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ABSTRACT

Dating from the early 1980s, Knowledge-Based Engineer-
ing technology (KBE) has been used to capture and auto-
mate design and engineering, in particular in the automo-
bile and aircraft industries.

A viable KBE system in the 21st century must provide
users with a dynamic modeling feedback loop in an en-
vironment favorable to both exploration and experimen-
tation, supplying various approaches for engineering a
given set of artifacts. The fundamental properties of a
KBE system must include automatic caching and depen-
dency tracking for the scalable runtime performance of
large models, minimal source code volume, and efficient
and rapid tools for model development and debugging.
And, not least, it must complement existing CAD systems.

A crucial aspect of a bonafide KBE system is its
language-based core, embedded in a standardized, full-
featured programming language, i.e., as a superset. The
GDL (General-purpose Declarative Language) platform
from Genworks achieves this by providing a domain-
specific language (DSL) for KBE purposes, embedded
in ANSI Common Lisp (often characterized as the “pro-
grammable programming language”). ANSI CL facilitates
sophisticated code generation, written in a highly com-
pact manner, which is then automatically expanded into
the low-level CL, and finally machine code for execution.

This paper will consider the theorstical and practical is-
sues associated with using such a language-centric ap-
proach for design and engineering automation. It also will
address a number of the commonly heard objections from
engineers and others to the use of a Lisp-based language,
and respond to these largely unfounded objections.

The specific GDL platform by Genworks represents a

contemporary and cost-effective KBE toolkit, affording all
the significant benefits from the legacy, and very expen-
sive, KBE systems, while incorporating a host of mod-
ern features, including: (1) portable web-based develop-
ment and runtime environments, (2) compatibility of func-
tion with contemporary CAD and other data exchange for-
mats, while (3) remaining free-standing from the propri-
etary CAD systems, with (4) robust underlying commer-
cial components built into the package, to wit: (a) Allegro
CL or Lispworks, and (b) SMLib surface/solid modeling.
The paper will cover the specific features and benefits of
Genworks GDL, as well as contrasting GDL to a number
of alternative systems currently on the market.

Finally, this paper will explore a number of actual GDL
applications, including a conceptual aircraft assembly, an
aircraft wiring harness configurator, and an educational
tool for modeling aerodynamic dragster models which pro-
vides a good example of KBE deployed using “web 2.0”
AJAX techniques. The paper will also cover an AJAX-
enabled browser-based graphical development environ-
ment for Genworks GDL called ta2.

INTRODUCTION

Knowledge-based Engineering (KBE) may be described
as “engineering on the basis of electronic knowledge
models.”(1)

For approximately 30 years, language-based KBE has
been applied to challenging design and engineering prob-
lems, mainly in very capital-intensive industries such
as automotive, civil engineering, and, in particular,
aerospace. A prototype successful use of KBE has been a
long-running and highly productive application at the Boe-
ing Company for generating the geometry of thousands of
stringer clips fitted and shaped for precise locations in an
aircraft fuselage.(2)



However, until recently the aerospace use of KBE has
been generally concentrated in those highly funded high-
end industry niches. The major industry objections to
a more widespread adoption of language-based KBE,
notwithstanding its benefits, have traditionally been:

1. Prohibitive cost of the legacy systems;

2. A common perception of unfamilarity or difficulty on
the part of users in the use of Lisp as the modeling
language;

3. A persistent belief that KBE
could not be used in tandem with other widespread
"mainstream” technologies already in place, notably
the ubitiquous CAD systems encountered in every
design shop.

The theme of this paper is to dispel these three mis-
perceptions, and, to the contrary, demonstrate that none
of them any longer pose legitimate objections to the
widespread use of KBE technologies, an adjunct use that
would undeniably serve to greatly enhance, and shorten,
industry design capabilities.

A REVIEW OF THE STANDARD KBE FEATURES

INTRINSIC FEATURES COMMON TO BONAFIDE KBE
SYSTEMS  The following five essential “lowest common
denominator” features are intrinsic in any generative KBE
system:

Functional Coding Style: programs (i.e. models) return
values, rather than modifying things in memory or in
the model.

Declarative Coding Style: there is no “begin” or “end”
to a KBE model — only a description of the items to
be modeled.

Runtime Value Caching and Dependency Tracking:
the system computes and memorizes those things
which are required — and only those things which are
required (no more, no less).

