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1
CHAPTER

Atomic scale electronics
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.1 Introduction

The size of a hydrogen atom is defined by its Bohr radius, which is only half an
Angstrom. A dopant atom in a semiconductor—considered as the solid state analogue of
a hydrogen atom—has a Bohr radius of several nanometers. Nowadays semiconductor
technology has arrived at the edge of the regime where this length scale is accessible,
thus enabling experimental study and control of a single atom’s wave functions. This
capability opens up new lines of research in several areas of physics. The emerging field,
concerned with electronic processes and devices in which individual dopant atoms play a
role, is calledAtomic Scale Electronics(ASE).

It is well-known that the introduction of dopant impurities in a semiconductor has
an enormous effect on its electrical properties. The conductivity of a semiconductor can
be tuned over many orders of magnitude by varying the concentration of dopant atoms,
while thetypeof charge carriers (electrons or holes) can be chosen by selecting the right
type of impurity. Next to chemical doping, the carrier density in a semiconductor can
be changed dynamically by using electrostatic gates. The versatility of semiconductor
material, combined with the application of oxides and metals (‘permanent’ insulators and
conductors), has led to the tremendous success of CMOS-technology (complementary
metal oxide semiconductor) in computer industry.

Traditionally, the effect of doping is considered as a homogeneous effect, changing
the intensive properties of the material. Indeed, in most practical applications the con-
centration of mobile charge carriers, the Fermi-level position, and the conductivity can be
considered as constant throughout the semiconductor bulk. In reality, however, the dopant
atoms are discrete entities, the positions of which are randomly distributed in the host ma-
terial. The total number of dopant atoms in a device determines whether the discreteness
can be ignored or must be taken into account (see Fig.1.1).

The exponentially increasing demand for cheaper, faster, more compact, more func-
tional, and more power-saving electronics is mainly being met by the industry through

1
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(a) (c)(b)

Figure 1.1 Schematic drawing of a MOSFET, illustrating the transition from a continuous to an
atomistic regime. (a) In the conventional picture the material properties are homo-
geneous and the boundaries smooth and abrupt. (b,c) In smaller devices [channel
length 20 nm (b) and 4 nm (c)] the discrete and random nature of doping causes
large intrinsic parameter fluctuations. (Image courtesy of A. Asenov)

a higher level of integration. Manufacturing more components per chip requires smaller
devices. Ever since the steady trend in the size reduction of the components has been
recognized (Moore’s law), people have realized that this trend cannot continue infinitely.
The discreteness of doping has, in fact, been recognized as one of the fundamental lim-
its in scaling down the existing technology: if the number of dopants in a device gets
small, relative statistical variations get large and the device behavior becomes a sensitive
function of the the actual number of dopants and their positions, leading to unreliable
device behavior. In the top-down approach employed by the semiconductor industry, the
discreteness of doping is therefore considered as a big problem, eventually resulting in
hitting a ‘brick wall’.

However, the fact that the ‘atomic’ length scale is already within reach in a laboratory
environment offers great opportunities. New research can be anticipated, comprising con-
trol and detection of charge and spin in semiconductors at the level ofindividual dopant
atoms. Starting from there gives rise to a bottom-up approach that may lead to novel types
of devices, circuits and computer architectures.

The important length scale at which the physics of single dopants takes place is re-
ferred to as theatomicscale. At sufficiently low temperatures, a dopant atom binds one
or more valence electrons or holes. In a first order approximation, such an entity is very
similar to a hydrogen (helium, lithium, . . . ) atom in vacuum. The Bohr radius of a dopant
atom (defined in analogy with hydrogen) is a natural candidate for defining the dopant’s
‘size’. It is a measure for the extent of the wave function of the carrier(s) bound to the
dopant and also for the extent of the potential well caused by the ionized dopant.

1.2 Overview of current research

Semiconductor physics at the atomic scale can be looked at and worked on from var-
ious perspectives. To demonstrate that it is indeed a vivid and emerging field, several
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examples of ongoing research that can be captured under the umbrella of ASE are out-
lined below.

Ultimate silicon technology deals with the development techniques for growth, lithog-
raphy and control of material properties, which are required for the fabrication of devices
down to the atomic scale. Many physical effects cannot straightforwardly be extended
below a certain length scale. An especially important issue is coping with the discrete-
ness of doping, as sketched above. Moreover, control of materials down to the level of
individual dopant atoms will become more and more essential.

Understanding macroscopic properties of (complex) materials from an atomistic point
of view is supported by experiments accessing the level of single dopant atoms. An inter-
esting example in this respect is the use of a scanning tunneling microscope to spatially
map the wave function of a hole bound to a Be-acceptor [1] or a Mn-acceptor [2] in
GaAs. The latter may help to better understand the magnetic properties of this material.
Another example is the direct observation (by scanning transmission electron microscopy)
of Sb-clusters in heavily doped Si, explaining the saturation of the mobile charge carrier
concentration with increasing doping level [3].

The miniaturization in Si technology has led to new device concepts. Among the
most important is the idea to use individual dopant atoms as quantum bits (qubits) for a
quantum computer (QC). The first elaborated QC-design in this category is due to Kane
[4, 5] and was later followed by several variants [6, 7, 8, 9]. Experimental achievements
in solid state quantum computing are hardly at the proof-of-principle stage in terms of
their abilities to perform quantum computational tasks. Nevertheless, many groups are
performing calculations and experiments which are motivated by a certain aspect of one
of these QC-designs, thus extending their research to the field of individual dopant atoms.

The physical phenomena playing a role in ASE are related to many areas in physics. In
many respects, ASE is a sophisticated extension of semiconductor physics. The similarity
of a dopant atom with a hydrogen (helium, lithium, . . . ) atom leads to a natural link with
atomic physics. The well-developed field of (coupled) quantum dots is closely related to
physics of the quantum coherent interactions of the nuclear and electron spins in a dopant
atom.

Because ASE covers several different areas of (semiconductor) physics, recognition
of a common element can stimulate fruitful cross-fertilization between them. Therefore,
ASE is a useful umbrella that emphasizes a valuable relationship between various research
fields.

This thesis will obviously be concerned with only a subset of the topics outlined
above. In the following subsections, a more detailed overview will be given of recent
progress and results in those subfields of ASE, that are related to this thesis.

1.2.1 Ultimate silicon technology

From a top-down approach, random spatial fluctuations in the potential landscape
of a device due to randomly positioned dopants have since long been recognized as a
serious problem in scaling down MOSFETs [10, 11, 12]. They cause large and unpre-
dictable device-to-device threshold voltage [13] and resistance [14] variations, which can
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inherently not be prevented by optimizing the fabrication process. In this context, vari-
ous groups are trying to model these effects and understand them theoretically [15, 16].
Moreover, new device concepts are being developed in order to extend this limit of device
scaling, such as the Schottky barrier MOSFET [17], thin-channel MOSFET [18], and the
FinFET [19].

Even when the discreteness of doping does not need to be taken into account, de-
vices start to behave differently when their feature size drops below the semiconductor
screening length (Debye length,LD, which is a measure for the spatial extent of space
charge regions). This effect has been observed in many different material systems (see for
instance Ref.20, 21, 22).

Of more fundamental interest is the development of silicon nanowires. These struc-
tures make it possible to realize not only nanometer-sized metal-semiconductor contacts,
but also smallpn-junctions and transistors [23]. Due to their unconventional geometry,
the electrostatic picture is quite different from conventional devices. Moreover, nanowires
provide the opportunity for experimental studies of one-dimensional transport in semi-
conductors. A very intriguing related issue is the effect of doping on the conductivity and
mobility in such one-dimensional structures, even more as the nanowire diameter can be
as small as 1 nm [24], which is smaller than the Bohr-radius of a dopant.

1.2.2 Wave function manipulation and detection

The effect of external perturbations on the wave function of a dopant atom (in large
ensembles of dopants) has been investigated for several decades and is a fairly mature
field [25]. The prospect of realizing quantum computing using individual dopant atoms
as qubits has renewed the interest in this field.

Motivated by the QC design of Kane [4], several groups have performed calculations
on the action of a small local gate on a nearby dopant atom [26, 27, 28]. Moreover,
it has been shown that the exchange interaction between two dopant atoms can also be
tuned by a gate [29]. This is especially interesting because the exchange coupling shows
non-monotonous behavior as a function of the inter-dopant distance in Si [30].

Despite the large theoretical effort, experimental results on the electronic state of in-
dividual dopant atoms under external perturbations are very limited in number. In most
of the measurements published until now, the dopant atom was located in a device that
was originally designed for other purposes [31, 32, 33]. For that reason, there was only
limited control and knowledge about the nature and exact position of the impurity under
investigation. More dedicated experiments to verify the theoretical predictions would be
facilitated by precise positioning of one or more dopant atoms in a device. Various groups
are developing techniques to realize this. Single ion implantation [34, 35] enables exact
control of the number of impurities. However, the spatial resolution is still limited to
several tens of nanometers. Alternatively, scanning tunneling microscope lithography in
ultra high vacuum [36, 37] allows for positioning dopants with almost atom precision on
a surface, though the required overgrowth with silicon still has to be demonstrated.
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1.3 Outline of this thesis

This thesis aims at providing identification, analysis and understanding of several ba-
sic issues that are important for atomic scale electronics. We will focus on scaling of
metal-semiconductor diodes, effects of the discreteness of doping on the electrical prop-
erties of small diodes, resonant tunneling spectroscopy of single dopant atoms and the
effect of magnetic and electric fields on the electronic state of dopant atoms.

In Chapter2, experiments on nanometer sized epitaxial Schottky diodes are presented,
demonstrating the scaling behavior of Schottky diodes when entering the regime where
their size gets small compared to the Debye lengthLD in the semiconductor. A model
is presented that predicts an increase in conduction (per unit area) for smaller diodes,
qualitatively explaining the observed behavior.

Chapter3 presents simulation to estimate the influence of this scaling effect in micro-
fabricated devices with interconnects.

The visibility of the discreteness of doping in theIV-characteristics of small Schot-
tky diodes is addressed in Chapter4. A statistical analysis of the experimental results
is presented, connecting the observed scatter in the measurements to fluctuations in the
Schottky barrier height due to dopant atoms.

Resonant tunneling through a single dopant atom between two metallic contacts is a
promising method to study the properties of individual dopants. In Chapter5, we provide
some context for the calculations in the remainder of this thesis, by presenting measure-
ments of a tunneling device containing many single dopant channels in parallel. We use
this device to study the magnetic field behavior of the B+-ground state, demonstrating the
effectiveness of this technique in ASE. We also present the successful implementation of
a fabrication and measurement scheme, that should lead to the observation of resonant
tunneling through a single dopant atom in the near future.

Starting in Chapter6, we turn to the theoretical study of (individual) dopant atoms in
external fields. In this chapter, we qualitatively study the behavior of a double acceptor
in a magnetic field. The results can be directly applied to the experimental data of the
previous chapter and we draw conclusions about the nature of the ground state of the B+

state.
An electric field is the most straightforward means to address an individual impurity.

In Chapter7, calculations are presented on the splitting and shift of the dopant energy
levels and lifetimes in an electric field. Moreover, the applicability of the ‘scaled hydrogen
model’ is discussed.

Finally, in Chapter8 we present calculations of the influence of a local electric field
on a single dopant atom. The results are of special importance in the context of quantum
computing.

In summary, this thesis addresses several basic but essential issues in the field of
atomic scale electronics. Taking our results as well as the progress of others in this field
into account, it is reasonable to expect that within a few years time both the controlled ma-
nipulation of a single dopant atom’s wave function and tuning of the interaction between
two dopant atoms will have been realized experimentally.
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2
CHAPTER

Scaling of Schottky
diodes

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Abstract — We have measured electrical transport across epitaxial
nanometer-sized metal-semiconductor interfaces by contacting CoSi2-
islands grown on Si(111) with an STM-tip. The conductance per unit area
was found to increase with decreasing diode area. These observations
are explained by a generally applicable model, describing the potential
barrier shape in ultra small Schottky diodes. It is shown that for diodes
smaller than a characteristic length lc (associated with the semiconductor
doping level) the conventional description no longer holds. For such small
diodes the Schottky barrier thickness decreases with decreasing diode
size. As a consequence, the resistance of the diode is strongly reduced,
due to enhanced tunneling. Without the necessity of assuming a reduced
(non-bulk) Schottky barrier height, this effect provides an explanation for
the experimental observation of enhanced conductance in small Schottky
diodes.∗

2.1 Introduction

Electrical transport through metal-semiconductor interfaces has received tremendous
interest in the past decades, both experimentally and theoretically. This interest is of
course greatly stimulated by the huge importance of such a heterojunction in the com-
puter industry. In addition, the effect of downsizing the dimensions of a device on its
electrical transport properties is an important topic today. Extremely small diodes have

∗This chapter is based on the following papers: G. D. J. Smit, S. Rogge, and T. M. Klapwijk,Appl. Phys.
Lett. 80(14), 2568 (2002) and G. D. J. Smit, S. Rogge, and T. M. Klapwijk,Appl. Phys. Lett.81(20), 3852
(2002).
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been experimentally realized and characterized in various systems, e.g. carbon nanotube
heterojunctions [1] and junctions betweenp-type andn-type Si nanowires [2]. These
experiments showed several deviations from conventional diode behavior.

Only a few experiments have been reported, which purpose was to address the physics
of downscaling metal-semiconductor contacts. In none of them epitaxial interfaces were
used, although it is well-known that the Schottky barrier height (SBH) is an extremely
sensitive function of the atomic structure of the interface (see e.g. Ref.3). Scanning
tunneling spectroscopy (STS) of metallic clusters on a semiconductor surface has been
used to study small metal-semiconductor contacts [4]. In addition, experiments have been
carried out in which the tip of a scanning tunneling microscope (STM) was used to contact
a semiconductor surface [5, 6] or a metallic cluster on a semiconductor surface [7] to form
a small Schottky contact. Various deviations from the large-diode models were revealed.
One of them is enhanced conductance, which was interpreted as a lower effective barrier
[5]. Besides the work that addresses a single small diode directly, measurements have
been carried out on many small diodes in parallel [8, 9].

Next to the experimental work, a large amount of models and theories exist, address-
ing several aspects of metal-semiconductor interfaces. Most existing models are restricted
to infinitely extending interfaces, expressed in the assumption that all parameters vary
only in the direction perpendicular to the surface. However, when the interface-size is de-
creased, at some point the actual junction geometry becomes important and many of such
models cease to apply. A few specific geometries have been analyzed. For instance, some
modelling has been done in truly one-dimensional systems [10, 11] and extremely small
diodes (less than∼ 100 atoms) have been studied in local density calculations [12, 13].
However, little work has been done on modelling the effects of downscaling a conven-
tional diode, in the regime where quantum confinement does not play a role.

In this chapter, we will present measurements of electrical transport through an epi-
taxial, nanometer sized metal-semiconductor interface. The CoSi2/Si(111)-interface used
in our experiments is among the few metal-semiconductor interfaces of which reliable
SBH values exist, mainly because it can be grown as a virtually perfect, abrupt, epitaxial
interface [14], in which the atomic arrangement is well-determined. The SBH in this sys-
tem is 0.67 eV (for n-type Si) and has been measured with various techniques [14, 15, 16].
It is therefore a nearly ideal system to study electrical properties of metal-semiconductor
interfaces and has been intensely used for that purpose.

We will also present a simple model (based on the Poisson equation) describing the
barrier shape in a diode, that is readily applicable to arbitrarily shaped small junctions. In
particular, this model will be applied to explain several aspects of our measurements. Our
model is related to existing models describing inhomogeneities in the Schottky barrier
height (SBH) in large diodes [17], barrier shapes in small semiconducting grains [18]
and charge transfer to supported metal particles [19]. Although we restrict ourselves to
metal-semiconductor junctions, a similar model can be developed for, e.g.,pn-junctions.
The main result is that if the size of the metal-semiconductor interface is smaller than
a certain characteristic lengthlc, the thickness of the barrier is no longer determined by
the doping level or the free carrier concentration, but instead by the size and shape of
the diode. The resulting thin barrier in small diodes will give rise to enhanced tunneling,
qualitatively explaining measurements of enhanced conductance [5, 6, 20] and making the
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(often unjustified) assumption of a reduced SBH unnecessary. Moreover, experimentally
observed scaling behavior and deviatingIV-curve shapes [20] can be explained.

2.2 Theory

The transport properties of a Schottky diode are governed by the potential landscape
which has to be traversed by the charge carriers. In order to derive the relevant length scale
and study the general physical phenomenon, we start by analyzing an easily scalable and
highly symmetrical model system, namely a metallic sphere embedded in semiconductor
(see Figure2.1, upper left inset). This model system allows for studying the scaling
properties of a diode by calculating various properties of the system as a function of the
radiusa of the metallic sphere. The radiusa is used as a measure for the interface size: for
largea, we should find the well known results for a conventional diode, while decreasing
a gives the opportunity to study finite size effects. An advantage of the high symmetry is
that many physical properties can be expressed in explicit formulae.

2.2.1 Barrier shape

We start by calculating the barrier shape in the semiconductor in this model-structure.
The (initial) SBHϕB is accounted for in boundary conditions and is considered as a given
quantity. For simplicity, the depletion approximation [21] is adopted, which assumes
that the space charge region is depleted from charge carriers. It is a valid assumption
as long as the position of the Fermi-energy in the barrier region is such that the free
carrier concentrations are small compared to the doping concentration. This is true for the
direction and amount of band bending in most common Schottky contacts, in particular
for CoSi2 on moderately to highly doped silicon. Moreover, the space charge region is
assumed to be homogeneously charged. Deviations due to the limited validity of this
assumption (discrete dopants) will be discussed in more detail in Chapter4.

The barrier shape can be calculated by solving the Poisson equation in the semicon-
ductor region with the appropriate boundary conditions. However, it is more illustrative
to calculate the different contributions to the potential landscape by calculating electric
fields with help of Gauss’s law.

When the metallic sphere is embedded in a semiconductor with dielectric constantεs

and has a total chargeQ distributed over its surface, the electric fieldE1 due to this sphere
as a function of radial coordinater is

E1 =
Q

4πεsr2
for r ≥ a.

In the depletion approximation this charged sphere is surrounded by a uniform charge
density (caused by ionized dopants)ρ = ±eNd, whereNd is the doping concentration
and the sign depends on the doping type. For the remainder of this derivation the doping
is assumed to ben-type. The electric fieldE2 due to the homogeneously charged thick
spherical shell extending fromr = a to r = a + w (wherew has to be determined yet) is
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given by

E2 =
eNd

3εs

(
r − a3

r2

)
.

As the total electric field must vanish outside the depletion region, the total enclosed
charge must be zero, soQ = −eNd

4
3π((a + w)3 − a3). Therefore, the total electric field in

the regiona < r < a + w is

E = E1 + E2 =
eNd

3εs

(
(a + w)3

r2
− r

)

while E = 0 for r > a + w. BecauseE = −dV/dr, this can be integrated to obtain the
potential

V(x) = −
a+w∫

a+x

E dr =
eNd

3ε

(
3(a + w)2

2
− (a + w)3

a + x
− (a + x)2

2

)
,

wherex = r − a, the distance from the charged sphere. This equation can be rewritten as

e
kT
· V(x) =

1

2L2
D

[
(a + w)2 − 2(a + w)3

3(a + x)
− (a + x)2

3

]
for 0 ≤ x ≤ w, (2.1)

whereLD =
√
εskT/(e2Nd) is the Debye length. The Debye length is an important length

scale in semiconductors, that indicates the distance over which distortions in the potential
are screened by free carriers. The zero-point of the potential is chosen in the semiconduc-
tor bulk. The value of the depletion widthw is fixed by the second boundary condition
V(0) = Vs, whereVs is the total potential drop over the space charge region and satisfies
Vs = (ϕB − ϕs)/e− V (hereϕs = EC − EF is the distance from Fermi-level to conduc-
tion band in the bulk andV is the applied bias). Forp-type semiconductors a similar
equation applies. Eq. (2.1) is valid for small bias voltageV. The limited validity of the
depletion approximation at finite temperatures only affects the tail of the barrier (where
|V(x)| . kT), which is unimportant for the transport properties.

From the Eq. (2.1), it can be seen that the characteristic length scale of this system is

lc
def
= LD

√
2eVs/kT =

√
2εsVs

eNd
. (2.2)

This characteristic length is obviously strongly related toLD. By comparing the diode
sizea to lc we can decide whether the diode is ‘small’ or ‘large’. The value oflc mainly
depends on the doping level. In the lower right inset of Figure2.1the value oflc is plotted
versus doping concentrationNd for a fixed value ofVs.

Now we will use the expression for the barrier shape (Eq. (2.1) to analyze the behav-
ior of some physical quantities of interest. Next to the SBH, an important quantity for
electrical transport is the Schottky barrier thickness. In Figure2.1, the barrier full width
at half maximum (FWHM,x1/2) calculated from Eq. (2.1) is plotted as a function of diode
sizea. From the figure it is clear that fora� lc the value ofx1/2 approaches a constant,
which was expected for a large diode. Indeed, fora� lc, Eq. (2.1) reduces to

V(x) = −eNd

2εs
(x− w)2,
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Figure 2.1 Plot of the calculated barrier FWHM x1/2 as a function of diode size a [based on
Eq. (2.1)], both in units of lc. The dashed lines represent the asymptotic values
for a � lc (conventional or ‘large’ diode) and a � lc (new regime, ‘small’ diode)
respectively. The lower right inset is a plot of lc as a function of doping level Nd in
silicon (εs = 11.7) for ϕB = 0.67eV and T = 300K. The upper left inset schematically
shows the model system, a metallic sphere embedded in semiconductor.

which is the well-known textbook [21] result for band bending in the depletion approxi-
mation for an infinitely large diode. Both the depletion widthw =

√
(2εs/eNd)Vs = lc and

x1/2 = (
√

2− 1)w are in that regime independent ofa.
Figure2.1shows that fora . lc the value ofx1/2 is no longer constant, but decreases

with decreasinga. Fora� lc it approachesx1/2 = a, i.e. the barrier thickness equals the
diode size. This also follows from Eq. (2.1), which reduces fora� lc to

V(x) = Vs · a/(a + x),

at least in the regionx � w (that is, close to the interface). Note that this is exactly the
potential due to the charged sphere only. In this regime, the effect of the semiconductor
space charge on the barrier shape and thickness can apparently be neglected∗. This can
be understood from the fact that the screening due to the space charge region takes place
on a length scalelc, as in conventional (large) diodes. However, from Gauss’s law it
follows that any charged object of typical sized < ∞ in a dielectric medium gives rise
to a potential that behaves roughly asV(r) ∝ d/r. This Coulomb potential can be further
screened by the formation of a space charge layer of opposite sign, but that additional
screening can be neglected ifd � lc. This observation does not only hold for a sphere,
but forany interface with typical dimensions much smaller thanlc.

∗Note that the barrier shape is stillimplicitly dependent onNd via Vs as it influences the Fermi-level position
in the semiconductor bulk
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Figure 2.2 The solid lines are contours of the barrier FWHM for various disc-shaped contacts
(see inset; radii ranging from 30 nm (a) to infinite (e)), taken from a numerical solu-
tion of the Poisson equation in silicon. It clearly shows the contact size dependence
for contact radii smaller than lc ∼ 750nm. The dashed lines are the FWHM-contours
of the barrier for the three smallest diodes, which would results from neglecting the
screening effect of the semiconductor space charge region. This illustrates the point
that for the smallest diodes, the space charge region has a negligible effect on the
barrier shape. Note that the scales of both axes are not equal. The inset indicates
the plane of cross-section shown in the figure.

