
Copy-Paste Detection in Spreadsheets

Ben Sedee

Copy-Paste Detection in Spreadsheets

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ben Sedee
born in Delft, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Infotron
Reduitlaan 33

Breda, the Netherlands
www.infotron.nl

c©2013 Ben Sedee. All rights reserved.

Copy-Paste Detection in Spreadsheets

Author: Ben Sedee
Student id: 1263153
Email: bmwsedee@gmail.com

Abstract

When a company is in need of a reporting tool, the most commonly made deci-
sion is to choose for Excel. In fact, over 90% of the world’s companies base their
decisions on a report made using Excel. This shows that the number of spreadsheet
designers, of end-user programmers, is large. It has been estimated to be 5 times as
large as the number of software programmers in the traditional sense. This is one of
the reasons spreadsheets are error-prone, possibly leading to erroneous decisions. One
of the causes of problems within spreadsheets is the prevalence of copy-pasting. In this
thesis we have studied this problem and we present an algorithm to detect data clones
within spreadsheets: formulas whose values are copied in a different location. Aside
from this algorithm, which we based on existing algorithms for code clone detection
in software engineering, we present a classification scheme for the found data clones.
We evaluated both the algorithm and the classification using the EUSES corpus, result-
ing in the conclusion that data clones in spreadsheet are as common as code clones in
source code. We also show that we are able to detect these data clones with precision
rates similar to those achieved by state-of-the-art code clone detection algorithm.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Pinzger, Faculty EEMCS, TU Delft
Company supervisor: Dr. ir. F. Hermans, Infotron
Committee Member: Dr. ir. W.P. Brinkman, Faculty EEMCS, TU Delft

Preface

I would like to thank a number of people for their help and support during the writing of
this thesis. Firstly, there are Martin, my daily supervisor at the TU Delft, who has guided
me during my research and kept me from on track and on time, and Felienne, my supervisor
at Infotron, who had the patience to read my lengthy e-mails and reply with an invitation
to discuss the e-mail in person. Secondly, there are Arie van Deursen and Willem-Paul
Brinkman, the other two members of my thesis committee, whom I would like to thank for
taking place in this committee.

Obviously, I would not have been able to begin this thesis without all the previous
education of my Master’s and Bachelor’s degree, but since this is obvious, I probably should
not even mention it. The same holds for the support my parents have shown me throughout
the seven-and-a-half years I’ve been a student now, but in spite of its self-evidence, my
appreciation knows no bounds.

By name I would also like to mention my dad, again, and Timo, who both had the pa-
tience to proof-read this thesis and look for any mistakes I made in my grammar or spelling.
My guess is that they both learnt a lot they didn’t want to know about spreadsheets, and I
can only hope they also learnt that copying formulas as values is bad practice. Elise, this
may sound harsh, but thank you for leaving to Salzburg for half a year for your own studies.
This freed-up a lot of time for me in the evenings and weekends to work on my thesis, with-
out which I would possibly not even be half-way done by now. Your long-distance support
and confidence in me has definitely given me an extra push in times I needed it. And Peter,
thanks for the advice of storing an offline back-up, even though I’m glad I didn’t need it.

Finally I would like to thank Herman, for starting my interest in Excel spreadsheets
roughly 4 years ago and I would like to thank my employers at aNewSpring for allowing
me to take the time off when I needed it.

Ben Sedee
Delft, the Netherlands

January 23, 2013

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Relevance . 2
1.2 Research Questions . 2
1.3 Outline . 3

2 Related Work 5
2.1 Code Clone Detection . 6
2.2 Code Clone Categorization . 9
2.3 Spreadsheet Testing . 11
2.4 Spreadsheet Auditing . 13

3 Clone Detection - The First Approach 17
3.1 Definitions . 17
3.2 Algorithm . 20
3.3 Optimisations . 24
3.4 Abandonment . 25

4 Copy-Paste Relations - The Second Approach 27
4.1 Definitions . 27
4.2 Algorithm . 30
4.3 Visualisation . 35

5 Categorisation of Copy-Paste Relations 37
5.1 Clone Cluster Categories . 37
5.2 Formatting Differences . 40

v

CONTENTS

5.3 Reporting . 44

6 Evaluation 49
6.1 Validation . 49
6.2 Evaluation of Categorisation . 53
6.3 Summary of Results . 57
6.4 Discussion . 57

7 Conclusions and Future Work 61
7.1 Contributions . 61
7.2 Conclusions . 62
7.3 Future work . 63

Bibliography 65

vi

List of Figures

3.1 Overview of the first clone detection algorithm 21

4.1 Overview of the final clone detection algorithm 32
4.2 Example report as outputted by Breviz . 34
4.3 Detail of Copy-pasting section of the report 35
4.4 Example of a data flow diagram . 36

5.1 Example output for formatting differences . 47

6.1 Occurrence of formatting differences . 57
6.2 Simplified example for improved determination of formatting differences . . . 59

vii

Chapter 1

Introduction

It is generally accepted that Excel is a very powerful tool for a number of applications,
among which are data reporting and manipulation and the accompanying ease of use. It is
primarily in its capacity as reporting tool that over 90% of the world’s companies base the
majority of their decisions on reports created in Excel. Given these numbers, it would seem
logical that the models that serve as the basis of these reports are thoroughly checked. Alas,
this is not the case, which leads to error-prone spreadsheets. Even in modern-day society,
errors within spreadsheets still occur, leading from an overbooking in the latest Olympics to
false examination results at a prestigious university and to missing taxable properties worth
well over a billion US Dollars1.

To address this issue, researchers have analysed spreadsheets, their users and their prac-
tices [22, 29, 45]. One of the findings was that spreadsheets tend to be full of references,
be it to other cells, other worksheets or other spreadsheets. While most of these links are
visible by looking at the formula typed in the cells, for large spreadsheets users lose track
of the links and are unable to keep an overview. A second common issue is that the visible
links only work in one direction, i.e. only the source of the data is visible. It is often not
visible where a certain piece of data is being referenced and what other cells may change
when a cell is edited. Having built a tool to overcome this weakness, (informal) research at
Infotron2 has revealed another, even less visible, source of possible data corruption, i.e. the
copy-pasting of data.

This thesis focusses on exactly that: the detection of copy-pasted data. When users copy
the value of a formula to another cell, the link that implicitly exists between the two cells
is not stored anywhere, so updating either side of this implicit link will unknowingly sever
it. Therefore the users are greatly helped if these links can be visualised for the users. This
visualisation also serves the users to encourage them to make the links explicit by referring
explicitly instead of copying the contents.

The algorithm presented in this theses resulted in a presentation to be held at the Inter-
national Conference on Software Engineering 2013 [30]. In addition, we are looking into
possibilities of writing a new paper or extending other papers based on the classification of

1http://www.eusprig.org/horror-stories.htm
2http://app.infotron.nl

1

1. INTRODUCTION

copy-paste relations presented in this thesis.

1.1 Relevance

This thesis shows that it is possible to apply proven code clone detection techniques like
Johnson’s culling [31] and Ducasse et al.’s storing of previous results [20] to spreadsheet
research. These techniques have been applied to spreadsheets to find the copy-paste rela-
tions, while other techniques like the categorisations of Balazinska et al. [11] and Davey et
al. [18] have been used to categorise the retrieved data.

Aside from the applied techniques, this thesis has helped improve the notion of what a
“good” spreadsheet is. By uncovering the hidden relations that exist between different cells
in a spreadsheet, the existence of these links is shown and due to the quantitative analy-
sis conclusions can be drawn regarding the frequency of these relations. For spreadsheets
where these relations are numerous, this thesis also proposes a classification schema, which
can also be used to help users maintain an overview of these relations. Lastly, this thesis
provides numerous handles for future research into improving spreadsheet quality.

1.2 Research Questions

By watching users work with spreadsheets during other projects at Infotron it was found
that users tend to copy-paste data and outcomes of formulas and that the resulting copies
could persist through numerous versions of a spreadsheet. These conclusions led to the
start of this thesis, and a general question “How can the copies of data in spreadsheets be
detected?”.

Looking closer at the type of data that was mostly copied, it appeared that the copying
mostly concerned the outcomes of formulas. Moreover, we needed to develop a way of
reporting the findings, allowing the spreadsheet-user to understand the results. These two
observations led to a change of the main question to “How can the copies of formula-data
in spreadsheets be detected” and “How can the results be reported to the user?”.

Another obvious issue that needed to be addressed regarded the reporting of the results:
“How can the results be reported in a way that is usable for the users?”. Exploring the
reporting side a bit further, the issue of coping with the possibly large amount of found
copies came up. To address this, the question “How can the results be ordered in a useful
way?” arose and is answered in this thesis. Finally, to validate the effort and the algorithm,
the question “How well does the proposed solution work?” is answered.

All in all, this leads to the following research questions:

R.Q. 1 How can the copies of formula-data in spreadsheets be detected?

R.Q. 2 How can the results be reported to the user?

a) How can the results be reported in a way that is usable for the users?
b) How can the results be ordered in a useful way?

R.Q. 3 How well does the proposed solution work?

2

Outline

1.3 Outline

The posed research questions lead to a sectioned outline of this thesis. Firstly, some ground-
work is presented in Chapter 2. Following Chapter 2, the Chapters all represent one of the
questions. In Chapter 3 a first attempt at an algorithm is presented, originating from the orig-
inal research question. This algorithm is abandoned in favour of the algorithm presented in
Chapter 4. The next chapter concerns both the ordering of the results and the closely related
reporting of the results. Chapter 6 handles the validation of the presented algorithm and
ordering, and the thesis is concluded with a discussion of the results and some pointers to
future research possibilities.

3

Chapter 2

Related Work

For this thesis there were several research areas to look at and to get inspiration from.
Looking for copies of formula outcomes within the same spreadsheet intuitively felt like
looking for code clones in software programs. Two algorithmic concepts found here could
be transcribed into algorithms used for copy-paste detection in spreadsheets. The first con-
cept entails keeping an ordered and culled list of values that occur within a spreadsheet (as
explained Johnson in [31]). The second important concept is to store the results of pre-
vious comparisons and to utilise this to reduce the total number of comparisons, which is
explained by Ducasse et al. [20]. Also, a definition of equality has been formulated.

In addition to code clone detection, previous research has also focussed on categorising
the different kinds of code clones. The existing categories and taxonomies can be used as
a basis for the categorisation of the found copy-paste relations in spreadsheets. Combining
the categorisations of Davey et al. [18] and Balazinska et al. [11] results in a two-level cate-
gorisation of copy-paste relations, with both levels containing three categories. When, like
Kapser and Godfrey [34] proposed, the locations of the relations are also taken into account,
a distinction into five levels can again be created, each of these levels possibly containing
these 6 categories. This leads to a possible categorisation into 30 different categories.

Existing research into spreadsheets themselves can be divided into a number of areas.
We looked closely at the two areas we felt were closest related to this thesis: the testing of
spreadsheets and the auditing of the sheets. Both these areas had to be looked at, to establish
the idea of copy-detection within spreadsheets as a new concept. Another reason to examine
previous studies into spreadsheets is because there might have been some research initiatives
that posed ideas specific to spreadsheets that could be used. In the area of spreadsheet
testing, a very promising line of research is that of automatic header inference (as described
by Abraham en Erwig in [1]), but this is not fully useful for the purposes of this thesis.
Other useful ideas and (partial) definitions are taken from spreadsheet auditing. The ideas
taken from spreadsheet auditing, however, also need to be adapted before they can be used
to look for formula-copies.

5

2. RELATED WORK

2.1 Code Clone Detection

Code clone detection has been a topic of research for software engineers for the past 20
years. Most research done before 2007 has been surveyed by Roy and Cordy [51] and from
their survey it is clear that two major approaches have been pursued. Algorithms developed
until now can, with some exceptions, be divided in two trends; being either based on the
unprocessed source code, or being based on an abstract version of the source code like an
abstract syntax tree. Exceptions to this division are hybrid approaches like Kontogiannis et
al. [36], or approaches based on metrics of the source code (e.g., Mayrand et al. [38]), but
these are not as widely researched. Since the basic building blocks of spreadsheets are cells
and the copy-paste detection of formula outcomes is based on these cells, algorithms based
on an analysed version of the source code are deemed unusable. The algorithms using the
unprocessed source code can be divided into two main categories:

• Text-based algorithms

• Token-based algorithms

The difference between these two is the size of the two parts that are being compared.
In text-based algorithms whole lines of source code are compared, while in token-based
algorithms this comparison is done on a per-token basis, where the token size can differ
among the various algorithms.

Most of the drawbacks of the text-based algorithms can be ignored when the algorithmic
ideas are transcribed into a spreadsheet environment, leaving the underlying ideas available.
The most promising of these ideas are the culling of the list of values (as done by Johnson
[31]) and storing the results of comparisons in a matrix (as done by Ducasse et al. [20]).
Drawbacks of text-based algorithms that cannot be ignored in spreadsheets are alleviated
by using token-based algorithms. Based on the definition given by Baker [9], token-based
algorithms yield a useful definition of equality among cells: “two cells are considered to be
identical if they contain the same values after evaluating the formulas; the semantics of the
formulas are not analysed”.

2.1.1 Text-based algorithms

In [51], Roy and Cordy mention four main drawbacks of a text-based algorithm in general
when it is applied to code clone detection. These drawbacks are based on specific charac-
teristics of software languages:

1. Line breaks, which can be in different places without disrupting the meaning or work-
ings of the program.

2. Identifier changes, which revolve around the naming of variables and functions.

3. Parentheses, which can be added or removed without disrupting the meaning or work-
ings of the program, much like line breaks.

4. Transformation, which means that a normalization sometimes has to be applied.

6

Code Clone Detection

Considering the use of text-based algorithms for copy-paste detection in spreadsheets, these
drawbacks need to be addressed. Examination shows, however, that of the four mentioned
characteristics only line breaks have a spreadsheet equivalent, because they can be translated
as a different ordering of the cells.

Having concluded that most of the drawbacks of this type of algorithms do not apply,
three specific algorithms have implemented useful concepts. The first of these algorithms,
and one of the first in general to use a text-based approach, was developed by Baker [9].
Baker’s definition of equality among lines of code, “Two lines of code are considered to
be identical if they contain the same sequence of characters after removing comments and
white space; the semantics of the program statements are not analysed”, can rather easily
be translated into a definition for equality among spreadsheet cells. Analogous to this def-
inition, this equality would mean that two blocks of cells are considered to be identical if
they contain the same values after evaluating the formulas; the semantics of the formulas
are not analysed. Evaluating the formula without analysing in this case means that only
the results of the formula count, not the way these results are gathered. Embedded in the
definition of equality as stated above is the idea that comments and white spaces should
be removed when comparing two lines of source code. Considering blank cells to be the
spreadsheet equivalent of white spaces, and headers to be the equivalent of comments, the
definition becomes too coarse because the blocks considered for equality could potentially
span the complete file. Also, too keep this definition analogous to source code lines, the or-
der of cells within two blocks of cells must be equal, while in spreadsheets it is a one-click
operation to disrupt this.

Johnson’s text-based algorithm [31] identifies code clones based on fingerprints created
of lines of source code. His goal is to find redundant code, which he identifies as “any
characteristic of the source that could be used by a data compression algorithm to encode the
source in fewer bits.” Even though it is not the purpose of this thesis to encode spreadsheets
in fewer bits, the underlying principles are still useful. Johnson’s algorithm is based on a
number of steps, of which a number are useful:

1. Fingerprints are calculated for substrings in the source code. The substrings used by
Johnson are called snips and can consist of multiple lines, but are still substrings.

2. The calculated fingerprints are collected in a file and sorted by value.

3. The values that occur only once are removed with a process called culling. The
remaining values identify redundant code.

Translating these steps so they can be used for copy-paste detection in spreadsheets, the
calculation of fingerprints can be skipped. Since the goal is to find multiple cells with the
same value, the value of the cells can be used as a fingerprint, making the calculation of a
fingerprint for a cell equal to evaluating the cell’s formula. The other steps, i.e. collecting,
sorting and culling, remain the same.

The last algorithm with useful ideas was created by Ducasse et al. [20]. Ducasse com-
pares every line with every other line in the file, storing the results of the comparisons in a
boolean matrix. The results are then extracted from this matrix to determine if a number of

7

2. RELATED WORK

subsequent lines, i.e. lines forming a block of code, are copies of each other. The idea of
storing the comparison results in a matrix is a useful one for copy-paste detection in spread-
sheets. Consider, for example, a situation where two formula cells have the same outcome,
as do three value cells. For the first of these formula cells, a comparison is done with all
three value cells and the results of these comparisons are stored. The second formula cell is
now compared to the first of the three value cells, and found to be equal. Given the results
of the comparisons with the first formula cell it is now known that the second formula cell
is also equal to the other two value cells. Since the comparison with the other two cells can
now be skipped, a speed-up in the algorithm has been achieved.

2.1.2 Token-based algorithms

Token-based algorithms are a generalisation of the text-based algorithms discussed above.
That is to say, every text-based algorithm is basically a token-based algorithm with a line of
source code as token. Not having the restriction to only look at complete lines of source-
code, however, gives the possibility to alleviate some of the discussed drawbacks of text-
based algorithms, most notably the line breaks. Since tokens can start in the middle of
a line of source code and end in the middle of the next line, line breaks will have to be
ignored when comparing the tokens. Knowing that line breaks are the only drawback of
text-based algorithms that have an equivalent in spreadsheets, and seeing as how token-
based algorithms alleviate this drawback, token-based algorithms served as an inspiration
for this thesis.

