4). These high rates of sucrose-dependent proton uptake approached those of a reference strain expressing the $S.\ cervisiae$ Mal11 proton symporter ($52 \pm 8.7 \, \text{µmol H}^+ \text{min}^{-1} \, \text{(g cell)}^{-1}$ for IMZ709, data from Marques et al. (2018) (Figure 4). The evolved $PvSUF1$-expressing strains exhibited similar proton uptake rates with maltose as with sucrose, while no proton uptake was observed upon addition of fructose or glucose. Consistent with literature reports (Wieczorke et al., 1999) the control strain IMZ709 ($MAL11$, $SPase$) exhibited glucose-dependent proton uptake (data from Marques et al. 2018) (Figure 4).

An alternative way to investigate energy coupling of disaccharide uptake in $S.\ cervisiae$ is to measure biomass yields in anaerobic, disaccharide-limited chemostat cultures (de Kok, 2012). If sucrose uptake occurs via symport with a single proton, one ATP molecule has to be consumed by the plasma membrane H$^+$/ATPase Pma1 to expel the symported proton. On the contrary, if sucrose uptake is passive, no ATP will be consumed. This difference of 1 ATP has a high impact
on the biomass yield on sugar under anaerobic conditions, which can be precisely determined in anaerobic chemostats (de Kok et al., 2011; Marques et al., 2018; Verduyn, Postma, Scheffers, & van Dijken, 1990).

The strains used in this study cleaved sucrose intracellularly via phosphorolysis. In such strains, expression of a sucrose/H⁺ symporter should result in a net generation of 4 mol ATP per mol sucrose under anaerobic conditions. If sucrose uptake occurred by uniport, this ATP yield would change to 5 ATP/sucrose, a 25% increase (Marques et al., 2018). In sucrose-limited, anaerobic chemostat cultures, a 25% increase of the ATP yield from sucrose dissimilation should result in a 25% increase in the biomass yield on sucrose (Verduyn et al., 1990). Two of the evolved strains (IMS646 from the evolution started with IMZ636 and IMS649 from the evolution started with IMZ696) were characterized in chemostat cultures and their biomass yields were compared to those displayed by reference strains (IMZ665 and IMZ709), which both expressed MAL11 instead of PvSUF1. No differences in biomass yield were observed between a MAL11 expressing strains and strains evolved with PvSUF1: the observed biomass yield of strain IMZ665 (MAL11, SPase) was $0.086 \pm 0.002 \text{ g (g glucose equivalent)}^{-1}$ while that of IMS646 (PvSUF1, SPase) was $0.082 \pm 0.004 \text{ g (g glucose equivalent)}^{-1}$ (Table 4 and Table S2). Similarly, for the strains expressing PGM2 (IMZ709 and IMS649) the biomass yield was not higher in cultures of the evolved PvSUF1-expressing strain ($0.087 \pm 0.000 \text{ g (g glucose equivalent)}^{-1}$ for IMS649) than in cultures of the MAL11-expressing strain ($0.091 \pm 0.006 \text{ g (g glucose equivalent)}^{-1}$ for IMZ709) (Table 4 and Table S2).

