
Abstract
In spite of improving computers, a number of

inviscid CFD problems still suffer from excessive stor-
age and/or computing time requirements. Examples
are detailed pressure distributions on propellers in a
wake field, ship wave effects for low Froude numbers,
ship encounters in a channel, 3D seakeeping problems
and instationary flows which are not time-harmonic.
Three measures to reduce the computer requirements
for such problems are demonstrated: the multigrid
method, panel clustering, and a new higher-order
panel method. Further, the 'patch' method is pre-
sented which allows more accurate resistance compu-
tations without increasing time or unknowns.

1. Introduction
Computational fluid dynamics (CFD) sup-

ports to an increasing extent model tests. An impor-
tant field are "wave-resistance" computations, which

use almost exclusively Rankine panel methods to
analyse local flow details, to optimise local hull
shapes (especially the bulbous bow) and to align of

shaft brackets etc. [1], [2]. However, the resistance is
not predicted with sufficient accuracy, and reliability
to substitute model experiments. Ordinary higher-
order panels increase accuracy for simple test cases
(spheroids, Wigley hulls, etc.), but failed only re-
cently to show consistent improvements for real ships
in an investigation at our institute, [3]. For slow ships
(tankers, inland water vessels), due to time and stor-
age limitations the free-surface grids are chosen often

too coarse to resolve the short waves.

Panel methods gain in importance for ma-
noeuvring calculations, [4], [5]. Due to the usually
low speeds involved and the asymmetry of the flow,
problems with a sufficiently fine and extended dis-
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cretisation are even more severe. Two-ship encounter
simulations are generally not tackled using Rankine
panel methods due to the large number of unknowns

required. Seakeeping computations using Rankine
panels for bodies with forward speed were reviewed

this year by [6]. Here generally the covered free-
surface area is larger than in wave-resistance compu-
tations, and the grid spacing should be finer to cover
a wide band-width of wave lengths that may appear
in one computation.

In summary, various hydrodynamical com-
putations of practical relevance would benefit from
techniques that allow to use more panels without in-

creasing storage and CPU time requirements. Multi-
grid and cluster techniques can serve this purpose.
For a fixed discretisation, the accuracy can be signif-
icantly improved by the 'patch' method. Also a new
higher-order panel technique with numerical integra-
tion appears promising. Advantages will be demon-

strated here for steady double-body flows and one
example of a free-surface flow, but all techniques are
suitable for steady and unsteady flows with and with-

out a free-surface.

2. Patch Method
The aim of the patch method [7] is to increase

the accuracy of pressure forces and velocity averages
over a patch on a body surface compared to the usual
first-order panel methods, without introducing a finer
discretisation or the complexity of higher-order panel
methods. For a given discretisation, the computing
time of the panel method and the patch method are
about the same, and so are the program complexity
and the accuracy of velocities at single points.

Consider an arbitrary body in an infinite
ideal fluid (double-body flow). The boundary condi-



tion on the hull (body surface) is that no water flows
through the hull. The usual approach in boundary el-
ement methods discretises the hull into a number of
elements (panels). The boundary condition is then
exactly enforced at one point, the collocation point,
located approximately at the panel center.

In the patch' method, on the other hand, the
total flow through each surface element (patch), and
not just at its center, is made to vanish Using sources
distributed over plane or curved panels would lead
to complicated integrations; therefore in the patch
method simple point sources are used. They are lo-
cated within the body near to the patch centres. The
distance between patch centre and source point may
be chosen as the minimum of the following lengths:

Square root of patch area;
1/3 of the local body breadth;
1/2 the radius of longitudinal curvature;
1/2 the radius of transverse curvature.

The results are not sensitive to this distance; in many
applications simply 1/10 of the patch length is used.