One example of a text-based algorithm that is also token-based is Baker’s algorithm [9].
Since the tokenizer used in the algorithm allows substrings to be of arbitrary length they
do not necessarily have to be complete lines. Regardless of the choice for substrings, the
algorithm matches the substrings using a suffix tree [39]. This techmeannique is also used
by one of the most prominent algorithms, CCFinder [32]. Applying one of these algorithms
to copy-paste detection in spreadsheets, would indicate that spreadsheets need to be fitted to
the structure of such a suffix tree. However, thinking about the structure of such a tree and
the reasons for the algorithms to use this structure leads to the conclusion that the benefit
of the structure a suffix tree offers is available in spreadsheets by default. In its most basic
form, the structure of a suffix tree does not differ from the structure of a tree, with a root
node containing (pointers to) child nodes, where every child node can be the root node of
a sub-tree, eventually ending in the leaf nodes of the tree. The advantage of using this
kind of structure for the token matching is that the next token to be matched can easily be
retrieved, without having to consult the original source code. Considering that easy access
to subsequent elements is the reason to use a tree, the structure of a spreadsheet itself is
such that it can directly be used, without transforming it to a suffix tree.

Having already mentioned Baker’s algorithm to be also token-based, the definition of
equality can be revisited. Previously, the definition applying to spreadsheets was deemed
too coarse, since, analogous to source code lines, it had to be based on blocks of cells.
This disadvantage can now be overcome, since smaller portions of source code also apply
to the original definition. Using blocks of cells, the definition was “two blocks of cells are
considered to be identical if they contain the same values after evaluating the formulas; the

8

Code Clone Categorization

semantics of the formulas are not analysed”. Narrowing the blocks of cells to cells yields a
useful definition for equality among cells.

2.2 Code Clone Categorization

Given that in this thesis we don’t only want to be able to detect copy-paste relations in
spreadsheets, but we also want to be able to report these to the user, a categorization is
deemed to be useful. Since the copy-paste detection has established analogies to code clone
detection in software engineering, is was logical that we looked at existing code clone clas-
sification schemas and taxonomies for the categorisation of the code clones.

Categorisation of code clones has been done in a number of different ways (see for ex-
ample Davey et al. [18] and Balazinska et al. [11]). Taking a combination of these different
categories gives an overall categorisation:

TypeS I Identical values and formatting

TypeS II Identical values

TypeS III Modified values:

a) One-cell difference

b) Multiple one-cell differences

c) Multiple differences

Also, a differentiation can be made based on the location of the copy-paste relation, analo-
gous to Kapser and Godfrey [34]. The differences in location that are differentiated are, in
an ordinal ordering:

1. Different cell-locations within the same block of cells.

2. Different block-locations within the same worksheet.

3. Different worksheet-locations within a spreadsheet.

4. Different spreadsheets within the same directory.

5. Spreadsheets within different directories.

2.2.1 Clone Types

One kind of distinction between different types of code clones is a division in Type I – Type
IV. Since this division has been used by a number of researchers [12, 18, 51] to categorise
code clones, these types have also been analysed for an analogy in copy-paste relations in
spreadsheets. The definitions of the Types for code clones are as follows:

Type I Identical clones, except for differences in white space and comments.

9

2. RELATED WORK

Type II Structurally identical clones. Like Type I, but also allows for changes in types
and identifiers.

Type III Modified clones. Like Type II, but allows for more changes like added or
removed statements.

Type IV Functional clones. Not based on syntax but on semantics, i.e. pre- and post-
conditions must be equal.

Transcribing this to cell relations in spreadsheets, Type IV is a type of clone that has an
analogy between two different formula cells and thus has no analogy in the copy-paste
relations. For the three remaining types an analogy has been found by introducing a concept
of formatting differences between cells. From the definitions of the code clone types it is
clear that every Type is an extension of the previous Type with Type I being the first, and thus
most strict, type of clone. To be able to transcribe this to a spreadsheet analogy, a distinction
must be made possible between different copy-paste relations found. Since in spreadsheets,
unlike in most software languages, values can get a different meaning when the formatting
becomes different, using this formatting was a way of distinguishing between multiple copy-
paste relations. Contrastingly, the concept of identifiers is one that does exist in software
languages but not in spreadsheets. Exchanging these two concepts in the definitions of the
Types led to three Types for spreadsheet. To avoid confusion of the code clone Types and
spreadsheet Types, we annotate the Type with a subscripted “c” resp. “s”:

TypeS I Identical values and formatting, meaning no changes in formatting between
two cells is allowed.

TypeS II Identical values. Like TypeS I, but small changes in formatting between two
cells are allowed.

TypeS III Modified values. Like TypeS II, but the values are also allowed to differ.

It stands to reason that this definition of TypeS III allows for every formula cell to be
matched to every value cell. To remedy this, a TypeS III clone is only allowed to exist
in a relation between two blocks of cells, where a threshold of a minimum number of value-
equal cells should be specified.

2.2.2 Clone Taxonomies

In addition to the discussed Types, several studies have devised some other form of classi-
fying code clones. Balazinska et al. [11] created a schema of 18 different categories, split
into three levels. Considering only the first two levels to avoid too specific constructs of
software languages, four categories remain:

1. Identical. This is like TypeC I.

2. One-token difference. Only one token in the clone may differ.

10

Spreadsheet Testing

3. Multiple one-token differences. The one-token differences are not allowed to be con-
secutive.

4. Multiple token differences. The one-token differences are consecutive, leading to a
multi-token difference.

Converting these categories to a spreadsheet environment and using the formatting differ-
ences as defined above results in:

1. Identical. This is like TypeS I.

2. One-cell difference. This allows for either one value difference or one formatting
difference.

3. Multiple one-cell differences. This allows for non-bordering cells to have either a
value or formatting difference.

4. Multiple cell differences. This allows for any cell to differ, in both value as format-
ting. This is like TypeS III.

Two of the four categories have a clear relation with the defined three TypesS, and this
relation is stated in the definition of the category. None of these categories match with TypeS
II, since TypeS II does not allow for value differences and these categories do. Therefore,
the second and third category should be seen as sub-categories of TypeS III.

Kapser and Godfrey [33, 34] have attempted to not only divide the clones by similarity,
but to also take the location of the clone into account. Such a division for copy-paste detec-
tion in spreadsheets can be done on three levels. Firstly, a location division for clones can
be performed within one spreadsheet itself. Cells reside in blocks of cells and can thus have
a location based on the block of cells. Secondly, the blocks of cells themselves are elements
of a worksheet and have a location based on the worksheet. Finally, different worksheets
make one total spreadsheet, constituting three levels of location within one spreadsheet.
This is one level more than Kapser and Godfrey define, as they distinguish only “Regions”
and “Same file”. When relations are to be found within multiple spreadsheets, the same
levels as used by Kapser and Godfrey can be used, i.e. “Same file”, “Same directory” and
“Different directory”.

2.3 Spreadsheet Testing

Before the testing of spreadsheets can be done, it needs to be established what they should
be tested for. In order to analyse this, a survey of possible risks was done by Panko and
Halverson [45]. The resulting error-classification was later extended by Rajalingham et
al. [46, 47] and Panko [44]. Following the classification proposed by Rajalingham et al.,
the copying of formula results is a Duplication error, by either the Developer or the Data
Inputter. The definitions mention “re-creation of element of the model” (for the Developer)
and “re-entering of data” for the Data Inputter. Since copying of data can, without stretching
the definition of copying, be incorporated in both these definitions, copying seems a logical

11

2. RELATED WORK

classification of the types of errors that we intend to find. The fact that the copying of
formula outcomes is a high risk, stems from the definition of Rajalingham et al.’s Temporal
Semantic errors. This type of error “is produced due to the use of data which has not been
updated”, which easily occurs when the inputs of a formula are changed and the results are
not updated. The fact that it is easy to include the copying of formula outcomes into existing
definitions of error-classes proves that it is useful to detect this kind of error, so users will
be able to build better spreadsheets.

Having determined the types of errors the formula-copies are part of, a closer look can
be taken at spreadsheet testing. In spreadsheet testing, there is a main type of testing based
on the software programming paradigm of unit testing, besides which there are some minor
other courses.

2.3.1 Unit Testing

One of the first challenges to face when considering unit testing is to determine the units to
test. One of the important works concerning this is Erwig and Burnett’s Unit-system [21].
Their Units are wrappers of a cell, where the wrapping is based on header inference and
the contents of a cell. Along with these Units a formal grammar to describe spreadsheets
is presented, that can be used to detect erroneous entries in cells. In this publication it is
only mentioned that the system works on the basis of header inference, but how this header
inference works is not elaborated upon any further. In order to perform this header inference
automatically, Abraham and Erwig devised a method [1], based on a certain expectation
of what a spreadsheet should look like. For example, one of these expectations was that
it must be built as a collection of tables where each table has its own row- and column-
headers. Using this approach they reasoned about logical errors within a spreadsheet with
an automated tool in [2]. The logical errors this tool finds are determined to be errors by
comparing the inferred unit of a formula cell with the calculated unit of this cell. Even
though this is not the type of errors that originate from the copying of a formula outcome,
the underlying system of header inference can be promising. The Units inferred by this
technique can be used to check whether two cells that have the same data, and might thus
have been copied, have equal Units. To be able to use this, some drawbacks of the automatic
header inference will have to be overcome. One of the most important drawbacks is that
the inference of Units heavily depends upon the textual representation of the headers of the
data. If the users are unwilling to provide sensible headers, or purposely provide the copies
with different headers, the Units will differ so the cells will not be marked as copies. The
reverse also holds; when a user gives the same headers to multiple tables, while they are in
fact not copies. To overcome this, the automatic method for header inference was extended
by Chambers and Erwig [15] to dimension inference. While this alleviates some of the
drawbacks, it adds a dependency on the textual meaning of the headers. This dependency is
a drawback in and of itself because of the assumed underlying domain knowledge.

Ahmad et al. [3] propose another type of Units, which is related to the Units defined
by Erwig and Burnett, but includes two extra types of relations between the Units and
supports extra operations in the grammar. The Units described pass more validation tests
on real-world spreadsheets than those of Erwig and Burnett, however, they assume header

12

Spreadsheet Auditing

inference through manual annotation. This manual annotation removes the dependency of
Erwig et al.’s textual representation and meaning, but is unwanted for a web-application. If
the unwanted, extra user effort of annotating the headers is skipped, these Units will also
suffer the same drawbacks as the Units of Erwig and Burnett and are therefore not useful
for our algorithms.

For unit-testing, Antoniu et al. [4] have created XelDa, a stand-alone tool to analyse
Excel-spreadsheets. The tool performs the same kind of checks that Erwig and Burnett
do, so they can test for the same kind of errors. The difference lies in the way the units
are derived; where Erwig and Burnett accomplish this based on the assumed structure of a
spreadsheet, Antoniu et al. do this based on user annotations. While these user annotations
give them the opportunity to report on errors if the calculated unit does not match the ex-
pected unit instead of the inferred unit, it also makes the approach unusable for us, because
we seek to achieve an algorithm without user interaction.

2.3.2 Other Testing Methods

Rothermel et al. [48–50] have made an effort to use methods based in testing imperative
programs, even though there are significant differences between the programming paradigm
and spreadsheets. Since the devised methods rely on users to identify useful test cases,
Rothermel et al. [22] have made an effort to automate this process. While this automation
is a big improvement, the outcome of the test cases still need to be assessed by users. The
script designed to perform this task worked reasonably well in a lab-setting, but the authors
also note that users might very well assess the outcome differently than their script in a real-
world situation. This means that for finding real errors the outcome must still be validated
by users, which is a downside of this method. Another drawback for this effort is that it
is based on the Forms/3 language [14] and not on general spreadsheets. Furthermore, [22]
focuses on the correctness of the output of the formulas, whereas the copying of formula
outcomes produces more structural errors.

Another testing approach that uses the formulas present in a spreadsheet is the interval-
based testing methodology as proposed by Ayalew and Mittermeier [5–8,41]. This method-
ology however regards only the functionality of the formulas, while for this thesis the for-
mulas are presumed to work correctly.

2.4 Spreadsheet Auditing

Besides testing, another way to detect errors in a spreadsheet is to audit it. One of the
primary auditing tools for this thesis is Breviz, the tool built by Infotron. Breviz offers a
framework that is able to read and analyse spreadsheets and to create a dataflow-diagram
out of it [28]. The analysis works on the basis of a number of metrics [26, 29] derived
from known code-smells in software systems. Breviz is now deployed as a stand-alone
web-application, where users can upload their spreadsheets and receive an analysed version
in return. This means that any addition to this tool should also run without needing any
information about the spreadsheet from the user.

13

2. RELATED WORK

Another tool that can be used for auditing purposes is SheetDiff [16]. This tool is
able to compare two spreadsheets, and present the cells that have changed between the
two spreadsheets. Because the tool relies on the structural equality of the two evaluated
spreadsheets it is not applicable here. It would seem that the tool is useful when a second
version of the spreadsheet for which the formula copies must be found is created with some
values altered. Cells that were equal before a change but not after it have been formulas,
and cells equal to the original value of the changed formula have been copies of the original
formula. While at first glance this seems to be a solution, there are two major problems. The
first problem is that not every cell that has stayed the same is guaranteed to not have been
a formula. The second problem is to find out what cells have the largest effect and need to
be changed to affect a formula but not its copied outcome. Computationally, it is not viable
to perform one cell-change at a time, because after a cell-change the complete spreadsheet
must be re-evaluated and then compared to the original. Also, since it is unknown what
cells are copies, when changing every cell the copies will also be changed, leaving them
undetected.

Automated auditing of spreadsheets is also explored by Clermont and Mittermeier [17,
40]. They introduce the notion of logical areas, which are basically cells where a predeter-
mined set of properties is equal. There are three sets of properties defined, where for this
thesis the “copy equivalence”, i.e. both the format and the formulas must be equal [41, 52],
is relevant. Since we focus on finding copies of the formulas, this should be altered to equal-
ity of the outcome of a formula and a non-formula cell. The areas themselves are further
supposed not to be more than d cells separated from each other. While the definition of
these areas seems promising, upon close inspection it fails to meet the requirements. The
areas enclosed by the definition all contain the same value, which, while it may make sense
for formulas, is useless for the constant values that should be matched against the formu-
las. Also, as stated by Clermont and Mittermeier themselves, “The dangerous parts ... are
those where irregularities in the geometrical pattern ... occur”. Since we strive to find an
algorithm that works for different kinds of spreadsheets, this difficulty must be overcome
automatically, so different definitions will have to be found.

Noting that code inspection in traditional software engineering can be seen as a form
of software auditing, Galette et al. [24] have had users analyse spreadsheets, almost like
traditional code inspection. The main difference is in the fact that with code inspection
there usually is a team-phase in which the findings of the individual group members are
combined and discussed, which leads to a higher rate of found errors. Panko [43] also
described this difference and has addressed this by adding group sessions to the inspection
phases. The results of Panko’s study show that group inspections indeed yield better results
than individual inspections. The downside of both studies, however, is that user-inspections
are used, which is something that cannot be automated for an online environment.

In addition to efforts to create new auditing tools, there have also been some surveys of
existing auditing tools. One of these surveys is performed by Nixon and O’Hara [42] and
concerns 5 auditing tools. While this survey addresses a number of possible errors that the
tools should be able to find, the copying of formula-data is not one of them, so it remains
unknown whether these errors will be found by these tools. Since the survey mentioned 5
auditing tools and these tools might have been updated in the meantime, the current features

14

Spreadsheet Auditing

of the tools were compared. The tools surveyed were:

• Excel’s built-in tool’s Built in Auditing functions

• The Spreadsheet Detective1

• The Excel Auditor2

• The Operis Analysis Kit3

• Spreadsheet Auditing for Customs and Excise (SpACE)4

It is clear that Excel’s built-in features do not provide any means to automatically find
formula-copies and the SpACE program does not list any features, so the usefulness of these
two packages has not improved. For the other three packages a comprehensive description
can be found on the products’ websites, but none of the tools provide any functionality to
find the copies.

A second survey, of two tools, was performed by Davis [19]. Davis first explains the
importance of data dependencies in spreadsheets, by explaining that these dependencies are
basically the internal links that exist between cells based on their formulas. What he fails
to recognise, however, are exactly the kind of dependencies that exist when formula-data
is copied. He describes the dependencies by posing the question “what are the dependent
cells of this cell?” while the formula-copies are those cells that do not answer his question,
but are part of the answer of the question “what should be the dependent cells of this cell?”.
Given the questions asked for this survey and the conclusions, it is safe to say that both tools
under scrutiny are unable to find formula-copies.

1http://www.spreadsheetdetective.com/
2http://www.bygsoftware.com/auditor/auditor.htm
3http://www.operisanalysiskit.com/
4http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=

true&_pageLabel=pageVAT_ShowContent&id=hmce_cl_001449&propertyType=document

15

Chapter 3

Clone Detection - The First Approach

To find copy-paste relations within spreadsheets, these relations first have to be defined. In
the initial approach to an algorithm, such a relation was defined to encompass the copying
of every kind of cell. In other words, not only the copy-pasting of formula outcomes but
also the copy-pasting of values had to be detected. To be able to detect this, first some
definitions need to be defined. These definitions already were partially defined by others
(e.g., Hermans [28]), and partly they are new for this thesis. Next, we present the algorithm
itself and we explain its four steps in detail. Generally speaking, the algorithm detects
clones by determining the data blocks within the spreadsheets and comparing these data
blocks with each other. A number of settings can be changed according to specific needs of
the data being tested, including minimum match percentage and minimum data block size.
The reader should take note of the fact that the algorithm described here is not the final
version of the algorithm. We added this algorithm because it served as a fruitful basis for
discussions; as an inspiration for the final version and as a description of an approach that
we feel is not viable. The reasons this algorithm was abandoned will be explained in the
final part of this chapter.

