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Motions of Large Structures in Waves at
Zero Froude Number°

0. M. Faltinsen* F. C. Michelsent

1 INTRODUCTION
The offshore activities in the North Sea have resulted
in many offshore structures that are rather large in
volume and not amenable to two-dimensional analysis.
As examples may be mentioned the 'Ekofisk oil storage
tank and the 'Condeep' platform. For those large
volume three-dimetisional forms one cannot rely on the
Morison-type equation (Morison et al. (1)) or strip
theory to calculate hydrodynamic wave forces and mo-
ments. One has to resort to numerical schemes based on
three-dimensional source techniques or the use of Green's
theorem. This has been done by Lebreton and Cormault
(2), Garrison and Seetharama Rao (3), Milgram and
Halkyard 4) and van Oortmersen (5).

In this paper the source technique has been applied
to a floating object in regular waves and the added mass
and damping coefficients, the wave exciting force and
moment and the motions in sx degrees of freedom and
the pressure distribution have been calculated. The hori-
zontal drift force and moment have also been evaluated.

Notation
(Additional nomenclature used in the Appendices are
defined only as they appear.)

Added-mass coefficients (j, k = 1, 6).
Area of water plane.
Damping coefficients.
Restoring coefficients.
Element of area.
See equation (37)
Exciting force and moment components

(j = 1, 6).
Green's function. See equations (23) and

(24)
Gravitational acceleration.
Water depth.
Moment of inertia injth mode.
Product of inertia.

Bessel function of first kind of zero order.
Modified Bessel function of second kind

of zero order.
Wave number.
Mass of the body.
Unit normal into the fluid.
See equations (19) and (20); i = 1,6
Displacements,(j = 1,2.....6refertosurge,

sway, heave, roll, pitch and yaw, respect-
ively; see Fig. I).

Source densities, / = 1,7. See equation (22)
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R
R'
r; 0, z, Cylindrical polar co-ordinates with

x = r cos 0 and y = r sin .0.
)Z + (y

r Position vector.
S Average wetted surface of the body.
S Vertical circular cylinder of large radius.
t Time variable.
V Displaced volume of water.
V,, V9, V.. Fluid velocity components in cylindrical

polar co-ordinate system.
Co-ordinate system as defined in Fig. 1.
Bessel function of second kind of zero

order.
z-co-ordinate of centre of buoyancy.
z-co-ordinate of centre of gravity.
Direction of propagation of incident waves

= 0 means propagation along the
positive x-axis).

Wave amplitude of incident waves.
Wavelength..
= (w2/g) = k tanh kh.
Co-ordinates of a point on the surface of

the object.
Mass density of water.
See equation (37)
Velocity potential.
See equation (11), / = 0,7
Circular frequency of wave.

= .,J[(x +(v )2 +Jz _()21.
= J[(x ) ±(y )2+( +2h +

2. THE EQUATIONS OF MOTION
A right-handed co-ordinate system (x, y, z) fixed with
respect to the mean position of the body is used, with
positive z vertically upwards through the centre of gravity
of the body and the origin in the plane of the undisturbed
free surface. The body is assumed to have the xzplane
as aplane of symmetry Let the translatory displacements
in the x, y and z directions with respect to the origin be

2 and ?3 respectively, so that i is the surge, 12 is the
sway and i is the heave displacement. Furthermore, let
the angular displacement of the rotational motion about
the x, y and z axes be

, i and 6' respectively, so that
)74 is the roll, is the. pitch and

6 is the yaw angle. The
co-ordinate system and the translatory and angular
displacements conventions are shown for the case of a
ship in Fig. 1.