Evolved strains contain mutations in PvSUF1

Non-conservative single-nucleotide mutations were detected in the PvSUF1 open reading frames of all PvSuf1-dependent strains evolved for faster growth on sucrose (IMS644, IMS646, IMS647, IMS648 and IMS649; Figure 5). No mutations were found in the promoter (TEF1) or in the terminator (CYC1) regions of the PvSUF1 expression cassettes. Strains IMS644 and IMS647, which were independently evolved from strain IMZ636 (PvSUF1,SPase), contained the same
mutation (PvSUF1YAGSFSG-duplication): a tandem duplication of 8 amino acids that, based on amino-acid hydrophobicity plots (Protter algorithm, (Omasits, Ahrens, Mu, & Wollscheid, 2014)), was predicted to be localized partially in the extracellular surface of trans-membrane domain 5 (TM5) and in the loop connecting TM5 to TM6 (loop 5/6) (Figure 5 and Figure 6). Strain IMS646, which was also evolved from IMZ636 (PvSUF1, SPase), contained a mutation that resulted in a substitution of glycine 326 (TM8) for a cysteine (G326C) (Figure 5). Evolved strain IMS649, derived from the IMZ696 strain (PvSUF1, SPase, PGM2), carried a combination of the abovementioned PvSUF1G326C mutation and two additional mutations. One of these caused an I209F substitution in the loop connecting TM5 to 6 (loop 5/6) at the extracellular surface while the other led to a C265F substitution, positioned in loop 6/7 on the cytosolic side (Figure 5 and Figure 6). The PvSUF1 allele of the remaining strain, which was evolved from IMZ696 (PvSUF1, SPase, PGM2), IMS648, contained three mutations, leading to Y128C, C228G, and G457D substitutions (Figure 5). In this strain, the PvSUF1- and PGM2-expression cassettes were no longer located on the original 2µ-expression vector. Instead, both cassettes were found to be integrated into chromosomal DNA. Accordingly, strain IMS655, which was obtained by curing the 2µ-plasmid from strain IMS648, retained its ability to grow on SMS (Figure S1). The other four evolved strains did not grow on sucrose after plasmid removal (IMS652, IMS653, IMS654 and IMS656). No mutations were found in the PGM2 or SPase expression cassettes of any of the evolved strains.

Independently evolved strains in a sucrose-based medium show common whole-chromosome and segmental aneuploidies

Besides the mutations found in PvSUF1, the evolved strains also showed duplication of chromosomes and/or chromosomal segments. Whole-genome sequencing revealed duplication of the right arm of chromosome 14 (after position ~500,000) in three independently evolved strains: IMS644, IMS646 and IMS649 (Table 5, Figure S2). Similarly, a segmental duplication of chromosome 16 (right arm, after position ~800,000) was found in strains IMS646 and IMS649.
A central region of chromosome 13 (position ~300,000 to ~350,000) was triplicated in strains IMS644 and IMS647. Strain IMS644 showed a complete duplication of chromosome 1, as well as of the right arm of chromosome 2 (after position ~600,000; (Table 5, Figure S2). To investigate whether these mutations contribute to the phenotype, reverse engineering of the mutated *PvSUF1* alleles was carried out both in an unevolved and in an evolved strain background, as detailed in the next section.

Reverse engineering of evolved *PvSUF1* alleles enables fast growth on sucrose

To investigate whether the faster growth on sucrose observed after evolution of *PvSUF1*-expressing strains could be exclusively attributed to the mutations found in *PvSUF1*, *PvSUF1* expression cassettes (*TEF1p-*PvSUF1-CYC1t) were first isolated from each of the evolved strains (IMS646, IMS647 and IMS649) and cloned into a 2-μm plasmid. Two versions were constructed, one carrying an additional *PGM2*-expressing cassette and another one without it. The resulting plasmids were transformed into an unevolved background strain, IMZ630 (*malΔ mphΔ suc2Δ imaΔ Spase*), resulting in strains IMZ712-715 and IMZ729 (Table 6). Strain IMZ712 (expressing *PvSUF1*G326C) grew anaerobically on sucrose at 0.05 h⁻¹ (Table 6), which corresponds to the specific growth rate displayed by the unevolved parental strain (IMZ636, Table 3). Co-expression of *PGM2* did not lead to a higher growth rate (IMZ714, μ = 0.05 h⁻¹, Table 6). Overexpression of a *PvSUF1*YAAGSFSG-duplication variant that encoded the 8 amino-acid duplication described above (from strain IMS647) in the unevolved background also, by itself, did not result in an increased specific growth rate (IMZ713 μ = 0.05 h⁻¹) (Table 6). However, when this mutation was combined with the overexpression of *PGM2* (IMZ715), a specific growth rate of 0.10 h⁻¹ was observed (Table 6). The *PvSUF1* allele derived from strain IMS649, the evolved strain that grew at 0.20 h⁻¹ (Table 3), supported high specific growth rates upon introduction in a unevolved background when combined with *PGM2* overexpression (strain IMZ729, μ = 0.17 ± 0.02 h⁻¹) (Table 6).
To investigate the possible impact of mutations outside \textit{PvSUF1}, the \textit{PvSUF1} expression plasmid was cured from the fastest growing evolved strain IMS649. The resulting strain (IMS656) was then directly transformed with the vectors extracted from the evolved strains carrying \textit{PvSUF1} variants (\textit{PvSUF1}^{G326C}, \textit{PvSUF1}^{YAAGSFSG-duplication} and \textit{PvSUF1}^{I209F C265F G326C}) yielding strains IMZ724, IMZ725 and IMZ727, respectively. The growth rates of these strains (0.07 h$^{-1}$, 0.06 h$^{-1}$ and 0.17 h$^{-1}$, respectively) were similar to that of the strains expressing evolved \textit{PvSUF1} in an unevolved background (Table 6). This result shows that the improved growth of strain IMS649 was predominantly due to mutations in \textit{PvSUF1} and that other chromosomal alterations had at most a small impact on the strain's specific growth rate on sucrose (Table 6).

