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Abstract—We performed an empirical study of the relation
between technical quality of software products and the defect
resolution performance of their maintainers. In particular, we
tested the hypothesis that ratings for source code maintain-
ability, as employed by the SIG quality model, are correlated
with ratings for defect resolution speed. This study revealed
that all but one of the metrics of the SIG quality model show
a significant positive correlation.

Keywords-Software defects, Defect resolution, Maintainabil-
ity, Source code metrics, Rank correlation, Issue tracker mining

I. INTRODUCTION

The ISO/IEC 9126 international standard for software
product quality [1] defines three perspectives on product
quality: internal quality, external quality, and quality-in-use.
These perspectives correspond to three distinct phases in
the lifecycle of a software product. Internal product quality
concerns the quality of the product as can be perceived
already in the construction phase, by observation of the prod-
uct independent of its operation. Static analysis techniques,
such as source code metrics, are the instrument of choice to
determine internal quality. External product quality concerns
the quality as it can be observed in the testing phase,
by dynamic analysis of the product’s behaviour in a test
environment. Quality-in-use concerns quality as perceived
by its users (in a broad sense, e.g. including owners of
the business processes that it supports) when the software
product is operational.

For internal and external quality, the ISO/IEC 9126 stan-
dard provides a breakdown of the overall notion of quality
into six main characteristics and a further breakdown into
over 20 sub-characteristics. One of the six main character-
istics is maintainability, which is further broken down into
analysability, changeability, stability, and testability.

To operationalise the quality definitions of ISO/IEC 9126,
the Software Improvement Group (SIG) has developed a
pragmatic measurement model that maps a selection of
source code metrics to the maintainability characteristic and
its sub-characteristics [2]. Being based on static analysis,
this model measures maintainability under the perspective
of internal product quality. It can be applied to software
products already in the construction phase, i.e. before enter-
ing the testing or production phases. The model is employed

by SIG in its assessment and monitoring services [3, 4]. It
also provides the basis of the software product certification
service offered by SIG in collaboration with TÜV Infor-
mationstechnik (TÜViT), which results in the quality mark
TÜViT Trusted Product Maintainability [5].

In a good quality measurement model, each selected
metric has a strong relationship with the particular quality
characteristic that is measured with it. In case of the SIG
quality model, this means that the maintainability metrics
as measured on the source code should have a strong
relationship with the maintainability of the software product
as experienced during maintenance activities. There is ample
anecdotal evidence that suggests such a strong relation,
based for example on the testimonials of software engineers
and managers of numerous software products that have been
evaluated with the SIG quality model in the context of
software assessment, monitoring, and certification. In this
paper, we report on an empirical study that investigates the
relationship between maintainability and actually performed
maintenance in a systematic manner.

In order to compare maintenance activities to our main-
tainability metrics, we need to quantify these activities
in some manner. Properties of maintenance activities that
one would like to quantify include their effectiveness (Do
defects get solved correctly?) and their efficiency (How much
maintenance effort is invested?). Unfortunately, reliable data
regarding correctness and effort of fixes is notoriously hard
to come by, simply because they are usually not recorded.

We have looked to the data available in issue tracking
systems to find a substitute for effort data. These trackers
record for each defect when it was reported and when it
was solved. This gives us an indication of defect resolution
speed, which in turn we use as a substitute for defect
resolution effort. By aggregation of resolution durations
for individual defects during limited time-frames, we can
construct an indicator of maintenance efficiency for the
version of the product under maintenance in that time-frame.

Thus, the experiment we report on seeks to answer the
following research question:

What is the relationship between software product
quality as measured by the SIG quality model and
the speed at which defects in these products are
solved by the development / maintenance team?
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Figure 1. Overview of the experiment.

We have conducted the experiment on data retrieved from
the issue trackers and source code of a range of open source
software products.

In Section II we explain our methods for data collection
and analysis, including the SIG quality model and the
quantification of defect resolution speed. In Section III
we describe the systems on which we have conducted the
experiment. In Section IV we give the results of analysing
these systems, including the various hypotheses that we are
able to accept. In Section V we list and discuss the threats
to validity of our experiment. In Section VI we compare
our work to related efforts. In Section VII we conclude the
paper with a discussion of the relevance of our results and
avenues for future work.

