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We present details of a novel imaging algorithm based on the extended Nijboer–Zernike (ENZ) theory of dif-
fraction. We derive integral expressions relating the electric field distribution in the entrance pupil of an op-
tical system to the electric field in its focal region. The evaluation of these integrals is made possible by means
of a highly accurate and efficient series expansion similar to those occurring in standard ENZ theory. Based on
these results an ENZ imaging scheme is constructed and evaluated in detail with attention to the convergence
properties and computational complexity of the new method. © 2009 Optical Society of America
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. INTRODUCTION
n present day optics, the ability to obtain accurate im-
ges of a general object by means of computational meth-
ds is of great importance. Computational imaging not
nly provides valuable information on the image perfor-
ance of proposed designs for optical systems, it also en-

bles a detailed study of image formation itself. Although
large number of different imaging algorithms exist, all

f them can be classified according to whether they oper-
te in the spatial domain or in the frequency or Fourier
omain. In the frequency domain approach, the assump-
ion has to be made that the response of the system is
pace-invariant, implying that the imaging system gener-
tes an invariant point response to the coherent near-field
ssued from the object. When operating in the spatial do-

ain, this assumption is not explicitly needed, but, once
ncorporated, it leads to an important reduction in calcu-
ation time. For this reason, although not strictly re-
uired, spatial invariance is also included in the spatial
omain method. Regarding the frequency domain
ethod, its origin is found in the Abbe microscope imag-

ng theory [1]. It has been generalized to imaging prob-
ems by the work of Duffieux [2], Maréchal [3], and Hop-
ins. The latter author has extended the Fourier or
requency domain approach to imaging with an extended
ource (partially coherent illumination) [4], including a
efocussing of the image [5].
More recent extensions of the Fourier approach to im-

ging allow the inclusion of imaging aberrations and the
ffects of “vector imaging” at high numerical aperture
6–8]. The Fourier approach has become very popular be-
ause of the capability of employing the fast Fourier
ransform in numerical computations [9] and, more re-
ently, of applying fast algorithms to obtain the so-called
ransmission cross-correlation coefficients [10]. The fast
mage calculation does however require an inherent peri-
1084-7529/09/051221-14/$15.00 © 2
dicity in the object. If this periodicity is not present, it
an be artificially introduced by periodically repeating the
pecific part of the object that has to be imaged. In this
ase the continuous frequency spectrum of the object is
eplaced by a discrete comb-like spectrum which intro-
uces certain artifacts in the final image.
The alternative to frequency domain imaging is the cal-

ulation of the convolution of the object function with the
oint response function of the imaging system [11]. The
rst analytical result for the ideal response function or
oint-spread function goes back to Airy [12]. Through-
ocus imaging with an ideal system has been studied by
ommel [13]. Refinements including the influence of ab-
rrations have been studied by Strehl [14], Conrady
15,16], and Picht [17]. A systematic study of imaging in
he presence of aberrations has been carried out by
ernike and Nijboer [18–20], with the use of their circle
olynomials on the circular exit pupil as the key contribu-
ion.

The calculation of the point-spread function at high nu-
erical aperture was initiated by Ignatowsky [21] and

urther developed by Hopkins [22] and Wolf [23]. In this
atter publication, the high-numerical-aperture point-
pread function through-focus was presented using a nu-
erical evaluation of the Debye diffraction integral. This

pproach has become the standard one to treat point-
pread function calculation using so-called “vector diffrac-
ion.” Instead of the numerical evaluation of a diffraction
ntegral, special functions have been proposed to repre-
ent the wave field in the exit pupil that yield a direct
nalytic solution in the image region, as for example,
auss–Laguerre modal expansions [24], multipole func-

ions [25], radial prolate spheroidal functions [26], spheri-
al harmonics [27], and Walsh functions [28].

Most of the special functions quoted above suffer from
he fact that they cannot easily cope with the sharp edge
009 Optical Society of America
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hat is encountered in optical diffraction problems,
amely the circular “hard” diaphragm that sharply limits
he lateral extent of the imaging bundles in an optical
ystem. For that reason, we use a recent extension of the
ethod for high-numerical-aperture point-spread calcula-

ion according to [23] that allows the analytic treatment
f the influence of aberrations and defocusing. In a series
f papers, the so-called extended Nijboer–Zernike (ENZ)
heory has been presented that provides the user with
emi-analytic expressions for the through-focus aberrated
oint-spread function in the low-aperture scalar diffrac-
ion case [29,30] and for the vector diffraction case [31].
lthough the calculation of the image of a single point has
een drastically accelerated by the availability of an ac-
urate semi-analytic series expansion instead of a diffrac-
ion integral to be numerically evaluated, the application
f this new tool for convolution calculations to obtain com-
lete images is still too slow in practice.
In this paper, we present details of a recently proposed

ovel approach to point-spread-function-based image cal-
ulation [32]. The basic tool used in this new imaging ap-
roach is the ENZ theory for through-focus point-spread
unction calculation of general imaging systems with ab-
rrations and spatial lens transmission variations. How-
ver, instead of using a point source in the object plane,
roviding us with a quasi-uniform wave at the entrance
upil and slowly varying phase in the exit pupil due to
maging aberrations, we start with an extended object
hat is many equivalent point-spread functions large in
he object plane. The wave field produced in the entrance
upil by this coherently illuminated extended object field
s then expanded in Zernike–Nijboer circle polynomials,
ncluding its amplitude and phase variations following
rom the diffraction of the coherent incident wave (in gen-
ral, a plane wave) by the extended object. The wave field
n the exit pupil is the product of the wave field in the en-
rance pupil multiplied by the amplitude and phase (ab-
rration) of the lens transmission function. This wave
eld with its Zernike polynomial expansion then immedi-
tely yields the through-focus aberrated image.
In Section 2 of this paper, we exploit the general tool for

hrough-focus point-spread function calculation provided
y the ENZ formalism to compute the image of more gen-
ral objects. Toward this goal we construct the Zernike ex-
ansion of the wave field in the entrance pupil of the sys-
em. We give the detailed derivation of imaging from
bject space to image space with different refractive in-
exes to include immersion imaging, and show how the
ernike expansion of the entrance pupil field is incorpo-
ated in the formalism. The immersion imaging mode is
ncountered not only in microscopy but also in high-
esolution optical lithography systems with numerical ap-
rture values higher than unity [33]. Prior derivations
ere not always exact in calculating the absolute field

trengths in image space given the object field compo-
ents.
In Section 3, we present our new method using an ex-

ended object as input for our point-spread-function-based
maging method. The input for the imaging method is the
ptical near field of the object given the illuminating
ave. Rigorous electromagnetic diffraction is applied to
btain this near field, using a specially developed FDTD
finite-difference time-domain) method [34]. In Section 4,
e analyze the accuracy and the typical computational

omplexity of our method. Finally, in Section 5, we
resent our conclusions.