3.1 Definitions

In order to detect copy-pasted data within a spreadsheet, we need to specify what copy-
pasted data is. To do this, some definitions that will be used throughout this thesis are
presented below. These definitions include basic elements like a cell and a worksheet, but
also some elements used in previous research by Infotron, e.g., data blocks. After that, new
definitions are introduced that are needed to reason about clones in spreadsheets, including
definitions for the different types of clones that are distinguished by the algorithm.

3.1.1 Building Elements

Firstly, some definitions are given for elements of spreadsheets that are known to everyone
working with spreadsheets.

Cell: A cell (C) is the basic building block of a spreadsheet.

17

3. CLONE DETECTION - THE FIRST APPROACH

Cell Type: The type of a cell, being either “Formula”, “Value” or “Empty”. The type of a
cell can be found using a function T of type C→ T.

Cell Value: The value that a cell contains. This can be either a string, a number, the result
of the formula in the cell or nothing. It can be retrieved using a function V of type C→ V.

Value Type: The type of the cell value, being either “Text”, “Number” or “Empty”. A
function T of type V→ T can be used to retrieve it.

Location: A tuple {Column, Row} representing the position of a cell within a worksheet.

Column: A function Column of type Location→ Column representing the column of the
given location.

Row: A function Row of type Location→ Row representing the row of the given location.

Worksheet: A worksheet is defined as the set that contains all cells that are located in the
worksheet.

Spreadsheet: A spreadsheet is defined as a set that contains all worksheets contained in
the spreadsheet.

Three definitions follow for elements presented in earlier work of Infotron [28]. The defini-
tions themselves have been altered slightly to fit the purpose of this thesis.

Data Block: A data block (DB) is the smallest rectangle around a cell containing non-
empty cells and bounded by empty cells or the borders of the worksheet. Data blocks can
never be a part of other data blocks. A data block has two dimensions, Width and Length,
which can be requested using formulas of that name.

Data Block Location: A function L of type C× DB→ L representing the relative location
of a cell in a data block.

Precedents: Precedents P is a function of type C→ {C} representing all precedents of a
given cell. Precedents are the cells that a formula refers to, including the precedents of those
cells itself.

Having defined a data block as a rectangle around a certain cell, a set of the cells neighbours
can be created, where the neighbours are automatically part of the same data block. The
definition of this set is:

Neighbours: Neighbours N is a function of type C→ {C} representing all neighbours of a
cell. The neighbours of a cell are those cells that have a location wherein either the Column
or the Row differs only one unit from the location of the cell itself.

To detect clones, we introduce the notion of two cells c1 and c2 being Copy Equal. Intu-
itively, this means that the content of c2 is the result of copy-pasting the cell value of c1.
Since text in spreadsheets is mostly used to provide meaning to the data (see also Abraham
and Erwig [1]), copy equivalence is only defined for cells where the value type is a number.

18

Definitions

Also, if c1 contains a formula, then c2 cannot be in the in the set of precedents of c1. Note
that this means that c2 must always be a value cell, but c1 can be a formula cell. For a
formula cell to be equal to a value cell, the value of the — evaluated — formula needs to
be copied to the value cell. The way in which this copying is performed, e.g., manually
or through Excel’s “paste special, values only” option, makes no difference. To be equal
to another formula cell, both formulas must evaluate to the same value. Formally, copy
equivalence (≡) is then defined as

Copy Equivalence: c1 : C ≡ c2 : C⇔ V (c1) = V (c2)∧ c1 6∈ P(c2)∧ T (c2) 6= Formula∧
T (V (c1)) = Number.

3.1.2 Clone Types

As is the case for code clones in software engineering, there is also a minimum size involved
when defining clones in spreadsheets. This means that a clone is always defined between
two data blocks and not between individual cells. Using the definition of copy equivalence,
a distinction can be made between different types of clones.

The first of these types is a Total Clone. A total clone occurs when two data blocks
have copy equal cells at all locations and are of the exact same size. The formal description
of a total clone is then:

Total Clone: ∀cA :C∈A,cB :C∈B : L(cA,A)=L(cB,B)∧cA≡ cB∧Length(B)=Length(A)
∧Width(B) =Width(A)

The second type is an Edited Clone. In the case of an edited clone, the dimensions of data
block A and B do not need to be equal. This means a relative location is needed to define
the location of a cell in data block B with respect to a location in data block A:

Relative Location: A relative location of a cell in data block B with respect to a location
in data block A is defined as the tuple (r,s). This tuple gives the translation for both the
columns and the rows to get from the location in data block A to the location in data block
B.

Data block A is an edited clone of data block B when some of the cells on the same relative
location are copy equal, or more formally:

Edited Clone: ∃cA : C ∈ A,cB : C ∈ B : L(cA,A)+{r,s}= L(cB,B)∧ cA ≡ cB.

Since an edited clone does not need to encompass the total data block, a definition is needed
for a container of the cells that are included in the clone. For this container a Cell Block is
used, which always contains a subset of the cells in a certain data block and might include
all cells in the data block. Formally, a cell block is defined as:

Cell Block: A cell block (CB) is a rectangle around a cell containing non-empty cells and
is always part of a data block. Within a data block, cell blocks can be nested. As such, like
a data block, it has two dimensions, Width and Length.

19

3. CLONE DETECTION - THE FIRST APPROACH

In order to reason about this type of clones, an indication of how heavily the clone is edited
is needed. For this indication, the measure Edit Ratio is introduced. This ratio is calculated
as the percentage of copy equal cells with respect to all cells present in the clone, or, more
formally:

Edit Ratio: A function ER of type A × B→ ER where ER = |cA:C∈A≡cB:C∈B|
|cA:C∈A|

The third basic type of clones is a Transposed Clone. A transposed clone exists if either a
total clone or an edited clones exists between a transposed data block A (AT) and data block
B. Formally a transposed data block AT is defined as:

Transposed Data Block: ∀cAT : C ∈ AT ,cA : C ∈ A : Row(L(cAT ,AT)) =Column(L(cA,A))
∧Column(L(cAT ,AT)) = Row(L(cA,A))

Since either a total clone or an edited clone can exist between data blocks AT and B, the
transposed clone can be combined with either of these two types, resulting in a Transposed
Total Clone and a Transposed Edited Clone. The transposed total clone is formally de-
fined as follows, using the definition of a transposed data block:

Transposed Total Clone: ∀cA : C ∈ AT,cB : C ∈ B : L(cA,AT) = L(cB,B) ∧ cT
A ≡ cB ∧

Length(B) = Length(AT)∧Width(B) =Width(AT)

Just as a transposed total clone can formally be described using transposed data blocks, the
formal definition of a transposed edited data block is:

Edited Data Block: ∃cA : C ∈ AT ,cB : C ∈ B : L(cA,AT)+{r,s}= L(cB,B)∧ cT
A ≡ cB.

In total, this results in 4 types of clones that are distinguished:

• Total Clone

• Edited Clone

• Transposed Total Clone

• Transposed Edited Clone

3.2 Algorithm

Having formulated these definitions, an algorithm to detect any of these 4 types of clones
can be created. This algorithm consists of a number of steps, as depicted by Figure 3.1. The
pseudocode for this algorithm is given in Algorithm 1.

1. Cell classification. For each cell in the worksheet the type is determined.

2. Identifying data blocks. The data blocks in the different sheets are identified.

3. Identifying possible starting cells. All cells that can serve as possible starting points
for a clone, based on the size of the smallest data block are identified.

4. Matching cells. All cells in the two data blocks are matched with the cells that have
the same relative position to the first cell.

20

Algorithm

Figure 3.1: Overview of the first clone detection algorithm

21

3. CLONE DETECTION - THE FIRST APPROACH

Algorithm 1 First clone detection algorithm
1: Cell classification
2: while ∃c : C ∈ worksheet : c 6∈ data block do
3: Find left-most upper-most cell not in a data block and start DB
4: repeat
5: Expand DB
6: until ∀c : C surrounding DB : T (c) = Empty
7: end while
8: Create a list L← /0 of possible clones
9: for all DBA do

10: Find all other data blocks DBB with corresponding dimensions
11: for all DBB do
12: Create cell blocks CBB if the dimensions still correspond to DBA

13: L← L∪CBB

14: end for
15: end for
16: Create a list K← /0 of clones
17: for all CBB ∈ L do
18: Create clone CL←{c1} : c1 is the left-most upper-most cell of CBB

19: for all c : C ∈ DBA do
20: Calculate {r,s} with respect to the left-most upper-most cell in DBA

21: Find cB : C ∈CBD using {r,s}.
22: CL←CL∪ cB

23: end for
24: Calculate edit ratio of CL and DBA

25: K← K∪CL
26: end for
27: return K

3.2.1 Step-by-Step Explanation

1. Cell Classification To correctly determine whether two cells are copy equivalent, it is
necessary to determine the cell type of every cell. Breviz, the tool upon which this algorithm
was built, provides this functionality, as explained in Hermans [27, 28]. The cell types that
are distinguished here differ slightly from the cell types we use in the rest of this thesis, as
the cell types found are “Data”, “Label”, “Formula” and “Empty”. “Data” and “Label” are
both part of the cell type “Value” that is used during this thesis. A distinction is made based
on the value type of the cells, but this distinction is slightly different from the one used in
Breviz, since both “Data” and “Label” can have value type “Text” and “Number”. For a
more detailed explanation of the algorithm and the distinguished types we refer the reader
to Hermans [27, 28]. Since the types determined by Breviz are slightly different from the
types used throughout this thesis, we transformed the types so that only the three cell types
used in this thesis result from this step.

22

Algorithm

2. Data Block Identification The second step consists of determining the data blocks that
are present in a worksheet. These data blocks are found by looking for the left-most upper-
most cell of a spreadsheet that is not yet contained in a data block. Starting from this cell,
the data block is expanded horizontally and vertically, at all times remaining a rectangular
shape. For this expansion, the neighbouring cells of those cells that are currently at the edge
of the data block are continuously added to the data block, until such a neighbouring cell is
empty. This step is detailed in pseudo code in the lines 2 to 7 of Algorithm 1. As said with
the presentation of the different clone types, the clones are based on data blocks rather than
on individual cells. This is done to prevent too many clones being found when a certain
number occurs multiple times. This is reflected in papers on code clone detection (see also
Roy and Cordy [51]), where a clone generally only exists for a number of tokens instead
of for a single token. As with the cell classification, Breviz provides the functionality to
extract the data blocks from worksheets, which is explained in detail in Hermans [28].

3. Starting Cell Identification For the third step (see lines 8 to 15 of Algorithm 1),
the initial cells in a data block need to be found, along with the other data blocks that could
possibly result in clones. For each data block (DBA) in the worksheet, every other data block
(DBB) that has the corresponding dimensions is checked. According to the definitions of
the total and edited clones, the corresponding dimensions in this case mean that DBB must
be at least as DBA, in both Length and Width. After creating a list of data blocks with the
corresponding dimensions, for every data block DBB that is larger than DBA cell blocks
(CBB) are created. For all created cell blocks CBB with the corresponding dimension (cf.
the corresponding dimensions of a data block) a possible clone is created by adding the top
left cell as starting cell for the clone. In order to find cells in the cell blocks that are the basis
of the possible clones on the same relative location as the other cells in DBA, CA is also the
top left cell of DBA. For these starting cells (CB) a match is calculated by comparing the
value V (CB) with the value of the starting cell CA of data block DBA. This comparison is an
implementation of the copy equivalence definition. Since for edited clones not all cells need
to be copy equal, the possible clones without copy equal starting cells are not discarded.

4. Cell Matching With the possible clones found, in the fourth step of the algorithm we
can expand these clones, as done in lines 16 to 27 of Algorithm 1. For each cell CA in the
original data block DBA, the relative position to the top left cell, i.e. the starting cell of DBA,
is calculated. This relative position is then used to find the corresponding cell CB in the cell
blocks of the possible clones. This corresponding cell CB is then compared to CA using the
same implementation of copy equivalence as was used in the third step. When this is done
for all cells CA in the original data block DBA, the result is a list of all clones for this data
block. For every clone the edit ratio can then be calculated and presented to the user.

To be able to support transposed clones, some adaptations needed to be made to this
algorithm. In the third step, the dimensions of cell and data blocks (CBB and DBB) are
checked, making sure that the Width and Length of these blocks are at least as large as the
Width and Length of the original data block DBA. For transposed clones, the Width and

23

3. CLONE DETECTION - THE FIRST APPROACH

Length of CBB and DBB are compared to the Length and Width of DBA. The starting cell
of the different blocks remains the top left cell of the block. In the fourth step, cells in CBB

are found on the same relative location as the current cell in DBA. Dealing with transposed
clones, the coordinates of the relative location of the current cell in DBA are inverted to find
the corresponding cell in CBB. The other steps of the process all remain the same.

3.3 Optimisations

In this algorithm, there are a number of ways to perform some optimisations. Some of
these optimisations are implemented as options, so the user of the algorithm can directly
influence its output, for example by changing the edit ratio. Other optimisations, e.g., direct
calculation of the edit ratio, have been implemented to speed-up the algorithm. A third
category of optimizations has not yet been implemented and we consider them to be future
work, for instance changing the edit ratio to an edit distance.

3.3.1 Options

Some options are included in the algorithm to be able to control the number of clones found.
The first of these options is the minimum size of a data block. This minimum size is given as
the minimum number of non-empty cells that must be present in the data blocks for which
to find the clones. Secondly, to control the number of clones found regardless of the size of
the originating data block, a limit can be set on the edit ratio. This limit is a maximum ratio,
given as a percentage, to prevent cell blocks with too many differences to the original block
being registered as a clone. Using these two options proved insufficient when the algorithm
was tested on data sets that included a large number of empty or blank cells. To support
this type of spreadsheets, an option was included to provide a threshold for a maximum
number of blank cells in a data block. To correctly handle data blocks of different sizes, this
threshold is given as a percentage of the total number of cells.

3.3.2 Implemented Optimisations

The first of two implemented optimisations concerns the discarding of clones. During the
fourth step of the algorithm, cells are continuously added to a clone in the list of possible
clones. With every cell that is added, the total edit ratio for that clone either increases or
decreases. Having set a minimum value for this edit ratio, and knowing how many cells are
in the original data block, the minimum number of cells in CBB that must be copy equal to
a cell in DBA can be determined. And vice versa, the maximum number of cells in CBB that
is not copy equal to a cell in DBA can also be calculated. After each addition of a new cell
to the clone, this maximum can be compared to the current number of non copy equal cells
that is present in the clone. When there are more cells in the clone present that are not copy
equal than is allowed, the clone can be disregarded altogether, thus improving the runtime
of the algorithm.

The second implemented optimisation originates from the field of software engineering.
Ducasse et al. [20] present a technique to store the results of previous comparisons in a ma-

24

Abandonment

trix, and to use this matrix as a lookup to substitute a lengthy number of comparisons. This
technique was also implemented in the algorithm by storing the cell block and correspond-
ing edit distance for every found clone. Thus, when a clone with a cell block CBB had been
found, the clones that existed for the data block DBB CBB resides in could also be added as
edited clones. When CBB happened to be equal to a data block DBB all total clones of this
data block could also directly be added as total clone for the current data block DBA.

3.3.3 Future Work

There were two optimisations conceived that were not implemented in the algorithm and
that we considered to be future work. The first of these two was a fingerprint checking
algorithm, comparable to the fingerprinting explained by Johnson [31]. If a fingerprint
could be constructed for a data block, two data blocks could be compared by fingerprint.
This would lead to a fast algorithm for finding the total clones in a spreadsheet, without
having to compare every cell. To be exceptionally effective, a fingerprint would have to be
devised that would allow for some indication of how far removed in terms of edit distance
the two cell blocks are. If such a fingerprint is created, it can be used to quickly disregard
the cell blocks that are too far removed.

The second optimisation was the transformation of the edit ratio to a measure that more
closely resembled the Levenshtein Distance [37]. Since the Levenshtein Distance is con-
siders the number of changes needed for one string to mutate into the other, we wanted the
edit ratio to reflect this. As the measure would then change to a distance instead of a ratio,
a new definition was deemed necessary, the Edit Distance. The new definition of an edit
distance is:

Edit Distance: The number of blocks of adjacent cells needed to change in order to mutate
one cell block into the other.

A block of adjacent cells is counted as 1 edit here, because spreadsheet tools like Excel pro-
vide easy functionality to edit adjacent cells with one click or keystroke. For non-adjacent
cells more actions are needed, leading to the conclusion that this is done on purpose and
therefore should count as more edits.

3.4 Abandonment

As stated before, the algorithm described above has been abandoned. For this abandonment
there are a number of reasons. One of the three main reasons was the fact that we found that
there are more types of clones in spreadsheets we would like to be able to detect. In and of
itself the failure to detect certain kinds of clones was not enough of a reason to abandon the
algorithm, but combined with the large runtime and inspiration for another approach it was.
This other approach is what the final algorithm was based upon, so we refer the reader to
the next chapter for an in-depth explanation.