Dynamic Data Types: Slot values and object types do
not have to be specified ahead of time. They are in-
ferred automatically at runtime from the instantiated
data. Their datatypes can also change at runtime. In
fact, the entire structure and topology of a model tree
can change, depending on the inputs.

Automatic Memory Management: When an object or
piece of data is no longer accessible to the system,
the runtime environment automatically reclaims its
memory.

Refer to the authors’ 2007 AIAA paper (3) for concrete
examples of how these features manifest themselves in a
present-day KBE system.

IMPERATIVE ADDITIONAL FEATURES FOR 21ST CEN-
TURY KBE DEVELOPMENT The features outlined
above are the rudimentary elements for a system to meet
the textbook definition of KBE. However, for a system
to deliver practical and marketable results, and integrate
well with the contemporary engineering computing envi-
ronment, it needs further capabilities:

Code-generating Macroexpansion: Allows for simple,
compact surface-level code structure;

Full-featured Development Environment: Enables
rapid model development and instant feedback on
changes;

Long-term Viability and Openness of Platform: A
concise, standardized and easily manipulated mod-
eling language allows models to survive changes in
computers, operating systems, and user interfaces;

True Code Compiling: High-level model code is trans-
lated into low-level executable machine code;

Tight Connection with NURBS Surface and Solids
Geometry Kernel: Provides “best of both worlds” of
programmatic and constructive approaches to model-
ing. The geometry kernel must support standard neu-
tral CAD formats (e.g. IGES, STEP) in order to act as
a gateway between the KBE system and various en-
gineering analysis tools (for Finite Element analysis,
Computational Fluid Dynamics, etc).

These additional features are all exhibited in a modern
KBE system, as exemplified by the Genworks GDL tool.

EASE OF USE OF THE DOMAIN-SPECIFIC LAN-
GUAGE

Contrary to the claim of a few critics, a well-designed KBE
system does not have to be difficult to use. To the con-
trary, it offers the opportunity to bring an engineer's work
“to life,” increasing the ease and lowering the risk of ex-
ploring different design options for engineered systems.
And, once an initial KBE application' is in place, it can
thereafter be refined and improved indefinitely — the sim-
ple and uniform language-based representation keeps all
the design intent consistently accessible, both by engi-
neers and machines for processing indefinitely into the
future.

The reputed difficulty with the use of a KBE language
should not be a deterrent —to the contrary, it is the ease of
use that should be the main compelling feature of a KBE
system. That is, the main purpose of a KBE system is to
provide an open-ended language to an engineer that sac-
rifices none of its power or flexibility, but which allows him

TWe use the term "KBE System" to refer to a development framework,
such as ICAD or Genworks GDL. "KBE Application” (while also a “sys-
tem” in its own right) refers to a specific application written using a KBE
System



to retain his identity as an engineer and not devolve into
the role of a “hardcore” programmer or computer scientist.

For example, the aircraft assembly mentioned in this pa-
per was put together within a few weeks by a Chilean stu-
dent visiting the TU Delft in Holland, an individual who had
had no previous KBE or programming exposure.

OVERCOMING RESISTANCE TO KEYBOARD “TYPING”
One of the very elementary objections we hear to the
effective use of KBE is an aversion to typing on a key-
board. Engineers are often accustomed to the seem-
ing point-and-click simplicity (and limitations) of traditional
CAD systems and programming IDEs. Once that atavis-
tic mindset is overcome, mastering the mechanics of a
computer keyboard and editing system are analogous to
an activity as basic as riding a bicycle — they need to be
learned once and practiced for a while, but then bring a
lifetime of benefits.

One could well argue that to claim overall “literacy” in the
21st century, one must be able not only to read and write
but equally be able to operate a computer keyboard and
text editing environment in an effective way. Gutenberg no
doubt encountered a similar reluctance in response to the
introduction of the printed word.

Once this reality of modern life is accepted, it makes
sense to look for the most effective way to write and edit
text. It happens that one of the common threads in KBE
systems over the years has been to provide exactly this.

EMACS AND FIREFOX AS INTEGRATED DEVELOP-
MENT ENVIRONMENT

Gnu Emacs Of the multitude of choices available for
writing and editing GDL code, the default editing environ-
ment is the venerable Gnu Emacs. Emacs is an extremely
powerful and customizable editing environment which has
deep hooks into programming languages, especially dy-
namic ones such as Lisp. Emacs admittedly does not af-
ford much in the way of a colorful point-and-click mouse
interface.