. ENZ THEORY FOR ADVANCED IMAGING
he ENZ theory of diffraction was first described in

29,30]. In these papers, a semi-analytic solution of the
ebye diffraction integral for the imaging of a point

ource by a general optical system was introduced. The
evelopment of ENZ theory was intended to provide a
ethod of characterizing optical systems by means of in-

ensity measurements in the focal region. In order to
chieve this, it is fundamental to have both an accurate
nd a fast algorithm to compute the point-spread function
or a general aberrated system. In terms of computations,
his comes down to computing the point-spread function
rom the otherwise uniform exit pupil, for an exit pupil
hat is influenced by a general aberration. Although the
on-uniformities present in the pupil due to aberrations,
re usually small and should be relatively small in order
o make ENZ-characterization possible, the pupil-imaging
ethod itself is not limited by the size of the deformations

nd can be applied to general pupils. Recognizing that in
eneral imaging one also needs to image an exit pupil dis-
ribution that can be very complex, both in amplitude and
hase, we believe that this appealing feature of the ENZ
heory is well suited to be exploited for general imaging.

Here, we will introduce ENZ-based imaging by deriving
n ENZ-based imaging method for advanced lithographic
ystems. For such systems, the distance R0 between the
bject (in this case, a lithographic mask) and the entrance
upil of the optical system is much larger than the trans-
erse dimensions of the object being imaged. In this case,
e may apply the Fraunhofer approximation that consid-
rs all light coming from the mask to have originated
rom a single point O. However, the radius of the entrance
upil is of the same order of magnitude as R0, and there-
ore the entrance pupil cannot be considered a flat sur-
ace, but is a spherical surface P0 with its origin at O (see
ig. 1).
We now take a general point Q0�� ,�� on the entrance

upil sphere P0, where � and � are polar coordinates with

R

R

O

Q

n
E

Ep

s

P0

0

y

z

0

0

^

ig. 1. Schematic representation of the geometry under consid-
ration. O is the origin, R0 is the radius of the entrance pupil
phere P0, n̂ is the normal to the pupil surface, and Q0 is a gen-
ral point in the entrance pupil where we locally define the or-
hogonal linear p and s polarization states.
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normalized with respect to the lateral half-diameter of
he entrance pupil (see Fig. 1). To a very good approxima-
ion, the electric field vector of the light arriving at point

0�� ,�� will be perpendicular to the normal n̂ of the
pherical surface, and it is thus possible to locally repre-
ent the field at Q0 by a linear combination of two or-
hogonal polarization states perpendicular to n̂. Here, we
ill adhere to s (perpendicular) and p (parallel) states of

inear polarization, as they can be conveniently mapped
etween the entrance and exit pupil of an aplanatic imag-
ng system. In our case, this mapping is uniquely defined,
s lithographic systems very accurately satisfy Abbe’s
ine condition within a tolerance better than 10−5.

We now introduce a new coordinate base in Q0�� ,�� ac-
ording to

k̂0 = sin �0 cos � x̂ + sin �0 sin � ŷ + cos �0 ẑ, �1�

p̂0 = cos �0 cos � x̂ + cos �0 sin � ŷ − sin �0 ẑ, �2�

ŝ0 = − sin � x̂ + cos � ŷ, �3�

here �0 and the right-handed unit vector bases
p̂0 , ŝ0 , k̂0� and �x̂ , ŷ , ẑ� are depicted in Fig. 2. We assume
hat we have available the Cartesian electric field compo-
ents at a general point Q0, for example, by means of rig-
rous electromagnetic computation. From the components
x and Ey, we can find Ez by applying the orthogonality of
eld components with respect to the propagation unit vec-
or k̂0 yielding

E0,z = − �E0,x cos � + E0,y sin ��tan �0. �4�

he field components on the new basis are then given by

E0,p��,�� = E0��,�� · p̂0 =
E0,x cos � + E0,y sin �

cos �0
, �5�

E0,s��,�� = E0��,�� · ŝ0 = − E0,x sin � + E0,y cos �. �6�

ote that the component in the direction of k̂, E0,k, is by
efinition equal to zero because of the Fraunhofer ap-
roximation.
Next, we have to relate the field at a general point Q1

n the exit pupil to the incident field in the corresponding
oint Q0 on the entrance pupil sphere P0. The field in the

y

point
source

z
θ

x

y

α0

s0
^

p0
^

^
k0

Q0

ρ
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^ p0

^

ig. 2. Definition of the local basis for a general point Q0 on the
ntrance pupil sphere with an axial cross-section (left-hand
raph) and a cross-section perpendicular to the z axis (right-hand
raph).
ntrance pupil equals the far field produced by diffraction
f the incident field at the mask structure. For the tran-
ition of the far field from the entrance pupil to the exit
upil, we need to consider the energy transport between
he pupil surfaces. The basic relationship between the en-
rgy flow through the entrance and the exit pupil follows
rom paraxial optics. It provides us with the ratio between
lementary areas on the pupil surfaces by means of the
quare of the paraxial magnification. The exact mapping
f an elementary surface area from entrance to exit pupil
utside the paraxial domain needs an extra condition; in
ur case, for large-field imaging systems, the Abbe sine
ondition has to be satisfied.

Following the arguments in [6] and allowing for differ-
nt refractive indices n0 and n1 in object and image space,
e have the following relationship between the energy
ow through corresponding areas in entrance and exit pu-
il (in the absence of absorption, reflection and scatter-
ng):

�v�E�2dS = constant,

r

n0�E0�2dS0 = n1�E1�2dS1, �7�

here �=n2 is the relative electric permittivity of the me-
ium, v=c /n is the propagation velocity, and dS0 and dS1
re the corresponding flow cross-sections on the pupil sur-
aces. Denoting the distances of entrance and exit pupil
rom the object and image plane by R0 and R1, respec-
ively, and using the expression for the elementary solid
ngles in object and image space, we find

n0R0
2
dkx,0dky,0

k0kz,0
�E0�2 = n1R1

2
dkx,1dky,1

k1kz,1
�E1�2, �8�

ith kx,i, ky,i, and kz,i being the wave vector components
n the object and image space.

Using k0 /n0=k1 /n1, we write the electric field at the
mage side as

�E1� =
R0

R1
�kz,1

kz,0
�dkx,0dky,0

dkx,1dky,1
�E0�. �9�

enoting the paraxial magnification by M and writing the
bbe sine-condition according to

kx,0 = Mkx,1, ky,0 = Mky,1, �10�

e obtain

�E1� = �MR0

R1
��n1

n0
�kz,1

k1

k0

kz,0
�E0�

= �MR0

R1
��n1

n0

�1 − s0
2�2�1/4

�1 − �n1
2/n0

2�M2s0
2�2�1/4

�E0�, �11�

here �1−s0
2�2�1/2 and �1− �n1

2 /n0
2�M2s0

2�2�1/2 can be identi-
ed as cos��1� and cos��0�, respectively, with �1 the corre-
ponding angle in image space and s0 the image side geo-
etrical numerical aperture. Finally, we use the paraxial
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elation between pupil object and image distances R1 /R0
�n1 /n0�MMp with Mp the pupil magnification and use
ewton’s paraxial imaging equation in setting �Mp�
�Rp / f1�, with Rp being the distance from the image side

ocal point to the exit pupil and f1 the image side focal dis-
ance.