The linear frequency domain equations of motion in
regular incident waves of small amplitude can for a body
symmetric with respect to the xz plane and under the
assumption that responses are linear and harmonic be
written as folloWs:

p

(M + A11)1 + B111 + A133 + B13i73

+ (MZ0 + A15)j5 + B15,z5 = F1 e"°'

0
Read at the InterationaI Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London, 1.-5. April, 1974.
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/I3?7j + B311 + (M + A33)3 + B3i3 + C.33ij3

+A,35 + B35 + C3 = Fe"°' (2)

(MZG + A51)i1+ B511 + + B53i3

+C53?13 + (1 + A55)5 + B55i5

+ C55?75 = F5 e_wz .(3)

(M + A22)2 + B22.2 + (A24 - MZG)4

+B24i4 ± A26?16 + B26ii6 = F2 e°'

(A42 - MZGY2 + B42j2 + (A44 + 14)774

+ B44j4 + C44?74 + (A46 - '46) .

+B466 = F4e_i(0t

A622 + B622 ± (A64 - '46) 774 + B644

+(A66 ± '6)'16 + B66i6 = F6e°t

r13

ne y

-

4

MARINE VEHICLES

tional acceleration. A,, is the water plane area. V is the
displaced volume of water and Z8 is the z co-ordinate of
the centre of buoyancy. The integration is over the water
plane area.

The added-mass and damping coefficients and the
exciting force and moment are derived in the next Section.

3 THE HYDRODYNAMIC
BOUNDARY.VALUE PROBLEM

Viscous effects are neglected and we assumethe fluid to
be incompressible. The depth h is finite and constant
and the free surface is infinite in all directions. The motion
of the body and the fluid is assumed to be small so that
we can linearize the body boundary condition and the
free surface condition.

The problem can be formulated in terms of potential
flow theory. We assume that steady-state conditions have
been obtained and write the total velocity potential as:

6

4) = 4e'°t + 4) e_'°3' + 4)i ...(ll)
i=1

where 4) e°' is the velocity potential of the incident
waves, which can be written as

4)

gcosh k(z + h)j(,Cosp+kysjflp_wt)
0 - w coshkh

Here is the wave amplitude and /3 the direction of
propagation of incident waves. k is the wave number,
which is related to the frequency of the waves by the
dispersion relationship

=ktanhkh ...(13)
g

Further, 4 e1°" is the diffraction potential for the
restrained body and = 1,6, is the contribution to the
velocity potential from the j th mode of motion.

It can be shown that 4),,j = 0,7, must satisfy

a2 a2 a2__++--'=0inthefluiddomain ...(14)
ax ay ôz

+ g;J = onz=0 ...(15)

onz=h
Further, 4,,ft,,,j = 1,6, and 4). e°3' satisfr a radiation

condition and the following body boundary conditions
on the average position of the wetted surface of the body

an

a4)0
(18)

an an

Here a/an is the normal derivative in the direction of
the outward normal n to the surface of the body.

Further n,,,j = 1,6, is defined by

n = (n1,n2,n3)

and

r x n (n4,n5,n6) ...(20)

(12)

i, Surge q Heave Pitch
172 Sway Roll 176 Yaw

Fig. 1. Sign convention for translatory and angular
displacements

Here M is the mass of the body, I. the moment of
inertia and 1 the product of inertia. 'the inertia terms
are with respect to the co-ordinate system shown in
Fig. 1. Further ZG is the z-co-ordinate of the centre of
gravity. and are the added-mass and damping
coefficients and F,, are the complex amplitudes of the
wave exciting force and moment, with the force and
moment given by the real part of F e"°' (It is understood
that real part is to be taken in expressions involving
e0t.). F1, F2 and F3 refer to the amplitudes of thç surge,
sway and heave exciting forces, while F4, F5. and F6 are
the amplitudes of the roll, pitch and yaw exciting
moments w is the frequency of the waves and is the same
as the frequency of the response. The dots stand for
time derivatives so that ?1k and , are velocity and
acceleration terms.