However, with a few dozen keychords (easily memorized)
the most frequently used and most helpful interactive in-
formation can be accessed in a clean and friendly way.
Furthermore, Emacs runs virtually the same on all mod-
ern systems (and several antique ones as well), making it
highly ubiguitous (4).

Examples of the kind of information available through
SLIME(5) and similar emacs-Lisp interface packages are:

o Color-coding of source code, customized for KBE lan-
guage such as GDL

e Automatic lookup of documentation, function argu-
ments, object input/output protocols, and other spec-
ifications, within a standard editing window

Automatic completion of any recognized symbol (i.e.
word) after typing just the first few characters

Automatic indenting (“pretty printing”) of source code

Highlighting of matching parentheses and balanced
parentheses detection

Firefox (or other standard Web browser) From Google’s
online office suite to full-blown creative tool suites, Web
Browsers are fast becoming the default user interface and
deployment mechanism for many types of software appli-
cations. With so-called “Web 2.0” techniques, with AJAX
being a notable example, browser-based applications can
provide a level of user interaction very nearly approximat-
ing desktop applications.

For KBE applications which, by definition, perform multiple
tasks, such as synthesizing and presenting information
from different sources, generating pictures of geometric
models, and gathering responses from the user, a web-
based deployment mechanism is the natural approach.

A Web-based deployment also insulates the application
from depending on the particular operating system and
computer type on the user’s desktop.

Incremental, Closed-Loop Development Unlike  most
programming languages which demand constant re-
running and debugging of the program, a KBE model has
no explicit “begin” or “end.” The user (e.g. engineer) can
continually make updates to the model source code, and
compile those updates into the system at the touch of a
button, and instantly inspect the results.

This positions a KBE systems such as Genworks GDL,
into a wholly different category when contrasted to tradi-
tional programming. With a KBE system, the objects to
be modeled are simply “described” in a declarative fash-
jon, using the domain-specific language. As a separate
“Runtime” step, the system then automatically “runs” the
code in the correct order to produce requested outputs.

PREFIX NOTATION (L.E. SYMBOLIC EXPRESSIONS,
OR “S-EXPRESSIONS”) Lisp-based KBE languages
typically use a form of Symbolic Expression (“S-
Expressions”) not only to capture the definition frame-
work (e.g. (define-object ...)), but also consistently,
throughout the language, to represent expressions down
to the lowest-level function call or math formula. A Sym-
bolic Expression (“S-exp” for short) consists of a list con-
taining first, some kind of operator, followed by some num-
ber of arguments. The arguments themselves can like-
wise be S-expressions.
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Figure 1: Portable, Venerable Editing and Inspecting Environment

The language syntax is that basic. That is all the syntax
you need to know.

An occasional point of contention heard from engineers
(in particular), is the DSLs consistent use of prefix nota-
tion for math expressions.? So an expression like 2 + 2in
a “normal” language would be expressed as (+ 2 2) ina
Lisp-based KBE language. While this infix notation takes
a bit of getting used to, it makes sense to keep it in the
language for several reasons:

Uniformity The syntax of the language is uniformly pre-
fix, so there is no need to learn and memorize arbi-
trary rules of operator precedence®

Self-writing Code (i.e. macroexpansion) The unifor-
mity of syntax is what allows the KBE system to write

2in fact, it is possible to support infix notation for mathematics and
have the KBE system automatically transform this into its own prefix no-
tation. However the cost of doing this is increased complexity and more
“rules” to follow when writing code— in practice, to our knowledge, this
has never proved to be of benefit to anyone.

8According to the renowned MIT author and professor Gerald J
Sussman(6): “In functional notation mathematical expressions are un-
ambiguous and self-contained.” By “functional notation” he is referring
to prefix notation, and his book Structure and Interpretation of Classi-
cal Mechanics(7) is devoted to describing physical mechanical systems
using precisely this kind of notation. Sussman even goes so far as to
claim that traditional (infix) notation is harmful to students’ ability to grasp
mathematical concepts (i.e. “it is not the concepts which confound them,
it is the notation.”)

most of your code for you.

Decomposition of Complexity Cne of the winning fea-
tures of a KBE system is its ability to decompose a
problem into manageable parts. This includes math
expressions. S-expressions can be moved around
and decomposed like so many building blocks.