II. METHODS

An overview of the experiment process is given in Fig-
ure 1. The process consists of analysis streams for issues
(explained in II-A and II-B) and for source code (II-C).
Issues of type defect are selected and grouped by source
code snapshot date (as indicated by the calendar icon).
The results of these streams are combined in a correlation
analysis (II-D).

A. Issue analysis

The process of reporting and resolving issues for a
system during its development and/or maintenance is of-
ten handled through the use of an Issue Tracking System
(ITS). Examples include Bugzilla1, Issuezilla2, Jira3 and the
SourceForge Issue-Tracker4. Typically, an ITS can record
for each issue its type (e.g. defect, task), its state (e.g. new,
assigned, resolved, closed), the date of submission and of
each state change, the submitter, any comments by others,
and indications of severity and/or priority.

We constructed a Java tool that allows us to capture
information from ITS repository dumps. The tool includes

1http://www.bugzilla.org/
2A modified Bugzilla by CollabNet, http://www.open.collab.net/.
3http://www.atlassian.com/software/jira/
4http://issue-tracker.sourceforge.net/
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Figure 3. Histogram of defect resolution times.

a generic data model that can store the needed data from
different issue trackers in a unified fashion. The data model
is optimised for post-mortem queries on large batches of
issues, rather than for views and updates of the latest version
of individual issues.

For the experiment reported in this paper, we measured
issue resolution time defined as the time an issue is in an
open state. Thus, we look at the time an issue is marked as
being in the new or assigned state but not in the closed or
resolved state. If an issue has been closed and then reopened,
all open intervals count towards the issue resolution time, but
the intervals in which the issue was closed do not. We take
this as an indicator of the effort that was spent on solving
the issue, for lack of availability of more accurate data.

Since we want to compare issue resolution times with
maintainability measurements for particular versions of soft-
ware products (snapshots at particular dates), we need to
group issues by product version. For each version (i.e.
snapshot date), we count as relevant issues those that are
closed and/or resolved between that version and the next.
We assume that most, if not all, of the work on solving an
issue will be performed just before it is closed.

In this experiment, we focus exclusively on issues of
type defect. The processes of submission and resolution of
defects is characterised by a different level of urgency than
other types of issues, such as new features, tasks, patches,
or enhancements. Indeed, visualisation of issue churn for
defects and other types bears out that they behave quite
differently [6]. Thus, pooling defects with other issues does
not seem to be justified.

B. Quantification of defect resolution efficiency

The defect resolution times of individual defects need
to be aggregated to issue resolution efficiency ratings for
the group of defects associated by date to each snapshot.
Defect resolution times do not follow a normal distribution,
but rather a power-law-like distribution (see Figure 3). As a
result, a simple aggregation by taking the mean or median
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Figure 2. The SIG Quality Model maps source code measurements onto ISO/IEC 9126 quality characteristics.

of the defect resolution times is not appropriate. Instead we
use so-called risk profiles.

A risk profile can be composed by assigning items to risk
categories based on their metric values. For defect resolution
time, we use the following risk categories:

Category Thresholds

Low 0 - 28 days (4 weeks)
Moderate 28 - 70 days (10 weeks)
High 70 - 182 days (6 months)
Very high 182 days or more

For example, a defect with a resolution time of 42 days falls
into the moderate risk category.

Based on this risk assignment, a risk profile is constructed
by calculating the percentage of items in each category.
For example, 〈70, 19, 11, 0〉 is the risk profile of a product
history where 70% of all defects were resolved within 4
weeks, 89% were solved within 10 weeks, and none took
longer than 6 months to solve.

Risk profiles can be mapped to ratings to enable straight-
forward comparison. We rate on a unitless scale between
0.5 and 5.5 that can be rounded to an integral number of
stars (more is better). By benchmarking against about 100
releases of various open source products [6] we calculated
the following mapping:

Rating Moderate High Very High

***** 8.3% 1.0% 0.0%
**** 14% 11% 2.2%
*** 35% 19% 12%
** 77% 23% 34%

For example, a snapshot with risk profile 〈70, 19, 11, 0〉 will
be eligible for a ranking of 3 stars. By interpolation our
ranking algorithm establishes an exact rating of 3.25.