DISCUSSION

Optimal expression of heterologous transporters in yeast can be hampered by protein misfolding, incorrect sorting, cell toxicity due to protein accumulation in intracellular compartments (unfolded protein response - UPR), rapid endocytosis and turnover, among other phenomena (Bassham & Raikhel, 2000; Froissard et al., 2006; Hernández, 2005; Nielsen, 2013).

In this study, genetic factors involved in the efficient expression of a putative plant sucrose uniporter (\textit{PvSuf1}) in \textit{S. cerevisiae} were identified by a combination of laboratory evolution, whole genome sequencing, reverse engineering of mutations observed in evolved strains and physiological analysis of evolved and reverse engineered strains.

Laboratory evolution of yeast dependent on sucrose uptake via \textit{PvSuf1} resulted in faster growing strains – when compared to the parental ones – which contained mutations in the \textit{PvSUF1} allele (Figure 5). Besides faster growth, the mutations may also be responsible for lowering the residual sucrose concentration in the accelerostat reactor (from 8 to 2.5 g/L, see Results section). Chromosomal duplications were also found in the genome of the evolved strains (Table 5, Figure S2) affecting genes that encode proteins involved in transporter sorting, ubiquitination and degradation: \textit{COS10}, \textit{SEC12} and \textit{SIS1}, which are present on chromosome 14 (Luke, Sutton, & Arndt, 1991; Macdonald et al., 2015; Nakano, Brada, &
Schekman, 1988); CUR1 and SEC23 from chromosome 16 (Alberti, 2012) and UBC7 found on chromosome 13 (Hiller, Finger, Schweiger, & Wolf, 1996). However, these genomic alterations are unlikely to be the main cause of the improved specific growth rate of the evolved strains since reverse engineering of a mutated version of PvSUF1 in unevolved S. cerevisiae sufficed to generate a strain that grew as fast as the fastest-growing evolved strain (Table 6). Among the mutations found in PvSUF1, those involving cysteine residues predominated (PvSUF1G326C, PvSUF1G457D Y128C C228G, PvSUF1I209F C265F G326C; Figure 5). Correct formation of disulfide bonds has previously been reported to be important for inter- and intramolecular interactions of SUT (sucrose transporter) proteins and sucrose uptake activity (Krügel et al., 2008, 2012). PvSuf1 contains only 3 out of the 4 cysteine residues conserved in all other plant sucrose transporters (Figure 5) (Lemoine, 2000). Since the PvSUF1G326C mutation was found in two independently evolved strains (IMS649 and IMS646), presence of a cysteine in position 326 of PvSuf1 may be important for protein folding and oligomerization in yeast, but further research is clearly needed to test this hypothesis.