The field in the exit pupil is then given by

�E1� = 	 f1

Rp
	�n0

n1

�1 − s0
2�2�1/4

�1 − �n1
2/n0

2�M2s0
2�2�1/4

�E0�

= 	 f1

Rp
	�n0

n1
TR����E0�, �12�

here the transmission factor

TR��� =
�1 − s0

2�2�1/4

�1 − �n1
2/n0

2�M2s0
2�2�1/4

�13�

an be ascribed to the radiometric effect for a system sat-
sfying the Abbe sine condition in our general case with
nequal refractive indices in object and image space. In
he more common case with n0=n1, we can set �f1�= �f0�
fL, the focal distance of the imaging system.
As already mentioned above, we limit ourselves to sys-

ems satisfying Abbe’s sine condition. In this case a point
0 at position �� ,�� is mapped directly to a point Q1�� ,��

n the exit pupil sphere with the property that the nor-
alized radial coordinate � and the azimuthal coordinate

emain unchanged. In addition to the radiometric effect
escribed by the transmission factor TR, the light travel-
ng through the imaging system will also experience some
eformations introduced by imperfections of the imaging
ystem. For lithographic systems these aberrations are
enerally small, but nevertheless we include them in the
ormalism.

We describe both the amplitude and phase aberrations
f the imaging system by its complex transmission func-
ion TI. In fact, in the most general case we should con-
ider TI

p and TI
s to be the transmission function for p and

polarization components, respectively, but here we will
dhere to imaging systems that are free of birefringence,
llowing a single transmission function for all field com-
onents. The transmission function of the imaging system
s then given as

TI = A��,��exp�i���,���, �14�

here A�� ,�� is the amplitude transmission function and
�� ,�� is the phase aberration.
In contrast to the basic ENZ theory, where the field E0

n the entrance pupil is uniform, we are dealing here with
general non-uniform field E0. We can now write the E1,s

nd E1,p components as

E1,s��,�� =
f1TITR

Rp
�n0

n1
E0,s��,��

=
f1TITR

Rp
�n0

n1
�− E0,x��,��sin �

+ E ��,��cos ��, �15�
0,y
E1,p��,�� =
f1TITR

Rp
�n0

n1
E0,p��,��

=
f1TITR

Rp
�n0

n1

E0,x��,��cos � + E0,y��,��sin �

�1 − n1
2M2s0

2�2/n0
2�1/2

,

�16�

here it was again used that cos��0�
�1−n1

2M2s0
2�2 /n0

2�1/2. The x, y, and z components are
iven by

E1,x��,�� = E1,p��,��cos��1�cos � − E1,s��,��sin �, �17�

E1,y��,�� = E1,p��,��cos��1�sin � + E1,s��,��cos �, �18�

E1,z��,�� = E1,p��,��sin��1�, �19�

r, by using cos��1�=�1−s0
2�2 and inserting Eqs. (15) and

16), we get

E1,x��,�� =
f1TI��,��TR���

Rp
�n0

n1

 �1 − s0

2�2�1/2

�1 − n1
2M2s0

2�2/n0
2�1/2

� �E0,x��,��cos2 � + E0,y��,��cos � sin ��

+ �E0,x��,��sin2 � − E0,y��,��cos � sin ��
 ,

�20�

E1,y��,�� =
f1TI��,��TR���

Rp
�n0

n1

 �1 − s0

2�2�1/2

�1 − n1
2M2s0

2�2/n0
2�1/2

� �E0,x��,��cos � sin � + E0,y��,��sin2 ��

+ �− E0,x��,��cos � sin � + E0,y��,��cos2 ��
 ,

�21�

E1,z��,�� =
f1TI��,��TR���s0�

Rp�1 − n1
2M2s0

2�2/n0
2�1/2�n0

n1

��E0,x��,��cos � + E0,y��,��sin ��. �22�

We now choose to represent the field components E0,x
nd E0,y, including possible deformations introduced by
he optical system and represented by TI�� ,��, by means
f a Zernike expansion as
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E0,x��,��TI��,�� = �
n,m

�n,x
m Rn

�m����exp�im��, �23�

E0,y��,��TI��,�� = �
n,m

�n,y
m Rn

�m����exp�im��. �24�

sing this expansion, and after a somewhat lengthy ma-
ipulation, the field components in the exit pupil can fi-
ally be written as

E1,x��,�� =
f1TR���

2Rp�1 − n1
2M2s0

2�2/n0
2�1/2�n0

n1

��
n,m

Rn
�m����exp�im��

���n,x
m 
��1 − s0

2�2�1/2 + �1 − n1
2M2s0

2�2/n0
2�1/2�

−� �1 − n1
2M2/n0

2�s0
2�2 cos 2�

��1 − n1
2M2s0

2�2/n0
2�1/2 + �1 − s0

2�2�1/2��

− �n,y

m 
 �1 − n1
2M2/n0

2�s0
2�2 sin 2�

��1 − n1
2M2s0

2�2/n0
2�1/2 + �1 − s0

2�2�1/2�
� ,

�25�

E1,y��,�� =
f1TR���

2Rp�1 − n1
2M2s0

2�2/n0
2�1/2�n0

n1

��
n,m

Rn
�m����exp�im��

���n,y
m 
��1 − s0

2�2�1/2 + �1 − n1
2M2s0

2�2/n0
2�1/2�

+� �1 − n1
2M2/n0

2�s0
2�2 cos 2�

��1 − n1
2M2s0

2�2/n0
2�1/2 + �1 − s0

2�2�1/2��

− �n,x

m 
 �1 − n1
2M2/n0

2�s0
2�2 sin 2�

��1 − n1
2M2s0

2�2/n0
2�1/2 + �1 − s0

2�2�1/2�
� ,

�26�

E1,z��,�� =
f1TR���s0

Rp�1 − n1
2M2s0

2�2/n0
2�1/2�n0

n1

� �
n,m

�Rn
�m����exp�im����n,x

m cos � + �n,y
m sin ��.

�27�

The final step to obtain the image produced by the op-
ical system involves computing the Debye diffraction in-
egral with the aid of the exit pupil field distribution de-
ned by Eqs. (25)–(27). As we are interested in systems
ith a large numerical aperture, we have to deal with the

ull vectorial version of the Debye diffraction integral as
ormulated in the well-known papers by Ignatowsky [21],

olf [23], and Richards and Wolf [35]. The expressions
hey introduced were intended to determine the image of
point source, but, to a very good approximation for suf-
ciently large exit pupil diameter, they can be equally
ell applied to more general fields in the exit pupil.
The general expression for an arbitrary field distribu-

ion on the exit pupil sphere in image space can be found
n [36],

E2�r,�,f� =
− in1s0

2

	0
exp�− if

u0
� � �

C

Ei��,� + 
�

�1 − s0
2�2�1/2

� exp� if

u0
�1 − �1 − s0

2�2�1/2��
�exp�i2
r� cos�� − ����d�d�, �28�

ith C being the scaled integration area on the exit
upil—which in our case is equal to the unit circle—and
ith 	0 the wavelength in vacuum. For the vector quan-

ity Ei�� ,�+
� in the integrand of the Debye integral, one
hould take the field-invariant RE1 along a propagation
irection defined by �� ,��, with R the distance along the
ropagation direction toward or away from the image
oint. This quantity has also been denoted “ray strength.”
Once we have obtained the field components E1 on a

phere with its midpoint at the image center and of ra-
ius R1, the quantity Ei is simply given by R1E1. Multi-
lication of R1 by the geometrical amplitude factor f1 /Rp
n Eqs. (25)–(27) allows us to write the complete scaling
actor n1f1s0