We adopted the notions of risk profiles and star ratings
from the SIG maintainability model [2] where they are used
to aggregate source code metrics, rather than defects. This
model is summarised below.

C. Source code analysis

The SIG has developed a layered model for measuring
and rating the technical quality of a software system in
terms of the quality characteristics of ISO/IEC 9126 [2].
The layered structure of the model is illustrated in Figure 2.
In the first layer, source code analysis is performed to collect
measurement data about the software system. The analysis
involves well-known metrics such as Lines of Code (LOC),
duplicated LOC, McCabe complexity numbers, parameter
counts, and dependency counts. These metrics are collected
on the level of basic building blocks such as lines, units (e.g.
methods or functions), and modules (e.g. files or classes).

Subsequently, these metrics for building blocks are
mapped onto ratings for properties at the level of the entire
software product, such as volume, duplication, and unit
complexity. As in the case of defects, these ratings take
values in the interval between 0.5 and 5.5, which can be
rounded to an entire number of stars between one and
five. This constitutes a unitless ordinal scale that facilitates
communication and comparison of quality results at the level
of entire software products.

The mapping functions for volume and duplication are
straightforward translations of LOC-based metrics to ratings.

The remaining mapping functions make use of risk pro-
files as intermediate device. Each profile is a partition of
the volume of a system (measured typically by LOC) into
four risk categories: low, moderate, high, and very high risk.
For example, if 4,000 LOC of a 100,000-LOC system sit in
methods with a McCabe number higher than 50, the volume
percentage in its very high risk category is 4.0%. Thresholds
for metric values (like McCabe > 50) have been chosen
based on statistical study of a large set of representative
systems. Likewise, thresholds have been chosen to define a
mapping of risk profiles to quality ratings.

For the extraction of measurement values from source
code, we rely on the Software Analysis Toolkit (SAT) of
the SIG. The SAT offers source code analysis capabilities
for a wide range of languages as well as generic modules for
aggregating and mapping source code metrics in accordance
with the SIG quality model.

SERG Luijten et al. – Faster Defect Resolution with Higher Technical Quality of Software
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Table I
SOFTWARE VERSIONS IN DATASET

software main LOC issue snapshots snapshots issues defects defects
product language (latest) tracker (total) (selected) (total) (total) (selected)

Abiword C++ 332,132 Bugzilla 1 1 10,941 9,581 130
Ant Java 122,130 Bugzilla 20 19 5,192 3,595 1,856
ArgoUML Java 171,402 Issuezilla 20 20 5,789 4,327 3,008
Checkstyle Java 44,653 SourceForge 22 16 612 612 419
Hibernate-core Java 145,482 Jira 1 1 4,009 2,421 229
JEdit Java 54,235 Sourceforge 1 1 3,401 3,401 351
Spring-framework Java 118,833 Jira 21 21 5,966 2,415 1,415
Subversion C 218,611 Issuezilla 1 1 3,103 1,849 65
Tomcat 6.0 Java 163,589 Bugzilla 19 8 644 547 272
Webkit C++ 1,255,543 Bugzilla 1 1 22,016 20,970 1,447

N=10 107 89 61,673 49,718 9,192

D. Statistical methods

The ratings for maintainability and for defect resolution
time have an ordinal scale. Furthermore both the maintain-
ability ratings and defect resolution time do not follow the
normal distribution in our sample. For these reasons we
have chosen to use the (non-parametric) Spearman rank-
correlation method [7] for analysing correlation between
these metrics, instead of the Pearson product-moment cor-
relation coefficient.

III. DATA

A. Software products used as subjects

The data we used for our experiments was obtained from
the ITSs of 10 open source projects. See Table I for an
overview. These projects were chosen because they are well-
known projects and have publicly available source code and
issue repositories. A few of the projects (notably ArgoUML
and Checkstyle) were included because of the large amount
of previous research done on these projects (e.g. [8, 9, 10]).
For half of the systems, data has been collected for multiple
snapshots, with a total of 107 snapshots. All systems have
non-trivial size, with Checkstyle as one of the smaller
systems (44 KLOC in the most recent snapshot) and Webkit
as the largest (1.2 MLOC). The total number of collected
issues for the 10 systems is more than 61,000 of which
almost 50,000 are defects.

