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We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This
algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values
q�1. Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-
Chayes-Machta �SWCM� algorithm, which involves a full-cluster decomposition of random-cluster configu-
rations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-
cluster models. For integer q, the single-cluster algorithm can be reduced to the Wolff algorithm, for which
case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents
zexp=0.07 �1�, 0.521 �7�, and 1.007 �9� for q=2, 3, and 4, respectively. For noninteger q, the dynamical
behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large
critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The
dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.
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I. INTRODUCTION

The Kasteleyn-Fortuin mapping �1� of the q-state Potts
model �2� onto the random-cluster model provides a way to
define the Swendsen-Wang �3� and related cluster Monte
Carlo algorithms �4,5� for the Potts model. These algorithms
can apply nonlocal changes to the configuration. For systems
with long-range correlations, these nonlocal methods appear
to be very efficient in comparison with the standard Me-
tropolis Monte Carlo method �6�, which applies only local
updates.

The number q of Potts states appears as a continuous vari-
able in the random-cluster model; the latter model can thus
be seen as a generalization of the Potts model to noninteger
values of q. There exist several ways to simulate
noninteger-q random-cluster models. First, Sweeny applied
local updates of the bond variables �7�. While the Sweeny
algorithm, like cluster algorithms, suppresses most of the
critical slowing down, a bond update requires a nonlocal task
which increases the computer time requirements. Another al-
gorithm was formulated by Hu �8�. It generates percolation
configurations and applies a statistical reweighting in order
to obtain the correct averages for the random-cluster model.
A cluster algorithm of the Swendsen-Wang type was formu-
lated by Chayes and Machta �9� for the q�1 random-cluster
model. While all these algorithms, if using a random genera-
tor of a sufficient quality, lead to results that are only subject
to statistical errors, it was found that the Swendsen-Wang-
Chayes-Machta �SWCM� cluster algorithm �where appli-
cable, i.e., q�1� is much more efficient than the reweighting
method �10�. It was also found �10� to be more efficient than
the Sweeny method, although the latter result depends
strongly on the sophistication of the bond update method.
Detailed studies of the dynamic critical behavior of the
SWCM and the Sweeny algorithms can also be found in Ref.
�11�.

In this work, we present a single-cluster algorithm for the
random-cluster model with real q�1. This algorithm thus
has elements in common with the Wolff �4� as well as with
the SWCM cluster algorithm �9�. Since, for integer q, the
Wolff method is about as efficient as the Swendsen-Wang
algorithm, one might expect that the same holds for our
single-cluster algorithm, in comparison with the SWCM al-
gorithm. A test of this expectation is also included in the
present work.

Section II provides an explanation of the theoretical as-
pects of the algorithm. We include a simple example of such
an algorithm, and prove that the condition of detailed bal-
ance is satisfied. Furthermore, we describe other variants of
the algorithm that are applicable to models with q�2, and
describe how the algorithm can reduce to the Wolff algo-
rithm for integer q. In Sec. III we test the validity of the
algorithm, and determine its dynamic exponent for two-
dimensional random-cluster models on the square lattice, us-
ing several values of q. The generic dynamical behavior ap-
pears to be very different from that of the Wolff algorithm.
We conclude with a discussion of our findings in Sec. IV,
which also includes an explanation of the mechanism re-
sponsible for the unusual dynamical behavior.

II. ALGORITHM

A. Kasteleyn-Fortuin mapping

We recall the mapping of the Potts model and the random-
cluster model on a model with bond as well as site variables,
as described in Refs. �9,10�. For a review of the Potts model,
see, e.g., Ref. �12�. The Potts partition sum is

Z� ���
i=1

N

�
�i=1

q 	�

ij�

exp�K��i�j
� , �1�

where the summations are on all site variables �i, where i
labels the lattice sites. The second product sign indicated by

PHYSICAL REVIEW E 80, 036707 �2009�

1539-3755/2009/80�3�/036707�8� ©2009 The American Physical Society036707-1

http://dx.doi.org/10.1103/PhysRevE.80.036707



ij� is on all nearest-neighbor pairs �i , j�. The coupling K is
reduced, i.e., it includes a factor 1 /kBT. We consider the case
of ferromagnetic couplings K�0. The Kasteleyn-Fortuin
mapping of Eq. �1� on the random-cluster model �1� intro-
duces bond variables bij =0 or 1 between all neighbor pairs
�i , j�, after which the site variables �i=1,2 , . . . ,q can be
summed out so that only the bond variables remain as the
degrees of freedom of the random-cluster model. Bonds bij
=1 �0� are considered to be present �absent�.