In the panel method, velocity and pressure
can be determined on the hull directly only at the
panel centres; at other points, interpolation has to
be used. Pressure forces are, typically determined
by multiplying the pressure at the panel centre with
the panel area. The patch method aims just to im-
prove this force formula. In the patch method, poten-
tial and velocity are determined at the patch corners
instead of at the patch centre, i.e. at a reasonable
distance from all point sources. The potential at the
patch corners allows a better approximation of the
average velocity within the patch than the value at
the panel centre, and combining the potential and the
velocity at the patch corners allows to determine an
accurate average of the pressure within the patch.

For a body in uniform flow to negative z di-
rection, the potential is

n

ç, = Ux ± (1)

U is the speed of the uniform flow, o- the source
strength, G the potential of a Rankine point source:

G = in r in 2D, and G = 1/r in 3D, (2)

where r = î - . is the distance between field point
î and source point ..

Let M be the outflow through a patch in-
duced by a point source of unit strength. Then the
zero-flow condition for a patch is

- UAn +o-M = 0. (3)
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Here fl is the outward normal on the hull, index
(and later z) designates the respective component of
fi, and An is the projection of the patch area on a
plane z = constant (with appropriate sign); for the
2d case of Fig. 1: Aflr = YA - YB

Fig. 1: Patch (from .4 to .8) and source point S

2.1 2-d Formulation

The outflow due to the unit source potential
in r into all directions is 27r. The outflow M due to the
unit source in passing through the patch in Fig. i
is thus equal to the angle 7 under which the patch
is seen from . _both for a straight and a curved
patch. If A and .8 are the vectors from S to A and
B respectively, is easily determined from the vector
and scalar products of .4 and B:

M = 7 = arctan
ß . A -

[BxA].
(4)

From the value of the potential at the end
points A and B, the average modulus i of the velocity

is found as IA-qB{/i, where list the length of the
patch. The direction of is parallel to the contour.
The velocity at the end points, designated here as
î, is found as VG = (î - ñ/r2.

The pressure force on a straight patch is

f=fi [pdl= .1 - f V2 dl (5)

where y, the modulus of , is not constant. To evalu-
ate this expression, y is approximated by the second-
order polynomial giving the known values VA, VB and
V:

y = v.1±(6-4vA 2VB)t±3(VA±VB -26)t2 (6)

t is the tangential coordinate directed from 4 to B.
From this expression follows the integral in (5):

[i;2,jl_l1 ( ()2± (7)

2(vA )2 ± 2(vB )2 - (VA - 5)(VB -
15



As a test case, a symmetric profile with cir-
cular nose, parabolic run and a sharp tail, with
thickness-chord ratio of 2, was investigated at zero
angle of attack. The resistance, which should be zero
due to d'Alembert's paradox, is used to indicate the
error. (A test body should not be symmetric in x to
avoid cancellation of the discretisation error.) The
panel method used for comparison applied straight
elements of constant source strength, a collocation
scheme and constant pressure over each element.

Table I: Reiaiive resistance (= error) tor a
foil-shaped profile; comparison of patch method

(PTM) with first-order panel method (OPM)

The patch method proved to be about 5
times more accurate than the panel method, Table
I. In other words, only 1/4 of the number of elements
of the ordinary panel method sufficed for the patch
method to obtain the same force accuracy.

Fig. 2: Source point S and patch ABC

2.2 3-d Formulation

The outflow due to the unit source potential
hr into all space directions is 47r. The outflow due
to the unit source in S passing through the triangular
patch in Fig. 2 is thus equal to the space angle y under
which the patch ABC is seen from S. Quadrilateral
patches are handled by combining two triangles. For
straight patch sides, the rules of spherical geometry
give y as the sum of the angles between each pair of
planes SAB, SBC and SCA, minus 7r:

= I3SAB,SBC + /3SBC,SCA ± .SCASAB - (8)

where e.g.