B. Data cleaning and selection

Several steps have been taken to reduce the data set for
the experiment. Firstly, all duplicate issues were removed,
as well as issues that presented any kind of inconsistency.
Also, issues were removed that could be established not to
pertain to the source code. Secondly, snapshots with 5 or
fewer issues associated with them were rejected.

From the resulting issues, we selected only issues of type
defect and with status closed or resolved. This resulted in a
final set of about 9,000 defects.

IV. RESULTS

A. Tested hypotheses

We tested rank correlation between the calculated rat-
ings for defect resolution efficiency against each of the
11 ratings in the SIG quality model. Thus, for each x ∈
{maintainability , analysability , changeability , stability ,
testability ,... } we have the following null hypothesis and
alternative hypothesis:

Hx
0 : There is no relation between defect resolution

efficiency and x.
Hx

alt : There is a relation between defect resolution effi-
ciency and x.

As stated above, these hypotheses were tested using Spear-
man’s rank correlation. Since we expect a positive correla-
tion, we used a one-sided test.

B. Correlation results

The results of the rank-correlation test are shown in
Table II. All correlations, except for unit interfacing, are
significant at a 99% confidence level. The significant
correlation factors ρs vary between 0.29 and 0.62. This
means that for all x ∈ {maintainability , analysability ,
changeability , stability , testability , volume, duplication,

Table II
RESULTS OF SPEARMAN’S RANK-CORRELATION TEST BETWEEN

RATINGS FOR DEFECT RESOLUTION TIME AND MAINTAINABILITY.

Defect resolution vs. ρs p-value

Volume 0.29 0.003
Duplication 0.31 0.002
Unit size 0.51 0.000
Unit complexity 0.51 0.000
Unit interfacing -0.14 0.897
Module coupling 0.51 0.000

Analysability 0.51 0.000
Changeability 0.64 0.000
Stability 0.41 0.000
Testability 0.53 0.000

Maintainability 0.62 0.000

Luijten et al. – Faster Defect Resolution with Higher Technical Quality of Software SERG
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unit size, unit complexity , module coupling} we reject the
null hypothesis Hx

0 and maintain the alternative hypothesis
Hx

alt that a relation exists with defect resolution efficiency.
For x = unit interfacing we can not reject or accept either
hypothesis. The remainder of this section discusses these
results in more detail.

C. Correlation with system properties
The first six rows of the table concern the system prop-

erties. These are measured directly from the system source
code. As stated, most of these correlate positively with the
defect resolution rating.

The correlations to volume and duplication are lower
(around 0.30) than the others. In a larger system, we expect
it to take longer to locate the locations where fixes need to be
made. In a system with more duplication, each defect might
need to be fixed in multiple places. The lower correlation
factors suggest that these effects of volume and duplication
exist, but have lower impact than the effect of the other
properties in the model.

The correlations to unit complexity, unit size, and mod-
ule coupling are stronger (around 0.51). This demonstrates
that, as expected, defects in systems with large and highly
complex units (methods, functions, etc.) take more time to
fix. Also, systems composed of modules (files, classes, etc.)
that have high inward coupling apparently apparently take
more time to fix.

For unit interfacing (rated via a risk profile for the number
of parameters of each unit) the correlation result is not
statistically significant. Therefore, we can not accept or
reject the associated hypotheses. It is possible that with
a larger data set significant results can be obtained that
either show absence or presence of correlation. Also, the unit
interfacing rating could be related with a different measure
of issue handling efficiency. These questions lie outside the
scope of our experiment and will be discussed below as
possibilities for future work.

D. Correlation to quality characteristics
The next four rows of the table concern the maintainability

subcharacteristics that compose the intermediate level of the
SIG quality model. The ratings of these subcharacteristics
are calculated from the ratings of system properties. All
four subcharacteristics correlate positively. Interestingly, the
correlation factors tend to be higher than the ones for
the system properties from which they are calculated. For
example, the correlation factor for testability is 0.53, while
the factors for unit size and unit complexity (from which
the testability rating is calculated) are both 0.51. Apparently,
the mapping of properties to subcharacteristics reinforces the
correlation.

The last row of the table concerns maintainability itself.
Maintainability is correlated to defect resolution time with
one of the highest factors of all (0.62), showing again the
reinforcing effect of aggregation in the model.

