
Master of Science Thesis

Offshore Wind Farm Layout Optimization
Smart design strategies over real case studies

Raffaello Cirillo

20th September 2018

Offshore Wind Farm Layout Optimization
Smart design strategies over real case studies

Master of Science Thesis

For obtaining the degree of Master of Science in Sustainable Energy
Technology at Delft University of Technology

Raffaello Cirillo

Student number: 4623770

20th September 2018

Thesis Committee: Prof. Dr. Simon Watson (chairman) TU Delft

Dr. Ir. Michiel Zaaijer (supervisor) TU Delft

Dr. Ir. Sander Hartjes TU Delft

Ir. Wybren de Vries (company supervisor) Eneco B.V. Wind

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology

Background picture: copyright ©Hans Hillewaert / CC BY-SA 4.0

Copyright ©
All rights reserved.

To my beloved grandfathers Alberto and Raffaello

Summary

Nowadays an increasing number of offshore wind farms (OWF) is getting built. Clear advantages w.r.t. onshore
farms, such as higher energy yields, less visual pollution, less restrictions about operational noise and relatively
low environmental impact all contribute to the spread of this technology. Several disciplines are considered into
this subject. The design of the support structure requires civil engineering knowledge and the aerodynamic
design of a blade is connected to the concept of an airfoil. Moreover, electrical and control engineering are
involved, as well as economics.
The manual and sequential design approach used so far is not sufficient to guarantee optimized systems because
interactions between the different components are disregarded. Therefore, engineering companies are looking for
a multidisciplinary, modular, user-friendly and easy tool to be applied during the preliminary design assessment.
This should take into consideration almost every crucial aspect of OWF design. Moreover, it should be able to
perform some overall layout optimization, i.e. providing the best turbine positioning w.r.t. the energy yield,
the costs, the cables, the installation and the O&M, ensuring some good constraint-handling techniques and
guaranteeing a sufficient degree of robustness, precision, flexibility and speed.
Therefore, the concept of MDAO (Multisciplinary Design Analysis and Optimization) workflow has been intro-
duced. With respect to the common sequential design procedure, which optimizes the wind farm components
separately, the MDAO analysis helps the user deal with the interactions between different design areas whilst
automating the design process. In other words, this approach couples the modules which analyze the different
wind farm design areas - aerodynamics, support structures, cable topology etc. - with the aim of evaluating
the cost and the overall performance of the whole system. The result is a design where all the parts are jointly
optimized.
Within the MDAO domain, two components are identified. The former is called analysis block and it compre-
hends all the modular tools which refer to a specific physical/economic discipline; the latter is the driver, i.e.
an optimizing procedure which calls the analysis block in each iteration [9].

This thesis focuses mostly on the analysis of the driver. In particular, the first goal is to identify the best
optimizing strategy to be adopted, thanks to several quantitative assessment criteria. The driver is made of
three parts: the initialization of the optimization (i.e. the initial guess), the way constraints are implemented
(constraint-handling techniques - CHT) and dealt with and the choice of the algorithm. The objective which
is considered is the minimization of the LCOE, while the constraints are some minimum distance between the
turbines (4Drotor) and all of them being within the OWF boundaries. Two real case studies are considered, i.e.
Eneco Prinses Amalia Wind Park (PAWP) and Eneco Luchterduinen (EL). No clear guidelines exist to give the
designer any clue about what optimizing strategy performs best when dealing with OWFLO. Therefore, several
combinations have been tried. Six different initializations have been coupled with three algorithms (Genetic,
Particle Swarm and Differential Evolutionary) and four CHTs, i.e. static, dynamic, adaptive penalty functions
and a repair mechanism. Among all the analyzed combinations, the best performances were achieved by a
Differential Evolutionary Algorithm (DEA) and a Genetic Algorithm (GA) coupled with a feasible initialization
and a repair mechanism as constraint-handling technique.
After having identified the best procedure to implement into the driver, the influence of the wind direction
sampling stepsize is investigated. It has been found that when the number of sampling sectors is above 24
(corresponding to θ = 15◦) no further precision of the wake deficits is achieved. In other words, when a suffi-
ciently high angle discretization is used, the results from the optimization are more trustful because the turbines
belonging to a wake are always detected.

v

vi Summary

The second research goal is studying to what extent the different design areas - aerodynamics, support structure,
cable topology etc. - affect the result of the optimization. The analysis shows that no general answer can be
given about what discipline mostly affects the LCOE calculation, as the results are case-study dependent. It is
impossible to say a priori which discipline will bias the result the most. However, this provides further evidence
of the strength of a multidisciplinary procedure: the MDAO workflow always tries to reach a trade-off between
sometimes conflicting goals, which are dependent on the case study under consideration.

The third research objective is to see whether the chosen optimizing procedures are able to deal with more
complex design situations, such as more constraints or longer design vectors. Three challenges, characterized
by an increasing difficulty, have been considered over the new case study of Borssele III. The first one is similar
to the previous two case studies of EL and PAWP, i.e. same constraints, objective and design vector; the
second one takes into account the presence of a forbidden zone inside the boundaries due to the presence of
cable routes; the third one adds the number of turbines to the design vector, to see whether the optimizer is
capable of finding the optimal number of turbines as well as their optimal layout. All the three challenges were
successful and highlighted the ability of the driver to deal with more complex situation. This is promising in
case the designer is called to face additional constraints, which are likely to occurr in real projects.

In the end, an additional analysis on the effect of neighbouring wind farms on the layout optimization of Borssele
has been done. According to the Jensen model and by adopting the same optimizing strategies as in the three
challenges, it was observed that considering the presence of other plants affects the AEP. A comparison between
the optimized layout in undisturbed conditions and the optimized layout in disturbed conditions highlighted that
in case during the design process of an OWF it is known that there are (or will be) neighbouring wind farms,
this should be taken into account within the optimizer, as the two optimal values are too different from each
other.

Acknowledgements

This two year journey has eventually come to an end. This experience gave me much more than I could ever
expect. I grew up both from the personal and the professional point of view: I met a lot of fantastic people
who introduced me to the lifestyle of other countries; I learned many things on the topic I care the most, i.e.
sustainable energy; I worked for two prestigious Dutch companies and further realised that, despite this period
of crisis across Europe, no barriers against foreigners should be imposed. That is why my utmost gratitude
firstly goes to the country of the Netherlands, for welcoming me and never letting me feel a stranger.

I put much effort into this research. For the very first time in my life, I really enjoyed getting up early in the
morning and going to work. I loved the topic I had to deal with and I had a very good time at Eneco. It is with
true pleasure and sincere gratitude that I thank my company supervisor, Ir. Wybren de Vries, for allowing me
to carry out this interesting thesis. His help, support and empathy really motivated me to do my best. I would
also like to thank Dr. Ir. René Bos, for his precious pieces of advice about optimizing algorithms and coding
issues, together with his cheerfulness. I also got in contact with some colleagues I spent many fun moments
with, in particular Ir. Adam Morón (thank you for your sense of humour and suggestions), Nicole Krolis and
Ir. Bas van den Kieboom. Working on the thesis was less hard than I thought!

I will never thank enough my daily supervisor, Dr. Ir. Michiel Zaaijer. His availability, patience, critical eye
and commitment really pushed me to go more in depth, accurately investigate on my results and question them.
I would also like to express my gratitude to Ph.D. candidate Sebastian Sanchez Perez-Moreno from TU Delft.
Thank you for always being available every time I had some issues on the codes or some doubts. Without you,
everything would have been (much) more difficult.

On a more personal note, I would like to thank my (old) housemate, Livia, for bearing me during our year
together. I am sure it was not a very easy task! I also thank my fellow graduate students, for the time we spent
laughing and sustaining each other, and my friends from Italy.

My sincere gratitude goes to my cousin Elisa. Your sense of humour, help and absurd lifestyle were really good
for my mood! In addition, thank you mum and dad, for always being next to me despite the distance and
making me feel at home every day.
Last but not least, I would like to thank my sister Maria (we do not need words) and my beloved girlfriend,
Silvia, for her support, patience and true love which still accompanies me every day of my life.

Dank je wel! Grazie!

Delft, 20th September 2018

Raffaello

vii

viii Acknowledgements

Contents

Summary v

Acknowledgements vii

List of Figures xiv

List of Tables xv

Nomenclature xvii

1 Introduction 1
1.1 Overview . 1
1.2 Problem analysis . 1

1.3 Objective . 2

1.4 Methodology . 2

1.5 Thesis outline . 3

2 The Offshore Wind Farm Layout Optimization problem (OWFLO) 5

2.1 Introduction to the chapter . 5

2.2 Optimization: definition and terminology . 5

2.3 Presentation of OWFLO . 6
2.3.1 The objective function . 6

2.3.2 The design vector . 6

2.3.3 The constraints . 7
2.4 Summary of the chapter . 8

3 The Python framework 9

3.1 Introduction to the chapter . 9

3.2 Multidisciplinary Design Analysis and Optimization (MDAO) . 9

3.2.1 Overview about the MDAO workflow . 9
3.2.2 The analysis block: WINDOW . 10

3.2.3 The driver: the optimizing strategy . 13

3.3 Presentation of the case studies . 13
3.3.1 Eneco Luchterduinen . 13
3.3.2 Eneco Prinses Amalia Wind Park . 14
3.3.3 Input data for WINDOW - site conditions and fixed design parameters 15

3.4 Validation of WINDOW . 16
3.4.1 Introduction to the validation . 16
3.4.2 Results and discussion from the validation . 16

3.5 Summary of the chapter . 18

ix

x Contents

4 The algorithms 19

4.1 Introduction to the chapter . 19

4.2 Overview of the available algorithms . 19

4.3 The selected algorithms . 19

4.3.1 Genetic Algorithm . 20

4.3.2 Particle Swarm Optimization . 21

4.3.3 Differential Evolutionary Algorithm . 22

4.4 Tests on known functions . 23

4.5 Summary of the chapter . 25

5 OWFLO problem setup 27

5.1 Introduction to the chapter . 27

5.2 Preparation of the algorithms for OWFLO . 27

5.2.1 Genetic Algorithm . 27

5.2.2 Particle Swarm Optimization . 28

5.2.3 Differential Evolutionary Algorithm . 28

5.3 Initialization . 29

5.3.1 Overview of the initializing techniques . 29

5.3.2 Random initialization . 29

5.3.3 Grid initialization . 30

5.3.4 Smart random initialization . 33

5.3.5 Conclusions on the initialization . 34

5.4 Constraint-handling techniques (CHT) . 34

5.4.1 Overview of the constraint-handling techniques . 34

5.4.2 Penalty functions . 34

5.4.3 Repair mechanisms . 37

5.4.4 Absence of constraints . 38

5.4.5 Conclusion on CHTs . 38

5.5 Stopping criterion . 38

5.6 Summary of the chapter . 38

6 Results 39

6.1 Introduction to the chapter . 39

6.2 Analysis of the combinations . 39

6.2.1 Overview of the combinations . 39

6.2.2 A closer look at the combinations . 40

6.3 Assessment of the combinations . 45

6.3.1 Presentation of the assessment criteria . 45

6.3.2 Overview of the scores . 47

6.3.3 Selection of the best optimizing blocks - Multi Criteria Analysis (MCA) 48

6.4 Comparison with the real wind farms . 50

6.4.1 Overview of the results . 50

6.4.2 The influence of the wind direction sampling stepsize . 51

6.5 Influence of the design areas on the optimization . 56

6.6 Summary of the chapter . 58

Contents xi

7 A new case study: Borssele III 59

7.1 Introduction to the chapter . 59

7.2 Borssele III: presentation of the new case study . 59

7.3 A more difficult optimization: presentation of the challenges . 60

7.3.1 Challenge 1: simple case . 60

7.3.2 Challenge 2: optimization with forbidden zones . 60

7.3.3 Challenge 3: optimization with a variable number of turbines 60

7.4 Results . 61

7.4.1 Challenge 1 . 61

7.4.2 Challenge 2 . 61

7.4.3 Challenge 3 . 62

7.5 The effect of neighbouring wind farms . 63

7.5.1 Overview of the problem . 63

7.5.2 Presentation of the neighbouring wind farms . 63

7.5.3 The energy production in disturbed and undisturbed conditions 64

7.5.4 The optimization with respect to AEP with neighbouring wind farms 65

7.5.5 The optimization with respect to LCOE with neighbouring wind farms 66

7.6 Summary of the chapter . 68

8 Conclusion and recommendations 71

8.1 Conclusions . 71

8.2 Recommendations . 72

8.2.1 Recommendations for designers . 72

8.2.2 Recommendations for future research . 73

A Weibull distribution 79

B Multi-criteria analysis approach: TOPSIS 83

C Triangular grids 85

D Random sampling: graphs 87

xii Contents

List of Figures

2.1 Visualization of the constraints used in this thesis: turbine 3 violates the spacing constraint w.r.t.
turbine 1; turbine 4 violates the boundary constraint; turbine 2 is in a good position w.r.t. turbine 1 7

2.2 Visualization of possible constraints to be added further. Minimum distance from the offshore
transformer and forbidden zone around the export cable . 7

3.1 The MDAO framework (simplified version) . 9

3.2 The MDAO framework (detailed version - courtesy of S. Sanchez Perez-Moreno [1]) 10

3.3 Eneco Luchterduinen Wind Farm . 13

3.4 VestasV113-3.0 P and cT curve . 14

3.5 Prinses Amalia Wind Park . 14

3.6 VestasV80-2.0 P and cT curve . 15

3.7 Validation of WINDOW: sensitiviy of the analysis block to different input variables (PAWP) . . . 17

3.8 Validation of WINDOW: sensitiviy of the analysis block to different input variables (EL) 17

4.1 Example on how the parents are randomly combined . 21

4.2 Test functions . 24

5.1 Random Initialization examples for PAWP (above) and EL (below) 30

5.2 Square Grid Initialization. Example for PAWP and EL . 31

5.3 Examples of Triangled grid initialization for PAWP . 32

5.4 Equilateral-triangle grid: a visualization. Every row is
√
3
2 · Lmin far from each other and the

points in adjacent rows are shifted by Lmin

2 = a
2 = 2D . 32

5.5 Examples of Smart random initialization for Prinses Amalia (a) and Eneco Luchterduinen (b) . . 33

5.6 Penalty function visualization: the magnitude of the constraint violation is added to the objective
function, as shown in Equation 5.1 . 35

5.7 Steps in a normal distribution . 37

6.1 Examples of the constraint violation plot for the genetic algorithm with static penalty (EL). The
blue trend in Figure (a) indicates that in every iteration the selected parents are feasible 40