The body is free-floating so the restoring coefficients
follow from hydrostatic and mass considerations. They
are given by /

C33 = pgA . . . (7)

C35 = C53 = _pgjjxds

C pgV(Z8 - ZG) + pg J y2 ds

C55 = pgV(Z - ZG) + pg jSx2 ds (10)

Here p is the mass density of the water, g is the gravita-

.(4)

.(6)

j, I = 1,6 ...(17)



where r is the position vector

r=xi+yj+zk ...(21)

It is possible to show that the solution of cfr, (3 = 1,7)
can be written as

= J$ Q, , ') G(x, y,z.; , ,, ) ds . . . (22)

This has been shown by Lamb (6) for the infinite fluid
case. The integration in equation (22) is over the average
wetted surface S of the body with (, , ) being the
co-ordinates of a point on S. Q is the unknown source
density function and G(x,.y, z; , , ) is the Green's
function for the problem, which can be written in two ways
as follows (see Weeháusen and Laitone (7)).

2irIv2 - k21
G(x, y, z: i 0 = 2 2 ' cosh k(z + h)khvh+v
x cosh k(ç + h) (Y0(kr1) - iJ0(kr1))

+
i

p2 v2h V
(Pk(Z + h))

x cos (Pk( + h)) KO(pkrl) . . . (23)

or

G(x,y,z,,) = +

+ 2P V

(p + v) e' cosh p( + h) cosh p(z + h) J0(jir1) dpx
p sinh ph - v cosh ph

2it(k2 - v2) cosh k( + h) cosh k(z + h)
J0(kr1)+1 k2hv2h+v

(24)

In equation (23) Pk is the solutions of the equation

Pk tan Pk'l + v = 0 . . . (25)

J0 is the Bessel function of the first kind of zero order;
Y0 is the Bessel function of the second kind of zero order;
K0 is the modified Bessel function of the second kind of
zero order; and

v=_ ...(26)

...(27)
R' ...(28)
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r = J[(x )2 (y 11)2]' (29)

In equation (24) PV indicates a principal value integraL
For practical purposes equation (23) is used when
kr1 0,1 and equation (24) when kr1 <0,1. It was
found convenient to rewrite equation (24). This is shown
in Appendix 1.

The source densities Q in equation (22) are found by
satisfying the body boundary conditions (17) and (18).
This results in the following two-dimensional Fredhoim
integral equations of the second kind over the surface S

2irQ(x,y,z) +

ni

an

when] = 1,6

when] = 7 .(30)

This is smi1ar to the infinite fluid problem formulated
by Hess and Smith (8). In equation (30) one has to exclude
the integration of the source part of the Green's function
over the immediate neighbourhood of each point
(, , ) (x, y, z). on the surface S where the integral is
evaluated. The contribution to the normal derivative
from the immediate neighbourhood of (x, y, z) is taken
care of by the term - 2itQ .(x, y, z).

Equation (30) is solved' by approximating the body
surface by a large number of plane quadrilateral elements,
over each of which the source density is assumed constant.
This transforms the integral equation into a set of linear
algebraic equations in the unknown values of the source
density on the elements. The approach is the same as
used by Hess and Smith (8), the only difference being
that we have selected the ceñtroid of each quadrilateral
as the point where the Green's function and its derivative
are evaluated, while Hess and Smith used the null point,
i.e. the point where the velocity component in the plane
of the surface element due to the source distribution of
that element is zero. This difference is not significant and
it is not necessarily a more correct refinement to use the
null point instead of the centroid. The formulae for the
integrated values of the derivates of the sources over a
quadrilateral have been derived by Hess and Smith.
We adopted the criterion given by them to determine
when the quadrilateral can be replaced by a source alone.
Otherwise we used the integrated values. The same
procedure was followed for the images of the source over
the free surface and the sea bottom. For the other parts
of the derivative of the Green's function we assumed
constant values over each quadrilateraL The numerical
work can be considerably reduced by taking into account
symmetry properties. If the body has one plane of
symmetry (which is the xz plane) the source density
has to be symmetric about this plane when] = 1,3 and 5.
Further, when ] 2, 4 and 6 the source density is
asymmetric about the same plane. When j = 7 we can
split the source density into a symmetric and an asym-
metric part. When the body has both the xz-plane and
the yz-plane as planes of symmetry, then the source
density will be symmetric about the xz-plane and
asymmetric about the yz-plane for] = 1 and 5. Further,
when] = 3 the source density is symmetric, about both
the xz-plane and yz-plane. When.] = 2 and 4 the
source density is symmetric about the yz-plane and
asymmetric about the xz-plane. When] = 6 the source
density is asymmetric about both the xz-plane and the
yz-plane. Finally, for j = 7 we can split the source
density into four parts in the same way as mentioned
above. Thus, when there is oniy one plane of symmetry
it is necessary to only satisl' the integral equation for
positive x-values on the body surface S. When both the
xz-plane and yz-plane are planes of symmetry it is
only necessary to satis& the integral equations for
positive x- and y-values on S.
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The integral equations (30) may not always yield a
solution. For certain irregular frequencies (see John (9))
the method fails. This problem has been studied in the
two-dimensional case by Faltinsen (10). However, as
long as the body has no forward speed and there is no
current, it is expected that the irregular frequencies will
not present any problem. The irregular frequencies are
furthermore expected to lie above the frequency range of
interest. It should be jioted that there exists no irregular
frequencies for totally submerged bodies.