V. THREATS TO VALIDITY

As suggested by Perry et al. [11], we discuss three types
of influences that might limit the validity of our study.

A. Construct validity

Do the variables and hypotheses of our study accurately
model the research question?

Lack of issue detail: The data recorded in ITSs does
not allow us to distinguish between different activities in
solving an issue, such as analysis (finding out what changes
need to be made), modification (actually changing the code),
and verification (checking that the defect has indeed been
resolved). Lacking such detail, we compare the entire issue
lifetime to the maintainability characteristics, as well as
its subcharacteristics (analysability, etc.) and the system
properties (complexity, etc.). We expect this to decrease
significance and strength of correlation, which means our
positive results are conservative.

Idle time and double time: Though we filter out the
periods between closing and re-opening of an issue, the issue
resolution time that we measure potentially includes idle
time: though the issue is open, the team may not be working
on it. On the other hand, our metric does not take into
account that more than one team member may be working
on the same issue at the same time. We believe that idle time
is a common phenomenon and further study is warranted to
discover whether it occurs in roughly the same degree in all
defects in all projects. We believed that double time is rare
and has a very limited effect on our study.

B. Internal validity

Can changes in the dependent variables be safely at-
tributed to changes in the independent variables?

Unequal representation: The dataset contains systems
with just one snapshot and systems with multiple (up to
21). As a result, not all systems are equally represented
and do not contribute with equal weight to the result. Still,
multiple snapshots of the same system might be regarded
as independent data points since they are separated in time
and large variations can be observed among the ratings for
different snapshots of the same system. Future experiments
on larger datasets, or datasets without multiple versions of
a single system, can counter this threat more definitively.

Confounding effects: We did not measure some aspects
of software projects that could have an influence on the issue
handling process, such as team size or project popularity.
Such factors could lead to larger or smaller numbers of
issues being reported or fixed. We believe the influence of
these factors to be small.

C. External validity

Can the study results be generalised to settings outside
the study?

SERG Luijten et al. – Faster Defect Resolution with Higher Technical Quality of Software

TUD-SERG-2010-006 5



Bias due to issue tracker usage: Our experiment in-
cludes only data from projects that make systematic use
of an issue tracker. It is plausible this is a trait of well-
organised projects that embrace best practices and follow
a mature software engineering process. The established
relationship between source code maintainability metrics and
issue resolution efficiency should therefore not be assumed
to hold also for projects at a lower maturity level.

Generalisation beyond Java: Most projects in our study
have Java as the main programming language. Even though
the SIG quality model has been designed to include metrics
that are applicable to a wide range of languages, the typical
measurement values may be different per language. We
believe that generalisation of the results of our study to
languages with similar characteristics, such as C# and C++,
is justifiable. For languages with different characteristics,
such as COBOL (procedural), PHP (dynamically typed), or
Erlang (functional) further experiments are warranted.

Generalisation to commercial projects: We studied
only data from open source projects. The organisation,
management, and execution of open source projects typically
differs from those of commercial projects. Still, the bound-
aries between these two kinds of projects are not strict. Many
(successful) open source projects are initiated, supported,
organised, and/or managed by a commercial organisation
(e.g. Oracle/SUN for OpenOffice.org, IBM for Eclipse,
etc., VMware/SpringSource for the Spring Framework, and
Apple for Webkit). On the other hand, commercial software
projects are increasingly adopting practices that have been
common practice in open source projects for a longer period
already, such as unit testing, continuous integration, usage
of ITSs, globally distributed teams, nightly builds, and
(elements from) agile methodologies. Due to these blurring
boundaries, we believe that our results can be generalised
to commercial projects that are run in a “modern” way, but
not necessarily to classical waterfall-development projects.

VI. RELATED WORK

A. The maintainability index

We start our related work discussion with a comparison
to empirical studies conducted on the Maintainability Index
(MI) [12], because the construction of the SIG maintain-
ability model was originally motivated by criticism of the
MI [13, 2].