Furthermore, in actual practice, the use of simple arith-
metic expressions typically make up only a small fraction
of the overail application. Consequently, their influence on
the “big picture” of ease-of-use is de minimus.

INTEGRATION WITH TECHNOLOGY INFRASTRUC-
TURE

KBE was originally restricted to the research laboratories
of major corporations. Addressing its inability to interact
with the rest of the “Enterprise” computing infrastructure
(such as any existed in the early KBE era) was not a pri-
ority. However, given the advances of modern computer
technology, a number of factors have converged which
now enable KBE to blend seamiessly into that mainstream
use. Specifically, we can point to the foliowing critical de-
velopments:

1. ISVs have entered the arena with robust KBE de-
velopment suites at approachable cost levels. The



Genworks offering, for example, incorporates the
decades of legacy KBE experience blended with the
mature, ANS| standard Common Lisp implementa-
tions (more on this later).

2. Fast, inexpensive computers, with ample memory re-
sources to handle ever-larger model definitions and
instantiations, have become commodity items.

3. The World Wide Web and associated standards such
as HTML, XML, and X3D provide for cross-platform,
royalty-free application deployment across an enter-
prise or across the globe.

CAD AND GEOMETRY INTEGRATION It is impor-
tant to recognize that KBE is a wide-spectrum general-
purpose programming and geometry modeling concept,
as contrasted to being merely a sophisticated drafting or
engineering analysis tool.

Historically there has been a conflict insofar as the role
of KBE with respect to its interaction with traditional CAD
systems. Whatever that past controversy regarding the
respective roles of KBE vis-a-vis CAD, the reality of the
engineering and design workplace today is that the work-
place has become CAD dominated. Drumbeats such as
“CAD the Master” were widely popular in the 1990’s, and
to a large extent, still are. But that is not the end of the
story.

Realistically, in order to be successful in the mod-
ern marketplace, state-of-the-art KBE technology must
complement the existing CAD systems, just as it must
complement existing Database systems (e.g. Oracle,
MySQL), delivery mechanisms (e.g. webservers and web
browsers), and typesetting formats (e.g. PDF). For exam-
ple, Genworks GDL accomplishes this transition through
the use of a geometry kernel library which contains full
support for all the standard CAD formats*.

THE MARKETPLACE OF PACKAGED KBE TOOLS

Vendors today offer two principal categories of KBE sys-
tems:

1. The first category is comprised of what are in fact CAD
systems masquerading as KBE, with the “KBE” tacked on
as an additional whistle.

2. The second are the bonafide language-based, dedi-
cated KBE systems, with geometry systems at their core.

CAD SYSTEMS WITH “BUILT-IN" KBE Prime exam-
ples of this first category are KnowledgeWare from Das-
sault Systems, and Knowledge Fusion from Unigraphics.
These are CAD systems which purport to have KBE “built-

4GDL uses SMLib from Solid Modeling  Solutions,
http://www.smlib.com

in”

As an initial impression their hybrid makeup sounded
promising, that is, to join the engineering knowledge and
power of KBE with the ubiquitous CAD systems, which
were already pervasive throughout industry. In short, at
first glance, it had the aura of “this could be the best of
both worlds.”

But further and careful examination, when measured
against KBE principles, reveals major shortcomings and
omissions:

1. In order to access the “knowledge” component of
these hybrid systems, the entire CAD system must
always be up and running concurrently with the KBE
add-on. This results in a significant overhead and
cost.

2. These augmented CAD systems are not, by their na-
ture, inherently web-based frameworks.

3. They are supported with a rather narrow choice of
computer and Operating System platforms. Notable
by its absence is Linux, an increasingly important
player these days, especially for server-based appli-
cations.

4. In general, they do not provide full generative model-
ing, including dynamic typing and consistent, system-
wide caching and dependency-tracking, all of which
are key features of a bonafide KBE system.

5. These CAD augmentations are not, at their core,
language-oriented systems. If there is an embedded
underlying representation language present, it is hid-
den from not only the end-user, but from the devel-
oper as well. This results in the engineer being con-
strained to work in a universe of a finite number of
menu clicks.

6. The Modeling language is “interpreted,” as contrasted
to being compiled. This can result in a tremendous
disparity in the speed of developing and running an
application. This commonly not understood differ-
ence becomes crucial as KBE applications enter the
“enterprise,” mission-critical arena.