The random-cluster partition sum thus assumes the form

Z� = Zb ���

ij�

�
bij=0

1 	qncunb = �
�b

�
k=1

nc

qunb
�k�

, �2�

where u�eK−1 is the temperaturelike parameter and nb
��bij denotes the number of present bonds. The number of
clusters is denoted as nc. The sum on �b is shorthand for the
sum on all configurations of bond variables, and nb

�k� is the
number of nonzero bonds in the kth cluster.

For q�1 one can divide the cluster weight q in two posi-
tive contributions 1 and q−1. The first contribution can be
associated with one of the original Potts states. To this pur-
pose we introduce “color” variables t̃k=0 or 1 for each clus-
ter k=1,2 , ¯ ,nc,

Zb = �
�b

�
k=1

nc

�
t̃k=0

1

unb
�k�t̃k��q − 1�unb

�k�
�1−t̃k. �3�

Clusters of colors 0 and 1 have weight q−1 and 1, respec-
tively. The sum on the cluster colors is replaced by a sum
over N site-color variables ti=0 or 1, together with a factor
�titj

bij �with the convention 00=1� for each bond variable, so
that each cluster contains only sites of one color,

Zb = Ztb � �
�t

�
�b

�

ij�

�u�titj
�bij�

k=1

nc

�q − 1�1−ts�k�, �4�

where the color of the kth cluster is denoted ts�k�, where s�k�
is a site in that cluster. In a site configuration �t we identify
three types of bonds �ij�,

type 0:ti = tj = 0,

type 1:ti = tj = 1,

type 2:ti + tj = 1.

Summations and products involving only one of these types
of bond are specified by appending corresponding super-
scripts to the pertinent summation and product signs:

Ztb = �
�t

��
�b

�0��

ij�

�0�ubij	��
k=1

nc
�0�

�q − 1�	��
�b

�1��

ij�

�1�ubij	
���

�b

�2��

ij�

�2��1 − bij�	 , �5�

where the clusters of color 0 are labeled 1 ,2 , . . . ,nc
�0�. The

type 1 and 2 sums can now be executed. After rewriting the
type-0 sum one obtains the partition sum expressed in site
variables and type 0 bond variables,

Ztb = Ztb1 � �
�t

�
�b

�0���
k=1

nc
�0�

�q − 1�unb
�k�	��


ij�

�1��1 + u�	 .

�6�

Equation �6� specifies the probability distribution of a system
of site variables ti=0, 1 and bond variables bij between
nearest-neighbor sites of type 0. Each term in the second sum
in Eq. �6� specifies a cluster decomposition D��b� of the
sublattice formed by sites k with tk=0. Different sets of bond
variables �b may still correspond with the same cluster de-
composition. Thus, if we replace the sum on �b by a sum on
all cluster decompositions of the color-0 regions, we have to
insert a summation on all �b that are consistent with D,

Ztb = ZtD � �
�t

��

ij�

�1��1 + u�	�
�D

�0� �
�b�D

��
k=1

nc
�0�

�q − 1�unb
�k�	 .

�7�

B. Simplest form of the algorithm

Equation �7� can serve as the basis on which a single-
cluster Monte Carlo algorithm can be constructed. This algo-
rithm is applied as follows to a mixed configuration specified
by the site variables ti and a cluster decomposition D of the
color-0 sites. An initial configuration can, for instance, be
obtained from a random-cluster configuration and assigning
color 1 to each cluster with probability 1 /q. Then, a single-
cluster step is executed as follows:

�1� Choose a random site i. The action taken by the algo-
rithm depends on the color variable ti.