Oman et al. introduced the MI as a source-code measure
for maintainability [12]. The MI is a four-metric polynomial,
based on the Halstead effort metric, McCabe’s cyclomatic
complexity metric, lines of code and lines of comment.
The constants in the formula that combines these metrics
were initially established by a regression analysis against
subjective assessments of maintainability for 8 software
systems ranging between 1,000 and 10,000 lines of code
written in C or Pascal [14]. The subjective maintainability
assessments of the subject systems was elicited from the

system’s maintainers by surveys based on the Air Force Op-
erational Test and Evaluation Center (AFOTEC) evaluation
guide [15]. All systems were programmed in Pascal or C and
were obtained from two different sites of Hewlett-Packard.
For the model obtained by regression analysis, a value of
R2 = 0.90 was reported as goodness of fit. A further 6
systems sized between 1,000 and 8,000 lines of code in
the same languages were used to validate the model. A
Spearman rank-correlation test was performed between the
MI values calculated from the source code of these systems
and the subjective assessments of their maintainability. A
correlation factor was reported of ρ = 0.74, but without
statistical significance (p > 0.05).

In spite of the lack of statistical significance, an im-
proved version of the model was applied to 11 industrial
software systems and their components where “[i]n each
case, the results from [the] analysis corresponded to the
maintenance engineers ‘intuition’ about the maintainability
of the (sub)system components” [16]. The improvements of
the model include using Halstead volume instead of Halstead
effort and making it optional to use the metric for comment
lines. On the original validation data, the average residual
between the original and improved model is reported to be
low (less than 1.4 for values ranging between 45 and 95).

The three-metric polynomial MI (i.e. without the optional
factor for number of comment lines) was applied to all
components of “a large industrial software system” and
compared to the number of recorded defects for each of
these 30 components [17]. A correlation factor is reported
of 0.83, but no further details of this study were provided.

The three-metric and four-metric polynomial MIs were
applied to various versions of the same software system [18].
The earlier versions were developed in FORTRAN, while
later re-engineered versions co-existed in C and Ada. For
one version in each language, also a subjective assessment
was performed. No statistical analysis of correlation was
performed, but “[a]lthough the numerical values of the
subjective assessments do not correspond exactly to the MI
values obtained for those systems, the scale and direction of
the results are similar” [18].

The MI and the SIG maintainability model show some
overlap in their ingredient metrics, such as lines of code
and cyclomatic complexity. However, the way these mea-
surements are aggregated and combined are very different,
with the MI taking the mean of these metrics while the SIG
model constructs risk profiles. The two models also differ in
the scale used for rating. In the SIG model, an ordinal scale
between 0.5 and 5.5 is used on all levels, with a rounding
convention to integral numbers between 1 and 5. The MI
derives its scale from the 25-item AFOTEC evaluation guide
where each item gets rated on an ordinal scale between 1
and 5, leading to an overall score between 25 and 125. The
constructed polynomial model in practice attributes values
on a wider scale, with values for entire systems reaching
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over 140 and values for parts of systems falling below -90.
Calibration of the MI model was done with 8 software

systems of a single company written in procedural languages
totalling no more than 80,000 lines of code. Calibration was
done against subjective assessments of maintainability of
these 8 systems by their maintainers. The SIG model is
calibrated with systems of multiple organisation and open
source communities with a total of more than 5 million lines
of code written in modern languages such as Java and C#.
Calibration is done against a desired symmetric distribution
of the subject systems over the rating scale.

The validation of the SIG model provided in the current
paper can be compared with the validation reported by Cole-
man et al. [17] that correlates the MI for system components
with their recorded number of defects. Both validations use
a defect metric as dependent variables, though we do not use
defect counts for components, but defect resolution speed for
the system as a whole. Our validation uses 100 snapshots
of 10 open source systems, while the reported MI validation
uses 30 components of a single proprietary system.

B. Prediction of defects

Most of the existing work which mines ITSs is focused on
bug prediction. Examples of this are the works of Ratzinger
et al. [19] and Graves et al. [20]. Both attempt to predict
the amount of bugs affecting a piece of software using the
corresponding source and fault history. Interestingly, they
identify the number of previous changes to a given module
as a major influence, which is not a source code metric.

It is also possible to attempt to predict bugs in new or
changed code by identifying the past changes that introduced
a bug [21, 22, 23, 8]. This is done by examining the
change log messages for indicators that a bug was fixed and
assuming that the change that last touched the same code
will have introduced the bug. Even though this seems to be
a rather strong assumption, prediction accuracies of 35% [8]
to 60% [23] have been reported.