6.2 Genetic Algorithm with feasible initialization and dynamic/adaptive penalty - PAWP 41

6.3 Genetic Algorithm: mean number of turbines violating constraints - PAWP 41

6.4 PSO: Value of the best global position of the swarm - static penalty function and random initial-
ization (EL) - combination 10 . 42

6.5 PSO: mean n◦ of turbines violating constraints, repair mechanism, feasible initialization - EL . . 43

xiii

xiv List of Figures

6.6 The ”DEA-static-random initialization”: population constraint violation plot. For reasons of sim-
plicity, the population is initialised first via randomly and then via random-modified initialization,
despite belonging to the same combination (Combination 18) . 43

6.7 The ”DEA-static-hybrid initialization” optimization . 44

6.8 Differential Evolutionary Algorithm with feasible initialization and dynamic/adaptive penalty -
PAWP . 45

6.9 Differential Evolutionary Algorithm: mean number of turbines violating constraints - PAWP . . . 45

6.10 Random sampling: histogram and scatter plot - example from Eneco Luchterduinen 47

6.11 Mean percentage of change from real to optimized LCOE . 50

6.12 Fictitious identical wind farms. The one in red is slightly rotated by 15◦ [2] 51

6.13 Wake development in the two layouts being ∆θ = 30◦. The red one performs better than the blue
one [2] . 52

6.14 LCOE difference w.r.t. EL actual layout - re-evaluated for different stepsizes for 4 random layouts 52

6.15 LCOE improvement (EL) with optimization carried out each time with a different stepsize 53

6.16 Wake merging for two turbines [3] . 54

6.17 Sensitivity analysis of the optimization. The improvement in one case may give worse results if
evaluated over other cases [2] . 55

6.18 Re-evaluation of the optimization from Figs 6.15a and 6.15b over all the other samplings 55

6.19 Mean percentage of change from real design (the line at y = 0) the optimized solution - PAWP . 56

6.20 Mean percentage of change from real design (the line at y = 0) the optimized solution - EL 56

6.21 Potential contributions to the LCOE from the optimizations of distinct design areas (GA) 57

7.1 Layout of Borssele III. The OT is 500 m far from the boundaries of the wind farm 59

7.2 Visualization of Challenge 3 . 61

7.3 Visualization of the results for all the runs - Challenge 1 . 61

7.4 Visualization of the results for all the runs - Challenge 2 . 62

7.5 Visualization of the results for the all-in-one optimization vs. separated optimization - Challenge 3 62

7.6 Borssele III and the Belgian Wind Parks of Seastar and Northwind 63

7.7 Borssele III and the Belgian Wind Parks of Seastar and Northwind - the chosen turbines are
highlighted in purple . 64

7.8 Power output in both undisturbed and disturbed conditions for the chosen turbines 64

7.9 Layout optimization w.r.t. to AEP - effect of neighbouring wind farms 65

7.10 Layout optimization w.r.t. to AEP - undisturbed situation . 65

7.11 Situation D - resulting layout. The better exploitation of the wind resource is visible 67

7.12 Comparison between the Situation A (dashed line) and Situations B (in gold), C (in orange) and
D (in yellow) . 67

7.13 Step 2 visualization: comparison of the ”Disturbed Optimization” (Situation D) with the undis-
turbed optimization re-evaluated in disturbed conditions (Situations B and C) 68

A.1 Weibull fit for Prinses Amalia: 8 windrose sectors . 80

A.2 Weibull fit for Eneco Luchterduinen: 8 windrose sectors . 81

D.1 First 4 combinations - random sampling . 87

D.2 Combinations 5-10 - random sampling . 88

D.3 Combinations 11-16 - random sampling . 89

D.4 Last combinations - random sampling . 90

List of Tables

3.1 Set of tools available in WINDOW for each discipline . 10

3.2 Luchterduinen Farm specifications . 14

3.3 VestasV113-3.0 specifications . 14

3.4 Prinses Amalia Farm specifications . 15

3.5 VestasV80-2.0 specifications . 15

3.6 Environmental input data . 15

3.7 Results from validation of WINDOW over real case studies - PAWP and EL 16

4.1 Result of the tests for Ackley’s function . 25

4.2 Result of the tests for Rastrigin’s function . 25

4.3 Result of the tests for Rosenbrock’s function . 25

5.1 Association between GA inputs and OWF parameters . 27

5.2 Association between PSO inputs and OWF parameters . 28

5.3 Association between DEA inputs and OWF parameters . 28

5.4 Number of available spots in the square grid for PAWP and EL 31

5.5 Number of available spots in the equilateral-triangle and in the random-triangle grid for PAWP
and EL . 33

5.6 Summarizing table of initializing techniques . 34

5.7 CHTs summarizing table . 38

6.1 Summary of all the analyzed combinations of algorithm-CHT-Initialization blocks 39

6.2 Overview of the scores for PAWP case study . 47

6.3 Overview of the scores for EL case study . 48

6.4 Overview of the mean vector-normalized scores for the two case studies (PAWP and EL): high
values indicate a better performance. In the original table, numbers are rounded up to the 6
decimals . 49

6.5 List of weights ωi applied to the assessment criteria Ci . 49

6.6 Combination ranking for different multi-criteria analyses . 49

7.1 AEP from the layout optimization of Borssele III w.r.t. to the baseline design 65

7.2 Difference between baseline design in undisturbed and disturbed conditions 66

xv

xvi List of Tables

Nomenclature

List of abbreviations

Symbol Description

AEP Annual Energy Production
CDF Cumulative Distribution Function
CFD Computational Fluid Dynamics
CHT Constraint-Handling Techniques
COP Cost Of Power
CR Crossover Rate
DEA Differential Evolutionary Algorithm
e.g. exempli gratia
EL Eneco Luchterduinen
GA Genetic Algorithm
HAT Highest Astronomical Tide
i.e. id est
KBE Knowledge Based Engineering
LAT Lowest Astronomical Tide
LCOE Levelised Cost of Energy
MCA Multi Criteria Analysis
MDAO Multidisciplinary Design Analysis and Optimization
O&M Operation and Maintenance
OT Offshore Transformer
OWF Offshore Wind Farm
OWFICTP Offshore Wind Farm Infield Cable Topology Problem
OWFLO Offshore Wind Farm Layout Optimization
PAWP Prinses Amalia WindPark
PC Personal Computer
PSO Particle Swarm Optimization
RNA Rotor Nacelle Assembly
SAW Simple Additive Weighting
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TP Transition Piece
WACC Weighted Average Cost of Capital
WF Wind Farm
WINDOW Wind farm INtegrated Design and Optimization Workflow
w.r.t. with respect to

xvii

xviii Nomenclature

List of mathematical symbols

Symbol Description Units

a annuity factor -
A Alternatives in MCA
Anacelle,front front area nacelle m2

C1,2,3 learning factor -
Cdec decommissioning costs e
Cinv investment costs e
CO&M O&M costs e
C(T) penalty function factor -
cT thrust coefficient -
D diameter [m]
d50 particle size distribution [m]
Ey annual energy yield [GWh]
f fitness function -
F scaling factor -
g(x) inequality constraint function -
gbest best PSO particle global position -
h(x) equality constraint function -
Hs1−year

1 year max significant wave height [m]
Hs50−year

50 year max significant wave height [m]
Ia ambient turbulence intensity -
k wake decay coefficient [m−1]
K Forbidden zone offshore transformer -
Lharbour distance from OWF to harbour [km]
Lmin minimum distance constraint m
Lonshore onshore transmission distance [km]
Ltotal Total distance from OWF to grid [km]
M Assessment criterion
mRNA rotor-nacelle-assembly mass [kg]
nspots number of spots in the random-triangled grid -
nsubstations number of substations -
NT number of turbines -
pbest best PSO particle individual position -
Prated rated power [MW]
Psize population size -
r real interest rate -
rij score -
Rrotor rotor radius [m]
Ri benefit attributes for MCA analysis -
< real numbers set -
S wind farm boundaries -
T economic lifetime of a project [years]
T iteration number -
Trotor rotor thrust [N]
U wind speed [m.s−1]
U0 undisturbed wind speed [m.s−1]
Ucurrent Sea current speed [m.s−1]
Ucut−in cut-in wind speed [m.s−1]
Ucut−out cut-out wind speed [m.s−1]
uG DEA trial vector -
Urated rated wind speed [m.s−1]
v speed for PSO -
vG DEA donor vector -
Vgenerator generator voltage [V]
Vinfield infield rated voltage [V]
Vtransmission transmission voltage [V]
x design vector -

Nomenclature xix

x x-coordinate [m]
xt PSO particle position at iter. t -
x∗ optimum design vector -
y y-coordinate [m]
z0 surface roughness m
zhub hub height [m]
Z Forbidden zone due to cable routes -

List of greek symbols

Symbol Description Units

α dynamic/adaptive penalty exponent
δαpartial wake incidence angle [◦]
γ safety factor -
θ wind direction sampling stepsize [◦]
λ adaptive penalty constant -
µ mean -
ν inflation rate -
σ standard deviation [m]
σcr material yield stress [MPa]
σfactor stress factor -
σMAX maximum occurring stress [MPa]
φ friction angle [◦]
ω weight in MCA -

xx Nomenclature

Chapter 1

Introduction

1.1 Overview

At the end of 2016, the total installed offshore wind capacity was 14.38 GW, being present in 14 countries
around the world [4]. The biggest contributions come from, in descending order, UK (36%), Germany (29%),
China (11%), Denmark (8.8%), the Netherlands (7.8%), Belgium (5%) and Sweden (1.4%) [4]. Offshore wind
energy is convincingly showing off as one of the most promising technologies driving the transition towards a
more sustainable future.
Nowadays an increasing number of offshore wind farms (OWF) is getting built. Clear advantages w.r.t. onshore
farms, such as higher energy yields, less visual pollution, less restrictions about operational noise and relatively
low environmental impact all contribute to the spread of this technology. Several disciplines are considered into
this subject. The design of the support structure requires civil engineering knowledge and the aerodynamic
design of a blade is connected to the concept of an airfoil. Moreover, electrical and control engineering are
involved, as well as economics.
The manual and sequential design approach used so far is not sufficient to guarantee optimized systems because
interactions between the different components are disregarded [5]. Therefore, a multidisciplinary approach is
required. Companies are very interested in developing a smart design procedure for OWF. This implies the
need for some overall optimization: a trade-off between the desired energy output and the costs is the key for
further development in the wind energy sector [6].

1.2 Problem analysis

Due to the high complexity of designing an OWF, the standard practice is to follow a decoupled and sequential
design procedure [5]. Indeed, there are several commercial softwares dedicated to the design of OWFs. These
are, for example, WindPRO or TopFarm [5]; nonetheless, none of them is based on a multi-objective algorithm
which is able to optimize sometimes conflicting goals. For example, larger turbine spacing ensures higher energy
production but increases the cabling cost; a layout which has been optimized by the aerodynamic point of view
may not consider the bathymetry and the related structural issues. However, sophisticated approaches (such
as computational fluid-dynamics - CFD) have high computational costs and carrying out a multidisciplinary
design with such approaches would be infeasible.
Instead, a better integrated methodology would yield a consistent reduction of the cost of energy, strengthening
the competitiveness of offshore wind in the future world energy matrix [5]. Therefore, engineering companies
are looking for a multidisciplinary, modular, user-friendly and easy tool to be applied during the preliminary
design assessment. This should take into consideration almost every crucial aspect of OWF design. Moreover,
it should be able to perform some overall layout optimization, i.e. providing the best turbine positioning w.r.t.
the energy yield, the costs, the cables, the installation and the O&M, ensuring some good constraint-handling
techniques and guaranteeing a sufficient degree of robustness, precision, flexibility and speed.

Several authors investigated on the OWF layout optimization problem (OWFLO). A pioneering paper was
published in 1992 by Mosetti et al. [7], who tried to maximize the annual energy production of a wind farm
by optimizing the position of the wind turbines by the means of a genetic algorithm. From there onwards, a

1

2 Introduction

large number of articles was released. Several algorithms have been explored, as well as different constraint-
handling techniques (CHT), addressing the layout optimization problem. However, only a few authors approach
this problem from a multidisciplinary perspective. Moreover, no clear guidelines exist to give the designer any
solid clues about what optimizing strategy performs best when dealing with OWFLO. There are in fact a large
number of available combinations in terms of: initialization of the optimization (i.e. the initial guess), the way
constraints are implemented and dealt with and the choice of the algorithm.

Secondly, a line of research which has not been fully explored is studying to what extent the different design
areas - aerodynamics, support structure, cable topology etc. - affect the result of the optimization. As shown in
[8], switching off one design aspect instead of another significantly affects the optimized result. When the layout
optimization problem is analyzed by a multidisciplinary perspective, it is then crucial to try to quantify how the
optimization solves the trade-offs among competing disciplines [1]. One good example can be found in [1], where
the author performs the optimization of an OWF layout w.r.t. different objectives, i.e. the maximization of the
energy yield, the minimization of the cost of the support structures and the cost of the infield cables. However,
that analysis is not properly meant to assess which sector contributes the most to a change in the layout, but it
is carried out to make a comparison between a sequential design procedure and a multidisciplinary optimization.
On the other hand, quantifying the effect of the involved engineering disciplines on the optimization would help
the designer define what design areas mostly bias the final result. Therefore, it would be desirable to illustrate
some guidelines on which disciplines need special attention on a preliminary design stage.

1.3 Objective

The objective of this research can be summarized by the following research questions:

1. What is the best optimizing routine - in terms of initialization, CHT and choice of the algorithm - to be
coupled with a multidisciplinary design tool which can be satisfactorily applied to the future design proce-
dure of engineering companies?

The goal is to illustrate the advantages and disadvantages of a large number of optimizing combinations,
in order to wisely select the best one.

2. Which design areas - aerodynamic wake models, support structure design and cable topology - mostly affect
the optimization and to what extent?

This question aims to quantify the effect that the design disciplines have on the overall layout opti-
mization.

3. The third research question had not been included in the problem analysis, but it has been added after-
wards. This is as follows:
is the selected optimizing procedure from Question 1 able to deal with very complex design requirements?

After the best design methodology has been identified, this analysis takes place to challenge the se-
lected strategy to work under more difficult situations, such as a higher number of constraints or different
variables. The goal is demonstrating the flexibility of the chosen technique when dealing with design
requirements which are closer to reality.