25

3. CLONE DETECTION - THE FIRST APPROACH

3.4.1 Clone Types

The clones that can be detected using the described algorithm are clones of which the values
can possibly be changed, but the order of the values must have remained equal. Since
the detected clones all have an analogy in software engineering, this makes perfect sense,
because in software engineering changing the order of computations potentially has serious
consequences. In a spreadsheet, on the other hand, changing the order of the entries by
sorting a table slightly different, does not change the meaning of the values, only the way
in which the user perceives the data. Because the meaning of the data does not change, it is
possible for users to sort a column by ascending values one time, and later sort the column
by descending values. The current implementation will fail to notice the clone in at least
one of the two situations and possibly in both, when one half of the clone is not sorted at
all. Since the meaning of the values does not change when they are ordered differently, a
new type of clone should be defined that allows for two cell blocks to be equal when they
contain cells that are copy equal, without having the same location. This new type of clone
is an Ordered Clone:

Ordered Clone: ∃cA : C ∈ A,cB : C ∈ B : cA ≡ cB.

This definition can be altered to contain all cells in A, or cells in AT for the total resp.
transposed clones, leading to a total of 8 types of clones. Of these 8 types of clones, 4
are exactly equal to the ones described above. The other four are almost equal, but lack
the restriction on equal relative locations. The restrictions on the sizes remain for the total
clones, because the size of a column does not change when the ordering is changed.

3.4.2 Runtime

A second large downside of this algorithm, and thus one of the reasons this algorithm was
abandoned, was its runtime. With the described improvements to the algorithm, it took
the algorithm over half an hour to process a random selection of 24 sheets taken from the
EUSES corpus [23]. Discussing several ideas on how to improve this runtime we came up
with the optimizations described above. After implementing two of them, we still found a
large, though a bit improved, runtime of over half an hour. Combining this with the fact
that certain clones were not found, we started to consider a completely different approach
for clone detection in spreadsheets. Since this approach would be able to detect the ordered
clones, we decided to implement this new approach in a new algorithm and compare its
runtime results with this algorithm. When it became apparent that the new approach (as
described in Chapter 4) was significantly faster than this approach, using six and a half
hours for the complete corpus consisting of almost 4500 files, we abandoned this algorithm
and further developed our second algorithm.

26

Chapter 4

Copy-Paste Relations - The Second
Approach

Our second approach to an algorithm has been influenced strongly by Johnson’s work [31]
on code clone detection. His techniques of fingerprinting and keeping a lookup table have
been implemented here, with satisfactory results. Applying these techniques allowed us
to reinvent our definitions and to design a method that would overcome the shortcomings
of our previous attempt. Having developed an algorithm that performed according to our
expectations, we also had to consider ways to report the results to the user. For this feedback
we extended Breviz’ existing feedback system and we found a new way to do present this.

4.1 Definitions

For the algorithm described here, most of the definitions as they are described in Section
3.1 are also used. Of these definitions, some are reused exactly as they were, while others
needed to be redefined, which is done below. Also, a small number of new definitions is
needed to reason about this algorithm, which means they are introduced as well.

4.1.1 Previously Defined

Of the previously defined definitions for the building elements of a spreadsheet, only the
definition of copy equivalence is altered for this algorithm. To illustrate the difference, the
definition of copy equivalence was given as:

Copy Equivalence: c1≡ c2⇔V (c1)=V (c2)∧c1 6∈P(c2)∧T (c2) 6=Formula∧T (V (c1))=
Number.

This definition meant that no restriction was put on the first cell, as long as its value type
was a number. For this new algorithm, a restriction on the type of the first cell is added, for a
number of reasons. The first reason has to do with the runtime of the algorithm. Restricting
the type of cells that are eligible to be part of a clone, means that there are (possibly) fewer
cells part of such a clone. Having fewer cells that are part of a clone, means the algorithm
will be able to compute the clones that are present in a spreadsheet in less time. Since the

27

4. COPY-PASTE RELATIONS - THE SECOND APPROACH

algorithm is designed to be used as part of a web-application, this speed is an important
factor.

The second reason we believe this restriction is justified is because of the nature of a
copy-paste relation. Generally speaking, there are two kinds of copy-paste relations; the
first is one where the value of a value cell is copied to another cell, the second one is where
the value of a formula cell is copied. In both of these cases it is obvious that when the
origin of the data is altered, its copy should also be altered. The most dangerous of these
two is however when a formula cell is copied, because the outcome of a formula can change
without the user knowing it has changed. When a user alters the value in a value cell, he or
she knows he has altered that cell, but he or she possibly does not know that some formula
depends on that cell and therefore also changes. If a user does not know a formula has
changed, he or she will most definitely not know a copy of this formula should also change.
In a way, this kind of copy-paste relation creates an even more invisible link between two
cells than the copying of a value cell does, so in this new algorithm we only look at the
copying of formula cells. The definition of copy equivalence needs to change according to
this restriction, and becomes:

Copy Equivalence: c1≡ c2⇔V (c1)=V (c2)∧c1 6∈P(c2)∧T (c2) 6=Formula∧T (V (c1))=
Number∧T (c1) = Formula.

This extra restriction does not reduce the need for the restriction of the value type of cell
c1 to be a number, because there are also formulas that manipulate text, e.g., formulas for
string concatenation.

Some definitions that were defined for the previous algorithm are not needed for this
version. Due to the different approach we have taken here, there is no longer a need for
the definitions of a data block and a data block location. The clone types for total clone
and edited clone are not needed as such, but new objects closely resembling them are used.
Not having a definition for an edited clone means that the definition for a relative location
is also superfluous, as is the definition of a cell block. For a cell block however there is
a new object closely resembling a cell block. Without a definition for a data block, there
can obviously not be a definition for a transposed data block, without which transposed
clones cannot exist. Being one of the reasons the first algorithm was abandoned, ordered
clones are expected to be found by the algorithm described below. Though the type of clone
as such does not exist, thus having no definition, this is indeed the case, as will be explained
below. To accompany the new version of the edited clones, the definition for edit ratio has
been preserved.

Since a data block location is no longer needed in this version of the algorithm, the
definition of a Location can be slightly altered to:

Location: A function L of type C→ {Column, Row} representing the position of a cell in
a worksheet.

4.1.2 New Definitions

For the algorithm described here, some new definitions need to be clarified. Intuitively, the
algorithm tries to find a formula cell whose value is copied to another cell, the very basis

28

Definitions

of a copy-paste relation. From this intuitive definition, it follows that such a relation always
has two sides; a formula cell as origin and a value cell on the other side. These two sides of
such a relation together form a tuple, that we refer to as a Clone. The definition of a clone
thus becomes:

Clone: A tuple {c1,c2} : T (c1) = Formula∧T (c2) = Value.

This definition is different from what we used in the previous algorithm, where we stated
that “a clone is always defined between two data blocks and not between individual cells”
(cf. Section 3.1.2). Following the same reasoning used for the first algorithm, a minimum
size is required, so a definition is needed for a group of cells that are part of a clone. Such a
group of cells is called a Clone Cluster. More precise, the definition of a clone cluster is:

Clone Cluster: A set {CC} where ∀c1 : C ∈CC,c2 : C ∈CC : T (c1) = T (c2)∧
(T (c1) = Formula∨T (c1) = Value)∧∃Cl1 : Clone 3 c1∧∃Cl2 : Clone 3 c2

From this definition it follows that all cells in a clone cluster must have the same cell type,
either all being a formula cell or all being a value cell. The definition also states that a cell
can only be part of a clone cluster when the cell is part of at least one clone. Following from
this definition, a clone cluster has a specific type, based on the type of cells present in the
cluster:

Clone Cluster Type: A function T of type CC→ T representing the type of cells present
in the clone cluster, being one of “Formula” or “Value”.

Having definitions for clone clusters, the equivalents for a total clone and an edited
clone must be considered. According to the definition in Section 3.1.2, the two data blocks
of a total clone must have copy equal cells at all locations and they must be of the same size.
Since clone clusters are used in this algorithm instead of data blocks, the definition needed
to be altered. To avoid confusion and to use consistent naming, there is now a definition for
Matching Clusters:

Matching Clusters: (∀c1 : C ∈CC1,∃c2 : C ∈CC2 : c1 ≡ c2)∧|CC1| ≤ |CC2|

In plain English, this means that two clusters match if they contain the same values. There
is no restriction on size, which means that this definition in theory allows for more clones
to be found. Having an equivalent to a total clone as it was defined for the first algorithm,
an equivalent for the edited clone is needed and defined here. Equivalent to terminology
used in code clone detection, clusters that do not all contain the same values are named
Near-miss Clusters. The formal definition of such clusters is:

Near-miss Clusters: ∃c1 : C ∈CC1,c2 : C ∈CC2 : c1 ≡ c2

Needing at least one clone with a cell in both clusters, there are possibly a large number
of near-miss clusters. Using the edit ratio as defined for the previous algorithm allows
reasoning about different near-miss and matching clusters. For the sake of completeness,
the definition of the edit ratio was:

Edit Ratio: A function ER of type A × B→ ER where ER = |cA:C∈A≡cB:C∈B|
|cA:C∈A|

In this definition both A and B are clone clusters, where A is the smallest cluster of the two.

29

4. COPY-PASTE RELATIONS - THE SECOND APPROACH

4.2 Algorithm

Our new algorithm consists of a number of steps, depicted in Figure 4.1 and described in
pseudo code in Algorithm 2. The steps of the algorithm are:

1. Cell classification. For each cell in the worksheet the type is determined.

2. Lookup creation. A lookup table is created with the locations of each value.

3. Pruning. The lookup table is emptied of values with a single location.

4. Cluster finding. Clusters are created with cells that are contained in a clone.

5. Cluster matching. The created clusters are matched and outputted to the user.

These five steps are added to the existing algorithms of Breviz, the tool created by
Infotron. This means that, as previously stated, the algorithm was designed to be part of
a web-application and was therefore required to be as responsive and fast as possible. In
addition, care had to be given to the output that was reported to the user, since he or she is
able to use the algorithm without the option of direct support from one of its designers.

4.2.1 Step-by-Step Explanation

1. Cell Classification The first step of the algorithm, described in pseudo code in line 1
of Algorithm 2, is equal to the first step in the first version of the algorithm. For the sake of
completeness a small description is given here as well, even though a more detailed expla-
nation has been given in Section 3.2.1. Breviz provided the largest part of the functionality
to classify the cells of the spreadsheets, as detailed in [27, 28]. Since we use slightly dif-
ferent types for this algorithm than are outputted by Breviz, a transformation is performed
and the final output consists of cells with a cell type being one of “Formula”, “Value” or
“Empty”. In Figure 4.1, after the first step the cells with type “Value” are marked green
and those with type “Formula” are marked orange. To avoid confusion, only those cells that
have a value type “Number” are marked in the figure, even though this is not wholly correct
in this instance.

2. Lookup Creation As seen in lines 2 to 11 of Algorithm 2 and in Figure 4.1, in the
second step of the algorithm a lookup table is created. This lookup table takes the cell
values as keys and a list of cell locations as values. The idea to create such a lookup table
is taken from Johnson’s algorithm [31] for code clone detection. Where Johnson creates a
table using fingerprints of lines of code, we use the value of a cell as its fingerprint. This
lookup table is initially empty, and for every cell that is encountered the table is extended,
by either adding the cell location to the list of location for a value that already existed, of
by adding a new entry to the table.

30

Algorithm

Algorithm 2 Final clone detection algorithm
1: Cell classification
2: Create lookup table LT ←{ε, /0}
3: for all c : C ∈ worksheet do
4: if V (c) ∈ LT then
5: {V}←V (c)⊆ LT
6: else
7: {V}← /0

8: end if
9: V ←V ∪L(c)

10: LT ← LT ∪V
11: end for
12: Create a list FC← /0 of formula cells and a list VC← /0 of value cells
13: for all {V,{C}} ∈ LT : T (V) = Number∧|{C}|> 1 do
14: if ∃c1,c2 ∈ {C} : T (c1) = Formula∧T (c2) = Value then
15: for all c ∈ {C} : T (c) = Formula do
16: FC← FC∪ c
17: end for
18: for all c ∈ {C} : T (c) = Value do
19: VC←VC∪ c
20: end for
21: end if
22: end for
23: Create a list {CCF}← /0 of clone cluster of type formula and a list {CCV}← /0 of clone

cluster of type value
24: for all c ∈ FC∪VC do
25: Create clone cluster CC←{c}
26: if c ∈ FC then
27: Expand CC using FC
28: CCF ←CCF ∪CC
29: else
30: Expand CC using VC
31: CCV ←CCV ∪CC
32: end if
33: end for
34: Create a list R← /0 of clone clusters
35: for all CC1 ∈CCF do
36: for all CC2 ∈CCV do
37: if ER(CC1,CC2)> threshold then
38: R← R∪{CC1∪CC2}
39: end if
40: end for
41: end for
42: return R

31

4. COPY-PASTE RELATIONS - THE SECOND APPROACH

Figure 4.1: Overview of the final clone detection algorithm

3. Pruning During the process of pruning, detailed in lines 12 to 22 of Algorithm 2, it is
firstly ensured that only those cells of which the value is of type “Number” are considered.
The second part of the pruning process is again inspired by Johnson’s algorithm. Johnson
removes all fingerprints from his lookup table that only occur once in the source files. Anal-
ogous to this, only those cells with values that occur multiple times are kept as eligible for
clone creation. When this selection of cells has been made, for each cell value the algorithm
checks the list of locations. The cells at the locations that are in the table entry are inspected
and when both a cell of type “formula” and a cell of type “value” have been found, all cells
in the entry are added to a list of either formula cells of value cells, depending on their
respective types. Despite the way the algorithm is shown in Figure 4.1, the filtering for only
cell with a value type “Number” is done here, and not in the first step. The pruning of the
list so that only values that occur multiple times in the spreadsheet remain is depicted here

32

Algorithm

by erasing the value 0,323333 from the table.

4. Cluster Finding With the two lists resulting from the previous step, clone clusters are
created. The process of creating these clusters is described in lines 23 to 33 of Algorithm
2 in pseudo code. For each cell that has been added to one of the two lists of cells, a clone
cluster is created, provided the cell does not already belong to a clone cluster. When a clone
cluster of one cell is created, the cluster is expanded to try to maximize its size. Where
the expansion in the previous algorithm only worked downward and to the right, which was
possible given that the algorithm always started in the left-most upper-most cell, and went
on until it hit an empty cell, it works slightly different here. As was stated in the definition
of a clone cluster, all cells in a cluster must have the same type. Since the algorithm started
with a cell from a list that is known to contain only cells of the same type, the expansion
is performed using this list. The expansion of a clone cluster works by looking at the cells
that are currently present in the cluster. For each cell that is present, its neighbouring cells
are looked up. If the neighbouring cells are not yet present in the clone cluster, but they are
present in the list, they are added to the clone cluster. It is necessary here to check whether
the neighbouring cells are present in the list, because they are only allowed in the clone
cluster if they not only have the correct type but also are part of a clone, the two conditions
based on which a cell is added to the list in the third step of the algorithm. As can be seen
in Figure 4.1, the result of this step is block of neighbouring cells that are all of the same
type, i.e. a cluster.

5. Cluster Matching In this final step, the clone clusters are compared with each other
using the edit ratio as defined above (cf. lines 34 to 42 of Algorithm 2). Each clone cluster
containing formula cells is compared to each clone cluster containing value cells and the edit
ratio between those two clone clusters is calculated. Because during this step the location
of the values within the clusters is irrelevant, a different ordering of the values in the two
clusters will result in the same error ratio as when the two clusters were ordered the same.
This means that the ordered clones as defined in Section 3.4.1 will also be found using
this algorithm. If the edit ratio exceeds a given threshold, the clone clusters have enough
commonalities to mark them as a copy-paste relation and present them to the user. Setting
this threshold to 100% results in the algorithm only finding those copy-paste relations where
the edit ratio between the two clone clusters is 100%, meaning that near-miss clone cluster
will not be reported. The match between the two clusters is shown in Figure 4.1 with a
curved line between the two clusters.

4.2.2 Options

The threshold that can be set for the edit ratio is one of the options the user can control
himself, just as it was an option in the first algorithm (cf. Section 3.3.1) and called the
Minimum Edit Ratio. In addition to the ability to control the minimum edit ratio, the user
has a number of other options at his disposal to control the output. In our first algorithm,
there was an option to control the minimum size of a data block. An equivalent of that
parameter has been introduced in this algorithm, called Minimum Cluster Size. With this

33

4. COPY-PASTE RELATIONS - THE SECOND APPROACH

Figure 4.2: Example report as outputted by Breviz

parameter, the outcome of the fourth step of the algorithm can be altered; since only those
clone clusters are returned that have a number of cells that is minimally as large as the value
of this parameter.

Another way to influence the fourth step is by changing a parameter called Step Size.
This parameter influences the expansion of clone clusters by changing the search radius for
neighbours. Setting this parameter to 1 means that only direct neighbours of a cell in a
clone cluster are considered for addition to the clone cluster, thereby resulting in no gaps in
a cluster. Increasing it, however, leads to possible gaps in a cluster, since not only the direct
neighbours of the cells are found, but also cells being further away from the current cell,
where the step size controls how far away such a cell may maximally be.

The third way to influence the fourth step is by changing a parameter that controls the
minimal number of different values that must be present in a clone cluster. This parameter
is dubbed Minimal Different Values and was introduced because we believe that if there
are large clone clusters present with a very small number of different values, these might
not be very interesting to the user in terms of copy-paste relations.

34

Visualisation

4.3 Visualisation

After the copy-paste relations have been detected, the results need to be presented to the
user. Since the user is able to run the algorithm on his own, without support or a further
explanation, the output of the algorithm needs to be presented in a way that the user is able
to use. This comprehension of the output is aided by providing the output in a way Breviz
also uses to output the results of its other parts. This means there are two ways the output
is presented to the user: in a textual report (cf. Figure 4.3) and in a data flow diagram (cf.
Figure 4.4) as is also done by Hermans in [29]. Besides this visualisation, another way
of feedback has also been thought-out, but remains to be future work. This new form of
feedback involves representing the output in the spreadsheets themselves.