When the source densities Q have been found, the
normalized potentials cb may be obtained from equation
(22). The integration procedure is similar as explained in
connection with the solution of the integral.equation (30).
We then need a method to integrate sources over a
quadrilateral. This has been shown in Appendix 2.

We can now use Bernoulli's equation to Obtain the
pressure and, by definition, the added mass and damping
coefficients AkJ and BkJ are as follows

AkJ = - p Re {Jj k k ds} . . . (31.)

Bkf _pwIm.{SJJnkds} ...(32)

Here Re and Tm mean the real and imaginary part,
respectively. The indices k and j go from 1 to 6.

The wave exciting forces and moments F, i = 1,6,
are obtained from 4 and 4 e'0 by using the
linearized Bernoulli's equation to obtain the pressure
and integrating this pressure properly over the body
surface S.. We can now go back to the equations of
motion (l)(6) and solve for the motion. Having obtained
the motion the velocity potential (11) is now determined.
This enables us to find, for instance, the pressure at any
point on the body. This may be used as the dynamic load
in a quasi-static structural response calculation. Further,
we can find the free-surface elevation at any point. The
fluid velocity and acceleration can also be readily
obtained. These may, for instance, be used in Morison
equation-type calculations of forces and moments on
small objects attached to the main body as appendages.

The motions, velocities, acceleration and pressure in
irregular seas may now also be described. If we know
the wave spectrum for the sea state we may use a linear
superposition technique to Obtain the response in an
irregular sea (St. Denis and Pierson (11)).

4 DRIFT FORCES AND MOMENTS
So far we have studied the linear response in regular
waves and neglected terms that are of higher than first
ordt of magnitude in wave amplitude. However, in
some cases the higher order terms are 'important,
especially the second order horizontal drift force and
moment. These terms may be used to calculate the mean
drift force and moment on a body in an irregular sea
(see for instance Gerritsma et al (12)) and can also be
used to calculate slowly varying excitation forces and
moments on a body in an irregular sea (Hsu and Blenkarn
(13)). Even ii these forces are small they may cause large
excursions of a free-floating body, since in such a case
there are no restoring forces in the horizontal plane.
Further, the frequency of the slowly-vafying forces may
very well lie in the resonance frequency range of an
anchored body with the fatal consequence that the anchor

6
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system fails. Thus, for dimensioning the anchor and
dynamic positioning systems the study of drift forces
and moments in regular waves is important.