1.4 Methodology

The Wind Energy Group at TU Delft is in possession of a Python modular tool, called WINDOW (i.e. ”Wind
farm INtegrated Design and Optimization Workflow”), developed by Ph.D. candidate S.S. Perez-Moreno [9],
which takes into consideration all the design areas listed above. This includes a cost model, several aerodynamic
wake models, a support structure package, an O&M (simplified) model and a cable topology built-in optimizer.
This tool is the starting point to perform the optimization. In other words, all the listed disciplines contribute to
carry out a multidisciplinary optimization. The WINDOW tool in fact belongs to the so called multi-disciplinary
design analysis and optimization workflow (MDAO workflow [9]). An MDAO workflow couples WINDOW -
which provides the physical and economic description of the OWF - to the optimizer, which then finds the
best layout based on a trade-off between conflicting design areas. The theoretical background of WINDOW is
available in [6], [9] and [8].
The methodology is as follows. The validation of WINDOW had already been performed in [8] over the OWF
of Horns Rev. Although some more in-depth research on how to improve the different packages would be
desiderable, no significant corrections are expected to take place in the code. However, the first step is at least

1.5 Thesis outline 3

checking whether the order of magnitude of the results from WINDOW are in compliance with some real cases.
The chosen case studies are Eneco’s OWFs Prinses Amalia Wind Park (PAWP) and Eneco Luchterduinen (EL).
After this preliminary validation, the analysis can shift towards the optimization.
The second step consists of selecting the optimizing techniques to be implemented in the MDAO workflow. This
is done by taking care of the general OWFLO strategies which are currently widely adopted in literature. The
goodness of the coded algorithms is then tested over some known functions.
Thirdly, different ways to start the optimization are investigated and implemented in Python, as well as the
constraint-handling techniques (CHT). At this stage, a large number of combinations of ”initialization-CHT-
algorithm” is tested and assessed by some criteria, defined by the author. The goal is to carry out a multi-criteria
analysis (MCA) to compare [9] these combinations and find the best one.
Once that the best strategy is selected, the effect of the different design areas on the overall result is investigated.
In the end, a new, more complex case study (i.e. an OWF currently being designed but not built) is tested, to
challenge the chosen procedure to work under more difficult situations.

1.5 Thesis outline

The layout of this work is as follows:

� Chapter 1 consists of the introduction, the problem statement, the research question and the methodology;

� Chapter 2 presents what is the offshore wind farm layout optimization problem. In particular, it firstly
gives a quick overview of the theory of optimization to facilitate the comprehension of the OWFLO;

� Chapter 3 provides an overview of the MDAO workflow and how this is related both to the WINDOW
tool and the optimizer. On a later stage, the case studies, i.e. Prinses Amalia Wind Park and Eneco
Luchterduinen are presented, as well as the validation of WINDOW;

� Chapter 4 explains which algorithms have been selected and the reason under the choice. On a later stage,
some tests over known functions are performed to verify the correct operation of the coded optimizations;

� Chapter 5 is the core of the work as it deals with the optimization setup. A detailed explanation on the
different ways to start the optimization and to handle constraints, as well as an in-depth description on
how the algorithms were applied to the OWFLO problem, is provided;

� Chapter 6 shows the results. The best optimizing strategy is selected by means of some ranking criteria.
Moreover, the influence that both the wind direction sampling and the design areas have on the final
results is investigated;

� Chapter 7 analyses how the chosen optimizing strategy behaves on a new and more complicated use case;

� Chapter 8 draws the conclusions and future recommendations.

4 Introduction

Chapter 2

The Offshore Wind Farm Layout
Optimization problem (OWFLO)

2.1 Introduction to the chapter

This chapter presents an outline of the offshore wind farm layout optimization problem (OWFLO) and is divided
into two parts: the first section presents the definition of optimization and the related terminology; the second
section shows the main ingredients to perform OWFLO, i.e. the objective function, the design vector and the
constraints.

2.2 Optimization: definition and terminology

To enhance the comprehension of this work, a quick overview about design optimization is given. A certain design
problem is described by a set of design variables x1, x2, ..., xn gathered in the design vector x = [x1, x2, ..., xn]T

belonging to the n dimensional space X ⊆ <n (design space) [10]. Given a certain design problem, its solution
is a combination of the design variables. Among all the possible combinations, the solution which provides the
best achievable performance is the optimized solution. The performance of a set of design variables is assessed
by a function f called objective function. Optimizing means finding either the highest (i.e. maximization) or
the lowest (i.e. minimization) value of the objective function in order to obtain the best design vector x. In
this work, minimization is considered. The mathematical formulation of an optimization problem is as follows
[10]:

An optimization problem consists of finding an x∗ ∈ X such that, for f : X ⇒ <, f(x∗) = min(f(x)) for
x ∈ X. [10]

In real-life problems, the design variables are often subjected to some limitations in the design space. These lim-
itations are called constraints and are represented by the following functional relations: h(x) = 0 and g(x) ≤ 0.
The former is the common way to represent equality constraints, while the latter symbolizes inequality con-
straints [10]. An optimization problem is defined as constrained if it is subjected to those limitations, otherwise
it is called unconstrained. A solution which does not violate the constraints is named feasible. To summarize:

find x∗ : f(x∗) = min(f(x))

subjected to h(x) = 0, g(x) ≤ 0

with x = [x1, x2, ..., xn]T
(2.1)

The definition above is useful as it states that an optimization problem is described by three ingredients: the
design vector, the objective function and the constraints.
It is important to point out that some complex design problems require the minimization (or maximization) of
more than one objective function. If such a situation takes place, then it is called multi-objective optimization
[10]. Due to the often conflicting nature of multiple objectives, the optimal solution is often the Pareto front of
all the alternatives [9].

5

6 The Offshore Wind Farm Layout Optimization problem (OWFLO)

2.3 Presentation of OWFLO

Optimizing the layout of offshore wind farms means finding the optimal placement of the turbines w.r.t. the
disciplines which contribute to the design. In other words, the optimization consists of moving the turbines
inside the wind farm area until a good trade-off between the design areas is found. From the theoretical overview
in Paragraph 2.2, the three ingredients which are needed in an optimization problem are the objective function,
the design vector and, if present, the constraints.

2.3.1 The objective function

The objective function evaluates the goodness of a certain design. As stated in [6], writing a good objective
function involves the employment of design performance indicators. These should be able to comprehend both
negative properties of the solution, e.g. the costs, and the positive ones, e.g. the generated energy. An essential
requirement for the objective function is in fact combining good and bad properties such as they are correctly
weighted and their relative importance is expressed [6]. One of the most common functions used in literature
is the levelized cost of energy (LCOE). The formulation of this function is useful as it allows the OWFLO to
be treated as a single objective optimization, despite the large number of conflicting goals which may affect the
final outcome.
The levelised cost of energy is defined as the cost to breakeven the overall cost of the project and the total
revenues, both being actualized for every year of the project lifetime [11]. This can be expressed as:

LCOE =
Cinv
aEy

+
CO&M

Ey
+
Cdec(1 + r)−T

aEy
[ce.kWh−1] (2.2)

where Ey is the annual energy yield, a is the annuity factor, T is the lifetime of the project, r is the real
interest rate; Cinv represents the investment costs, CO&M are the O&M costs, whereas Cdec stands for the
decommissioning costs. In other words, the LCOE is the ratio of the actualized costs and the energy yield
multiplied by a factor which takes into account the real interest rate. The annuity factor is a parameter which
allows to compute the present value of a fixed annuity [11]. Equation 2.3 shows the expression which holds for
a.

a =

T∑
t=1

(1 + r)−t =
1

r
[1− (

1

1 + r
)T] [−] (2.3)

Several assumptions are made to write Equation 2.2:

� the investment costs do not have to be actualized as all of them are assumed to be entirely paid in year 0;

� the annual energy yield and CO&M are constant;

� the second element of the sum does not contain the annuity factor because the LCOE describes the
cost/revenue balance for every year. The O&M costs/energy yield balance is done every year without the
need to actualize;

� the decommissioning costs are supposed to take place only in the year of the shut-down of the farm.

From this short description, it can be concluded that the definition of LCOE attempts to combine all the
elements to deal with in the wind farm design.
Although other objectives might have been considered for this thesis, among others the Cost Of Power (COP)
and the Annual Energy Production (AEP) [5], the LCOE has been chosen. This is because it is generally
acknowledged that a common goal (for suppliers and users) is reducing the cost per unit of electricity [6] [12].

2.3.2 The design vector

The design vector for OWFLO varies among the authors and depends on the needs of the designer. For instance,
one might be interested in optimizing the layout of a varying number of turbines; some authors have investigated
on the possibility of having OWFs with different turbine heights [13]. In this work, the number of turbines is
fixed and the turbine’s specifications are part of the input parameters. However, at the time of writing this
thesis, the WINDOW tool is being extended with a built-in Rotor-Nacelle-Assembly (RNA) optimizer.
The considered design vector consists of the [x, y] coordinates of the set number of turbines, NT . The design
vector described for the first time in Paragraph 2.2 then is the layout :

x = [x1, x2, ..., xn]T → x = layout =

(x1, y1)
(x2, y3)

...
(xNT

, yNT
)

 (2.4)

2.3 Presentation of OWFLO 7

Under this notation, every design variable in the design vector corresponds to a couple of points, x and y.
Therefore, the dimension of the problem is <2·Nturbines .

2.3.3 The constraints

The constraints which have been considered in this work are an inequality and an equality constraint. The
former is by law a minimum spacing of four times the diameter among the turbines [14]; the latter consists of
all the turbines being within the defined wind farm boundaries. The mathematical formulation of constraint 1
is:

g1(x) :
√

(xi − xk)2 + (yi − yk)2 − Lmin ≥ 0, ∀i 6= k i, k ∈ [0, 1, ..., NT] (2.5)

the second constraint requires a point (i.e. the turbine) to be inside a convex polygon (i.e. the farm boundaries).
Its mathematical formulation is a little bit more complex. Being [A1, A2, ..., ANvertices

] the vertices of the
polygon, point P is placed inside if [15]:

h1(x) :

Nvertices∑
j=1

= 6 AjPAj+1 = 360◦ inner point (2.6)

or:
h1(x) : ∃! ajx

P + bjy
P + cj = 0 j = [1, Nvertices] point on the edge (2.7)

Equation 2.6 states that the sum of all the angles between subsequent points Aj , Aj+1 whose vertix is P must
be 360◦; Equation 2.7 states that if the point is on the border, then it has to belong to one of the straight lines
which draw the polygon. An easier formulation which enhances the comprehension of the second constraint is:

h1(x) = (xi, yi) ∈ S ∀i ∈ [0, 1, ..., NT] (2.8)

being S the matematical set representing the OWF boundaries. Lmin is equal to 8Rrotor, i.e. 4Drotor [14].
From here onwards, g1 and g2 will be called spacing constraint and boundary constraint respectively. Figure 2.1
provides a visualization.

Figure 2.1: Visualization of the constraints used in this thesis: turbine 3 violates the spacing constraint w.r.t.
turbine 1; turbine 4 violates the boundary constraint; turbine 2 is in a good position w.r.t. turbine 1

However, the possibility of handling more constraints must be taken into consideration. These might vary from
avoiding certain water depths to being far enough from the export cable and the offshore transformer (OT).
In this last case, standards require a minimum distance of 500 m from the OT [14]. These two additional
constraints are illustrated in Figure 2.2 and have not been included in the analysis to find the best strategy to
implement in the driver, however they will be included in Chapter 7.

Figure 2.2: Visualization of possible constraints to be added further. Minimum distance from the offshore trans-
former and forbidden zone around the export cable

In the case described by Figure 2.2, the formulation of the additional constraints would look like1:

g2(x) = (xi, yi) /∈ K ∀i ∈ [0, 1, ..., NT] (2.9)

1They should be meant in the same form as Eqs. 2.6 and 2.7, with the exception that in this case they are inequalities (they
should not belong to the ”forbidden” polygon)

8 The Offshore Wind Farm Layout Optimization problem (OWFLO)

g3(x) = (xi, yi) /∈ Z ∀i ∈ [0, 1, ..., NT] (2.10)

being K and Z, respectively, the sets containing all the points in the design space which belong either to the
transformer forbidden area or the restricted export cable zone.

2.4 Summary of the chapter

In this chapter, an outline on the offshore wind farm layout optimization problem has been provided. An
optimization problem is made of three main ingredients: the objective function, which evaluates the performance
of a solution to a design problem; the design vector, which gathers the variables which are allowed to change
in the optimization; the constraints, which are limitations to the values the design vector can assume. If this
theoretical overview is contextualized in the OWFLO, the objective function is the levelised cost of energy, the
design vector is the layout of the wind farm and the constraints are some minimum spacing of 4Drotor between
the turbines and their location within the wind farm boundaries.

Chapter 3

The Python framework

3.1 Introduction to the chapter

This chapter presents an overview of the Python framework which has been used throughout this work. First of
all, the concept of multidisciplinary design analysis and optimization (MDAO) is explained. A short description
of WINDOW, the tool developed by Ph.D. candidate S. Sanchez Perez-Moreno is given, as well as its validation
over known case studies, Eneco Luchterduinen and Prinses Amalia WindPark.

3.2 Multidisciplinary Design Analysis and Optimization (MDAO)

3.2.1 Overview about the MDAO workflow

To enhance the comprehension of this work, it is crucial to define the concept of MDAO (Multisciplinary Design
Analysis and Optimization) workflow [1]. With respect to the common sequential design procedure, which
optimizes the wind farm components separately, the MDAO analysis helps the user deal with the interactions
between different design areas whilst automating the design process [1]. In other words, this approach couples
the modules which analyze the different wind farm design areas - aerodynamics, support structures, cable topol-
ogy etc. - with the aim of evaluating the cost and the overall performance of the whole system. The result is a
design where all the parts are jointly optimized.
Within the MDAO domain, two components are identified. The former is called analysis block and it compre-
hends all the modular tools which refer to a specific physical/economic discipline; the latter is the driver, i.e.
an optimizing procedure which calls the analysis block in each iteration [9].

Figure 3.1: The MDAO framework (simplified version)

As can be seen in Figure 3.1, WINDOW is the analysis block which is repeatedly called, over the iterations, by
the driver. The tool, which has been developed by TU Delft Ph.D. candidate S. Sanchez Perez-Moreno [9][1],

9

10 The Python framework

is a set of building blocks, each of them having a certain number of model fidelities, i.e. the available theories
the user can choose from to describe a physical discipline1. On the other hand, the driver is the optimizing
procedure, i.e. a combination of initialization (initial guess), constraint-handling techniques and algorithm. As
mentioned in Chapter 1, the main purpose of this work is to develop an efficient strategy to be implemented in
the driver.
Figure 3.1 provides a simplified overview of the MDAO workflow. Since in this work the use case is layout
optimization with respect to the levelised cost of energy (LCOE), the LCOE of each layout is computed by
WINDOW and used as an input for the optimizer; this generates a new layout which is again evaluated until a
stopping criteria is met. The extended design structure matrix (XSDM) is shown below. The overall performance
of the system is the objective function and the top-level layout optimizer calls the entire analysis block.