[(Ax )x(x)].
SAB.SBC = arctan - - - - -

(A x B) . (B x C)JB
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Here A, .ê, Ö are the vectors pointing from the source
point S to the panel corners A. B, C. Note that a
curvature of the patch does not influence the result
if the panel edges remain straight. If curved patch
sides are approximated by straight lines, the error
made in one patch occurs at the neighbouring patch
with opposite sign.

maybe approximated by A*/d2 f the dis-
tance d between patch center and source point ex-
ceeds a given limit. A is the patch area projected
on a plane normal to the direction from the source to
the patch center:

= (9)

A*= (10)

With known source strengths cj, one can de-
termine the potential and its derivatives 7çl at
all patch corners. From the values at the cor-
ners A,B,C, the average velocity within the triangle
is found as

with

- -AB = b - --c

V = Vth = -.. TAB 1- _.-, flAC
AB AC

and n4c=c-b. (12)

With known and corner velocities VB, c, the
pressure force on the triangle can be determined from
(5) where ¡ is now the patch area. (7) has the follow-
ing 3-d equivalent:

(13)

- -- v) + (Vp - y) + (VC -
30

(iA-)(Jß--) + (B-)(ilc-) +
90

2.3 rest Cases

Test cases concerned a sphere and two ships.
The HSVA tanker, used often as a test for RANSE
flow codes, has a 'parabolical' bow shape and a much
finer afterbody, thus showing the strong asymmetry
in r direction which makes it well-suited to compare
the numericallY computed iesistance in double-body

elem. no. 12 24 48 96 192
PTM 17% 13% 5% 1.4% 0.5%
OPM 100% 47% 22% 10% 5%



Table III shows a comparison of the force
on 1/8 of a full sphere in uniform flow. For radi-
us i and speed 1, the exact force components on
the positive actant are f 7r/64 = 0.04909 and

= = 11r/i28 = 0.26998. Here the patch
method was compared by Hughes and Bertram [3]
with an ordinary higher-order panel method OHM
(parabolic in shape, linear in source strength). The
patch method is roughly of same accuracy (but much
faster) for the longitudinal force, but 3 times more in-
accurate for the transverse force. Results of the patch
method in Table III refer to a mesh of equilateral tri-
angles; it was found, however, that combining two
such triangles to a quadrilateral produced nearly the
same error with about half the number of patches.

Table III: Error in force on 1/8 sphere

Fig. 3 shows the wave resistance coefficient
for the Series 60 - CB = 0.6 hull as a function
of Fraude number, computed by a non-linear Rank-
me source / patch method. For the hull boundary
condition up to the deformed water surface and for
the force integration, the patch method was used,
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Fig. 4. Patch arrangement on Series 60 hull
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Fig. 3. Wave resistance coefficient of Series 60 (CB =
0.6) model according to experiments ([13], line) and
patch method (o). Symbols include interaction with
viscous resistance.

method no. of

IJCLL.LiCI

1000 . resistance
t.UCLUUICISU

Patch 421 0.16
Sphere 421 ±1.54
Patch 780 ±0.03
Sphere 780 ±0.20
HessSmith I 1788 ±0.20

patch method PTM
elements F error error

16 0.006 0.050
64 0.001 0.012

256 0.00005 0.0025
higher-order panel OHM

elements F error .F error
15 0.006 0.017

66 0.002 0.004
231 0.0007 0.0013

flow conditions with the correct value of 0. For com-
parison, Jensen's "sphere method" [12] and a first-
oder Hess&Smith panel method were applied (Table Cw
II). The patch method was more accurate by one or-
der of magnitude for the same discretisation (corre- 0.004
sponding roughly to same CPU time and storage re-
quirements for the 3 methods).

0.003
Table II. Numerical resistance coefficient

_2Fr/pU2S by different methods



whereas the free surface condition was satisfied, as
in earlier methods, by point collocation and point
sources above the water surface shifted backwards rel-
ative to the collocation points. Symbols include a
rough approximation of the interaction between wave
and viscous resistance: the difference between and
o corresponds to the change of viscous resistance with
F estimated to be proportional to the change of wet-
ted surface and to the mean squared non-viscous ve-
locity at the hull surface.