Newman (14) has derived an exact expression for the
horizontal drift force and moments in regular, waves.
He assumed infinite water depth, but his expressions can
easily be generalized to finite water depth. Thus according
to Newman

ikcos0iksin0 ds

= f,j[p cos 0+ p Vr(V, cos 0 - V0 sin 0)] r dO dz

. . (33)

= JJ[psinO +pV(l'.sin.O + V9cosO)]rd0dz

. . (34)

M = - L1 I'.V0r2dOdz (35)

where the bars denote time average and the integration
is over the surface S of a vertical circular cylinder of
large radius r, that is extending from the free surfaèe
down to z = - h. F and are the x- and y-components
of the horizontal drift force and M is the drift moment
about the z-axis. We have used (r, 0, z) as cylindrical
polar co-ordinates with x = r cos 0 and y = r sin 0.
Vr and V0 are the radial and tangential velocity com-
ponents, respectively, and p is the dynamic pressure.

We will now approximate equations (33), (34) and (35)
and only retain contributions that are of second order
in the incident wave amplitude. To do this we only need
to know the velocity potential to first order in wave
amplitude. Using equations (11), (12), (22) and an
asymptotic expansion of the Green's function expression
(23), we may write

g4' cosh k(z + h) eb0Ysi_t)
w cosh kh

+F(0) cosh (k(z + h)) ecoo) . (36)
r

Here F(0) is real and F(0) e° is given by

2ir(v2 - k2) /9)_I3/4F(0) e'°
= k2h - v2h + v irk

x $$ Q(, ii, 4') cosh [k(4' + h)] e
S

(37)

Further
6

Q(', ii, 4') = Q7 +
(38)

J4ere i is defined by

= e°t ...(39)

where i = 1,6 are the six modes of motion.
As shown in Appendix 3 we will get the following

expressions for drift-force and moment

p W4'a /(21t\L kh

1FYS
= 2sikh k)4s11Th2 1

x 2F(f3) cos (u)
+ ) {}



Icos 6)- k sinh 2kh
+ ) { F2(0)

dO
2 \

- ri sinh 2kh hi I w /f'2xM
= [ ± sinh kh tk.

x F'(/J) sin
+ - sinhkh

x''(I3)F(fl)cos((fl)
+ -

x F2(6) '(0) dO} . (41)

Where 4'($) means d/d6 evaluated at 0. = /3.

5 COMPUTATIONS
A computer programme. NV459 based on the three-
dimensional source technique has been developed at
Det norske Veritas. For a fixed structure in regular
waves the programme calculates the total linear hydro-
dynamic forces and moments, horizontal drift forces and
moments, pressure distribution on the body and pressUre,
fluid velocity and acceleration for any point in the fluid.
No assumption about geometrical symmetry is necessary.
Floating objects do, however, usually have at least one
plane of symmetry. For such an object the programme
calculates the added-mass and damping coefficients
and motions in six degrees of freedom. The object is
geometrically described by using offset points on the
wetted. surface of the body. Following the procedure of
Hess and Smith (8) one then creates plane surface
elements approximating the wetted surface of the body.

For an object having two planes of symmetry and
using 48 plane elements to describe the total wetted
surface of the body, it takes in the order of one minute
CPU time on UNIVAC 1108 to solve the hydrodynamic
problem for one wavelength. To solve the problem for
the same wavelength with a different direction of pro-
pagation only a little additional CPU time is required.

For an object having only one plane of symmetry and
using a total of 48 plane elements, the computer time is
2 mm CPU on UNIVAC 1108 for one wavelength.
Similarly, for no plane of symmetry and a total of 48
plane elements the computer time is 4 mix - CPU. The
computer time increases approximately as the square of
the number of plane elements.

We have compared the computer programme with
other analytical solutions, computer results and experi
ments and in general we have found very good agreement
using a total of 48 plane elements. But in some cases, when
calculating moments, we found it necessary to increase
the number of plane elements.

The computer programme NV417 has also been used.
This programme is based on the method of Salvesen, et
al. (15) and calculates ship motions and wave loads for
regular waves of any direction of propagation. For zero
speed it reduces to a conventional strip theory. The two-
dimensional velocity potentials are calculated using
either the Lewis' form technique or the Frank Closefit
Method.