Sugar-proton symport assays showed that all PvSUF1-expressing S. cerevisiae strains tested (including those that were not subjected to laboratory evolution) displayed at least some sucrose/H⁺ symport activity, which was high enough to explain their observed rates of sucrose uptake (Figure 4). While, based on heterologous expression, we cannot draw definitive conclusions on energy coupling of wild type PvSuf1-mediated sucrose transport, our results warrant reinvestigation of PvSuf1’s mechanism in a plant context.

The present study shows that laboratory evolution is a robust methodology to improve the expression of sucrose transporters in yeast and that mutations on the transporter itself are sufficient for its efficient expression meaning that alterations in the host genome are not necessary. Four out of six observed amino acid substitutions encoded by evolved PvSUF1 alleles removed or introduced a cysteine residue, this demonstrates that engineering cysteine residues might be a rational way to improve the expression of plant sugar transporters in yeast. Study of the mutations identified in this work in different transporters, preferably combined with
structural information, will identify underlying mechanisms and increase the predictability of functional expression of heterologous transporters in yeast.

ACKNOWLEDGEMENTS

We thank our colleague Erik de Hulster for his great assistance with bioreactor cultivations. We also thank Ryan K. Henderson and Bert Poolman for constructive discussions and for providing us with a model prediction of the PvSuf1 structure. This work was supported by the BE-Basic R&D Program (FS6.003) (http://www.be-basic.org/), which was granted a FES subsidy from the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I). The work of Wesley Marques was carried out as part of a Dual Degree PhD project under the agreement between the University of Campinas and the Delft University of Technology.

Conflict of interest. None declared

REFERENCES

http://doi.org/10.1002/yea.320080703

http://doi.org/10.1371/journal.pone.0112963

http://doi.org/10.1016/j.tibtech.2010.12.007

http://doi.org/10.1016/S0014-5793(99)01698-1

http://doi.org/10.14440/jbm.2014.27

http://doi.org/10.1111/j.1365-313X.2006.03000.x

Table 1: S. cerevisiae strains used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype</th>
<th>Parental strain</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEN.PK113-7D</td>
<td>MATa URA3 LEU2 MAL2-8′ SUC2</td>
<td></td>
<td>Entian and Kötter, 2007</td>
</tr>
<tr>
<td>IMZ630</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase</td>
<td></td>
<td>Marques et al, 2018</td>
</tr>
<tr>
<td>IMZ730</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE690 (URA3 PGM2)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ630</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE413 (URA3 PvsUF1)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS644</td>
<td>Single colony isolate from evolution line "A"</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS646</td>
<td>Single colony isolate from evolution line "B"</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS647</td>
<td>Single colony isolate from evolution line "C"</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ696</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE486 (URA3 PvsUF1 PGM2)</td>
<td></td>
<td>Marques et al, 2018</td>
</tr>
<tr>
<td>IMS648</td>
<td>Single colony isolate from evolution line "A"</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS649</td>
<td>Single colony isolate from evolution line "B"</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS652</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase Plasmid cured</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS653</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase Plasmid cured</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS654</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase Plasmid cured</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS655</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase Plasmid cured</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMS656</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase Plasmid cured</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ712</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE565 (URA3 PvsUF1 G265C)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ713</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE566 (URA3 PvsUF1 YAASFG duplication)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ714</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE567 (URA3 PvsUF1 G265C PGM2)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ715</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE568 (URA3 PvsUF1 YAASFG duplication PGM2)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ729</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE691 (URA3 PvsUF1 C265F G265C PGM2)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ724</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE545 (URA3 PvsUF1 G265C)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ725</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE546 (URA3 PvsUF1 YAASFG duplication)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ727</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE560 (URA3 PvsUF1 C265F G265C PGM2)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ665</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE432 (URA3 MAL11)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>IMZ709</td>
<td>MATa ura3-52 LEU2 MAL2-8′ malΔ mphΔ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ spa1Δ::LmSPase pUDE496 (URA3 MAL11 PGM2)</td>
<td></td>
<td>Marques et al, 2018</td>
</tr>
</tbody>
</table>