To further illustrate this point, we must step away from this idealized model system.
In a geometry that can actually be realized in an experiment, the Poisson equation must
be solved numerically. We have done this, as an example, forn-doped silicon (Nd =

1015 cm−3) in contact with metallic circular disks of various radii. In this and all further
calculationsϕB = 0.67 eV was used, which is the barrier height of the CoSi2/Si(111)-
interface [14]. Figure 2.2 shows the FWHM-contours of the barriers as resulting from
these calculations. Also shown are the FWHM-contours of the barrier due to the metallic
contacts only, illustrating the negligible effect of the space charge region on the barrier
thickness in very small diodes∗.

Note again that our description of small diodes has some similarity to that of SBH-
inhomogeneities in large diodes as analyzed by Tung [17]. There, the effect of small
patches with lower SBH on the space charge region is found to extend for only a few
times the size of these patches.

The image charge effect [21], which results in barrier lowering, was neglected so far.
However, inclusion of this effect would only enhance the phenomenon mentioned above,

∗This effect is closely related to the action of small gates (see Chapter8).
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as it reduces the effective barrier height and width even further, especially in barriers
which are narrow already.

One more issue that needs attention is the discrete nature of doping. In our analysis,
the dopant atoms play a role in determining the Fermi-level position in the semiconductor
bulk and were considered to provide a homogeneous space charge region. However, for
the typical parameters of our experimentsNd = 1015 cm−3 anda = 30 nm (soa� lc) the
volume in which the potential drops to half its initial value contains approximately one
doping atom. Discrete energy levels of such a doping atom cannot be resolved at room
temperature. More importantly, the potential well due to an ionized single dopant will
locally distort the barrier shape. This complicates the potential landscape, but it can only
significantly increase the conductance of the diode, when the dopant resides close to the
interface. In Chapter4, this effect will be discussed in much more detail.

2.2.2 Transport

The shape of the barrier has consequences for electrical transport. The advantage of
a Schottky-contact over apn-junction is that transport properties are easier to model, be-
cause only one type of charge-carriers needs to be considered. These carriers are (driven
by a bias voltage) transported to the other side of the barrier by either thermionic emis-
sion over the barrier or tunneling through the barrier. In general, thermionic emission
is the dominant transport process for low to moderately doped semiconductors at room
temperature. Only for highly doped semiconductors (thin barrier) or at low temperatures
(thermionic emission cut off) tunneling becomes important.

From the discussion in the preceding section it is clear, that for very small Schottky-
contacts the barrier can be very thin, even when the semiconductor is lowly doped. The
main consequence for electrical transport is, that the narrow barrier in small diodes can
make tunneling the dominant transport mechanism (instead of thermionic emission) even
at very low doping levels.

To study the effect of the reduced barrier width on the transport properties of a small
Schottky diode, a transmission coefficientT(E,V) was obtained for the barrier shape from
Eq. (2.1). This was done in a one-dimensional fully quantum mechanical calculation [22].
Note thatT(E,V) is implicitly dependent on temperature and doping level, because these
quantities influence the position of the Fermi-level in the bulk semiconductor. The current
density is then given by

J(V) ∝
∞∫

0

T(E,V)[ f (ϕs + E) − f (ϕs + E + V)] dE,

from which it follows that the zero bias differential conductance satisfies

dJ
dV

∣∣∣∣∣
V=0
∝ −

∞∫

0

T(E,V) f ′(ϕs + E) dE.

Here, f is the Fermi-Dirac distribution function andE the energy at which the electron
transfer takes place, measured with respect to the semiconductor conduction band edge.
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Figure 2.3 The (room temperature) contributions of tunneling and thermionic emission to the
zero bias differential conductance, plotted as a function of diode size a for various
doping concentrations. The vertical arrows indicate the values of lc. The parameters
are the same as in Figure 2.2.

Transport due to electrons at energies below the barrier maximum (E < Vs) is regarded as
tunneling, while forE > Vs we speak of thermionic emission. Obviously, the contribution
of thermionic emission is almost independent of the barrier thickness, while tunneling is
strongly dependent on the barrier thickness.

In Figure2.3, the calculated zero bias differential conductance is plotted as a function
of diode sizea for several values ofNd. Fora & lc this quantity is independent ofa. For
smaller values, the tunnel current starts to increase rapidly, eventually leading to a strong
increase of the total conductance.

Moreover, the shape of the current-voltage (IV) curves changes with decreasing diode
size. Our calculations (Fig.2.4) show that for large diodes theIV-curve has exactly its
expected exponential shapeI = I0[exp(eV/kT) − 1]. Apart from the total current in-
crease, in small diodes the relative contribution of the reverse current starts to increase
and eventually—in extremely small diodes—the reverse current exceeds the forward cur-
rent, thus reversing the rectifying behavior of the diode. Notice that this effect generally
already occurs at large diode sizes, due to the presence of edges and vertices.
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Figure 2.4 Calculated JV-curves for various diode sizes. The large diode curve has the ex-
pected exponential shape. The qualitative appearance of the curves changes dras-
tically with decreasing diode size. The curves of the larger diodes have been scaled
vertically.

2.3 Experiments

2.3.1 Sample preparation and characterization

All experiments were performed in an ultra high vacuum (UHV) system with a base
pressure of 5· 10−11 mbar. Si samples, diced from standard 4′′-wafers and withn-type
doping (resistivity either 10Ωcm or 0.01Ωcm) have been used as substrate. They were
loaded into the system without chemical cleaning and thoroughly outgassed at 550◦C.
After flashing the sample to 1200◦C several times, it was slowly (1◦C/s) cooled down to
room temperature to yield a clean 7×7-reconstructed Si(111) surface (checked by STM).
Heating of the silicon was achieved by passing a current trough the sample.

It has been reported that a significant amount of acceptor-like impurities can be in-
corporated in the top layer of the substrate during sample flashing at 1200◦C in UHV
[23], effectively reversing the doping top-type in (initially) n-type low-doped samples.
Nevertheless, the concentration of these possible p-type dopants is expected to be so low
that it does not affect our main arguments.

About 0.3 monolayers of Co atoms were evaporated onto the surface which was held at
room temperature. Then the sample was subsequently annealed at 800◦C for about 5 min,
so that hexagon-shaped epitaxial CoSi2-islands were formed (Fig.2.5(a)). The height of
the islands ranged from 2–4 nm with respect to the silicon surface, while the diameters
were in the range 15–40 nm. The inter-island distances were much larger than the island
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diameters (see Fig.2.5(c)). The average dimensions of the islands and the spread therein
depends on the terrace width and slightly on the amount of Co on the surface and the
annealing procedure. The values given here apply to the measurements presented in this
chapter.

The atomically flat surface and straight edges of the islands confirm that they are
perfectly crystalline. The alignment of the edges with the main crystallographic directions
confirms the epitaxial growth. From TEM-studies, it has been shown that CoSi2-island
grow on top of the Si-substrate [24], although they were grown by a method slightly
different from ours. If in our case the CoSi2-islands would growinto the substrate, the
three occurring CoSi2/Si(100)-interfaces [25] do have the same SBH as the CoSi2/Si(111)
interfaces [26, 27].

From the STM-image, it can be seen that two different surface reconstructions coexist
on the surface, well separated from each other (Fig.2.5(d)). One is easily recognized
as the well-known 7× 7-reconstruction of the clean Si(111)-surface. The other is an
irregular Co-induced reconstruction which will be referred to as the Co-induced 1× 1-
reconstruction [25].

As the final preparation step, the Si-surface reconstruction was destroyed by exposing
the surface to atomic hydrogen for 10 min at a pressure of 10−6 mbar, while the surface
was held at 400◦C, followed by a fast cool-down. This procedure was necessary to
decrease the effect of surface related conduction channels as will be discussed later.

2.3.2 Measurements

The IV-measurements were done (at room temperature) by positioning the STM-tip
over an island. After switching off the feedback loop, the tip was lowered by a distance
∆z, sufficient to make contact to the island. Then the current was measured while ramping
the voltage. The appropriate value of∆z was determined by lowering the tip at a fixed
bias and measuring the current. After the expected initial exponential increase, the current
saturated at a constant value when the tip was lowered by∼ 9 Å. To ensure good contact,
in all IV-measurements∆z = 15 Å was used. The voltage ramping speed was typically
10 - 100 V/s, which is slow compared to theRC-time of the system (∼ 1 ms). This is
confirmed by the absence of hysteresis in the measurements. The current measurements
were limited to 50 nA by thein situ IV-converter.

A schematic representation of the procedure in a single measurement is depicted in
Fig. 2.6. The voltage ramp was generated by a digital function generator. Both the ap-
plied voltage and the output of theIV-converter were simultaneously measured by 16-bit
analogue-to-digital converters in a data-acquisition card (see Fig.2.7).

Carefully ‘crashing’ the STM-tip forIV-measurements in this way did hardly deteri-
orate the imaging quality of the STM-tip (Fig.2.5(b)). When repeating the measurement
on different positions on the same island, theIV-curves reproduced perfectly. From this, it
can be concluded that the resistance of the (ill-defined and expected-to-be-irreproducible)
tip-island contact is negligible compared to the total resistance. This is supported by the
fact that the electrochemically etched tungsten STM-tips were prepared to be contami-
nant and oxide-free by in situ annealing and self-sputtering with Ne. Since both CoSi2
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Figure 2.5 (a) STM (current-)image of a typical CoSi2-island. The height of this island is 2.3 nm.
(b) The same island after a few IV-measurements, clearly showing the imprints
of the STM-tip. This image also demonstrates that the measurements do not de-
stroy the imaging quality of the tip. (c) Zoom-out of the same area, showing the
well-separated islands, some of which have been contacted for measurements. (d)
Height-image of a detail of the sample surface, showing the 7 × 7-reconstruction
of the clean Si(111)-surface, as well as adjacent areas with the Co-induced recon-
struction. All images were taken with sample bias V = +2V and set-point current
I = 0.1nA.
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and the tip are metallic, no barrier at the tip-island interface is expected. Furthermore, the
resistance of the back-contact on the sample was measured to be at most a few kΩ. The
spreading resistance from the island to the substrate is also estimated to be negligible.
Therefore, we can be sure that we are really probing the properties of the island-substrate
interface. The advantage of this type of measurement (as compared to the usual STS) is
that the measurements are not dominated by the properties of the surfaces at either side
of the vacuum-gap, but instead it is possible to directly probe the properties of the buried
metal-semiconductor interface.

As mentioned before, two different surface reconstructions coexist on our samples
after preparation. Some islands are completely surrounded by the Co-induced 1× 1-
reconstruction, while others partly border 7×7-reconstructed surface areas (see Fig.2.5).
IV-curves on the former type of islands yielded on average a significantly higher resis-
tance than measurements on the latter type. This is presumably due to either surface
conduction [28] or environmental Fermi-level pinning resulting in additional band bend-
ing. For this reason, in all presented measurements the surface reconstruction was first
destroyed by exposing it to atomic hydrogen, as described before. This treatment always
led to a decreased conductance, apparently reducing the contribution of a surface-related
transport channel. Measurements on the same sample always gave consistent results after
this procedure∗.

The range of island sizes that can be fabricated in the self-assembling growth process
is limited. In the measurements presented in this chapter, this range is approximately 15–
40 nm for the island diameters. Still, both the small and the large diode regime can be
addressed by varying the doping level. Indeed, on the 10Ωcm substrate, where the doping
level predicts a screening length of about 1µm, we are far into the small-diode regime.
On the 0.01Ωcm substrate (screening length∼ 10 nm) we are just at the other side of the
crossover.

2.4 Results and discussion

Fig. 2.8 shows a few typical measurements on the low-doped sample. As expected,
it was impossible to fit ourIV-data of the small diodes to the standard diode equation
I ∝ [exp(eV/kT) − 1], even at small bias. This indicates that indeed the dominant trans-
port process is not thermionic emission, here. A further clear manifestation of the special
behavior of small diodes is the much higher conductance than expected from downscal-
ing a conventional diode. From a typicalIV-curve acquired on a small diode (10Ωcm
substrate), a specific contact resistanceRc (the zero-bias differential resistance multiplied
by the island area) of 1·10−2 Ωcm2 was derived. This is four orders of magnitude smaller
than for conventional diodes with a barrier height of 0.67 eV [21, 27]. Considering the
facts that in a conventional diode on a 10Ωcm substrateJth/JT (ratio of thermionic and
tunnel current) is expected to be roughly 1010 [29] and thatJth is independent of the bar-
rier thickness, the total current increase requires an increase of the tunnel current by a

∗Comparison of measurements on samples from different fabrication runs was not straightforward, because
the procedure of hydrogen exposure was not perfectly reproducible.
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Figure 2.8 Measured average current density for various island sizes on the 10Ωcm substrate.
Smaller islands have larger current densities due to the narrower barrier. The in-
set shows the full IV-curve for the 810 nm2 island, demonstrating that the current
increases faster with reverse bias than with forward bias.

striking factor of∼ 1014. Due to the sensitivity of the tunnel current on the barrier thick-
ness, such a large increase can reasonably well be explained by a considerably reduced
barrier thickness.

Besides, pure thermionic emission would lead to a saturation current at positive sam-
ple bias of approximately 1·10−7 nA for this SBH [21]. The observed current is, however,
much larger. This also indicates the presence of an important, additional conduction path.
Note that it is not necessary to assume alower SBH to explain our data.

To further test our hypothesis, the dependence of the (small-bias) conductance on the
island area was studied. The large diodes (0.01 Ωcm substrate) behaved as expected:
the barrier thickness is determined byLD and therefore independent of the diode size.
A larger diode area leads straightforwardly to a larger conductance (see Fig.2.9). The
observed current-area dependence is not perfectly linear, which is presumably due to the
contribution of the edges, which are not included in our simple model. (Deviation that
are due to randomly positioned dopants are treated in Chapter4.) Due to the high doping
level there will be a significant amount of tunneling in these diodes. For that reason, the
IV-curves do not behave according to the standard diode equationI = I0[exp(eV/kT)−1].

The small diodes show a different dependence on island area. The measurements in
Fig.2.8show that in small diodes the conductanceper unit areadecreases with increasing
diode area. To demonstrate this trend even clearer, in Fig.2.10 the measured zero-bias
conductance per unit area is plotted versus island size. This figure is fully consistent with
our model, which predicts a thicker barrier for larger interfaces, leading to a decreasing
contribution of the tunnel current.

Finally, we want to mention the behavior of small diodes at large bias. In conventional
diodes, the current saturates at reverse bias. At forward bias, after the initial exponential
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increase, the current is limited by the serial resistance of the bulk semiconductor. In our
small diodes, the situation is completely different. From the inset in Fig.2.8 it can be
seen that the expected diode operation is even reversed: the measured current at forward
(negative) bias is smaller than at reverse bias. As explained in Section2.2.2, this behavior
can be understood from the fact that the barrier thickness decreases fast in reverse bias
for initially thin barriers. The effect is even enhanced by taking into account the related
process of Fowler-Nordheim tunneling from the diode’s edges at positive sample bias.

2.5 Conclusion

In conclusion, we have measured electrical transport through epitaxial nanometer
scale metal-semiconductor interfaces. Both the observed high zero-bias conductance and
the dependence of the zero-bias conductance on the diode area support our model for the
extent of the space charge region for interface sizes smaller than the free carrier screening
length. By a simple electrostatic argument, it demonstrates that the Schottky barrier thick-
ness becomes a function of the diode size for small diodes (e.g. smaller thanlc ≈ 80 nm
for Nd = 1017 cm−3). Consequently, the contribution of tunneling to the total conductance
is greatly enhanced in small diodes. This effect can explain several experimental results
[5, 6, 20], without the assumption of a reduced SBH. Finally, we found that small diodes
showIV-curve shapes that qualitatively differ from those of conventional diodes.
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Scaling of
micro-fabricated
nanometer-sized
Schottky diodes
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Abstract — Diodes on the nanometer scale generally show non-ideal
transport characteristics. In this chapter, the transition of a conventional
Schottky diode to a nano-diode is investigated. It is shown that elec-
trostatic effects in small lithographically fabricated diodes can lead to a
considerably thinner Schottky barrier, with the consequence of a greatly
enhanced tunneling current. We present numerical simulations as well
as analytical calculations of the potential barrier shape in small devices,
demonstrating this scaling effect. Special focus is placed on the role of
the interconnects.∗

3.1 Introduction

As shown in the previous chapter, nanometer-size diodes generally show transport
characteristics deviating from those of conventional diodes. For diodes which are much
smaller than the characteristic length scalelc (see Eq.2.2), the barrier thickness is pro-
portional to the diode size. For low doping concentrations (1015 cm−3) the scaling ef-
fect needs already to be considered for diodes with a contact diameter of less than about

∗This chapter is based on the following paper: G. D. J. Smit, M. G. Flokstra, S. Rogge, and T. M. Klapwijk,
Microelectronic Engineering64(1–4), 429 (2002).
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50 nm 50 nm
(a) (b)

insulator

semiconductor

metal

Figure 3.1 Results of our numerical calculations, plotted in a cross-section of a realistic lay-
out for a nano-Schottky diode including interconnect. The devices are cylindrical
symmetric around the middle vertical axis. The solids lines in the semiconductor
region are contours of the FWHM of the barrier resulting from a numerical solution
of the Poisson equation (see text). The dashed lines are contours of the FWHM
of the barrier in a large diode, for otherwise equal parameters. In both structures
T = 300K, ϕB = 0.67eV and ND = 1016 cm−3 were used. (a) The small-size effect on
the barrier shape resulting in a reduced barrier thickness is clearly visible. Here the
interconnect is separated from the semiconductor by a thick insulating layer with a
small dielectric constant εi = 2.5 (e.g. PMMA). (b) When the insulating layer is thin
and has a higher dielectric constant εi = 3.9 (e.g. SiO2), the small-size effect on the
barrier thickness is largely masked by the electrostatic effect of the interconnect.

800 nm, while for a more common concentration like 1017 cm−3 the cross-over length is
about 80 nm.

In this chapter, our goal is to investigate the consequences of this effect for transport in
lithographically fabricated diodes in the micrometer down to the nanometer length-scale.
Simulations of the potential barrier shape in small realistic metal-semiconductor devices
are reported, where special care is taken to understand the role of the interconnects which
can mask the scaling behavior substantially.

3.2 Simulations and results

To study the occurrence of this scaling effect in a device layout that can be micro-
fabricated, we have performed numerical calculations. For simplicity, a cylindrical sym-
metric contact was chosen. The Poisson equation was solved with a finite element method
to yield the potential and the electron and hole concentrations at room temperature. The
Schottky barrier heightϕB was considered as a given quantity and imposed as a boundary
condition. The dopant concentration was assumed to be uniform and interface states at
insulator-semiconductor interface were neglected.

The results of our calculations are presented in Fig.3.1. Part (a) of this figure illus-
trates the scaling behavior of a nano-diode in a layout that can be realized by standard
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micro-fabrication techniques. The diode shown has a radius of 50 nm, which is about
equal to the Debye lengthLD for the doping concentration used (ND = 1016 cm−3). Due
to the small size of this diode, the barrier is considerably thinner than for a corresponding
large diode. This is consistent with the results in Chapter2. However, Fig.3.1(b) shows
the same diode, the only difference being that the insulator between the large metal inter-
connect and the semiconductor is replaced by a 20 nm thick oxide layer. The electrostatic
effect of the interconnect now causes an additional space charge region to appear be-
low the insulator-semiconductor interface. This space charge strongly affects the barrier
thickness of the diode. Here, the electrostatic influence of the large interconnect almost
completely masks the scaling effect in the nanometer-sized Schottky diode. In contrast,
the thicker insulation layer with a lower dielectric constant in Fig.3.1(a) leaves the finite
size effect clearly visible.

3.3 Discussion

To make an experimental study of the small-size effect in micro-fabricated Schottky
diodes possible, the influence of the interconnect must be reduced as much as possible.
Because interconnects are in general large and the insulating layer must be thicker than
a few atomic layers, a standard approach [1] can be used to investigate the additional
band bending caused by the interconnect. Apart from the additional insulating layer, the
charge distribution in a conventional metal-insulator-semiconductor (MIS) structure is
very similar to that in a Schottky diode. Solving the one-dimensional Poisson equation
in this situation (assuming translational symmetry) straightforwardly gives the potential
as a function of position. From this standard result an expression for the extentW of the
depletion zone in the semiconductor can be deduced and is given by

W = d · εs

εi



√
1 +

2Vsmε
2
i

eNDd2εs
− 1

 . (3.1)

Here,εs andεi are the dielectric constants of the semiconductor and insulator respectively.
Vsm is the potential difference between the metal-insulator interface and the semiconduc-
tor bulk, ND is de dopant concentration,e is the electron charge andd is the thickness of
the insulating layer.

Reducing the influence of the interconnects is equivalent to minimizing the value of
W. To achieve this, a large fraction of the total potential difference between the metal
and the semiconductor bulk should drop over the insulator. If we define (1− α) as the
fraction of the total potential difference that drops over the insulator, the minimal required
thickness of the insulating layerdmin as a function ofα is given by

dmin =

√
Vsmε

2
i

2eNDεs

(1− α)2

α
. (3.2)

This function is plotted in Fig.3.2. The results are in good agreement with the numerical
calculations in Fig.3.1, which were obtained for the same parameters.



30 | Scaling of micro-fabricated nanometer-sized Schottky diodes

120

80

40

0
0.2 0.4 0.6 0.8 1

α

d
m

in
 (

n
m

)

0

εi ND (cm-3)

1016

3.9

3.9

2.5

1015

1016

Figure 3.2 The minimal required insulator thickness dmin as a function of α. The parameters of
the first two curves are the same as for the nano-diodes in Fig. 3.1.

From Eq. (3.2) it is easily deduced that a small value ofα requiresND anddmin to
be large whileεi must be small. These conclusions are intuitive, although the effect
of the dopant concentrationND needs some more discussion. Despite the fact that a
largeND decreases the distorting effect of the interconnect, a higher dopant concentration
also requires a smaller diode to enter the anomalous scaling regime, since the Debye
length is proportional to 1/

√
ND. As lithographically fabricated structures cannot be much

smaller than about 50 nm in diameter,ND must not be much higher than 1016 cm−3. On
the other hand, a lower value ofND would require a much thicker insulating layer to
reach the same value forα (see the last curve in Fig.3.2), making fabrication much more
difficult. Eq. (3.2) can be helpful to optimize the device parameters within such boundary
conditions. Our calculations show that it is possible to tune the device parameters within
realistic limits in such a way that the effect of the interconnect is reduced toα < 0.1.

Throughout this paper, we assumed thatϕB is independent of the diode size. Only
when a high quality epitaxial interface is used, one can be sure of a well-defined constant
barrier height over the total contact area. A good example of an interface that meets these
requirements is the CoSi2/Si(111)-interface [2]. On n-type silicon, it has a well-defined
barrier heightϕB = 0.67 eV that has been measured with various techniques [2, 3, 4].
This value ofϕB was used in our calculations.

As mentioned before, interface states at the insulator-semiconductor interface and
fixed charges in the insulator were neglected in our general analysis. However, depending
on the choice of materials, these phenomena can readily occur. The presence of electronic
states at the insulator–semiconductor interface would causeα to become independent of
d andεi . Instead,α would be determined by Fermi-level pinning. Trapped charges in the
insulator can cause additional band-bending, also changing the value ofα. This shows
that the determination ofα can be more involved than sketched in Sec. 3. Nevertheless,
the observability of the scaling effect still depends in the same way onα, i.e. on the rela-
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tive position of the Fermi-level at the metal–semiconductor and insulator–semiconductor
interfaces.