Gyimothy et al. [24] study the Chidamber-Kemerer suite
of object-oriented metrics [25] within the Mozilla project5.
They assign bugs in the ITS to source code in a specific
release by examining patch files submitted with a bug. Using
logistic regression analysis, they show that the Coupling
Between Objects metric is the best predictor for fault-
proneness, with precision and recall of just under 70%.
However, due to the necessity of having patches available,
their approach only takes a small percentage of bugs into
account, which compromises generalisability [26].

Another evaluation of the Chidamber and Kemerer was
later done by Briand et al. [27], who also examine a
large number of metrics defined by others. They perform
logistic regression techniques to determine impact on fault-
proneness of the metric values. As a dataset, they use

5http://www.mozilla.org

systems developed by students in a computer science course,
with the faults determined by an independent team of pro-
fessionals. Their best fitted model consists of four coupling
and three inheritance measures, with a precision of 84% and
recall of 94%. This result is consistent with others in placing
emphasis on coupling metrics above size and complexity.
Interestingly, the often-used McCabe complexity [28] is not
included in this analysis. A number of later works have
replicated the verification of the Chidamber and Kemerer
metrics, using various techniques such as threshold models
[29] and neural networks [30].

Zimmermann et al. [31] examine the transferability of
bug prediction models between projects. Out of the 622
project version combinations they tested, an astonishingly
low 3.4% was able to reach their 75% cross-prediction
accuracy threshold. Further investigation allows them to
formulate a set of guidelines on how to select a project
that will provide maximum prediction accuracy for a given
target project. Unfortunately, Zimmermann et al. [31] make
no claims on the usability of a general model, trained on all
subject systems.

A problem with some of the previously discussed work is
the dependence on available links between Version Control
System (VCS) and ITS. In order to determine the source
code impacted by an issue, many authors use issue identifiers
present in commit logs, including [31, 32, 19, 21, 22, 23, 8].
Both Ayari [33] and Bird et al. [26] investigate the validity
of this approach. Both show that a large amount of the issues
present in the ITS are typically not traceable to source code.
Bird et al. [26] demonstrate that this leads to a bias in test
results. This is a big threat to the validity of studies adopting
this method. In our experiment, no use was made of VCS-
ITS links. Rather, we looked at the total corpus of issues that
are reported and closed for a product release or a time period.
Furthermore, we are not directly interested in predicting new
issues, but in the influence of software maintainability on the
speed of issue solving.

C. Other maintainability indicators

Riaz et al. [34] conducted a systematic review of studies
into software maintainability prediction and metrics. They
conclude that “there is little evidence on the effectiveness of
software maintainability prediction techniques and models”.
In particular, out of 710 studies identified by automatic
literature search, only 15 studies were deemed sufficiently
promising for detailed assessment, which revealed that “met-
rics related to size, complexity and coupling were to date the
most successful maintainability predictors employed”. Four
of the selected studies concern the Maintainability Index and
were discussed above [14, 16, 17, 18].

Among the other studies identified by Riaz et al., several
construct and test predictive models for maintainability
based on various kinds of regression analysis [35, 36]. Van
Koten et al. [37] use Bayesian Networks. Some of the

SERG Luijten et al. – Faster Defect Resolution with Higher Technical Quality of Software

TUD-SERG-2010-006 7



identified studies use defect data as dependent variable, such
as error rate [38] and moments of detecting and correcting
defects [39].

Riaz et al. note that many of the identified studies rely on
data-sets that limit generalisability of the results. This can
be the case, for instance, when subject systems from a single
source are used as in the various MI studies, when use is
made of students to perform maintenance tasks, or when the
number of data points is small. In case of our experiment,
a large amount of source code from many different sources
were used. Though all are open source systems, professional
organisations are involved in their development.

VII. CONCLUSION

A. Contributions

We have conducted an empirical study that demonstrated
a significant, positive statistical correlation between the
quality of software products as measured by the SIG quality
model and the speed at which defects are solved by the
development and/or maintenance teams of these products.

