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We present details of a novel imaging algorithm based on the extended Nijboer—Zernike (ENZ) theory of dif-
fraction. We derive integral expressions relating the electric field distribution in the entrance pupil of an op-
tical system to the electric field in its focal region. The evaluation of these integrals is made possible by means
of a highly accurate and efficient series expansion similar to those occurring in standard ENZ theory. Based on
these results an ENZ imaging scheme is constructed and evaluated in detail with attention to the convergence
properties and computational complexity of the new method. © 2009 Optical Society of America
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1. INTRODUCTION

In present day optics, the ability to obtain accurate im-
ages of a general object by means of computational meth-
ods is of great importance. Computational imaging not
only provides valuable information on the image perfor-
mance of proposed designs for optical systems, it also en-
ables a detailed study of image formation itself. Although
a large number of different imaging algorithms exist, all
of them can be classified according to whether they oper-
ate in the spatial domain or in the frequency or Fourier
domain. In the frequency domain approach, the assump-
tion has to be made that the response of the system is
space-invariant, implying that the imaging system gener-
ates an invariant point response to the coherent near-field
issued from the object. When operating in the spatial do-
main, this assumption is not explicitly needed, but, once
incorporated, it leads to an important reduction in calcu-
lation time. For this reason, although not strictly re-
quired, spatial invariance is also included in the spatial
domain method. Regarding the frequency domain
method, its origin is found in the Abbe microscope imag-
ing theory [1]. It has been generalized to imaging prob-
lems by the work of Duffieux [2], Maréchal [3], and Hop-
kins. The latter author has extended the Fourier or
frequency domain approach to imaging with an extended
source (partially coherent illumination) [4], including a
defocussing of the image [5].

More recent extensions of the Fourier approach to im-
aging allow the inclusion of imaging aberrations and the
effects of “vector imaging” at high numerical aperture
[6-8]. The Fourier approach has become very popular be-
cause of the capability of employing the fast Fourier
transform in numerical computations [9] and, more re-
cently, of applying fast algorithms to obtain the so-called
transmission cross-correlation coefficients [10]. The fast
image calculation does however require an inherent peri-
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odicity in the object. If this periodicity is not present, it
can be artificially introduced by periodically repeating the
specific part of the object that has to be imaged. In this
case the continuous frequency spectrum of the object is
replaced by a discrete comb-like spectrum which intro-
duces certain artifacts in the final image.

The alternative to frequency domain imaging is the cal-
culation of the convolution of the object function with the
point response function of the imaging system [11]. The
first analytical result for the ideal response function or
point-spread function goes back to Airy [12]. Through-
focus imaging with an ideal system has been studied by
Lommel [13]. Refinements including the influence of ab-
errations have been studied by Strehl [14], Conrady
[15,16], and Picht [17]. A systematic study of imaging in
the presence of aberrations has been carried out by
Zernike and Nijboer [18-20], with the use of their circle
polynomials on the circular exit pupil as the key contribu-
tion.

The calculation of the point-spread function at high nu-
merical aperture was initiated by Ignatowsky [21] and
further developed by Hopkins [22] and Wolf [23]. In this
latter publication, the high-numerical-aperture point-
spread function through-focus was presented using a nu-
merical evaluation of the Debye diffraction integral. This
approach has become the standard one to treat point-
spread function calculation using so-called “vector diffrac-
tion.” Instead of the numerical evaluation of a diffraction
integral, special functions have been proposed to repre-
sent the wave field in the exit pupil that yield a direct
analytic solution in the image region, as for example,
Gauss—Laguerre modal expansions [24], multipole func-
tions [25], radial prolate spheroidal functions [26], spheri-
cal harmonics [27], and Walsh functions [28].

Most of the special functions quoted above suffer from
the fact that they cannot easily cope with the sharp edge
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that is encountered in optical diffraction problems,
namely the circular “hard” diaphragm that sharply limits
the lateral extent of the imaging bundles in an optical
system. For that reason, we use a recent extension of the
method for high-numerical-aperture point-spread calcula-
tion according to [23] that allows the analytic treatment
of the influence of aberrations and defocusing. In a series
of papers, the so-called extended Nijboer—Zernike (ENZ)
theory has been presented that provides the user with
semi-analytic expressions for the through-focus aberrated
point-spread function in the low-aperture scalar diffrac-
tion case [29,30] and for the vector diffraction case [31].
Although the calculation of the image of a single point has
been drastically accelerated by the availability of an ac-
curate semi-analytic series expansion instead of a diffrac-
tion integral to be numerically evaluated, the application
of this new tool for convolution calculations to obtain com-
plete images is still too slow in practice.

In this paper, we present details of a recently proposed
novel approach to point-spread-function-based image cal-
culation [32]. The basic tool used in this new imaging ap-
proach is the ENZ theory for through-focus point-spread
function calculation of general imaging systems with ab-
errations and spatial lens transmission variations. How-
ever, instead of using a point source in the object plane,
providing us with a quasi-uniform wave at the entrance
pupil and slowly varying phase in the exit pupil due to
imaging aberrations, we start with an extended object
that is many equivalent point-spread functions large in
the object plane. The wave field produced in the entrance
pupil by this coherently illuminated extended object field
is then expanded in Zernike—Nijboer circle polynomials,
including its amplitude and phase variations following
from the diffraction of the coherent incident wave (in gen-
eral, a plane wave) by the extended object. The wave field
in the exit pupil is the product of the wave field in the en-
trance pupil multiplied by the amplitude and phase (ab-
erration) of the lens transmission function. This wave
field with its Zernike polynomial expansion then immedi-
ately yields the through-focus aberrated image.

In Section 2 of this paper, we exploit the general tool for
through-focus point-spread function calculation provided
by the ENZ formalism to compute the image of more gen-
eral objects. Toward this goal we construct the Zernike ex-
pansion of the wave field in the entrance pupil of the sys-
tem. We give the detailed derivation of imaging from
object space to image space with different refractive in-
dexes to include immersion imaging, and show how the
Zernike expansion of the entrance pupil field is incorpo-
rated in the formalism. The immersion imaging mode is
encountered not only in microscopy but also in high-
resolution optical lithography systems with numerical ap-
erture values higher than unity [33]. Prior derivations
were not always exact in calculating the absolute field
strengths in image space given the object field compo-
nents.

In Section 3, we present our new method using an ex-
tended object as input for our point-spread-function-based
imaging method. The input for the imaging method is the
optical near field of the object given the illuminating
wave. Rigorous electromagnetic diffraction is applied to
obtain this near field, using a specially developed FDTD
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(finite-difference time-domain) method [34]. In Section 4,
we analyze the accuracy and the typical computational
complexity of our method. Finally, in Section 5, we
present our conclusions.