Figure 4.3: Detail of Copy-pasting section of the report

4.3.1 Extending Breviz

The current implementation of Breviz allows for two types of feedback. Firstly, a textual
report is presented after the analysis of a spreadsheet, with different section for the different
parts of the analysis. An example of such a report can be seen in Figure 4.2.

It is beyond the scope of this thesis to explain all the different sections of the report,
but we refer the interested reader to Hermans [26, 29]. The section added by this algorithm
is the final section, titled Copy-pasting, will be explained here in detail. For this detailed
description, a detailed example of the report is given in Figure 4.3. The first thing to notice
is that the section is divided into two parts; one part indicating the clones occurring over dif-
ferent worksheets, the other for the clones occurring in the same worksheet. This difference
is created to aid the user in understanding the outcome. Copy-paste relations occurring over
multiple worksheets are often harder to notice than such relations within the same file, if
only because Excel does not provide functionality to easily view two worksheets at once. A
second reason for splitting the output is to enable the user to retain a comprehensive view of
the results. Especially when a large number of copy-paste relations exist in a spreadsheet,
a user is likely to become confused when all results are presented as a long list and the
user does not know where to start correcting the relations. Splitting the output in this case
possibly reduces the size of the list, so the users can focus more on the relations he wishes
to solve. Within the two parts, the clones are textually represented by the first and last cell
of both clone clusters that are part of a copy-paste relation. If there are multiple clones to

35

4. COPY-PASTE RELATIONS - THE SECOND APPROACH

be reported in a section, the ordering of the clones can be slightly influenced by the user,
depending on what he or she feels is appropriate for his situation. The basic sorting is by
edit ratio, where the copy-paste relations with the lowest edit ratio are presented first, i.e.
matching clusters are presented before near-miss clusters.

In addition to the report, the second method of feedback Breviz provided were data
flow diagrams. In the existing diagrams, the worksheets of a spreadsheet were visualised as
rectangles and the links between the worksheets as arrows. The arrows used to indicate a
link consisted of a solid line. To indicate that a copy-paste relation has created a different
kind of link between two worksheets, we used dashed lines to create the arrows for these
relations. An example of what this looks like can be seen in Figure 4.4.

Figure 4.4: Example of a data flow diagram

4.3.2 Future Work

Feedback that has to be considered as future work concerns the feedback that can be given
within a spreadsheet. Breviz is already capable of outputting a spreadsheet where the cells
are coloured according to different criteria, e.g., cells that share a common formula are
given a common colour. We propose as future work to create such a spreadsheet, where
the different copy-paste relations are coloured and annotated. Using this form of feedback,
the user gets a new version of his own spreadsheet in which he can directly see what copy-
paste relations are present. The clone clusters that contain value cells should be annotated
with a note stating the origin of the data, while the clone clusters containing formula cells
should have a note regarding the copy or copies of the data. Using this kind of feedback,
the user is more likely to be able to improve on the design of the spreadsheet by changing
the copy-paste relation to a link.

36

Chapter 5

Categorisation of Copy-Paste
Relations

As shown in Figure 4.3 the result of our algorithm is printed in a report as a list of copy-
paste relations. However, this list turned out to be quite long in some instances. When
this list is too long, a user is inclined to lose track of what he is supposed to change to
his spreadsheet to improve its design. This is the reason some distinctions needed to be
made between the different relations. A very coarse distinction has already been introduced
before and concerned the location of the relation, i.e. whether the concerning clone clusters
were located within one worksheet or not. In this chapter we introduce a number of other
methods to distinguish between different copy-paste relations. We relate this distinction to
the different types of code clones described in Section 2.2.

5.1 Clone Cluster Categories

As identified in Section 2.2 there are a number of categories for copy-paste relations that
have some analogy to categories defined for code clone detection. The different categories
were defined as TypesS I – III, and are given here again as a reminder:

TypeS I Identical values and formatting

TypeS II Identical values

TypeS III Modified values:

a) One-cell difference

b) Multiple one-cell differences

c) Multiple differences.

5.1.1 Explanation per TypeS

These TypesS are defined in Section 2.2 without paying attention to the implementation of
the algorithm used to find the copy-paste relations. Since we have defined an algorithm that

37

5. CATEGORISATION OF COPY-PASTE RELATIONS

uses clone clusters, these descriptions need to be rewritten in terms of these clone clusters
before they are useful.

TypeS I The first type was described as a copy-paste relation wherein all cells have iden-
tical values and formatting. In our algorithm, a copy-paste relation is defined as a matching
between two clone clusters, so the description of this first type changes to use these clone
clusters. Since the values of the cells are already incorporated in the definition of a clone
cluster, the description changes to: “Two clone clusters where for every cell in the smallest
cluster there is a cell in the other cluster with the same value and formatting”. To be able to
say two cells have the same formatting, we need both a notion of formatting and a notion
of equality or differentiation. The formatting of a cell in a spreadsheet can be very exten-
sive and is handled in detail below, in Section 5.2, but for our purpose here a very coarse
definition suffices:

Cell Formatting: A function F of type C→ F representing the cell format.

With this definition of the formatting of a cell, two cells are Formatting Equal if their
formatting is equal. Defining formatting equality like this means that two cells can also be
formatting equal if they are not copy equal (cf. definition of copy equivalence in Section
3.1). Formatting equality (=F) is formally defined as:

Formatting Equality: c1 : C =F c2 : C⇔ F(C1) = F(C2).

Every part of the description of a TypeS I relation now having a meaning, a formal definition
can be given as:

TypeS I: (∀c1 : C ∈CC1,∃c2 : C ∈CC2 : c1 ≡ c2∧ c1 =F c2)∧|CC1| ≤ |CC2|

As this definition is very similar to the definition of two matching clusters, as given in
Section 4.1.2, the informal description of a TypeS I can be changed to: “Two matching
clone clusters where for every cell value there is a clone with formatting equal cells”.

TypeS II As previously discussed in Section 2.2, the defined TypesS allow for more differ-
ences when the TypeS increases. This means that TypeS II will allow for more differences
than TypeS I. From the informal description of TypeS II we see that there is no restriction
on the formatting differences, where this restriction is present in TypeS I. Removing this
restriction from the informal description of TypeS I, we get the description of TypeS II:
“Two matching clone clusters”. This description leads to a formal definition for a TypeS II
relation as:

TypeS II: (∀c1 : C ∈CC1,∃c2 : C ∈CC2 : c1 ≡ c2)∧|CC1| ≤ |CC2|

TypeS III For TypeS III a general description exists, encompassing the different descrip-
tions of its subtypes. This description is such that it allows a TypeS III relation to have
more differences than a TypeS II relation, just as is the case with TypeS II versus TypeS I
relations. As with a TypeS II relation, in a TypeS III relation there is no restriction on for-
matting equality. The difference between these two TypesS is that in a TypeS III cell values

38

Clone Cluster Categories

may differ. In terms of the clone clusters of our algorithm, it means that the clone clusters
that make up a copy-paste relation do not have to match, i.e. they can be near-miss clusters.
This leads to a description of TypeS III: “Two near-miss clone clusters”, which is formally
defined as:

TypeS III: ∃c1 : C ∈CC1,c2 : C ∈CC2 : c1 ≡ c2

As stated above, there are three subtypes for a TypeS III relation. These subtypes restrict
the way in which two clone clusters are allowed to differ.

TypeS IIIa In TypeS IIIa, only one one-cell difference is allowed, according to the de-
scription. To explain the concept of a one-cell difference, we need the notion of a cell’s
neighbours. This notion has been introduced in 3.1 as:

Neighbours: Neighbours N is a function of type C→ {C} representing all neighbours of a
cell. The neighbours of a cell are those cells that have a location wherein either the Column
or the Row differs only one unit from the location of the cell itself.

This definition allows us to formally define a one-cell difference as:

One-cell difference: c1 : C ∈CC1 : ∀cn : C ∈ N(c1)∃c2 : C ∈CC2 ≡ cn∧|CC1| ≤ |CC2|

Informally, this means that for each cell c1 in the smallest cluster that is not copy equal to
a cell in the larger cluster, all the neighbouring cells of c1 must have a copy equal cell in
the larger cluster. The description of a TypeS IIIa relation is, using the notion of a one-cell
difference, “Two near-miss clone clusters where only one one-cell difference is allowed
between the two clusters”. More formally, this is:

TypeS IIIa: ∃c1 : C ∈CC1,c2 : C ∈CC2 : c1 ≡ c2∧|{c : C ∈CC1} : ∀cn : C ∈ N(c)∃c2 : C ∈
CC2 ≡ cn|= 1∧|CC1| ≤ |CC2|

TypeS IIIb In TypeS IIIb again more leniency is allowed with respect to TypeS IIIa. Where
the number of one-cell differences was restricted to 1 for a TypeS IIIa relation, here this is
abandoned, so a number of one-cell differences can occur. This leads to a formal definition
of a TypeS IIIb relation as:

TypeS IIIb: ∃c1 : C ∈CC1,c2 : C ∈CC2 : c1 ≡ c2∧ c1 : C ∈CC1 : ∀cn : C ∈ N(c1)∃c2 : C ∈
CC2 ≡ cn∧|CC1| ≤ |CC2|

This means that “Two near-miss clone clusters where only one-cell differences are allowed
between the two clusters”.

TypeS IIIc To capture all types of near-miss clone clusters with the given definition of a
TypeS III relation, we need a third subtype. The first two subtypes restrict the differences
that are allowed to exist between the two clusters to one-cell differences, meaning that no
two neighbouring cells can ever be different. Hence, TypeS IIIc is defined as “Two near-
miss clone clusters”, the same as the TypeS III relation. Having the same description as the
general TypeS III, the formal definition is also the same:

TypeS IIIc: ∃c1 : C ∈CC1,c2 : C ∈CC2 : c1 ≡ c2

39

5. CATEGORISATION OF COPY-PASTE RELATIONS

5.2 Formatting Differences

In spreadsheets, a specific formatting of a cell can give its contents a specific meaning. For
example, since dates are stored internally as numbers, one number can be formatted as a
date, while its copy can be formatted as a monetary value. On the other hand, there are
also a number of formatting options that do not impose a specific meaning on a cell, like
the thickness of a cells borders. Using those formatting options that possibly change the
meaning of a cell, we are able to distinguish a total of five main formatting differences.
Each of these differences is notated as FD with a three-letter subscript as an indication of
the kind of difference. However, since two of these main types are further divided, these
subtypes have a six-letter subscript, as can be seen in Table 5.1.

Notation Meaning
FDTYP Type difference
FDMON Monetary difference
FDMONSYM Monetary symbol difference
FDMONNOT Monetary notation difference
FDDAT Date difference
FDDEC Decimal difference
FDIND Independent difference
FDINDCOL Independent colour difference
FDINDCON Independent conditional difference
FDINDGEN Independent general difference

Table 5.1: Description of formatting differences

5.2.1 Categorisation

To generalise the options that can change the meaning of a cell, cells have a formatting
property called Numberformat. Using this numberformat property, it is possible to colour
cells when their value is within certain boundaries, or even to add text to a number. Since
this numberformat is such a versatile, but possibly very meaningful, property, we include
this property in our categorisation. To do this, a precise definition of a numberformat is
needed:

Numberformat: A function NF of type C → NF that returns a cells NumberFormat-
property as defined by Excel1

Since this is the only kind of formatting that can change the meaning of a cell’s value, this
is the only kind of formatting we use to determine formatting equality. This also allows for
a redefinition of cell formatting, to make it more precise:

Cell Formatting: A function F of type C→ NF representing the cell’s numberformat.

1http://msdn.microsoft.com/en-us/library/office/bb213677(v=office.12).aspx

40

Formatting Differences

During the analysis of our results, we noticed a number of copy-paste relations that con-
tained formatting differences. Some of these differences however looked similar, so we
decided to group them into a number of different categories. These categories in turn al-
lowed us to sort the found copy-paste relations, to provide more meaningful results to the
user. Hence, we distinguish 5 categories, shown in Table 5.1.

As a definition of the formatting differences we define the formatting equality function
between two cells as =F, when the cell formatting differs according to the definition of that
formatting difference. In addition to this formatting equality, there is also a format string
equality defined for numberformats. This equality (=) is defined as the usual equality over
strings, using the textual representation of the numberformats:

Format String Equality: F(c1) = F(c2) : toString(F(c1)) = toString(F(c2))

5.2.2 Explanation per Formatting Difference

FDTYP The first type of formatting difference we distinguish is a difference in Format-
ting Type. Since by changing the numberformat of a cell its value can have a completely
different meaning, several general formatting types are defined. These types are defined in
such way that each cell’s numberformat is categorized using these types. Formally, these
types are defined as:

Formatting Type: A function FT of type F→ FT returning the formatting type of a num-
berformat. The formatting type is one of the following: “Standard”, “Number”, “Scientific”,
“Currency”, “Date”, “Percentage”, “Text” or “Custom”.

Using these formatting types, some notations still look the same and thus cannot imply any
meaning to the cells. To prevent these similar looking types from creating too many FDTYP
differences, we have grouped some of them together. This grouping resulted in a situation
where “Number”, “Text” and “Standard” are considered equal and all other types do differ.
Formally, this leads to the following definition of FDTYP:

FDTYP: F(c1) 6=F F(c2) : FT (F(c1)) 6= FT (F(c2))∧¬((FT (F(c1)) = Number∨
FT (F(c1)) = Standard∨FT (F(c1)) = Text)∧ (FT (F(c2)) = Number∨FT (F(c2)) =
Standard∨FT (F(c2)) = Text))

FDMON The second type concerns itself with differences between cells where both cells
have a formatting type “Currency”. In contrast to the different types of copy-paste relations
(TypesS), this is a clear example where the types are not subsets of each other. For two cells
that both have the formatting type “Currency”, we have defined two subtypes. The first of
the subtypes occurs when the two cells use a different symbol for their monetary value, e.g.,
one cell uses a US-dollar sign ($) while the other uses a Pound sign (£). When a copy-
paste relation is found and the cells in the relation use different Monetary Symbols, it is
very possible that some conversion should have taken place between the two clone clusters.
Because of the possible severity of this type of difference, we made this a special type of
formatting difference. For the formal definition of this type of difference, we first need a
function to retrieve the monetary symbol from the numberformat, which is defined as:

41

5. CATEGORISATION OF COPY-PASTE RELATIONS

Monetary Symbol: A function MS of type F→ MS returning the country-specific mone-
tary symbol used. This function is only defined when FT (F) = Currency.

Using this definition of the monetary symbol, we can define a FDMONSYM as:

FDMONSYM: F(c1) 6=F F(c2) : FT (F(c1)) = FT (F(c2))∧FT (F(c1)) = Currency∧
MS(F(c1)) 6= MS(F(c2))

The second subtype describes those differences where both cells have the same mon-
etary symbol, but have a difference in their formatting nonetheless. An example of this
difference is when a minus sign is used in one cell to indicate a negative value, while the
value in the other cell is given between brackets. Since using such different cell formatting
for different cells can lead to confusion of the user, we have created a FDMONNOT as:

FDMONNOT: F(c1) 6=F F(c2) : FT (F(c1)) = FT (F(c2))∧FT (F(c1)) = Currency∧
MS(F(c1)) = MS(F(c2))∧F(c1) 6= F(c2)

FDDAT This type of formatting difference is defined for two cells that have a formatting
type “Date”. Since a date can be formatted in a large number of ways without changing the
meaning of the date, it would not serve our purpose to simply record every instance where
two of these cells have a different formatting. There is however one possible difference in
date formatting that could confuse a user. If one cell puts the day in front of the month, and
the other formats the date using the month first, a date like January 11th can suddenly look
like November 1st2. For the definition of a FDDAT difference, we need a way to find which
part of a date is first in the numberformat, the day or the month. For this, we use a function
Day First, defined as:

Day First: A function DF of type F→ DF returning whether the day is mentioned first in
the string representation of a Numberformat or not.

Utilizing this definition, we define a FDDAT difference as:

FDDAT: F(c1) 6=F F(c2) : FT (F(c1)) = FT (F(c2))∧FT (F(c1)) = Date∧DF(F(c1)) 6=
DF(F(c2))

FDDEC FDDEC is about differences in the shown number of decimal places. Since the
mathematical concept of decimal places is only defined for numbers, this type is only valid
for a subset of formatting types. The formatting types that (possibly) concern a number, are
“Standard”, “Currency”, “Percentage”, “Scientific” and “Number”. When both of the cells
have a formatting type concerning a number, the number of decimal places that is shown in
the numberformat is calculated. This is important, because intuitively, a 4 is not equal to a
4.5, but when the original value was 4.45 we can achieve both these values by restricting the
number of decimal places. Since this might also lead to confusion for the user, we wanted
to specifically indicate this type of difference. The number of decimal places indicated by a
numberformat, can de be found using a function Decimal Places, which is defined as:

2Though we did not find this kind of difference in the spreadsheets we tested, exactly this happened to me
personally with my ex employer, who switched the day and month of my birthday and congratulated me with
my birthday 10 months too late

42

Formatting Differences

Decimal Places: A function DP of type F→ DP returning the number of decimal places
specified in the number format. This function is only defined when FT (F) = Standard∨
FT (F) = Currency∨FT (F) = Percentage∨FT (F) = Scientific∨FT (F) = Number.