�2� �a� If ti=1, do with probability p1= �q−1� /q the fol-
lowing: form a random cluster around site i with bond prob-
ability p=u / �u+1� between sites of color 1. The sites j in the
newly formed cluster are assigned color 0 �i.e., tj =0� and the
number nc

�0� of clusters of color 0 is thus increased by 1. �b�
If ti=0, do with probability p2=1 /q the following: assign
color 1 to all sites of the cluster containing site i, and thus
decrease the number of clusters of color 0 by 1.

C. Proof of detailed balance

The proof of detailed balance can be formulated as fol-
lows. Consider two mixed configurations S1 and S2, which
differ only in a region C whose sites j have color tj =1 in S1,
and whose sites belong to a single cluster in S2, and thus
have color tj =0. According to the rules given in the preced-
ing subsection, the transition probability to move from S1 to
S2 is

T�2,1� =
�q − 1�Nc

qN
�
�b�C

� u

u + 1
�nb� 1

u + 1
�np+nnn−nb

, �8�

where Nc is the number of sites in region C; N is the total
number of sites in the system; �b stands for the nnn bond
variables on the edges between nearest-neighbor sites in C;
the combination on �b �C indicates the sum on all configu-
rations �b that connect all sites in C into a single cluster; nb
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denotes the number of nonzero bond variables in �b; and np
is the number of bond variables connecting sites inside C
with those outside C of color 1 �i.e., the number of bonds
along the boundary of C that is broken when the color of C is
changed�. The prefactor �q−1�Nc /qN describes the probabil-
ity that the cluster formation starts within C. Each of the nb
“present” bonds contributes a factor u / �u+1�, and each of
the nnn−nb “absent” bonds a factor 1 / �u+1�. Also each “bro-
ken” bond along the perimeter of C contributes a factor
1 / �u+1�.

The rules given in the preceding subsection also specify
the probability of the inverse move, namely, from S2 to S1, as

T�1,2� =
Nc

qN
. �9�

The condition of detailed balance requires that the transition
probabilities T�2,1� and T�1,2� are related to the equilibrium
probabilities P�1� and P�2� of configurations 1 and 2, respec-
tively,

T�2,1�/T�1,2� = P�2�/P�1� . �10�

Since the probabilities P�1� and P�2� are proportional to the
configuration weights specified by Eq. �7�, we may write

P�2�/P�1� = W�2�/W�1� , �11�

where the weights associated with region C in Eq. �7� are

W�1� = �1 + u�np+nnn �12�

and

W�2� = �q − 1� �
�b�C

unb. �13�

From Eqs. �8� and �9�, and from Eqs. �12� and �13�, we
conclude that

T�2,1�/T�1,2� = �q − 1��1 + u�−np−nnn �
�b�C

unb = W�2�/W�1� ,

�14�

which shows that the condition of detailed balance, Eq. �10�,
indeed is satisfied.

D. Other versions

The probabilities p1 and p2 in Sec. II B can be chosen
differently, depending on the value of q. For 1�q�2 we
may take p1=q−1 and p2=1. For q�2, this is not possible
but other possibilities arise. One can generalize the algorithm
by allowing more than two values of the color variables ti.
The most obvious way is to allow n��q� �the integer part of
q� values with weight one, and one special value with weight
q−n. Sites of the latter color are divided in clusters �just as
before�; sites of the n remaining colors are not. A cluster step
starting from a randomly chosen site can then be specified as
follows: if that site belongs to a cluster �thus, of the special
color 0�, then the cluster is erased and its sites are given a
random color 1 ,2 , . . . ,n with probability 1 /n each. If the
cluster step starts from a randomly chosen site of color

1 ,2 , . . . ,n, then a single cluster is formed. Its sites receive
one of the n−1 other weight-1 colors with probability �2n
−q� / �n�n−1�� each, and the cluster receives the special color
with probability �q−n� /n. This choice of probabilities satis-
fies detailed balance and maximizes the probability of a clus-
ter flip. For integer q, with the choice n=q, it leads to the
Wolff algorithm for the Potts model with transition probabili-
ties 1 / �q−1� of each color to the q−1 other colors �5�.