3.4 Conclusion

The different behavior of nanometer-sized metal-semiconductor interfaces compared
to standard sized interfaces has been investigated by numerical simulation. Devices with a
realistic layout in terms of interconnects and insulating layers on the 100 nm length scale
clearly show a thinner Schottky barrier—leading to a more dominant tunneling current—
than a conventional large diode. Interconnects play an important role as they can mask the
scaling effect substantially. In very small diodes, this scaling effect allows for lithographic
manipulation of the barrier thickness independent of the carrier concentration. The pre-
sented simulations demonstrate that the discussed scaling behavior can be measured in
lithographically fabricated devices.
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nanometer-sized
semiconductor devices
due to doping statistics
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Abstract — We show that individual dopant atoms dominate the trans-
port characteristics of nanometer sized devices, by investigating metal
semiconductor diodes down to 15 nm diameter. Room temperature mea-
surements reveal a strongly increasing scatter in the device-to-device
conductance towards smaller device sizes. The low-temperature mea-
surements exhibit pronounced features, caused by resonant tunneling
through electronic states of individual dopant atoms. We demonstrate
by a statistical analysis that this behavior can be explained by the pres-
ence of randomly distributed individual dopant atoms in the space charge
region.∗

4.1 Introduction

In semiconductor physics, the influence of doping is generally accounted for by a
homogeneous shift of the Fermi-level, caused by the introduction of free carriers in the

∗This chapter is based on the following paper: G. D. J. Smit, S. Rogge, J. Caro, and T. M. Klapwijk,
cond-mat/0309137 (2003), to be published in Phys. Rev. B.

33



34 | Conductance distribution in nanometer-sized semiconductor devices. . .

semiconductor. However, when the dimensions of a device are small compared to the
average distance between individual dopants, the discrete nature of doping must be taken
into account. Each individual ionized dopant introduces a Coulomb potential well in the
semiconductor, locally distorting the potential landscape. When the number of dopants in
the volume of semiconductor that determines the transport characteristics of a device gets
small, these random potential fluctuations cause atypical behavior of semiconductor de-
vices [1]. As mentioned in Chapter1, this is commonly viewed as one of the fundamental
limits in the ongoing size-reduction of CMOS-technology [2, 3]. Mapping the positions
of individual dopants [4] and the potential fluctuations they induce [5, 6] has been per-
formed experimentally with various techniques. Furthermore, the influence of statistical
fluctuations due to random dopants on device behavior has been subject of simulations
[7].

In this chapter, we experimentally investigate the effects of the discreteness of dop-
ing on the transport properties of small diodes by comparing many identically prepared
devices. We find that statistical fluctuations caused by randomly positioned individual
dopant atoms do not average out for very small devices. In contrast, fluctuations domi-
nate the electrical transport properties of the smallest devices and cause large differences
in the conductance of nominally equal devices. Furthermore, we demonstrate that at low
temperature the Coulomb well of a single dopant gives rise to a resonant tunneling chan-
nel.

4.2 Measurements

In order to allow for measuring the transport characteristics of many identically pre-
pared diodes, we use self-assembly methods to fabricate epitaxial CoSi2-diodes. The tip
of a scanning tunneling microscope (STM) is used to characterize and access the devices
individually.

All experiments are performed in an ultra-high vacuum (UHV) system with a base
pressure of 5· 10−11 mbar. Self assembled CoSi2-islands are grown on Si-substrates (re-
sistivity 0.015 Ωcm, doping concentration around 2· 1018 cm−3) by evaporating a sub-
monolayer of cobalt onto a clean 7× 7-reconstructed Si(111) surface, followed by an
anneal at 800◦C for about 5 min. The resulting hexagon-shaped epitaxial CoSi2-islands
have heights in the range of 2–10 nm and diameters in the range of 15–80 nm. The inset of
Fig. 4.2displays an STM-image of a typical island. Each island is regarded as a nanome-
ter sized epitaxial metal-semiconductor diode. The inter-island distances are roughly ten
times larger than the island diameters. To minimize the effect of surface related transport
channels, the 7×7 surface reconstruction surrounding the islands is destroyed by exposing
it to atomic hydrogen for 10 min at a substrate temperature of 400◦C.

Current-voltage (IV) measurements are performed by positioning the STM-tip over
an island. After switching off the feedback loop, the tip is lowered by 15 Å, which is
found to be sufficient to make contact to the island. Then the current is measured while
ramping the voltage, yielding well-reproducibleIV-curves that reflect the properties of
the metal-semiconductor contact. The sample preparation and measurements techniques
are described in more detail in Chapter2.
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Figure 4.1 The zero bias conductance per unit area as a function of island area at room temper-
ature. For large islands, the measured values fall within a narrow range. For smaller
islands, the scatter is rapidly increasing and is much larger than the measurement-
inaccuracy. The inset shows some typical IV-curves. The numbers in the inset
correspond to the numbered data points in the main figure.

4.2.1 Room temperature measurements

Some typical room-temperature measurements are displayed in the inset of Fig.4.1,
showing weakly rectifyingIV-curves. The overall shape of the curves is very similar.
To investigate the dependence of the diode’s conductances on their size, in Fig.4.1 the
zero-bias conductance per unit area is plotted as a function of island area for more than
40 different islands, grown on two similarn-type samples. One would expect that devices
of equal size yield the same value for this quantity. Indeed, for larger devices the con-
ductance per unit area falls within a narrow range. However, towards smaller areas there
is no definite behavior. Instead, the scatter in the measured values increases rapidly and
nominally equal devices yield very different results.

To study the increasing scatter in more detail, the standard deviation of the conduc-
tance per unit area is plotted in Fig.4.2 as a function of diode area, calculated from the
data of Fig.4.1. We clearly observe that the standard deviation increases with decreasing
island size.

Measurement inaccuracies are not the source of this random scatter, as proved by
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Figure 4.2 Standard deviations of the measured conductance per unit area for various values
of the device area A. Each point is calculated from eight neighboring data points in
Fig. 4.1. The dashed line is a least square fit of the function C/

√
A to these points,

yielding C = 1.8 nA V−1 nm−1. The arrow indicates which island size corresponds
to an average of one dopant atom per island (〈N〉 = 1) according to our analysis.
The inset shows an STM-image of a typical island, acquired at room-temperature
directly after preparation.

the low noise level (typically less than 10 pA around zero bias) and good reproducibility
of measurements on the same device. Moreover, this scatter is absent in similar mea-
surements on low-doped samples (see Fig.2.10). Schottky barrier inhomogeneities [8],
which have been observed at non-epitaxial interfaces [9, 10, 11], do not play a role here,
as they are due to variations in the atomic arrangement at the metal-semiconductor in-
terface itself. The metal-semiconductor interfaces in our devices are perfectly epitaxial
and mono-crystalline, which is supported by cross-sectional transmission electron micro-
graphs of similar structures [12]. This also rules out interface defects or grain boundaries
as the origin of the fluctuations. In addition, BEEM measurements of CoSi2-films on un-
doped Si(111) reveal a perfectly homogeneous Schottky barrier height [10]. Only islands
showing an atomically flat and defect-free surface in the STM-images were included in
the analysis.

We will show that the increased scatter in the measured data is caused by the presence
of randomly distributed dopant atoms in the Schottky barrier. An ionized dopant atom
locally distorts the barrier, giving rise to a local barrier reduction and thus a high con-
ductance spot (see the inset of Fig.4.3). Then, the observed spread in Fig.4.2 is directly
related to the spread in the number of dopant atomsN in the barrier of a device. From
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Poisson statistics, the relative spread is given by

sd(N)
〈N〉 =

1√〈N〉 ,

where sd(N) is the standard deviation ofN. Because〈N〉 is proportional to the island area
A, this gives that the standard deviation of the number of dopants per unit area increases
when the device area decreases. Indeed, Fig.4.2shows that a function of the formC/

√
A

describes our observations appropriately.

4.2.2 Low temperature measurements

To further investigate the influence of individual dopant atoms on the transport proper-
ties of small diodes, we performed similar experiments in a low-temperature UHV-STM
operating at 4.5 K. In the upper part of Fig.4.3, severalIV-curves of two different is-
lands are plotted. Each represents a full and independent measurement cycle (stop scan-
ning, make contact, rampV, release contact, resume scanning), demonstrating their re-
producibility. The current is plotted on a logarithmic scale, to make the features of the
curves visible over several orders of magnitude in current. Note that the noise-level is
below 1 pA.

From the measuredIV-curves, the quantity (V/I ) · (dI/dV) (the so-called normalized
differential conductance) has been calculated. It was calculated from the average of sev-
eralIV-curves per island and plotted for the same two islands in the lower part of Fig.4.3.
This is a well-known approach in the field of scanning tunneling spectroscopy [13] and
is very useful as it reduces the overall exponential behavior and enhances bias-dependent
features. Indeed, the weak features in theIV-curves turn into clear peaks and the peaks
show a one-to-one correspondence to the features in theIV-curves. The data presented
in Fig. 4.3was acquired from ap-type sample and it can be seen that the features appear
at one bias polarity, only. This is true for all acquired curves on the same sample. For
substrates with the opposite doping type (n-type), the peaks occur at the opposite bias
polarity (not shown).

The peaks can be explained by resonant tunneling through a discrete energy level of
a dopant atom, occurring when the Fermi-level at either side of the barrier lines up with
an energy level of the dopant’s potential well. The resulting resonant channel produces
a feature in the measurement curve. Resonances are expected at bias voltages from zero
up to the barrier height (roughly 0.5–0.7 V, depending on the dopant type; see also the
inset in the lower part of Fig.4.3). This is consistent with the observations. The actual
bias voltage at which a resonance occurs is predominantly determined by the distance of
the dopant atom to the interface. The number of peaks in a typical spectrum (one to four)
corresponds to the expected number of dopants in the devices, as we will show later. This
confirms our hypothesis that individual dopants influence the conduction path.
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Figure 4.3 Measured IV-curves of two different CoSi2-islands on the same p-type sample. The
upper graph shows three measurement of one island (island A, A = 1300nm2) and
also three measurements of another island (island B, A = 1500nm2), demonstrat-
ing the reproducibility of the measurements. Features occurring at |V| . 0.1 V
(|I | . 1 pA) are due to noise. The lower panel shows the normalized differential con-
ductance of the same two islands, calculated from an averaged IV-curve. Arrows
indicate the main features in the IV-curves, showing up as peaks in the lower panel.
The inset schematically shows the band diagram of an unbiased device. For clarity,
the situation for an n-type sample is drawn. The dashed line is the initial conduc-
tion band (EC) profile. The solid line is EC perturbed by the dopant’s Coulomb well,
causing a local barrier lowering ∆ϕ.
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4.3 Analysis

Motivated by the foregoing observations, we present a model that links the conduc-
tance fluctuations observed at room temperature to (random) dopant positions. Moreover,
the parameters in the model are directly related to device parameters.

Because the dopants in the substrate are randomly distributed, the number of dopants
N in the barrier of a given island is Poisson-distributed with parameterλ. This means that
the probabilityPλ(k) thatN equalsk for a certain device is given by

Pλ(k) =
λk

k!
e−λ, (4.1)

whereλ = 〈N〉 is the mean value of the number of dopants in the barrier of this particular
device. The parameter can be expressed asλ = AtNd, whereA is the area of the island,
t the effective thickness of the barrier andNd the average doping concentration in the
barrier. As shown in Fig.4.2, the scatter in the number of dopants in the barrier per unit
area satisfies sd(N)/A ∝ 1/

√
A and therefore is large for small islands.

We will now show that this effect also creates scatter in conductance measurements.
We assume that dopants located in a certain region close to the metal-semiconductor inter-
face induce a local barrier lowering that gives rise to a low-resistance transport channel∗.
The conductance of a transport channel induced by a dopant atom depends on the dopant’s
distance to the interface. Since the distance is a random variable, the conductanceG1 of a
single channel is not the same for all channels, but has a certain probability distribution.
The distribution is given by a probability density functionf1(g), meaning thatf1(g)dg
is the probability for a certain channel to have a conductanceG1 betweeng andg + dg.
Both the distribution of the position of a dopant in the barrier and the dependence of the
conductance of a channel on that position are contained inf1(g).

Assuming that the values of the conductance of the individual channels are indepen-
dent and characterized by the same distribution given byf1(g), the total conductance of a
device is given by the sum of the contributions of the individual channels. Here, we ne-
glect the background conduction and assume that the conductance is dominated by these
channels. If there arek channels, the total conductance isGk =

∑k
i=1 G(i)

1 , where the con-
ductance of the individual channels is denoted byG(i)

1 . The density functionfk(g) of Gk

can be calculated explicitly† by taking thek-fold convolution of f1(g) [14]

fk(g) = f1(g) ∗ . . . ∗ f1(g)︸                ︷︷                ︸
k times

.

Finally, taking into account the Poisson distribution of the number of channels (Eq.4.1),
the density functionf (g, λ) of the total conductanceG of a device can be computed as

f (g, λ) =

∞∑

k=0

Pλ(k) fk(g). (4.2)

∗Note that here the term ‘channel’ refers to a weak spot in a barrier and is unrelated to the conduction
channels occurring in the field of quantum transport.

†In a numerical calculation, thefk(g) can be easily computed by using (fast) Fourier-transforms:fk =

F inv([F ( f1)]k), whereF is the Fourier transform andF inv its inverse.
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Figure 4.4 Map of f (g, λ) as defined in Eq. (4.2) plotted as a function of g/λ (vertical axis)
and λ (horizontal axis). The function values are represented in a linear gray-scale,
where white corresponds to 0 and black to 0.65. For f1(g) a uniform distribution was
chosen.

In other words, for given device parametersNd, A andt, f (g, λ)dg is the probability that
the total conductanceG due to dopant atoms in the diode is betweeng andg + dg.

To illustrate its behavior, Fig.4.4shows a map off (g, λ) (from Eq.4.2) as a function
of g/λ (proportional to the conductance per unit area) andλ (which is proportional toA).
For a fixed value of the device area (that is a fixed value ofλ and a vertical line in the plot)
the color scale gives the probability density to find a device with a particular conductance
per unit areag/λ. For large values ofλ, all density is concentrated aroundg/λ = 1

2, while
for smallerλ it is spread over an increasingly wide range of values. In this figuref1(g) was
chosen as a uniform distribution. However, as we will show next, the general properties
of f (g, λ) are not strongly dependent on the particular choice off1(g).

Without making any assumptions on the choice off1(g), we can compute the moments
of f (g, λ) in terms of those off1(g). First, the mean value ofG satisfies

〈G〉 =

∫
g f(g, λ) dg =

∞∑

k=0

Pλ(k)
∫

g fk(g) dg =

=

∞∑

k=0

Pλ(k) · k〈G1〉 = λ〈G1〉.

In fact, to allow for easy comparison with the data, we consider the total conductance
per unit areaσ. By making the substitutionσ = G/A. It follows directly that the average
value ofσ satisfies

〈σ〉 = tNd〈G1〉. (4.3)
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This is a very intuitive result, since〈σ〉 equals the average number of dopants in the barrier
per unit area multiplied by the average conductance per channel.

To obtain the standard deviation we first observe that

〈G2
k〉 = 〈(G(1)

1 + . . . + G(k)
1 )2〉 =

= k〈G2
1〉 + k(k− 1)〈G1〉2,

when theG(i)
1 are independently identically distributed. Using this fact, we find that

〈G2〉 =

∫
g2 f (g, λ) dg =

∞∑

k=0

Pλ(k)
∫

g2 fk(g) dg =

=

∞∑

k=0

Pλ(k) · (k〈G2
1〉 + k(k− 1)〈G1〉2) =

= λ〈G2
1〉 + λ2〈G1〉2.

Finally, this yields

sd(G) =
√
〈G2〉 − 〈G〉2 =

√
λ〈G2

1〉.
By making the substitutionσ = G/A once more, we find that the standard deviation

sd(σ) (which can be interpreted as the spread inσ) is given by

sd(σ) =

√
tNd

A
〈G2

1〉. (4.4)

The most important observation from this equation is that sd(σ) is proportional to 1/
√

A,
showing that the area-dependence of sd(N)/A leads to a similar behavior of spread inσ.
This also justifies the choice of the fit-function in Fig.4.2.

4.4 Application to the data

Our simple model captures the general features of the data and yields reasonable val-
ues for the parameters. To demonstrate this, a least square fit of the functionC/

√
A (cf.

Eq. (4.4); C is a fit-parameter) to the standard deviations has been performed. The result
is the dashed line in Fig.4.2. The fit gives a good description of the data, showing that
the spread in the data is consistent with the prediction of the model.

From the fit, we make some estimates for the physical quantities in the model. The

value of the fit-parameterC = 1.8 nA V−1 nm−1 should be equal to
√

tNd〈G2
1〉 (according

to Eq. (4.4)). By looking at the large area values in Fig.4.1, we find thattNd〈G1〉 ≈
0.04 nA V−1 nm−2 (Eq. (4.3)). Combining these numbers and assuming that〈G1〉2 ≈
〈G2

1〉 we find values for parameters in the model. First, 1/tNd ≈ 1/(2500 nm2), which
corresponds to an average of one dopant per 2500 nm2 device area (indicated in Fig.4.2).
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This number is consistent with e.g. an average doping concentration at the interface∗

aroundNd = 1017 cm−3 and an effective barrier thicknesst = 2.5 nm. Note that because
t is the thickness of the barrier region where dopants influence the barrier height, it is
thinner than the total Schottky barrier thickness (a few tens of nanometers in this case).
Second, we find〈G1〉 ≈ 100 nA/V for the average conductance per channel. In order to
achieve this value, it is necessary to have e.g. a small patch with a local barrier height
of approximately 0.15 eV and an area† of approximately 10 nm2. These numbers are
consistent with the actual sample parameters.

On average, the conductance per unit area increases for decreasing island area, as
can be seen from Fig.4.1. This can be explained by the scaling mechanism described in
Ref. 15, which predicts that the barrier thickness decreases with device size for devices
that are smaller than a few times the Debye length. We note that the increasing value of
〈σ〉 is not the cause of the increment of sd(σ), since similar measurements on low-doped
samples do not exhibit an increased scatter (see Fig.2.10).

As demonstrated by our measurements, the discreteness of doping is easily observed
in highly doped samples. In lower doped samples, where the barrier is thicker, the effect
is expected to be much weaker. The local distortion of the potential landscape due to the
presence of a dopant is roughly as large as its effective Bohr-radius, which equals about
3 nm in silicon. When the barrier thickness is much larger than the dopant’s potential
well, the effective barrier lowering will be negligible. Hence the induced local barrier
lowering is the most pronounced in thin barriers.

4.5 Conclusions

In conclusion, we have shown that individual dopant atoms dominate the transport
characteristics of epitaxial nanometer sized metal semiconductor diodes. Room tem-
perature data show increasingly large device-to-device conductance fluctuations towards
smaller device sizes. Measurements at 4.5 K reveal pronounced structure in theIV-curves.
A statistical analysis based on the assumption of randomly positioned individual dopant
atoms leads to a good description of the experimental data.
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Spectroscopy of
individual dopant atoms
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Abstract — To provide the context for the subsequent chapters, we
present first experiments done in our group, which eventually should lead
to resonant tunneling spectroscopy of single dopant atoms. Measuring
large silicon tunneling devices containing a δ-doped barrier, we observe
a resonance in the differential conductance. It is identified as arising from
tunneling through the B+ state of boron atoms in the δ-layer. Further-
more, we show a fabrication method for nano-devices approaching the
size regime necessary for the observation of single dopant atoms. The
feasibility of an STM-based measurement method is demonstrated.∗

5.1 Introduction

In the subsequent chapters of this thesis, we will present calculations of the behavior
of individual dopant atoms in electric and magnetic fields, which were performed in con-
junction with the experimental work that is carried out in our group. The purpose of this
chapter is to provide some context and background for those calculations, by presenting
our recent experimental progress.

In Chapter4, we have shown experimental results demonstrating the occurrence of
resonant tunneling through individual dopant atoms. However, the usage of resonant
tunneling spectroscopy (RTS) as a tool to study dopant atoms requires a more controlled
experimental system, such as the silicon tunnel barriers that will be presented here.

∗The measurement and fabrication of the large devices was carried out by I.D. Vink and J. Caro [see J. Caro,
I.D. Vink, G.D.J. Smit, S. Rogge, T.M. Klapwijk, R. Loo, and M. Caymax, cond-mat/0309139 (2003), submitted
to Phys. Rev. B]. Measurements of the nano-devices were done together with H. Sellier, who also did the
fabrication.

45
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Resonant tunneling spectroscopy (RTS) is a generally applicable and efficient tool to
investigate the energy levels of confined systems (see Chapter1). Modern lithographic
techniques enable the preparation of structures in a semiconductor which are sufficiently
small to allow for singling out one dopant atom. This gives the opportunity to use RTS as
an instrument to study the energy levels of individual dopant atoms. In fact, energy levels
of dopant atoms have been observed before in a GaAs barrier containing many dopants
[1], single impurities inside a GaAs quantum well [2, 3] and single impurities inside a Si
Schottky barrier (see Chapter4 and Ref.4).

In the past, large ensembles of dopants have been successfully studied using optical
methods (photo-excitation) [5]. Using such methods to address or detect the response of a
singledopant atom is, however, not as straightforward as with RTS. Another advantage of
RTS over optical methods is that all levels are accessible, because there are no restrictions
due to optical selection rules. Furthermore, the ground state energy and its behavior in
a field can be measured independently. A point of concern is the large electric field that
is inherent to this method. Its influence on the energy level positions and width will be
discussed in detail in Chapter7.

In this chapter, we report on the first experiments, which are a part of our effort to
study individual dopant atoms using RTS and which eventually should lead to the ob-
servation of and control over the energy levels of a single dopant atom. In our initial
experiments, we observe a resonance in transport experiments of a silicon tunnel barrier
containing aδ-doping layer. Based on its energy position and magnetic field behavior, it is
ascribed to resonant tunneling through boron centers in theδ-layer, which are binding two
holes. Furthermore, we demonstrate the implementation of a fabrication scheme and an
STM-based measurement method that should make the observation of resonant tunneling
through asingleimpurity possible. Finally, we discuss potential problems and limitations
of our approach.

5.2 Experiments in large devices

At low temperatures, silicon can be an insulator or a conductor, depending on the
doping level. This allows for the fabrication of tunneling devices in which both the barrier
(in which the single impurity is located) and the emitter/collector are made from silicon,
such that the complete device is mono-crystalline. In this way, undesired electrically
active defects at the interfaces are avoided.

We fabricated all-siliconδ-doped tunneling devices from a layered structure consist-
ing of 40 nm lowly doped Si (p−, acting as a barrier) sandwiched between two 500 nm
thick degenerately dopedp+ Si layers (acting as metallic contacts). Boron is the dopant
in all layers. Aδ-spike of boron atoms with areal density 1.7× 1011 cm−2 is centered in
the lowly doped tunnel barrier. The structure is deposited by chemical vapor deposition
(CVD) on a Si(001) substrate with low doping. The doping profile in the structure was
measured with secondary ion mass spectroscopy (SIMS). The growth and doping profile
measurements were performed at IMEC (Leuven, Belgium)∗.

∗The layer package was grown by R. Loo and M. Caymax (IMEC, Leuven, Belgium)
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Figure 5.1 Schematic overview of the layered structure after fabrication and bonding. The right
graph shows measured SIMS data of the structure.