In this report we show computations for two floating
(40) boxes. The bôxés have length and beam equal to 90 m

and the drafts were 20m and 40m full-scale. Further
details are presented in Table 1. The water depth is
infinite. The directions of wave propagations were
/3 = 0° and 45°. The range of periods T chosen for the
incoming waves was from 8-20 s. full-scale.

The strip theory programme NV417 was used for
/3 = 0°. The strips were placed in the lengthwise direction.
A similar procedure has been used by Kim et al. (16) for
the motions of a barge of length/beam ratio equal to 1.5
and with good results.

Table 1. Geometrical Data for Floating Box. L = 90 m,
8= 90 m

The added mass and damping coefficients are pre-
sented in Figs 3-16.

The agreement between calculated values by the strip
theory programme NV4 17 and the three-dimensional
programme NV459 is generally not good and this was
to be expected The difference between the yaw-added
masses of the two programmes is especially large.

The exciting forces and moments are presented in the
form of amplitudes F and phase angles ;. They can
be written in a time-dependent form as,

I1Isin(cot+ c)
The incoming wave can be written as,

sin (cot - kx cos /3 - ky sin /3)

A positive phase angle, therefore, indicates that the
force leads the wave height at the origin.

Exciting forces and moments for the box are presented
in Figs 17-26.

The motions are presented in the form of amplitudes
,i1 and phase angles x. They can be written in a time-

dependent form as,

j sin (cot + )

and we note that a positive phase angle indicates that
the motion leach the wave height at the origin. Motions of
the free-floating box are presented in Figs 30-37.

Drift forcesare presented in Figs 27-29. The asymptotic
values for small periods are also indicated Expressions
for these have been derived by Maruo (17). Assuming that
the waves are propagating along the positive x-axis
and that the body has vertical sides at the free surface,
Maruo derived the following asymptotic expression for
the drift force in the x-direction when T-+ 0

F = pg
1b

sin2 dy

Here is the slope of the tangent of the waterplane curve
with respect to the x-axis. Further, 2b is the beam of the
body and the integration is along, the y-axis. In our case,
for a heading angle /3 = 0°, we get,

F = O.5pg L

-
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C. G (xG, YG, zG) 0,0, 10.62m 0,0, 8.82 m
k 33.04m 37.32m

32.09m 33.30 m
k. 32.92m 40.08 m
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FOr both boxes this asymptotic value agrees. cruite well
with our calculations.

Introducing an x'-axis along the direction of Wave
propagation we may use Maruo s formula also for
heading angle fi 450 We then get,

F=!pgL
for the drift force along our permanent x-axis. Again the.
asymptotic value agrees very well woth our computations

We may further note that the effect of the motion on the
drift forces is small for the lower periods. For the floating
box of draft 40 m and close . to the heave, resonance
frequency, there is a strong dependence on the thotions.
This may be expected since the maximum immersion of
the body is increased due to large relative vertical
motion between wave and body For the floating box of
draft 20m there is a strong dependence on the motions
for the larger periods. The body moves more. or less as a
water particle for these periods and the drift force is
therefore very. Small.

6 CONCLUSIONS
A theoretical methOd has been presented that describes
the motions, in all six degrees of freedom, of large
floating structures m waves when the Froude number
is zero The method also gives the hydrodynamic
pressures and the horizontal drift forces.

The method of analysis Used is based on a three-di..
mensional source technique With the sources 'distributed

16 18 20



on the surface of the body. The drift forces are derived
from momentum equations.

Numerical calculations and experimental results for
the case of a floating box of dimensions 90 m x 90 m
and a draught of 20 m and 40 m show very good agree-
ment in the measured quantities. On the basis of this
comparison one may cOnclude that the method does
indeed provide a solution to the dynamic analysis of
large three-dimensional structures in waves, subject,
of course, to the usual limitations of the linearized
theory.