The correlation was shown to exist on all three levels of
the SIG quality model, i.e. at the level of maintainability, at
the level of subcharacteristics of maintainability as defined
by ISO/IEC 9126, and at the level of directly observable
product properties, such as volume, duplication, and unit
complexity. For only one product property in the SIG quality
model (unit interfacing, measured in terms of the number of
parameters per unit) no correlation was found.

The strength of correlation as found in the experiment
proved to increase at higher levels of aggregation. This
suggests that the various metrics employed in the SIG quality
model reinforce each other’s effects. In other words, the
quality model as a whole is more informative regarding issue
resolution efficiency than any of its parts.

B. Discussion

The relationship between source code metrics for main-
tainability and duration of maintenance tasks established by
our experiments constitutes an important empirical valida-
tion of the SIG quality model.

This validation was performed on the defects and source
code of open source projects that use Java as main pro-
gramming language. Due to these characteristics, the study
has immediate consequences for a large part of currently
ongoing software engineering activities: defect resolution is
one of the most important activities in software development
and maintenance; recent years have seen a rapid growth of
open source software as well as adoption of its best practices
in commercial software projects; and Java is currently one
of the most widely used programming languages.

Extrapolation of the experiment results beyond Java and
beyond open source must be done with care. We have not
identified a priori reasons why such extrapolation would
not be possible. Nonetheless, an extension of the presented

experiment to other programming languages and other devel-
opment models would be of great added value. We explain
our plans in that direction below (Section VII-C).

Extrapolation of the experiment results beyond defects is
not a priori expected to be possible, since other types of
issues have already been observed to have very different
statistical properties.

We believe that the experiment outcomes for the SIG
model and its ingredient metrics can be understood to set a
benchmark for other quality models and source code metrics.
When proposing a new metric or new model intended to
measure maintainability, a validation along the lines of the
experiment described here can be performed to establish
whether the proposal adds to the state-of-the-art. Also, when
making modification to the SIG quality model, a repetition
of the experiment should be carried out to determine the
desirability of the modification.

C. Future work

Throughput ratings for other issue types: In this exper-
iment we have focussed exclusively on issues of type defect.
It would be interesting to see whether it is also applicable to
issues of other types, such as refactorings and new features.

Expand the dataset: The dataset we used consists of
ten open source projects, five of which are represented by
multiple versions. Increasing the size of this set will help
in strengthening the confidence in the experiment results. In
particular, it will be interesting to add commercial projects
and to add projects with a main programming language
different from Java. Also, with larger dataset, it is possible
that significant (positive or negative) correlation results can
be obtained for unit interfacing as well.

Normalise the throughput ratings: It is clear there
are still a number of confounding factors present in the
throughput ratings. For example, differences in team size
between projects, that influence the throughput times. On the
other hand, it seems that the correlation between throughput
and maintainability ratings holds even better for successive
versions of a single system. We suspect that a number of
confounding factors could be eliminated by normalising the
ratings in some way. Again, this would improve confidence
in the influence of the maintainability rating.

Lower-level analysis: Ideally, the analysis we per-
formed should be done on the level of source code modules.
Knowing where an issue was fixed in the source code is
necessary to do this, however. If subject systems that provide
such information are available, this is a very interesting
research direction. We expect this will give a much clearer
picture, because the metrics of irrelevant parts of the system
do not influence the result.

Unit interfacing: The lack of significant results for
the unit interfacing system property gives rise to directions
for further investigation. Repetition of the study with more
data was mentioned above. Alternatively, a different source
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code metric could be chosen to quantify unit interfacing
itself. In the current model, the number of parameters of
units are used for this purposes. Alternatively, a weighted
variant of this metric could be used (giving more weight
to parameters of “richer” types) or a metric that takes not
only explicitly declared parameters into account, but also
access to variables. Finally, hypotheses can be formulated
and tested that relate unit interfacing to other issue handling
metrics (examples follow below).

Correlations with other indicators: We quantified effi-
ciency of maintenance activities in terms of defect resolution
speed. Correlation of the SIG quality model with other
indicators is of interest as well. Examples are resolution
times for other types of issues than defects or the number
of people that work on issues. Also, the effectiveness of
maintenance activities (Are issues resolved correctly?) is
worth investigation. This could be measured for example by
the number of times issues get reopened or by the number
of new defects that are introduced while resolving an issue.
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