The right part of Fig.5.1 shows the result of the SIMS measurements, in which the
δ-layer, the barrier and the contact layers can be clearly distinguished. Thep+ layers
are degenerately doped, with boron concentrationNB = 1019 cm−3. Theδ-layer is about
3 nm wide (full width at half maximum) and has a peak concentration ofNB = 5 ×
1017 cm−3. The contrast of theδ-layer and the unintentionally high background doping
(NB ≈ 1017 cm−3) in the barrier is somewhat weak. This is due to boron diffusion out of
the bottom contact layer and theδ-layer, occurring during the Si-growth.

In order to characterize the material, we first fabricate square mesas, 100, 200, 300 and
400µm at a side. Theδ-layer in each of these devices contains millions of dopants. The
mesas are fabricated by sputter-depositing squares of Al-1%Si through a micro-fabricated
shadow mask. These squares serve both as a top contact and as an etching mask for
the reactive ion etch in an SF6 plasma that is used to create the mesas. The SF6 etch
is stopped just after the bottomp+ layer has been reached. A second shadow mask,
aligned with respect to the mesas, is used for sputter deposition of Al-1%Si contacts to
the bottom layer. The final step is a 400◦C anneal in N2/H2-atmosphere, using rapid
thermal processing, to improve the contact of the Al to thep+ Si. The total structure is
schematically depicted in Fig.5.1. At low temperature, the device resistance is dominated
by the barrier in the mesa.

Electrical measurements were performed in a4He flow cryostat equipped with a 14
T superconducting magnet and in a3He cryostat. Standard lock-in techniques were used
to measure the differential conductanceG versus bias voltageV. At 4.2 K and below a
single peak is present in theseGV-curves around 10 mV, superimposed on a dominant
background (see Fig.5.2). This peak becomes higher an narrower for decreasing temper-
atures and is not yet saturated at 0.5 K, where the FWHM of the peak is about 1.5 mV. The
peak is absent for devices that have noδ-layer but are otherwise identical. This indicates
that the peak originates from the boron atoms of theδ-layer.

Figure5.3shows a schematic overview of the valence band profile across the device.
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Figure 5.2 GV-curve at positive bias voltage for various temperatures (the full curve is sym-
metric around zero bias). The peak can clearly be seen to develop for decreasing
temperature. (Data courtesy of I.D. Vink)

The barrier is formed due to bandgap narrowing in the degenerately doped contacts. Band
bending in the barrier can be neglected as it occurs on much longer length scales than
the width of the barrier. In the highly doped contacts, an impurity band is formed and
the Fermi level position within the band is determined by the doping concentration. The
barrier height is determined experimentally to be 11.7 meV, by measuring the temperature
dependence of the zero-bias conductivity, which shows activated behavior.

When the structure of Fig.5.3is biased, a current starts flowing due to direct tunneling
through the barrier. An ionized dopant located inside the barrier introduces a potential
well, effectively creating a double barrier system. When the Fermi-level at one side of
the barrier aligns with an energy level of the potential well, a resonant channel is opened,
resulting in a feature in theIV-characteristic. In our device, the boron ground state is
located far below the Fermi-level and is therefore occupied by a hole. The resulting
neutral boron impurity is able to weakly bind a second hole, resulting in the charged
B+-state.

We attribute the observed peak in Fig.5.2 to resonant tunneling through B+-states in
theδ-layer. The resonance is observed at a bias voltage of just below 10 meV. Using the
barrier height obtained before, the binding energy of the B+ state is found to be slightly
more than 6.7 meV. In literature, the B+ binding energy is found to increase with the
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Figure 5.3 Schematic drawing of the valence band edge profile at zero bias. The hole energy
increases towards the top of the image. Due to the low temperature and the narrow
barrier (∼ 40 nm) band bending in the central region can be neglected. E′V is the
new valence band edge that is formed in the highly doped contacts. The Fermi-level
position in the contacts is determined by the doping concentration. The ground state
of the dopant atoms in the barrier is far below EF , so at low temperature they are
always occupied. Therefore, only the B+-state is available for tunneling.

doping concentration. The value we observe is in agreement with extrapolated data from
literature (for details, see Ref6).

Measurements of the resonance in a magnetic field reveal a shift of the resonance po-
sition towards higher bias (weaker binding) as well as a broadening of the peak (Fig.5.4).
A rough estimate shows that the size of the shift is consistent with the expected shift
from diamagnetism of the B+-state [6]. We will analyze these results in more detail in
Chapter6.

5.3 Experiments in nano-devices

The areal density of theδ-layer (1.7×1011 cm−2) gives rise to an average inter-dopant
distance of about 25 nm. In order to enter the regime where only a small number of dopant
atoms (down to one) is present in theδ-layer of a device, device diameters of 100 nm and
below are required. An alternative approach—decreasing the areal density of the layer—
would allow for larger devices, but then the number of dopants due to background doping
and the background conduction would be relatively too high. Indeed, a reduction of the
areal density of theδ-doping layer by a factor 5-10 would make the peak in Fig.5.1
disappear into the background.

For the fabrication of the sub-100 nm devices, we start from a similar layer package as
in the previous section, the only difference being that the thickness of the upperp+ layer
is reduced to 20 nm. The thin top layer prevents the occurrence of an unnecessary high
aspect ratio of the mesas. Spots on a double layer resist (PMMA) of down to 50 nm in
diameter are exposed by an electron beam. After development and an HF-dip to remove
the native oxide of the exposed silicon, a 20 nm thick platinum layer is evaporated onto
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Figure 5.4 The resonance peak in the GI-curves after subtraction of a local linear background
for various magnetic fields (from 0 to 14 T in steps of 2 T). The peak obviously shifts,
broadens and decreases in height. (Data courtesy of I.D. Vink)

the surface. Lift-off yields arrays of small circular platinum patches. The platinum serves
both as a noble-metal contact and as an etching mask for the subsequent anisotropic re-
active ion etch, which is carried out in a BCl3/Cl2/N2-plasma. Again, this etch is stopped
just after the bottomp+-layer has been reached, yielding∼ 80 nm high silicon mesas [see
Fig. 5.5(a)]. These mesas are still covered by∼ 10 nm platinum that remains after the
etch.

For first experiments on these devices, it is advantageous to avoid the complicated
fabrication steps that are required to connect the top layer of the nanometer-sized mesas
to bonding pads. Therefore, we fabricate a large and dense array of the mesas described
above (typically∼ 10 mesas perµm2), so that we can use the tip of a scanning tunneling
microscope (STM) to locate and contact individual mesas.

An STM-image of a typical mesa is shown in Fig.5.5(b). Note that imaging these
structures with an STM is not straightforward due to the large height differences and
steep walls. Measurements were carried out by locating a mesa with the STM, contacting
the platinum patches on top of the mesa with the STM-tip (see Fig.5.6), and acquiring
an IV-curve, similar to the technique used in Chapter2 and4. Because of the required
energy resolution, the electrical measurements were carried out in a commercial STM
operating at 4.5 K. The drift of the STM-tip with respect to the sample was so small at low
temperatures that maintaining a stable electrical contact for several tens of minutes was
possible. This enables accurate measurements, including the use of lock-in techniques.

Although we successfully acquiredIV-curves on individual mesas, we have not been
able yet to produce measurements that are worth comparing to the results in the previous
section. The reason for this is that the experiments were hampered by a high contact
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Figure 5.5 (a) Scanning electron micrograph showing micro-fabricated mesas of various di-
ameters. (b) Scanning tunneling micrograph (in 3-dimensional representation) of a
mesa. The height of this mesa is about 80 nm. (Images courtesy of H. Sellier)
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Figure 5.6 Schematic of the device layout during measurement. The top contact Pt-layer is
contacted by an STM tip. By applying a bias voltage to the tip, IV-measurements
are carried out.
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resistance between the platinum and the upper silicon layer. Work on a solution to this
problem is currently in progress.

5.4 Discussion

A limitation of the current layer package is the high background concentration in the
Si barrier. Ideally, this layer would be undoped, but the high processing temperatures dur-
ing CVD growth (600-700◦C) give rise to substantial diffusion of boron from the contact
layers andδ-layer into the barrier. This effect is clearly visible in Fig.5.1. There are sev-
eral possible solutions to this problem. First, one could switch to another combination of
host material and impurities, where the diffusion constant of the dopant atoms is smaller.
Second, one could use molecular beam epitaxy instead of CVD. Because of the lower
growth temperature, a much sharper doping profile can be achieved [7].

The STM-based measurement technique (combined with lithographically fabricated
devices) presented in this chapter has several advantages over the traditional approach.
First, the fabrication is relatively simple, because the top of the mesas are not connected
to bonding pads. Second, a much larger number of devices can be prepared on a single
chip, making it possible to gather statistical information from measurements of many
identically prepared devices.

On the other hand, our measurements of large devices show that experiments at tem-
peratures below 4.2 K and in a magnetic field are inevitable in order to have sufficient
energy resolution and for identification of the observed peaks. However, operating an
STM at temperatures below 4.2 K and in a large magnetic field is highly non-trivial and
at the edge of current technological possibilities. Carrying out the desired measurements
is more straightforward for traditionally fabricated devices. Moreover, once a complete
device has been successfully fabricated, it is much more stable than an STM-contacted
device and integration of e.g. a gate is more difficult in the STM-approach. Note that
the fabrication of a low-resistance metal-semiconductor contact on the nanometer scale
is generally a challenging task, which is required for both approaches. We conclude that
the STM-approach is especially suited for initial experiments, while the fully lithograph-
ically contacted devices are preferred in a later stage, when more accurate and sensitive
experiments are required.

Obviously, the wall of a mesa plays a much more important role in the nano-devices
than in the large devices. This wall is bound to incorporate electrically active defects
due to contamination, etch damage and oxidation in ambient. A large amount of surface
defects at the walls could give rise to Fermi level pinning, leading to a lateral confinement
potential and limiting electrical transport to the center region of the mesa. Such a (partial)
pinch-off effect would substantially relax the size requirements for the observation of a
single dopant atom.
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5.5 Conclusion

Successful measurements of large devices, containing many resonant channels via a
dopant atom in parallel, demonstrate the feasibility of our approach to use resonant tun-
neling as a probe for the energy levels of (individual) dopants. We implemented an STM-
based measurement method, which enables a simplified fabrication scheme of structures
containing∼ 1 dopant atom. Therefore, once the contact problems between the mesa
and platinum patch are solved, it will prove to be very useful for quick evaluation of the
material and physical principles.
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acceptors in a magnetic
field: identification of the

Si:B + ground state
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Abstract — A boron impurity in silicon binding an extra hole is known to
have only one bound state at an energy of just below 2 meV. The nature
of the Si:B+ ground state is however not well established. We qualitatively
analyze the behavior in a magnetic field of isolated acceptors in a tetrahe-
dral lattice binding two holes using group theory. Applying these results,
we analyze measurements presented in Chapter 5 and conclude that the
ground state of B+ is most compatible with a non-degenerate Γ1 state.∗

6.1 Introduction

A neutral boron acceptor in silicon is able to weakly bind an extra hole, resulting in
a positively charged ion (B+). This entity is an example of a positively charged accep-
tor, commonly denoted by A+, which is the counter part of the better known negatively
charged donor D−. Both are related to their atomic-physics analogue, the negative hydro-
gen ion H−. The energy states associated with these ions are very shallow and spatially

∗This chapter is based on the following paper: G. D. J. Smit, S. Rogge, J. Caro, and T. M. Klapwijk,
cond-mat/0309136 (2003), to be published in Phys. Rev. B.
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large. When their concentration is sufficiently high, their overlapping wave functions can
form an upper Hubbard band [1] and they play an important role in electronic transport
in semiconductors at low temperatures. Since a few years, electronic states of individ-
ual dopant atoms gained renewed interest due to their prospective application in Si-based
solid state quantum computing [2].

Neither theoretically nor experimentally much work has been done on the B+-state.
Optical spectroscopy is difficult due to the small ionization energy (less than 2 meV [3]).
In particular, the nature of its ground state is not well-established and to our knowledge
no results have been published on the magnetic field dependence of the energy levels.

The purpose of this chapter is twofold. First, we present a general group-theoretical
study of the magnetic field dependence of two-hole states in tetrahedral semiconductors.
To our knowledge, such an analysis has not been published before. Second, because our
analysis includes all possibilities for the B+ ground state, it enables us to compare our
results with our measurements of B+ in a magnetic field (Chapter5; Ref. 4) and to draw
conclusions about the nature of the B+ ground state.

6.2 Background

The nature of the energy levels of aneutral boron acceptor (B0) in silicon is well-
known [5] and the Zeeman effect in B0 has been studied in detail, both theoretically [6]
and experimentally [7]. The B-impurity is located at substitutional sites of the tetrahedral
silicon lattice. The (one-hole) ground-state is a 1s-like fourfold degenerate state that
belongs to theΓ8 representation of the tetrahedral double groupT̄d (for the nomenclature
of representations used, see TableA.1 in AppendixA). The bound hole has total angular
momentumj = 3

2. The single-hole wave function is the product of a 1s hydrogen-like
envelope function and a band-like function. Due to spin-orbit interaction in silicon, the
j = 1

2 valence band is split off by ∼ 43 meV [5] and does not need to be considered in
first order. A magnetic field completely lifts the fourfold degeneracy and the lowest order
Zeeman effect of theΓ8 state is linear.

As far as symmetry is concerned, the B+-state is similar to neutral group-II acceptors
in a tetrahedral lattice, which are well-studied (e.g. Ref.8 and references therein). Cou-
pling two j = 3

2 (Γ8) holes bound to a single nucleus gives rise to a six-fold degenerate
state, because due to the Pauli-principle only theanti-symmetric part ofΓ8 × Γ8 must be
taken into account. This can be reduced to its components as{Γ8 × Γ8} = Γ1 + Γ3 + Γ5.
Interaction between the two holes can split the state into a non-degenerateΓ1 state with
total angular momentumJ = 0 and a fivefoldΓ3 + Γ5 state carryingJ = 2.

Detailed quantitative calculations, which are necessary to establish the ordering and
splitting of these levels, are very difficult to carry out, because of the many complicated
physical effects that must be taken into account (valence band structure, crystal field,
Jahn-Teller-effect, etc.). Hund’s rule, well-known from atomic physics, predicts that the
more symmetricΓ1 state has a higher energy than theΓ3 + Γ5 state, such that the latter is
the ground state. The same conclusion was drawn from numerical calculations based on
effective mass theory [9]. However, it has been shown that a dynamic Jahn-Teller effect
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Table 6.1 Overview of possible two-hole states arising from products of two single hole states
and their reduction to irreducible representations of T̄d. For states originating from
two equivalent single hole states (first two lines in the table), the Pauli principle allows
only the antisymmetric part to be considered.

Combination Two-hole states

{Γ8 × Γ8} Γ1 + Γ3 + Γ5

{Γ6 × Γ6} = {Γ7 × Γ7} Γ1

Γ8 × Γ′8 Γ1 + Γ2 + Γ3 + 2Γ4 + 2Γ5

Γ6 × Γ′6 = Γ7 × Γ′7 Γ1 + Γ4

Γ8 × Γ7 = Γ8 × Γ6 Γ3 + Γ4 + Γ5

Γ7 × Γ6 Γ2 + Γ5

can provide a mechanism to reverse the ordering of the levels [10, 11], leading to aΓ1

ground state. This has in fact been observed in several neutral double acceptors.
Very little experimental work on B+ has been done. The binding energy of the second

hole in an isolated B+-state has been measured in phonon-induced conductivity (PIC)
measurements [3] and photoconductivity experiments [12]. It is slightly below 2 meV.
Stress-dependence has been investigated with the same techniques [12, 13] and in one
case the results were explained as evidence for a stress-induced ground state splitting
[13]. However, interpretation of the conductivity data is non-trivial, because only levels
which are very close to either the ground state of B+ or the valence band edge can be
observed with these techniques. Similar experiments in a magnetic field [14] showed a
linear increase of the binding energy, which was ascribed to Landau level formation in the
valence band. In these experiments, no additional shift or splitting was resolved.

Recent transport experiments in Si resonant tunneling devices provide a way to di-
rectly observe the magnetic field dependence of the B+ state [4]. These experiments
showed a super linear shift of the ground state towards the valence band (Fig.6.2). Nei-
ther a ground state level-splitting nor bound excited states were observed.

6.3 Double acceptors in a magnetic field

Here, we present a group theoretical study to qualitatively analyze the magnetic field
behavior of isolated acceptors binding two holes in a tetrahedral semiconductor for vari-
ous possible states. This analysis is not only applicable to neutral group-II acceptors (e.g.
Zn in Ge), but also to group-III acceptors binding an extra hole and singly ionized group-I
acceptors (e.g. Cu− in Ge). After this general part, we return to the specific situation of
B+.

We subsequently consider various possible two-hole levels and analyze their behavior
in a magnetic field using perturbation theory. All such levels transform according to
single-valued representations ofTd, as shown in the overview in Table6.1. We assume
that the Coulomb force and spin-orbit interaction between the holes is sufficiently strong
to split the levels into their irreducible components. Because of its possible importance
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Table 6.2 Reduction of the representations of Td when a magnetic field is applied along a 〈100〉,
〈111〉, or 〈110〉 direction of the tetrahedral lattice. From this table it can be deduced
how the double acceptor levels split in a magnetic field.

Direction 〈100〉 〈111〉 〈110〉
Group S4 C3 C1h

Γ1 (Td) Γ1 Γ1 Γ1

Γ2 (Td) Γ2 Γ1 Γ2

Γ3 (Td) Γ1 + Γ2 Γ2 + Γ3 Γ1 + Γ2

Γ4 (Td) Γ1 + Γ3 + Γ4 Γ1 + Γ2 + Γ3 Γ1 + 2Γ2

Γ5 (Td) Γ2 + Γ3 + Γ4 Γ1 + Γ2 + Γ3 2Γ1 + Γ2

for B+, we also consider theΓ3 + Γ5 level. In all cases it is assumed that the level under
consideration is well separated from neighboring levels.

Furthermore, we briefly address the analogue of the central field approximation in
atomic physics, where it is assumed that each of the two holes moves in the field of the
negative ionized acceptor core and the averaged effective potential due to the other hole.
In this approximation, the symmetry of the field in which each hole moves is unaffected
by the presence of the second hole. This method is known to give a good description for
some group-II acceptors in Si and Ge [8].

When a magnetic fieldB is applied, new terms are introduced in the Hamiltonian of
the holes, as given by the Zeeman-Hamiltonian

HZ = −µB(L + 2S) ·B − 1
2

m∗µ2
B

{
(r2

1 + r2
2)B2 − [(r1 + r2) ·B]2

}
,

wherem∗ is the hole effective mass andL andS are the total orbital and spin angular
momenta in units of~. The quantityL + 2S is the total static magnetic moment of the
system. Moreover,µB is the Bohr magneton andr i is the position vector of thei-th hole.

The symmetry group of the Zeeman HamiltonianHZ is C̄∞h. UnlessB is directed
along one of the main crystallographic axes, the symmetry group of the total Hamiltonian
H = H0 +HZ reduces to the trivial group. WhenB is parallel to a〈100〉, 〈111〉 or 〈110〉
direction in the crystal, the symmetry group of the total Hamiltonian reduces fromT̄d to
S̄4, C̄3 or C̄1h, respectively. The relevant character tables are given in TableA.2 andA.3
in AppendixA. Because all resulting groups are Abelian (commutative), it follows that
the application of a magnetic field completely removes the degeneracy of all levels∗. The
way in which theΓi levels exactly split in a magnetic field is presented in Table6.2.

To deduce the magnetic field induced splitting of the levels, we employ first order
degenerate perturbation theory. As mentioned before, it is assumed that the separation of
the levels is large compared to the splitting caused by the field, so only the subspace of
Hilbert space connected to the level under consideration needs to be taken into account.
Given a set of basis functions|i〉 for a particular level, we find the corresponding sub-
matrix 〈i|HZ| j〉 of HZ and diagonalize it to obtain the splitting as a function ofB.

∗But not necessarily in a first order approach.
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Instead of trying to calculate matrix elements fromHZ (after choosing a suitable
set basis functions) it is much more convenient to use the well-established approach of
constructing aneffective Zeeman Hamiltonian[15]. This comprises the construction of
a matrix of the required size, exploiting required symmetries to find vanishing elements
and relations between elements. The result is a matrix that usually depends on a small
number of unknown phenomenological parameters, in terms of which the level splitting
can be expressed. The value of these parameters cannot be determined from symmetry
arguments, but their value reflects the quantitative influence of, e.g., the band structure, the
Jahn-Teller effect, and the crystal field. The effective Hamiltonian approach is especially
advantageous in the present situation, where both the values of the parameters occurring
in HZ and the unperturbed wave functions are not (exactly) known.

6.4 Linear Zeeman effect

In this section, we will investigate the first order Zeeman effect of all the double
acceptor levels mentioned before.

6.4.1 The Γi-levels

BecauseΓ4 occurs in neither of the anti-symmetric direct products{Γi × Γi} (i =

1 . . . 3), the effective Hamiltonian matrixHeff,lin vanishes identically for the three levels
Γi . Hence, none of these levels experiences a linear Zeeman effect.

The linear part of the effective Zeeman Hamiltonian for aΓ4 or Γ5 level is given by
[6, 16]

Heff,lin = µBg(BxJx + ByJy + BzJz). (6.1)

Here,g the gyromagnetic factor andJx, Jy andJz are 3× 3-matrix representations of the
components of the angular momentum operator with respect to some convenient basis.
The componentsJα (α = x, y, z) transform according to theΓ4 representation of̄Td. Be-
cause{Γ4 × Γ4} = {Γ5 × Γ5} = Γ4, theΓ4 andΓ5 level do have a linear Zeeman effect.
Calculating the eigenvalues of the matrix [Heff,lin ] i (i = 4,5) yields

∆E =


+µBgB
0
−µbgB.

The eigenvalues are independent of the direction of the magnetic field and hence give rise
to an isotropic splitting.

6.4.2 The Γ3 + Γ5 level

The situation where the zero-field splitting of theΓ3 + Γ5 level is small compared to
the Zeeman energy must be dealt with separately. BecauseΓ3 × Γ5 = Γ4 + Γ5 contains
Γ4, there are non vanishing cross-terms in the linear effective Zeeman Hamiltonian for a
Γ3Γ5-level. Therefore, such a level will have a linear Zeeman shift different from that of
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the individualΓ3 andΓ5 levels. The Hamiltonian sub-matrix for theΓ3 + Γ5 level is given
by 

∅ −
√

3
2 a35Bx

√
3

2 a35By 0

− 1
2a35Bx − 1

2a35By a35Bz

−
√

3
2 ā35Bx − 1

2ā35Bx
√

3
2 ā35By − 1

2ā35By

0 ā35Bz

[Heff,lin ]5



.

This 5× 5-matrix is given with respect to a basis consisting of twoΓ3 wave functions
and threeΓ5-wave functions. Only the matrix-elements connectingΓ3 functions toΓ5

functions are shown explicitly. This part of the matrix was derived by expressing all six
possible products ofΓ3 andΓ5 wave functions as a linear combination ofΓ4 andΓ5 wave
functions, which is possible becauseΓ3 × Γ5 = Γ4 + Γ5. This procedure is simplified
by using, e.g., the coupling coefficients forΓ3 × Γ5 as given in Ref.17. Application of
the Wigner-Eckart orthogonality theorem (see AppendixA) and the fact that all operators
occurring in the linear Zeeman Hamiltonian [Eq. (6.1)] transform according to the rows
of Γ4 complete the derivation of these matrix elements. All information about the strength
of the coupling is contained in the (unknown) parametera35. The upper left and bottom
right parts are the same matrices as for the individualΓ3 andΓ5 level, respectively, as
given in the previous subsection.