E. Test of the algorithm

We tested the single-cluster algorithm for the cases of the
q=2, 3, and 4 Potts model on the square lattice, by compar-
ing its numerical results to those of the Wolff algorithm. We
set n=q−1 �see Sec. II D� and the weight of the color-0
clusters is thus q−n=1. Simulations were performed on
L�L lattices with periodic boundary conditions. After each
single-cluster step, we sampled various quantities, including
the densities 	i of Potts variables in states i=1,2 , . . . ,q, and
the single-cluster size S. The single-cluster size is counted as
the total number of lattice sites in the cluster as constructed
by the algorithm. If the number q of Potts states is an integer,
the squared Potts magnetization density m2 can be expressed
in the densities 	i as

m2 =
1

q − 1�
i

�
j�i

�	i − 	 j�2 =
q

q − 1�
i

�	i − 1/q�2. �15�

The sum on the right-hand side of this equation contains q
terms whose expectation value is equal, due to the Potts sym-
metry. Thus, for the expectation value 
m2� of m2 we may
write


m2� =
q2

n�q − 1��i=1

n


�	i − 1/q�2� , �16�

with 1
n
q. Thus it is sufficient to sample �	i−1 /q�2 in
order to obtain 
m2�. While q is taken to be an integer in this
subsection, Eq. �16� still applies for general q�1. If q is not
an integer, n will usually be chosen as n= �q�, where �q�
denotes the integer part of q. Although, in the case n�q, Eq.
�16� still leads to the same expectation values as those ob-
tained by averaging on the basis of a full-cluster decompo-
sition, the autocorrelations of m2 may depend on the sam-
pling method and thus be different in both cases.

As should be expected, for Potts models with integer val-
ues of q, the Wolff and the present algorithm did indeed yield
mutually consistent results. This is demonstrated by the data
for 
m2� and 
S� in Table I obtained by the two algorithms for
the case q=2, n=1. Furthermore, since the probability to hit
a cluster is equal to its relative size, it follows that the two
expectation values 
m2� and 
S� are equal. Our simulation
results were also in a good agreement with this relation, as
illustrated by the data shown in Table I for the critical Ising
model.

Since both simulations involve the same number of
samples, the statistical uncertainties, shown between brack-
ets in Table I, reflect the relative efficiency of the Wolff and
the single-cluster algorithm. For size L=8, the Wolff method
is about ten times as efficient as the present algorithm, while
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this difference increases to a factor of about 100 for L=32. It
thus appears that the two algorithms have different dynamic
exponents.

III. DYNAMIC EXPONENTS

A. Autocorrelation functions and autocorrelation times

Consider an observable O, whose evolution in time t� is
described by the time series O�t��, where each unit of t�
corresponds to one step of the single-cluster algorithm. The
autocovariance function of O is defined to be

CO�t�� � 
O�0�O�t��� − 
O�2, �17�

and its autocorrelation function is

AO�t�� �
CO�t��
CO�0�

. �18�

We then normalize time t� as t= t�S /L2 so that the time unit
of t is the average number of cluster steps in which each
lattice site is visited once. From AO�t� we then define the
integrated autocorrelation time as

�int,O �
1

2
+ �

t=1

�

AO�t� , �19�

and the exponential autocorrelation time as

�exp,O � lim
t→�

− t

log AO�t�
. �20�

Finally, the exponential autocorrelation time of the system is
defined as

�exp = sup
O

�exp,O, �21�

where the supremum is taken over all observables O. This
autocorrelation time measures the decay rate of the slowest
mode of the system. All observables that are not orthogonal
to this slowest mode satisfy �exp,O=�exp.

B. Integer q

For integer q=2,3 ,4, we may set n=q, in which case the
color-0 clusters have zero weight and are thus absent, so that

the single-cluster algorithm reduces to the version of the
Wolff algorithm �4� adapted to the Potts model. Such Wolff
simulations were performed at criticality. The system sizes
were chosen as powers of 2 in the range 4
L
4096 for q
=2, 4
L
2048 for q=3, and 4
L
1024 for q=4.
Samples were taken at intervals of one single-cluster step.
The number of samples taken for each system size is shown
in Table II.