2. ENZ THEORY FOR ADVANCED IMAGING

The ENZ theory of diffraction was first described in
[29,30]. In these papers, a semi-analytic solution of the
Debye diffraction integral for the imaging of a point
source by a general optical system was introduced. The
development of ENZ theory was intended to provide a
method of characterizing optical systems by means of in-
tensity measurements in the focal region. In order to
achieve this, it is fundamental to have both an accurate
and a fast algorithm to compute the point-spread function
for a general aberrated system. In terms of computations,
this comes down to computing the point-spread function
from the otherwise uniform exit pupil, for an exit pupil
that is influenced by a general aberration. Although the
non-uniformities present in the pupil due to aberrations,
are usually small and should be relatively small in order
to make ENZ-characterization possible, the pupil-imaging
method itself'is not limited by the size of the deformations
and can be applied to general pupils. Recognizing that in
general imaging one also needs to image an exit pupil dis-
tribution that can be very complex, both in amplitude and
phase, we believe that this appealing feature of the ENZ
theory is well suited to be exploited for general imaging.

Here, we will introduce ENZ-based imaging by deriving
an ENZ-based imaging method for advanced lithographic
systems. For such systems, the distance R, between the
object (in this case, a lithographic mask) and the entrance
pupil of the optical system is much larger than the trans-
verse dimensions of the object being imaged. In this case,
we may apply the Fraunhofer approximation that consid-
ers all light coming from the mask to have originated
from a single point O. However, the radius of the entrance
pupil is of the same order of magnitude as R, and there-
fore the entrance pupil cannot be considered a flat sur-
face, but is a spherical surface P, with its origin at O (see
Fig. 1).

We now take a general point Qy(p, 6) on the entrance
pupil sphere Py, where p and 6 are polar coordinates with
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Fig. 1. Schematic representation of the geometry under consid-
eration. O is the origin, R, is the radius of the entrance pupil
sphere Py, i is the normal to the pupil surface, and @, is a gen-
eral point in the entrance pupil where we locally define the or-
thogonal linear p and s polarization states.
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p normalized with respect to the lateral half-diameter of
the entrance pupil (see Fig. 1). To a very good approxima-
tion, the electric field vector of the light arriving at point
Qo(p, 0 will be perpendicular to the normal 7 of the
spherical surface, and it is thus possible to locally repre-
sent the field at @, by a linear combination of two or-
thogonal polarization states perpendicular to 2. Here, we
will adhere to s (perpendicular) and p (parallel) states of
linear polarization, as they can be conveniently mapped
between the entrance and exit pupil of an aplanatic imag-
ing system. In our case, this mapping is uniquely defined,
as lithographic systems very accurately satisfy Abbe’s
sine condition within a tolerance better than 107°.

We now introduce a new coordinate base in @q(p, 6) ac-
cording to

k(= sin a; cos X + sin a; sin 0§ + cos ay Z, (1)
Po = Cos ag cos OX + cos ag sin 0y — sin o Z, (2)
So=—sin X +cos 0y, (3)

where «ag and the right-handed wunit vector bases
(f)o,éo,l:lo) and (X,y,z) are depicted in Fig. 2. We assume
that we have available the Cartesian electric field compo-
nents at a general point @, for example, by means of rig-
orous electromagnetic computation. From the components
E, and E,, we can find E, by applying the orthogonality of
field components with respect to the propagation unit vec-

tor k, yielding
Ey,=-(Ey,cos +E,, sin f)tan . (4)
The field components on the new basis are then given by
Ej,cos 0+E;,sin 0

EO,p(p’ 0) = EO(P’ 0) : IA)O = cos a ’ (5)
0

Eo(p,0)=E(p,0) - 8g=-Ey,sin 0+ Ey,cos 0. (6)

Note that the component in the direction of 1:1, E, is by
definition equal to zero because of the Fraunhofer ap-
proximation.

Next, we have to relate the field at a general point @4
in the exit pupil to the incident field in the corresponding
point @, on the entrance pupil sphere P,. The field in the

y y

point
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Fig. 2. Definition of the local basis for a general point @, on the
entrance pupil sphere with an axial cross-section (left-hand
graph) and a cross-section perpendicular to the z axis (right-hand
graph).
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entrance pupil equals the far field produced by diffraction
of the incident field at the mask structure. For the tran-
sition of the far field from the entrance pupil to the exit
pupil, we need to consider the energy transport between
the pupil surfaces. The basic relationship between the en-
ergy flow through the entrance and the exit pupil follows
from paraxial optics. It provides us with the ratio between
elementary areas on the pupil surfaces by means of the
square of the paraxial magnification. The exact mapping
of an elementary surface area from entrance to exit pupil
outside the paraxial domain needs an extra condition; in
our case, for large-field imaging systems, the Abbe sine
condition has to be satisfied.

Following the arguments in [6] and allowing for differ-
ent refractive indices ny and n; in object and image space,
we have the following relationship between the energy
flow through corresponding areas in entrance and exit pu-
pil (in the absence of absorption, reflection and scatter-
ing):

ev|E|?dS = constant,
or
nolEo|*dS = n4|E4[*dSy, (7)

where e=n? is the relative electric permittivity of the me-
dium, v=c/n is the propagation velocity, and dS, and dS;
are the corresponding flow cross-sections on the pupil sur-
faces. Denoting the distances of entrance and exit pupil
from the object and image plane by R, and R, respec-
tively, and using the expression for the elementary solid
angles in object and image space, we find

dk, odk, o dk, 1dk, 1
noRi— ——— B =mRi————|E:*, (8
kOkz,O klkz,l
with %, ;, k, ;, and k,; being the wave vector components

in the object and image space.
Using ko/ng=kq/nq, we write the electric field at the
image side as

Ry [k,1 [dk,odE, o
By = == ————|Ey|. 9
Rl kz,O dkx,ldky,l
Denoting the paraxial magnification by M and writing the
Abbe sine-condition according to

kx,O =ka,1’ ky,O =Mky,17 (10)
we obtain
MRO ny kz,l ko
Ey| = — —|Eq|
R, ng ky kz,O
MR,\ [n, (1-s2p?)V4
= — E,, (11
R, ng[l- (n%/n%)M283p2]1/4‘ o, (11)
where (1—sgp2)1’2 and [1—(nflng)Mzsgp2]l/2 can be identi-
fied as cos(ay) and cos(«y), respectively, with «; the corre-

sponding angle in image space and s, the image side geo-
metrical numerical aperture. Finally, we use the paraxial
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relation between pupil object and image distances R;/R,
=(n1/ng)MM, with M, the pupil magnification and use
Newton’s paraxial imaging equation in setting [M,)|
=|R,/f1|, with R, being the distance from the image side
focal point to the exit pupil and f; the image side focal dis-
tance.

The field in the exit pupil is then given by

PR Y B TN Y
n= R, nqi[l- (n%/ng)Mzsgpz]l/4 0
fi no
=5 —Tgr(p)|E,|, (12)
Rp nq

where the transmission factor

(1 _ Sgp2)1/4

T =
" T M

(13)

can be ascribed to the radiometric effect for a system sat-
isfying the Abbe sine condition in our general case with
unequal refractive indices in object and image space. In
the more common case with ny=n;, we can set |fi|=|fy|
=f1,, the focal distance of the imaging system.