To test the accuracy of the patch method,
the hull discretisaLion shown in Fig. 4 with 37 . 13
patches was modified to have twice the number of
patches, either in transverse or in longitudinal direc-
tion. The results of the wave resistance were practi-
cally the same for all three meshes.

3. Cluster and Multigrid Method
3.1 Clustering

In the following only the boundary condition
on the body (no flow through the hull) is considered;
but clustering and the multigrid technique are even
well applicable also for free-surface flow problems.

The discretisation of the hull boundary con-
dition yields a system of linear equations for the un-
known source strengths o in (1):

Ko=g (14)

K is the coefficient matrix, o- the vector of source
strengths, and g the vector of the inhomogeneous
parts. An element k of K can be interpreted as
flow through a patch i per time induced by a source
of unit strength at point The elements of g give
the negative flow per time through the patches in-
duced by the uniform flow. Eq. (14) enforces that
the superposition of all source flows and the parallel
flow add up to zero flow through all patches.

Clustering aims to reduce the computer time
and storage requirements for generating the matrix
K, and it simplifies the application of the multi-
grid method (next chapter); however, clustering and
rnultigrid can be applied also separately. The dus-
ter/multigrid technique is combined here with the
patch method, but it could be applied also to ordi-
nary panel methods.

Here, a cluster is a set of 4 by 4 patches of
the normal (fine) grid. The 16 patches of each cluster
are generated to have similar size and shape, and the
surface covered by a cluster should be smooth; if it is
not, the cluster should be made smaller.

The scalar equations in (14) referring to a
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line of four patches in a cluster are added and sub-
tracted to the following four combined equations:

++±+++-
+ +--+ +

If the combined equations are satisfied, so are the
original ones. The absolute values of coefficients of
the combined equatioirs 2, 3, and especially 4 decrease
stronger with distance from the main diagonal in K
than those of the original equations and of combina-
tion 1.

Correspondingly also the four rows of patches
within a cluster are combined to the following 16 com-
binations of 16 equations:

As the cluster consists of patches of approxi-
mately equal size and orientation, for a distant source
the influence functions of all combinations will nearly
cancel (due to the positive and negative contribu-
tions) with the exception of the first combination
which adds all influence functions. The purpose of
combining the influence of elements within a cluster
is, that for large distances between source and patch
(resp. collocation point and panel in a conventional
panel method) the combined influence functions are
so small that they can be neglected. This saves stor-
age space, time for solving the system of equations
and - if one can determine a priori which combina-
tions will be neglected - time for computing the influ-
ence functions, because only the combined influence
functions for all elements of a cluster or for 2 by 2
patch blocks need to be computed.

1:++++ +±++ ++++ ++.++2: ++ ++ ++-- ++-3:++-- ++-- ++-- ++---4: +--+ +--± +--+ +--H-
5:+++± ---- ++++6:++ +--+ ++ ±+7:++-- --++ +±--- --++8:+--+ ++ +--+ ++-
9:++++ ++±+ --------10: ++ ++ ++ ±+
11: ++ -------- ++ --++
12: +---+ ±--+ ±+ ++-

++++14: ++ +--+ ++ ++-
15:++-- ---.++ --++ ++---16:+--+ ++ ±±-. ±--+



The mixed influence functions (containing
positive and negative contributions) decay even more
rapidly with distance as also sources within a source
cluster of 16 sources are combined by adding and sub-
tracting their influence. Contrary to patch clusters,
however, experience has shown that it is not suffi-
ciently accurate to use just one single point source
to represent a whole source cluster even for large dis-
tances. Thus, forming source clusters reduces storage
requirements, but not time to compute the coefficient
matrix.

