A multifunctional Living Wall System
Not just aesthetic, it can filter water!

P5 Graduation, November 11th, 2016

Main Mentor
Andy van den Dobbelsteen

Second Mentor
Marc Ottelé

Maaike Kok 4092724
Motivatie
Greener, healthier cities

Rietveld, Delft (2015)

Rietveld, Delft (2016)

(van der Ven, 2015)
Relevance
Benefits of Green

- Social and psychological benefits\(^1\)
- Reduction of the Heat Island Effect\(^2\)
- Stormwater retention\(^3\)
- Air quality improvements\(^3\)
- Aesthetic value
- Acclimatization (cooling in summer, insulation in winter)\(^4\)

\(^1\) (Chilla, 2004), \(^2\) (Sheweka & Mohamed, 2012), \(^3\) (Peck & Callaghan, 1999), \(^4\) (Perini & Rosasco, 2013)
Lack of Green

Office

UNESCO-IHE - Delft

Hotel

WestCord Hotel - Delft
(District8.net, 2012)

Nursing home

Nursing home NEBO - The Hague
(Boele & van Eesteren, 2016)
Green Solutions

Groene daken

Groene gevels

Living wall systems
Focus on Living Wall Systems

- Living Wall Systems are more effective than Green Facades
- Facade area is larger than roof area
- Vertical green systems can be seen from street level
Problem Statement
Lack of implementation LWS

- **High installation costs**
 - Westfield - London (United Kingdom) (AECOM, 2013)

- **High maintenance costs**
 - Westfield Century City - Los Angeles (USA) (Habitat Horticulture, 2016)

- **Aesthetics only**
 - The Nanjing South Railway Station - Nanjing (China) (Tournesol Siteworks LLC, 2014)
Problem Statement
Unused Potential of Multi-functionality

Urban Farming
Brooklyn Grange - New York (USA) (Rooflife, 2015)

Electricity Generation
Plant-e (Innozaam, 2016)

Water Filtering
Printenbreide - near Lubeck (Germany) (Creative Commons, 2010)
Focus on Constructed Wetlands

Urban Farming
- Brooklyn Grange - New York (USA) (Rooflife, 2015)

Electricity Generation
- Plant-e (Innozaam, 2016)

Constructed Wetland
- Printenbreide - near Lubeck (Germany) (Creative Commons, 2010)
Research aim & question

How to design a Living Wall System that is able to separate, filter and reuse both suitable and valuable wastewater streams exiting a utility building?
Design Location
WestCord Hotel Delft

Southwest facade

© Knevel Architecten BV, 2016
Design Location

Water Demand & Availability

Water demand
20,239 L/day Drinking water

100%

Water availability

Blackwater (4,613 L/day)
Greywater with food particles (3,319 L/day)
Greywater without food particles (12,101 L/day)
Stormwater roof run-off (3,853 L/day)

24%
16%
60%
Design Location
Water flows addressed

3,614 L/day

12,101 L/day
How to create a good filter mechanism?
Total Purification System

<table>
<thead>
<tr>
<th>PRIMARY TREATMENT</th>
<th>SECONDARY TREATMENT</th>
<th>TERTIARY TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreatment</td>
<td>Biological treatment</td>
<td>Post-treatment (Optional)</td>
</tr>
</tbody>
</table>

- **Pretreatment**
 - Sludge collection pit & grease trap
 - Pump sump

- **Secondary Treatment**
 - Vertical flow constructed wetland

- **Tertiary Treatment**
 - Clean water tank
 - Pond

- Removal of settleable solids & floating substances
- Removal of colloidal & suspended solids (e.g. nitrogen & phosphate)
- Further removal of suspended solids & eventual removal of biomass formed during treatment (e.g. Nitrogen and phosphate)
How to create a good filter mechanism?
Total Purification System

- **3,614 L/day**
- Leaf & Coarse particle filtration
- **12,101 L/day**
- Degreaser
- Constructed Wetland
- Storage

Direct use
Post-treatment
How to create a good filter mechanism?