As already mentioned above, we limit ourselves to sys-
tems satisfying Abbe’s sine condition. In this case a point
Qo at position (p, 6) is mapped directly to a point @(p, 6)
on the exit pupil sphere with the property that the nor-
malized radial coordinate p and the azimuthal coordinate
remain unchanged. In addition to the radiometric effect
described by the transmission factor T, the light travel-
ing through the imaging system will also experience some
deformations introduced by imperfections of the imaging
system. For lithographic systems these aberrations are
generally small, but nevertheless we include them in the
formalism.

We describe both the amplitude and phase aberrations
of the imaging system by its complex transmission func-
tion T;. In fact, in the most general case we should con-
sider 7% and T7 to be the transmission function for p and
s polarization components, respectively, but here we will
adhere to imaging systems that are free of birefringence,
allowing a single transmission function for all field com-
ponents. The transmission function of the imaging system
is then given as

T;=Alp, O)exp[i®(p,0)], (14)

where A(p, 0) is the amplitude transmission function and
®(p, 6) is the phase aberration.

In contrast to the basic ENZ theory, where the field E,
in the entrance pupil is uniform, we are dealing here with
a general non-uniform field E,. We can now write the E;
and E; , components as

ATiTr  |ng
El,s(p’ 0) = _EO,s(p7 0)
Rp nq
fiTiTr  |ng .
= —(=E(p,0)sin 0
Rp nq 7

+Eq,(p, O)cos 0), (15)
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E, (0.6 fiTiTr /noE (0.6)
1p P = Rp n 0,p P

~ fiTiTr  [noEq.(p,0)cos 0+ Eg (p,0)sin 0
" R ny (1- n%MZSng/ng)ll2

5

p

(16)

where it was again used that cos(ap)
=(1—n%M2sgp2/n(2))1/2. The x, y, and z components are
given by

E (p,0) =E1 ,(p,0)cos(ay)cos 6 - E; ((p,0)sin 0, (17)
Ely(p’ 0) = El,p(p, 0)cos(a1)sin 0+ El,s(pv 0)005 07 (18)

El,z(pa 0) =E1,p(pa Q)Sin(al)’ (19)

or, by using cos(a;)= \r’l—sgpz and inserting Eqgs. (15) and
(16), we get

E: (p.0) 1T1p, OTr(p) 1o (1-s50%)"?
1P B = R, ny| (1-n2M?s2p*nd)"?

XA{E .(p, 6)cos> 0+E,(p,0)cos fsin 6}

+{E(.(p, 0)sin® 6 - E, ,(p, 6)cos O sin 0}] ,

(20)

£ o0 ATip,OTx(p)  [ng (1-sgpH)M2
LA = R, ny| (1-n2M3s2p%n2)\?

X {Eg (p, O)cos Osin 6+ E, ,(p, )sin” 6}

+{-E(p,0)cos Osin 0+ E, ,(p, 6)cos? 0}} ,

(21)
E: (0.0) f1T1(p, O)Tr(p)sop g
2P0 R - n2MPsE?md Y Ny
X{E +(p, 0)cos 0+ E, ,(p, O)sin 6}. (22)

We now choose to represent the field components Ej ,
and E,,, including possible deformations introduced by
the optical system and represented by T;(p, 6), by means
of a Zernike expansion as
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Eo.(p,0)T(p,0) = >, B R (p)exp(im6),  (23)

n,m

Eoy(p,OT1(p,0) = >, By R (pexp(im6).  (24)

Using this expansion, and after a somewhat lengthy ma-
nipulation, the field components in the exit pupil can fi-
nally be written as

f1Tr(p) I
2R,(1- n2M?s%p?n2)V? N ny

El,x(P, 0)

X > RI™(p)exp(im 6)

x Wx{{(l—sgp2)1/2+(l n2M2s2p2/n2)V2}

(1 - n2M*n?2)sap? cos 26
[(1 - n2M?s2p*/n2)V? + (1 - s2p?) V2] }
. [ (1 -n2M?/n3)sip? sin 260 }
=Py [(1- n%Mzs%pZ/ng)w +(1- S(2)p2)1/2] ’
(25)

E, (p.6) = f1Tr(p) [T
Loip 2= 2R,(1- n2M?s2p*m2)V2 N n,

x>, RiM(p)exp(im 6)

X ﬁ:fy{{(l = 55" M2 + (1 - nIM?s3p*/ng) 2}

(1- n%MQ/nO)s p? cos 26
[(1 - n2M2s2p2/n2) 2 + (1 - s2p?) 2] ]
(1 - n3M*n2)sep? sin 26
- 'ngl [(1- n%Mzsgpz/ng)l/Q +(1- sgp2)1/2]] ’
(26)

f1Tr(p)so N
R,(1- n2M?s2p* 22 N n,

El,z(py 6) =

X > pR‘,:”‘(p)exp(imﬁ){Bnm,x cos 0+ 3, sin 6}.

(27)

The final step to obtain the image produced by the op-
tical system involves computing the Debye diffraction in-
tegral with the aid of the exit pupil field distribution de-
fined by Eqs. (25)—(27). As we are interested in systems
with a large numerical aperture, we have to deal with the
full vectorial version of the Debye diffraction integral as
formulated in the well-known papers by Ignatowsky [21],
Wolf [23], and Richards and Wolf [35]. The expressions
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they introduced were intended to determine the image of
a point source, but, to a very good approximation for suf-
ficiently large exit pupil diameter, they can be equally
well applied to more general fields in the exit pupil.

The general expression for an arbitrary field distribu-
tion on the exit pupil sphere in image space can be found
in [36],

- Lnlsg zf E;(p, 0+ m)
Ey(r,¢.f) = exp J f _szpz 12

X exp{u—f[l -(1- s%pZWZJ}
0

Xexpl{i27rp cos(6— ¢)}pdpd o, (28)

with C being the scaled integration area on the exit
pupil—which in our case is equal to the unit circle—and
with Ay the wavelength in vacuum. For the vector quan-
tity E;(p, 0+ 7) in the integrand of the Debye integral, one
should take the field-invariant RE; along a propagation
direction defined by (p, 6), with R the distance along the
propagation direction toward or away from the image
point. This quantity has also been denoted “ray strength.”

Once we have obtained the field components E; on a
sphere with its midpoint at the image center and of ra-
dius R, the quantity E; is simply given by R,E;. Multi-
plication of R; by the geometrical amplitude factor f1/R,
in Egs. (25)—(27) allows us to write the complete scaling
factor nlflngl/)\ORp as nls%fl/()\o[l—Mfl/Rl]) using the
paraxial property R,=R;-Mf;. Special cases arise when
one of the pupils or both are located at infinity. For an exit
pupil at infinity, the geometrical scaling factor reduces to
nlflsg/ No- An entrance pupil at infinity poses a problem
because the field components E\; and E,, tend to zero
and the evaluation of the Zernike coefficients of Eqs. (23)
and (24) would be indefinite. In this case, the field compo-
nents can be measured or calculated, far enough from the
object itself, on a sphere with a predefined radius R that
will replace the actually infinite value of the radius. With
the finite energy flow from the infinitely distant entrance
pupil, the field components on the chosen sphere with ra-
dius R, can be obtained. Using the corresponding R;
value for the exit pupil position, the quantity RE,, a ray
invariant, is then uniquely obtained. The coordinates
(r,¢,/) used in Eq. (28) are normalized cylindrical coordi-
nates in the image space with the origin located at the
geometrical focus (see Fig. 2), with f being the normalized
axial coordinate and (r,¢) the lateral polar coordinates.
The normalization has been carried out with respect to
the diffraction unit \y/NA=\q/(n15¢) in the radial r direc-
tion and f=-2mmnqugz/\y in the axial direction with u,

2
=1- V 1- Sp-.