The matrix K is subdivided into blocks of
16 16 = 256 elements. Each block represents the in-
fluence of one source cluster on one patch cluster. A
block element represents initially the influence func-
tion of a source of unit strength on one patch; if 4 or
16 patches are combined to save computation time,
each patch of the group is assumed to have 1/4 resp.
1/16 of the computed total influence. Then the block
elements are mixed' according to the above combi-
nations. A direct superposition of each of the 256
elements of a 'mixed' block by adding and substract-
ing all elements of the original block would require
2 2562 arithmetical operations per block. Mixing
can be accelerated by combining, stepwise, at first
two adjacent elements, then more removed elements.
An example of 4 elements may illustrate the process:
Original coefficients (o indicates that a neighbour co-
efficient does not contribute):
+ 0 00 0 + 00 0 0 +0 0 0 0+
Neighbours added/subtracted:
+ + 00 + - 00 0 0 ++ O O -i--
Neighbours once removed added/subtracted:
+++++± ++-- +--+
For 256 elements, this process requires only 2 . 256 . 8
operations. After mixing', each of the 256 block
elements represents the combined influence of 16
sources/sinks on the ± combination of 16 patches.

Five types of blocks are distinguished accord-
ing to their arrangement of non-zero elements, Fig. 5.
The threshold for setting an element to zero was
taken such that the error in neglecting all zero ele-
ments contributes less than 104U to the final veloc-
ity. The definition of block types was based on trial
computations to achieve favourable storage and CPU
time conditions; however, a higher number of block
types may be worthwhile to further reduce the stor-
age requirements. Each block of matrix K is stored
without the zero elements in one storage area. The
full matrices of type i appear mostly along the main
diagonal. whereas the sparse blocks of higher block
type are located farther away from the main diago-
nal, where large distances between patch and source
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xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxjcxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
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X
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X
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X

X.X X X

X

Type 3



group are represented.

3.2 Multigrid Method

The multigrid method is frequently used for
solving differential equations of viscous fluid flow, but
it works even better for potential flow problems, i.e.
for solving integral equations. The principles of bothx . x x x
applications are elaborated in [8]. For panel methods
the multigrid technique reduces the time needed tox x x solve the system of linear equations (14) to a negligi-
ble fraction of the total computing time.

First, the rows in K and g are multiplied
by factors such that the elements of K on the main
diagonal are all 1. Then a multigrid solution can be
determined as follows: Starting from o- = 0, a Jakobi
iteration step improves o- by smoothing the error in
the system of equations on the normal (finest) grid:

= gi + (I - K),o (15)

Index i indicates the grid level: ¡ = 3 denotes the
finest grid in the investigated 3-grid method, I = i
the coarsest grid. Superscripts i denote the iteration
step. I is the unit matrix, â' the improved vector of
unknown source strengths.

A straight-forward Jakobi iteration of (15)
would take â'1 as next iterative solution o1. The
multigrid method improves convergence by setting

= - pKi_j 1r (Kiâ'j - gi). (16)

The vector of residuals R.j gives the error of all equa-
tions. This residual is restricted to a shorter vector,
here to 1/4 of the original number of elements, by the
restriction operator r explained later. K1_1 is, cor-
respondingly, a restricted coefficient matrix with 1/4
of the original columns and rows. Multiplication of
the residuals with the inverse matrix K'1 yields the
necessary corrections to enforce the equations exactly.
Because we perform the corrections on a coarser grid,
we have to transform them to the original, fine grid byrype
applying the prolongation operator p (see later). The
prolongated corrections added to the approximation
â' yield the next approximation o-n'. This is againFig. 5: Arrangement of non-zero elements (z) in five used in (15) and improved by (16) until the residualblock types is decreased by 5 to 6 orders of magnitude.

To determine KrT.3 requires to solve a
system of linear equations having 1/4 of the origi-
nal number of unknowns. This system is also solved
by applying the multigrid equations (15) and (16),
now with I = 2. There remains a system of 1/16 of
the original number of unknowns, which is effectively
solved by Gauss' algorithm.
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Combined with our clustering technique, the
restriction and prolongation operators become ex-
tremely simple: For I = 3, in each block of 16 vec-
tor components the restriction operator eliminates
12 components, keeping only the ist, 3rd, 9th and
11th. That means: In (16) only the flow through 2 2
patch groups is considered, not the flow through sin-
gle patches. The solution JcTrR.3 gives corrections
of the source combinations 1, 3, 9, and 11, i.e. correc-
tions of the combined source strength for groups of
2 . 2 sources. To this end, K2 is produced from K3 by
keeping in each block of 16 . 16 elements only those
in rows and columns no. 1, 3, 9 and 11. For prolon-
gation, the additional elements, i.e. the corrections of
the differences between single source strengths within
a block of 2 . 2 sources, are simply set to zero; these
differences are effectively corrected by the Jakobi step
(15).