After a fast initial decay, the autocorrelation functions for
S and m2 decay approximately exponentially, but with an
amplitude proportional to a power of the linear size L. Ex-
cept for the initial decay, the behavior can be described as

AO�t�  L−sOe−t/�exp�L�, �22�

with O=S or m2, which implies that zint,O=zexp−sO. Accord-
ingly, a data collapse is obtained by plotting the quantity
LssAS versus t /�exp. This is shown in Fig. 1, with the expo-
nent of L fixed as ss=0.37.

Correlations between subsequent Wolff steps are thought
to arise from overlap between the two pertinent clusters. The
average Wolff cluster size, relative with respect to the size Ld

of the system at criticality, scales with L as SL2yh−2d, where
yh is the magnetic exponent and d=2 is the dimensionality of
the lattice. The probability that two subsequent clusters over-
lap may thus be crudely estimated as L4d−4yh. The histogram
of the cluster-size distribution is however very wide with a
large-size cutoff that scales as Lyh. Since large clusters con-
tribute more to the autocorrelation function than small ones,
one may expect that the correlations at short times scale with
L instead as L−ss with ss�4d−4yh. The results for q=2, 3,
and 4 are shown in Table III. It seems that for q=4 the Wolff
algorithm is slightly less efficient than the Swendsen-Wang
method.

TABLE I. Simulation results for the average squared magnetization 
m2� and the single-cluster size S for
the critical q=2 random-cluster model, as obtained by the Wolff �W� and the present single-cluster algorithm
�S� with n=q−1 as defined in the text. The parameter L specifies the linear system size. The number of
samples per system size is 4�106 for each simulation, and the number of clusters formed between subse-
quent samples is two for L
24 and 3 for L=32. The numbers between brackets show the statistical error
margins in the last two decimal places.

L 8 12 16 20 24 32

m2 �W� 0.64693�18� 0.58581�18� 0.54537�17� 0.51584�16� 0.49305�17� 0.45874�14�
m2 �S� 0.6478�6� 0.5861�8� 0.5442�9� 0.5164�10� 0.4932�13� 0.4610�12�
S �W� 0.64666�18� 0.58581�18� 0.54544�17� 0.51594�16� 0.49311�17� 0.45878�14�
S �S� 0.6470�6� 0.5860�8� 0.5441�9� 0.5165�10� 0.4932�13� 0.4610�12�

TABLE II. Lengths of the Wolff-type simulations in Sec. III B
for L�16 and q=2, 3, and 4, in units of 107 samples.

L 16 32 64 128 256 512 1024 2048 4096

q=2 12 12 12 12 16 16 32 8 8

q=3 4 4 4 4 8 8 12 12

q=4 8 12 20 32 48 72 64
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During the simulations, also the energy density E, which
is defined as the nearest-neighbor correlation function, was
sampled. The corresponding autocorrelation function AE�t� is
shown in Fig. 2 for q=2. This figure indicates that AE decays
approximately exponentially as a function of t, with an am-
plitude that has little or no dependence on the system size. It
thus follows that zexp,E�zint,E. The autocorrelation times �int
and �exp were obtained by integration and least-squares fits
respectively. The autocorrelation times for L�16 were fitted
by

�int,E�L� = a + bLzint,E, �23�

and similarly for �exp. The fit yields zexp�zint,E=0.07 �1�.
This nonzero dynamic exponent is in agreement with the
upward curvature of the data for �exp versus L on a logarith-
mic scale, shown in Fig. 3. However, we cannot exclude the
possibility that the dynamic exponent is zero because the
data for L�16 can also be described by �int,E�L�=�0
+ln L�a0+a1 /L+a2 /L2�, which has only one more parameter

than Eq. �23�, with �0=−1.02 �7�, a0=0.76 �2�, a1=3.4 �6�,
and a2=−10 �5�; this is illustrated in Fig. 3. Such behavior
would mean that the Li-Sokal bound �13� is sharp for the
Wolff dynamics of the two-dimensional Ising model.