OptimiserLayout
optimiser

AEP model

Water depth

Analysis block

Added
turbulence

Electrical system
optimiser

C electrical

Electrical
design

Electrical system
cost analysis

∆U i

X i

X i X i X i X i X i X i X i

H i H i

Support geometry

DEL

Support structure
optimiser

Support structure
analysis

C support

C electrical

C O&M

AEP

O&M strategy Availability

AEP

Cost model

LCOE

Total costs

LCOE

Collision
constraint

constraint 2
Area

constraint

constraint 1

Aero AEP Aero AEP

Ti

I/O variable

Analysis

Design variable

Optimisation

Figure 3.2: The MDAO framework (detailed version - courtesy of S. Sanchez Perez-Moreno [1])

Figure 3.2 shows the design areas which are included in the analysis block. As can be seen, the [x, y] coordinates
of the turbines - i.e. the layout - are the design variables (in green). These are the inputs for the Annual Energy
Production (AEP) model, the Electrical system cost analysis, the Support Structure design, the overall cost
model and the constraints. These, together with the LCOE, are returned to the layout optimizer. Since the
Electrical model and the Support Structure design are stand alone nested optimizers - they return the best
cable topology and the best monopile design w.r.t. the input layout - which require internal iterations, they are
represented in blue2. The next paragraphs provide more detailed information.

3.2.2 The analysis block: WINDOW

WINDOW is made of several modules, each characterized by a certain number of available fidelity models.
These are itemized in Table 3.1 [9].

Table 3.1: Set of tools available in WINDOW for each discipline

Module Tools available

Downstream wake effects (for AEP) Jensen[16], Larsen, Ainslie 1D, Ainslie 2D

Wake merging
Root sum square, Maximum deficit, Deficit product,

Deficit sum

Wind turbine performance
Constant thrust coefficient and power (cT and

P curves), simple BEM

Wake turbulence
Constant turbulence, Frandsen [17], Danish recommendation [18]

Larsen [19], Quarton[20]

Infield cable topology
Constant cost, Esau-Williams heuristic algorithm [21],

Radial topology (POS) [22], Hybrid heuristic [23] algorithm

Support structure design Constant support structure, TeamPlay[6]

1Example for the wake modeling discipline: Jensen, Larsen and Ainslie’s theories are available
2Please note that they do not belong to the driver, but to the analysis block.

3.2 Multidisciplinary Design Analysis and Optimization (MDAO) 11

Almost all the models described in Table 3.1 are low-fidelity engineering models, meant to make decisions at an
early design stage [1]. In compliance with [1], the chosen tools for each discipline are itemized below.

� Downstream wake effects. The Jensen model is the simplest wake model available and has been
widely used in commercial software. The model neglects the wake region and assumes the turbulent wake
to start after the rotor. However, the main assumption consists of the wake radius expanding linearly and
a constant wind speed within the wake region [16]. According to Jensen, the expression which holds the
velocity in the wake is written as:

v = V0[1− 1−
√

1− CT
(1 + 2ks)2

] [m.s−1] (3.1)

where s (downstream distance) is equal to the ratio between the distance x and the rotor diameter 2R0, cT
is the thrust coefficient and a is the wake decay coefficient. According to Frandsen [24], k can be derived
by the ambient turbulence intensity:

k = 0.4705Ia + 0.004 [−] (3.2)

The value of Ia has been taken from the standards for the offshore environment [25]. The value is equal
to 0.12. This gives k ≈ 0.06

� Wake merging. This model was proposed by Jensen and Katic [16] and is based on the averaging of
kinetic energy. In particular, it assumes that the kinetic energy deficit inside a mixed wake is the same as
the sum of the energy deficits of each wake.

U0 − Ui =

√∑
k

(U0 − Uk,i)2 (3.3)

where U0 is the undisturbed wind speed, Ui is the velocity at turbine i and Uk,i is the wake wind speed
of turbine k at turbine i.

� Wind turbine performance. At the moment of writing this thesis, WINDOW is being edited with a
built-in RNA assembly optimizer. However, in this work the power curve and the thrust curve from the
manufacturer have been used.

� Wake turbulence. The Danish Recommendation has been used. This calculates the turbulence added
by the wake thanks to the mean wind velocity and the spacing amongst the turbines [18].

� Infield cable topology. The cable topology module is a built-in optimizer which deals with the so
called OWFICTP (Offshore Wind Farm Infield Cable Topology Problem). According to Katsouris [23],
the OWFICTP can be summarized by this statement: being the position of the turbines and the substa-
tion(s) known, ”find the optimal inter-array cable topology which minimizes the total cable cost without
violating the cable capacity”. This means that given some input data, the cable topology module provides
the best electric cable layout. The module requires the following input data: the placement of the wind
turbines, the position of the substation(s) and the desired cable capacity. Regarding the last input, the
user can choose up to three different integer numbers (a, b and c): these correspond to three distinct
cable types which can connect at maximum a, b or c turbines. The most suitable current rating and cross
section for each cable type are automatically computed and adjusted thanks to a database of real cables
in WINDOW.
The algorithm which is implemented was developed by Katsouris and it is a hybrid between two already
existing strategies: a planar vehicle routing-based algorithm (named POS), developed by Bauer and Lyns-
gaard [22], and a heuristic algorithm written by Esau and Williams [21]. From here onwards, Katsouris’
methodology will be referred as hybrid heuristic. This approach is better performing than the other two
when the offshore transformer is located within the wind farm boundaries, as it happens for all the case
studies analyzed in this work. As Maselis shows [8], this algorithm is reliable and highly sensitive to the
changing position of the turbines. These two aspects are definitely crucial when dealing with OWF layout
optimization, as the position of the turbines is changed in each iteration.

� Support structure design. The support structure design module utilizes a built-in optimization to
obtain the geometry of the monopile, transition piece, tower, and scour protection [1]. These quantities
are calculated by taking the structural loads - occurring in selected load cases - as optimization constraints.
In particular, the limit state for fatigue is neglected but is currently under research while this thesis is
being written. On the other hand, the loads in the ultimate limit state are computed for a few load cases,
by the means of a static analysis [6]. These load cases are defined in the standards [26] and are:

12 The Python framework

1. operation, Urated, maximum wave height in 1-year extreme sea state;

2. parked, reduced gust in 50-year Uaverage, maximum wave height in 50-year extreme sea state;

3. parked, maximum gust in 50-year Uaverage, reduced wave in 50-year extreme sea state.

Safety factors are taken into account as well. These are also based on the regulations of IEC61400-3 [26],
with the exception of a supplementary factor of 1.5 which is applied as a compensation for the neglection
of the fatigue analysis.
All the input design variables are assigned values inside the loops which yield the outputs listed above. As
already mentioned, the design variables inside the loop of the pile diameter, as well as the outputs, appear
in the optimization constraints through the structural loads calculation (occurring at the load cases listed
above): these are aerodynamic (calculated by discretizing the entire support structure), hydrodynamic
(Morison’s equation is used) and gravity (for the tower and TP wall thickness) loads.
The algorithm which is used in this module is not a proper optimization algorithm but it is Brent’s root-
finding algorithm [27], i.e. a procedure to find the root of functions [28]. The function to find the root of
is the stress factor [6], which has been defined by Zaaijer as follows:

σfactor =
σMAX

(σcr

γ)
− 1.0 = 0 [−] (3.4)

in which σMAX and σcr are, repectively, the maximum occurring stress in the structure and the yield
stress of the material; γ is the overall product of the safety factors. The function σfactor depends on the
variables which have to be optimized: this function is interesting as it has a lower negative bound and a
upper positive limit in the interval the design variables belong to. This is the reason why the root-finding
algorithm suits well, as under these conditions convergence is guaranteed [28]. In other words, Equation
3.4 determines the optimal design variable by identifying the value at which the maximum stress equals
the yield stress.

Other modules which are included in WINDOW are the Operation and Maintenance (O&M) model and the
cost model. These are based on the extensive literature review performed by Zaaijer in 2013 [6].

� The O&M costs. No clear guidelines exist on how to correctly model the O&M costs [8]. Based on [6],
an extremely simplified model is implemented. This computes the operation and maintenance costs as a
constant value, equal to 6% of the magnitude of the AEP.
It should be pointed out that Eneco is in possession of a tool, developed in MATLAB, which is based on
Monte-Carlo simulations. However, this tool works satisfactorily when applied to already existing wind
farms (whose measurements are known over the years) so some research about O&M costs forecasting still
has to be carried out. A good example can be found in [3], where the author tries to investigate the effect
of combining uncertainties (array efficiency and availability) on the energy yield of an OWF.
Since the focus of this work is not on this topic, the simplified model described in [6] is adopted.

� The cost models. The cost models which are used consist of investment costs and decommissioning
costs. The investment costs are divided into procurement costs (linear cost functions related to the mass
of raw materials) and installation costs. The decommissioning costs are assumed to take place in the last
year of the project lifetime and are split into removal costs and disposal costs. All the cost functions can
be found in [6]

All the cost models are the result of an extensive literature study. They suit pretty well on a preliminary phase of
the project development [11], but they do not take into account the complex interactions between shareholders.
Moreover, some assumptions are made. Among those:

1. the use of a unique real interest rate r to all the products whereas, as stated in [6], it may have different
values, each referring to a product.

2. the hypothesis of not discounting the investment costs as they are assumed to take place in year 0.
In reality, there is a timing for the capital expenditures, i.e. a misalignment between the start of the
expenditures and the energy selling. This spread of the investment costs before the start of the energy
production is not taken into account.

3. the use of functions proportional to the mass for the evaluation of the procurement costs of raw material.
In reality, these are subjected to variations due to fluctuations of the market.

3.3 Presentation of the case studies 13

Although these inaccuracies might contribute to the absolute results of the cost module, they are not likely to
shift the value of the LCOE to a high extent.
However, if a more in depth implementation of the economic tool was applied, as well as a (raw) representation
of the interactions among shareholders, then the background of the cost module would be likely to radically
change. For example, the definition of the real interest rate which is used in the LCOE expression actually
refers to the loans from the banks, which lend money to companies in order to develop offshore plants and
which account for the highest percentage of the total investment in wind projects. In that case, if the goal is to
model the discount of the combined costs from all the shareholders, the definition of weighted average cost of
capital (WACC) [29] would seem more suitable. But in that situation, the current definition of LCOE should
be modified accordingly. Carrying out such an elaborate analysis would be a very complex task whose influence
on the layout optimization is not even proven. Therefore, to strengthen the economic background inside the
WINDOW cost models, a good idea would be trying to at least adapt the procurement and the installation
costs, as well as including the timing of the investment costs vs. the energy selling, filling the theoretical gaps
with company-sensitive information which are normally not available on an academic level.

3.2.3 The driver: the optimizing strategy

As already mentioned before, the term driver refers to an optimizing routine which calls the analysis block
(implemented in WINDOW) for a specific purpose. In this case, the purpose is layout optimization, the objective
function is the LCOE and the constraints are the spacing between the turbines and the boundaries of the OWF.

The first research purpose in this thesis is indeed to efficiently design an optimizing procedure, i.e. the most
desiderable combination of initialization, constraint-handling technique and algorithm to be evaluated by user-
defined quantitative assessment criteria. This will be explained in detail in Chapters 5 and 6.

3.3 Presentation of the case studies

The two case studies which have been selected in this thesis both to validate of WINDOW and to assess the
optimizing strategies are Eneco’s offshore wind farms Prinses Amalia Wind Park and Luchterduinen.

3.3.1 Eneco Luchterduinen

Luchterduinen Offshore Wind Farm is located in the North Sea at approximately 23km off the coast between
Zandvoort and Noordwijk (the Netherlands) and started to operate in May 2015 [30]. It consists of 43 Vestas
V113-3.0 MW turbines, for a total installed power of 129 MW [30], and one offshore transformer. The layout
of the WF is displayed in Figure 3.3 .

Figure 3.3: Eneco Luchterduinen Wind Farm

The farm specifications are shown in Table 3.2:

14 The Python framework

Table 3.2: Luchterduinen Farm specifications

Parameter Symbol Value Unit of measure

Infield rated voltage Vinfield 33000 [V]

Transmission voltage Vtransmission 150000 [V]

Grid coupling-point voltage Vcoupl 380000 [V]

Total distance to grid Ltotal 33 [km]

Distance to harbour (offshore) Lharbour 25 [km]

Onshore transmission distance Lonshore 8 [km]

N. of substations nsubstations 1 [-]

The wind turbine data are displayed in Table 3.3 [31]. The power and thrust curves are shown in Figure 3.4.

Parameter Symbol Value

Rated power Prated 3 MW

Cut-in wind speed Ucut−in 3.0 m.s−1

Cut-out wind speed Ucut−out 25.0 m.s−1

Rated wind speed Urated 12.0 m.s−1

Rotor radius Rrotor 56 m

Generator voltage Vgenerator 657 V

Hub height (w.r.t. MSL) zhub 81.0 m

Front area nacelle Anacelle,front ≈ 16 m2

RNA mass mRNA 106000 kg

Maximum Thrust T 524354 N

Table 3.3: VestasV113-3.0 specifications Figure 3.4: VestasV113-3.0 P and cT curve

3.3.2 Eneco Prinses Amalia Wind Park

Prinses Amalia Wind Park (PAWP) is located in the North Sea at about 23km from the coast of IJmuiden
[32]. It consists of 60 Vestas V80-2.0 MW turbines, for a total installed power of 120 MW. The farm started to
operate in June 2008. The layout is shown below.

Figure 3.5: Prinses Amalia Wind Park

Table 3.4 displays the farm specifications.

3.3 Presentation of the case studies 15

Table 3.4: Prinses Amalia Farm specifications

Parameter Symbol Value Unit of measure

Infield rated voltage Vinfield 22000 [V]

Transmission voltage Vtransmission 150000 [V]

Grid coupling-point voltage Vcoupl 50000 [V]

Total distance to grid Ltotal 51 [km]

Distance to harbour (offshore) Lharbour 28 [km]

Onshore transmission distance Lonshore 23 [km]

N. of substations nsubstations 1 [-]

The wind turbine specifications for PAWP are illustrated in Table 3.5 [33]. The power and thrust curves are
shown in Figure 3.6.