For I = 2, the restriction operator keeps only
the first element of each block of 4 elements, i.e. the
combined flux through a 4 4 panel group, and the
prolongation operator adds 4 zero elements in each
group of 4 components. Matrix K contains the ist,
5th ... row and column of K2.

3.3 Test Case

As a test case, the double-body flow around
a Wigley hull with 1600 patches (100 clusters) on one
ship side was computed. This number of elements is
more than necessary for this flow; it is used here only
to demonstrate the effect of multigrid and cluster-
ing for the typical, larger panel numbers in practi-
cal applications. A full coefficient matrix would have
required 16002 = 2.56 . 106 coefficients. Clustering
reduced this to 0.35 . 106 (14%) coefficients. The ad-
ditional storage space is negligible: For each of the
10000 storage blocks, block type and starting address
in the coefficient array have to be stored.

On a 12 Mflop computer, the computing time
was 73s for determining the coefficient matrix, 2.5s
for solving and 33s for determining end results (veloc-
ities, pressures, forces). It was necessary to use dou-
ble precision of the real variables; otherwise the multi-
grid method did not converge to sufficiently small
residuals. A comparison with a coarser discretisa-
tion of the Wigley hull involving only 30 clusters
(480 patches) showed that the storage requirement
was n125, the total computing time nl78. Only
for systems with more than about 800 elements, the
multigrid and clustering approach saved CPU time.
However, storage savings are attained already for con-
siderably smaller systems of equations.

4. New Higher-Order Panel Method

The purpose of higher-order panels is to in-
crease the accuracy for a given number of unknowns
and to determine spatial derivatives of flow veloci
ties which - for decreasing grid spacing - converge
to the correct values. The latter is necessary for sea-
keeping calculations with forward speed that linearise
around the steady flow potential around the body [9].
The usual higher-order panels following the original
work of Hess [10] can compute the necessary veloc-
ity derivatives, but they failed to improve accuracy
for real ship geometries in [3]. Furthermore they in-
volve quite complicated formulas especially for higher
derivatives of the potential.

The new higher-order panel method pre-
sented here varies the approach of Kouh and Ho [11].
Both methods are based on a modification of the in-
tegrals which give the influence of a source (in my
method: and dipole) distribution on the body sur-
face, such that the integrand is non-singular even if
the field point is on the body surface, too. This al-
lows to substitute the complicated analytical integra-
tion of the singular integrand by a simple numerical
scheme.

Differently from [11] and from eq. (1), the
'direct' method is used here. It applies a distribu-
tion of sources and dipoles on the body surface and
solves directly for the potential at many points on the
body surface. Comparisons seemed to indicate that
for non-lifting flows (without circulation and without
a Kutta condition) both the direct and the indirect
method are about even well suited, whereas for lift-
ing flows the direct method is superior in accuracy to
the indirect method, which - for lifting flows - uses
also sources and line vortices (corresponding to dipole
panels).