C. Noninteger q

We performed simulations of critical random-cluster sys-
tems with sizes 4
L
256 for q=1.25, 1.50, 1.75,
2.25,2.50, and 2.75, with n= �q�. Samples were taken after
each single-cluster step, with a total number of samples of
6�107 for each L ,q. The squared magnetization was ob-
tained using Eq. �16�.

The autocorrelation functions Am2�t� and AS�t� were found
to display a fast decay at short times t�O�1�, then decay
algebraically, and ultimately exponentially with t. Such a
range of algebraic behavior, which extends to t�1 for at
large L, is absent for Wolff dynamics. In the case of Am2�t�,
the fast initial decay at small t appears to be hardly size

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

L
s s

A
S

(t
)

t/τexp

16
32
64

128
256
512

1024
2048
4096

FIG. 1. �Color online� Data collapse of the autocorrelation func-
tion of the single-cluster size, shown as LssAS on a logarithmic
scale, versus t /�exp, with ss=0.37. These results apply to q=2 Wolff
dynamics.

TABLE III. Single-cluster dynamics for several values of q. The exponents rs, and rm are those in Eq. �24�
for S, and m2, respectively; the same labeling applies to ss and sm. The values of sm are not significantly
different from zero for noninteger values of q. For the purpose of comparison, the last column shows results
�11� for zexp applying to SWCM cluster dynamics. Furthermore, some data are included for integer values
q=2, 3, and 4, with the choice n=q, so that these results apply to the Wolff algorithm.

q ss rs sm rm zexp zexp �SW�

1.25 0.25�2� 0.25�2� 0.00�2� 0.25�1� 2.0�2� 0.00

1.50 0.19�2� 0.19�2� 0.00�2� 0.19�1� 2.0�2� 0.00

1.75 0.14�2� 0.14�2� 0.00�2� 0.14�1� 2.0�2� 0.06�1�
2.25 0.26�2� 0.15�2� 0.00�2� 0.14�1� 2.0�2� 0.24�1�
2.50 0.22�2� 0.10�2� 0.00�2� 0.12�1� 2.0�2� 0.31�1�
2.75 0.17�2� 0.06�2� 0.00�2� 0.10�1� 2.0�2� 0.42�2�
2.00 0.37�2� 0.14�2� 0.07�1� 0.14�1�
3.00 0.34�2� 0.05�2� 0.521�7� 0.49�1�
4.00 0.25�2� 0.00�2� 1.007�9� 0.93�2�

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

A
E

(t
)

t/τint,E

16
32
64

128
256
512

1024
2048
4096

FIG. 2. �Color online� Data collapse of the autocorrelation func-
tion AE vs t /�int,E for q=2 Wolff dynamics. The system sizes L are
shown in the figure. The statistical uncertainties become appreciable
at large times.
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dependent, as can be seen in Fig. 4. In contrast, for AS�t�, the
amplitude of the algebraic decay is found to be size depen-
dent.

These dynamic phenomena are very different from those
for integer q, where the autocorrelation functions for both
quantities decay almost as a pure exponential law. It seems
that the behavior of AO�t� can be described by

AO�t,L� = L−sOt−rOf„t/�exp�L�… for t � 1, �24�

where f is a universal function. For large t, it behaves as

f„t/�exp�L�…  e−t/�exp�L� with �exp�L�  Lzexp. �25�

We analyzed AO�t ,L� by attempting to collapse the data onto
a single curve according to Eq. �24�. The data collapses for

O=m2 and S work only approximately. This might be due to
finite-size corrections. The results are shown in Table III.