2R1 /	0Rp as n1s0
2f1 / �	0�1−Mf1 /R1�� using the

araxial property Rp=R1−Mf1. Special cases arise when
ne of the pupils or both are located at infinity. For an exit
upil at infinity, the geometrical scaling factor reduces to
1f1s0

2 /	0. An entrance pupil at infinity poses a problem
ecause the field components E0,s and E0,p tend to zero
nd the evaluation of the Zernike coefficients of Eqs. (23)
nd (24) would be indefinite. In this case, the field compo-
ents can be measured or calculated, far enough from the
bject itself, on a sphere with a predefined radius R0 that
ill replace the actually infinite value of the radius. With

he finite energy flow from the infinitely distant entrance
upil, the field components on the chosen sphere with ra-
ius R0 can be obtained. Using the corresponding R1
alue for the exit pupil position, the quantity RE1, a ray
nvariant, is then uniquely obtained. The coordinates
r ,� , f� used in Eq. (28) are normalized cylindrical coordi-
ates in the image space with the origin located at the
eometrical focus (see Fig. 2), with f being the normalized
xial coordinate and �r ,�� the lateral polar coordinates.
he normalization has been carried out with respect to

he diffraction unit 	0 /NA=	0 / �n1s0� in the radial r direc-
ion and f=−2
n1u0z /	0 in the axial direction with u0

1−�1−s0
2.

To evaluate Eq. (28), we insert the exit pupil field given
y Eqs. (25)–(27) and the radiometric factor TR into Eq.
28). Using the expression �0

2
 exp�im��exp�i2
r� cos��
���d�=2
imJm�2
r��exp�im��, with Jm�x� the mth or-
er Bessel function of the first kind, we obtain for the vec-
or field in the focal region using column vector notation
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E2�r,�,f� =
− i
n1f1s0

2

	0�1 − Mf1/R1�
�n0

n1
exp�− if

u0
��

n,m
�− i�m exp�im��

� ��n,x
m �Vn,0

m + s0
2�n0

2 − n1
2M2

2n0
2 ��Vn,+2

m exp�+ 2i�� + Vn,−2
m exp�− 2i���

− is0
2�n0

2 − n1
2M2

2n0
2 ��Vn,+2

m exp�+ 2i�� − Vn,−2
m exp�− 2i���

− is0�Vn,+1
m exp�+ i�� − Vn,−1

m exp�− i���
�

+ �n,y
m � − is0

2�n0
2 − n1

2M2

2n0
2 ��Vn,+2

m exp�+ 2i�� − Vn,−2
m exp�− 2i���

Vn,0
m − s0

2�n0
2 − n1

2M2

2n0
2 ��Vn,+2

m exp�+ 2i�� + Vn,−2
m exp�− 2i���

− s0�Vn,+1
m exp�+ i�� + Vn,−1

m exp�− i���
�� , �29�
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here, for integer j=−2, ¯ , +2, we have

Vn,j
m �r,f� =�

0

1

��j�
��1 − n1

2M2s0
2�2/n0

2�1/2 + �1 − s0
2�2�1/2�−�j�+1

�1 − s0
2�2�1/4�1 − n1

2M2s0
2�2/n0

2�3/4

� exp
 if

u0
�1 − �1 − s0

2�2�
Rn
�m����Jm+j�2
r���d�.

�30�

In contrast to earlier publications (for instance,
37–39]) Eq. (29) has the factor �−i�m instead of im. The
inus sign is due to having the same reference direction

or the polar angles � and � in object, pupil, and image
pace. In the earlier publications, there was a rotation of
between the polar coordinate systems �� ,�� and �r ,��. It

s also important to note that former results pertained to
maging from infinity �M=0� and to equal indices in object
nd image space, yielding a geometrical prefactor
i
s0

2R /	, with R denoting the focal distance of the imag-
ng system. The results presented here yield the same
imiting value for this special case. Also, in accordance
ith former results from ENZ analysis (see Appendix D of

36], where a point source at infinity was considered), one
an devise a series expansion to quickly obtain accurate
alues of the integral above that applies to imaging at fi-
ite distances. The functions that are used in the expan-
ion and the values of the new expansion coefficients are
iven in Appendix A.

In this section, we have identified the implications of
onsidering imaging of an extended object at a finite dis-
ance from the entrance pupil within the framework of
he ENZ formalism. We have shown how to adjust the
tandard ENZ formalism to accommodate this new range
f applications, and we have introduced a new expression
or the field in the focal region of a general imaging sys-
em. In this new formulation, the field in the focal region
s directly related to the field in the entrance pupil. The
nly approximation used in our considerations is the
raunhofer approximation that requires the object to be
mall compared to the distance between object and en-
rance pupil. For the use of these new expressions in
ask imaging, this condition is generally satisfied.

. COMPUTATION SCHEME
n this section, we translate the imaging method devised
n Section 2 into a computation scheme that simulates

ask imaging by a lithographic system. When consider-
ng such a full lithographic system simulation, a choice
hould be made what model to use in order to describe the
nite extent of the illumination source correctly. Here, we
ill adhere to the Abbe approach instead of the more com-
only used Hopkins approximation (see [40], Subsections

.2 and 8.3). Although the Hopkins approach is generally
aster, it has its limitations when relatively thick mask
bjects are considered. On the other hand, the Abbe ap-
roach imposes no limitations on the structure of the
ask and therefore has our preference.
In the Abbe approach, the finite-size illumination

ource is approximated by a sampled equivalent source
ith constant values for its strength and far-field radia-

ion pattern over each sampling subarea. In advanced li-
hography, the illumination system, based on Köhler illu-
ination (see Fig. 3), has been extended with smoothing

lements, for instance, a fly-eye’s lens array or an assem-
ly of light-guiding quartz rods. These measures are
eant to improve the uniformity of the effective source of

he illumination system, regarding both its near-field and
ar-field properties. Assume that we can measure the ra-
iance function L�x ,y ;�x ,�y� of the effective source (with
x and �y the projection angles of the radiation direction
ith respect to the x and y axes), so that we are then left
ith calculating the corresponding electromagnetic field

trengths in the object plane where the mask is located.
n the following, we limit ourselves to a centered object of
ery limited extent. With the Köhler illumination ar-
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angement, the axial object collects the forward-directed
adiation of each source point in the effective source. In
his case, we can use the value of the radiance function in
his direction, given by L�x ,y ;0 ,0�. The power flow from
n elementary source element dSS toward the object ele-
ent of size dSO is given by

d2P = L�x,y;0,0�dSSd�O = L�x,y;0,0�dSSdSO cos���/f C
2 ,

�31�

here we have used that the solid angle d�O subtended
y the object is given by its projected surface divided by
he square of the focal length fC of the condenser lens (� is
he projection angle).