From this definition, the definition of a FDDEC difference is:

FDDEC: F(c1) 6=F F(c2) : FT (F(c1))=FT (F(c2))∧(FT (F(c1))= Standard∨FT (F(c1))
=Currency∨FT (F(c1))=Percentage∨FT (F(c1))=Scientific∨FT (F(c1))=Number)∧
DP(F(c1)) 6= DP(F(c2))

FDIND Where the previous types of formatting differences were defined for a certain sub-
set of cells based on the formatting types, FDIND differences can occur between any kind of
cells. After finding one type of such an independent difference, looking at the specification
for the NumberFormat-property in Excel3 we found another possible difference. Needing
one more category for all the format differences we could not fit into any of the previous
types, we ended up with three subtypes. FDINDCOL concerns all numberformats where a
colour is specified. Mostly this is used for displaying negative numbers, but since the spec-
ification allows for colours to be used in any format, we could not restrict it to the subset
of formatting types used in FDDEC. Instead of indicating whether a colour is specified in
a numberformat or not, we have chosen to specify the colour used itself using a function
Format Colour:

Format Colour: A function FC of type F→ FC indicating which, if any, colour is used in
a numberformat.

This definition for a format colour is used to formally define a FDINDCOL difference as:

FDINDCOL: F(c1) 6=F F(c2) : FC(F(c1)) 6= FC(F(c2))

From the specification of the NumberFormat-property we found that it is possible to
specify a condition in a numberformat, for example to colour a value green if it has passed
a certain threshold. If a user knows a value will turn green when a certain threshold is
reached, it is important that this threshold is the same for all cells, so a difference in these
conditions should be noted. To find this type of difference, that can occur in cells of any
formatting type, we have defined a function Condition as:

Condition: A function Con of type F→ Con indicating which, if any, condition is used in
a numberformat.

We use this definition to formally defined a FDINDCON difference as:

FDINDCON Vb: F(c1) 6=F F(c2) : Con(F(c1)) 6=Con(F(c2))

3http://office.microsoft.com/en-us/excel-help/create-or-delete-a-custom-number-
format-HP005199500.aspx?CTT=3

43

5. CATEGORISATION OF COPY-PASTE RELATIONS

A final type of formatting differences is created to capture all format differences that
occur between two cells besides the differences found in the previously defined types. To
avoid duplicate difference with the FDMON and FDDAT types, this difference is only defined
for cells formatting type not being “Monetary” or “Date”, in contrast to the two other sub-
types of FDIND. It is required however for the formatting types of the two cells to be equal,
because a cell with formatting type “Date” will always have a formatting difference with a
cell with formatting type “Percentage”. To retrieve the numberformat of a cell without the
parts checked for in the previous defined types of formatting differences, e.g., colours and
conditions, we define a function Format Remainder as:

Format Remainder: A function FR of type F→ FR returning a textual representation of
the numberformat, such that Con(F) = ε∧FC(F) = ε∧DP(F) = 0. The function FR is
not defined when FT (F) = Monetary∨FT (F) = Date.

The definition of FDINDGEN is, using this definition of the format remainder:

FDINDGEN: F(c1) 6=F F(c2) : FT (F(c1)) = FT (F(c2))∧FT (F(c1)) 6= Monetary∧
FT (F(c1)) 6= Date∧FR(F(c1)) 6= FR(F(c2))

5.3 Reporting

The distinction of these different TypesS and types of formatting differences is made for
the benefit of the reporting of the results to the user. This reporting should first concern the
ordering of the different copy-paste relations, which should be done in such a way that the
user can easily use the results to improve the design of the spreadsheet. To achieve this, an
ordering based on the different TypesS and types of formatting differences has been defined.

Besides this ordering, we created some feedback to report the different formatting dif-
ferences to the user. If the reported copy-paste relations have formatting differences, fixing
these differences will in most cases improve the understandability of the spreadsheet. Since
improving both the design and understandability of spreadsheets is one of the main goals of
both this thesis and Infotron, feedback was also included in the algorithm.

5.3.1 Ordering

When the algorithm had become capable of differentiating between different copy-paste re-
lations, these different types needed to be put to use to order the different relations. To do
this, we defined an ordering of the different clone cluster types. Since per TypeS there can
be a large number of relations, we also needed to find another way of ordering the relations
within a TypeS. Therefore, we defined an ordering based on the combined formatting dif-
ferences of the cells in a copy-paste relation. Using both orderings, we are able to present a
list of found copy-paste relations to the user that the user can use to improve the design of
his spreadsheets. The complete ordering takes place first on the location of the relation, i.e.
whether it is spread across two worksheets or not. The next level of ordering is based on the
TypeS of the clone clusters. For clusters that are ordered equally on this level, the third level
of ordering will be based on the combined formatting differences of the cells of the clones.

44

Reporting

Clone Cluster Types Having defined the different TypesS for clone clusters, a basic or-
dering of the results can be performed based on these TypesS. As discussed before, this
ordering is needed to provide the users with a handle of which clone clusters he or she
should look at first. Since there may be many clones of a single TypeS that we need to or-
der, we need a measure on the clusters based on which this ordering takes place. For such a
measure, we noted that the different TypesS are related to the error ratio between two clone
clusters. TypeS I clusters for example only occur between two matching clusters, whereas
for TypeS IIIc clusters the two concerning clone cluster are always near-miss clusters. In
terms of the edit ratio, this means that the edit ratio of TypeS I clusters is always 100%, and
for TypeS IIIc clusters this ratio is always less than 100%. If two clusters have an edit ratio
of 100%, by the definition of the edit ratio this means that there is no difference between
the individual cells of the clusters. In other words, the probability that the two clusters are
indeed part of a copy-paste relation is very high. If, on the other hand, the edit ratio is for
example 50%, half the cells in the clusters would differ, lowering the probability that the
two clusters form a copy-paste relation. If the error ratio is thus expressed as a probability
of a true copy-paste relation, we call it a Confidence Level:

Confidence Level: An expression for the probability with which two clone clusters to-
gether form a copy-paste relation, i.e. one is truly copied from the other.

Using these confidence levels as a measure, we have been able to sort the list of copy-paste
relations that were found by our algorithm before presenting them to the user. The user
will be presented with a list of relations where the top-most has the highest probability of
actually being a copy-paste relation.

Combined Formatting Differences The formatting differences we defined above are all
based on a comparison of two cells, whereas the clone cluster categories were defined be-
tween two clone clusters. To be able to report both the formatting differences and the
cluster categories in an equal style, we needed to find a way to define formatting differences
on clone clusters. We achieved this by adding the formatting differences for all cells in the
smallest clone cluster. This addition means that for each type of formatting difference we
count the clones suffering from a formatting difference of this that type, resulting in an FD
Count:

FD Count: TC(cc1 : CC,cc2 : CC) = |{c1 : C ∈ cc1,c2 : C ∈ cc2 : F(c1) 6=F F(c2)}| with
6=F defined for each type of formatting difference.

The FD Count of each type of formatting difference is then used as the Combined Format-
ting Difference:

Combined Formatting Difference: A function CD of type CC → {FD Count} where
every type of formatting difference has an entry in CD.

Formatting Weight We use these combined formatting differences to order the clone
clusters. To do this, we created a function Formatting Weight that calculates a single value
for the combined formatting difference. To calculate the formatting weight of a combined

45

5. CATEGORISATION OF COPY-PASTE RELATIONS

Notation Weight
FDTYP 1
FDMON n/a
FDMONSYM 0.8
FDMONNOT 0.3
FDDAT 0.5
FDDEC 0.3
FDIND n/a
FDINDCOL 0.1
FDINDCON 0.1
FDINDGEN 0.1

Table 5.2: Description of formatting differences

formatting difference, every FD count that is part of the combined formatting difference
is assigned an individual weight. This weight is then multiplied by the FD count, and the
resulting, weighted, FD counts are added to find a weighted total. An extra advantage of
this approach is that the user can influence the outcome of the sorting process for formatting
differences by attaching a different weight to a specific FD count. This is useful when the
user wants to focus on a specific type of formatting difference, e.g., the FDMONSYM for
differences in monetary symbols. To be able to give a formal definition of the formatting
weight function, we need a function that will return the weight set for a specific FD count,
called FD Weight. The two functions are defined as:

FD Weight: A function TW of type FD→ TW that returns the weight assigned to a speci-
fied FD.

Formatting Weight: A function FW defined as CD→ FW where FW =
Σ(TW (TC ∈CD)∗TC)

The default FD weights have been defined by us, based on preliminary test results, as in
Table 5.2.

5.3.2 Reporting a Formatting Difference

The output of a copy-paste relation with formatting differences includes a description of
these differences. For these descriptions, the various formatting differences of the individual
cells within a clone cluster are first sorted, so that the results can be given per cell. The way
in which these cells are ordered is such that those cells belonging to the most individual
types of formatting difference of differences are reported first. When the number of types
of formatting difference two cells belong to are equal, the cells are ordered according to
the types they belong to. For this ordering, the types of formatting difference are compared
using the order defined by the FD weights, i.e. a cell belonging to FDDAT is sorted before a
cell belonging to FDMONNOT, but after a cell belonging to FDMONSYM. This way, the cells
that are reported first are also the cells that possibly have the most impact on improving the
quality of the spreadsheet when altered.

46

Reporting

Figure 5.1: Example output for formatting differences

Once this ordering is complete, a description of the different types of formatting differ-
ence is output, with the locations of the cells entered. These locations are both the locations
of the originating cell, i.e. the formula cell, and the copy of this cell, i.e. the value cell. An
example of such an output is given in Figure 5.1 As can also be seen in this example, the
output is clustered such that multiple cells with the same formatting differences are reported
in the same line, also in order to shorten the output for the user and make it more readable.

47

Chapter 6

Evaluation

Does our algorithm indeed find copy-paste relations in spreadsheets? And are they cate-
gorised in the correct manner? Those questions should be answered before we incorporate
our algorithm in the online analysis software of Infotron. What we also needed to find out
was the number of spreadsheets that contain copy-paste relations. To do this, we performed
a quantitative analysis on the EUSES corpus that we report in this chapter.

6.1 Validation

To validate our algorithm we performed a quantitative analysis on the EUSES corpus [23]
of 4223 spreadsheets. We ran our algorithm 52 times on this set op spreadsheets while
changing some parameters in every run. This parameter tuning was performed in order to
find an optimal set of parameters to use in the online version of the algorithm. The results
of every run were analysed by hand, to check the results of the algorithm and to distinguish
between the false and true positives. The true and false negatives were not analysed in this
study, since it would be too presumptuous to assume we can find them all without having
contact with the owners and creators of the spreadsheets.

6.1.1 Set-up

There were three parameters changed during several runs of the algorithm. The parameters
changed were the Minimum Cluster Size, the Minimal Different Values and the Mini-
mum Edit Ratio. Because these three options are described in Section 4.2.2 in detail, we
will provide only a small summary here. The minimum cluster size governs the minimum
number of cells that should be part of a clone cluster. The minimum number of different
values defines the minimal number of different values that should be present in a clone
cluster. Obviously it makes no sense to increase this number above the minimum cluster
size. The third parameter we changed, the minimum edit ratio, determines whether a found
copy-paste relation is reported based on the edit ratio of the relation.

For the validation, the applied values for these parameters can be found in Table 6.1.
These parameters were changed in order to find the optimal value per parameter to be used in

49

6. EVALUATION

Parameter Values
Minimum Cluster Size {5, 6, 7, 8, 9, 10, 11, 12}
Minimal Different Values {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Edit Ratio {75%, 80%, 85%, 90%, 95%, 100%}

Table 6.1: Tested values for the given parameters for the algorithm validation

the online analysis tool. An optimal solution is one where the precision rate of the algorithm
is highest, i.e. where the number of false positives is lowest.

Starting the validation with a minimum cluster size of 5 was done because we believe
that clusters of less than 4 cells are too small to be meaningful. The same reasoning holds
for the value chosen for the minimum number of different values. We have run the algorithm
for all combinations of these two parameters, as long as the minimum number of different
values was lower than the minimum cluster size. Since we were not able to contact all the
owners of the spreadsheets, evaluating the near-miss clones found by our algorithm when
the minimum edit ratio is set to less than 100% would lead to too much room for speculation.
Therefore, as a first benchmark, we have set this minimum edit ratio at 100%.

When the optimal values for the minimum cluster size and the minimal number of dif-
ferent values were found, we performed tests to find the optimal value for the edit ratio.
For this test we fixated the values for the minimum cluster size and the minimal number of
different values, and varied the edit ratio between 75% and 100%. Because we wanted to
be lenient in our online tool and not discard too many true positives, the values we chose
for the two minima were slightly lower than the optimal values.

6.1.2 Analysis

For the first benchmark, with the minimum edit ratio set at 100%, we needed to determine
when a found copy-paste relation was a false positive and when it was truly a copy-paste
relation, or a true positive. To do this, we inspected every found relation manually on
three criteria. First we checked if the two found clusters share the same data, after which
we checked if one of the two clusters indeed contained only formula cells while the other
cluster contained only value cells. The third criterion we checked is whether the headers of
both clone clusters indicated that the data was conceptually the same. When all these three
criteria were met, the found copy-paste relation was a true positive for this benchmark.

The second set of tests involved changing the minimum edit ratio to decreasingly lower
values, from 100% to 75%. This decreasing also means that when evaluating a found copy-
paste relation, there is progressively more room for speculation on this relation. This spec-
ulation stems from the fact that when dealing with near-miss clones, it can become increas-
ingly difficult to determine whether the data in both clone clusters is conceptually the same
data. Without the option to consult the owners and creators of the spreadsheets in the EU-
SES corpus, we needed to find a way in which we could still reason about these near-miss
clones. To accomplish this, we chose to redefine our indication of a false positive slightly
for the relations with an edit ratio of less than 100%. Where we first looked at the headers
of the clone clusters to find out if they meant the same, we now regarded clones to be true

50

Validation

positives if the headers were exactly the same. If they were, and the other two criteria were
also met, the found copy-paste relation was a true positive; if one of the criteria was not met
the found relation was a false positive.

Using these different runs, we calculated a number of indicators. First of all, we deter-
mined the precision of our algorithm. To do this, we compared the number of spreadsheets
containing copy-paste relations to the number of spreadsheets containing true positives.
This was done to avoid the results being skewed by large numbers of clones within a single
spreadsheet. Next, we calculated a percentage of files containing copy-paste relations with
respect to the total number of files we tested, 4223. Of these 4223, we found that only 1711
contained formula cells, which allowed us to calculate the percentage of spreadsheets that
contained copy-paste relations, if the spreadsheets contained a formula.

Using the results of the TypeS and formatting difference classification, we were able
to compute a number of percentages on these Types and formatting differences as well.
With this result, we have calculated the percentage of copy-paste relations with a formatting
difference. This was also related to either the total number of spreadsheets, or the number of
spreadsheets which contained formula cells. Per type of formatting difference we have also
calculated the frequency of the type occurs. Knowing what type of formatting difference
is most common can provide information about how users can be helped to improve the
design of their spreadsheets.

Minimal Different Values
Minimum

3 4 5 6 7 8 9 10 11 12
Size

5 54.8% 59.1% 63.7% - - - - - - -
6 54.2% 59.2% 62.9% 70.1% - - - - - -
7 53.8% 59.1% 62.5% 69.5% 70.9% - - - - -
8 56.1% 60.2% 63.6% 70.1% 71.6% 72.9% - - - -
9 56.6% 60.6% 64.3% 71.2% 72.9% 74.6% 81.7% - - -
10 55.1% 58.6% 62.3% 69.7% 71.4% 73.3% 80.0% 79.2% - -
11 56.3% 57.7% 60.9% 68.3% 70.2% 71.4% 78.4% 77.6% 78.3% -
12 56.6% 58.1% 60.6% 67.8% 69.6% 70.9% 78% 77.1% 77.8% 81.0%

Table 6.2: Benchmark for the precision of the algorithm

6.1.3 Results

The first test’s primary goal was to create a benchmark for the optimal values. The results
of the algorithm are shown in Table 6.2. The values in this table show the precision of
the algorithm, calculated by dividing the number of spreadsheets containing true positives
by the number of spreadsheets found to contain a copy-paste relation by the algorithm.
Here we chose the number of spreadsheets over the number of copy-paste relations because
we wanted to avoid a skewing of the results by spreadsheets that contained many clones.
Highlighted in this table is the highest precision (81.7%) which was reached when both the
minimal number of different values and the minimum cluster size are set to 9. In absolute
numbers, this 81.7% means that true positives have been found in 49 spreadsheets (which
can be seen in Table 6.3, where the algorithm found relations in 60 files. Regarding this

51

6. EVALUATION

Minimal Different Values
Minimum Size 3 4 5 6 7 8 9 10 11 12

5 86 81 71 - - - - - - -
6 77 74 66 61 - - - - - -
7 70 68 60 57 56 - - - - -
8 64 62 56 54 53 51 - - - -
9 60 57 54 52 51 50 49 - - -
10 54 51 48 46 45 44 44 42 - -
11 49 45 42 41 40 40 40 38 36 -
12 47 43 40 40 39 39 39 37 35 34

Table 6.3: Number of files containing true positives

in light of the 1711 files containing formula cells this means that 2.86% of all spreadsheets
containing formula cells also contain a copy-paste relation, given these parameters.

Looking more closely at the absolute number of files containing clones, we see that
for the minimal values for the parameters there are 86 files containing true positives. This
amounts to approximately 5% of all 1711 files containing formula cells, which is compa-
rable to percentages of code clones in source code (for example Cordy and Roy [51] and
Mayrand et al. [38] mention this 5%).