It may seem attractive to try to apply a two-dimen-
sional strip theory to the analysis of the structures of
concern here. This has been done for the box mentioned
above and the results show that this method of approach
cannot be used in the dynamic analysis of such structures.
Only a three-dimensional method of analysis, as given in
this paper, will be adequate.
Experiment
For the purpose of verifying computed values of added
mass and damping coefficients of the 90 m x 90 m box
at draughts of 20 m and 40 m a series of tests were per-
formed in the model basin of the University of Trondheim
with a model built to scale 1:100. The model was oscil-
lated in heave, surge, pitch and yaw at amplitudes of
3 cm and 0.05 rad respectively. Some tests were also
made at twice these amplitudes to check on linearity.

The experimental results agree generally very well With
the theoretical predictions. Where deviations from theo-
retical values are most pronounced it was found that
these were probably caused by the fact that it was not
always possible to provide a pure one degree of freedom
motion to the model. This was true in particular for the
cases of surge and yaw in the. range of low periods.

In regard to damping, deviations from theoretical
values may seem to be significant in this range of periods.
This may be due to viscous effects, but it should be
pointed oUt that damping is small and difficult to
determine experimentally with any great degree of
accuracy. Only a few degrees of error in the measuremei)t
of the phase angle will, for instance, result in large varia-
tions in the damping force. For the same reason it was
found that damping in yaw and pitch were much higher
than theoretical predictions indicated, and, no experi-
mental values are therefore given.

A model to scale 1:60 was also built for the purpose of
determining excitation forces. These experiments were
not successful due to instrumentation failures, and the
tests will therefore have to be repeatcd. A free-floating
test did, however, provide us with experimental data
on geave motions and drift forces.. Again one can con-
dude that correlation between theory and experiments
is good.
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APPENDIX 1
Numerical evaluation of the Green's Junction
Equation (24) can be rewritten as
G(x, y, z: ,;i, )

1 1 1

2(ku + v)e'cosh [k(C +

+
x cosh(k(z + h)u)J0(kr1u.)du

u sinh (khu) - (v/k) cosh (khu)
(uj

(z + )kuJ (kur )k due

2v J0(kr1u) du
+ uv/k

2ir(k2 - v2) cosh [k(C + h)] cosh [k(z + h)]
J0(kr1)+ k2hv2h±v

.(42)

We have here disjoined the image source with respect to
the free surface by making use of the fact that
((x )2 + (y ,)2 + (z + )2)_4

= j eJ(,pr1)dp .. .(43)

(see Gradshteyn and Ryzhik (18)). The limit of integration
u1 in equation (42) must satisfy the following conditions

(i) u1 ?2,
due to numerical methods used in the evaluation of
the principal value integral,

(ii) u1 ? 4,5/kh
so that we may with sufficient accuracy set

cosh khu
- for u

sinh khu J
The principal value integration in equation (42) has been
calculated using the 'midpoint rule' and the procedure
proposed by Monacella (19). The infinite integral in
equation (42) can be converted into a finite integral
by using the integral representation

.J0(kr1u)
=

ei0sOdO .. .(44)

(see Abramowitz and Stegun (20). We may then write

2v J0(kr1u) du

.)UI uv/k
= IdO d z++ivri cosfl

11

E1 [- (k(z + () + ikr1 cos 0) (1
)]

.;.(45)

where E1 is the exponential integral as defined in
Abramowitz and Stegun (20). The integral in equation
(45) has been evaluated using the 'mid-point rul&.

APPENDIX 2
IntegratiOn of sources with constant density over a quadri-

lateral
We consider., a plane quadrilateral source element lying
in the xy-plane as shown in Fig. 2.



The x-y or co-ordinates of the four corner points
defining the quadrilateral are (, i7), 12)' and
(, 114). It is. desired to determine the velocity potential
induced by this source element at a general point P
n space having co-ordinates x, y, z. The value of the
source density is set constant over the quadrilateral.
The potential then becomes proportional to

lid _ll dcd

J JAJJ[(x)2+(y_
.(46)

= IA

Fig. 2. Plane quadrilateral source element

Following a procedure similar to the one used by Hess
and Smith (8) for the velocity components we obtain

= .- $d iog(y 1112

The first integral of equation (49) can easily be integrated
analytically (see Gradshteyn and Ryzhik (18)). The second
intergrand of equation (49) has no singulanty in the
integrand and no difficulties in the numerical integration
are encountered. Difficulties with singularities in the
integrand of the other integrals of equation (47) are
handled in a similar manner.