To evaluate Eq. (28), we insert the exit pupil field given
by Egs. (25)—-(27) and the radiometric factor Tk into Eq.
(28). Using the expression f%” exp(im O)expli2wrp cos(6
- p)|do=2mi"J,,(27rp)exp(im¢p), with J,,(x) the mth or-
der Bessel function of the first kind, we obtain for the vec-
tor field in the focal region using column vector notation
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M2
- is%<2—no){ +2exp[+2i¢] - V! _, exp[- 2i$]}

—iTmlflsg
E2(r’¢>f)
, n2 —n2M?
Vilo+ 5o
0
27 12
X ,B;l” o M0 niM’
—lSO
no
—1so{V,.
+ By

—50{Vy1 expl+id]+ V!

where, for integer j=-2,---,+2, we have

e[ 91

f
X exp[u—u —T=5%2) | R p)] (27 p)pdp.
0

SOPZ/ng)lm +(1- 802p2)1/2}—m+1

1 s 2p2)1/4(1 n M2802p2/ng)3/4

(30)

In contrast to earlier publications (for instance,
[37-39]) Eq. (29) has the factor (-i)" instead of ™. The
minus sign is due to having the same reference direction
for the polar angles 6 and ¢ in object, pupil, and image
space. In the earlier publications, there was a rotation of
7 between the polar coordinate systems (p, 6) and (r, ¢). It
is also important to note that former results pertained to
imaging from infinity (M =0) and to equal indices in object
and image space, yielding a geometrical prefactor
—iWS(Q)R/ \, with R denoting the focal distance of the imag-
ing system. The results presented here yield the same
limiting value for this special case. Also, in accordance
with former results from ENZ analysis (see Appendix D of
[36], where a point source at infinity was considered), one
can devise a series expansion to quickly obtain accurate
values of the integral above that applies to imaging at fi-
nite distances. The functions that are used in the expan-
sion and the values of the new expansion coefficients are
given in Appendix A.

In this section, we have identified the implications of
considering imaging of an extended object at a finite dis-
tance from the entrance pupil within the framework of
the ENZ formalism. We have shown how to adjust the
standard ENZ formalism to accommodate this new range
of applications, and we have introduced a new expression
for the field in the focal region of a general imaging sys-
tem. In this new formulation, the field in the focal region
is directly related to the field in the entrance pupil. The
only approximation used in our considerations is the

2—){ w42 €XPL+ 20 ] - V"‘ _o exp[-2i¢]}

w1 expl+ig] -V exp[-id]}

of M0~ niM? '
Vo —so oz (V5 expl+ 2ip] + VI, exp[- 2i p]}
0
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o
Nol1 - MF/R,] \/7€Xp< u )E (= i)" explim¢]

2—>{ Vi s2 expl+2ip] + V,' 5 exp[- 2i ]}
n

(29)

_1exp[-i¢]}

[

Fraunhofer approximation that requires the object to be
small compared to the distance between object and en-
trance pupil. For the use of these new expressions in
mask imaging, this condition is generally satisfied.

3. COMPUTATION SCHEME

In this section, we translate the imaging method devised
in Section 2 into a computation scheme that simulates
mask imaging by a lithographic system. When consider-
ing such a full lithographic system simulation, a choice
should be made what model to use in order to describe the
finite extent of the illumination source correctly. Here, we
will adhere to the Abbe approach instead of the more com-
monly used Hopkins approximation (see [40], Subsections
8.2 and 8.3). Although the Hopkins approach is generally
faster, it has its limitations when relatively thick mask
objects are considered. On the other hand, the Abbe ap-
proach imposes no limitations on the structure of the
mask and therefore has our preference.

In the Abbe approach, the finite-size illumination
source is approximated by a sampled equivalent source
with constant values for its strength and far-field radia-
tion pattern over each sampling subarea. In advanced li-
thography, the illumination system, based on Kéhler illu-
mination (see Fig. 3), has been extended with smoothing
elements, for instance, a fly-eye’s lens array or an assem-
bly of light-guiding quartz rods. These measures are
meant to improve the uniformity of the effective source of
the illumination system, regarding both its near-field and
far-field properties. Assume that we can measure the ra-
diance function L(x,y;{,{,) of the effective source (with
{.and {, the projection angles of the radiation direction
with respect to the x and y axes), so that we are then left
with calculating the corresponding electromagnetic field
strengths in the object plane where the mask is located.
In the following, we limit ourselves to a centered object of
very limited extent. With the Kohler illumination ar-
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Fig. 3. Schematic representation of the Kcéhler illumination.

rangement, the axial object collects the forward-directed
radiation of each source point in the effective source. In
this case, we can use the value of the radiance function in
this direction, given by L(x,y;0,0). The power flow from
an elementary source element dSg toward the object ele-
ment of size dSy is given by

d?P = L(x,y;0,0)dSgdQ¢ = L(x,y;0,0)dSsdS, cos(a)/fZ,
(31)

where we have used that the solid angle dQ)y subtended
by the object is given by its projected surface divided by
the square of the focal length f of the condenser lens (« is
the projection angle).

In the case of the sampled source, we assume a con-
stant behavior of the source over each sampling area, and
we are then allowed to integrate the elementary power
flow using the value of the radiance function at each sam-
pling point. For a sampled source area with index j we
find

P;=L(x;,y;;0,0)S;S¢ cos(aj)/f%, (32)

where S; is the area of the jth source element. The power
contained in the parallel beam that is emitted by the sam-
pling area with index j is given by

Pj= eocn0|E0|ZSO COS(CYj). (33)
From Egs. (32) and (33) we obtain for the electric field

strength
L(x;,y;30,0)S;
Eol= | ———— (34)
€cnof ¢

In the expression above, we have taken the radiance func-
tion in a medium with refractive index ng, the value in
the object space. If the radiance function of the source is
available only in vacuum or air, one can apply the relation
LG(Q,LV, which follows from the conservation law of radi-
ance (Ly is the measured radiance function in vacuum or
air).