7. Inorder to achieve the levels of customization needed
for even a moderately complex implementation, these
systems invariably require a link into the innards of
the CAD systems API, or Application Programming
Interface. With Catia, for example, this requires
adding the extremely expensive CAA to the mix. Pro-
gramming in the CAD API requires hard-core soft-
ware development in yet another completely differ-
ent environment (typically C++-based). {ronically, this
ends up largely negating the very purpose for having
a high-level KBE language for engineers in the first
place.



LANGUAGE-BASED KBE SYSTEMS These are the
“standalone” systems in the sense that they do not require
a desktop CAD system to host them while running. These
systems fall into two major categories: Those based en-
tirely on proprietary languages, and those based on In-
dustry Standard languages.

Proprietary Language KBE Proprietary-language KBE
tools typically utilize a generative language, with accom-
panying caching and dependency tracking. They contain
a home-grown compiler or interpreter. They may resem-
ble a subset of some standard language such as C or
Java, but they do not comprise a superset of any accepted
standard foundation.

From our perspective, the use of a proprietary tool has at
least two critical downsides:

e The user is locked into the single vendor —~ that is, the
user can only “go shopping” at the Company Store.
The Proprietary nature of the code is inconsistent
with the users’ ability to bolt on other tools (i.e. li-
braries) that are open source or standards-based. in
today’s marketplace this has become increasingly im-
portant, to the point of being a must-have capability.

¢ This nonstandard nature creates the potential of risk
when upgrading to new versions of the tool. Since
there is no Industry Standard governing how the core
system must behave, new versions inherently pose
the potential risk of breaking existing applications and
libraries.

Standards-based Language KBE Standards-based
Language KBE systems, as exemplified by Genworks
GDL (General-purpose Declarative Language), provide
a pure, standalone, language-Based KBE solution.
Because GDL is a superset of ANSI Common Lisp:

¢ There is a choice of vendors. Genworks currently
ships with Allegro CL from Franz Inc or Lispworks
from Lispworks Ltd, and can potentially use any num-
ber of other available ANSI CL implementations, both
commercial and open-source.

o The Genworks GDL language allows any number of
available open-source CL libraries to be plugged in.
Some of these are already provided by Genworks
with its standard GDL package, and many others are
available from common-lisp.net and other sources.
At last count, common-lisp.net lists 347 free open-
source libraries for wide-ranging applications from
matrix processing to text file parsing to genetic op-
timization algorithms.

in addition to its open-source capabilities, GDL provides
the following benefits, and can do so in large part because
it is built on a mature, standards-based foundation:

» The Geometry is provided by the Solid Modeling So-
lutions Company, makers of what reviewers have de-
scribed as the premier independent geometry kernel,
SMLib. It too is fully standards-compliant in the areas
of NURBS routines and geometry exchange.

o As delivered, GDL does not depend on any other “en-
gines” to be tacked on.

o GDL is fully web-centric, both as to run-time ap-
plications and the development environment itself.
This, without exception, makes the development and
deployment cycle appreciably speedier than that of
other systems in any of the categories.

¢ GDL is cross-platform and supported on Linux, Win-
dows, Macintosh and Commercial Unix.

e GDL is fully and dynamically generative. That is, ob-
jects can change their type, their cardinality, and have
their tree structure altered, in a dynamic fashion, both
while being programmed and at run time.

¢ GDL contains high-performance state-of-the-art De-
pendency Tracking, a crucial core feature of any KBE
system.

o GDL is a fully Language-Based technology, draw-
ing upon cutting edge macroexpansion technology.
This provides a totally consistent environment and
extremely extensible capabilities.

e The GDL Modeling language is constantly being
compiled. The Franz Allegro CL compiler is the re-
sult of decades of compiler design and optimization
by experts in that field, and supported by Franz.

EXAMPLE APPLICATIONS

DELFT MULTI MODEL GENERATOR Delft University
of Technology’s Multi-Model Generator (MMG) project
(figures 6 and 5) makes use of multidisciplinary meth-
ods for generating a wide range of aerodynamic shapes
for aircraft, rotorcraft, airships, and turbine blades. The
methods used include the CST method for airfoil geom-
etry mathematics(8) from Brenda Kulfan of the Boeing
Company. CST offers some elegant and simple formulas
for generating a wide variety of airfoil shapes — formulas
which fall outside the standard CAD toolbox of NURBS,
but which represent airfoil shapes more naturally.