These numbers were calculated by verifying the copy-paste relations found by our al-
gorithm per spreadsheet. During this process of verification however, we also found false
positives of clones. A large portion of the detected false positives have a certain set of data in
common, for example the marks 1 to 10 in a spreadsheet concerning grades. This occurred
frequently when the minimum size for clones was set to values of 6 and less. Another part
of the false positives could be attributed to the use of formula’s in header cells. If a formula
is, for example, used to calculate a year and this year is used in other parts of the spread-
sheet as an input value, the algorithm will detect this as a clone. Since we did not use any
form of meta notation of the cells like header inference or manual annotation, this form of
false positives can occur. Using any form of meta notation on the other hand has other dis-
advantages, as explained in Chapter 2. A final noteworthy form of false positives occurred
because of limitations of the third party library we used to read spreadsheets, Gembox1.
This software does not recognize array-formulas as formulas, so any cell containing such a
formula is considered to be a value cell. Another disadvantage is that it detects the values
used in charts as separate values, even though the charts refer to formula cells. This means
that any graph using data from formula cells will be detected as a clone, since Gembox
somehow reads this data twice. At the moment of writing this thesis an update for Gembox
is available that fixes this particular issue, but it has not yet been implemented in Breviz.

Given the results of Table 6.2, the optimal values for both the minimal cluster size and
the minimum number of different values is 9. To find the optimal value of the edit ratio
we set both these values to 7, to be more lenient and allow for more relations to be found.
The results in terms of precision are shown in Table 6.4. As can be seen, the precision of

1http://www.gemboxsoftware.com/

52

Evaluation of Categorisation

Edit Ratio
75% 80% 85% 90% 95% 100%

Precision 55.3% 57.1% 60.6% 63.0% 67.4% 70.9%
Number of files 114 105 99 92 86 79
True Positives 63 60 60 58 58 56

Table 6.4: Precision of the algorithm for different values of the minimum edit ratio

the algorithm goes down when the minimum edit ratio goes down. There are however files
containing true positives for near-miss clusters that were not found when only matching
clusters were considered. Despite this, because the total number of files increases faster
than the number of files containing true positives, we consider a minimum edit ratio of
100% to be optimal.

6.2 Evaluation of Categorisation

After we validated the algorithm and determined both the optimal values and the values
used in the online tool, we evaluated our categorisation of Chapter 5. To do this, we ran our
algorithm 10 times, each time using a different set of parameters. This evaluation resulted
in an indication of the frequency in which the different TypesS and the different types of
formatting differences occur. The evaluation of the TypeS and formatting differences was
done over the outcome of the algorithm. Since this evaluation meant that some assumptions
of the results had to be made we used all relations found by the algorithm, including those
relations that were determined to be false positives in the previous analysis. Only using the
true positives for this evaluation implicates that a wrong assumption in the first evaluation
influences this second evaluation, which we wanted to avoid.

6.2.1 Set-up

The analysis of the determination given by the algorithm was done according to the criteria
described in Chapter 5. To be able to determine a wrong classification, we analysed the
values in the clone and determined whether, based on this value, the classification was
correct or not. We refrained from making any assumptions on whether or not the found
copy-paste relations were true or false positives during this TypeS and formatting difference
evaluation. This was done because any such assumption could influence the outcome of the
evaluation. Especially for the types of formatting differences, since these are determined on
a cell-level. If a single copy-paste relation would be wrongly classified by us, the clones in
that relation could potentially influence the outcomes of this evaluation, which we wanted
to avoid.

For these evaluations we varied the values for different parameters according to Table
6.5. Choosing these values we had a good cross section of all three parameters. Starting
with a minimum cluster size and minimal number of different values of 7, we had the values
that we chose in out online algorithm. To be able to evaluate the algorithm however, we felt

53

6. EVALUATION

Parameter Values
Minimum Cluster Size {5, 7, 9, 11}
Minimal Different Values {5, 7, 9, 11}
Edit Ratio {100%}

Table 6.5: Tested values for the given parameters for the validation of the classification

we needed some tests of values surrounding these optimal values, so we chose 5 and 9 for
both parameters. Since 9 was the determined to be the optimal value for both parameters we
extended the parameters for this evaluation to also include 11. This gave us the opportunity
to look for trends in this evaluation that were similar to the trend of the validation of the
algorithm as seen in Table 6.2. Using these 10 combinations we calculated the number of
times a given copy-paste relation is of TypeS I or of TypeS II. TypeS III relations could not
be found using this set-up because for that type of relations we would need edit ratios of
less than 100%.

Minimal Different Values
Minimum

5 7 9 11
Size

5 74.2% / 25.8% - - -
7 72.1% / 27.9% 71.4% / 28.6% - -
9 69.1% / 30.9% 70.9% / 29.1% 67.6% / 32.4% -
11 67.6% / 32.4% 69.6% / 30.4% 67.2% / 32.8% 73.4% / 27.6%

Table 6.6: Percentages of TypeS I and TypeS II occurrences in files containing copy-paste
relations

6.2.2 Results

For the TypeS I and TypeS II classification, the results are given in Table 6.6. In this table,
we see a trend roughly similar to the trend we see in Table 6.2. The highest chance a TypeS
II copy-paste relation occurs in a spreadsheet that contains a copy-paste relation is 32.8%,
achieved with the minimal number of different values set to “9” and the minimum cluster
size set at “11”. In Table 6.2 this maximum was achieved with “9” for both these parameters
but despite the discrepancy between the value for the minimum cluster size the trend is the
same. According to our settings, i.e. with an minimum edit ratio of 100%, this means
that given a random spreadsheet that contains a copy-paste relation, there is more than
30% chance that the spreadsheet contains at least one copy-paste relation with a formatting
difference. This occurs when using “9” as the value for the minimal number of different
values and for the minimum cluster size, even though this percentage will increase when this
last parameter is set to “11”. Setting both parameters to “9”, there was a 2.86% chance that
a random spreadsheet containing a formula also contains a copy-paste relation (cf. Table
6.3). This means that in in one out of 110 spreadsheets containing a formula there is a copy-
paste relation of TypeS II, i.e. two matching clusters with at least one formatting difference.

54

Evaluation of Categorisation

5 7 9 11 7 9 11 9 11 11
5 5 5 5 7 7 7 9 9 11

Number of
224 205 197 163 143 136 116 81 76 47

Relations
FDTYP 29% 29.3% 28.9% 33.7% 13.3% 11.8% 12.1% 17.3% 15.8% 23.4%
FDMONSYM 0.4% 0.5% 0.5% 0.6% 0.7% 0.7% 0.9% 1.2% 1.3% 0%
FDMONNOT 7.6% 4.4% 3.6% 4.3% 6.3% 5.1% 6.0% 8.6% 9.2% 10.6%
FDDAT 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
FDDEC 51.8% 52.2% 52.3% 60.7% 71.3% 72.1% 81.9% 74.1% 75.0% 63.8%
FDINDCOL 21.4% 21.5% 21.8% 8.0% 20.3% 20.6% 10.3% 16.0% 14.5% 21.3%
FDINDCON 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
FDINDGEN 5.8% 5.9% 6.1% 6.1% 6.3% 7.4% 6.9% 11.1% 10.5% 17.0%

Table 6.7: Occurrence frequency per type of formatting difference

When choosing the values as “11” and “9”, there was a 2.34% chance of containing a copy-
paste relation. This means that one in every 130 spreadsheets containing a formula also
contains a copy-paste relation with a formatting difference.

After calculating the occurrences of these TypeS I and TypeS II relations, we evaluated
the results of the differentiation based on the formatting differences. We did this by looking
at every TypeS II relation we found, and we determined, based on the values of the cells,
whether the formatting differences as they were reported actually existed. This evaluation
resulted in a classification per type of formatting difference, and for every type of formatting
difference we have computed the frequency of occurence. The results of these calculations
can be seen in Table 6.7. Here, in the top two rows the values for the parameters Minimum
Cluster Size resp. Minimal Different Values are shown. In the columns we show the
frequency of a specific type of formatting difference. This frequency is calculated using the
number of copy-paste relations that contain at least one clone with the given type, divided
by the total amount of found copy-paste relations.

In this table, there are a number of interesting things to notice. First of all, FDDAT
and FDINDCON are always at 0%, meaning they have never occurred in the EUSES corpus.
FDMONSYM also has a continuous low value. These low values always translate to 1 or
no copy-paste relation that was found in all configurations. In this particular instance, the
notational symbol for the formula cell was a dollar sign ($), while the value cell had a
quoted dollar sign (“$”) as its notational symbol. Even though it is arguable whether this
is an actual formatting difference or not, according to the definition of FDMONSYM it is, so
we counted it as one. Another interesting thing to note from this table is that the column-
totals exceed 100%. The reason for this is that some copy-paste relations have more than 1
category of formatting differences.

The highest scores in this table are, for any combination of the two parameters, for
FDDEC. Upon close inspection of the relations containing these formatting differences, we
found that the majority of these differences can be attributed to a difference in formatting
type. First of all, the majority of these differences occur when one of the two cells in the
clone is formatted with a different formatting type than the other, e.g., one has a formatting
type “Standard” and the other a formatting type “Number”. When a cell has a formatting
type “Standard”, the NumberFormat-property does not specify a number of decimals that

55

6. EVALUATION

is to be shown in the cell. The number of decimals shown is however dependent on a
combination of the width and value of the cell. To be able to get some standardized measure
for the number of decimals of these type of cells, we used the number of decimals the
value (or the evaluated formula) contains. This is further justified because the user has the
capability to show more decimals in the cell by only changing the width of the cell and
keeping its NumberFormat-property unchanged. A special case here must be made for the
case when one cell has a formatting type “Percentage”. When for example Excel displays
a value of 63% with a formatting type “Number”, it shows 0.63. This difference means a
formatting difference of type FDDEC will occur. A part of these differences amount for the
relatively high values found for FDTYP. This is especially true for those clones where only
5 different values are needed, since for larger clones the difference between the values for
FDDEC and FDTYP increase significantly. This has to do with the fact that, as explained in
Section 5.2.2, a difference between formatting types “Number” and “Standard” does not
constitute a formatting difference of type FDTYP.

5 7 9 11 7 9 11 9 11 11
5 5 5 5 7 7 7 9 9 11

Relations 1378 1013 834 640 654 624 490 350 329 224
TypeS II

224 205 197 163 143 136 116 81 76 47
Relations
Differences 4495 4414 4362 4242 1925 1882 1777 1416 1390 1027
Differences

20.1 21.5 22.1 26.0 13.5 13.8 15.3 17.5 18.3 21.9
Per TypeS II

Table 6.8: Absolute numbers on formatting difference categorization

In Table 6.8 some absolute numbers are presented, regarding the copy-paste relations
and the formatting differences. As with Table 6.7, the first two rows show the values for the
minimum cluster size and the minimal number of different values. Next, the total number
of found copy-paste relations is shown, and how many of those relations actually contained
one or more formatting differences. The next row shows the total number of formatting
differences found in clones. An average amount of formatting differences per relation that
contains one such difference is given in the final row. Noteworthy is that all absolute num-
bers decrease when the number of different values or the minimum cluster size increases.
However, when looking at equal values for the parameters that denotes the minimal number
of different values in a clone, the average number of differences per copy-paste relation
increases. This indicates that larger copy-paste relations are more prone to formatting dif-
ferences than small ones.

We have also analysed the number of the TypeS II copy-paste relations, i.e. the ones
that contain copy-paste relations, with respect to the total number of copy-paste relations.
In Table 6.6 we have shown this number as it pertained to the files, calculating the frequency
of occurrence in files that contained at least one copy-paste relation. In Figure 6.1 we have
depicted this in relation to the total number of copy-paste relations. A large difference
between the two is that in Table 6.6 there is a noticeable increase in the frequency in which

56

Summary of Results

Figure 6.1: Occurrence of formatting differences

TypeS II relations occur when the parameters get larger values. This increase illustrates
that, given a file containing a copy-paste relation, the chance increases that this copy-paste
relation contains a formatting difference when the values of the parameters are enlarged.
This conclusion is further supported by the data from Table 6.8. In Figure 6.1, however, we
see a line that fluctuates between 4% and 5%. This means that given any found copy-paste
relation, regardless of its size, there is approximately 5% chance that the copy-paste relation
contains a formatting difference.

6.3 Summary of Results

Depending on the chosen settings we found between 86 and 34 spreadsheets containing
copy-paste relations out of the 1711 tested files, meaning about 5% of the files contain
copy-paste relations. We have achieved a precision of the results of 81.7%, with an edit
ratio set at 100%. Out of all copy-paste relations detected by our algorithm approximately
one-third are of TypeS II, meaning they contain at least one formatting difference. The three
most common types of formatting differences are FDDEC, FDTYP and FDINDCOL. Other
types, like FDDAT and FDINDCON have not been found during our evaluation. The most
prominent type of formatting difference, FDDEC, was found in more than half of the TypeS
II copy-paste relations, regardless of the chosen settings for the parameters.

Using the settings of the online algorithm, we found 654 copy-paste relations, of which
143 were of TypeS II. These 143 relations contained a total of 1925 formatting differences,
in 56 files in total. Of these 1925 differences, 71.3% were differences of type FDDEC.

6.4 Discussion

After validating and evaluating our algorithm and the proposed classification of copy-paste
relations, two main issues need to be addressed. The first of these issues is the potential
threats to the validity of our validation and evaluation and how these threats were countered.
The second issue concerns some alterations that we think would improve the results of the
algorithm.

57

6. EVALUATION

6.4.1 Implications

As can be seen, we can reach a precision of 81.6% using “9” for the minimal number of
values and the minimum clone size and a precision of 70.9% using “7” for both these pa-
rameters. In Roy and Cordy’s survey of code clone detection techniques performed in [51],
the precision is only measured as a precise percentage (100%) when looking at line-based
techniques. For the token-based algorithms, which is what we based our algorithm on, the
reported precision is “Low, due to normalisation and/or transformation returns many false
positives”. Burd and Bailey compared three code clone detection tools and two plagia-
rism detection tools in [13]. Of the three code clone detection algorithms, CCFinder [32]
is the only token-based tool, achieving a precision of 72%. This fits within the range we
achieved, so we can conclude that, concerning the precision of the algorithm, our algorithm
is comparable to well-known algorithms used for code clone detection. The two plagiarism
detection tools (JPlag and Moss) achieve a precision of respectively 82% and 73%, also
roughly comparable to our 81.6%.

Having achieved a precision that is comparable to de-facto standards in code clone
detection and an occurrence rate of 5%, which was comparable to the occurrence rate of
code clones, we conclude that our approach is applicable. Therefore we have implemented
the algorithm in the online tool of Infotron2. Users of our tool benefit from the added
detection of copy-paste relations. With a precision of 70% and higher, the reported copy-
paste relations are likely to be true positives, meaning the spreadsheet the user tested can
be improved. An occurrence rate of 5% and less means, on the other hand, that most users
take care when creating spreadsheets, resulting in no detected relations.

For the research community we have shown that copy-paste relations occur in spread-
sheets, with results similar to those achieved in other research areas. These similar results
are an indication that the general problem of copy detection, be it of pieces of source code
or of clone clusters, extends beyond traditional software engineering. The problem can,
however, be tackled using known techniques for code clone detection in a different context.
This indicates that improvements made in one of the two areas can possibly also impact the
algorithms (and results) of the other.

6.4.2 Threats to Validity

Looking at the internal validity of the evaluation, discussion can arise over the assumptions
made concerning the true and false positives. Any assumption made, was made without con-
tacting the owners and creators of the spreadsheet, so every assumption could be erroneous.
However, all assumptions that were made were based on the actual data in the spreadsheet.
We have clearly indicated these assumptions and since we performed our validation on a
publicly available set of spreadsheet, our results can be replicated. Furthermore, we have
tried to minimise the number of assumptions we made over this data.

The external validity of the evaluation regards this publicly available set of spreadsheets,
the EUSES corpus, and whether this corpus is sufficiently representative for spreadsheet
research. This is countered by a combination of factors. Firstly, the sheer size of the corpus

2http://app.infotron.nl

58

Discussion

needs to be taken into account. The corpus exists of over 4200 files, all collected from
practice, which is the second factor. The third and final factor countering this threat is that
the EUSES corpus has been used in numerous other papers on spreadsheet research.

Regarding the construct validity, there is some improvement possible in the way the
formatting differences in two clone clusters are found. In the current algorithm, if the largest
clone cluster has a number of cells with the same value, e.g., 5, all cells in the smallest clone
cluster with the value 5 are paired with the first cell with the value 5 in the largest cluster in a
clone. This also means that the formatting differences between the cells are all based on this
first cell in the largest cluster. It could however be such that there is a formatting difference
with this first cell 5, while this difference does not exist if the cells from the smallest cluster
were paired with another cell from the largest cluster. A simplified example of this is shown
in Figure 6.2.

Figure 6.2: Simplified example for improved determination of formatting differences

The left side of the picture shows how the clones are currently formed. Both the values
5.00 and 5 of the left cluster are paired with the value 5.00 in the right cluster. When
determining the formatting differences, this leads to a FDDEC difference between 5 and 5.00.
On the right side of the image we show the clones as they would be with this improvement. It
can be seen that no formatting differences exist here. This improvement will only impact the
calculation of the formatting differences, the precision and occurrence-rate of the algorithm
will remain unchanged.

6.4.3 Improvements of the Algorithm

Having evaluated our algorithm and classification schemas, we have some suggestions for
the improvement of the algorithm. The first of these improvements concerns the assump-
tions we made to identify the true and false positives. These assumptions were made based
on the information derived manually from the headers of the data. In previous work by
Hermans [27] and Abraham and Erwig [1] efforts have been made to automatically extract
this data. These efforts could be incorporated in the algorithm as an extra measure of con-
fidence in a detected clone, and by extension in a detected copy-paste relation. It can also
be used in the calculation of the edit ratio or as another way of sorting the output of the
algorithm. In addition to using this header information as a measure of confidence for the
clones, it could also be used to improve the clones themselves. Two cells with different
headers might form a clone in the current algorithm, while in the same clusters there is
a “better” option for a clone when the information is taken into account. With a “better”
option we mean a combination of cells where the headers match more.