From this matrix, we determine the eigenvalues forB parallel to the main crystallo-
graphic directions. ForB ‖ 〈100〉, soBx = B, By = Bz = 0, we find

∆E =


0
±µBgB
±|a35|B.

ForB ‖ 〈111〉, soBx = By = Bz = B/√3, we have

∆E =


0

± 1
2µBgB ± 1

2B
√
µ2

Bg2 + 2|a35|2.

Finally for B ‖ 〈110〉, soBx = By = B/√2 andBz = 0, it is found that

∆E =



0
± 1

2 |a35|B
± 1

2B
√

2µ2
Bg2 + 3|a35|2.

We conclude that there is indeed a linear Zeeman effect in theΓ3 + Γ5 level and the size
of the effect is dependent of the direction of the field with respect to the crystal.

6.5 Quadratic Zeeman effect

For some of the levels we will also give a second order approach, using the quadratic
part of the effective HamiltonianHeff,quad. Note thatHeff,quadcontains both a second order
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approach to the linear part of the originalHZ and a first order approach to the quadratic
part of the originalHZ.

6.5.1 The Γ1 and Γ2 levels

For theΓ1 level, the effective quadratic Zeeman Hamiltonian contains only one term
and is straightforwardly given by

Heff,quad = a1B2,

wherea1 is a phenomenological parameter. The simple conclusion is that aΓ1 level
will experience a quadratic shift, independent of the direction of the magnetic field:
∆E = a1B2. From this purely symmetry-based analysis, conclusions can be drawn neither
about the magnitude ofa1 nor about its sign (that is, whether the state is diamagnetic or
paramagnetic). BecauseΓ2 × Γ2 = Γ1, a similar expression holds for aΓ2 level.

6.5.2 The Γ3 level

For a Γ3 level, the effective Hamiltonian contains two unknown parameters and is
given by [8, 18]

Heff,quad = a3B2 + b3
[ − (2B2

z − B2
x − B2

y)σx +
√

3(B2
x − B2

y)σy
]
,

whereσx andσy are Pauli spin matrices anda3 andb3 are phenomenological parameters.
WhenB ‖ 〈100〉 the eigenvalues are given by

∆E = (a3 ± 2b3)B2.

This is a symmetric quadratic splitting superimposed on a quadratic shift. WhenB ‖
〈111〉, there is only one eigenvalue

∆E = a3B2,

meaning that there is no splitting in second order and the quadratic shift is the same as for
B ‖ 〈100〉. Finally, forB ‖ 〈110〉, we find the eigenvalues

∆E = (a3 ± b3)B2.

The Zeeman effect for this field direction is similar toB ‖ 〈100〉, but the splitting is twice
as small.

6.5.3 The Γ4 and Γ5 levels

Because the symmetrized squares ofΓ4 andΓ5 satisfy [Γ4×Γ4] = [Γ5×Γ5], the results
for theΓ4 andΓ5 levels are similar. For these two levels, the quadratic part of the effective
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Zeeman Hamiltonian has three unknown parametersai , bi andci (i = 4,5) and is given by
[6]

Heff,quad= aiB2 + bi

[
3(B2

xJ2
x + B2

y J2
y − B2

z J2
z) − 2B2

]

+ci

[
ByBz{Jy, Jz} + BxBz{Jx, Jz} + BxBy{Jx, Jy}

]
,

where{A, B} = 1
2(AB + BA) denotes the anti-commutator ofA andB. We calculate the

eigenvalues of the full quadratic Hamiltonian matrix [Heff,lin ] i + [Heff,quad] i for the three
main crystallographic directions. ForB ‖ 〈100〉 we have

∆E =


µBgB + (ai + bi)B2

(ai − 2bi)B2

−µBgB + (ai + bi)B2

ForB ‖ 〈111〉 we have

∆E =


µBgB + (ai + 1

6ci)B2

(ai − 1
3ci)B2

−µBgB + (ai + 1
6ci)B2.

And for B ‖ 〈110〉 we find (up to second order inB)

∆E =



µBgB + (ai + 1
4bi + 1

8ci)B2

(ai − 1
2bi − 1

4ci)B2

−µBgB + (ai + 1
4bi + 1

8ci)B2

It follows that in second order the spitting is no longer symmetric and isotropic for these
levels.

The Zeeman effect of the levels treated so far is schematically illustrated in Fig.6.1.

6.6 Central field approximation

Finally we discuss the Zeeman effect for two-hole states in the central field approxi-
mation. In this approximation, we must start from the one-hole levels and their behavior
in a magnetic field. The two-hole wave functions are anti-symmetrized products of one-
hole wave functions and the energy levels are obtained by examining the various ways to
put the two holes in the one-hole levels.

We will present results for the case where both holes are put in aΓ8 level andB ‖ 〈100〉
only. Similar results for the other types of levels and other directions of the field are easily
obtained in an analogous way.

For a magnetic fieldB ‖ 〈100〉, the single holeΓ8 ground state is split intoΓ5, Γ6, Γ7

andΓ8-levels ofS̄4 [6]. Because holes are fermions, each of these non-degenerate levels
can be occupied by at most one hole. By putting each of the two holes in a different level,
this gives rise to six two-hole levelsΓ5×Γ6 = Γ1, Γ5×Γ7 = Γ3, Γ5×Γ8 = Γ2, Γ6×Γ7 = Γ2,
Γ6 × Γ8 = Γ4, andΓ7 × Γ8 = Γ1, where all representations are ofS̄4.
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Figure 6.1 Schematic overview of level splitting in a magnetic field along the main crystallo-
graphic axes in several kinds of two-hole acceptor levels. The figure illustrates the
qualitative aspects of the splitting. The values of the parameter have been chosen
to emphasize these features.

The energy shifts of the single-hole levels have been determined experimentally [6].
The shifts of the two-hole levels can be calculated as the sum of the shifts of the individual
single hole levels from which they are composed. This results in a linear shift for each
two-hole level, given byµBgB, with g = 3

2g3/2 + 1
2g1/2 for Γ2, g = 3

2g3/2 − 1
2g1/2 for Γ4,

g = 0 for 2Γ1, g = − 3
2g3/2 + 1

2g1/2 for Γ3 andg = − 3
2g3/2 − 1

2g1/2 for Γ2. The parameters
g3/2 andg1/2 are theg-factors for the single holej = 3

2 and j = 1
2-levels respectively.

Experimental values for B0 in Si areg3/2 = 1.12 andg1/2 = 1.04 [7]. In the above, a small
overall shift is neglected.

6.7 Application to B +

Only states arising from{Γ8 × Γ8} (see Table6.1) are candidates for the B+ ground
state. These areΓ1, Γ3, Γ5, Γ3+Γ5 and the unsplit (central field){Γ8×Γ8}. Each of these five
possibilities for the B+ ground state will be compared to existing experimental data. From
the previous section, we conclude that all possible ground state levels behave qualitatively
differently in a magnetic field. Therefore, it is in principle possible to determine the nature
of the actual ground state of B+ from the analysis of a sufficiently detailed experiment.
Though this approach is hampered by the fact that the values of the parameters are not
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known, it is possible to draw conclusions based on the qualitative characteristics, such as
linear or quadratic splitting/shift and the asymmetry of the splitting.

We refer to our recent experiments reported in Ref.4 and summarize the main obser-
vations. The ground state energy shifts upwards (that is, in the direction of the valence
band) and is therefore diamagnetic. The shift has both a linear and a quadratic component.
The total shift amounts to 1 meV at a magnetic field of 14 T and was equal for the〈100〉
and 〈110〉 directions (see Fig.6.2). The width of the observed peak (full width at half
maximum) increased from 1.2 meV to 1.5 meV in the same magnetic field range. Within
the experimental error (∼ 0.2 meV), no splitting of the peak was detected∗.

The experimentally observed super linear overall shift, independent from the direction
of B, best matches the behavior of aΓ1 state, although this leaves the strong linear compo-
nent in the measured magnetic field dependence unexplained. Therefore, we believe that
the ground state of B+ is indeed aΓ1 state. This hypothesis does imply that the observed
linear component in the peak shift and the peak broadening are is due to other processes
(e.g. the Stark effect) as already suggested in Ref.4.

The broadening in the observed peak is linear in the magnetic field and independent
of its direction. Therefore, it cannot be explained as unresolved splitting of aΓ3 level. A
Γ5 or Γ3 + Γ5 ground state would give rise to linear splitting (broadening), but no overall
shift would be expected in first order. Moreover, the magnitude of the splitting in aΓ3+Γ5

level would depend on the magnetic field direction. Therefore, these possibilities are not
consistent with the experimental observations. Only when the parametera3 (a5) would
much larger than all other relevant parameters (that isa3 � b3 or a5 � b5, c5, µbg/B), the
magnetic field dependence of theΓ3 (Γ5) state would be similar to that of theΓ1 state. In
that case,Γ3, Γ5 andΓ3 +Γ5 states cannot be rejected as potential ground state symmetries
for B+.

The central field approach is unlikely to yield good results for B+, for which the wave
functions of the two holes are expected to overlap considerably (due to the small nuclear
charge). The peak splitting (or broadening, due to unresolved splitting) expected in this
approach between the twoΓ2 levels would be given by 2µB( 3

2g3/2 + 1
2g1/2)B. Assuming

the B0-values of theg-factors are valid here, this would amount to 3.6 meV forB = 14 T.
This is much larger than the observed 0.3 meV increase of the FWHM of the measured
resonance peak. Moreover, the 1 meV shift observed in the experiment is much larger
than the expected overall peak shift in this approach. Therefore, the description of the
B+ ground state in the central field approximation is not consistent with the experimental
observations.

In summary, magnetic field dependent measurements indicate that the B+ ground state
is a non-degenerateΓ1 state. It would be interesting to have higher resolution spectroscopy
data available, in order to exclude that the observed peak broadening is due to unresolved
splitting. It is worth emphasizing that in our analysis, we only made use of the fact that
B+ is a double acceptor and the symmetry properties which follow from that. Knowledge
of the B+ ground statewave functionwould allow for obtaining quantitative information

∗In these experiments the concentration of B-impurities in the silicon was so high that they cannot be
considered as fully isolated as proven by the increased binding energy of the second hole in the B+-state. The
interaction of a B+ state with neighboring B0 states is however not expected to change the nature of its ground
state.
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Figure 6.2 Magnetic field induced shift of the B+ ground state deduced from electrical transport
measurements [4]. The angle between the magnetic field and the current is denoted
by θ. The expression ∆E ∝ B(1 + αB) was fit to the data, yielding α = 0.046 T−1.

about the phenomenological parameters, which would be advantageous in the interpreta-
tion of experimental data.

6.8 Conclusions

In conclusion, we have presented a general group theoretical study of the magnetic
field dependence of two-hole states of acceptors in tetrahedral semiconductors. We have
used our results to analyze our experimental observations from Chapter5. This analysis
indicates that the B+ ground state is most compatible with aΓ1 state.
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7
CHAPTER

Stark effect of shallow
impurities in Si

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Abstract — We have theoretically studied the effect of an electric field
on the energy levels of shallow donors and acceptors in silicon. An analy-
sis of the electric field dependence of the lowest energy states in donors
and acceptors is presented, taking the bandstructure into account. A de-
scription as hydrogen-like impurities was used for accurate computation
of energy levels and lifetimes up to large (several MV/m) electric fields.
All results are discussed in connection with atomic scale electronics and
solid state quantum computation.∗

7.1 Introduction

Manipulation of a single particle’s wave functions can be realized by using a local
magnetic or electric field. Such a field can be used either to perform the desired manip-
ulation itself, or to provide a local perturbation allowing for addressing a single impurity
by a global radiation field. A local electric field could be realized by putting a small gate
close to a dopant atom, which is in principle accomplishable with current technology. An
ultimate application of gate-manipulation is found in the solid state quantum computer as
proposed by Kane [1, 2].

To get more insight in the physics of atomic scale electronic devices, it is essential
to try to predict their potential behavior. A first step is the description of isolated dopant
atoms in a (homogeneous) electric field. Much more difficult is accurate modelling of
a the time evolution of a dopant atom wave function in an inhomogeneous field and the
description of the interaction of two or more dopants in a field.

∗This chapter is based on the following manuscript: G. D. J. Smit, S. Rogge, J. Caro, and T. M. Klapwijk,
cond-mat/0310492 (2003), submitted to Phys. Rev. B.
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Dopant atoms binding one electron or hole can be described as a hydrogen atom,
where the vacuum values of the dielectric constant and the electron mass are replaced
by the appropriate values for the semiconductor. This ‘scaled hydrogen model’ (SHM)
provides a reasonable description of the dopant atom’s energy levels. Therefore, it is
useful to look at existing studies of the Stark effect in the hydrogen atom. Calculation of
the shift and splitting of the hydrogen energy levels up to very large electric field have
been carried out by several different methods [3, 4, 5]. Within the SHM, these results can
be directly translated to dopant atoms in a uniform electric field. However, we found that
almost no actual results of such calculations in the (field)range of interest for ASE have
been published.

The SHM also offers a manageable way to describe a dopant atom in an inhomo-
geneous electric field. Recently, several calculations using this framework have been
published [6, 7, 8] in the context of quantum computing. However, the SHM fails in the
explanation of effects where it is essential that the bandstructure of the semiconductor is
taken into account (as an example, see Ref.9).

Many measurements of the energy levels of dopant atoms in semiconductors (large en-
sembles) are known, but only a few concerning the effect of a uniform electric field have
been reported, presumably because such measurements are much more difficult than e.g.
measurements in a magnetic field or under stress. Among them are spectroscopic mea-
surements of the boron energy levels in silicon subject to electric fields up to 0.15 MV/m
[10]. Electron-spin-resonance experiments [11] demonstrated that the electric field cou-
ples linearly to the acceptor ground state. The magnitude of the effective electric dipole
moment for linear Stark coupling has been estimated as 0.26 D for boron acceptors in
silicon (1 D= 3.3× 10−30 Cm). Photo-ionization measurements have shown a very large
electric field effect on the phosphorus ground state in Si [12], but this was measured in
highly doped samples where the interaction between dopants dominates the Stark effect
of individual energy levels. Finally, quadratic level shifts have been observed in deep
selenium double donors in Si, located in the space charge region of a diode [13].

In this paper, we will theoretically investigate the effect of a uniform electric field on
isolated shallow impurities in silicon. Primary interest for ASE will be in the ground state
and possibly the first few excited states. These states are the only ones that are well sepa-
rated from neighboring levels and at low temperatures only the ground state is occupied.
Therefore, we focus on the lowest energy states of impurities in silicon. First, we de-
rive the shift, splitting and wave functions of the lowest donor levels in silicon in a small
uniform electric field, taking full account of the multiple valley conduction band struc-
ture (Sec.7.2). We briefly outline a similar calculation for acceptors in silicon (Sec.7.3).
The results are useful for applications where a local gate is used to bring a single dopant
atom into resonance with a global radiation field (nuclear magnetic resonance, electron
spin resonance). Moreover, they can be used to outline the limitations of the SHM. Sec-
ond, in Sec.7.4 we present accurate numerical calculation of the Stark effect in silicon
within SHM, from zero field up to fields that are relevant for atomic scale electronics and
quantum computing (several MV/m; see for instance Ref.2). Finally, we conclude by dis-
cussing possible extensions and alternatives of our methods which are useful to address
issues in ASE (Sec.7.5).
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Figure 7.1 (a) Schematic representation of the conduction band valleys of silicon as constant
energy surfaces in k-space. The six valleys are labelled by numbers, e.g. 4 repre-
sents the [01̄0] valley. (b) Definition of the coordinate system with respect to the
Si-crystal unit cell. We have x ‖ [100], y ‖ [010], z ‖ [001], v ‖ [110], and w ‖ [111].
The orientation of the figure in part (a) and (b) is the same.

7.2 Donors

7.2.1 The donor ground state

Group theory is a powerful tool to derive various properties of dopant wave functions
in a semiconductor. In order to provide the necessary background and to fix the notation,
we will briefly review some relevant properties of donor levels in silicon (see e.g. Ref.14).
Degeneracy due to spin is not lifted by an electric field in donors. For simplicity, we will
therefore not count those degeneracies in this section.

The conduction band of silicon has six equivalent minima located on the [100] and
equivalent axes. These minima are commonly called ‘valleys’ and we label them by the
numbers 1 to 6 as shown in Fig.7.1(a). The band structure in the vicinity of valley 1,
located ink-space atk1 = (k0,0,0), can be approximated as

E = E0 +
~2

2m‖
(kx − k0)2 +

~2

2m⊥
(k2

y + k2
z),

wherem‖ = 0.98m andm⊥ = 0.19m are the electron effective masses andm is the free
electron mass. Furthermore,k0 = 0.852π

a [15], wherea is the size of the silicon unit cell.
Similar expressions hold for the remaining five valleys.

From effective mass theory (EMT) it follows that the ground state wave function of
the Hamiltonian of an electron bound to a donor can be written as [16]

Ψ(r ) =

6∑

µ=1

αµFµ(r )ϕµ(r ), (7.1)
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where theαµ are numerical coefficients and theFµ(r ) are envelope wave functions, which
are slowly varying on the length scale ofa. F1(r ) = F2(r ) satisfy the hydrogen-like
Schr̈odinger equation

−
[
~2

2m‖

∂2

∂x2
+

~2

2m⊥

(
∂2

∂y2
+
∂2

∂z2

)
+

e2

4πεr

]
F(r ) = E F(r ) (7.2)

and similar equations hold for the remainingFµ. Theϕµ(r ) are Bloch-wave functions at
the minimum of valleyµ and can be written aseikµ·r uµ(r ), whereuµ(r ) has the periodicity
of the silicon crystal lattice. Because for allµ the eigenvalues resulting from Eq. (7.2) are
the same, Eq. (7.1) shows that the degeneracy of each of these eigenvalues is multiplied by
six for the total wave functionsΨ(r ). In particular, the ground state solution of Eq. (7.2)
gives rise to a six-fold degenerate donor ground state.

The symmetry group of the conduction band minima (and thus of the Bloch functions
ϕ(r )) is C∞v in EMT, which reduces toC2v in the silicon crystal∗. The envelope wave
functionsF(r ) belong toD∞h. Their products belong to the cross-section of both groups,
which is C2v. For the 1s-like (m = 0) ground state function of Eq.7.2 Fµ(r ), such a
product transforms according to theΓ1 representation of the valley symmetry groupC2v.
Because the donor is located at a substitutional site of the tetrahedral silicon lattice, the
total wave function hasTd-symmetry. Using Frobenius’ theorem [17], it can be shown that
theΓ1 representation ofC2v induces theΓ1 + Γ3 + Γ5 representation† of Td. This means
that linear combinations of theFµ(r) can be found that have the correct transformations
properties underTd. Using the notationα = (α1, . . . , α6) (as in Eq.7.1) the reduction to
theTd representations is carried out by

αg = 1√
6
(1,1,1,1,1,1) Γ1

αr = 1√
12

(−1,−1,−1,−1,2,2)

αs = 1
2(1,1,−1,−1,0,0)

}
Γ3

αx = 1√
2
(1,−1,0,0,0,0)

αy = 1√
2
(0,0,1,−1,0,0)

αz = 1√
2
(0,0,0,0,1,−1)

 Γ5

(7.3)

Each of the vectorsα defines a wave functionΨ through Eq.7.1. Here, the basis functions
of the two- and three dimensional representations have been chosen such thatΨr andΨs

transform underTd as 3z2 − r2 and
√

3(x2 − y2), respectively. Similarly,Ψx, Ψy andΨz

have been chosen such that they transform underTd asx, y andz, respectively.
The potential term in the EMT-Schrödinger equation (7.2) is a good approximation

only for r & a, wherea is the lattice constant of silicon. For smallr, the charge of the
nucleus is not screened by other electrons and it will attract electrons much stronger than
described by the potential in Eq. (7.2). Because the symmetry of the potential is not

∗All relevant character tables can be found in AppendixA.
†In literature discussing donors in silicon, it is more common to denote the single valued representations of

Td by A1, A2, E, T1 andT2, while for acceptors usuallyΓi (i = 1 . . . 5) are used.
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Table 7.1 Reduction of the site symmetry of an impurity in a uniform electric field in various
directions and the resulting reduction of the irreducible representations [20].

Direction 〈100〉 〈111〉 〈110〉
Group C̄2v C̄3v C̄s

Γ1 (Td) Γ1 Γ1 Γ1

Γ2 (Td) Γ3 Γ2 Γ2

Γ3 (Td) Γ1 + Γ3 Γ3 Γ1 + Γ2

Γ4 (Td) Γ2 + Γ3 + Γ4 Γ2 + Γ3 Γ1 + 2Γ2

Γ5 (Td) Γ1 + Γ2 + Γ4 Γ1 + Γ3 2Γ1 + Γ2

Γ6 (T̄d) Γ5 Γ4 Γ3+4

Γ7 (T̄d) Γ5 Γ4 Γ3+4

Γ8 (T̄d) 2Γ5 Γ4 + Γ5+6 2Γ3+4

affected, the states are still described by the representations ofTd, but they are no longer
degenerate. TheΓ1 stateΨg is the only one of the six ground state wave functions that
has non-zero electron density at the nucleus (r = 0). Therefore, it has a larger binding
energy than predicted by EMT and for most donors in silicon the 1s(Γ1) state is the true
ground state. This effect is generally called ‘chemical splitting’ (because the size of the
effect depends on the donor in question) or ‘valley-orbit splitting’. The remaining states
(especially the non-sstates) are quite well described by EMT, because the electron density
at the nucleus is negligible. As an example, in case of phosphorus in silicon, the 1s(Γ1)
state (the ground state) has been measured to be located 45.29 meV below the conduction
band minimum [18], while the EMT-prediction is 31.27 meV [19].

7.2.2 Symmetry of the donor ground state in an electric field

After this brief review of established knowledge of silicon donors, we return to the
main subject of this paper. From purely symmetry based considerations, we can find how
the Hilbert subspace spanned by the original six valley wave functions is decomposed
by the application of an electric field in a certain direction. The impurities considered
in this paper occupy substitutional sites in the silicon lattice and their wave functions
transform according to representations of site symmetry groupT̄d. The symmetry group
of a uniform electric fieldE is C∞v. WhenE is applied in an arbitrary direction in the
silicon crystal, the symmetry group̄Td of the Hamiltonian reduces to the trivial groupC1.
Only when the direction of the field is along one of the main crystallographic directions
of the crystal, the result isC2v for E ‖ 〈100〉, C3v for E ‖ 〈111〉, andCs for E ‖ 〈110〉.
The reduction of symmetry can induce a splitting in the original energy levels as shown in
Table7.1. As expected, the electric field does not remove degeneracy due to time reversal
symmetry and therefore all resulting levels are at least two-fold degenerate.

To make the connection to the valley wave functionsFµ(r )φµ(r ), we will now discuss
the symmetry of the 1s levels in an electric field from another point of view. We start by
looking at the individual valley wave functions and subsequently derive which linear com-
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binations form appropriate donor wave functions (using the method of Ref.21). When
a donor impurity in silicon is situated in an electric field along the positivez-direction,
the valleys 5 and 6 keep theirC2v symmetry, while the field reduces the symmetry group
of the other four valleys toC1. These four valleys are mixed by the elements of the site
symmetry groupC2v and are therefore grouped together in the third column of Table7.2.

In case of a 1s state, the valley wave functions belong to theΓ1 representation ofC2v

(for valley 5 and 6) orC1 (for 1, 2, 3 and 4). This is found by reducing the evenm = 0
representation ofD∞h to C2v andC1, respectively. By using Frobenius’ theorem, it can
be deduced that these generate for the impurity wave function the representationsΓ1 and
Γ1 + Γ2 + Γ3 + Γ4 of C2v, respectively. This is also shown in Table7.2, together with
the (set of) induced wave function(s) spanning the subspace of that representation. In a
similar way, we obtained results for the electric field in the other main crystallographic
directions. They are also shown in the table.