Parameter Symbol Value

Rated power Prated 2 MW

Cut-in wind speed Ucut−in 4.0 m.s−1

Cut-out wind speed Ucut−out 25.0 m.s−1

Rated wind speed Urated 12.0 m.s−1

Rotor radius Rrotor 40 m

Generator voltage Vgenerator 680 V

Hub height (w.r.t. MSL) zhub 59.0 m

Front area nacelle Anacelle,front ≈ 14 m2

RNA mass mRNA 88500 kg

Maximum Thrust T 475000 N

Table 3.5: VestasV80-2.0 specifications Figure 3.6: VestasV80-2.0 P and cT curve

3.3.3 Input data for WINDOW - site conditions and fixed design parameters

The input data can be split into environmental conditions and fixed design parameters. The first category
gathers all the information about wind conditions (Weibull distribution per wind rose direction sampling sector
[34]), waves and current, bathymetry and soil conditions. The latter is a set containing all the fixed design
parameters which are not modified by the driver. These are, for example, the turbine specifications (thrust
curve and power curve, geometry and weight of the nacelle and rotor diameter), the coordinates of the offshore
transformer (OT) and the distance between the OT and the grid coupling point onshore, the infield cable voltage
and the transmission voltage. The fixed design parameters are presented in the previous paragraph thanks to
Tables 3.2, 3.3, 3.4 and 3.5. The required environmental data are summarized in the table below.

Table 3.6: Environmental input data

Symbol Type of environmental data Unit of measure

α Wind shear exponent -

HAT Highest astronomical tide m

LAT Lowest astronomical tide m

∆z Surge m

Hs50−year 50 year max significant wave height m

Hs1−year 1 year max significant wave height m

Ucurrent Maximum current speed m/s

d50, d90 Particle size distribution (soil) m

φ Friction angle (for soil assessment) ◦

a, k Weibull scale and shape factors m, -

Nsectors Number of wind direction sampling sectors -

Ia Ambient turbulence intensity -

Bathymetry Water depth m

In this work, the number of sectors which has been considered to sample the wind distribution is 8. This means
that each sector covers 45◦. This choice has been made due to increasing computational cost when dealing with

16 The Python framework

a finer sampling. However, a study about the influence of the number of sectors on the final result has been
carried out in Paragraph 6.4.2.

3.4 Validation of WINDOW

3.4.1 Introduction to the validation

As mentioned in Paragraph 3.2.1, the main goal of this work is to identify the best optimizing strategy to
be implemented in the driver inside an MDAO workflow. As can be seen in Figure 3.1, the analysis block -
WINDOW - and the optimizer exchange information about the layout, the LCOE and the constraints. However,
they are decoupled, meaning that the user is able to modify the physical or the economic modules inside the
analysis block if these are considered too rough3. Of course, the output from the optimization would be likely
to shift if some parts of WINDOW were edited, but the performance of the optimizer would be the same, as this
would not be affected by the changes in the analysis block.
Therefore, although this paragraph presents the validation of WINDOW over real case studies (PAWP and EL)
to at least verify the ability of the tool to describe reality, this analysis is not meant to be extremely accurate.
Unless too pronounced discrepancies occurred, the (foreseen) little misalignments between the model and the
real data would be maintaned, as these would not affect the strategy in the driver, but only the final optimized
result. In order to do the validation, the real layout and the environmental conditions were implemented in
WINDOW and the results (according to the model) were compared to the real numbers. In particular, three
areas were covered:

� the AEP;

� the support structure design;

� the infield total cable length.

Paragraphs 3.3.3 and 3.4.2 already dealt with the required input data for the validation.

3.4.2 Results and discussion from the validation

The validation of WINDOW has been performed by taking into account the three main design areas which
characterize the design of OWF: the energy production, the support structure design and the cable topology.
At this stage of the research, the environmental data and the fixed design parameters from PAWP and EL
are used as input for the model. The results are compared to the real design of the two farms from Eneco’s
database. The table below shows the difference in percentage (for confidentiality reasons) between the output
from WINDOW and the real case4. Since the support structure module provides a different geometry for each
turbine (based on the environmental data), the lowest and the highest value are shown.

Table 3.7: Results from validation of WINDOW over real case studies - PAWP and EL

PAWP EL

Discipline Parameter
Real

(normal. [%])
From model

(normal. [%])
Real

(normal. [%])
From model

(normal. [%]))

Aerodynamic module AEP [Gwh/year] 100 -7.582 100 0.01
Dpilebottom [m] 100 -2.5 5 100 -9.6 -7.6
Dpiletop [m] 100 -2.5 5 100 0.444 2.667

Support structure module DTPbottom [m] 100 -8.531 10.189 \ \ \
DTPtop [m] 100 14.201 37.574 \ \ \

Dtowerbottom [m] 100 14.201 37.574 100 0.444 2.667
Dtowertop [m] 100 0.259 100 -0.604 0.302

Infield cable topology Length [km] 100 -26.667 100 -6.875

From the table above, the following considerations may be drawn:

� the AEP module - based on the Jensen wake model and a root sum square wake merging - performs
satisfactorily, especially for EL. Although a proper validation of the wake model would be desirable, in
particular on the wake deficits per wind direction sampling sector over real measurements, this has not
been done in this research. WINDOW allows the user to choose from higher fidelity wake models (such

3WINDOW only ”sees” the layout from the driver and the driver uses only the LCOE and the constraints
4EL does not have a transition piece.

3.4 Validation of WINDOW 17

as Ainslie), which would have probably been more suitable to properly describe the aerodynamic losses in
the wind farm. However, according to Daneshbodi [35], who studied the influence of the wake models on
the layout optimization, although the results from different approaches differ from each other in terms of
magnitude of the energy yield, the general patterns w.r.t. the wind direction sampling are the same. This
means that a more accurate aerodynamic module would not shift the optimum. Since the Jensen model
is analytic and computationally cheap, this choice was maintained.

� The support structure module shows the biggest deviations from the real case. These can be explained by
the way the support structure module has been developed. Both the pile and the transition piece (TP)
have a cylindrical shape, meaning that the diameter remains constant. Moreover, the transition piece
diameter linearly depends on Dpile due to knowledge based engineering rules (KBE) and is assumed to
be equal to the tower bottom diameter. This means that if the TP is conical (as it happens for PAWP),
significant misalignments take place, as shown in the table. However, the pile diameter (which is the
parameter to be optimized) does not deviate too much from the real case (both in PAWP and in EL),
therefore the results from the support structure design module have been considered satisfactory.

� The infield cable length shows clear discrepancies w.r.t. the real design. These can be justified by the fact
that a built-in cable topology optimizer is present in WINDOW. This works on the basis of geometrical
considerations (i.e. the distance between the turbines) and does not take into account some additional
studies that may have led Eneco to increase the cable length during the design process.

In order to further validate the ability of WINDOW to model reality, some additional fictitious cases have been
analyzed. Since the values in the table above are just single numbers, those results could have been determined
by pure luck. Therefore, the sensitivity of the model needs to be verified by changing some input parameters
whose consequent outcome was expected. This analysis helps the user realize that WINDOW is actually sensitive
to different starting settings and gives results which are in compliance with reality. In particular, those fictitious
cases were: AEP and cable length vs. variable number of turbines5 and pile diameter vs. water depth. The
results are shown below.

(a) AEP vs. number of turbines -
PAWP

(b) Cable length vs. number of tur-
bines - PAWP

(c) Pile geometry vs. water depth -
PAWP

Figure 3.7: Validation of WINDOW: sensitiviy of the analysis block to different input variables (PAWP)

(a) AEP versus number of turbines -
EL

(b) Cable length vs. number of tur-
bines - EL

(c) Pile geometry vs. water depth -
EL

Figure 3.8: Validation of WINDOW: sensitiviy of the analysis block to different input variables (EL)

From the graphs above, WINDOW’s ability to feel changes in the input parameters is showcased. When the
number of turbines increases, the AEP smoothly increases, as well as the cable length (as expected). The pile

5The turbines are added/removed randomly.

18 The Python framework

diameter is almost linearly increasing with the water depth6. Increasing the water depth leads to bigger bending
moments in the pile due to a higher external loading and a larger lever arm.
Therefore, WINDOW is considered to be suitable to model the interactions between design areas for a prelimi-
nary estimation of future wind farm projects.

3.5 Summary of the chapter

To sum up, this chapter illustrated the concept of multidisciplinary design analysis and optimization (MDAO).
An MDAO workflow is made of two components: the analysis block (called WINDOW), which provides the
physical and economical description of a wind farm (and the consequent LCOE) based on its layout and the
driver, i.e. the optimizer, which uses the computed LCOE to feed again the analysis block with a new layout.
Many disciplines are covered within the analysis block and they all contribute to a satisfactory evaluation of
the cost of energy. These are an aerodynamic module, a support structure nested optimizer (not to be confused
with the driver), a built-in cable topology solver, an O&M module and a (rough) economic model.
The validation of WINDOW over real case studies provided good results, which do not deviate too much from
the real design. This means that the tool is able to properly describe the interactions between different design
areas in an OWF. The next step is therefore shifting the analysis towards the driver.

6If a fit is performed, it can be shown that the trend is not perfectly linear.

Chapter 4

The algorithms

4.1 Introduction to the chapter

In the previous chapters it has been mentioned that the driver is the component of the MDAO workflow
which actually performs the optimization. Moreover, this is characterized by a combination of initialization,
constraint-handling technique and, of course, algorithm. The algorithm is indeed the core of the driver, as it
determines the sequence of operations to be followed to find the optimum. This chapter is entirely dedicated
to the algorithms. Section 4.2 provides an overview of the suitable strategies for OWFLO; the next section
presents an in-depth analysis of the selected algorithm; in Section 4.4, some tests over known functions have
been performed.

4.2 Overview of the available algorithms

A large variety of optimization algorithms is described in literature and several classifications exist [36]. If the
categorization is done based on the use of derivative of the objective function (or the gradient, depending on
the size of f), then the algorithms can be listed into gradient-based and gradient-free [36]. The former, like
Newton methods, use derivative information of f and are deterministic, i.e. under particular conditions the
optimal point is guaranteed to be found without adding any element of randomness; the latter do not use any
derivative information [36].
If on the one hand gradient-based algorithms are really efficient, they are computationally expensive; moreover,
their reliability is valid only on a local level. In words, by using derivative information these methods have no
ability to escape from local optima. This means that if the design space is very large, the objective function is
nonlinear, maybe discontinous or multimodal and the problem is particularly complex, there is a high tendency
to get trapped in a local optimal point, resulting in a poor exploration of the design space.
By contrast, gradient-free algorithms just use the value of f . In this work, deterministic gradient-free algorithms
such as Nelder-Mead downhill simplex have not been considered; on the other hand, literature shows growing
interest towards modern gradient-free, stochastic optimizing techniques, called meta-heuristic algorithms [36].
Methodologies with stochastic elements were often called heuristic in the past. Loosely speaking, heuristic
simply means identifying a solution by trial and error [36]; in recent years, the prefix meta has been added
to recognize those kinds of heuristic procedures which go beyond old heuristic methods, being smarter and
better-performing. The main components of metaheuristic algorithms are diversification and intensification
[36]. While the former means generating different solutions with the aim of exploring the search space on a
global scale, intensification is the equivalent of focusing the search in a local region, being aware that a current
good solution has been previously found in this region. A tradeoff between intensification and diversification
should be accomplished to improve the rate of convergence. A wise choice increases the probability that solu-
tions will converge to the optimum, whereas diversification by the means of randomization reduces the risk of
falling into local optima while encouraging the diversity of solutions.

4.3 The selected algorithms

The algorithms which have been chosen for this research are meta-heuristic and are: Genetic Algorithm (GA),
Particle Swarm Optimization (PSO) and Differential Evolutionary Algorithm (DEA). The reasons which con-

19

20 The algorithms

tribute to these choices are as follows. GA’s and PSO’s have already been widely used in offshore wind farm
layout optimization problems [7][37][38][39][40]. By contrast, to the author’s knowledge no examples on the
utilization of the DEA applied to the OWFLO exist, with the exception of the paper by Rasuo and Begin [41],
which however does not provide any clue on its actual implementation. Nonetheless, since many authors have
stressed the ease of use and the capacity of the DEA to find good solutions [42][43], this approach has been
tried. As will be clear further in the research, the evolutionary nature of the DEA has been considered very
interesting by the author.
An important remark has to be stressed: since these algorithms are based on random search, there are good
chances that the found solution will be close to the actual global optimum, but there is no general evidence to
demonstrate whether the final outcome is indeed the overall best [36].

4.3.1 Genetic Algorithm

Among all the meta-heuristic models, genetic algorithms (GA) are the most used technique for wind farm layout
optimization [44]. The pioneering application of this methodology in the wind energy sector was in the early
90’s, thanks to the work of Mosetti et al. [7]. Generally speaking, GAs are probabilistic optimization strategies
which take inspiration from Darwin’s theory of evolution [45].
Genetic algorithms base their philosophy on the ”survival of the fittest”. In other words, an initial population
of possible solutions is generated; each candidate solution competes with the others by being assigned a certain
fitness score, computed by a fitness function f . The best individuals are selected to be the parents for the
next generation. In complete analogy with Darwin’s theory, these parents combine to create children (this is
explained in more detail in the lines below): this mechanism is called crossover. The next generation is therefore
made of fitter individuals than the previous one. The algorithm works until a certain convergence criteria is
met: this might be a pre-defined number of iterations or a small difference between generation N and N + 1
(tolerance) [45].
However, to prevent the algorithm from falling into a local optimum, mutation is modeled as well. Mutation is
just a random deformation of the design variables in an individual, which occurs with a (usually) low probability.
Although Genetic Algorithms can deal with both discrete and continous design variables, due to their crossover-
based nature these algorithms are particularly well performing mostly on combinatorial optimization problems,
such as the famous travelling salesman problem [46]. The variables in such problems are discrete. In other
words, the mechanism of offspring leads to good results as it is able to find the best combination of the design
variables.
A more in-depth description of GAs is now provided. From the above text, five important phases are identified.
These are reported below [47].

1. Initial Population: a population is nothing but a cluster of individuals. Every individual is a candidate
solution. In Offshore Wind Farm Layout Optimization (OWFLO), this corresponds to a candidate layout.
A set of parameters is used to characterize each individual. This set is a gene . In this analysis, each gene
corresponds to a wind turbine. Genes are then joined into a string called chromosome (i.e. the individual
itself). This means that every individual is described by its set of genes.