The power-law dependence of the amplitude of the expo-
nential decay of autocorrelations means that, in terms of a
measure of the efficiency of the algorithm, the significance
of the dynamic exponent zexp is limited. The exponent zint is
a better measure of the L dependence of the rate of decay of
correlations because it includes the size dependence of the
amplitude of the decay. The unusual behavior in Fig. 4 may
be expected to lead to significant differences between zexp
and zint. This expectation is verified by integration of Eq.
�24�, which yields that

�int,O  Lzint, zint = �1 − rO�zexp − sO. �26�

Inspection of the numerical results for zexp, rO, and sO in
Table III shows that zexp and zint must have different values.
For a numerical analysis of zint, we have, in line with Eq.
�19�, integrated the autocorrelation functions for m2 and S
according to

�int,O�T� �
1

2
+ �

t=1

T

AO�t� , �27�

where, presently, T assumes the meaning of a time variable.
The integrated autocorrelation times of the q=1.25 model for
�int,m2�T� and �int,S�T� are shown in Figs. 5 and 6, respec-
tively. The lines for large L are approximately straight, which
reflects the algebraic decay of the autocorrelation functions
as a function of t. As a consequence of the exponential decay
at large t, �int�T� approaches a constant. However, integration
of random correlations at large t eventually affects the accu-
racy of the numerical result for �int�T� so that a cutoff has to
be applied for optimal results. For this reason, the integrated
autocorrelation times for L=256 could not be accurately de-
termined and were skipped from the analysis. The remaining
data were fitted by
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FIG. 3. �Color online� Semilogarithmic plot of the integrated
autocorrelation function �int,E�L� versus L for q=2 Wolff dynamics.
The error bars are of the same size as the data points. The solid
�green� curved line is obtained from the logarithmic fit. The differ-
ence with the power-law fit would not be visible on this scale. The
straight dashed line represents pure logarithmic behavior � ln L,
and serves only for the purpose of illustration.
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FIG. 4. �Color online� Autocorrelation function Am2 for q
=1.25 versus time t, using logarithmic scales. These data apply to
the single-cluster simulation of the q=1.25 random-cluster model.
The straight line is only for the purpose of illustration, and has
slope −0.25.
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FIG. 5. �Color online� Indefinite integral �int,m2�T� of the mag-
netic autocorrelation function Am2�t� over the time interval 0� t
�T. These results apply to the single-cluster simulation of the q
=1.25 random-cluster model.
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�int,O�L� = A + BLzint,O, �28�

where A and B are unknown constants. The fits for q=1.25
yield zint,m2 =1.4 �1�, and zint,S=1.1 �1�. Table IV includes the
results for the zint,O for several other values of q.

IV. DISCUSSION

As stated in Sec. I, one might expect that the present
single-cluster algorithm would have a dynamic exponent that
is about the same as that of the SWCM algorithm �9�. How-
ever, after comparing the dynamic exponents of both algo-
rithms, we find that this expectation is not justified for non-
integer q. The single-cluster algorithm formulated in this
work represents a new dynamic universality class. Finding
the reasons behind this curious fact should help us to better
understand from where critical slowing down arises, and tell
us something about how one can further develop efficient
Monte Carlo algorithms in statistical physics.

The single-cluster algorithm described above is obviously
related to the Wolff �4� algorithm as defined for integer-q
Potts models; it can reduce to the Wolff method if q is an
integer. On the other hand, it is different in the sense that the
single-cluster algorithm acts on a mixed configuration of site
variables and random-cluster variables.

This mixture of different types of variables is essentially
the reason that the present single-cluster algorithm is rela-
tively slow. In this algorithm, a number of lattice sites be-
longs to random clusters of type 0 with weight q− �q�, while
the remaining sites are decorated with a Potts variable in one
of �q� Potts states.

As described in Sec. II, the only process that can change a
type-0 cluster back into an integer spin state, depends on the
random selection of a site in that cluster in the beginning of
each cluster step. Thus, large clusters of type 0 are short
lived and small ones are long lived. It is illustrated in Fig. 7
that the single-cluster distribution for the case q=2 displays a
wide range of algebraic decay and an additional maximum at
large cluster sizes of order Lyh, preceding a rapid decay at
even larger sizes. The distribution shown in Fig. 7 represents
a time average. Individual cluster decompositions deviate be-
cause of thermal fluctuations. The lifetime of these devia-
tions will naturally depend on the cluster size. The smaller
the type-0 clusters are, the longer they will persist, and this
will be reflected in the decay of the autocorrelation func-
tions. The pronounced maximum in Fig. 7 at S�Lyh can thus
be associated with a rapid initial decay of the autocorrela-
tions. Once the largest clusters of type 0 are updated, some
autocorrelations are still persisting due to the thermal fluc-
tuations of the numbers of smaller clusters that remain to be
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FIG. 6. �Color online� Indefinite integral �int,S�T� of the autocor-
relation function AS�t� for the single-cluster size over the time in-
terval 0� t�T. These results apply to the single-cluster simulation
of the q=1.25 random-cluster model.