PvsUF1::PGM2 expression cassette migrated from the plasmid to a chromosome. The exact site of integration was not investigated in this work.
<table>
<thead>
<tr>
<th>Name</th>
<th>Relevant characteristics</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUDE413</td>
<td>2μ URA3 pTEF1-PvSUF1-tCYC1</td>
<td>Marques et al. 2018</td>
</tr>
<tr>
<td>pUDE486</td>
<td>2μ URA3 pTEF1-PvSUF1-tCYC1 pTPI1-PGM2-tTEF1</td>
<td>Marques et al. 2018</td>
</tr>
<tr>
<td>pUDE690</td>
<td>2μ URA3 pTPI1-PGM2-tTEF1</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE544</td>
<td>Evolved plasmid from IMS644</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE545</td>
<td>Evolved plasmid from IMS646</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE546</td>
<td>Evolved plasmid from IMS647</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE559</td>
<td>Evolved plasmid from IMS648</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE560</td>
<td>Evolved plasmid from IMS649</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE565</td>
<td>2μ URA3 pTPI1-PvSUF1\text{G326C}_c-tCYC1</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE566</td>
<td>2μ URA3 pTPI1-PvSUF1\text{YAAGSFSG-duplication}_c-tCYC1</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE567</td>
<td>2μ URA3 pTPI1-PvSUF1\text{G326C}_c-tCYC1 pTPI1-PGM2-tTEF1</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE568</td>
<td>2μ URA3 pTPI1-PvSUF1\text{YAAGSFSG-duplication}_c-tCYC1 pTPI1-PGM2-tTEF1</td>
<td>This study</td>
</tr>
<tr>
<td>pUDE691</td>
<td>2μ URA3 pTPI1-PvSUF1\text{I217F, C265F, G326C}_c-tCYC1 pTPI1-PGM2-tTEF1</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 3: Specific growth rates of unevolved and evolved *S. cerevisiae* strains grown in shake flask cultures containing 20 mL SMS (initial pH 6, 30 °C, 200 rpm) in an anaerobic chamber. Averages and mean deviations were obtained from duplicate experiments. *SPase* was integrated in the genome (*SGA1* locus), while *PvSUF1* was expressed in a 2µ-plasmid with or without *PGM2*.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant characteristics</th>
<th>Specific growth rate (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEN.PK113-7D SUC2</td>
<td></td>
<td>0.29 ± 0.00</td>
</tr>
<tr>
<td>IMZ636 SPase, PvSUF1</td>
<td></td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>IMS644 SPase, PvSUF1, evolved "A"</td>
<td></td>
<td>0.07 ± 0.00</td>
</tr>
<tr>
<td>IMS646 SPase, PvSUF1, evolved "B"</td>
<td></td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>IMS647 SPase, PvSUF1, evolved "C"</td>
<td></td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>IMZ696 SPase, PvSUF1-PGM2, parental strain</td>
<td></td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>IMS648 SPase, PvSUF1*-PGM2, evolved "A"</td>
<td></td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>IMS649 SPase, PvSUF1-PGM2, evolved "B"</td>
<td></td>
<td>0.19 ± 0.01</td>
</tr>
</tbody>
</table>

PvSUF1 was found in the genome of this strain, not in the plasmid as in the parental IMZ696.
Table 4: Biomass yields on sucrose and rates of sucrose uptake by *S. cerevisiae* strains grown in anaerobic sucrose-limited chemostat cultures (pH 5, 30 °C, 800 rpm, 500 mL N₂/min). A dilution rate of 0.07 h⁻¹ was used for strains IMZ665 (*MAL11, SPase*) and IMS646 (*PvSUF1, SPase*), while 0.15 h⁻¹ was used for strains IMZ709 (*MAL11, SPase, PGM2*) and IMS649 (*PvSUF1, SPase, PGM2*). Cultures were grown on SMS with 25 g/L sucrose in the feeding medium. Averages and mean deviations were obtained from duplicate experiments. Additional physiological data are provided in Table S2.