A second improvement concerns the values for the parameters. In every run of our al-
gorithm we have used a fixed set of parameters; one that paid no regard to the content of

59

6. EVALUATION

the spreadsheet. This means that small spreadsheets were evaluated using the same param-
eters as large ones. If, however, the existing clusters in a spreadsheet are all smaller than
the minimum cluster size, copy-paste relations will never be found in that spreadsheet. We
propose therefore that it might be beneficial to calculate the values of the parameters based
on some properties of the spreadsheet, e.g., its number of cells.

Our third and final proposed improvement has to do specifically with the calculation of
the number of decimals used for the FDDEC formatting difference. As stated before, the
formatting type “Standard” does not specify a number of decimals; this is governed by the
value and width of the cell itself. Instead of using the total number of decimals present in
the cell value, the number of cells that is shown could be used. In order to achieve this, some
calculations would have to be made on the width of the cell and the width of the total value.
Since these extra decimals are hidden from view to the user, it would be an improvement if
they are not taken into account.

60

Chapter 7

Conclusions and Future Work

Concluding this thesis, we reflect on its contributions and we give some general conclusions.
These contributions and conclusions are based on our initial research problem “How can
the copies of formula-data in spreadsheets be detected?”. Most prominent among these
conclusions is that we found that about 5% of spreadsheets contain a copy-paste relation
and that our algorithm detects these relation with a precision of 81.7%. Both these numbers
are comparable to those found in code clone detection in software engineering.

7.1 Contributions

This thesis has made a number of contributions:

• A definition of a notion of clones and copy-paste relations within spreadsheets.

• An approach to automatically detect these clone and relations in spreadsheets.

• An implementation of this approach in Infotron’s existing tool Breviz.

• A means of visualising and reporting the found relations.

• A categorisation of these relations closely related to well-known categorisations of
code clones.

• A further classification specific to spreadsheets.

• A validation of the algorithm based on the EUSES corpus.

• An evaluation of the proposed categorisation and classification based on the EUSES
corpus.

A number of these contributions have been published in paper [30], which will be pre-
sented at the International Conference on Software Engineering 2013, to be held in San
Francisco.

61

7. CONCLUSIONS AND FUTURE WORK

7.2 Conclusions

For the conclusions of this paper, we revisit our research questions of Chapter 1. To reca-
pitulate, please find the research questions below:

R.Q. 1 How can the copies of formula-data in spreadsheets be detected?

R.Q. 2 How can the results be reported to the user?

a) How can the results be reported in a way that is usable for the users?

b) How can the results be ordered in a useful way?

R.Q. 3 How well does the proposed solution work?

Concerning R.Q. 1, an algorithm has been developed for this detection, which is ex-
plained in Section 4.2. The algorithm works by first detecting all cells in the spreadsheet
that share a value with other cells. These cells are then grouped into clone cluster, and the
different clone clusters are matched. Matching clone clusters are reported as copy-paste
relations.

This reporting directly touches on R.Q. 2. An extensive answer of R.Q. 2a is given in
Section 4.3. The visualisation presented here is based on a textual report and extra lines
shown in the data flow diagram. Also presented in this Section is an indication of a new
type of reporting that has yet to be implemented. The answer of R.Q. 2b is given in Chapter
5. In short we developed a categorisation based on existing types of code clones and we
developed a new categorisation based on the formatting differences that can exist between
two cells in a clone. Note that even though R.Q. 2a and R.Q. 2b contain the words “usable”
resp. “useful”, we did not evaluate the usefulness of the approach. This is detailed further
in Section 7.3.

For the complete answer of R.Q. 3 we refer the reader to Chapter 6. In general, we can
say that we found copy-paste relations in about 5% of the tested spreadsheets. We have also
noted that the possibility that a given copy-paste relations contains a formatting difference
increases as the relation itself becomes larger. Given a file containing copy-paste relations,
we found that about 30% of these relations contain formatting differences. Additionally,
we found an optimal setting for the parameters we introduced in our algorithm with which
we can achieve a precision of 81.7%, meaning only 18.3% of the reported results is a false
positive.

The occurrence rate of 5% and the precision of 81.7% are both comparable to results of
well-known algorithms for code clone detection, like CCFinder [32]. This shows that the
general problem of copy detection can be expanded beyond traditional software engineering
and plagiarism detection. Spreadsheet users and creators benefit from this research as a
result of these numbers; the high precision indicates that most of the results presented to
the user are indeed copy-paste relations. We have not evaluated the absolute usefulness of
the results, nor the possible improvement in the spreadsheet structure when the relations are
made explicit.

62

Future work

7.3 Future work

Finally, we have some suggestions for future research opportunities. Three of these sugges-
tions are based on the evaluation and feedback of the algorithm, while two provide options
for possible extensions of the algorithm.

7.3.1 Evaluation and Feedback

As stated, we would like to point out three possibilities for future research based on eval-
uation and feedback. The first of these three has to do with the validation of the algorithm
as it was performed in this thesis. As we said in Chapter 6, for this validation we have
only looked at the true and false positives. The possibilities of study that remain for future
research are those of the true and false negatives. For this type of study, the researcher
would have to be in contact with the owners and creators of the spreadsheets, so this has to
be done with a different data set than the EUSES corpus. To validate the algorithm with a
representative set of spreadsheets, gathering the spreadsheets needed will take some time,
as will the interviews with the owners and creators of the spreadsheets.

This leads to our second recommendation, i.e. the evaluation of the feedback that is
given. If there is contact with a number of different users and their spreadsheets have been
analysed by our algorithm, an evaluation of the feedback the algorithm gives can be done.
This would answer open questions regarding the usefulness of the feedback and it could
help to validate the ordering we have proposed for the output. It could also serve to improve
the formatting weights we assigned based on some preliminary tests.

A set of users and their spreadsheets, as was needed in the previous two recommen-
dations, is also needed for our third recommendation; the evaluation of the usefulness of
the algorithm. Does the detection of the copy-paste relations in spreadsheets contribute to
better design of a spreadsheet? Does it help to reduce errors and does it help to improve
the understandability of spreadsheets? These are a number of questions that can only be
answered by spreadsheet users, owners and creators, but they are important in the under-
standing of spreadsheets and spreadsheet design. In such a study it could also be tested if
“better” spreadsheets are being created if this detection of copy-paste relations would be
incorporated during the design of a spreadsheet, instead of it being used afterwards, as is
now the case.

7.3.2 Extensions

The first of the two possible extensions of the algorithm relates to the original research ques-
tion for this thesis, which was the following: “How can the copies of data in spreadsheets
be detected?”. This original question covers a larger spectrum of copy-paste relations than
is covered in this thesis. In this thesis we only sought for copies for formula cells, while we
could also have looked for copies of any kind of data. A problem that will have to be solved
in this type of situation is the problem of the origin of the data, i.e. knowing which side of
the clone is the copy. This problem has an equivalent in code clone detection, where there
is also a problem of origin analysis [25, 53].

63

7. CONCLUSIONS AND FUTURE WORK

The second possible extension also has an equivalent in code clone detection. It re-
lates to tracking copy-paste relations in an evolving spreadsheet, which is similar to clone
genealogies in [10, 35]. One major difference here, is that for source code it is common
practice to use some type of versioning system like SVN or Git, but there is no such com-
monly accepted equivalent for spreadsheets. Some companies store their spreadsheets in a
SharePoint workspace, but this is not common practice for all spreadsheets. Another prac-
tice used is to store a copy of every version of the file somewhere on the company server,
thus creating a crude versioning system for the company. These kinds of versioning for
spreadsheets could possibly be used to track the evolution of copy-paste relations in spread-
sheets, to gain more insight in how they arise and whether they persist for an extended
period of time or not.

64

Bibliography

[1] R. Abraham and M. Erwig. Header and unit inference for spreadsheets through spatial
analyses. In Visual Languages and Human Centric Computing, 2004 IEEE Symposium
on, pages 165–172. IEEE, 2004.

[2] R. Abraham and M. Erwig. Ucheck: A spreadsheet type checker for end users. Journal
of Visual Languages & Computing, 18(1):71–95, 2007.

[3] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A type system for stat-
ically detecting spreadsheet errors. In Automated Software Engineering, 2003. Pro-
ceedings. 18th IEEE International Conference on, pages 174–183. IEEE, 2003.

[4] T. Antoniu, P.A. Steckler, S. Krishnamurthi, E. Neuwirth, and M. Felleisen. Validating
the unit correctness of spreadsheet programs. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on, pages 439–448. IEEE, 2004.

[5] Y. Ayalew. Spreadsheet Testing Using Interval Analysis. PhD thesis, PhD the-
sis, Institut für Informatik-Systeme, Universität Klagenfurt, 2001. At https://143.205.
180.128/Publications/pubfiles/psfiles/2001-0125-YA.ps on 22 August, 2001.

[6] Y. Ayalew, M. Clermont, and T. Mittermeir. Detecting errors in spreadsheets. In Pro-
ceedings of EuSpRIG 2000 Symposium: Spreadsheet Risks, Audit and Development
Methods, 2000.

[7] Y. Ayalew and R. Mittermeir. Interval-based testing for spreadsheets. In Proceedings
of International Arab Conference on Information Technology, pages 414–422, 2002.

[8] Y. Ayalew and R. Mittermeir. Spreadsheet debugging. In Symposium Proceedings
EuSpRIG 2008, University of Greenwich, London, UK. European Spreadsheet Risks
Interest Group, 2008.

[9] B.S. Baker. A program for identifying duplicated code. In Proc. Computing Science
and Statistics: 24th Symposium on the Interface.

[10] T. Bakota. Tracking the evolution of code clones. SOFSEM 2011: Theory and Practice
of Computer Science, pages 86–98, 2011.

65

BIBLIOGRAPHY

[11] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring
clone based reengineering opportunities. In Software Metrics Symposium, 1999. Pro-
ceedings. Sixth International, pages 292–303. IEEE, 1999.

[12] S. Bellon. Vergleich von techniken zur erkennung duplizierten quellcodes. Master’s
Thesis, Institut fur Softwaretechnologie, Universitat Stuttgart, Stuttgart, Germany,
2002.

[13] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative
maintenance. In Source Code Analysis and Manipulation, 2002. Proceedings. Second
IEEE International Workshop on, pages 36–43. IEEE, 2002.

[14] M. Burnett, J. Atwood, R.W. Djang, J. Reichwein, H.J. Gottfried, and S. Yang.
Forms/3: A first-order visual language to explore the boundaries of the spreadsheet
paradigm. Journal of functional programming, 11(2):155–206, 2001.

[15] C. Chambers and M. Erwig. Dimension inference in spreadsheets. In Visual Lan-
guages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on,
pages 123–130. IEEE, 2008.

[16] C. Chambers, M. Erwig, M. Luckey, et al. Sheetdiff: A tool for identifying changes in
spreadsheets. In IEEE Int. Symp. on Visual Languages and Human-Centric Comput-
ing. Citeseer, 2010.

[17] M. Clermont and R. Mittermeir. Auditing large spreadsheet programs. In Proceedings
of the International Conference on Information Systems Implementation and Model-
ing, pages 87–97. Citeseer, 2003.

[18] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The development of a software
clone detector. International Journal of Applied Software Technology, 1995.

[19] J.S. Davis. Tools for spreadsheet auditing. International Journal of Human-Computer
Studies, 45(4):429–442, 1996.

[20] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detect-
ing duplicated code. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE
International Conference on, pages 109–118. IEEE, 1999.

[21] M. Erwig and M. Burnett. Adding apples and oranges. Practical Aspects of Declara-
tive Languages, pages 173–191, 2002.

[22] M. Fisher, M. Cao, G. Rothermel, C.R. Cook, and M.M. Burnett. Automated test case
generation for spreadsheets. In Software Engineering, 2002. ICSE 2002. Proceedings
of the 24rd International Conference on, pages 141–151. IEEE, 2002.

[23] M. Fisher and G. Rothermel. The euses spreadsheet corpus: a shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. In ACM SIG-
SOFT Software Engineering Notes, volume 30, pages 1–5. ACM, 2005.

66

[24] D.F. Galletta, D. Abraham, M. El Louadi, W. Lekse, Y.A. Pollalis, and J.L. Sampler.
An empirical study of spreadsheet error-finding performance. Accounting, Manage-
ment and Information Technologies, 3(2):79–95, 1993.

[25] M. Godfrey and Q. Tu. Tracking structural evolution using origin analysis. In Proceed-
ings of the international workshop on Principles of software evolution, pages 117–119.
ACM, 2002.

[26] F. Hermans, M. Pinzger, and A. van Deursen. Code smells in spreadsheet formulas. In
Proceedings of the International Conference on Software Maintenance (ICSM), page
To appear.

[27] F. Hermans, M. Pinzger, and A. van Deursen. Automatically extracting class diagrams
from spreadsheets. ECOOP 2010–Object-Oriented Programming, pages 52–75, 2010.

[28] F. Hermans, M. Pinzger, and A. van Deursen. Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pages 451–460. ACM, 2011.

[29] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and visualizing inter-
worksheet smells in spreadsheets. In Proceedings of the 2012 International Confer-
ence on Software Engineering, pages 441–451. IEEE Press, 2012.

[30] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data clone detection and
visualization in spreadsheets. In Proceedings of ICSE ’13, 2013. to appear.

[31] J.H. Johnson. Identifying redundancy in source code using fingerprints. In Proceed-
ings of the 1993 conference of the Centre for Advanced Studies on Collaborative re-
search: software engineering-Volume 1, pages 171–183. IBM Press, 1993.

[32] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. Software Engineering, IEEE Trans-
actions on, 28(7):654–670, 2002.

[33] C. Kapser and M.W. Godfrey. Toward a taxonomy of clones in source code: A case
study. In Proceedings of the Conference on Evolution of Large Scale Industrial Soft-
ware Architectures (ELISA03), pages 67–78, 2003.

[34] C. Kapser and M.W. Godfrey. Aiding comprehension of cloning through categoriza-
tion. In Software Evolution, 2004. Proceedings. 7th International Workshop on Prin-
ciples of, pages 85–94. IEEE, 2004.

[35] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and
supporting evolution of code clones. In ACM SIGSOFT Software Engineering Notes,
volume 30, pages 1–5. ACM, 2005.

[36] K. Kontogiannis, M. Galler, and R. DeMori. Detecting code similarity using patterns.
In Working Notes of the Third Workshop on AI and Software Engineering: Breaking
the Toy Mold (AISE), pages 68–73, 1995.

67

BIBLIOGRAPHY

[37] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. In Soviet Physics-Doklady, volume 10, 1966.

[38] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In Software Maintenance 1996,
Proceedings., International Conference on, pages 244–253. IEEE, 1996.

[39] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM (JACM), 23(2):262–272, 1976.

[40] R. Mittermeir and M. Clermont. Finding high-level structures in spreadsheet pro-
grams. In Reverse Engineering, 2002. Proceedings. Ninth Working Conference on,
pages 221–232. IEEE, 2002.

[41] R. Mittermeir, M. Clermont, and Y. Ayalew. User centered approaches for improving
spreadsheet quality. Klagenfurt: Klagenfurt University, 12, 2000.

[42] D. Nixon and M. O’Hara. Spreadsheet auditing software. arXiv preprint
arXiv:1001.4293, 2010.

[43] R.R. Panko. Applying code inspection to spreadsheet testing. Journal of Management
Information Systems, pages 159–176, 1999.

[44] R.R. Panko. Revisiting the panko-halverson taxonomy of spreadsheet errors. In Sym-
posium Proceedings EuSpRIG 2008, University of Greenwich, London, UK. European
Spreadsheet Risks Interest Group, 2008.

[45] R.R. Panko and R.P. Halverson Jr. Spreadsheets on trial: A survey of research on
spreadsheet risks. In System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii
International Conference on,, volume 2, pages 326–335. IEEE, 1996.

[46] K. Rajalingham. A revised classification of spreadsheet errors. In Symposium Proceed-
ings EuSpRIG 2005, University of Greenwich, London, UK, pages 185–199. European
Spreadsheet Risks Interest Group, 2005.

[47] K. Rajalingham, D.R. Chadwick, and B. Knight. Classification of spreadsheet errors.
In Symposium Proceedings EuSpRIG 2000, University of Greenwich, London, UK,
pages 23–34. European Spreadsheet Risks Interest Group, 2000.

[48] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spreadsheets: An integrated
methodology for spreadsheet testing and debugging. In ACM SIGPLAN Notices, vol-
ume 35, pages 25–38. ACM, 1999.

[49] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A methodology for
testing spreadsheets. ACM Transactions on Software Engineering and Methodology
(TOSEM), 10(1):110–147, 2001.

68

[50] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you see is what you test: A
methodology for testing form-based visual programs. In Software Engineering, 1998.
Proceedings of the 1998 International Conference on, pages 198–207. IEEE, 1998.

[51] C.K. Roy and J.R. Cordy. A survey on software clone detection research. Queens
School of Computing TR, 541:115, 2007.

[52] J. Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic visual-
ization. Journal of Visual Languages & Computing, 11(1):49–82, 2000.

[53] L. Zou and M.W. Godfrey. Detecting merging and splitting using origin analysis. In
Proceedings of the 10th Working Conference on Reverse Engineering, page 146. IEEE
Computer Society, 2003.

69