In what follows, the Cartesian coordinates (x;,y;) in the
effective source will be replaced by reduced coordinates,
with the normalized coordinates in the entrance pupil of
the imaging system as the reference. With this aim, we
start with the numerical aperture in the object space,
given by s.p=sin(ay,) =[n1Msg/ng| with nyso the numeri-
cal aperture in the image space. The angular measure of
the source is normalized with respect to s,p;, such that the
lateral reduced coordinate 7 of the source is unity if the
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source completely fills the entrance pupil. The relation-
ship between the Cartesian coordinates (x;,y;) of a gen-
eral source point and its reduced coordinates is given by

xilfc = 77;.c08(07)S o5

yj/fC =7 Sin(ajj)sobj’ (35)

where we have used polar coordinates (7,0) in the re-
duced domain because of the frequently occurring rota-
tional symmetry in illumination systems.

The state of polarization of the light issued by the light
source has not been discussed so far. In the case of an un-
polarized source, the source power is equally distributed
over two orthogonally polarized states of polarization. In
more specific cases, the power has to be distributed over
the x, y, and z field components of the light according to
the measured state of (partial) polarization of the source.

In the Abbe approach, for each source region, we also
have at our disposal the average propagation direction
that is needed to analyze the diffraction process at the
mask and the propagation of the diffracted light through
the imaging system. A general source point with reduced
polar coordinates (7;,0;) gives rise to a fictitious plane
wave whose normalized propagation vector is given by

k; = (= 75,1 c08(0)) X, — 7503 8in(0) §,\1 — 752, 2).
(36)

We now have available at the location of the mask the
electric field strength and propagation direction of the fic-
titious wave produced by each sampling area of the
source. The intensity in a selected plane in the image
space can be calculated, carrying out the full chain of dif-
fraction at the mask, diffraction at the diaphragm or pu-
pils of the imaging system, and the wave propagation to-
ward the image region. The intensities due to each
sampled region in the incoherently radiating source are
added to obtain the total intensity distribution in the im-
age region.

The interaction of each plane wave with an object is
simulated separately with a rigorous electromagnetic
solver based on the FDTD method. The FDTD implemen-
tation used here is a code developed in-house at Delft Uni-
versity of Technology. It uses absorbing boundary condi-
tions based on a convolutional perfectly matched layer
(PML) implementation [41,42]. Next to absorbing PML
boundaries, quasi-periodic boundary conditions can be ap-
plied using the so-called sine—cosine technique [43]. Me-
dia with negative permittivity and non-zero absorption
are simulated via the auxiliary differential equation tech-
nique for dispersive media [44]. The code is parallelized
for efficient execution on multi-processor machines.

The objects simulated for this paper are relatively
small isolated structures. The established approaches and
simulation tools to treat such structures almost always
involve periodic boundary conditions, where the isolated
structures are padded by structureless object space to ap-
proximate the isolated case. Since the ENZ formalism
does not require periodic boundary conditions for the rig-
orous calculation, PML absorbing boundary conditions
are employed on all sides of the computational domain.
The PML regions are non-reflective and thus fully trans-
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parent to outgoing waves. As a result, it appears numeri-
cally as if the object extends homogeneously in all direc-
tions. The rectangular three-dimensional computational
domain (CD) is then defined by the smallest volume that
encloses the structured region of the object.

In common FDTD implementations, letting material
interfaces cross the PML boundary is problematic. Our
FDTD implementation does allow the interfaces of a
multi-layer structure to cross into the PML. Because
Maxwell’s equations are linear we can write the total field
E,,; as the sum of two solutions to Maxwell’s equations,

Etot = Esca + Ezeroy (37)

where E,,,, is a known solution such as the incident field
in free space and E,, is called the scattered field. As in
other implementations, we calculate the total field in the
CD and the scattered field in the surrounding PML re-
gion. The fields in the two regions are coupled by adding
or subtracting the incident field on the boundary of the
CD and the PML. However, on this boundary in a layered
geometry, the incident field is not the correct solution to
Maxwell’s equations, because the incident field is defined
for homogeneous free space. The algorithm therefore pro-
duces incorrect results. Instead of using the incident field
for E,,,,, we use the analytical steady-state solution of a
plane wave incident on a structureless object. This ap-
proach was shown to give correct results for objects that
include a multi-layer configuration [45].

The output of an FDTD simulation consists of near-
field values in the CD. To simulate the propagation of the
field from the mask to the entrance pupil of the optical
system, a near-to-far-field transformation is applied. For
this purpose, we use the Stratton—Chu formula [46],
which relates the scattered fields E,,, and H,, on the
boundary ¢() of a given domain to the field at any point in
or outside the domain at r’' by

Esca(r,) == f f (1’1 X Esca(r))QH(r’r,)
I8}

- (0 X Hyo(r))Gg(r,x)dr?. (38)

Herein, G(r,r’) is the Green’s tensor of the layered sys-
tem (subscripts £ and H indicate the electric and mag-
netic Green’s tensor). The layered Green’s tensor is
needed because we allow material interfaces to cross the
Stratton—Chu integration surface. For a general layered
system, these terms are difficult to calculate analytically.
Instead, we implement the Fourier transformed
Stratton—Chu formula [47]

f[Esca](kx?ky 4 ) == J f [Il X Esca(r)]f[QH](r;ksc)
9

- (n X Hsca(r))ﬂgE](ryksc)drz’ (39)

which now uses the Fourier transformed Green’s tensor
FIG](r, k) of a layered system. Here k. is the wave vec-
tor in the direction of the far-field observation point.
FGI(r, k) is efficiently calculated in the same algorithm
that gives the analytic multi-layer solution for the FDTD
simulation.
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By using the Fourier transformed equation for the
Stratton—Chu formula, the Fraunhofer far field at the lo-
cation on the spherical entrance pupil determined by the
wavenumbers k, g, k, ;. and distance 2z’ is almost directly
obtained:

ZSE

EO(kxsm ysc7z) f[Esca]|k | (40)

This quantity is the field Ey(p, 6) that is used in the ENZ
imaging algorithm and has been introduced in Egs.
(4)—(6). In order to do the numerical integration of Eq.
(39), the rectangular boundaries of the FDTD CD are dis-
cretized to a uniform, orthogonal boundary grid. Because
field values on the FDTD grid are not collocated but stag-
gered, the FDTD field values are linearly interpolated.

An advantage of the described Stratton—Chu method is
that separate points in the far field can be calculated cor-
responding directly to points on the spherical entrance
pupil of the optical system. It is therefore very suited for
parallelized computation. More important, it gives the
freedom to choose any kind of entrance pupil sampling,
which can severely reduce the computational burden of
the far-field calculation and the ENZ imaging algorithm
[45].

It must be noted that for small isolated objects, a
method is needed that uses the field on all boundaries of
the domain to obtain rigorous far-field results, such as the
Stratton—Chu formula. In practice, where for example a
large mask area is considered, a simple Fourier-based
near-to-far-field transformation may be more efficient and
equally accurate.

Once the field in the entrance pupil is available one can
proceed with applying the ENZ-based expressions that
were derived in Section 2. We perform a Zernike expan-
sion of the computed field components E, and E,, in-
cluding possible transmission defects 77}, according to
Eqgs. (23) and (24). In our case, the coefficients g;', and
,B’" are obtained through a least-squares fitting opera-
t10n This could in principle also be done using inner-
product evaluation of the function to be fitted and the
Zernike orthogonal functions. Nevertheless, we have ob-
served that a least-squares approach, for a set of well-
chosen data points, is far more efficient. More information
on the sampling schemes applied in ENZ imaging can be
found in [45].