In the case of the sampled source, we assume a con-
tant behavior of the source over each sampling area, and
e are then allowed to integrate the elementary power
ow using the value of the radiance function at each sam-
ling point. For a sampled source area with index j we
nd

Pj = L�xj,yj;0,0�SjSO cos��j�/f C
2 , �32�

here Sj is the area of the jth source element. The power
ontained in the parallel beam that is emitted by the sam-
ling area with index j is given by

Pj = �0cn0�EO�2SO cos��j�. �33�

rom Eqs. (32) and (33) we obtain for the electric field
trength

�EO� =�L�xj,yj;0,0�Sj

�0cn0f C
2 . �34�

n the expression above, we have taken the radiance func-
ion in a medium with refractive index n0, the value in
he object space. If the radiance function of the source is
vailable only in vacuum or air, one can apply the relation
=n0

2LV, which follows from the conservation law of radi-
nce (LV is the measured radiance function in vacuum or
ir).
In what follows, the Cartesian coordinates �xj ,yj� in the

ffective source will be replaced by reduced coordinates,
ith the normalized coordinates in the entrance pupil of

he imaging system as the reference. With this aim, we
tart with the numerical aperture in the object space,
iven by sobj=sin��obj�= �n1Ms0 /n0� with n1s0 the numeri-
al aperture in the image space. The angular measure of
he source is normalized with respect to sobj, such that the
ateral reduced coordinate 
 of the source is unity if the

y

x

η=1
ηj
σj

L j

zαobj

η=1

ySource
plane

Source
plane

Condenser

L j

Object
plane

k j αj

Fig. 3. Schematic representation of the Köhler illumination.
ource completely fills the entrance pupil. The relation-
hip between the Cartesian coordinates �xj ,yj� of a gen-
ral source point and its reduced coordinates is given by

xj/fC = 
j cos��j�sobj,

yj/fC = 
j sin��j�sobj, �35�

here we have used polar coordinates �
 ,�� in the re-
uced domain because of the frequently occurring rota-
ional symmetry in illumination systems.

The state of polarization of the light issued by the light
ource has not been discussed so far. In the case of an un-
olarized source, the source power is equally distributed
ver two orthogonally polarized states of polarization. In
ore specific cases, the power has to be distributed over

he x, y, and z field components of the light according to
he measured state of (partial) polarization of the source.

In the Abbe approach, for each source region, we also
ave at our disposal the average propagation direction
hat is needed to analyze the diffraction process at the
ask and the propagation of the diffracted light through

he imaging system. A general source point with reduced
olar coordinates �
j ,�j� gives rise to a fictitious plane
ave whose normalized propagation vector is given by

k̂j = �− 
jsobj cos��j� x̂,− 
jsobj sin��j� ŷ,�1 − 
j
2sobj

2 ẑ�.

�36�

e now have available at the location of the mask the
lectric field strength and propagation direction of the fic-
itious wave produced by each sampling area of the
ource. The intensity in a selected plane in the image
pace can be calculated, carrying out the full chain of dif-
raction at the mask, diffraction at the diaphragm or pu-
ils of the imaging system, and the wave propagation to-
ard the image region. The intensities due to each

ampled region in the incoherently radiating source are
dded to obtain the total intensity distribution in the im-
ge region.
The interaction of each plane wave with an object is

imulated separately with a rigorous electromagnetic
olver based on the FDTD method. The FDTD implemen-
ation used here is a code developed in-house at Delft Uni-
ersity of Technology. It uses absorbing boundary condi-
ions based on a convolutional perfectly matched layer
PML) implementation [41,42]. Next to absorbing PML
oundaries, quasi-periodic boundary conditions can be ap-
lied using the so-called sine–cosine technique [43]. Me-
ia with negative permittivity and non-zero absorption
re simulated via the auxiliary differential equation tech-
ique for dispersive media [44]. The code is parallelized

or efficient execution on multi-processor machines.
The objects simulated for this paper are relatively

mall isolated structures. The established approaches and
imulation tools to treat such structures almost always
nvolve periodic boundary conditions, where the isolated
tructures are padded by structureless object space to ap-
roximate the isolated case. Since the ENZ formalism
oes not require periodic boundary conditions for the rig-
rous calculation, PML absorbing boundary conditions
re employed on all sides of the computational domain.
he PML regions are non-reflective and thus fully trans-
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arent to outgoing waves. As a result, it appears numeri-
ally as if the object extends homogeneously in all direc-
ions. The rectangular three-dimensional computational
omain (CD) is then defined by the smallest volume that
ncloses the structured region of the object.

In common FDTD implementations, letting material
nterfaces cross the PML boundary is problematic. Our
DTD implementation does allow the interfaces of a
ulti-layer structure to cross into the PML. Because
axwell’s equations are linear we can write the total field
tot as the sum of two solutions to Maxwell’s equations,

Etot = Esca + Ezero, �37�

here Ezero is a known solution such as the incident field
n free space and Esca is called the scattered field. As in
ther implementations, we calculate the total field in the
D and the scattered field in the surrounding PML re-
ion. The fields in the two regions are coupled by adding
r subtracting the incident field on the boundary of the
D and the PML. However, on this boundary in a layered
eometry, the incident field is not the correct solution to
axwell’s equations, because the incident field is defined

or homogeneous free space. The algorithm therefore pro-
uces incorrect results. Instead of using the incident field
or Ezero, we use the analytical steady-state solution of a
lane wave incident on a structureless object. This ap-
roach was shown to give correct results for objects that
nclude a multi-layer configuration [45].

The output of an FDTD simulation consists of near-
eld values in the CD. To simulate the propagation of the
eld from the mask to the entrance pupil of the optical
ystem, a near-to-far-field transformation is applied. For
his purpose, we use the Stratton–Chu formula [46],
hich relates the scattered fields Esca and Hsca on the
oundary �� of a given domain to the field at any point in
r outside the domain at r� by

Esca�r�� = −� �
��

�n � Esca�r��G= H�r,r��

− �n � Hsca�r��G= E�r,r��dr2. �38�

erein, G= �r ,r�� is the Green’s tensor of the layered sys-
em (subscripts E and H indicate the electric and mag-
etic Green’s tensor). The layered Green’s tensor is
eeded because we allow material interfaces to cross the
tratton–Chu integration surface. For a general layered
ystem, these terms are difficult to calculate analytically.
nstead, we implement the Fourier transformed
tratton–Chu formula [47]

F�Esca��kx,ky,z�� = −� �
��

�n � Esca�r��F�G= H��r,ksc�

− �n � Hsca�r��F�G= E��r,ksc�dr2, �39�

hich now uses the Fourier transformed Green’s tensor
�G= ��r ,ksc� of a layered system. Here ksc is the wave vec-

or in the direction of the far-field observation point.
�G= ��r ,ksc� is efficiently calculated in the same algorithm

hat gives the analytic multi-layer solution for the FDTD
imulation.
By using the Fourier transformed equation for the
tratton–Chu formula, the Fraunhofer far field at the lo-
ation on the spherical entrance pupil determined by the
avenumbers kx,sc, ky,sc and distance z� is almost directly

btained:

E0�kx,sc,ky,sc,z�� = F�Esca�
kz,sc

�ksc�
. �40�

his quantity is the field E0�� ,�� that is used in the ENZ
maging algorithm and has been introduced in Eqs.
4)–(6). In order to do the numerical integration of Eq.
39), the rectangular boundaries of the FDTD CD are dis-
retized to a uniform, orthogonal boundary grid. Because
eld values on the FDTD grid are not collocated but stag-
ered, the FDTD field values are linearly interpolated.

An advantage of the described Stratton–Chu method is
hat separate points in the far field can be calculated cor-
esponding directly to points on the spherical entrance
upil of the optical system. It is therefore very suited for
arallelized computation. More important, it gives the
reedom to choose any kind of entrance pupil sampling,
hich can severely reduce the computational burden of

he far-field calculation and the ENZ imaging algorithm
45].