The well-known equation for the direct
(source-dipole) panel method is

(io) - L. th()VG(, o) dS(ì) (17)

=
-J Unr()G(0) dS(f)

with the Green function

G= l/(4rIa), (18)

= disturbance potential, ff = unit normal vector on
the closed surface S&, U = ship speed and = a field
point on S. The integrals in (17) are desingularised
(without moving the singularities into the interior of
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Fig. 6. Relative error of transverse (left) and longi-
tudinal (right) pressure tòrce on 1/8 of a sphere for
patch (continuous) and higher-order method (broken
line)

the body) in the following equivalent equation:

o) - / [) - ü)J)VrG(, ) dS(s)
J Sb

-
Lb

(un(ff) Ur(o)6(ff)\ G(0) dS()-- 8(o) i
Uno)
6() (19)

o is the constant potential generated by the source
distribution 6 in the space surrounded by Sb, i.e. in-
side the body. 6 is the 'eigen potential' following from
the homogeneous integral equation

+ fSb
5( (0)V0G(, ffo) dS(i) = 0 (20)

Eq. (20) has a solution 6 which has non-zero values
everywhere on Sb. Eq. (20) is also desingularised:

'Sb
dS(ff) = O

(21)
The nonsingular integrals in (21) and (19) are evalu-
ated by Simpson's rule using 9-knot panels (8 on the
circumference, one in the center), to obtain a sys-
tem of linear algebraic equations for the potential at
each knot. Numerical interpolation and differentia-
ton over the panels gives velocities, velocity deriva-
tives, and pressures on

For a sphere in uniform flow, Fig. 6 compares
relative errors of the pressure force on 1/8 sphere be-
tween the higher-order and the patch method. For
both methods, the mesh consisted of quadrilater-

bounded by meridians and latitude circles with
Uniform angular spacing, poles being at the stagna-
tion points. (Results for the patch method given
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in Fig. 6 differ somewhat from Table III because
there a mesh of nearly uniform, equilateral triangles
was used.) The higher-order method is, roughly, 10
times more accurate than the patch method which
is again much more accurate than an ordinary first-
order panel method. For more complicated bod-
ies, however, the difference is expected to be much
smaller. Both the maximum error in (not shown)
and the pressure force (Fig. 6) converge with errors

h35 to h4, where h is the grid spacing.

References

Bertram, V., "Numerische Schiffshydro-
dynamik in der Praxis", rep. 545, 1994, Inst. für
Schiffbau, Hamburg Univ., Germany

Bertram, V.; Jensen, G., "Recent ap-
plications of computational fluid dynamics", Ship
Techn. Res. 41/3, 1994, pp. 131-134

Hughes, M.; Bertram, V., "A higher-order
panel method for 3-d free surface flows", rep. 558,
1995, Inst. für Schiffbau, Hamburg Univ., Germany

Zou, Z.; Söding, H., "A panel method for
lifting potential flows around a yawed ship in shallow
water", 20th Symp. on Ship Rydrodyn., 1994, Santa
Barbara

Zou, Z., "Calculation of the three-dimen-
sional free-surface flow about a yawed ship in shallow
water", Ship Techn. Res. 42/1, 1995, pp. 45-52

Bertram, V.; Yasukawa, H., "Rank-
me source methods for seakeeping problems", Proc.
Schifibautechn. Gesellschaft, Springer, Berlin, Hei-
delberg, New York, Tokyo, 1996

Söding, H., "A method for accurate
force calculations in potential flow", Ship Techn. Res.
40/3, 1993, pp. 176-186

Hackbusch, W., Multi-grid methods and
applications, Springer, Berlin, Heidelberg, New York,
Tokyo, 1980

Bertram, V., "Ship motions by a Ran-
kine source method", Ship Techn. Res. 37/4, 1990,
pp. 143-152

Hess, J.L., "A higher order panel method
for three-dimensional potential flow", NADV-Report.
MDC J8519, 1979

Kouh, J.S.; Ho, CH., "A high or-
der panel method based on source distribution and
Gaussian quadrature", Ship Techn. Res. 43/1, 1996,
pp. 38-47



Jensen, G.; Söding, H., "Ship wave-re-

sistance computations", Notes on Num. Fluid

Mech. Vol. 25: "Finite approximations in fluid me-

chanics", Springer, Berlin, Heidelberg, New York,

Tokyo, 1989

Kajitani, H., "A wandering ìn some resis-

tance components and flow", Ship Techn. Res. 34/3,

1987, pp. 105-131

106