<table>
<thead>
<tr>
<th>Strain</th>
<th>IMZ665 (control)</th>
<th>IMS646 (evolved)</th>
<th>IMZ709 (control)</th>
<th>IMS649 (evolved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant genotype</td>
<td>MAL11 LmSPase</td>
<td>PvSUF1 LmSPase</td>
<td>MAL11 LmSPase PGM2</td>
<td>PvSUF1 LmSPase PGM2</td>
</tr>
<tr>
<td>Actual dilution rate (h⁻¹)</td>
<td>0.070 ± 0.000</td>
<td>0.071 ± 0.001</td>
<td>0.147 ± 0.001</td>
<td>0.152 ± 0.001</td>
</tr>
<tr>
<td>Biomass yield (g g glucose equivalent⁻¹)</td>
<td>0.086 ± 0.002</td>
<td>0.082 ± 0.004</td>
<td>0.091 ± 0.006</td>
<td>0.087 ± 0.000</td>
</tr>
<tr>
<td>(q_{\text{sucrose}}) (mmol/g biomass/h)</td>
<td>-2.26 ± 0.06</td>
<td>-2.40 ± 0.06</td>
<td>-4.5 ± 0.3</td>
<td>-4.83 ± 0.04</td>
</tr>
<tr>
<td>Residual sucrose (g/L)</td>
<td>0.08 ± 0.02</td>
<td>1.90 ± 1.18</td>
<td>2.03 ± 0.15</td>
<td>4.33 ± 0.80</td>
</tr>
<tr>
<td>Carbon recovery (%)</td>
<td>101 ± 1</td>
<td>95 ± 4</td>
<td>105 ± 7</td>
<td>102 ± 1</td>
</tr>
</tbody>
</table>
Table 5. Summary of whole-chromosome and segmental aneuploidies found in *PvSUF1*-expressing strains evolved on sucrose-based medium relative to the unevolved reference strain IMZ630. "Chr": chromosome. "+": presence of copy number variation. Chromosome positions are shown between brackets.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Chr1 - Entirely duplicated</th>
<th>Chr2 - Duplication of right arm (600,000 - telomere)</th>
<th>Chr13 - Triplication of short region (300,000 - 350,000)</th>
<th>Chr14 - Duplication of right arm (500,000 - telomere)</th>
<th>Chr16 - Duplication of right end (800,000 - telomere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS644</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IMS646</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>IMS647</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS648</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS649</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Table 6: Specific growth rates on sucrose in anaerobic shake flask cultures on SMS of *S. cerevisiae* strains (malΔ mphΔ suc2Δ imaΔ SPase) expressing different evolved *PvSUF1* alleles. Averages and mean deviations were derived from two biological replicates for each strain.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Parental strain</th>
<th>PvSUF1 from evolved strain</th>
<th>Relevant characteristic</th>
<th>Specific growth rate (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMZ712</td>
<td>IMZ630</td>
<td>IMS646</td>
<td>SPase, PvSUF1G326C</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>IMZ713</td>
<td>IMZ630</td>
<td>IMS647</td>
<td>SPase, PvSUF1YAAGSFSG-duplication</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>IMZ714</td>
<td>IMZ630</td>
<td>IMS646</td>
<td>SPase, PvSUF1G326C PGM2</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>IMZ715</td>
<td>IMZ630</td>
<td>IMS647</td>
<td>SPase, PvSUF1YAAGSFSG-duplication PGM2</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>IMZ729</td>
<td>IMZ630</td>
<td>IMS649</td>
<td>SPase, PvSUF1I209F C265F G326C PGM2</td>
<td>0.17 ± 0.02</td>
</tr>
<tr>
<td>IMZ724</td>
<td>IMS656</td>
<td>IMS646</td>
<td>SPase, PvSUF1G326C</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>IMZ725</td>
<td>IMS656</td>
<td>IMS647</td>
<td>SPase, PvSUF1YAAGSFSG-duplication</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>IMZ727</td>
<td>IMS656</td>
<td>IMS649</td>
<td>SPase, PvSUF1I209F C265F G326C PGM2</td>
<td>0.18 ± 0.01</td>
</tr>
</tbody>
</table>
LEGENDS TO FIGURES

Figure 1: Strains construction scheme. Each blue box represents a different strain. Plasmids used are indicated on the top of the corresponding strain. The three main methods of generating strains are shown in the panels: "Evolution", "Plasmid removal" and "Reverse engineering".