It must be noted that for small isolated objects, a
ethod is needed that uses the field on all boundaries of

he domain to obtain rigorous far-field results, such as the
tratton–Chu formula. In practice, where for example a

arge mask area is considered, a simple Fourier-based
ear-to-far-field transformation may be more efficient and
qually accurate.

Once the field in the entrance pupil is available one can
roceed with applying the ENZ-based expressions that
ere derived in Section 2. We perform a Zernike expan-

ion of the computed field components E0,x and E0,y, in-
luding possible transmission defects TI, according to
qs. (23) and (24). In our case, the coefficients �n,x

m and

n,y
m are obtained through a least-squares fitting opera-
ion. This could in principle also be done using inner-
roduct evaluation of the function to be fitted and the
ernike orthogonal functions. Nevertheless, we have ob-
erved that a least-squares approach, for a set of well-
hosen data points, is far more efficient. More information
n the sampling schemes applied in ENZ imaging can be
ound in [45].

In the final step, to obtain the electric field contribution
o the image from a single point in the illumination
ource, we evaluate Eq. (29) for the sets of Zernike coeffi-
ients �n,x

m and �n,y
m that result from the optimal least-

quares fit discussed above. Note that Eq. (29) relies on
he basic function Vn,j

m , which is defined in Eq. (30) and
an conveniently be computed using the recipe given in
ppendix A.
Following the procedure given above, the computation

f the image contribution from a single source point
hould be repeated for every point composing the light
ource. The total aerial image produced by the optical sys-
em then follows after incoherent summation of all contri-
utions.
The full computational scheme described in this section

an be summarized as follows:
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1. A single source point gives rise to illumination of the
ask by a plane wave, where the angle of incidence of the

lane wave is directly related to the spatial position of the
onsidered source point.

2. The interaction between the mask and the incident
lane wave is computed by means of a rigorous electro-
agnetic solver (in our case an in-house FDTD imple-
entation).
3. An adapted version of the Stratton–Chu method is

pplied to obtain the field in the entrance pupil from the
ear field at the mask.
4. The field in the exit pupil is obtained by applying

he optical transfer function between the entrance and
xit pupil of the optical system.

5. The field in the exit pupil is represented as a
ernike expansion after which the aerial image contribu-
ion due to illumination by a single source point follows
irectly from the ENZ imaging algorithm.
6. Finally, steps 1–5 should be repeated for each el-

mentary point in the light source after which their inten-
ity contribution should be summed incoherently to ob-
ain the aerial image of the mask produced by the
ithographic system. In practice, a discrete sampling of
he source will be carried out to keep the computational
ffort within reasonable bounds.

In this section, we have given a detailed description of
he ENZ-based imaging scheme. In the remainder of this
aper, we will discuss its characteristics and highlight
ome of its main features.

. EVALUATION OF THE ENZ-BASED
ETHOD

his section discusses the anticipated accuracy and con-
ergence of the imaging method proposed in this paper.
e will limit ourselves to the imaging part of the algo-
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ithm, which includes the computations from entrance
upil to image region. We will not go into detail on the rig-
rous electromagnetic computations of the near field at
he object, because, in principle, the proposed method al-
ows for any rigorous solver to be used. For more details
n the FDTD implementation developed in-house at TU
elft as used for the examples in this paper, refer to [48].

. Representation of E0TI as a Zernike Expansion
n the following, we assume that the arbitrary field E0 in
he entrance pupil of the imaging system is known. To
ompute the image resulting from this field distribution
e should apply Eqs. (23) and (24), and the resulting sets
f Zernike coefficients �n,x

m , �n,y
m are subsequently inserted

nto Eq. (29). Note that TI represents the complex trans-
ission function of an imaging system that we assume to

e free of birefringence, and that TI�1 for an aberration-
ree system.

As mentioned in Section 3, we perform a least-squares
tting operation to obtain �n,x

m and �n,y
m . The number of

ernike functions needed to accurately describe E0TI
trongly depends on the object being imaged. This num-
er is therefore determined iteratively. The maximum azi-
uthal order mmax and radial order nmax of the Zernike

unctions are increased until the desired fitting accuracy
s reached. In Fig. 4, we show the residual RMS fitting er-
or for some particular objects (nine regularly arranged
ontact holes, an elbow structure, and a hammerhead
tructure) versus mmax and nmax. Note that by definition
f the Zernike functions mmax�nmax.

The simulation results in Fig. 4 clearly illustrate that
he number of Zernike polynomials required to obtain a
ertain degree of fitting accuracy for the field in the en-
rance pupil varies strongly among different objects. In
eneral, one would expect the required number of Zernike
olynomials to depend on the size and complexity of the
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bjects. Nevertheless, a complex object does not necessar-
ly imply the need for a large number of Zernike functions
or an accurate fit. A complex object can produce a rela-
ively smooth field distribution in the pupil that would
hen require a limited number of Zernike polynomials to
e fitted accurately. On the other hand, a fairly simple
tructure with a high degree of periodicity can produce a
harply modulated pupil distribution that closely re-
embles the diffraction pattern that would arise in the
ase of a purely periodic object. In this case, the number
f Zernike polynomials required to obtain an accurate fit
s fairly large. Thus, in general, the number of Zernike
unctions needed grows according to the size and degree
f periodicity of the object under consideration.

Once we have acquired a Zernike expansion of suffi-
ient accuracy for the field in the entrance pupil we can
roceed with applying the approach described in Section
. In Subsection 4.B we describe the convergence proper-
ies of the expressions that relate the entrance pupil field
istribution to the field in the image region.

. Computation of the Basic Integral Vn,j
m
„r ,f…

n Section 2, we have derived an expression for E2, the
eld in the image region of the optical system [Eq. (29)].
his expression depends on the basic integral Vn,j

m �r , f�,
hich is defined in Eq. (30). Similar to standard ENZ

heory, a series expansion has been devised to evaluate

n,j
m �r , f� efficiently (Appendix A). It is important to recog-
ize that Vn,j

m �r , f� depends solely on the specifications of
he imaging system and is independent of the object being
maged. Therefore, the Vn,j

m �r , f� functions should be com-
uted only once for a specific magnification and aperture
etting of the imaging system, after which the Vn,j

m �r , f�
unction values can be stored and subsequently used in
uture image simulations.

What remains is the calculation of Vn,j
m �r , f� for j=−2,

1,0,1,2 and for a range of values of m and n in a both
ccurate and efficient manner. When we study the expan-
ion of Vn,j

m �r , f� as found in Eq. (A23) we find that it con-
ains an infinite sum over the parameter t. In practice, t
as to be cut off at some finite value tmax. The relation be-
ween tmax and the root mean square (RMS) error present
n the computed values for Vn,j

m �r , f� has been displayed in
ig. 5. One can see that a modest number of terms, say

max=25, already results in an accuracy of 10−4. As E2 is
inear in Vn,j

m �r , f� the error in E2 introduced by Vn,j
m �r , f� is

lso expected to be of the order 10−4. Furthermore, we see
steady decrease in the RMS for increasing tmax, down to

0−12. From this, we can conclude that the Vn,j
m �r , f� func-

ions can always be computed down to the accuracy re-
uired by a particular application. Therefore, the Vn,j

m �r , f�
unctions do not pose a limit on the overall accuracy of the
NZ method.
In this and Subsection 4.A we have discussed the accu-

acy of the two computation modules that together com-
ose the ENZ method. As discussed above, we can always
ompute the Vn,j

m �r , f� functions down to the desired accu-
acy. A higher accuracy, of course, requires a larger com-
utational burden, but in the case of the Vn,j

m �r , f� func-
ions this is of limited interest, as the functions can be
omputed in advance and stored in a look-up table. Thus,
he overall accuracy of the method is mainly determined
y the quality of the Zernike expansions for the field in
he entrance pupil. In Subsection 4.C we will evaluate the
esulting accuracy for the field in the image region given
he accuracy of the Zernike expansions in the entrance
upil.