TABLE IV. Dynamic exponent zint of the single-cluster cluster algorithm. This exponent describes the
scaling behavior of �int, the integrated autocorrelation function. For a negative exponent zint, the �int data
approach a constant when L→�. The values of zint,O

� are calculated from Eq. �26� and Table III, while those
of zint,O follow from the fits using Eq. �28�. Some data are included for integer q; these results apply to the
Wolff algorithm.

q 1.25 1.50 1.75 2.25 2.50 2.75 2 3 4

zint,m2 1.4�1� 1.5�1� 1.6�1� 1.9�1� 1.9�1� 2.0�1� −0.16�2� 0.485�7� 1.005�9�
zint,m2

� 1.5�2� 1.6�2� 1.7�2� 1.7�2� 1.8�2� 2.0�2�
zint,S 1.1�1� 1.1�1� 1.3�1� 1.6�1� 1.7�1� 1.8�1� −0.4�1� 0.16�4� 0.72�5�
zint,S

� 1.3�2� 1.4�2� 1.6�2� 1.4�2� 1.6�2� 1.7�3�
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FIG. 7. �Color online� Data collapse for the single-cluster dis-
tribution P�S� as a function of the cluster size S for the critical q
=2 random-cluster model. The dashed line illustrates the asymptotic
slope −2 /yh=16 /15 which applies to 1�S�Lyh. Data are shown
for system sizes L=16, 32, 64, 128, and 256. The quantity P rep-
resents the probability that a randomly chosen site belongs to a
cluster of size S.
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updated. After t� single-cluster steps, the autocorrelations of
the numbers of clusters with sizes S�L2 / t� will be strongly
reduced, while the clusters with sizes S�L2 / t� will mostly
be unaffected. Since the cluster-size distribution decays alge-
braically in a range of S, it is natural that autocorrelations
associated with clusters that are not yet updated display a
corresponding power-law decay in time, as long as the small-
est clusters survive. After a number of steps of order L2 also
the clusters of size 1 will be updated. This somewhat quali-
tative reasoning, which neglects any persisting correlations
after all clusters are visited, would mean that the longest
autocorrelation time, expressed in single-cluster updates, is
of order L2, after which the autocorrelations will decay ex-
ponentially. Expressed in units of t as defined in Sec. III A,
this corresponds with autocorrelations scaling as L2yh−2 at
criticality. Our numerical results suggest that the dynamic
exponent is slightly larger, namely, zexp�2, but the data do
not allow a more firm statement.

The persistence of the smallest clusters during a time of
approximate order L2 leads to a long-time “tail” during simu-
lations using the single-cluster method. It is this effect that
we hold responsible for the relatively large dynamic expo-
nent zexp of the single-cluster method. However, the ampli-
tude of the algebraic decay of the autocorrelation functions
still depends with a factor L−sO on the system size L. A
positive value of sO, therefore, means that the critical slow-

ing down is less severe than suggested by the value of zexp, in
agreement with the smaller values of zint as shown in Table
IV.

Nevertheless our findings indicate that the single-cluster
algorithm, apart from displaying interesting dynamic behav-
ior, is not an efficient tool to investigate the two-dimensional
random-cluster model. In higher-dimensional systems we
have similar expectations. But there still seems to be a pos-
sibility that a number of single-cluster steps alternating with
a full-cluster decomposition, which takes advantage of the
fast initial decay of autocorrelations of the single-cluster al-
gorithm as well as of the absence of a long-time tail in the
SWCM cluster algorithm, will be relatively efficient in
higher-dimensional systems.
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