Figure 2: Laboratory evolution in sequential batch cultures of *S. cerevisiae* IMZ636 (*PvSUF1, SPase*). After 5-11 serial transfers in shake flask cultures, incubated in an anaerobic chamber, evolution was continued in sequential batch bioreactors sparged with N₂ gas. Evolution was conducted independently in triplicate (panels A, B and C). Specific growth rates were estimated from the corresponding CO₂ profiles (not shown here) in the off-gas. 100 mL of SMS were used (pH 5.0, 30 °C, 250 rpm). Evolution was stopped after approximately 160, 170 and 150 generations (panels A, B and C).

Figure 3: Laboratory evolution of *S. cerevisiae* IMZ696 (*PvSUF1, SPase, PGM2*) for faster anaerobic growth on sucrose. After eleven serial transfers in shake flasks in an anaerobic chamber, evolution was continued in bioreactors sparged with N₂ gas, first operated as sequential batch reactors (SBRs) (panels A and B) and subsequently as accelerostats (panels C and D) as described in the Methods section. C, D (accelerostat): feed and effluent pumps were turned on at 1 % of the maximum speed (equivalent to 0.09 h⁻¹ dilution rate). Feed pump speed (black line) was increased automatically based on the CO₂ concentration in the off-gas (blue line). A maximum pump speed corresponding to 0.25 h⁻¹ dilution rate was reached in one reactor (C) and of 0.17 h⁻¹ in the other one (D). Laboratory evolution in bioreactors was performed with 100 mL of synthetic medium containing 20 g/L sucrose (batches) and 25 g/L (accelerostat), pH 5, 30 °C, 250 rpm). Panels A and C correspond to one evolution line independent from another replicate (panels B and D). Both evolution lines were started with the same parental strain.

Figure 4: Proton uptake rate of unevolved *S. cerevisiae* IMZ696 (*PvSUF1, SPase, PGM2*), evolved strains (IMS644, IMS646, IMS647, IMS648 and IMS649) and the control strain IMZ709 (*MAL11, SPase, PGM2*). Cells were harvested from aerobic sucrose-limited chemostat cultures (D = 0.03 h⁻¹, 30 °C, pH 5.0), washed and immediately tested for proton uptake upon addition of sucrose (black bar), maltose (grey bar), fructose (*: H⁺ uptake not detected) or glucose (white bar, H⁺
uptake induced only in strain IMZ709). 20 mM sugar (final concentration) was added to a K-
phthalate suspension (pH 5.0) containing 2.5 g/L cells (30 °C). Average and mean deviation were
obtained from two biological replicates with three experimental replicates each. Calibration was
performed as described in the Methods section. Results from strains IMZ696 and IMZ709 were
previously published by Marques et al. (2018).

Figure 5: Mutations found in *PvSUF1* after laboratory evolution on sucrose-based medium.
Mutated amino acids are highlighted in red and the corresponding strain numbers are indicated.
"AA": amino acids. Arrows indicate the location of four conserved cysteine residues in plant
sucrose transporters. The cysteine at loop 2/3 is substituted by a serine in the wild-type *PvSuf1*
protein. Membrane insertion of *PvSuf1* was predicted with the *Protter* algorithm (Omasits et al.,
2014).

Figure 6: Model of the tertiary structure of wild-type *PvSuf1*. Extracellular loops are shown at
the top and intracellular loops at the bottom of the figure "A". View from the extracellular space
is shown in "B". The 8 amino-acid region in loop 5/6 that was duplicated in strains IMS644 and
IMS647 is shown in red. In the same loop, isoleucine 209, which was mutated to phenylalanine
(I209F) in strain IMS649 is highlighted in yellow. Images were prepared with PyMOL™ (version
1.7.4.5 Educational Product, Schrodinger, LLC).