Due to the valley-orbit splitting (which has been ignored so far) the three irreducible
components of the donor ground state are already energetically separated at zero field.
Therefore, the basis vectors have to be chosen in such a way that they agree with the zero-
field energy splitting of theΓ1, Γ3 andΓ5 levels ofTd.∗ The result for various directions
of the electric field is shown in Table7.3.

7.2.3 Shift and splitting in an electric field

Now, we will derive the shift and splitting of the lowest donor levels in an electric
field from a perturbation calculation. Results for other levels can be derived using the
same method, although (because the level spacing is smaller for higher levels) the range
of fields where the perturbation calculation is valid is much smaller.

Although the six-fold degeneracy of the 1s-levels is lifted by the valley orbit interac-
tion, the complete manifold is relatively well-separated from the higher levels (the separa-
tion of the highest 1s(Γ3) level to closest exited level (2p0) is roughly twice as large as the
separation between the 1s(Γ1) and 1s(Γ3) levels). Therefore, we consider the 1s-manifold
as a whole in a single perturbation calculation, taking only the coupling among the 1s
levels themselves into account.

The electric field couples to the (induced) dipole momentD = er of the impurity
state and gives rise to an additional term in its Hamiltonian−E · D, reflecting the energy
associated with the dipole in the field. By making use of the Wigner-Eckart orthogonality
theorem from group theory [22], it is possible to find the vanishing matrix elements as
well as the dependencies between the non-vanishing matrix elements, as they follow from
the symmetry of the system. The 1s sub-matrix [H ] of the total Stark Hamiltonian

∗It is known from group theory that the reduction of a representation containing more than one instance of
the same irreducible representation is not uniquely determined.
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Table 7.2 Considering the symmetry of the valley wave functions in an electric field, the sym-
metry of the total wave function they induce can be obtained. The results for the 1s
level, without considering valley-orbit splitting, are shown in this table. The direction
of E in the first column is denoted by the vectors defined in Fig. 7.1(a). The fifth
column lists the representations of the appropriate site symmetry group, given in the
second column. The basis vectors are given in the notation of Eq. (7.3).

Dir. Site Valley Valley Γ(site) Basis
E sym. sym.

z C2v 1, 2, 3, 4 C1 Γ1 (1,1,1,1,0,0)
Γ2 (1,−1,1,−1,0,0)
Γ3 (1,1,−1,−1,0,0)
Γ4 (1,−1,−1,1,0,0)

5 C2v Γ1 (0,0,0,0,1,0)

6 C2v Γ1 (0,0,0,0,0,1)

w C3v 1, 3, 5 Cs Γ1 (1,0,1,0,1,0)
Γ3 (ω2,0, ω, 0,1,0)

(ω,0, ω2,0,1,0)

2, 3, 6 Cs Γ1 (0,1,0,1,0,1)
Γ3 (0, ω2,0, ω, 0,1)

(0, ω, 0, ω2,0,1)

v Cs 1, 3 C1 Γ1 (1,0,1,0,0,0)
Γ2 (1,0,−1,0,0,0)

2, 4 C1 Γ1 (0,1,0,1,0,0)
Γ2 (0,1,0,−1,0,0)

5 Cs Γ1 (0,0,0,0,1,0)

6 Cs Γ1 (0,0,0,0,0,1)

H = H0 + E · D is given by



E1 0 0 p15Ex p15Ey p15Ez

0 E3 0 −p35Ex −p35Ey 2p35Ez

0 0 E3 p35

√
3Ex −p35

√
3Ey 0

p̄15Ex −p̄35Ex p̄35

√
3Ex E5 p5Ez p5Ey

p̄15Ey −p̄35Ey p̄35

√
3Ey p̄5Ez E5 p5Ex

p̄15Ez 2p̄35Ez 0 p̄5Ey p̄5Ex E5



.

The elements of this matrix are given by [H ] i j = 〈ϕi |H |ϕ j 〉, where the wave functions
ϕi are taken from the basis (Ψg,Ψr ,Ψs,Ψx,Ψy,Ψz)) as defined before. The energiesE1,
E3 andE5 are the eigenvalues of the unperturbed HamiltonianH0, that is the zero-field
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Table 7.3 Reduction of the 1s donor energy levels in an electric field. The basis vectors be-
longing to these states are given (in the notation of Eq. (7.3)) in the limit E → 0
(ω = e2πi/3). The eigenvalues (up to second order in E) are the result of the perturba-
tion calculation described in the text.

E ‖ . . . E = 0 E , 0 Basis vector(s) Eigenvalue

z Γ1(Td) Γ1(C2v) (1,1,1,1,1,1)/
√

6 E1 − |p15|2
E5−E1

E2

Γ3(Td) Γ1(C2v) (1,1,1,1,−2,−2)/
√

12 E3 +
|2p35|2
E3−E1

E2

Γ3(C2v) (1,1,−1,1,0,0)/2 E3

Γ5(Td) Γ1(C2v) (0,0,0,0,1,−1)/
√

2 E5 + ( |p15|2
E5−E1

+
|2p35|2
E3−E1

)E2

Γ2(C2v) (1,−1,1,−1,0,0)/
√

2 E5 + |p5|E
Γ4(C2v) (1,−1,−1,1,0,0)/

√
2 E5 − |p5|E

w Γ1(Td) Γ1(C3v) (1,1,1,1,1,1)/
√

6 E1 − |p15|2
E5−E1

E2

Γ3(Td) Γ3(C3v) (ω2, ω2, ω, ω, 1,1)/
√

6 E3 +
2|p35|2
E3−E5

E2

(ω,ω, ω2, ω2,1,1)/
√

6

Γ5(Td) Γ1(C3v) (1,−1,1,−1,1,−1)/
√

6 E5 ± 2
3

√
3|p5|E

+( |p15|2
E5−E1

− 4|p35|2
E3−E5

)E2

Γ3(C3v) (ω2,−ω2, ω,−ω,1,−1)/
√

6 E5 ∓ 1
3

√
3|p5|E

(ω,−ω,ω2,−ω2,1,−1)/
√

6

v Γ1(Td) Γ1(Cs) (1,1,1,1,1,1)/
√

6 E1 − |p15|2
E5−E1

E2

Γ3(Td) Γ1(Cs) (1,1,1,1,−2,−2)/
√

12 E3 +
|p35|2

E3−E1
E2

Γ2(Cs) (1,1,−1,1,0,0)/2 E3 +
3|p35|2
E3−E1

E2

Γ5(Td) Γ1(Cs) (0,0,0,0,1,−1)/
√

2 E5 + |p5|E
− 1

2( |p35|2
E3−E1

− |p15|2
E5−E1

)E2

Γ1(Cs) (1,−1,1,−1,0,0)/
√

2 E5 − |p5|E
− 1

2( |p35|2
E3−E1

− |p15|2
E5−E1

)E2

Γ2(Cs) (1,−1,−1,1,0,0)/
√

2 E5 − 3|p35|2
E3−E1

E2
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Figure 7.2 Schematic plot of the 1s energy levels as a function of the electric field E . The
values of the parameters p5, p15, and p35 have been chosen such that the plot
clearly illustrates the qualitative features of the Stark effect in the energy levels.

energies of the 1s(Γ1), 1s(Γ3) and 1s(Γ5) level, respectively. For phosphorous in silicon,
the values areE1 = −45.59 meV,E3 = −32.58 meV, andE5 = −33.89 meV with respect
to the conduction band edge [18]. The parametersp15, p35 andp5 describe the coupling
between the 1s-levels. As can be seen, these are the only three independent parameters
describing the coupling between the levels. They can be expressed in terms of integrals
over products of wave functions, e.g.p15 = e〈Ψg|x|Ψx〉 andp5 = e〈Ψy|x|Ψz〉.

Perturbation theory is invoked by calculating the eigenvalues and eigenvectors of this
6× 6 matrix up to second order inE . This yields the 1senergy levels and wave functions
as a function of electric field forE along the three main crystallographic directions. The
energy levels are presented in the last column of Table7.3. From Table7.3 it can be seen
that the 1s(Γ1) ground state experiences an isotropic quadratic shift downwards∗, while
for the other levels the behavior depends on the direction of the electric field. In Figure7.2
the results forE ‖ 〈100〉 are plotted schematically.

The corresponding eigenvectors were also obtained from this calculation. In the limit
E → 0 they coincide with the vectors given in Table7.3, allowing to label each eigenvalue
with the correct representation. These results are directly applicable in the prediction of
allowed optical transitions between the various levels.

We discuss the behavior of the three 1sstates in in some more detail. The normalized
eigenfunctions in an electric field parallel toz (again up to second order inE) correspond-

∗In general, the shift of aΓ1 level cannot have any dependence on the direction of the field.
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ing to the eigenvalues already given in Table7.3are

Φg = (1− 1
2 |β|2E2)Ψg + β′′E2 · Ψr − β̄E · Ψz

Φr = −β̄′′E2 · Ψg + (1− 1
2 |β′|2E2)Ψr + β̄′E · Ψz

Φs = Ψs

Φx = 1
2

√
2(Ψx + Ψy)

Φy = 1
2

√
2(Ψx − Ψy)

Φz = βE · Ψg − β′E · Ψr + (1− 1
2(|β|2 + |β′|2)E2)Ψz

(7.4)

where

β =
p15

E5 − E1
, β′ =

2p35

E3 − E5
, β′′ = β̄

2p35

E3 − E1
.

The initial zero field wave functionΨg has the highest spacial symmetry possible in a
tetrahedral lattice. To get more insight in the contribution of the six valleys as a function
of the applied field, we can write the perturbed ground state wave functionΦg in the
notation of Eq. (7.3) as

(1,1,1,1,1,1) + (0,0,0,0,−γ′′, γ′′)E − (γ, γ, γ, γ, γ′, γ′)E2,

where

γ =
1
2

(|β|2 + β′′
√

2), γ′ =
1
2

(|β|2 − 2β′′
√

2), γ′′ = β̄
√

3

and an overall factor 1/
√

6 was omitted. From these expressions, we see that the contribu-
tion of the valley in the−z direction increases linearly with the field, while contribution of
the opposite valley decreases linearly with the field. This reflects the field-induced dipole
moment of the ground state.

The results of this calculation could be made quantitative if the values of the parame-
ters p5, p15, andp35 were known. This can be done by evaluating the integrals defining
these parameters and using e.g. the EMT wave functions from Eq. (7.1). However, due
to the strongly oscillating integrants, this is numerically a non-trivial task. Furthermore,
the EMT wave functions have a higher symmetry than the lattice, and the value forp5

obtained in this way is always zero. An estimate forp5 can only be obtained using more
sophisticated approximations for the wave functions. More importantly, the applicability
of such results is limited, especially for the 1s state, as the effects of valley-orbit interac-
tion are not included in the EMT wave functions.

It is important to note that the energies in Table7.3and the eigenstates in Eq. (7.4) are
based on symmetry properties only and not on the explicit form of the EMT wave func-
tions. Therefore, these results remain valid, even if valley-orbit interaction and central
cell corrections are fully included. Such modifications would only influence the values of
the parametersp5, p15, andp35.

7.3 Acceptors

Acceptor wave functions can be equally well used for ASE as donors. Recent exper-
iments showing that the coherence time of spins of bound holes is more than 1 ms [23],
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even justify the prospective use of acceptor wave functions as qubits. We therefore also
briefly outline the properties of silicon acceptors in an electric field, taking the silicon
valence band structure into account. The initially threefold degenerate valence band max-
imum is split by spin orbit interaction, which causes one of the bands to shift downwards
by ∼ 43 meV [18]. Due to the spin-orbit interaction, spin is not a good quantum number
anymore and the bands must be characterized by the total angular momentum, which is
3
2 for the upper two bands. Due to the half-valued angular momentum, the Bloch wave
function at the valence band maximum transforms according to one of the double valued
representations of̄Td, namelyΓ8. As a result, the total impurity wave functions transform
according to representations of the same group. The ground state wave function, as well
as the first few excited levels belong to theΓ8 representation and they are all four-fold
degenerate (including spin).

7.3.1 Linear Stark effect

To derive the small-field splitting of acceptors in silicon in an electric field, we use
degenerate perturbation theory for each level individually. To that end, the Hamiltonian
sub-matrix〈ϕi |H |ϕ j〉 of the level under consideration must be calculated and diagonal-
ized, where theϕi form a suitable basis for the subspace of that particular level.

As mentioned before, the components of the electric dipole operatorer transform
according to the rows of theΓ5 representation of̄Td. Because the anti-symmetrized direct
products{Γ6×Γ6} = {Γ7×Γ7} = Γ1 do not containΓ5, the first order Stark matrix vanishes
for levels withΓ6 or Γ7 symmetry. Hence, such levels do not experience a linear Stark
effect. On the other hand,{Γ8 × Γ8} = Γ1 + Γ3 + Γ5 does containΓ5, so that a linear Stark
effect is possible for aΓ8 level∗.

The effective linear Stark Hamiltonian† for aΓ8 level is given by [24]

[H ] lin
8 =

2√
3

p8
(Ex{Jy, Jz} + Ey{Jz, Jx} + Ez{Jx, Jy}),

where the parameterp8 is related to the effective dipole moment of such a state. The
Ji (i = x, y, z) are matrices of the components of the angular momentum operator with
respect to some convenient basis and{A, B} = 1

2(AB+ BA) is the anti-commutator. The
eigenvalues of this matrix are given by

E8 ± |p8|E ,

where both eigenvalues occur twice. This is a symmetric splitting of the level, which is
independent of the direction ofE. Note thatp8 vanishes within EMT, similar top5 before.
Estimates ofp8 obtained in literature range from 10−2 D [24] to 0.26 D [11].

∗Note that a substitutional site in silicon has no inversion symmetry and therefore no definite parity. This is
essential for the occurrence of a linear Stark effect in an isolated level.

†In contrast to our treatment of donors, we will use the technique of effective Hamiltonians to derive the
matrices for acceptor levels.
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7.3.2 Quadratic Stark effect

Because{Γ6 × Γ6} = {Γ7 × Γ7} = Γ1, the quadratic effective Stark-Hamiltonian for a
Γ6 andΓ7 level is simply given by

Heff,quad = aiE2Î ,

whereÎ is the identity matrix and theai (i = 6,7) are phenomenological parameters, that
can be expressed in terms of integrals over wave functions. It follows that theΓ6 andΓ7

levels experience an isotropic quadratic shift

Ei + aiE2,

whereEi is the unperturbed energy of aΓi level. The two-fold degeneracy due to time
reversal symmetry is obviously not removed by the electric field.

The quadratic part of the effective Hamiltonian for aΓ8 level, such as the ground state,
is given by [24]

[H ]quad
8 = a8E2Î + b8

[
J2

xE2
x + J2

yE2
y + J2

zE2
z − 1

3J2]

+ 2√
3
c8

[{Jx, Jy}ExEy + {Jy, Jz}EyEz + {Jz, Jx}EzEx
]
,

wherea8, b8 andc8 are again phenomenological parameters. The total Hamiltonian has
two distinct eigenvalues

a8E2 ±
[
p2

8E2 + b2
8E4 + (c2

8 − 3b2
8)(E2

yE2
z + E2

xE2
z + E2

xE2
y ) + 6p8c8ExEyEz

]1/2
,

each of which is still doubly degenerate (due to time reversal symmetry)∗. ForE ‖ 〈100〉
this expression reduces to (up to second order inE)

E8 ± |p8|E + a8E2.

ForE ‖ 〈111〉 we find

E8 ± |p8|E + (a8 ± 1
3

√
3c8)E2

and forE ‖ 〈110〉 we have
E8 ± |p8|E + a8E2.

The results forE ‖ 〈100〉 and forE ‖ 〈110〉 are the same in this approximation, but
different in third order.

Obviously, the wave functions of donors and acceptors are very different and this is
reflected in their respective electric field behavior. The donor ground state undergoes
an isotropic quadratic shift. The acceptor ground state has an isotropic linear splitting,
superposed on an anisotropic quadratic shift.

In the spectroscopic measurements of boron acceptors in silicon [10] (mentioned in
the introduction), the observedΓ8-levels indeed show a quadratic shift. However, the
expected level-splitting was not observed, most likely due to limited resolution.

∗Note that there is a mistake in the corresponding expression in Ref.24, where the last term between the
square brackets is missing.
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Table 7.4 Atomic units for some relevant physical quantities in vacuum and silicon. For silicon
the values εs = 11.4 and m∗ = 0.26 (appropriate for electrons) were taken. As an
example, for lengths in Si we have 1 a.u. ≈ 2.3 nm

Quantity Unit Value in vacuum Value in Si

Energy 2Ry 27.2 eV 54 meV
Length a0 0.053 nm 2.3 nm
Electric field 2Ry/ea0 510 GV/m 24 MV/m
Time ~/2Ry 2.4 · 10−17 s 1.2 · 10−14 s

7.4 Large electric fields in the SHM

In this section, we will calculate energy levels of an impurity in a semiconductor as
a function of electric field in the range from zero to∼ 5 MV/m. This is done within the
scaled hydrogen model, where the band structure of the semiconductor is accounted for
by a single effective mass and the dielectric constant only.

For this calculation it is convenient to express all quantities in so-called effective
atomic units. For instance, energies are expressed in units of twice the effective ion-
ization energy and length in units of the effective Bohr-radius. Conversion of units of
relevant quantities for both vacuum and silicon are given in Table7.4.

In the past, several algorithms have been described in literature to calculate electric
field dependence of the energy levels of the hydrogen atom. However, very little results in
the range of interest for ASE (fields up to∼ 0.1 a.u. [2]) have been published. Therefore,
we found it important to fill this gap by fully presenting the results of our calculation. For
this purpose, we used the slightly adapted version of a variational algorithm that not only
yields the energy levels, but also their lifetimes [3].

For completeness, we will very briefly outline the main features of this method. The
hydrogen Schr̈odinger equation (including the electric field) in parabolic coordinates can
be separated, which allows for high numerical accuracy without too much computational
effort. In order to be able to find the energy positions of the resonances as well as their
lifetimes, the complex scaling method was applied [25]. Then, for each coordinate the
Hamiltonian (including electric field) is expanded with respect to a truncated basis of
unperturbed wave functions. This can be done analytically. Finally, the energy levels and
lifetimes are obtained by tracking (separately for each level) the eigenvalues of this matrix
from zero field in small steps to larger fields.

By using the method described above, we calculated the energies of all states with
n = 1,2,3 for 0 ≤ E ≤ 0.2 a.u. The results for the energy levels are depicted in Fig.7.3.
The levels are labelled by parabolic quantum numbers [26] (n1,n2,m), which are more
suitable for hydrogen in an electric field than the more common spherical quantum num-
bers (n, l,m). The magnetic quantum numberm has the same meaning in both repre-
sentations. The main quantum numbern is related to the parabolic quantum numbers
by n = n1 + n2 + |m| + 1. The electric field lifts all degeneracies except for spin and
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Figure 7.3 Evolution of the lowest lying energy levels (n = 1,2, 3) of a hydrogen-like system
versus electric field E . The levels are labeled with their parabolic quantum numbers
(n1,n2,m). For conversion of a.u. to conventional units, see Table 7.4.

(n1,n2,±m). So (including spin) there are both two-fold degenerate levels (m = 0) and
fourfold degenerate levels (m, 0).

Figure7.3 shows that the ground state (n = 1) exhibits a small second order shift
downwards. Then = 2-level splits into three levels. Two of them are (for smallE) linearly
shifting upwards and downwards. The middle one has no first order shift, consistent with
the well known results from perturbation theory [26]. Finally, the ninefold degenerate
n = 3-level can be seen to split into six levels. As expected, the effect of the electric field
on higher levels is larger, due to their larger spatial extent. At large values of the field,
several levels cross each other∗ and some of them show non-monotonous behavior.

The few results of calculations that can be found in literature (obtained by different
methods) and overlap with our results are in very good agreement, both for the ground
state [5] and for the first excited state (m = 1) [4].

The method we used for our calculations can not only be extended to very large fields,
but it also has the advantage of yielding the width of the energy levels. The increasing

∗Levels belonging to the same representation of the spatial symmetry groupC∞v can be seen to cross each
other in Fig.7.3. This is however no violation of the non-crossing rule, since for this specific problem there
exists an additional constant of motion that is associated with the separability of the Hamiltonian [27].
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Figure 7.4 Energy width and lifetime of the lowest lying energy levels of hydrogen-like systems
(n = 1, 2, 3) versus electric field E . For conversion of a.u. to conventional units, see
Table 7.4.

energy width of the hydrogen-like levels in an electric field is the results of the ability
of the field to ionize the atom. The finite probability for the carrier to tunnel out of the
nucleus’ potential well leads to a finite lifetime∗ of the level. In Fig.7.4, the evolution of
the width of several hydrogen energy levels is depicted. Obviously, the width of all levels
is zero at zero field, which is equivalent to an infinitely long lifetime. For any nonzeroE ,
the lifetimes have a finite value, that decreases monotonously with the field. The stronger
the binding energy of a level at zero field, the faster the lifetime decreases when the field
increases.

In Figure 7.5, the results of Figure7.3 and 7.4 are combined into one ‘intensity
map’, where the levels are displayed as normalized Lorentzian line shapes, the width of
which is taken from Fig.7.4. The figure shows clearly that for the realistic electric field
E = 0.04 a.u. (about 1 MV/m; see Table7.4) the energy width of all levels except the
ground state is already larger than or comparable to their binding energy. The ground state
lifetime is only 10 ns at that field. We also note that for our purpose it is not very useful to
extend the calculation to higher fields, as already atE = 0.2 a.u. all levels are very much
broadened and strongly overlapping. Although in case of hydrogen atoms in vacuum such
large field (0.2 a.u.≈ 100 GV/m) are only realized in astronomy, in semiconductors they
can be easily achieved under laboratory conditions (0.2 a.u.≈ 5 MV/m).

Though the SHM oversimplifies the bandstructure, it is in our opinion particularly
useful to estimate lifetimes. Fig.7.4 shows that the lifetimes are primarily a function of

∗This lifetime is solely due to the possibility of ionization and is unrelated to (radiative or non-radiative)
transitions from an excited level to a lower state.
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Figure 7.5 Map of the energy levels from Figure 7.3, converted to Lorentzians using the data
of Figure 7.4. For conversion of a.u. to conventional units, see Table 7.4.

the zero-field binding energies. Assuming this is still true when the silicon bandstructure
is included, interpolation of the results can be expected to provide a good first order
approximation of the level’s true lifetime. For example, then = 1 value in Fig.7.4
underestimates the phosphorous donor ground state lifetime, because it is stronger bound
than assumed in EMT.

When the electric field is generated by a small local gate, this gate is usually separated
from the semiconductor by a potential barrier that is sufficiently high to prevent tunnel-
ing. If the distance of the dopant atom to the barrier is not too small, ionization of the
dopant atom can still occur in large fields (and the lifetimes discussed before still apply).
However, the charge carrier will not be ‘lost’, but transferred to the potential well created
by the biased gate [7].

7.5 Discussion and conclusion

In the preceding sections, we have used two distinct approaches to study the behavior
of impurity wave functions in an electric field. The first includes details of the bandstruc-
ture, but is only valid for small fields and is somewhat qualitative. From this symmetry-
based analysis, we derived the energy level shift and splitting for donors and acceptors in
small electric fields, as well as the modification of the donor wave function. Furthermore,
the symmetry classification of the resulting levels provides for straightforward prediction
of allowed optical transitions.