In the final step, to obtain the electric field contribution
to the image from a single point in the illumination
source, we evaluate Eq. (29) for the sets of Zernike coeffi-
cients g8, and g, that result from the optimal least-
squares fit discussed above. Note that Eq. (29) relies on
the basic function V;';, which is defined in Eg. (30) and
can conveniently be computed using the recipe given in
Appendix A.

Following the procedure given above, the computation
of the image contribution from a single source point
should be repeated for every point composing the light
source. The total aerial image produced by the optical sys-
tem then follows after incoherent summation of all contri-
butions.

The full computational scheme described in this section
can be summarized as follows:



van Haver et al.

1. Asingle source point gives rise to illumination of the
mask by a plane wave, where the angle of incidence of the
plane wave is directly related to the spatial position of the
considered source point.

2. The interaction between the mask and the incident
plane wave is computed by means of a rigorous electro-
magnetic solver (in our case an in-house FDTD imple-
mentation).

3. An adapted version of the Stratton—Chu method is
applied to obtain the field in the entrance pupil from the
near field at the mask.

4. The field in the exit pupil is obtained by applying
the optical transfer function between the entrance and
exit pupil of the optical system.

5. The field in the exit pupil is represented as a
Zernike expansion after which the aerial image contribu-
tion due to illumination by a single source point follows
directly from the ENZ imaging algorithm.

6. Finally, steps 1-5 should be repeated for each el-
ementary point in the light source after which their inten-
sity contribution should be summed incoherently to ob-
tain the aerial image of the mask produced by the
lithographic system. In practice, a discrete sampling of
the source will be carried out to keep the computational
effort within reasonable bounds.

In this section, we have given a detailed description of
the ENZ-based imaging scheme. In the remainder of this
paper, we will discuss its characteristics and highlight
some of its main features.

4. EVALUATION OF THE ENZ-BASED
METHOD

This section discusses the anticipated accuracy and con-
vergence of the imaging method proposed in this paper.
We will limit ourselves to the imaging part of the algo-

Z\<yx - - ~
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rithm, which includes the computations from entrance
pupil to image region. We will not go into detail on the rig-
orous electromagnetic computations of the near field at
the object, because, in principle, the proposed method al-
lows for any rigorous solver to be used. For more details
on the FDTD implementation developed in-house at TU
Delft as used for the examples in this paper, refer to [48].

A. Representation of E;T; as a Zernike Expansion

In the following, we assume that the arbitrary field Eq in
the entrance pupil of the imaging system is known. To
compute the image resulting from this field distribution
we should apply Eqgs. (23) and (24), and the resulting sets
of Zernike coefficients ,Bnm’x, ﬁf’y are subsequently inserted
into Eq. (29). Note that T represents the complex trans-
mission function of an imaging system that we assume to
be free of birefringence, and that 7;=1 for an aberration-
free system.

As mentioned in Section 3, we perform a least-squares
fitting operation to obtain 8, and B;',. The number of
Zernike functions needed to accurately describe E T}
strongly depends on the object being imaged. This num-
ber is therefore determined iteratively. The maximum azi-
muthal order m,,, and radial order n,,, of the Zernike
functions are increased until the desired fitting accuracy
is reached. In Fig. 4, we show the residual RMS fitting er-
ror for some particular objects (nine regularly arranged
contact holes, an elbow structure, and a hammerhead
structure) versus mp,,, and n,,,. Note that by definition
of the Zernike functions m ., <npax.

The simulation results in Fig. 4 clearly illustrate that
the number of Zernike polynomials required to obtain a
certain degree of fitting accuracy for the field in the en-
trance pupil varies strongly among different objects. In
general, one would expect the required number of Zernike
polynomials to depend on the size and complexity of the
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Fig. 4. For three different objects (top row), the RMS error present in the Zernike approximation of the electric field components in the
entrance pupil (bottom row) is shown. The system settings for the three objects are, from left to right: normal incidence TM polarized
plane wave illumination with an object side numerical aperture of 0.525, and for the middle and right object, normal incidence TE po-

larization with an object side numerical aperture of 0.2375.
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objects. Nevertheless, a complex object does not necessar-
ily imply the need for a large number of Zernike functions
for an accurate fit. A complex object can produce a rela-
tively smooth field distribution in the pupil that would
then require a limited number of Zernike polynomials to
be fitted accurately. On the other hand, a fairly simple
structure with a high degree of periodicity can produce a
sharply modulated pupil distribution that closely re-
sembles the diffraction pattern that would arise in the
case of a purely periodic object. In this case, the number
of Zernike polynomials required to obtain an accurate fit
is fairly large. Thus, in general, the number of Zernike
functions needed grows according to the size and degree
of periodicity of the object under consideration.

Once we have acquired a Zernike expansion of suffi-
cient accuracy for the field in the entrance pupil we can
proceed with applying the approach described in Section
3. In Subsection 4.B we describe the convergence proper-
ties of the expressions that relate the entrance pupil field
distribution to the field in the image region.

B. Computation of the Basic Integral V}',(r.f)

In Section 2, we have derived an expression for E,, the
field in the image region of the optical system [Eq. (29)].
This expression depends on the basic integral Wln,j(r,f),
which is defined in Eq. (30). Similar to standard ENZ
theory, a series expansion has been devised to evaluate
V. i(r.f) efficiently (Appendix A). It is important to recog-
nize that V7' ,(r,f) depends solely on the specifications of
the imaging system and is independent of the object being
imaged. Therefore, the V,fJ(r,f) functions should be com-
puted only once for a specific magnification and aperture
setting of the imaging system, after which the VnmJ(r,f)
function values can be stored and subsequently used in
future image simulations.

What remains is the calculation of V%(r,f) for j=-2,
-1,0,1,2 and for a range of values of m and n in a both
accurate and efficient manner. When we study the expan-
sion of V;l”J(r,f) as found in Eq. (A23) we find that it con-
tains an infinite sum over the parameter ¢. In practice, ¢
has to be cut off at some finite value ¢,,,,. The relation be-
tween t,,,, and the root mean square (RMS) error present
in the computed values for V’,’L’J(r, /) has been displayed in
Fig. 5. One can see that a modest number of terms, say
tmax=25, already results in an accuracy of 104, As E, is
linear in V7 J(r, /) the error in E, introduced by V7! J-(r, fis
also expected to be of the order 10~%. Furthermore, we see
a steady decrease in the RMS for increasing ¢,,,,, down to
10712, From this, we can conclude that the V;”J-(r, /) func-
tions can always be computed down to the accuracy re-
quired by a particular application. Therefore, the V;'(r,f)
functions do not pose a limit on the overall accuracy of the
ENZ method.