Using GDL, the Delft researchers are able to automate the
CST approach, as well as conveniently integrate it with
a standard CAD-friendly NURBS-based modeling system
and put the resulting airfoils through optimization with sim-
ple integration to standard tools like X-foil. The foilowing
code snippet captures the basic class function offered by
CST. Itis simply instantiated by the GDL application when-
ever a set of sample points are to be put through this class
function. Then a standard NURBS curve can be fitted to
the sampled points, to a specified tolerance.
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Figure 6: Generating Initial Profiles for Wind Turbine
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ular model, they then have a completely flexible and au-
tomatable model for use in Multi-disciplinary Optimization
and Analysis.

Because the models are developed in a superset of a rich,
mature, ANSI standard language environment, there are
no arbitrary limits on automating tasks such as:

o Generating thousands of model instances, and sam-
pling the computed results, with the input param-
eters controlled by optimization algorithms, catalog
databases, efc;

e Preparing output in virtually any target format, for use
by outside tools;

s Reading input from virtually any source format, for
use in generating new model instances.

This level of flexibility is unique to a language-based KBE
system.

TA2 DEVELOPMENT BROWSER While developing a
KBE application, it is important for the developer to re-
ceive constant feedback. While much of this feedback
can come from the rich editing environment itself (e.g.
Emacs), the ultimate goal is usually to develop an end-
user application which runs on the web.

For this purpose, Genworks provides a generic Web appli-
cation, “ta2” which runs on any standard web browser and
can be used for testing, tracking, and visualizing the re-
sults of any KBE application being modeled in the system.
The beauty of this approach is that the development en-
vironment is essentially the same as the runtime deploy-
ment environment. Ta2 itself is really just another GDL
web application.

Therefore all the same benefits which apply to deployed
runtime applications also apply to using the ta2 develop-
ment environment:

s Runs identically regardless of computer platform;

¢ Network-friendly deployment (ta2 can be run from a
remote machine on the network).

¢ It takes advantage of standard CSS style sheets and
other web enhancements (ta2 is currently being en-
hanced with visually-appealing CSS style sheet de-

sign).

e link directly to online documentation, also available
through the web;

o Instantly test the end-user web interface, running
side-by-side with the ta2 application.
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Figure 13: Wind Turbine skeleton user interface, ac-
cessed directly from ta2

Figure 14: ta2 environment in Firefox with aircraft wiring
connector model. Model tree, object inspector, and graph-
ics viewport are currently visible

Pin Assigriment:Design Apphcation

Figure 15; Aircraft Wiring connector model user interface,
accessed directly from ta2
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Figure 12: ta2 environment in Firefox with wind turbine model. Model tree, object inspector, and graphics viewport are
currently visible
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Figure 16: Emacs and ta2 in Firefox side-by-side in dual display, typical KBE development session
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Figure 17: Whitebox Dragster GDL-based 2D Sketcher,
running in Firefox web browser

In summary, ta2 is a KBE application whose purpose is
developing other KBE applications. This kind of “recur-
sive” application of KBE technology is a typical KBE ap-
proach.

DRAGSTER 2.0 The Whitebox Dragster is a Web 2.0
application which has been developed in GDL and makes
use of cutting-edge Web3D technology. The Dragster ap-
plication has been able to capitalize on the flexibility of
GDL to provide a dynamic and high-quality 3D graphical
user experience, all running from within a standard web
browser and without any application software installed on
the user's computer.

From the website of Whitebox Learning:

The WhiteBox Dragster system complements
the popular CO2 car racing competition that
takes place in thousands of schools each year.
By providing students with extensive theoretical
fundamentals, and most importantly, the tools
necessary to make this theory actionable, White-
Box Dragster takes this great learning activity to
an entirely new and exciting level.

Originally the Whitebox system was developed in a
proprietary-language based KBE tool which required
heavyweight desktiop software to be installed on the end
user’s computer. However, in practice, this proved to be
too unwieldy an approach for large-scale deployment.