2. Fitness Function. The fitness function evaluates how fit an individual is. In this research, the fitness
function is the objective function, i.e. the LCOE of the wind farm (as explained in Section 2.3.1). In
minimization problems such as OWFLO, the lower the fitness value is, the fitter is the individual.

3. Selection. A user-defined percentage of individuals is chosen based on their fitness score.

4. Crossover. Crossover is the equivalent of natural reproduction: two parents combine their genes to create
a child. In this thesis, each child inherits a gene - i.e. a turbine (x, y) position in the space - from either
parent 1 or parent 2. Crossover can take place in different ways. Among others, these might be [45]:

� N-point crossover. N points (with N < chromosomesize) are randomly chosen. If N = 2 (two-point
crossover), the first N genes in the child come from parent 1 and the last (chromosomesize−N) genes
come from parent 2 or viceversa. This can be extended to N > 2. If N > 2, the child is divided into
N ”spots”, each filled with the genes from either parent 1 or parent 2.

� Segmented crossover. It is analogue to the previous one, but N varies at every generation.

� Uniform crossover. Every child gene randomly comes from parent 1 or parent 2.

The number of children to be generated is Nchildren = sizepopulation − Nparents. This means that in
every iteration the fittest individuals, i.e. the parents, directly go to the next generation. This approach,
which is the same as the GA implemented in the software MATLAB [48], allows the algorithm not to
lose information about the previous optima. In fact, if the population was totally replaced, the overall
improvement of the population would not be guaranteed as it might happen for children to be less fit than
their parents.

4.3 The selected algorithms 21

Several choices can be made to decide who each parent has to be combined with. In this research, to
avoid a too pronounced similarity with one of the parents, all the possible combinations between parents
are listed. The children are created by choosing random couples from the list of the permutations. The
example in Fig. 4.1 is provided for some better understanding.

Figure 4.1: Example on how the parents are randomly combined

5. Mutation. Mutation is used to expand the search of the domain. Its probability of occurrence is set by the
user and is usually quite low (below 15%) [45]: crossover must remain the main exchanging mechanisms
among individuals. Other optimization algorithms, such as Differential Evolutionary Algorithm, are based
on mutation rather than on crossover (Par 4.3.3).

The pseudo-code can therefore be summarized as follows:

Algorithm 1 GA

Initialise population; set crossover rate, mutation probability, percentage of fittest individuals, number of
children
WHILE condition is not met DO:

FOR each individual DO:
assign fitness score by computing the objective function w.r.t. the individual

END
select the fittest individuals
perform crossover

IF random() > CR DO: % CR = 0.0001, quantity called ”crossover rate”
parents directly to new generation
nchildren = populationsize - nparents

ELSE:
nchildren = populationsize

END
IF random() ≤ probmutation DO:

perform mutation
END

END

The user is able to set the following parameters:
1. the population size;

2. the percentage of selected individuals (usually 20-30 %);

3. the mutation probability;

4. the number of children.

4.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, population-based methodology which was developed for
the first time by J. Kennedy and R. Eberhart in 1995 [49] and is inspired by the movement of large birds’
swarms. The strategy consists of a population of possible solutions, named particles, which at each iteration
travel towards the best solution. To use a metaphor, a population can be thought of as a birds’ swarm looking

22 The algorithms

for one piece of food in an area. Every bird is a flying particle which does not know where the food is, but knows
how far it is in each iteration. At the beginning, this ”distance” is a parameter to be set by the user. During
a cycle, the distance of every bird from food is evaluated by a function called fitness function; all the resulting
values are examined and the best single fitness value (i.e. lowest distance) over time is remembered by every
particle. The global best result is the lowest one among the entire population. If in the subsequent iteration one
particle scores a better fitness value than before, then its corresponding position in the search space is saved,
otherwise it is discarded. Likewise, if a better global minimum is found w.r.t. the previous one, this value is
taken as the global best. The swarm therefore is meant to move towards the minimum, as it is biased by the
position of the best particle. However, to prevent the algorithm from converging too early, falling into a local
minimum, an element of randomness is added to this research.

Going more in depth, two values are needed to describe the status of a particle in an iteration: the posi-
tion vector, pi, and the velocity vector, vi [49]. The former represents the position of particle i in the search
space, while the latter determines the ”rate of change” from the position at time t and the one at time t + 1
[49]:

vi
t+1 = C0vi

t + C1ε1|pbest − xi
t|+ C2ε2|gbest − xi

t| speed (4.1)

xi
t+1 = xi

t + vi
t+1 position (4.2)

In Equation 4.1, C0 is a constant called the inertia factor, C1 and C2 are two constants named learning factors
(usually equal); pbest and gbest are, respectively, the best local and global position ever found; ε1 and ε2 are a
random number between 0 and 1 [49]. The pseudo-code might be thought as follows [50]:

Algorithm 2 PSO

initialise velocity, pbest, gbest, xstarti

WHILE condition is not met DO:
FOR each particle DO:

calculate fitness value
IF fitness value is better than pbest DO:

set current value as best local position
END
IF gbesti ≤ gbesti−1

DO:
Select the particle with the best fitness value as the new gbest

ELSE:
keep old gbest

compute particle velocity and update it
update particle position

END
END

The user is able to edit the following parameters:

1. number of particles;

2. number of design variables;

3. the learning factors C1 and C2 and the inertia factor C0;

4. the initial values, velocity, pbest, gbest, xstarti ;

5. the stop condition, which may be niterationsmax
, the tolerance or a desired objective value.

The choice of the constant parameters, as well as a wise selection of the initial conditions, might exhibit
a significant impact on the performance of the optimization [51]. For instance, a high value for the learning
coefficient has the positive effect to let a particle explore a variety of even very different values, but the drawback
is that it might be likely to change the design variables with a too fast rate, precluding any possible convergence.
Some authors report that a correct parameter tuning can be performed by using a separate overlaying optimizer,
or even fine-tuned during the iterations. However, in this work the selection of these values is the result of a
trial and error process, as explained in Paragraph 5.2.2.

4.3.3 Differential Evolutionary Algorithm

The Differential Evolutionary Algorithm (DEA) is a strategy which shares several common features with Ge-
netic Algorithms (GA). The idea behind these procedures is as follows: a population of potential solutions is
set. During every iteration, the fitness of every individual is evaluated. The fittest individuals transmit their

4.4 Tests on known functions 23

information to the next generation by the means of parents’ crossover. To prevent the algorithm from prema-
ture convergence, an element of randomness is added, which mutates some design variables in the individuals
in order to explore the entire search space. The main difference between the already mentioned two procedures
lies in the fact that GAs are mostly based on crossover, whereas DEAs rely on mutation. [42]. More precisely,
the biggest contribution to the creation of a new generation comes from mutation.
Before getting more into the maths behind DEA, it is useful to provide the reader an overview of the pseudo-code
[36]:

Algorithm 3 DEA

initialise population size, design variables in each individual, fitness function (objective), parameters
WHILE condition is not met DO:

FOR each individual DO:
calculate fitness value and assign score (probability to be chosen) π
perform mutation: compute the donor vector vj

perform crossover: calculate the trial vector uj

IF fitness value(i) at generation G+1 is better than at generation G DO:
update fitness value(i)

ELSE:
fitness value(i) at generation G+1 is equal to fitness value at generation G

END
END

END

During the initialisation, the initial population size, psize and the number of design variables are set. Every
individual xj, with j ∈ [1, psize], is made of N design variables. The fitness function evaluates the goodness of
every individual. In this case, since this work deals with minimization, a lower value for the fitness function
corresponds to a better individual.
The algorithm works as follows. First, mutation of individual xj occurs: [42]:

vG+1
j = xG

r1 + F (xG
r2 − xG

r3) (4.3)

where vG+1
j is the donor vector of individual j at generation G+ 1; F is the scaling factor, a number between

0 and 2; xG
r1, xG

r2 and xG
r3 are three randomly chosen individuals ∈ [x1,x2, ...,xpsize

] under the strict rule of
being all different from each other and from xj . The donor vector is therefore a combination of three randomly
chosen individuals.
The following step is crossover:

uG+1
j =

{
vG+1
j if rand(0, 1) ≤ πj or j = Irand

xG+1
j if rand(0, 1) > πj and j 6= Irand

in which uG+1
j is the trial vector, Irand is a random integral number ∈ [1, psize]; πj is the probability - i.e. the

score - for the crossover to occur. The equation used to describe probability is set by the user. The author used
the following expression:

πj = 1− fitnessj
Σ(fitnessj)

(4.4)

Every individual is assigned a certain fitness value. Since a lower magnitude of the fitness identifies a better
individual (in minimization problems), the equation above ensures that the smaller fitnessi is, the higher the
probability of being chosen becomes. In the end, the selection takes place:

xG+1
j =

{
uG+1
j if fit(uG+1

j) ≤ fit(xj)

xG
j otherwise

During this step, if the fitness value for the trial vector is better than the fitness value of individual j, then
individual j updates to the trial vector value; by constrast, if no improvement takes place, the algorithm sticks
to the previous xj value.

4.4 Tests on known functions

Since GA, PSO and DEA play a crucial role in this research, some tests were carried out to verify the good oper-
ation of the coded algorithms. As already mentioned before, there is no overall evidence that the solution found

24 The algorithms

by means of meta-heuristics is the global optimum, however the ability of one algorithm to avoid falling into
local minima can be evaluated by testing its performance over some functions, whose global optimum is known
in advance. It is worth saying that this section is not meant to assess the three chosen optimizing techniques,
as if one algorithm performed well on a test function, there would be however no certainty about the goodness
of the same procedure when applied to a particular engineering problem. The so called ”free lunch theorem”,
demonstrated by Wolpert and Macready in 1997 [52], states that if algorithm X works better than algorithm
Y for some objective functions, then Y will outperform X for other functions. In other words, if averaged over
all the possible function space, both procedures would perform well. The ability of the designer lies in figuring
out what to apply when dealing with one design problem. Therefore, if the assessment of the algorithms was
done at this point of the research, it would be useless when applied to OWFLO. The suitability of the GA, PSO
and DEA has already been studied over the same known functions used in this paragraph [53]. Consequently,
the tests illustrated below were carried out just to check the correct operation of the coded procedures. On the
other hand, the assessment of the goodness of the same algorithms when dealing with OWFLO is presented in
Chapter 6.

The functions which have been chosen to test the algorithms have been taken from literature [53]. These
are Ackley’s function, Rastrigin’s function and Rosenbrock’s function. All of these have been analysed in their
2D form (i.e. f : <2 ⇒ < [54]). The first two are characterized by a large number of local minima, whereas the
last one is a popular test problem for gradient-based algorithms and therefore it is interesting to see what are
the responses from the gradient-free strategies used in this thesis.

� Ackley’s function
Ackley’s function is characterized by a hole corresponding to its global minimum and by a large number
of local minima around it. The equation is:

f(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos(2πx)+cos(2πy)) + e+ 20 (4.5)

The chosen domain has been put as x ∈ [−15, 15] and y ∈ [−15, 15]; Figure 4.2a shows the function. The
global minimum is located in [0, 0]. The value of Ackley’s function in that point is f(0, 0) = 0.

� Rastrigin’s function
Rastrigin’s function is also characterized by a large quantity of local minima. It is described by the
following equation:

f(x, y) = 20 + (x2 − 10 cos(2πx)) + (y2 − 10 cos(2πy)) (4.6)

The chosen domain has been set as x ∈ [−5, 5] and y ∈ [−5, 5]; Figure 4.2b shows the function. As
Ackley’s function, the global minimum is located in [0, 0] and its value is f(x, y) = 0.

� Rosenbrock’s function
Rosenbrock’s function is a popular test which has been widely used in the past to verify the goodness
of gradient-based methods [53]. The minimum is f(x, y) = 0 and it is located in [1, 1], in a narrow,
parabolic valley. Although the valley is easy to find, convergence towards the global minimum is difficult.
Rosenbrock’s function is described by the following equation:

f(x, y) = 100(y − x2)2 + (x− 1)2 (4.7)

As in Rastrigin’s function, the chosen domain is x ∈ [−5, 5] and y ∈ [−5, 5]; Figure 4.2c shows the plot.

(a) Ackley’s function (b) Rastrigin’s function (c) Rosenbrock’s function

Figure 4.2: Test functions

4.5 Summary of the chapter 25

The performance of the algorithms is reported in Tables 4.1, 4.2 and 4.3. The population size has been set as 30
in each case. The algorithms stop either when a tolerance of 10−3 between the values in subsequent generations
is reached or when the maximum number of iterations (set as 800) is reached. The optimizations are, in all
cases, unconstrained. The results are summarized in the following tables (each case has been run five times).

Table 4.1: Result of the tests for Ackley’s function

Genetic Algorithm Particle Swarm Differential Evolutionary

Run
time

1 iter [s]
n. iter result

time
1 iter [s]

n. iter result
time

1 iter[s]
n. iter result

1) 1.91 7 [0.00, 0.00] 1.49 179 [0.00, 0.00] 3.1 42 [0.00, 0.00]
2) 1.91 4 [0.00, 0.00] 1.49 165 [0.00, 0.00] 3.1 36 [0.00, 0.00]
3) 1.91 4 [0.00, 0.00] 1.49 173 [0.00, 0.00] 3.1 40 [0.00, 0.00]
4) 1.91 3 [0.00, 0.00] 1.49 145 [0.00, 0.00] 3.1 39 [0.00, 0.00]
5) 1.91 6 [0.00, 0.00] 1.49 180 [0.00, 0.00] 3.1 39 [0.00, 0.00]

Table 4.2: Result of the tests for Rastrigin’s function

Genetic Algorithm Particle Swarm Differential Evolutionary

Run
time

1 iter [s]
n. iter result

time
1 iter [s]

n. iter result
time

1 iter[s]
n. iter result

1) 1.88 3 [0.00, 0.00] 1.51 173 [0.00, 0.00] 3.16 73 [0.00, 0.00]
2) 1.88 2 [0.00, 0.00] 1.51 180 [0.00, 0.00] 3.16 65 [0.00, 0.00]
3) 1.88 3 [0.00, 0.00] 1.51 193 [0.00, 0.00] 3.16 67 [0.00, 0.00]
4) 1.88 3 [0.00, 0.00] 1.51 229 [0.00, 0.00] 3.16 70 [0.00, 0.00]
5) 1.88 2 [0.00, 0.00] 1.51 407 [0.00, 0.00] 3.16 64 [0.00, 0.00]

Table 4.3: Result of the tests for Rosenbrock’s function

Genetic Algorithm Particle Swarm Differential Evolutionary

Run
time

1 iter [s]
n. iter result

time
1 iter [s]

n. iter result
time

1 iter[s]
n. iter result

1) 1.85 3 [1.00, 1.00] 1.54 136 [0.99, 0.99] 3.35 50 [1.00, 1.00]
2) 1.85 4 [1.00, 1.00] 1.54 156 [1.00, 1.00] 3.35 44 [1.00, 1.00]
3) 1.85 3 [1.00, 1.00] 1.54 137 [0.99, 0.99] 3.35 44 [1.00, 1.00]
4) 1.85 2 [1.00, 1.00] 1.54 160 [0.99, 0.99] 3.35 48 [1.01, 1.00]
5) 1.85 3 [1.00, 1.00] 1.54 130 [0.99, 0.99] 3.35 52 [1.00, 1.00]

From Tables 4.1, 4.2 and 4.3 it can be seen that all the algorithms are able to find the global optimum. Although
the ”free lunch theorem” states that no evidence of the good performance of the algorithms might be given
a priori even for the OWFLO problem, this analysis has shown that the way these algorithms were coded was
correct. Therefore, potential failures during the optimization of a wind farm layout should be attributed to the
”philosophy” behind the algorithms and not because of possible coding mistakes.
It is important to stress one last remark. The genetic algorithm failed one time to find the minimum for the
Rosenbrock function. The problem was solved by raising the size of the population. As will be clear in Chapter
6, due to its combinatorial nature the GA is less likely to properly explore the design space and has therefore
higher chances to fall into local minima.