System Types

- **Vertical subsurface flow constructed wetland (VSSF)**
- **Horizontal subsurface flow constructed wetland (HSSF)**

Horizontal subsurface flow constructed wetland (HSSF)
Vertical subsurface flow constructed wetland (VSSF)
How to create a good filter mechanism?

HSSF
How to create a good filter mechanism?

VSSF
How to create a good filter mechanism?

HSSF vs. VSSF
How to create a good filter mechanism?

Key Factors

➡️ **High efficiency**

- Long hydraulic retention time
 (e.g. shallow slope, small grain size, low flow velocity, recirculation)

- Creating an ideal environment for microorganisms
 (e.g. large area for attachment, both anoxic and oxic conditions)

➡️ **High capacity**

- (e.g. large substrate volume, steep slope, large grain size)

➡️ **Prevention of clogging, organic- and hydraulic overload**
How to create a good filter mechanism?

Design challenge - Shape

90 Degrees

Horizontal

Angled
How to create a good filter mechanism?

Constructed WetRoof
Design
Angle, Possible Configurations
Design
Angle, Possible Configurations
How to create a good filter mechanism?

Choice of Substrate

<table>
<thead>
<tr>
<th>Natural materials</th>
<th>Synthetic materials</th>
<th>Industrial by-products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apatite (igneous)</td>
<td>Activated carbon</td>
<td>Blast or steel furnace slag</td>
</tr>
<tr>
<td>Apatite (sedimentary)</td>
<td>Calcite</td>
<td>Burnt oil shale</td>
</tr>
<tr>
<td>Bauxite</td>
<td>Cat litter (burnt diatomaceous earth)</td>
<td>Charcoal</td>
</tr>
<tr>
<td>Bentonite</td>
<td>Filtralite</td>
<td>Coal ash</td>
</tr>
<tr>
<td>Calcined alunite</td>
<td>Filtralite-P</td>
<td>Dewatered alum sludge</td>
</tr>
<tr>
<td>Carbonate gravels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crushed marble</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homblende</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igneous gravels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone (sedimentary rocks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural materials</td>
<td>Synthetic zeolites</td>
<td></td>
</tr>
<tr>
<td>Maerl (marine sediment)</td>
<td>Filtralite</td>
<td>Fly ash</td>
</tr>
<tr>
<td>Marl</td>
<td></td>
<td>Iron ore</td>
</tr>
<tr>
<td>Natural zeolite</td>
<td></td>
<td>Ochre</td>
</tr>
<tr>
<td>Opoka (marine sediment)</td>
<td>LWA (light-weight aggregate)</td>
<td>Quartz sand</td>
</tr>
<tr>
<td>Marl</td>
<td>LECA (light-weight expanded clay aggregate)</td>
<td></td>
</tr>
<tr>
<td>Natural zeolite</td>
<td>LESA (light-weight expanded shale aggregate)</td>
<td></td>
</tr>
<tr>
<td>Oyster shell</td>
<td>Filtralite</td>
<td></td>
</tr>
<tr>
<td>Peat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polonite</td>
<td>LWA (light-weight aggregate)</td>
<td></td>
</tr>
<tr>
<td>Sands</td>
<td>LECA (light-weight expanded clay aggregate)</td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td>LESA (light-weight expanded shale aggregate)</td>
<td></td>
</tr>
<tr>
<td>Shell sand</td>
<td>Synthetic zeolites</td>
<td></td>
</tr>
<tr>
<td>Soils</td>
<td>Filtralite</td>
<td></td>
</tr>
<tr>
<td>Spodosols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Grain size 0.1-4mm**
- **Porosity 0.3**
- **Hydraulic conductivity 10^{-4} m/s**
How to create a good filter mechanism?