APPENDIX 3 .

Derivation of second order drift force and moment
We shall show here how one can pass from equation (33),
(34), (35) to equations (40) and (41), which are correct to
second order in wave amplitude.

Using Bernoulli's equation we may write

p dz =
25_i, I

dz .. .(50)

Here is the free-surface elevation and Vthe fluid velocity
vector which has the components (I', F, V) in the cylin-
driôal co-ordinate system. It is possible to show that

P2 ± a1(0)05h(1th)
2 22 g

x cos(kr(l . cosOcos/3 - sinOsin/3) + 4(0))

+yF2(0)cosh2khr_1} (51)
2g

p[lsinh2kh h

Jl w2 cos (/3 '- 0) + F2(0) r3 + F2(0) kX
12 sinh2 kh

1
cos(fl-0)

2a sinhkh F(0)r

x sin (kr (cos (/3 - 0) 1.)

CO5 - 0F(0)kr
sinh kh

x cos [kr(os(fl 0) - 1) - (0)]} .. .(52)

5
V dz =

+ r3(F'(0))2 + r 3(F(0)'(0))2 +

x sin(0 /3) rF'(0) sin [kr(cos(0 - /3) - 1) - 0(0)]

.(47) silh sin (0 - /3) r F(0)0'(0)

..(48)
X cbs [kr(cos(0 - /3) - 1) - 0(0)]} .. .(53)

p[1snh2kh hill w

j
V dz = 2[k 4 2fl2sinh2kh

+ r 1F2(0)k2
+ sin! h

r4F(0)k

(49) . x cos[kr(cos( - /3) -

I
dz=

p [1 sinh 2kh
+

hi fl w22 j2 (0 - /3)
2[k 4 2j12 sinh2kh

) - 0(0)]} .. .(54)

lsinh2kh h 1 w22
+ ]{2flh2h

x cos(0 /3)sin(0 - /3) 2Sflhkhc0s(O /3)
x rF'(0)sin [kr(cos(9 /3) - 1). 4(0)]
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+j[(y_11l2)2+(x_)2 z2)]

- $dlog(y
+ 1123)2 + (x )2 + z2)]

dlog(y-34 0

+ - 1) + (x z2)]

s: d log (y - 1141

+ - 1141)2±(X -

Here

= 11 + ;; = :;: ('

We note that the integrand of the first integral is singular
when z = 0, = x and y - 1112 <0. In this case we
change the integral to read

J d log ((x )2 + z2) - J d log [(y - 1112)

+ J[u - 1112)2 + (x )2 + z2]]

ç

11)2 + z2] -h



+ 2 sinh kh cos (0 - /3) rF(6)4f(6)

x cos[kr(cos(0 - /3) - 1)-
a -r F(0)sin(6 - /3)

4 sinh kh

x sin [(kr (6 /3) - 1) (0)] - r 3F(0)F'(0)

+ kr 2F2(o)(o)'
siniI r - F(6)k sin (0 - /3)

x cos [kr (cos (6 - /3) - 1) - 4(0)]} . . .(55)

Here F'(0) and 4'(0) mean dF/dO and dcb/dO, respectively.
Now by applying the method of stationary phase
(Erdélyi (21)) we may write for large r

fg(0)cos [kr(cos(0 - /3) - 1) - (6)] dO

() {g cos ($)
±

+ g(/3 + it) cos (- (fi + it) + - 2kr)}

where g(0) is some arbitrary function. By using equations
(50)(56) we may write the drift forces and moments in
the form Of,equations (40) and (41).
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