In this and Subsection 4.A we have discussed the accu-
racy of the two computation modules that together com-
pose the ENZ method. As discussed above, we can always
compute the VnmJ(r,f) functions down to the desired accu-
racy. A higher accuracy, of course, requires a larger com-
putational burden, but in the case of the V}';(r,f) func-
tions this is of limited interest, as the functions can be
computed in advance and stored in a look-up table. Thus,
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Fig. 5. RMS error present in the V;'(r,f) functions when ap-
proximated with the series expansion in which the infinite sum is
replaced by a summation over t=1,2,...,¢,., (see Appendix A).

the overall accuracy of the method is mainly determined
by the quality of the Zernike expansions for the field in
the entrance pupil. In Subsection 4.C we will evaluate the
resulting accuracy for the field in the image region given
the accuracy of the Zernike expansions in the entrance

pupil.

C. Field Accuracy in the Image Region

As discussed in the previous subsections, we can assume
that the overall accuracy of the ENZ method is deter-
mined by the fitting accuracy for the fields in the entrance
pupil. In Fig. 6, we have plotted the RMS error in the in-
tensity in the image volume versus the RMS error in the
Zernike expansions of the fields in the entrance pupil. The
figure clearly illustrates a similar behavior for the RMS
errors of all three objects studied. Note that the lines rep-
resenting the contact holes and elbow structure do not
cover the full range of the RMS errors in entrance pupil
expansions, because for the maximum number of Zernike
terms used in these examples (7,4, ="7,4.=20), the best
obtained accuracies were 10~2 and 1074, respectively. It is

-10
10 T
- - =Nine regularly arranged contact holes
-------- Elbow structure
10‘8 | | ——Hammerhead structure

RMS Error Intensity

RMS Error Pupil

Fig. 6. For the same three objects as in Fig. 4, the RMS error for
the intensity in the image volume is shown as a function of the
RMS error in the Zernike expansion of the pupil fields. The area
over which the RMS intensity error is calculated is a circle that
circumscribes the square images. The final RMS value was ob-
tained by averaging the RMS intensity errors from various
through-focus images.
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interesting to note that a pupil field accuracy of 10~3 al-
ready yields an intensity fidelity in the image region that
is better than 10~* despite the nonlinearities that arise in
the creation of the intensity distribution in the image.
Now that we have acquired a clear view of the expected
accuracy of the ENZ-based imaging method, we should re-
late this to the computational burden that is associated
with it. This will be the main topic of Subsection 4.D.

D. Computational Considerations

The accuracy of a method should always be discussed in
relation to the computational burden involved with it. As
the ENZ method is constructed from several largely inde-
pendent modules, the computational complexity should be
evaluated likewise. Here we will limit the discussion of
the computational complexity to those modules already
discussed in the previous subsections. We do not go into
detail on the near-field computations and the propagation
into the entrance pupil as in principle any rigorous elec-
tromagnetic solver could be used here.

As we apply a least-squares fitting operation to obtain
the Zernike expansion coefficients for the entrance pupil
fields, the computational complexity will largely be deter-
mined by this operation. In our case we use the least-
squares fitting algorithm included in Matlab (Standard
Matlab function midivide.m [49]), which is based on QR
factorization with column pivoting, to obtain the Zernike
coefficients. The computational complexity of this algo-
rithm is O(N%), where N is the total number of Zernike
coefficients to be fitted.

The computational complexity of the second module,
which computes the field in the focal region given two sets
of Zernike coefficients ,Bnmx and Bﬁy, can be deduced from
Eq. (29). Recall that the V7', functions are independent of
the object and can therefore be calculated in advance. As
a result, all terms between the large parentheses on the
second and third lines of Eq. (29) are fixed for a given set
of (r, ¢,f). The computational task is thus reduced to com-
puting

E2(7', ¢’f) = Cl(f)z [ﬂﬁxcz(m,n,r, ¢’f)

+BZ,yC3(m’n’r’¢’f)]’ (41)

where C;, C,, and Cj3 all represent data stored in a
look-up table. Consequently, the computational complex-
ity is proportional to

N;X N, X Ny x 2Ny, (42)

where Ny, N,, and N4 are the number of sampling points
in the f, r, and ¢ direction of our cylindrical coordinate
system in the focal volume. The expression in Eq. (42)
thus predicts a linear relation between the CPU time and
N, the number of Zernike coefficients used in the compu-
tation. This behavior is clearly visible in Fig. 7, where we
have plotted the CPU time versus the number of Zernike
coefficients.

On comparing the computational complexities deter-
mined above, we can conclude that both modules can be
dominant. Whenever Ny XN, X N ¢,<N§, the least-squares
fitting module will dominate the required computational
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Fig. 7. Relation between the computation time and the total
number of Zernike coefficients used in the expansion of the en-
trance pupil field is shown.

workload, while in the case that NyXN, XN ¢>N§, the
computational contribution of the second module will be
more important.

In this subsection we have discussed the computational
complexity of the novel simulation modules introduced by
the ENZ method. It was shown that both the least-
squares square fitting operation and the field construction
from Zernike coefficients can be dominant in the total re-
quired computational burden for these two modules. Nev-
ertheless, the contribution to the computational workload
of the complete ENZ method will generally remain lim-
ited. The computational burden for the complete ENZ
method is dominated by the Abbe treatment of the illumi-
nation source in combination with the rigorous near-field
computations.

5. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a new imaging method
based on the ENZ theory. Although the standard ENZ
theory is meant to provide the through-focus, point-
spread function of a general system, we have shown that
its range of application can be extended to include imag-
ing of general objects.

The main result presented in this paper is a semi-
analytic expression relating a general field in the en-
trance pupil to the resulting field in the focal region of an
optical system. The field in the entrance pupil can, in
principle, be obtained using any rigorous electromagnetic
solver and follows from the interaction between an inci-
dent plane wave and the object. In general, the light
source illuminating the object will be of finite extent. In
this case the source is considered as a collection of
(weighted) incoherent point sources, and the total image
is obtained by incoherent summation of the image inten-
sity contributions of all point sources (the Abbe approach).

In Section 3 we have shown that our results can be ef-
ficiently implemented into a computation scheme to com-
pute the image produced by a general isolated object. For
the most part, our scheme is similar to standard Abbe-
type imaging methods, but it uses the ENZ-based algo-
rithm for image formation instead of the more conven-
tional approach based on Fourier optics. Although the
ENZ algorithm is fundamentally different from the Fou-
rier based approach, it does not alter the overall compu-
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tation scheme significantly. As a result, a conventional
piece of Abbe-type imaging software developed modularly
can be easily equipped with our new method by simply re-
placing the conventional imaging module by its ENZ-
based counterpart.

In Section 4 the accuracy and convergence of the ENZ
method is evaluated. It is shown that the series expansion
used to generate the ENZ basic functions is accurate all
the way down to machine precision. Considering that the
ENZ basic functions depend solely on the properties of the
imaging system and the location of the image region and
at the same time are independent of the object being im-
aged, they can be calculated and stored in advance. Based
on these observations we can conclude that the accuracy
of the ENZ imaging algorithm is limited by the residual
RMS error present in the Zernike expansion of the exit
pupil distribution. In principle, as the Zernike polynomi-
als constitute a complete set, the residual error in the ex-
pansion can be made arbitrarily small. However, a higher
accuracy will require a larger number of expansion coef-
ficients to be determined and this will, of course, increase
the computational burden.