Vermiculite

- Relatively low saturated weight
 \(840 \text{ kg/m}^3\)

- Relatively high HRT
How to Construct?
Research Living Wall Systems
How to Construct?
Types of Living Wall Systems

- Planter Boxes System
- Panel System (Foam)
- Panel System (Mineral wool)
- Felt Layers
How to Construct?
Material Efficiency

![Bar chart showing material efficiency for different systems.](chart.png)
How to Construct?
Panel System
Design
Panel Dimensions

- Panel dimensions
 2100 x 3400 (W x H)

- Width = window width in GF atrium

- Height = Floor height

- Panel dimensions are outer boundaries

Southwest facade
Plant Species
Suitable for southwest facade

Constructed Wetlands
- Echte koekoeksbloem
 - Silene-flos-cuculi
- Voorjaarszegge
 - Carex Caryophyllea
- Stijve zegge
 - Carex Elata
- Hangende zegge
 - Carex Pendula

Living Wall Systems
- Gele dovenetel
 - Lamium galeobdolon
- Gevlekte dovenetel
 - Lamium maculatum
- Kleine maagdenpalm
 - Vinca minor

- Indigenous
- Evergreen
- Low maintenance
- Fast growth
Plant Species
Suitable for southwest facade

constructed wetlands
- Echte koekoeksbluem
 - Silene-flos-cuculi

living wall systems
- Gele dovenetel
 - Lamium galeobdolon
- Voorjaarszegge
 - Carex Caryophyllea
- Stijve zegge
 - Carex Elata
- Hangende zegge
 - Carex Pendula
- Gevlekte dovenetel
 - Lamium maculatum
- Kleine maagdenpalm
 - Vinca minor

- Indigenous
- Evergreen
- Low maintenance
- Fast growth
Final Design
Visualisation
Final Design
Final Design
Materials & Components

- Front plate (PP)
- Partition (PP)
- Anti-root foil (PP)
- Grid (PP)
- Planter box (PP)
- Irrigator (PP & EPDM)
- Anchor & bolts (Stainless steel)
Final Design
Substrates

40mm Glass foam (8-12mm)

60mm Vermiculite (0.1-0.5mm)
Final Design
Water supply

Influent (greywater)

Collected stormwater &
treated effluent from the panel above

Collected stormwater &
treated effluent from this panel
Design Conditions
System Configuration

Legend:
- = (Source)
- = (Source)
- = (Pretreated greywater)
- = (CW treated effluent & Stormwater)
- = (Purpose)
- = (Purpose)

Sludge collection pit & grease trap
Pump sump
Storage tank & pump
RO - System (Activated Carbon Filters & UV Filtration)
Water Savings

Drinking water consumption: 20,239 L/Day

Stormwater discharge (roof-run-off): 3,853 L/Day

Capacity Wetland: 318 L/Day

Drinking water consumption: 16,068 L/Day

Stormwater discharge (roof-run-off): 0 L/Day
Step 1 - Position the supporting beams
Step 2 -
Place the box
Final Design
Assembly

Step 3 -
Mount the anchors
Final Design
Assembly

Step 4 -
Place the anti-root foil, grid and vermiculite place holders
Final Design

Assembly

Step 5 -
Fill the box with
60mm thick vermiculite
Step 6 - Position the rasterized partition with attached rasterized plant pots (Ø 50mm)
Final Design
Assembly

Step 7 -
Place the glass foam place holders
Final Design
Assembly

Step 8 -
Fill the box with
40mm thick glass foam
Final Design
Assembly

Step 9 -
Mount the front panel
Step 10 -
Front panel is mounted,
behold
Step 11 -
Raise the box by 1 degree on the water supply side
Final Design
Assembly

Step 12 -
Add sloped supporting beams
(1 degree)
Step 13 -
Add bare root seedlings, surrounded by two halves of coco fibre (ø 50mm)
Step 14 - Sprinkle with a little bit of love and water. The slope ensures the water gets drained.
Final Design
Assembly

Step 15 -
Wait till fully covered
Step 16 -
The panel is ready for installment
Step 17 -
Remove the vermiculite and glass foam place holders
Final Design
Assembly

Step 18 - Prepare the facade (westfacade WestCord) for the waterfiltering living wall system
Final Design
Assembly

Step 19 -
Remove the wooden cladding
Final Design
Assembly

Step 20 -
Cut the styles for anchor placement
Final Design
Assembly

Step 21 - Remove the vapour permeable & water proving membrane
Step 22 -
Remove the insulation
Final Design
Assembly