The second approach, the scaled hydrogen model, is fully quantitative and applicable
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up to large fields, but neglects most features of the silicon bandstructure. Still, the SHM
offers a manageable and valuable way to describe important phenomena in atomic scale
electronics. We presented the energy width and lifetime of the impurity levels in large
electric fields, calculated within this framework.

It is possible to combine the two approaches and treat Eq. (7.2) in a way similar to
that presented in Section7.4. Though this is in principle straightforward, the reduced
symmetry and lack of separability will make this approach numerically very involved.
Furthermore, it is important to note that the direction of the electric field with respect to
the valley axis is not the same for all valleys. As an example, forE ‖ z the energy levels of
F5 andF6 are affected in a different way than those of the other fourFµ. If the solutions
for the various valley wave functions are known, they can be combined into impurity wave
functions using the data in Table7.2.

Though potentially interesting, such an effort is not likely to yield a good description
of the dopant’s wave function at high electric fields, despite the tremendous increase of
necessary computational power. The reason is the omission of valley orbit interaction,
which not only affects the ground state, but also the coupling to excited states. Especially
for large fields, the coupling influences the propertiesall energy levels. It has been shown
that inter-valley coupling accounts for the splitting of the 1s state for P in Si [28]. Inclu-
sion of this effect appears to be a minimum requirement for obtaining accurate quantitative
results valid at large fields.

Recently, calculations of a silicon donor in an electric field in the tight binding ap-
proach have been presented [29]. This approach seems to be a useful alternative to calcu-
lations based on effective mass theory. Given the fact that this method inherently includes
the band structure of the semiconductor host, it is striking how similar the results are to
calculations based on the SHM [7]. This underlines the power of the SHM in this type of
calculations.

In summary, we have calculated the Stark effect of impurities in silicon in two different
approaches. Moreover, we discussed the results and the computation methods used in the
context of atomic scale electronics and quantum computation.
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8
CHAPTER

Gate-induced ionization
of single dopant atoms

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Abstract — Gate-induced wave function manipulation of a single dopant
atom is a possible basis of atomic scale electronics. From this perspec-
tive, we analyzed the effect of a small nearby gate on a single dopant
atom in a semiconductor up to field ionization. The dopant is modeled as
a hydrogen-like impurity and the Schrödinger equation is solved by a vari-
ational method. We find that—depending on the separation of the dopant
and the gate—the electron transfer is either gradual or abrupt, defining
two distinctive regimes for the gate-induced ionization process.∗

8.1 Introduction

Putting a small gate close to a single impurity is perhaps the most straightforward way
to allow for the manipulation ofindividualhydrogen-like wave functions. Apart from the
fundamental importance, an ultimate application of single wave function manipulation is
found in a Si-based solid state quantum computer [1, 2], in which the nuclear spins of
single31P-dopants are envisioned as qubits. In this proposal, addressing a single qubit
by NMR is achieved via the hyperfine interaction of the nuclear spin and its valence
electron, which can be tuned by modifying the electron wave function with a nearby gate.
In a recent variation of this design [3], the ionization of single dopants by this gate is an
essential ingredient.

In this chapter, our aim is to quantitatively investigate the effect of the electric field
generated by a local gate on a single neutral dopant atom in a semiconductor, ultimately

∗This chapter is based on the following paper: G. D. J. Smit, S. Rogge, J. Caro, and T. M. Klapwijk, Phys.
Rev. B68, 193302 (2003).
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Figure 8.1 The dashed line represents the calculated potential due to the gate at the symmetry
axis of the device for rA = 2 a.u. and a gate voltage of 2 a.u. The solid line includes
the dopant potential for d = 10 a.u. (Note that, e.g., in silicon 1 a.u. ≈ 3 nm for
lengths and 1 a.u. ≈ 90mV for voltages.) The inset shows a schematic of the device
layout, indicating the important parameters.

leading to ionization. The response to small fields has been addressed before in the con-
text of quantum computing [4, 5]. In this chapter, the complete ionization process is
discussed. Our approach incorporates the computation of time independent ground state
wave functions of the system and, subsequently, the estimation of transition probabili-
ties. We conclude that the separation of the dopant and the gate determines the nature of
the ionization process. When the dopant resides close to the gate, the electron is gradu-
ally pulled away from the dopant when the gate voltage is increased, while for a larger
separation the dopant ionizes abruptly at a well-defined gate voltage.

8.2 Model system

Addressing a single dopant requires a small local gate. When a dopant would be
ionized by a large gate (e.g., an infinite strip [5]), the electron would be delocalized along
the gate. This would be undesirable in applications where (spin-)phase coherence must be
kept under control, such as a quantum computer. Therefore, we chose to model the gate
as a circular disc, having the additional advantage that the complete system (dopant plus
gate) is radially symmetric. The layout of our model system is schematically depicted
in the inset of Fig.8.1. The disc-shaped metallic gate with radiusrA is separated from
the semiconductor bulk (relative dielectric constantεs) by a barrier (relative dielectric
constantεb) of thicknessdbar. A dopant is positioned at distanced from the barrier-
semiconductor interface and centered with respect to the gate.
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At low temperatures, the semiconductor can be considered as a dielectric, due to the
absence of free charges. Charges at the barrier-semiconductor interfaces and in the barrier
will be neglected. In our calculations, we assume the barrier to be infinitely high and
infinitely thin (dbar = 0), which allows us to take advantage of the fact that the potential
due to a charged metallic disc in a uniform dielectric medium can be expressed in closed
form [6] (we will demonstrate the applicability of our results to a realistic layout). The
total potential was obtained by adding a Coulomb potential well due to a positive unit
charge in the semiconductor. A cross section of the total electron potential for some
typical parameters is shown in Fig.8.1. Image charge effects at the semiconductor-barrier
and the barrier-gate interfaces were neglected.

In our calculations, the dopant atom is described within an effective mass approach:
the contribution of the semiconductor bandstructure is accounted for by considering it as
an uniform dielectric medium and using an isotropic effective mass. Such a hydrogen-
like model is known to provide a good first order description of a dopant atom (although
it fails to accurately describe the energy levels [7] and interactions [8]). It is sufficient for
our purpose and allows us to capture crucial phenomena and obtain estimates of impor-
tant parameters. To keep our results general and transparent, physical quantities will be
expressed in (effective) atomic units (a.u.)∗. To simplify the conversion to conventional
units, some values for silicon are given as an example in the caption of Fig.8.1.

8.3 Solving the Schr ödinger equation

The time-independent Hamiltonian of the problem reads (in atomic units)

H = −1
2
∇2 − 1√

r2 + (z− d)2
+ Vg(r, z),

whereVg(r, z) describes the potential landscape in the semiconductor due to the gate and
(r, z) are cylinder coordinates as defined in Fig.8.1 (inset). Approximate ground state
wave functions are found by a variational method. As trial wave function we use a linear
combination of functions from a fixed and finite setS, where the weights are used as
variational parameters. To this end, we chooseS to contain functions of the form

ϕ(r, z) = exp(−αr2) · zexp(−β(z− d)2) (8.1)

and
ϕ̃(r, z) = exp(−γr2) · zexp(−δz2), (8.2)

whereα, β, γ, andδ are constants that will be chosen later. The functions are cylinder-
symmetric, motivated by the radial symmetry of the potential and the fact that the ground
state is expected to bes-like. To allow for a full description of the ionization process, it
is important thatS includes both wave functions of the form (8.1), having large electron

∗(Effective) atomic units comprise setting the reduced Planck’s constant~, the electron chargee, and the
electron effective massm∗ equal to unity. As a result, length is expressed in units of the effective Bohr radiusa∗0
and energy is expressed in units of twice the effective ionization energy of the dopant (i.e., twice the effective
Rydberg Ry∗). See also Table7.4.
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density at the dopant site, and of the form (8.2), where the electron resides close to the
gate.

The functional form of Eq. (8.1) is motivated by the fact that the (exponential) ground
state wave function of hydrogen-like atoms can be quite well approximated as a linear
combination of Gaussians [9], which are much easier to work with numerically. To make
sure that the wave functions vanish at the interface (z = 0), it is multiplied byz. Theϕ(r, z)
are allowed to become aspherical due to the gate action by choosing different values forα
andβ. Concerning the form of Eq. (8.2), we note that the potential well caused by the gate
can in the radial direction be approximated by a parabola. Consequently, a ground state
wave function similar to that of a linear harmonic oscillator is expected and therefore the
r-dependent part of ˜ϕ(r, z) is chosen as a Gaussian. The ground state wave function of the
triangular shaped well in thez-direction can be approximated asz · e−ζz (Ref.10). Again,
we will approximate the exponential by a linear combination of gaussians.

In order to choose concrete values for the constantsα, β, γ, andδ, we note that for
each positive integerN it is possible to find a set ofN real numbers{λi}Ni=1, such that
a linear combination of exp(−λir2) optimally approximates the ground state wave func-
tion of hydrogen [9]. We will use the values given in Ref.9, which are, for example,
{0.101,0.321,1.15,5.06,33.6} for N = 5. In our calculation, we created functions of type
(8.1) by taking values forα andβ from such a set in all possibleN2 combinations. Func-
tions of type (8.2) were created by choosing values forγ andδ from the same set, after
multiplying all elements by the scaling constantr−1/2

A to account for the size of the gate.
Proceeding like this,S contains a total of 2N2 functions. It was found that takingN > 5
hardly improved the accuracy. Therefore,N = 5 was used in all presented results.

Denoting the elements ofS by ψn, the variational procedure is now performed by
forming the trial wave function

ψ(r, z) =
∑

ψn∈S
cnψn(r, z)

as a linear combination of theψn and minimizing the functional

〈ψ|H |ψ〉
〈ψ|ψ〉

with respect to the variational parameterscn. This minimum is an upper bound to the
ground state energy ofH . This variational problem is equivalent to finding the smallest
eigenvalue of the generalized matrix eigenvalue problem

(H − EM ) · c = 0, (8.3)

whereH is the Hamiltonian matrix expanded on theψn with elementsHi j = 〈ψi |H |ψ j〉
and M is the overlap matrix of theψn defined asMi j = 〈ψi |ψ j〉. Furthermore,c =

(c1, c2, . . . , cm) and the inner-product〈·|·〉 is (as usual) defined as

〈ψi |ψ j〉 =

∞∫

0

∞∫

0

ψ∗i (r, z)ψ j(r, z)2πr drdz.
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Figure 8.2 The radially integrated probability density of the electron wave function as a function
of z for various gate voltages. The inset shows the ionization voltage versus gate
radius rA . (In silicon: 1 a.u. ≈ 3 nm and 90 mV, respectively.)

Note thatM would be the unit matrix ifS would be an orthonormal set with respect to
〈·|·〉. In that case, Eq. (8.3) would reduce to an ordinary eigenvalue problem.

The smallest eigenvalueE0 of Eq. (8.3) is an upper bound to the ground state energy
of the system. WhenS is chosen properly,E0 is a good approximation to the real ground
state energy ofH and the corresponding eigenvectorc defines a wave function that is a
good approximation of the real ground state wave function.

8.4 Results

Once this wave function is known for several values of the dopant depthd, gate volt-
ageVg, and gate radiusrA , we will use it to study the ionization process of the dopant.
As an example, the radially integrated probability density of the calculated electron wave
function (i.e.

∫ ∞
0
|ψ(r, z)|22πr dr) is plotted versusz in Fig. 8.2. At zero gate voltage∗,

the electron occupies the dopant site. For increasing gate voltage, the electron is grad-
ually pulled away from the donor site. Finally, for large enough gate voltage, it resides
completely in the newly created potential well at the gate.

An interesting physical quantity is the electron density|ψ0(0,d)|2 at the dopant site,
as derived from the approximated ground state wave functionψ0(r, z). We will use it as
an indication of the position of the electron: when the electron is pulled away from the

∗Note that zero gate voltage is defined as the flat-band situation in the semiconductor. Due to interface
effects at the gate (that result in band bending), this might correspond to an actual gate voltage that is nonzero.
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Figure 8.3 The electron density at the dopant site as a function of gate voltage for various
dopant depths, showing the process of ionization. All curves are normalized to their
value at Vg = 0. The transition from a smooth to a step-like behavior is clearly visible
at d ≈ 8a∗0. The inset shows the corresponding data with a 2 a.u. thick oxide barrier
present. The behavior is similar, but occurs at higher gate voltage.

dopant site, this number decreases. Moreover, it is of physical importance because the
hyperfine interaction is proportional to this number [11].

The characteristics of the electron transfer from the dopant to the gate with increasing
gate voltage depend on the distanced of the dopant under the gate. In Fig.8.3, the
electron density at the dopant site|ψ0(0,d)|2 (normalized to the value at zero gate voltage)
is plotted as a function of gate voltage for several values ofd. It can be seen that for small
d the electron is transferred gradually from the dopant to the gate, while for largerd an
abrupt electron jump occurs, defining an ionization voltage. This can be explained from
the fact that for larged, a sufficiently large barrier separates the two potential wells. For
smalld, the two wells are so strongly coupled that they can be considered as a single well,
the position of which is pulled towards the gate with increasing gate voltage.

The calculations were repeated for several gate radiirA . The inset of Fig.8.2 shows
the ionization voltage ford = 15 versusrA . From the figure it is clear that the voltage
gets smaller for largerrA . The reason for this is that the transfer roughly takes place when
the ground state energy of the gate-well drops below that of the dopant-well. When the
gate-well is larger, the ground state energy is closer to the bottom of the well and the
transfer takes place at lower gate voltage.
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8.5 Discussion

In a realistic device, the barrier between the gate and the semiconductor will have a
finite thickness (in the most common material systems this will be at least 1 to 2 a.u.).
Usually, this barrier does not have the same dielectric constant as the semiconductor and
hence it can modify the gate potential considerably. Moreover, the gate must be con-
nected to the outside world by some kind of interconnect. Such an interconnect must be
separated from the semiconductor by a much thicker barrier in order to sufficiently screen
its potential (see Chapter3). Therefore, in a realistic device, the gate must be buried in a
thick layer of barrier material.

To allow for comparison with the idealized situation in which our calculations were
carried out, several calculations were repeated with a realistic barrier present. To that end,
we obtained the potential landscape due to the gate by solving the Poisson equation with
a finite element method (FEM)∗. It was found that for typical realistic parameters (e.g.
a SiO2/Si-system withεs = 12, εb = 4, anddbar = 2 a.u.), the potential landscapein
the semiconductoris qualitatively similar to the situation where the gate is put directly
on the semiconductor. As demonstrated in the inset of Fig.8.3, the same phenomena are
observed, but they occur at a higher voltage than in the absence of a barrier. The voltage
drop over the barrier can roughly be accounted for by a linear scaling factor that depends
on εb anddbar. Indeed, we find from the FEM-calculations that for the given parameters
about 31% of the gate voltage drops in the semiconductor. This number is similar to the
observed ratio between the ionization voltages with and without a finite barrier thickness.
This justifies the presentation of mainly results obtained with an idealized barrier.

As a final remark in our discussion of the barrier, we note that for any application or
measurement of a single dopant device, it is crucial that there are no charge traps present
near the dopant. Therefore it is highly desirable to have the barrier epitaxially grown on
the semiconductor. A promising candidate is a Si1−xGex-layer as barrier on a Si substrate
[2], although the maximum achievable barrier height in this system is only about 100 meV
[12].

The presented time-independent calculations are not sufficient to predict whether the
dopant atom will indeed be ionized when the ground state wave function has a low elec-
tron density at the dopant site. In order to complete our analysis, an estimate of the tunnel
probability is needed. This is obtained by comparison with the resonance lifetime of a
hydrogen atom in an electric field. The typical field strengths considered in the region
between the gate and the dopant site are very large (e.g., 0.05–0.5 a.u. forrA = 2, d = 10,
Vg = 2, see Fig.8.1) . Using a calculation of the Stark effect in hydrogen [13] while
taking the value of Ry∗ for silicon, it is found that the electron lifetime at the dopant site
ranges roughly from 0.1 ps to 1 ns. This can be interpreted as the time it takes for the
dopant to be ionized when the gate voltage is switched on and justifies our interpretation
of Fig. 8.3as the representation of an ionization process.

∗Contrary to the situation without a barrier where the backgate was thought to be at infinity, in the FEM-
calculations a backgate had to be put at a finite distance from the barrier, which was chosen as 50 a.u. in the
presented calculation. The results depend only weakly on this distance, provided it is much larger thand.



92 | Gate-induced ionization of single dopant atoms

8.6 Application

Our general analysis can be readily applied, as we performed the calculations with
parameters that are consistent with the quantum computer design mentioned. First, con-
trolled tuning of the hyperfine interaction by the gate, which is required in Ref.1, is
possible only whend is small enough: from Fig.8.3we estimated . 6 a.u. Switching off
the hyperfine interaction, as required in the ‘digital approach’ [3], can only be achieved
for large separation between dopant and gate (d & 10 a.u.). Hence, the dimensions of the
device determine in which of both regimes operation takes place. Second, our analysis
can be used to estimate the required gate voltage to tune the hyperfine interaction to a cer-
tain value (Fig.8.3). Third, it is found that the required voltage to fully ionize the dopant
depends onrA , but it is nearly independent ofd (Fig 8.3).

8.7 Conclusion

In conclusion, we analyzed the wave function manipulation of a semiconductor dopant
atom by a small electrostatic gate. We find that two regimes can be distinguished for
the ionization process of the dopant. For a dopant-gate separation smaller than∼ 8a∗0
(e.g.,∼ 24 nm for P in Si), the electron is gradually pulled out of the Coulomb potential
of the dopant. When the dopant resides further away from the gate, the transfer takes
place abruptly at a well-defined threshold field. Both regimes are accessible, since, e.g.,
epitaxial growth techniques allow for sufficiently accurate positioning of the dopant under
the gate.
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A
APPENDIX

Representations of
groups

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A.1 Introduction

The Chapters6 and7 rely heavily on the theory of group representations. This theory
provides a formal way to exploit the spatial symmetry of a system, which is particularly
useful when dealing with energy levels of an atom located in a crystal lattice. As a ser-
vice to the reader, we will present in this appendix a brief review of the most important
definitions and theorems that are used in the main text. First, the concepts of groups,
representations, and characters of representations are introduced. Then, character tables
which are relevant for this thesis are given. Starting from SectionA.6, the application to
physics is treated.∗

A.2 Groups

The notion of an abstract group is given by the following definition.

Definition 1 A group is a nonempty setG equipped with an operation∗, having the fol-
lowing properties.

1. Closure: Ifg1,g2 ∈ G, theng1 ∗ g2 ∈ G.

2. Associativity:g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for anyg1,g2,g3 ∈ G.

3. Unit element: There is an elemente ∈ G such thatg ∗ e = g = e∗ g for all g ∈ G.

∗An introduction to the theory of groups can be found in many textbooks, for instance Ref.1. A clean,
concise introduction to group representations can be found in Ref.2. Finally, applications to physics are treated
in Ref.3 and4.

95
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4. Inverse: For eachg ∈ G, there is an element ofG, commonly denoted byg−1,
satisfyingg ∗ g−1 = e = g−1 ∗ g.

In practice, when no confusion is possible,g1 ∗ g2 is often abbreviated asg1g2.

To illustrate this definition, we will give some examples of groups.

• The set of only one elemente and the group operation defined ase∗ e = e. This is
thetrivial group, the simplest possible group.

• The set of integersZ with addition as the group operation. The unit element is 0,
the inverse of an elementn ∈ Z is given by−n.

• The set of non-zero complex numbersC\{0} with multiplication as the group oper-
ation. The unit element is 1, the inverse of an elementc is given by 1/c.

• The set of rotations in the plane around a fixed pointO, with composition as the
group operation. The unit element is the rotation through 0 rad. The inverse of a
rotation over an angleθ is the rotation over an angle−θ.

• The set GL(V) of invertible linear operations on a vector spaceV (over the field
complex numbers) with composition as the group operation. The unit element is
the unit operationI , which maps every element ofV into itself.

If g1,g2 ∈ G are linked byg1 = hg2h−1 for some elementh ∈ G, theng1 andg2 are
said to belong to the sameclassof G.

A.2.1 Crystallographic point groups

A group consisting of symmetry operations of a three dimensional body that keep
at least one point fixed is called apoint group. Such groups contain rotation around
some axis and, possibly, improper rotations (i.e., proper rotations combined with a mirror
reflection in a plane). The point groups associated with crystallographic lattices are called
crystallographic point groupsand there exist exactly 32 of them. They of importance for
this thesis, because the symmetry group of an impurity in a crystal lattice is a point group.
An important example for this thesis, is the point groupTd (with 24 elements), which is
the symmetry group of a substitutional impurity in a tetrahedral lattice, such as the silicon
lattice.

A.2.2 Double groups

Half-integer spins have the peculiar property that a rotation through 2π radians does
not leave them invariant, though a rotation through 4π does. A point groupG expanded
with the necessary elements to reflect this special property is called adouble groupand is
usually denoted bȳG.
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A.3 Representations

Definition 2 A linear representation of a groupG in a vector spaceV is a homomorphism
Γ : G → GL(V). In other words, with each elementg ∈ G we associate an element
Γ(g) ∈ GL(V) such that

Γ(g1g2) = Γ(g1)Γ(g2) for all g1,g2 ∈ G.

As an example, consider the groupR2 of rotations in the plane aroundO. For each
integerm, the mappingΓm : R2 → C given by Γm(rθ) = exp(imθ) for eachrθ ∈ R2

defines a one dimensional representation ofR2. In particular, form = 0 we get thetrivial
representation, which maps every element of the group into 1.

Two representationsΓ andΓ′ of the same groupG in vector spacesV andV′ are said
to besimilar or isomorphicif there exists an invertible linear mappingτ : V → V′ that
convertsΓ in Γ′, i.e., that satisfiesτ ◦ Γ(g) = Γ′(g) ◦ τ for all g ∈ G. In particular, each
representation of a finite group is isomorphic to a unitary representation.

A.3.1 Reducibility

If Γ : G → GL(V) is a representation ofG andW is a subspace ofV, thenW is
called stableor invariant under the action ofG if x ∈ W implies Γ(g)x ∈ W for all
g ∈ G. In that case, the restrictionΓW of Γ to W is also a representation ofG and is
therefore called asubrepresentationof Γ. Furthermore, it can be shown that there exists
a complementW′ of W in V which is also stable under the action ofG, giving rise to a
second subrepresentationΓW′ . Analogous to the notation of the direct sumV = W ⊕W′

we writeΓ = ΓW + ΓW′ . If neither of the two subspacesW andW′ has dimension 0, the
representationΓ is said to bereducible. If such a decomposition is not possible,Γ is said
to beirreducible. More general, the following theorem holds.

Theorem 3 Every representation can be written as the sum of irreducible representa-
tions.

If Γ : G → GL(V) is an irreducible representation ofG andH is a subgroup ofG,
then the restriction ofΓ to H defines a representation ofH. Although the irreducibility of
Γ implies that there is no nontrivial subspace ofV which is stable underG, there might
be one which is stable underH, simply becauseH contains less elements. Therefore, the
restriction ofΓ to H can, in general, be reducible.