4.5 Summary of the chapter

In this chapter, the algorithms which are used in the analysis of the driver inside the MDAO workflow are
presented. These are meta-heuristic procedures and are: Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) and Differential Evolutionary Algorithm (DEA). To verify the goodness of the codes developed by the
author, some tests over known challenging functions have been successfully performed.

26 The algorithms

Chapter 5

OWFLO problem setup

5.1 Introduction to the chapter

An in-depth overview about how different strategies for both the initial guesses, the constraint-handling tech-
niques and the algorithms are employed in an OWFLO problem is given here. Section 5.2 illustrates the
association between the algorithms and OWF’s variables; Section 5.3 explains the different ways to initialise
the OWF layout optimization; in the end, the constraint-handling techniques and the stopping criteria applied
to OWFLO are presented.

5.2 Preparation of the algorithms for OWFLO

In this section, the parameters which have been set in the codes are summarized. Moreover, to help the reader
understand how the OWF layout optimization problem is expressed in form of algorithm, the chosen correlation
between the variables in the algorithms and the real-life variables in OWF design are illustrated.

5.2.1 Genetic Algorithm

In Section 4.3.1, a list of the required inputs and settings to run a genetic algorithm is reported. These are the
population size, the design vector, the percentage of the selected individuals, the mutation probability and the
number of children. The association between all of these and the OWFLO problem are illustrated in the table
below.

Table 5.1: Association between GA inputs and OWF parameters

Genetic Algorithm inputs OWF design parameters

Population size Psize

Number of different candidate layouts (initialized as explained
in the previous section) which are used to compute the fitness

function (every individual in the population is a layout)

Design vector x
[x, y] coordinates of each turbine. Dimension of

x = 2Nturbines
Percentage of selected

individuals
The best layouts chosen to be parents (30 % → 0.3 · Psize)

Mutation probability Probability of mutation of one layout (set as 13%)

Number of children (= Psize − parents) The layouts created in the next generation (0.7 · Psize)

Fitness function f
LCOE of the wind farm, computed by WINDOW. In this case,

the lower the fitness is, the better is one individual

The percentage of selected individuals (i.e. the number of parents) has been set as 30%. Literature suggests
using relatively low values, as in this way the evolution towards a fitter population is more likely to take place
in a shorter period of time; however, if the number of parents is too small, there is the risk of getting trapped
into local minima, as the algorithm would be too biased toward that small cluster of good individuals [45].
On the other hand, the mutation probability is usually very low (from ≈ 0.01 to 0.15). Even if a higher value
would allow a broader exploration of the search space, too many mutants would make convergence difficult.
Throughout the entire analysis, the default value of 0.13 has been used. There are several ways to implement

27

28 OWFLO problem setup

the mutation into a GA [45]. In this thesis, this has been defined as follows: up to 10% of the turbines randomly
change their coordinates as soon as they are within the boundaries and at least 4D from all the other turbines.
Thus, this kind of mutation introduces some element of ”craziness” into the algorithm even though the mutating
turbines are in feasible positions. This mechanism is the same among all the optimizing combinations involving
the GA (including the grid-based approaches).
Regarding the number of children, i.e. the number of the layouts which are created from the parents’ crossover,
this is trivially equal to (1− 0.3) · Psize.
The population size is also a parameter to choose wisely. If it is too small, there is not much evolution to expect;
on the contrary, if the population is too large, the computing time would be too extensive without ensuring a
better quality of the results [36]. Some authors, like Pillai et al. [55] use a population size of 50; on the other
hand, Wan et al. [39] use the value of 100. By contrast, in this thesis the value of 30 has been used both in
order to ensure a fairer comparison with the other two algorithms, which use the same population size (as will
be clear in Paragraphs 5.2.2 and 5.2.3), and to maintain the computational time within reasonable limits.

5.2.2 Particle Swarm Optimization

The following table summarizes the correlations between the variables in the PSO algorithm and the real
variables in OWF.

Table 5.2: Association between PSO inputs and OWF parameters

Particle Swarm Optimization OWF design parameters

Swarm size: Psize

Number of different candidate layouts (initialized as explained
in the previous section) which are used to compute the fitness

function (every particle in the population is a layout)

Design vector x
[x, y] coordinates of each turbine. Dimension of

x = 2Nturbines
Inertia/Learning factors C0, C1, C2 Constant value (explained in main text)

Initial velocity Constant value. (explained in main text)

Fitness function f
LCOE of the wind farm, computed by WINDOW. In this case,

the lower the fitness is, the better is one individual

The swarm size has been put equal to 30. This value is used in the paper by Pillai et al. [55] and fits well with
the computing power of the used PC. The paper written by M. Clerc in 2002 [56] and validated by Eberhart
et al. [57] [40] highlighted a good choice for the inertia factor C0 and the learning factors C1 and C2 to be
resepctively 0.729, 1.494 and 1.494. These are therefore the default values which were used in the codes. The
initial default velocity has been randomly set as v ∈ rand[−1, 1]; another way to initialize v is to put it equal
to zero. No significant difference was noted in the analyses.

5.2.3 Differential Evolutionary Algorithm

As stated in Section 4.2, the DEA needs the following inputs: the population size, the design vector, the scaling
factor F and the fitness function. The following table explains the correlation between these and the OWF
design parameters.

Table 5.3: Association between DEA inputs and OWF parameters

Differential Evolutionary Algorithm inputs OWF design parameters

Population size Psize

Number of different candidate layouts (initialized as explained
in the previous section) which are used to compute the fitness

function (every individual in the population is a layout)

Design vector x
[x, y] coordinates of each turbine. Dimension of

x = 2Nturbines
Scaling factor F Constant value (explained in main text)

Fitness function f
LCOE of the wind farm, computed by WINDOW. In this case,

the lower the fitness is, the better is one individual

The scaling factor F in literature usually assumes values between 0 and 2 [42], even if it is generally acknowledged
that a scheme with F ∈ [0, 1] is stabler [36]. The general value of F is problem-dependent and cannot be stated
a priori. Several simulations were carried out to satisfactorily set this. From Equation 4.3 it can be easily
noticed that a relatively high value of the scaling factor produces larger mutation amplifications [43]. The first
trial which was done used F = 0.5, as suggested by [42]. This approach however made the algorithm diverge.
This means that the DEA was not able to find a final solution as the rate of mutation was too high. The same

5.3 Initialization 29

situation took place with F = 0.4, 0.3, 0.2. The author identified the best values for F to be in the range between
0.05 − 0.06. In all the combinations (listed further in the report) where the DEA was used, these two values
made the algorithm converge.

The population size was originally set as 16. On a later stage, that value has been set to 30. These numbers are
in fact quite common in literature: J. Lampinen mostly uses those values and later moves up to a population
size of even 50 to 120 individuals [43]. in this thesis, the value of 30 has been set as the maximum threshold in
order to keep the time to complete one iteration within reasonable limits.

5.3 Initialization

5.3.1 Overview of the initializing techniques

Each of the algorithms presented in Chapter 4 has an iterative nature. Consequently, a starting point needs
to be set. Several papers have been written about the importance of the starting point. Producing a good
preliminary determination improves the optimizer performance and reduces the computational cost [58]. An
interesting overview about the initialization in population-based optimization is shown in [59]. In this paper,
the author illustrates the controversies around this problem and tries to systematically examine the effect of
several initialization methods on the optimization of five benchmark functions; the conclusion is that some
improvements may be expected when some more sophisticated initialization is employed. However, no scientific
literature applied to OWFLO is available. On the other hand, a large number of articles on OWFLO has been
published: each of them describes the way the design variables are initialized. The most widely used are listed
below.

� Lückehe [60] et al., use random placement of the turbines, setting only the minimum and the maximum
allowable values of the x and y coordinates. This methodology will be called ”Random Initialization”.

� Mosetti [7], Maselis [8], Emami [38], Wan [39] et al. use some discretization of the design space: the area
of the wind farm is divided using a grid which prevents the turbines from violating any of the constraints.
Therefore, the initial guess is always feasible. This approach will be named ”Grid Initialization”.

� Recently, a new approach is to use heuristic methods (see Paragraph 4.2) to place the turbines randomly
as soon as the resulting layout is feasible. An example of this can be found in [61]. This strategy will be
now renamed as ”Smart Random Initialization”.

Based on the list above, several initializing algorithms have been written and are presented in the following
paragraphs.

5.3.2 Random initialization

The random initialization is the easiest way to set up an initial layout. It consists of the random placement
of the turbines within a square area, which is characterized by the set [xmin, xmax] × [ymin, ymax]. Since the
OWFs’ boundary does not usually have a square shape, some turbines are likely to be outside the OWF area.
Moreover, turbines can be placed very close to each other. The pseudo-code is as follows:

Algorithm 4 Random Initialization

FOR all the turbines DO:

xturbine = random([xmin, xmax])

yturbine = random([ymin, ymax])
END

A modification of this procedure is a random initialization which does not violate the boundary constraint
but may still violate the spacing constraint. The idea is that this might ”help” the algorithm and save some
computational power. The pseudo-code then becomes:

30 OWFLO problem setup

Algorithm 5 Random Initialization - modified

FOR all the turbines DO:

WHILE [xturbine, yturbine] /∈ S DO:
xturbine = random([xmin, xmax])

yturbine = random([ymin, ymax])

END
END

An example for both the situations is shown below for Prinses Amalia (Figs. 5.1a and 5.1b) and Luchterduinen
(Figs. 5.1c and 5.1d):

(a) Random Initialization (b) Modified random initialization [xturbi , yturbi] ∈ S

(c) Random Initialization (d) Modified random initialization [xturbi , yturbi] ∈ S

Figure 5.1: Random Initialization examples for PAWP (above) and EL (below)

5.3.3 Grid initialization

The grid initialization is a a methodology followed by Mosetti [7], Grady [37], Wan [39] et al. [38]. It is a simple
and intuitive strategy: the design space is divided into square cells. One turbine can be placed only in the
center of a cell (or on the vertices). In a grid-based approach, it is crucial to mention that if the turbines can
only be put in fixed spots, then the problem becomes combinatorial, i.e. find the best combination of turbines in
the allowed places. In Section 4.3.1, it is explicitly explained that genetic algorithms are suitable for these kinds
of problems, because of their crossover-based way of exchanging information. In other words, the coordinates of
the turbines never deviate from the grid points (apart from mutation), because no summation nor subtraction
of the [x, y] coordinates takes place in a GA. Therefore, in this thesis the grid initialization is coupled only with
that optimizing strategy. This approach has two undeniable advantages towards the optimization:

5.3 Initialization 31

� a significant amount of computational power is saved, due to the reduced number of allowable positions
the turbines can assume [44];

� the constraints are automatically satisfied. In fact, the grid is meant to guarantee both the required
minimum spacing between the turbines and their placement within the boundaries.

However, a big drawback is a relatively poor exploration of the design space. Wang et al. [62] investigated
on the possibility of using an equilateral-triangle mesh. The resulting grid is finer and allows the optimizing
algorithms to better explore the design space.
All the grids were developed by the author.

Square grid

The square grid initialization which has been adopted puts the turbines on the vertices of the cells.

(a) Prinses Amalia (b) Luchterduinen

Figure 5.2: Square Grid Initialization. Example for PAWP and EL

In practice, the procedure is: divide both the x and y axes by the maximum number of intervals that still
complies with the spacing constraint. Then randomly place the desired number of turbines on the vertices
of the resulting grid as soon as they are within the boundaries of the OWF. For the case studies taken into
consideration, the number of allowed positions in the square grids is shown below.

Table 5.4: Number of available spots in the square grid for PAWP and EL

Wind Farm Number of grid points in the square grid

Prinses Amalia Wind Park (PAWP) 165

Eneco Luchterduinen (EL) 72

In this situation, the grid-creating algorithm is as follows:

Algorithm 6 Square grid creator

set: desired initial spacing (i.e. cell’s side length), S (boundaries); initialize: x = xmin, y = ymin, intervalsx =
0, intervalsy = 0;
% Calculating the number of intervals to divide the x and y axes into
intervalsx = int(xmax−xmin

spacing
) + 1 % int() provides an integer number

intervalsy = int(ymax−ymin
spacing

) + 1
xend = xmin · intervalsx, yend = ymin · intervalsy
set allowable x, y positions: x = linspace(x, xend, intervalsx), y = linspace(y, yend, intervalsy)
WHILE nturbines < desired number of turbines DO: % Place randomly one turbine per time on one of the grid points

WHILE x, y /∈ S (i.e. the boundary of the WF) DO: % Choose only the points inside the boundaries
randomly place turbine in xi ∈ x and yi ∈ y
nturbines = nturbines + 1

END
END

32 OWFLO problem setup

Triangled grid

The triangular grid increases the number of available spots w.r.t. to the square disposition [44]. In this study,
two triangled grids have been analyzed: the equilateral-triangle grid [62] and the random-triangle grid.
To make the reader more familiar with these two concepts, first two illustrations are given below.