. Field Accuracy in the Image Region
s discussed in the previous subsections, we can assume

hat the overall accuracy of the ENZ method is deter-
ined by the fitting accuracy for the fields in the entrance

upil. In Fig. 6, we have plotted the RMS error in the in-
ensity in the image volume versus the RMS error in the
ernike expansions of the fields in the entrance pupil. The
gure clearly illustrates a similar behavior for the RMS
rrors of all three objects studied. Note that the lines rep-
esenting the contact holes and elbow structure do not
over the full range of the RMS errors in entrance pupil
xpansions, because for the maximum number of Zernike
erms used in these examples �mmax=nmax=20�, the best
btained accuracies were 10−2 and 10−4, respectively. It is
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nteresting to note that a pupil field accuracy of 10−3 al-
eady yields an intensity fidelity in the image region that
s better than 10−4 despite the nonlinearities that arise in
he creation of the intensity distribution in the image.

Now that we have acquired a clear view of the expected
ccuracy of the ENZ-based imaging method, we should re-
ate this to the computational burden that is associated
ith it. This will be the main topic of Subsection 4.D.

. Computational Considerations
he accuracy of a method should always be discussed in
elation to the computational burden involved with it. As
he ENZ method is constructed from several largely inde-
endent modules, the computational complexity should be
valuated likewise. Here we will limit the discussion of
he computational complexity to those modules already
iscussed in the previous subsections. We do not go into
etail on the near-field computations and the propagation
nto the entrance pupil as in principle any rigorous elec-
romagnetic solver could be used here.

As we apply a least-squares fitting operation to obtain
he Zernike expansion coefficients for the entrance pupil
elds, the computational complexity will largely be deter-
ined by this operation. In our case we use the least-

quares fitting algorithm included in Matlab (Standard
atlab function mldivide.m [49]), which is based on QR

actorization with column pivoting, to obtain the Zernike
oefficients. The computational complexity of this algo-
ithm is O�NZ

3�, where NZ is the total number of Zernike
oefficients to be fitted.

The computational complexity of the second module,
hich computes the field in the focal region given two sets
f Zernike coefficients �n,x

m and �n,y
m , can be deduced from

q. (29). Recall that the Vn,j
m functions are independent of

he object and can therefore be calculated in advance. As
result, all terms between the large parentheses on the

econd and third lines of Eq. (29) are fixed for a given set
f �r ,� , f�. The computational task is thus reduced to com-
uting

E2�r,�,f� = C1�f��
n,m

��n,x
m C2�m,n,r,�,f�

+ �n,y
m C3�m,n,r,�,f��, �41�

here C1, C2, and C3 all represent data stored in a
ook-up table. Consequently, the computational complex-
ty is proportional to

Nf � Nr � N� � 2NZ, �42�

here Nf, Nr, and N� are the number of sampling points
n the f, r, and � direction of our cylindrical coordinate
ystem in the focal volume. The expression in Eq. (42)
hus predicts a linear relation between the CPU time and

Z, the number of Zernike coefficients used in the compu-
ation. This behavior is clearly visible in Fig. 7, where we
ave plotted the CPU time versus the number of Zernike
oefficients.

On comparing the computational complexities deter-
ined above, we can conclude that both modules can be

ominant. Whenever Nf�Nr�N��NZ
2, the least-squares

tting module will dominate the required computational
orkload, while in the case that Nf�Nr�N��NZ
2, the

omputational contribution of the second module will be
ore important.
In this subsection we have discussed the computational

omplexity of the novel simulation modules introduced by
he ENZ method. It was shown that both the least-
quares square fitting operation and the field construction
rom Zernike coefficients can be dominant in the total re-
uired computational burden for these two modules. Nev-
rtheless, the contribution to the computational workload
f the complete ENZ method will generally remain lim-
ted. The computational burden for the complete ENZ

ethod is dominated by the Abbe treatment of the illumi-
ation source in combination with the rigorous near-field
omputations.

. CONCLUSIONS AND DISCUSSION
n this paper, we have introduced a new imaging method
ased on the ENZ theory. Although the standard ENZ
heory is meant to provide the through-focus, point-
pread function of a general system, we have shown that
ts range of application can be extended to include imag-
ng of general objects.

The main result presented in this paper is a semi-
nalytic expression relating a general field in the en-
rance pupil to the resulting field in the focal region of an
ptical system. The field in the entrance pupil can, in
rinciple, be obtained using any rigorous electromagnetic
olver and follows from the interaction between an inci-
ent plane wave and the object. In general, the light
ource illuminating the object will be of finite extent. In
his case the source is considered as a collection of
weighted) incoherent point sources, and the total image
s obtained by incoherent summation of the image inten-
ity contributions of all point sources (the Abbe approach).

In Section 3 we have shown that our results can be ef-
ciently implemented into a computation scheme to com-
ute the image produced by a general isolated object. For
he most part, our scheme is similar to standard Abbe-
ype imaging methods, but it uses the ENZ-based algo-
ithm for image formation instead of the more conven-
ional approach based on Fourier optics. Although the
NZ algorithm is fundamentally different from the Fou-
ier based approach, it does not alter the overall compu-
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ation scheme significantly. As a result, a conventional
iece of Abbe-type imaging software developed modularly
an be easily equipped with our new method by simply re-
lacing the conventional imaging module by its ENZ-
ased counterpart.
In Section 4 the accuracy and convergence of the ENZ
ethod is evaluated. It is shown that the series expansion

sed to generate the ENZ basic functions is accurate all
he way down to machine precision. Considering that the
NZ basic functions depend solely on the properties of the

maging system and the location of the image region and
t the same time are independent of the object being im-
ged, they can be calculated and stored in advance. Based
n these observations we can conclude that the accuracy
f the ENZ imaging algorithm is limited by the residual
MS error present in the Zernike expansion of the exit
upil distribution. In principle, as the Zernike polynomi-
ls constitute a complete set, the residual error in the ex-
ansion can be made arbitrarily small. However, a higher
ccuracy will require a larger number of expansion coef-
cients to be determined and this will, of course, increase
he computational burden.

For simulation methods it is most relevant to know the
elation between the accuracy and the computational bur-
en or complexity. In Subsection 4.D the theoretical lower
oundary for the computational complexity is determined.
t is shown that two distinct tasks in the ENZ imaging
cheme can both be dominant in terms of computational
urden. Whenever an object generates a strongly oscillat-
ng pupil distribution, a large number of Zernike coeffi-
ients is required for an accurate fit. In this case the
east-squares fitting operation requires substantial com-
utational effort. On the other hand, if the pupil distribu-
ion is relatively smooth and a fairly large number of im-
ge points are of interest, the field construction in the
ocal region will be the dominant task.