For simulation methods it is most relevant to know the
relation between the accuracy and the computational bur-
den or complexity. In Subsection 4.D the theoretical lower
boundary for the computational complexity is determined.
It is shown that two distinct tasks in the ENZ imaging
scheme can both be dominant in terms of computational
burden. Whenever an object generates a strongly oscillat-
ing pupil distribution, a large number of Zernike coeffi-
cients is required for an accurate fit. In this case the
least-squares fitting operation requires substantial com-
putational effort. On the other hand, if the pupil distribu-
tion is relatively smooth and a fairly large number of im-
age points are of interest, the field construction in the
focal region will be the dominant task.

Altogether, we believe that ENZ-based imaging pro-
vides an appealing addition to the available arsenal of im-
age simulators. The method can generate extremely accu-
rate results and does so totally independent of other
existing methods. As a result, the ENZ method is an ex-
cellent choice for benchmarking. In addition to this, the
ENZ method is advantageous in image simulation of iso-
lated structures. Finally, investigation of the theoretical
computational complexity of the ENZ method has shown
that it is potentially very efficient. However, before the
ENZ method is able to compete with more mature image
computation technologies, large gains in computational
efficiency must be made. Our further research will focus
on the development of the ENZ-based imaging method to-
ward a generally applicable, efficient, and versatile image
calculation tool. In the short term this includes further
extension of the ENZ imaging formalism to incorporate
birefringence of the optical system and imaging into a
multilayer in the focal region.

APPENDIX A: SERIES EXPANSION FOR V;"J

In this appendix we present a method for obtaining a se-
ries expansion for the integral V’ (r f) given by
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1 {(1- 802p2)1/2 +(1- nlesopz/n2)1/2}—[j\+1
Viirf) = f o
J o (1 _ 802p2)1/4(1 _ n1M2SO p2/n2)3/4

if
X expL—(l - \1-s3p >}R"1<p>Jm+,<2wrp>pdp
0

(A1)

We follow a similar approach as in Appendix D of [36] to
transform the integral in (Al) into a tractable form. We
write

if
exp{u0 —-y1- sop):|

{(1- 302p2)1/2 +(1- n1M2SOp2/ng)l/2}—m+l
(1 _ 30292)1/4(1 _ n%MZSO p2/ng)3/4

=explg’ +if p?} X, Bip™. (A2)
t=0

Here the coefficients g’ and /" are defined by requiring the
best fit for the constant and the quadratic term in p in the
In of the function (A2). So let

if
F(p) = u—(l -1 -s3p?)
0

+ (= il + DIn[(1 - 54°p) " + (1 -~ niM>s5p%/n) ]

- 31In(1 - 54%%) - 2 In(1 - n2M2s%p%/nd), (A3)
and define
A(p):l—\, —s2p —Eap (A4)

B(p) = In[(1 - 5,%pH) V2 + (1 - n3M2s3p%/n3) 2] = Ebnp

n=0
(A5)
Clp) =In(1 - s,%p?) + 3 In(1 - n2M?s2p*/n2) = D c,p>"
n=0
(A6)
so that
if ] 1 ” )
F(p)=—A(p)+ (-l + DB(p) - 1Cp) =2 o™, (A7)
0 n=0
if
fo=—a,+(=ljl+ )b, -~ —c,, n=0,1,.... (A8)
Uo
We shall determine a,, b,, and c,,.
a,: We have by Taylor expansion
1
ap=0; a,= (2)( 1)”8%”, n=12.... (A9
n

b,: Consider the function
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flx)=1In[(1 -x)"2 + (1 - ax)"?]. (A10)
Then

! 1 -1 ~a
f(x)z5(1-x)1/2+(1-ax)1/2((1—x)1/2 ’ (1—ax)1/2>
11-20)"2-1-ax)"2(1-ax)"2+a(l-x)"2
T2 (1-n-(-an) (1-2"(1-a0™

=(1-(1-ax)" Y21 -x)"Y?)/2x

1°” to/_1\/_1
___}: _ tE: 2 2 [
25 {( Y r:()( r )(t—’”)a }C ’ (A1D)

where the third identity is obtained by working out the
numerator and denominator and simplifying, and the
fourth identity is obtained by multiplying the Taylor ex-
pansions of (1-ax)""2 and of (1-x)2. Therefore, by in-
tegrating from O to x,

[t /_1\/_1
f(x)=1n2—2l( )2< 2>(t_2r)ar:|xt. (A12)

=l 2t o\ T

Using Eq. (A12) with aznsz/ng and x:s%p2, we see
that

bo=1n2;
(_ 1)n82n n o/ 1 _1 n2rM2r
by=-——> | 2| T2 |——, n=12
2n S\ r /J\n-r) ny

(A13)

¢, We have by Taylor expansion

(30)271(1 + 3(n1M/n0)2")
cp=0; c,=- , n=1,2....
n

(A14)

Thus with a,, b,, ¢, from Egs. (A9), (A13), and (A14), we
can compute the f, of F(p)==_,f.p?" according to Eq.
(AS8).

Next, we proceed by writing

©

F(p)=g' +if p*+ 2, Aup™, (A15)

n=0

where g'+if p? is the best quadratic approximation of
F(p) using pdp on [0, 1] as weight function. To this end, we
convert the Taylor expansion = _,f,p*" of F(p) into a
Zernike expansion 3_,49,RY, according to the formula

n
“2k+1 k

BY=2

ookl (n+k+1>f”’

n

k=0,1,..., (Al6)

see Eq. (10) of [29]. Now
BoRS(p) + B3RS (p) = (B3 — BY) + 283> (ALT)

is the desired best approximation of F(p). Hence
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g =By- B3 [ =2)pB3, (A18)
and

A0=f0_g” A1=f1_if,; An=fn, n=2737-”'

(A19)
The final step in achieving Eq. (A2) consists of writing
exp(E Anp2") = > By, (A20)

n=0 t=0

As in Appendix D of [36] this is done recursively according
to

S
By=exp(4y), Bya= E —At+1-ij, t=0,1,....
o t+1

(A21)

From Eq. (A2) one can now compute the V;"J in Eq. (A1)
as in Appendix D.2 of [36]. Thus one writes (with some
minor corrections of Appendix D.2 of [36])

p
Rp) =S O, Cu= (- 1>P-s(q; s) (p )

s=0 s
(A22)

where p=(n-|m|)/2, ¢g=(n+|m|)/2. Then

p o]
Viir D=2 2 CBIT e, (A23)

s=0 t=0

where, for integer &, [ with [-|k| even and =0,
1

THr,f) = f ple'l P’ (2mrp)pdp. (A24)
0

These Tf have been computed in Eqs. (14)—(16) of [29] in
the form of a power-Bessel series.
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