Fortunately, Whitebox Learning has been able fo use
Genworks GDL to resurrect the Dragster, and make it
shine as a pure web-based application.
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Figure 18: Whitebox Dragster GDL-based 3D model re-
finement, running in Firefox web browser
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Figure 19: Whitebox Dragster GDL-based 3D model anal-
ysis, running in Firefox web browser

Figure 20: Whitebox Dragster GDL-based perspective 3D
view, running in Firefox web browser



Figure 21: Whitebox Dragster GDL-generated Web3D
Virtual Race, running in Firefox web browser

CONCLUSION

The over-arching goal of KBE in this century is to enable
the power of modern computing to come together with the
creativity in the mind of an engineer, and to do so in the
most effective ways possible. Over the years, this vision
has taken on many forms, but certain recurrent themes
have emerged as the “keys to success” for a durable KBE
presence. Those keys at bedrock are: simplicity of the
language syntax, ease of use, and a commitment to build
on existing technology and Industry Standards wherever
possible.
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ADDITIONAL SOURCES

The following is directly derived from Section 1.6 of Gian-
franco LaRocca’s Draft PhD Thesis(9) at Technical Uni-
versity of Delft. Gianfranco used ICAD as the representa-
tive example; the version here is modified slightly to use
Genworks GDL.

The most outstanding example of a macro provided by
various KBE systems (though in different forms) is the one
used for defining classes and hierarchies of objects. Mas-
tering the use of such a macro is fundamental for devel-
oping any KBE application. As a representative case, the
GDL-specific macro define-object is discussed here, as
GDL is the most familiar KBE system to the author. In
fact, ICAD, Knowledge Fusion (KF), and others provide
their own version of a similar construct, though different
names and slightly different syntax are used. As matter
of fact, it was possible to construct a simple mapping ta-
ble among ICAD, GDL, and KF constructs, which covers
a sampling of common usage and will allow the interested
reader to understand the structure of ICAD defpart and
KF defclass, on the basis of the GDL define-object (see
the original LaRocca paper for this table(10)%).

The define-object macro (or the non-GDL equivalent)
is the basic means to apply the object-oriented paradigm
in KBE applications. It allows defining classes, super-
classes, objects and relationships of inheritance, aggre-
gation and association, as discussed [elsewhere in the
LaRocca dissertation]. The define-object macro is ba-
sically structured as follows:

5Automatic conversion/transiation among KBE language formats is
also quite possible. For example, GDL has a simple open-source mod-
ule available to convert legacy ICAD models intoc GDL “on-the-fly” and
compile them into usable definitions, transparently to the user.



THE MAIN SECTIONS OF AN OBJECT DEFINITION

Name of the class: this is a user-chosen symbol which
names the object definition.

Mixin-list: this is a list of superclasses or other classes
from which the class here specified will inherit all
the characteristics (attributes and components). The
classes specified here can either be formal super-
classes (of which the class specified in the define-
object is an actual specialization), or just other
classes with which this class is to share attributes and
parts (see next items).

Input-slots: this is a list of parameters to be assigned
in order to generate an instantiation of the given
class. This set of parameters represenis the so-
called “class protocol.” Default values can be spec-
ified outside the protocol.

Computed-slots: This is a list of lists; each internal list
contains a slot name, a value or expression, and op-
tionally one or more modifier keywords. The value
or return-value of the expression becomes the slot's
value after it is computed on-demand. These ex-
pressions can either be production rules or any other
mathematical, logic or engineering rule.

Objects: this is the list of objects which may be con-
tained in an instance of the define-object. They are
also called “children” of the define-object instance.
For each object, the following must be specified:

o the object name

» the name of the relative class to be instantiated
(by using the keyword : type)

¢ values for the input-slots required for the in-
stantiation. This parameter list must sufficiently
match the protocol of the class 1o be instantiated
(i.e. at least its required input-slots).

Functions: these are similar to computed-slots, but,
like functions in raw Lisp, they can accept arguments,
and their computed return-values are not cached as
is done by default with computed-siots.

MESSAGES, THE REFERENCING, AND REFERENCE
CHAINING Input-slots, computed-slots, objects, and
functions are all considered messages of the object, and
all return a deterministic value when computed. To com-
pute these expressions it is possible to use and com-
bine values of other messages, either messages defined
locally in the object definition, or ones inherited by the
classes specified in the mixin-list. This is done with the
referencing, e.g. the length will return the value of the
length message, however it is defined in an object.

With reference chaining, it is possible to use siots of
the child object or other descendant or ancestor ob-
jects in the instantiated object tree defined in the given
define-object form.
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These are the fundamental elements typical of KBE sys-
tems. Beyond these basics, more advanced constructs
are available to facilitate and organize particular activities,
for example:

e Functions and Methods for traditional procedural,
functional coding style;

¢ Outputting data and geometry in various formats;

¢ Constructing user interfaces for environments such
as web browsers