Altogether, we believe that ENZ-based imaging pro-
ides an appealing addition to the available arsenal of im-
ge simulators. The method can generate extremely accu-
ate results and does so totally independent of other
xisting methods. As a result, the ENZ method is an ex-
ellent choice for benchmarking. In addition to this, the
NZ method is advantageous in image simulation of iso-

ated structures. Finally, investigation of the theoretical
omputational complexity of the ENZ method has shown
hat it is potentially very efficient. However, before the
NZ method is able to compete with more mature image
omputation technologies, large gains in computational
fficiency must be made. Our further research will focus
n the development of the ENZ-based imaging method to-
ard a generally applicable, efficient, and versatile image

alculation tool. In the short term this includes further
xtension of the ENZ imaging formalism to incorporate
irefringence of the optical system and imaging into a
ultilayer in the focal region.

PPENDIX A: SERIES EXPANSION FOR Vn,j
m

n this appendix we present a method for obtaining a se-
ies expansion for the integral Vm �r , f� given by
n,j
Vn,j
m �r,f� =�

0

1

��j�
��1 − s0

2�2�1/2 + �1 − n1
2M2s0

2�2/n0
2�1/2�−�j�+1

�1 − s0
2�2�1/4�1 − n1

2M2s0
2�2/n0

2�3/4

� exp
 if

u0
�1 − �1 − s0

2�2�
Rn
�m����Jm+j�2
r���d�.

�A1�

e follow a similar approach as in Appendix D of [36] to
ransform the integral in (A1) into a tractable form. We
rite

exp
 if

u0
�1 − �1 − s0

2�2�

�

��1 − s0
2�2�1/2 + �1 − n1

2M2s0
2�2/n0

2�1/2�−�j�+1

�1 − s0
2�2�1/4�1 − n1

2M2s0
2�2/n0

2�3/4

= exp�g� + if��2��
t=0

�

Bt�
2t. �A2�

ere the coefficients g� and f� are defined by requiring the
est fit for the constant and the quadratic term in � in the
n of the function (A2). So let

F��� =
if

u0
�1 − �1 − s0

2�2�

+ �− �j� + 1�ln��1 − s0
2�2�1/2 + �1 − n1

2M2s0
2�2/n0

2�1/2�

− 1
4 ln�1 − s0

2�2� − 3
4 ln�1 − n1

2M2s0
2�2/n0

2�, �A3�

nd define

��� = 1 − �1 − s0
2�2 = �

n=0

�

an�2n, �A4�

��� = ln��1 − s0
2�2�1/2 + �1 − n1

2M2s0
2�2/n0

2�1/2� = �
n=0

�

bn�2n,

�A5�

��� = ln�1 − s0
2�2� + 3 ln�1 − n1

2M2s0
2�2/n0

2� = �
n=0

�

cn�2n,

�A6�

o that

��� =
if

u0
A��� + �− �j� + 1�B��� −

1

4
C��� = �

n=0

�

fn�2n, �A7�

fn =
if

u0
an + �− �j� + 1�bn −

1

4
cn, n = 0,1, . . . . �A8�

We shall determine an, bn, and cn.

n: We have by Taylor expansion

a0 = 0; an = − � 1
2

n��− 1�ns0
2n, n = 1,2, . . . . �A9�

: Consider the function
n
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f�x� = ln��1 − x�1/2 + �1 − ax�1/2�. �A10�

hen

f��x� =
1

2

1

�1 − x�1/2 + �1 − ax�1/2� − 1

�1 − x�1/2 +
− a

�1 − ax�1/2�
= −

1

2

�1 − x�1/2 − �1 − ax�1/2

�1 − x� − �1 − ax�

�1 − ax�1/2 + a�1 − x�1/2

�1 − x�1/2�1 − ax�1/2

= �1 − �1 − ax�−1/2�1 − x�−1/2�/2x

= −
1

2�
t=1

� 
�− 1�t�
r=0

t �− 1
2

r �� − 1
2

t − r�ar
xt−1, �A11�

here the third identity is obtained by working out the
umerator and denominator and simplifying, and the
ourth identity is obtained by multiplying the Taylor ex-
ansions of �1−ax�−1/2 and of �1−x�−1/2. Therefore, by in-
egrating from 0 to x,

f�x� = ln 2 − �
t=1

� 
 �− 1�t

2t �
r=0

t �− 1
2

r �� − 1
2

t − r�ar
xt. �A12�

Using Eq. (A12) with a=n1
2M2 /n0

2 and x=s0
2�2, we see

hat

0 = ln 2;

n = −
�− 1�ns0

2n

2n �
r=0

n �− 1
2

r �� − 1
2

n − r�n1
2rM2r

n0
2r , n = 1,2, . . . .

�A13�

n: We have by Taylor expansion

c0 = 0; cn = −
�s0�2n�1 + 3�n1M/n0�2n�

n
, n = 1,2, . . . .

�A14�

hus with an, bn, cn from Eqs. (A9), (A13), and (A14), we
an compute the fn of F���=�n=0

� fn�2n according to Eq.
A8).

Next, we proceed by writing

F��� = g� + if��2 + �
n=0

�

An�2n, �A15�

here g�+ if��2 is the best quadratic approximation of
��� using �d� on [0, 1] as weight function. To this end, we
onvert the Taylor expansion �n=0

� fn�2n of F��� into a
ernike expansion �k=0

� �2k
0 R2k

0 according to the formula

�2k
0 = �

n=k

� 2k + 1

k + 1

�n

k�
�n + k + 1

n � fn, k = 0,1, . . . , �A16�

ee Eq. (10) of [29]. Now

�0
0R0

0��� + �2
0R2

0��� = ��0
0 − �2

0� + 2�2
0�2 �A17�

s the desired best approximation of F���. Hence
g� = �0
0 − �2

0, f� = �2/i��2
0, �A18�

nd

A0 = f0 − g�, A1 = f1 − if�; An = fn, n = 2,3, . . . .

�A19�

The final step in achieving Eq. (A2) consists of writing

exp��
n=0

�

An�2n� = �
t=0

�

Bt�
2t. �A20�

s in Appendix D of [36] this is done recursively according
o

B0 = exp�A0�, Bt+1 = �
j=0

t t + 1 − j

t + 1
At+1−jBj, t = 0,1, . . . .

�A21�

From Eq. (A2) one can now compute the Vn,j
m in Eq. (A1)

s in Appendix D.2 of [36]. Thus one writes (with some
inor corrections of Appendix D.2 of [36])

Rn
�m���� = ��m��

s=0

p

Cs�
2s, Cs = �− 1�p−s�q + s

p ��p

s� ,

�A22�

here p= �n− �m�� /2, q= �n+ �m�� /2. Then

Vn,j
m �r,f� = �

s=0

p

�
t=0

�

CsBtT�j�+�m�+2s+2t
m+j �r,f��, �A23�

here, for integer k, l with l− �k� even and �0,

Tl
k�r,f�� =�

0

1

�leif��2
Jk�2
r���d�. �A24�

hese Tl
k have been computed in Eqs. (14)–(16) of [29] in

he form of a power-Bessel series.
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