A.3.2 Product representation

Definition 4 Let Γ1 : G → GL(V1) andΓ2 : G → GL(V2) be two linear representations
of a groupG. Then we define the product representationΓp = Γ1 × Γ2 : G→ GL(Vp) in
the product spaceVp = V1 ⊗ V2 by setting for eachg ∈ G

Γp(g)(x1 ⊗ x2) = Γ1(g)x1 ⊗ Γ2(g)x2
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for x1 ∈ V1 andx2 ∈ V2.
Moreover, letτ be the automorphism ofV × V defined byτ(x1 ⊗ x2) = x2 ⊗ x1. If Γ :
G→ GL(V) is a representation ofG, then the subspacesSym2(V) andAlt2(V) of V ⊗ V,
consisting of those elements ofV ⊗ V satisfyingτ(x) = x and τ(x) = −x respectively,
are stable underG. They thus define two representations, which are called the symmetric
square[Γ × Γ] and the antisymmetric square{Γ × Γ} of the representationΓ.

A.4 Characters

Definition 5 Let Γ : G → GL(V) be a representation ofG. The character ofΓ is the
complex valued functionχΓ onG defined by

χΓ(g) = Tr(Γ(g)).

The importance of the character lies primarily in the fact that itcharacterizesthe
representationΓ: two representations are isomorphic if and only if the representations
have the same character. The characters of the irreducible representations of a certain
group are often collected in acharacter table. Some basic properties of the character are
given in the following theorem.

Theorem 6 If χ is the character of a representationΓ of degreen, we have

• χ(e) = n for the unit elementeof G.

• χ(g−1) = χ(g)∗ for all g ∈ G.

• χ(hgh−1) = χ(g) for all g,h ∈ G. This means thatχ is a class-function.

Moreover, ifχ1 andχ2 are the characters of two representationsΓ1 andΓ2 of G, we also
have

• The character ofΓ1 + Γ2 is χ1 + χ2.

• The character ofΓ1 × Γ2 is χ1 × χ2.

• The characterχσ of [Γ × Γ] is given byχσ(g) = 1
2(χ(g)2 + χ(g2)).

• The characterχα of {Γ × Γ} is given byχα(g) = 1
2(χ(g)2 − χ(g2)).

Much can be said about the properties of characters. We restrict ourselves to the most
important. To that end, for any two complex valued functionsφ1 andφ2 onG put

〈φ1|φ2〉 =
1
|G|

∑

g∈G
φ1(g)φ2(g)∗.

This defines an inner-product whenφ1 andφ2 are characters. Now we can formulate the
following very useful orthogonality theorem.
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Table A.1 Character table of the double group T̄d.

Rep. E Ē 8C3 8C̄3 3C2, 3C̄2 6S4 6S̄4 6σd, 6σ̄d

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 −1 −1 −1
Γ3 2 2 −1 −1 2 0 0 0
Γ4 3 3 0 0 −1 1 1 −1
Γ5 3 3 0 0 −1 −1 −1 1

Γ6 2 −2 1 −1 0 −√2
√

2 0
Γ7 2 −2 1 −1 0

√
2 −√2 0

Γ8 4 −4 −1 1 0 0 0 0

Theorem 7 If χ is the character of an irreducible representation, then〈χ|χ〉 = 1, that
is, χ is ‘normalized’. Moreover, ifχ1 andχ2 are the characters of two non-isomorphic
irreducible representations, then〈χ1|χ2〉 = 0, that is,χ1 andχ2 are ‘orthogonal’.

The practical importance of this theorem lies in the fact that if the representation
Γ with characterχ decomposes into irreducible representations asΓ1 + . . . + Γk with
charactersχ1, . . . , χk andΓ0 is an irreducible representation with characterχ0, thenm =

〈χ0|χ〉 is the number of representations among theΓ1, . . . , Γk that is isomorphic toχ0. In
other words,Γ0 occursm times inΓ.

Because the characters of all irreducible representations of the 32 point groups are
known [5], this makes it straightforward to decompose any representation of a point group
into its irreducible components.

A.5 Relevant character tables

In this section, we give as a service to the reader the character tables of various sym-
metry groups, relevant for this thesis. TableA.1 refers to the lattice symmetry group
T̄d. Depending on the direction of the magnetic field, it reduces to one of the groupsS4,
C3 or C1h, the character tables of which are given in TableA.2 andA.3. In an electric
field, it reduces to one of the groupsC2v, C3v or Cs, the character tables of which are
given in TableA.4. Finally, the tables of the continuous groupsD∞h andC∞v are given in
TableA.5.

A.6 Representations and wave functions

To make the connection with physics, letG be a group of operations that act on the
spatial coordinater , for instance a point group. Ifψ is a function, we can associate with
each elementg ∈ G a linear operatorOg defined byOgψ(r ) = ψ(g−1r ). If Ogψ is identical
to ψ, the functionψ is said to be invariant under the transformationg. Similarly, an
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Table A.2 Character table for the double group S̄4 (ω = eiπ/4), relevant for a dopant atom in a
magnetic field along the 〈100〉 direction.

Rep. E Ē C2 C̄2 S4 S−1
4 S̄4 S̄−1

4

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1 −1 −1
Γ3 1 1 −1 −1 −i i −i i
Γ4 1 1 −1 −1 i −i i −i

Γ5 1 −1 −i i −ω ω3 ω −ω3

Γ6 1 −1 i −i ω3 −ω −ω3 ω
Γ7 1 −1 −i i ω −ω3 −ω ω3

Γ8 1 −1 i −i −ω3 ω ω3 −ω

Table A.3 Character table for the double groups C̄3 (left; ω = eiπ/3) and C̄1h (right), relevant for
a dopant atom in a magnetic field along the 〈111〉 and 〈110〉 direction, respectively.

Rep. E Ē C3 C−1
3 C̄3 C̄−1

3

Γ1 1 1 1 1 1 1
Γ2 1 1 −ω ω2 −ω ω2

Γ3 1 1 ω2 −ω ω2 −ω
Γ4 1 −1 −ω2 ω ω2 −ω
Γ5 1 −1 ω −ω2 −ω ω2

Γ6 1 −1 −1 −1 1 1

Rep. E Ē σh σ̄h

Γ1 1 1 1 1
Γ2 1 1 −1 −1

Γ3 1 −1 −i i
Γ4 1 −1 i −i

Table A.4 Character tables of the single valued irreducible representations of the point groups
C2v, C3v, and Cs, relevant for a dopant atom in an electric field along the 〈100〉, 〈111〉
and 〈110〉 direction, respectively.

C2v E C2 σv σ′v
Γ1 1 1 1 1
Γ2 1 −1 1 −1
Γ3 1 1 −1 −1
Γ4 1 −1 −1 1

C3v E 2C3 3σv

Γ1 1 1 1
Γ2 1 1 −1
Γ3 2 −1 0

Cs E σ

Γ1 1 1
Γ2 1 −1
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Table A.5 Character table of the groups D∞h and C∞v (upper left part). These continuous
groups have four (two for C∞v) one-dimensional representation and an infinite num-
ber of two-dimensional representations. Here m is a positive integer.

E 2Cϕ
∞ ∞σv i 2Sϕ

∞ ∞C2

Γ+
g 1 1 1 1 1 1

Γ−g 1 1 −1 1 1 −1
Γm

g 2 2 cosmϕ 0 2 2 cosmϕ 0

Γ+
u 1 1 1 −1 −1 −1

Γ−u 1 1 −1 −1 −1 1
Γm

u 2 2 cosmϕ 0 −2 −2 cosmϕ 0

operatorH (r ) acting on the functionψ is said to be invariant underg if OgH O−1
g is

identical toH (in other words,H andOg commute).
Consider the energy levels and wave functions of an isolated atom perturbed by a

crystalline environment. Then, the electrostatic potential felt by an electron bound to this
impurity is invariant under operationOg of the crystal point groupG. Because the kinetic
energy operator is invariant under any rotation or reflection, the full HamiltonianH of
this problem is invariant under transformations ofG.

If {ψi} is a set ofn linearly independent eigenfunctions of this HamiltonianH be-
longing to the same eigenvalueE, then theOgψi are also eigenfunctions ofH . Hence,
they can be expressed as a linear combination of the original{ψi}, namely

Ogψi =

n∑

j=1

Mi j (g)ψ j .

Moreover, it can be shown that the matricesM(g) thus defined satisfyM(g1g2) =

M(g1)A(g2). In other words, theM(g) form an n-dimensional linear representation of
G.

After reduction of such a representation into its irreducible components, it is useful
to classify the corresponding basis functions asψ

(µ)
i , meaning that this is theith basis

function of theµth irreducible representation ofG. This is nothing else then assigning the
quantum numbersi andµ to describe the function’s behavior under operations ofG∗.

Theorem 8 The eigenfunctions of each degenerate energy level of a HamiltonianH
provide a basis for a representation of the symmetry group ofH .

In our situation,G is a crystallographic point group and therefore all the irreducible
representations are known. This makes it possible to classify the energy levels ofH by
labeling them with the corresponding irreducible representations. If the representation of

∗This is completely analogous to the quantum numbersl and m which characterize the behavior of the
spherical harmonicsYl

m(θ, ϕ) under rotations and inversion by assigning it to themth row of thelth irreducible
representation.
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an energy level is irreducible, no perturbation that preserves the symmetry of the Hamil-
tonian can lift the degeneracy. If, on the other hand, a perturbation is applied that does
reduce the symmetry, it is straightforward to derive how the representation is reduced un-
der the new symmetry group ofH . The degrees of the new irreducible representations
give the degeneracies of the new levels that emerge from the original level.

A.7 Matrix elements

It is an easily proven fact that the integral of a function of odd parity vanishes. The
theory of representations of groups extends this argument and fully exploits the symmetry
properties of wave functions and operators in the calculation of matrix elements.

Every groupG has at least one irreducible representation, namely the trivial represen-
tation, which is commonly denoted byΓ1. A function belonging toΓ1 is invariant under
all group transformations. It can be shown that the integral of a functionψ

(µ)
i (belonging

to theith row of representationµ) vanishes, if it does not belong toΓ1 (µ , 1).
If ψ andϕ transform according to the representationsΓ and Γ′, respectively, their

productψϕ transforms according to the product representationΓ × Γ′. If Γ × Γ′ can be
reduced toΓ1 + . . . + Γk, this means thatψϕ can be written as a linear combination of
functionsφi , where eachφi belongs toΓi .

For the following theorem, we recall that ifψ andϕ are functions in a certain Hilbert
space, then〈ψ|ϕ〉 =

∫
ψ(r )ϕ(r )∗ dr defines an inner-product on this space.

Theorem 9 1. 〈ψ(µ)
i |ϕ(ν)

j 〉 = 0 if Γµ × Γν does not containΓ1.

2. 〈ψ(µ)
i |ϕ(ν)

j 〉 = 0 if µ , ν or i , j.

3. Let A be an operator that transforms according to the representationΓρ. Then
〈ψ(µ)

i |A |ϕ(ν)
j 〉 = 0 Γµ × Γν if does not containΓρ.

The above is very useful when calculating matrix elements of a certain operator, as it
allows for easy identification of most vanishing matrix elements, just by using the sym-
metry properties of the system.

Care must be taken whenµ = ν and theψ(µ)
i andϕ(µ)

j are the same set of functions,

because then the productsψ(µ)
i ϕ

(µ)
j are not linearly independent. This occurs when cal-

culating the coupling of states within one level. In this situation, the productΓµ × Γν in
Theorem9 must be replaced by the symmetrized product [Γµ × Γµ].

Theorem 10 (Wigner-Eckart) Letµ andν be fixed and let the operatorA belong to the
representationΓρ. Then the matrixA with elementsAi j = 〈ψ(µ)

i |A |ϕ(ν)
j 〉 can be written

as A = aB, wherea is a numeric constant andB is a matrix that only depends on the
representationsΓµ, Γν, andΓρ. The elements ofB are calledClebsch–Gordon coefficients
of G.

This theorem forms the cornerstone of the ‘effective Hamiltonian’ method used in
Chapter6 and 7. It is very powerful, as it states that all matrix elementsAi j can be
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calculated up to a single constanta, by only knowing the symmetry properties of the
system. All other properties of the wave functions and operator are contained ina. The
Clebsch–Gordon coefficientsBi j can be obtained from, e.g., the coupling constants listed
in Ref.5.
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Atomic-scale electronics in semiconductors

A dopant atom in a semiconductor, which can be considered as the solid state analogue
of a hydrogen atom, has a Bohr radius of several nanometers. Because this length scale is
close to being accessible by modern nanolithography, detection and control of charge and
spin in a semiconductor down to the level of individual dopant atoms is within reach and
provides the unique opportunity to study, manipulate, and utilize a single atom’s wave
function. These issues are studied within the context ofAtomic Scale Electronicsand
this thesis contains several experimental and theoretical results which contribute to this
emerging field.

In this thesis, focus is put on scaling of metal-semiconductor diodes, effects of the
discreteness of doping on the electrical properties of small diodes, resonant tunneling
spectroscopy of single dopant atoms, and the effect of magnetic and electric fields on the
electronic state of dopant atoms.

The behavior of conventional devices may change drastically when decreasing their
size below a certain length scale. From this perspective, we have performed electrical
transport measurements across epitaxial defect-free nanometer-sized Schottky diodes.
These were formed by self-assembled CoSi2-islands on Si(111) and contacted with the
tip of a scanning tunneling microscope (STM). An ultra-high vacuum system is required
for the preparation and measurements of this delicate experimental system. Greatly en-
hanced conductance was observed in diodes, the size of which was small compared to
the Debye length in the semiconductor. The observed behavior can be understood qual-
itatively from a model that predicts a decreased barrier width for smaller diodes. This
causes enhanced tunneling leading to an increase in conductance (per unit area). From
an extension of this model we also find that—next to the actual diode size—the intercon-
nects in micro-fabricated devices play an important role in determining the conductance
of a diode.

The discreteness of doping is another important factor which influences theIV-charac-
teristics of small devices. In fact, dopant-induced fluctuations in the device characteristics
are viewed as one of the fundamental limits in scaling down the size of MOSFETs. We
find that on highly doped substrates, individual dopant atoms even dominate the trans-
port characteristics of our nanometer sized devices. In room temperature measurements,
the scatter in the device-to-device conductance increases towards smaller device sizes.
Moreover, in low-temperature measurements pronounced features are observed, which
are attributed to resonant tunneling through electronic states of individual dopant atoms.
For a statistical analysis of the room temperature results, the observed scatter in the mea-
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surements was interpreted as resulting from fluctuations in the Schottky barrier height due
to randomly distributed individual dopant atoms in the space charge region.

The ability to observe the energy levels of single dopant atoms is essential for ex-
perimental studies of individual wave functions in a semiconductor. Resonant tunneling
spectroscopy (RTS) is a promising method for this purpose. Therefore, as a first step
towards RTS of single dopant atoms, RTS-measurements were performed on large sili-
con tunneling devices containing aδ-doped barrier. The effectiveness of this technique
is demonstrated by the observed resonance in the differential conductance, which was
identified as arising from tunneling through the B+-state of boron atoms in theδ-layer.
Furthermore, preliminary results in a fabrication method for nano-devices approaching
the size regime necessary for the observation of single dopants demonstrate the feasibility
of an STM-based measurement method.

The Si:B+-state, a boron impurity in silicon binding an extra hole, has only one bound
state, the nature of which was not well-established. Therefore, the magnetic-field behavior
of isolated double acceptors in a tetrahedral lattice was analyzed using group theory. This
resulted in a prediction of the qualitative features of the magnetic field response for each
of the possible symmetries of a double acceptor. Comparison of the outcomes to the
RTS-measurements allowed for identification of the symmetry of the B+-state.

The most straightforward means to address an individual impurity is manipulation of
its wave function with a gate. As a first approach to address this problem theoretically,
the effect of a homogeneous electric field on the energy levels of shallow donors and
acceptors in silicon was studied, taking the bandstructure into account. Furthermore,
a description as hydrogen-like impurities was used for accurate computation of energy
levels and lifetimes up to large (several MV/m) electric fields. We find that, despite its
simplicity, this ‘scaled hydrogen model’ turns out to be a useful and valuable description
of a dopant atom in silicon.

Therefore, the scaled hydrogen model was used in a realistic device geometry, in
which a small nearby gate influences a single dopant atom. The effect of this electric
field was analyzed up to field ionization. It was found that—depending on the separation
of the dopant and the gate—the electron transfer is either gradual or abrupt, defining two
distinctive regimes for the gate-induced ionization process. This knowledge is particularly
important for the development of a dopant-atom based quantum computer.

In conclusion, this thesis deals with several basic but essential topics in the field of
Atomic Scale Electronics. Taking our results and the overall progress in this field into ac-
count, it is reasonable to expect that within a few years time both the controlled manipula-
tion of a single dopant atom’s wave function and tuning of the strength of the interaction
between two dopant atoms will have been realized experimentally.

Gert-Jan Smit

Elektronica op atomaire schaal in halfgeleiders

Een doteringsatoom in een halfgeleider—dat kan worden beschouwd als het vaste-
stofanalogon van een waterstofatoom—heeft een Bohr-straal van verscheidene nanome-
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ters. Omdat het met moderne nanolithografie vrijwel mogelijk is toegang te krijgen tot
deze schaal, komt het detecteren en beı̈nvloeden van lading en spin in een halfgeleider
tot op het niveau van individuele doteringsatomen binnen handbereik. Dit geeft de bij-
zondere mogelijkheid om de golffunctie van een individueel atoom te bestuderen, te ma-
nipuleren en er gebruik van te maken. Deze zaken worden bestudeerd binnen de context
vanElektronica op Atomaire Schaalen dit proefschrift bevat een aantal experimentele en
theoretische resultaten die bijdragen aan dit onderzoeksgebied-in-wording.

In dit proefschrift ligt de nadruk op de schalingseigenschappen van metaal-halfgelei-
der diodes, de effecten van het discrete karakter van dotering op de elektrische eigen-
schappen van diodes, resonante-tunnelspectroscopie van individuele doteringsatomen en
het effect van magnetische en elektrische velden op de elektronische toestand van dote-
ringsatomen.

Het gedrag van conventionele elektronische devices kan drastisch veranderen wanneer
hun afmeting kleiner wordt dan een zekere karakteristieke lengte. Om dit te onderzoeken
hebben we elektrisch-transportmetingen verricht in epitaxiale, defect-vrije Schottky di-
odes van nanometer-afmetingen. Deze bestonden uit zelf-gevormde CoSi2-eilandjes op
Si(111), waarmee de tip van een scanning tunneling microscoop (STM) contact maakte.
Voor de preparatie van en metingen aan dit delicate experimentele systeem is een ultra-
hoog vacüum systeem vereist. In diodes waarvan de afmeting klein was vergeleken met
de Debye-lengte in de halfgeleider werd een sterk vergrote geleiding waargenomen. Dit
waargenomen gedrag kan kwalitatief worden begrepen vanuit een model dat voorspelt
dat de barrìere dikte afneemt naarmate de diodes kleiner worden. Dit veroorzaakt een
toegenomen tunnelstroom, waardoor door de geleiding (per oppervlakte eenheid) groter
wordt. Een uitbreiding van dit model voorspelt ook dat—naast de eigenlijke afmeting van
de diode—de interconnects in gemicrofabriceerde devices een belangrijke rol spelen in
het bepalen van de geleiding van een diode.

Het discrete karakter van dotering is een andere belangrijke factor die deIV-karak-
teristiek van een klein device beı̈nvloedt. Fluctuaties in de eigenschappen van devices
als gevolg van dotering worden zelfs gezien alséén van de fundamentele limieten voor
het alsmaar kleiner maken van MOSFETs. Uit metingen op zwaar-gedoteerde substraten
blijkt dat individuele doteringsatomen de transport-eigenschappen van onze nanometer-
grote diodes zelfs domineren. In metingen bij kamertemperatuur neemt de spreiding (van
device tot device) in de geleiding toe naarmate de diodes kleiner worden. Daarnaast zijn in
metingen bij lage temperatuur sterke karakteristieken waargenomen die we toeschrijven
aan resonante tunneling door de elektronische toestand van individuele doterings atomen.
Voor een statistische analyse van de resultaten bij kamertemperatuur interpreteren we de
waargenomen spreiding in de metingen als het gevolg van fluctuaties in de hoogte van
de Schottky-barrìere. Deze fluctuaties worden op hun beurt veroorzaakt door willekeurig
verdeelde individuele doteringsatomen in het ruimte-ladingsgebied.

Het vermogen om energie niveaus van individuele doteringsatomen waar te nemen
is essentieel voor experimentele studies aan individuele golffuncties in een halfgelei-
der. Resonante-tunneling spectroscopie (RTS) is een veelbelovende methode voor dit
doel. Als een eerste stap op weg naar RTS van enkele doteringsatomen zijn daarom
RTS-metingen verricht aan grote silicium devices met een tunnel-barrière die eenδ-
doteringslaag bevat. De effectiviteit van deze techniek wordt aangetoond door de re-
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sonantie die we waarnamen in de differentïele geleiding. We hebben vastgesteld dat deze
resonantie het gevolg is van tunnelen door de B+-toestand van boor-atomen in deδ-laag.
Verder laten voorlopige resultaten van een fabricage methode voor nano-devices (die de
noodzakelijke afmetingen benaderen voor het waarnemen van individuele doterings ato-
men) zien dat een op STM gebaseerde meetmethode haalbaar is.

De Si:B+ toestand, een boor-verontreiniging in silicium die een extra gat bindt, heeft
slechtséén gebonden toestand, waarvan de aard (nog) niet vaststaat. Daarom is het
magnetisch-veld gedrag van geı̈soleerde dubbel-acceptoren in een diamantrooster gea-
nalyseerd met behulp van groepentheorie. Hieruit volgde een voorspelling van de kwa-
litatieve kenmerken van de respons op een magnetisch veld voor elk van de mogelijke
symmetriëen van een dubbel-acceptor. Vergelijking van de uitkomsten met de metingen
maakte het mogelijk de aard van de B+-toestand vast te stellen.

De meest voor de hand liggende manier om een individueel doteringsatoom aan te
spreken is manipulatie van zijn golffunctie met een gate. In een eerste, theoretische be-
nadering van dit probleem is het effect van een homogeen elektrisch veld op de energie
niveaus van ondiepe donoren en acceptoren in silicium bestudeerd, waarbij de banden-
structuur is meegenomen. Daarnaast is een waterstof-achtige beschrijving van doterings-
atomen gebruikt voor een nauwkeurige berekening van de energie niveaus en levensduren
tot grote (enkele MV/m) elektrische velden. We vinden dat—ondanks haar eenvoud—dit
‘geschaalde-waterstofmodel’ een nuttige en waardevolle beschrijving van een doterings-
atoom in silicium blijkt te zijn.

Om die reden is het geschaalde-waterstofmodel gebruikt in een realistische device-
geometrie, waarin een kleine, dichtbij geplaatste gate een enkel doteringsatoom beı̈n-
vloedt. Het effect van dit elektrisch veld is geanalyseerd tot aan het optreden van veld-
ionisatie. Het bleek dat—afhankelijk van de afstand tussen het doteringsatoom en de
gate—de overdracht van het electron geleidelijk of abrupt plaatsvindt, waarmee twee ver-
schillende regimes gedefinieerd worden voor het gate-geı̈nduceerde ionisatie proces. De-
ze kennis is vooral belangrijk voor de ontwikkeling van een op doteringsatomen geba-
seerde kwantum-computer.

Concluderend: dit proefschrift behandelt verscheidene basale maar essentiële onder-
werpen binnen het vakgebied van deElektronica op Atomaire Schaal. Kijkend naar onze
resultaten en de algehele vooruitgang in dit vakgebied lijkt het redelijk te verwachten
dat binnen enkele jaren zowel de gecontroleerde manipulatie van de golffunctie van een
individueel doteringsatoom als het instellen van de sterkte van de interactie tussen twee
doteringsatomen experimenteel gerealiseerd zullen zijn.

Gert-Jan Smit
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