Step 23 -
Place the anchors in the gaps
Final Design
Assembly

Step 24 - Anchors in place
Final Design
Assembly

Step 25 -
Reinsulate
Final Design
Assembly

Step 26 - Make the facade water tight again
Final Design
Assembly

Step 27 -
Place horizontal supporting beams on the styles
Step 28 -
Position the elements
Step 29 -
Cover the entire facade
Final Design
Assembly

Step 30 -
Finish by placing the irrigators
Questions?
Final Design
Facades WestCord Hotel Delft

© Knevel Architecten BV, 2016
Final Design
Detailing - Overview
Final Design
Detailing - Detail A, Horizontal Connection between Elements
Final Design
Detailing - Detail A, Horizontal Connection between Elements

- EPDM rubber ring
- PP Threaded ring Ø38mm, 3mm thick
- PP Irrigation tube Ø38mm, 3mm thick
Final Design
Detailing - Detail A, Horizontal Connection between Elements
Final Design
Detailing - Detail A, Horizontal Connection between Elements

- PP Threaded ring
 ø38mm, 3mm thick

- EPDM rubber ring

- PP Irrigation tube
 ø38mm, 3mm thick
Final Design
Detailing - Detail B,
Vertical Connection between Elements
Final Design
Detailing - Detail B,
Vertical Connection between Elements
Final Design
Detailing - Detail C, Horizontal Detail

Planter box
Rasterized partition with attached plant pots

Front panel
Final Design
Detailing - Detail D, Vertical Detail

Planter box
Rasterized partition
with attached plant pots

Front panel
Final Design
Detailing - Wall Connection
Final Design
Detailing - Wall Connection
Final Design
Detailing - Wall detail WestCord Hotel Delft (Original)

Floor construction:
- Anhydrite topfloor
- Sound insulation
- Constructual pressure layer
- Hollowcore floor

- Wooden plinth
- 2 x Plasterboard 12.5mm
- Damp proof foil
- Insulation
- M-s-profiles 75mm
- Plywood 18mm
- Insulation 140mm
- Vapor permeable & waterproofing membrane
- Battens
- Wooden cladding

Deltabeam
Final Design
Detailing - Wall detail WestCord Hotel Delft (Including design)

Floor construction:
- Anhydrite topfloor
- Sound insulation
- Constructural pressure layer
- Hollowcore floor

- Wooden plinth
- 2 x Plasterboard 12.5mm
- Damp proof foil
- Insulation
- M-s-profiles 75mm
- Plywood 18mm
- Insulation 140mm
- Vapor permeable & waterproofing membrane
- Battens
- Wooden cladding

Deltabeam

11.225+ 70 112 18 45 95 63
10.880+ 345
Final Design

Elemental Weight

<table>
<thead>
<tr>
<th>Element weight</th>
<th>Dry bulk density [kg/m³]</th>
<th>Wet bulk density [kg/m³]</th>
<th>Material volume [m³]</th>
<th>Total weight [kg]</th>
<th>Weight [kg/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermiculite</td>
<td>-</td>
<td>840</td>
<td>2.77E-01</td>
<td>232.33</td>
<td>32.54</td>
</tr>
<tr>
<td>Glass foam</td>
<td>515</td>
<td>-</td>
<td>1.48E-01</td>
<td>76.31</td>
<td>10.69</td>
</tr>
<tr>
<td>Planter box (polypropylene)</td>
<td>900</td>
<td>-</td>
<td>1.06E-04</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>Anchors (stainless)</td>
<td>7910</td>
<td>-</td>
<td>5.42E-04</td>
<td>4.29</td>
<td>0.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4.25E-01</td>
<td>313.02</td>
<td>43.84</td>
</tr>
</tbody>
</table>
Research

Substrate Weight

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Grain size [mm]</th>
<th>Provided bulk density [kg/m³]</th>
<th>Dry bulk density [kg/m³]</th>
<th>Wet bulk density [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional substrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Fine sand</td>
<td>0,1-0,5</td>
<td>1,551</td>
<td>1,535</td>
<td>1,832</td>
</tr>
<tr>
<td></td>
<td>0,6-1</td>
<td>1,594</td>
<td>1,554</td>
<td>1,935</td>
</tr>
<tr>
<td>2 Sand</td>
<td>1-2</td>
<td>1,614</td>
<td>1,572</td>
<td>1,945</td>
</tr>
<tr>
<td>3 Gravel</td>
<td>8-16</td>
<td>1,495</td>
<td>1,494</td>
<td>1,896</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>1,287</td>
<td>1,285</td>
<td>1,776</td>
</tr>
<tr>
<td>Lightweight substrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Activated carbon</td>
<td>1-2</td>
<td>450</td>
<td>469</td>
<td>1088</td>
</tr>
<tr>
<td>5 Clay aggregate</td>
<td>1-2</td>
<td>521</td>
<td>513</td>
<td>1134</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>498</td>
<td>471</td>
<td>1062</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>525</td>
<td>492</td>
<td>984</td>
</tr>
<tr>
<td></td>
<td>8-12,5</td>
<td>433</td>
<td>437</td>
<td>917</td>
</tr>
<tr>
<td></td>
<td>12,5-16</td>
<td>399</td>
<td>401</td>
<td>855</td>
</tr>
<tr>
<td>6 Expanded perlite</td>
<td>1-2</td>
<td>114</td>
<td>117</td>
<td>759</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>90</td>
<td>94</td>
<td>726</td>
</tr>
<tr>
<td>7 Glass foam gravel</td>
<td>4-8</td>
<td>530</td>
<td>529</td>
<td>1096</td>
</tr>
<tr>
<td></td>
<td>8-12,5</td>
<td>508</td>
<td>515</td>
<td>1079</td>
</tr>
<tr>
<td></td>
<td>12,5-16</td>
<td>505</td>
<td>519</td>
<td>995</td>
</tr>
<tr>
<td>8 Vermiculite</td>
<td>1-2</td>
<td>110</td>
<td>113</td>
<td>837</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>98</td>
<td>98</td>
<td>793</td>
</tr>
</tbody>
</table>
Research

Capacity vs. Weight Calculations

<table>
<thead>
<tr>
<th></th>
<th>60mm</th>
<th>90mm</th>
<th>12mm</th>
<th>150mm</th>
<th>180mm</th>
<th>210mm</th>
<th>240mm</th>
<th>270mm</th>
<th>300mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influent volume (for one zigzag) [L/day]</td>
<td>1.77</td>
<td>2.67</td>
<td>3.57</td>
<td>4.47</td>
<td>5.37</td>
<td>6.28</td>
<td>7.17</td>
<td>8.07</td>
<td>8.97</td>
</tr>
<tr>
<td>Amount of zigzags per element [n]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Amount of elements on WestCord [n]</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Total Capacity [L/day]</td>
<td>318.6</td>
<td>480.6</td>
<td>642.6</td>
<td>804.6</td>
<td>966.6</td>
<td>1130.4</td>
<td>1290.6</td>
<td>1452.6</td>
<td>1614.6</td>
</tr>
<tr>
<td>Total Capacity [%]</td>
<td>2.63</td>
<td>3.97</td>
<td>5.31</td>
<td>6.65</td>
<td>7.99</td>
<td>9.34</td>
<td>10.67</td>
<td>12.00</td>
<td>13.34</td>
</tr>
<tr>
<td>Element Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight per element [kg]</td>
<td>313.02</td>
<td>430.64</td>
<td>548.25</td>
<td>665.87</td>
<td>783.49</td>
<td>901.10</td>
<td>1,018.72</td>
<td>1,136.34</td>
<td>1,253.95</td>
</tr>
<tr>
<td>Weight per m² [kg/m²]</td>
<td>43.84</td>
<td>60.31</td>
<td>76.79</td>
<td>93.26</td>
<td>109.73</td>
<td>126.20</td>
<td>142.68</td>
<td>159.15</td>
<td>175.62</td>
</tr>
</tbody>
</table>
Research

Angle / Substrate Test
Research
Angle / Substrate Test

Stayed dry
Curved edge is desired