(a) Equilateral-triangle grid (b) Random-triangle grid

Figure 5.3: Examples of Triangled grid initialization for PAWP

The pseudo-codes of both these triangulations can be found in Appendix C. The reason why two triangular
grids have been employed lies in the fact that both in the equilateral-triangle and in the square lattice the
turbines are aligned. This means that the result from the optimization, being it good or bad in terms of the
LCOE value, will follow the geometrical shape of the grid and some turbines will belong to the same ”line”.
By contrast, an optimized solution initialised by means of the random-triangle grid, though being stuck to the
geometry of the grid as well, will place the turbines without any alignment. The resulting layout would thus
be more irregular. Therefore, the two grids are designed in order to explore different parts of the design space,
i.e. some turbine dispositions which are captured in one approach are yielded in the other and vice versa. In
particular, some remarkable differences are expected to take place from the annual energy production’s point
of view. Aligned turbines in fact feel the wake effect to a higher extent than misaligned ones.

The grid in Figure 5.3a is created in a similar way as the square lattice, but with some noticeable discrepancies.
As further illustrated in Appendix C, the y axis is discretized in such a way that every horizontal line is drawn√

3 times the spacing constraint (i.e. Lmin = 4D) far from each other. This is because in every equilateral

triangle the top vertix is
√
3
2 · l − being l the side of the triangle − away from the basis of the triangle. Moreover,

the x axis is discretized by 4D, but every row is shifted 4D
2 from the one above/below. This is clarified in the

following figure:

Figure 5.4: Equilateral-triangle grid: a visualization. Every row is
√
3
2
· Lmin far from each other and the points in

adjacent rows are shifted by Lmin
2

= a
2

= 2D

On the other hand, the grid in Figure 5.3b has been made as follows. The desired number of turbines has to be
set, as well as the required spacing among them and a random number of spots nspots (which has to be at least

5.3 Initialization 33

equal to the number of turbines). The algorithm starts by drawing nspots in such a way they respect all the
constraints (i.e. at least 4D from each other and within the boundaries of the OWF). Once that all the spots
have been drawn, more spots are added. In every iteration, one more spot is further inserted as soon as this is
within the boundaries and far enough from all the previous spots placed that far. The algorithm stops creating
new spots when no more points can be added (in this work, it has been supposed that no more points can be
added if in one loop more than 3000 iterations take place). The triangulation which connects the spots is done
with the Python package matplotlib.tri. Once the triangulation took place, the desired number of turbines
is randomly placed on the grid points. This is explained more in depth in Appendix C. For the case studies
taken into consideration, the number of allowed positions in the triangled grids is shown in Table 5.5.

Table 5.5: Number of available spots in the equilateral-triangle and in the random-triangle grid for PAWP and EL

Wind Farm
Number of grid points in the

equilateral-triangle grid
Number of grid points in the smart triangled grid

PAWP 185 146

EL 73 59

5.3.4 Smart random initialization

This type of random initialization uses randomness to create initial layouts. This approach allows the employ-
ment of feasible initial guesses without constraining the turbines into fixed spots (as in the Grid initialization).

The strategy the author implemented is as follows. The desired number of turbines has to be set, as well as the
required spacing among them. The algorithm starts with a layout of 0 turbines. In every iteration, it adds one
turbine as soon as this is within the boundaries and far enough from all the previous turbines placed that far.
The algorithm stops when the desired number of turbines has been reached. This approach has been considered
computationally reasonable by the author. In fact, another algorithm had been previously applied. This tried
to place all the turbines at once until they complied with the constraints. That approach was too slow. On
the other hand, adding one turbine per iteration is much faster. An example of this feasible initialization is
displayed in Figs 5.5a and 5.5b.

(a) PAWP (b) EL

Figure 5.5: Examples of Smart random initialization for Prinses Amalia (a) and Eneco Luchterduinen (b)

The pseudo-code therefore is:

Algorithm 7 Smart random Initialization

set: spacing, boundaries (S), desired number of turbines
initialise nturbines = 0
WHILE nturbines < desired number of turbines DO:

WHILE turbine violates distance constraint DO:
randomly place turbine in x, y ∈ S

END
nturbines = nturbines + 1

END

34 OWFLO problem setup

5.3.5 Conclusions on the initialization

To help the reader quickly visualize the main features of each initializing technique used in this work, the
following table is provided.

Table 5.6: Summarizing table of initializing techniques

Random
Random
modified

Square
grid

Equilateral-
triangle grid

Random
triangle grid

Smart random

Violates only g1 �
Violates g1, g2 �

Feasible � � � �
Creates turbine alignment � �
Eliminates the constraints

from the optimization
� � �

5.4 Constraint-handling techniques (CHT)

5.4.1 Overview of the constraint-handling techniques

In Paragraph 2.3.3, the constraints have been described. These are the minimum distance between the turbines
(spacing constraint g1(x)), equal to 4Drotor [14], and the boundaries of the wind farm (boundary constraint
h1(x)). Several CHTs have been proposed throughout the years. A good summary was written by S. Koziel
and Z. Michalewicz [63]. In this paper, the authors present three main methodologies to handle constraints
in evolutionary algorithms, which are penalty functions, methods which maintain the feasibility of the solutions
and hybrid methods. This last group of methods has not been taken into consideration in this thesis.
An excellent review can be found in [5]. The author here provides a good overview of constraint handling for
heuristic algorithms within the OWFLO problem. Moreover, plenty of information can be found in [40], [64] et
al [61].
Based on these notions, three main mechanisms have been chosen:

� Penalty functions. These strategies transform a constrained problem into an unconstrained one by adding
a penalty to the objective function every time a constraint is violated.

� Repair mechanisms. These methodologies force every solution to be always feasible, i.e. it does not violate
any of the constraints.

� Absence of constraints. As explained before in this chapter, these mechanisms ensure the optimization to
be unconstrained, by the means of a grid initialization.

5.4.2 Penalty functions

The idea behind penalties in a minimization problem is to add a certain value to the objective function. In this
way, the problem becomes unconstrained and the algorithm, at least theoretically, autonomously moves towards
the feasible space [64]. Three different kinds of penalties can be adopted. The first one is static, i.e. it stays
the same as long as the optimization runs; the second one is called dynamic, i.e. it is a function of the iteration
number; the last one is named adaptive, i.e. it adapts to the problem, increasing or diminishing under certain
conditions [64].
The penalty is usually designed in such a way it measures how badly the constraints are violated [5]. The most
general form to write a penalty function is as follows [64]:

f(xi) = f(xi) + (

n∑
j=1

Ndes.variab.∑
i=1

C|gj(xi)|+
p∑
k=1

Ndes.variab.∑
i=1

c|hk(xi)|) (5.1)

where gj(x) and hk(x) are, respectively, the magnitude of the violation of the inequality and equality constraints
for individual xi; C and c are parameters chosen by the user; n is the amount of inequality constraints; p is the
number of equality constraints. In this research, C has been assumed equal to c.

5.4 Constraint-handling techniques (CHT) 35

Figure 5.6: Penalty function visualization: the magnitude of the constraint violation is added to the objective
function, as shown in Equation 5.1

A visualization is provided above: |g1(x)1,2| is the distance that Turbine 2 violates the spacing constraint by;
|h1(x)3| is the point-line distance between Turbine 3 and the boundaries. A remark has to be stressed: the
formulation of g1 and h1 in the penalty functions is slightly different than the one described in Paragraph 2.3.3.
However, to avoid using a too heavy notation, these will be written with the same notation.
A clearer way of writing Equation 5.1 is provided below:

LCOEi = LCOEi + C(

Nturbs∑
turb=1

|g1(xi)|+
Nturbs∑
turb=1

|h1(xi)|) [ce.kWh−1] (5.2)

The C parameter is what makes the penalty approaches differ from each other, as explained in a few lines.
Before analyzing the three ways the penalties are applied to the OWFLO problem, one last crucial observation
has to be done. As wisely argued by Runarsson and Yao [65], the use of these strategies in optimizing routines
has the drawback of increasing the roughness of the search space. In words, when penalties are applied, the risk
is that the algorithm focuses more on finding a feasible solution rather than the optimal one, falling into local
minima. This will be discussed in more detail later in the report.

Static penalty functions

The static penalty function is the easiest way to assign a cost to an individual which does not respect the
constraints. In this approach, the entire magnitude of the constraint violation is added to the LCOE. Since the
violations are computed as distances, the unit of measure of C is ce·(kWh ·m)−1. Moreover, as the values of
|g1(xi)|, |h1(xi)| range from a few meters to even a few kilometers (order of magnitude: 100 − 103) whereas the
LCOE’s order of magnitude is ≈ 10 (ce/kWh), in the static penalty approach the feasible individuals always
score a better fitness value than the infeasible ones. That is why the factor C has been set to 1.
An approach which had been followed by the author was counting the number of violations rather than their
magnitude. However, that methodology provided results of bad quality (which have not been reported) because
the algorithms were not ready to distinguish, among two individuals with the same number of violations, which
one was closer to respect the constraints. The equation which has been implemented in all the codes for the
static penalty strategy is as follows:

LCOEi = LCOEi + (

Nturbs∑
turb=1

|g1(xi)|+
Nturbs∑
turb=1

|h1(xi)|) [ce.kWh−1] (5.3)

Dynamic penalty functions

A dynamic penalty is written similarly as the static function, but the C factor changes over the iterations. The
general way to write a dynamic penalty is as follows [63]:

LCOEi = LCOEi + C(T)α(

Nturbs∑
turb=1

|g1(xi)|+
Nturbs∑
turb=1

|h1(xi)|) [ce.kWh−1] (5.4)

where T is the iteration number (C is a function of T). There are no general rules to correctly design the dynamic
factor. However, a crucial guideline is that in the first iterations, the algorithm should be able to explore the
infeasible space without being penalized [66]. In this way, at the beginning of the optimization, some infeasible
individuals are capable of competing against feasible ones. This mechanism allows infeasible layouts early in
the search, while continuously raising the penalty imposed, with the goal of eventually moving the final solution
towards the feasible region [66]. The reason behind this methodology lies in the fact that some information

36 OWFLO problem setup

from the ”bad” individuals might overall contribute to lowering the objective function more efficiently than in
the static penalties.
After a trial and error procedure, a very well performing expression of C has been found by the author:

C = (0.0001 · T) α = 1.1 [ce · (m · kWh)−1] (5.5)

This choice suits particularly well for the OWFLO problem because of the following reasons:

� The factor 0.0001 ensures that even a total violation magnitude of a few hundred of meters makes a
layout competitive. As will be shown in the next chapter, in all the combinations which have been
analyzed the biggest magnitude of constraint violation occurs during the first iterations. At that stage of
the optimization, the value of the added penalty is still negligible. If the violations were too big, e.g. the
turbines are too far from each other (increasing the cable cost) or too clustered (the wake effects decrease
the energy production), the resulting LCOE would not be competitive by itself ; however, the value of 0.0001
allows layouts with a relatively low violation magnitude to be chosen for the next iteration. Indeed, if one
individual is characterized by a ”good” turbine disposition even if the constraints are not respected, the
information which in the case of the static penalty would be lost are, instead, saved.

� The C factor is designed in such a way it grows relatively fast, preventing the population from getting
entirely infeasible. As will be illustrated in the results, the dynamic penalty function will be only coupled
with a feasible initialization. It is essential to always maintain some feasible individuals inside the popu-
lation. Because of the reasons explained in the previous point, some infeasible layouts may overcome the
feasible ones. The expression in Equation 5.5 ensures a relatively fast growth of the penalty, preventing
the population from becoming all infeasible.

Adaptive penalty functions

The adaptive penalty function approach was first introduced by Bean and Hadj-Alouane in 1992 [66]. It consists
of an increase or a decrease of the penalty function as long as the optimization runs, based on criteria set by
the user. Since the only authors who tried to apply the adaptive penalty function to the Wind Farm Layout
Optimization problem (onshore) are Lückehe et al. [60], their approach has been used. This is as follows: if,
after a certain number of iterations, less than 20% of the individuals in a population is feasible, then the penalty
is increased, otherwise it is decreased. In this work, the expression for the adaptive penalty has been written
as follows:

LCOEi = LCOEi + λ · C(T)α(

Nturbs∑
turb=1

|g1(xi)|+
Nturbs∑
turb=1

|h1(xi)|) [ce.kWh−1] (5.6)

in which λ is the adaptive constant (note: λstart = 1):

λ =

{
λ+ 50 if less than 20% of the population is feasible

λ− 50 otherwise; if λ = 1, do not subtract further

Equation 5.6 is the same as Equation 5.4, but the C constant is different. To sum up, the expression in
Equation 5.6 consists of a dynamic part, i.e. C, and an adaptive part, i.e. λ. The parameter C is one order of
magnitude lower than the one in Equation 5.5, i.e. 0.00001. The reason is because in this way the competition
between infeasible and feasible individuals would last for more iterations, ensuring even a better exploration of
the infeasible space. However, the λ parameter acts as a back-up mechanisms which restores the population
over the course of the iterations, ensuring a minimum number of feasible layouts.
A crucial remark has to be mentioned. In order to have an efficient adaptation, the challenge is to have a
dynamic part which does not grow too fast and an adaptive which intervenes when necessary. After having
performed a large number of tests, three cases were identified to take place:

� if the dynamic part increased too fast, there would be no difference between an adaptive and a dynamic
penalty. In fact, the population would never be made of a too large number of infeasible individuals,
making λ useless.

� If C increased too slowly, then the output would fluctuate, as the penalty mechanism would entirely depend
on λ. Therefore, as soon as a minimum number of feasible individuals is present in the population, the
optimization runs almost unconstrained because C is very low. If too many infeasible individuals started
to appear in the population, then the penalty would be increased by the λ factor until at least 20% of the
candidate solutions is feasible; but, when this happens and the population is restored, λ decreases by the

5.4 Constraint-handling techniques (CHT) 37

same quantity and the optimization would be, again, almost unconstrained (C is still too low), resulting in
the same starting situation. Consequently, it would be extremely difficult to make the population converge
towards a non-violating solution 1.

� If C increases with a good rate (small enough to allow infeasibility to be present in the population), when
a situation in which λ increases and then decreases again takes place, C has already increased by a small
percentage in the meantime, which is however enough not to have an ”almost unconstrained” situation.
Fluctuation would be avoided 2.

Obviously, another way to design adaptives is deleting the dynamic part and acting uniquely on λ, making sure
that the increasing rate is not the same as the decreasing rate. However, this approach was judged even more
difficult by the author. In fact, it is unclear to what extent the difference between increasing and decreasing
λ should be pronounced; moreover, it is hard to design a λ value which avoids fluctuation and that, in the
meantime, allows a progressive rejection of infeasible solutions over the course of optimization.

5.4.3 Repair mechanisms

The repair mechanisms are strategies which force every candidate solution to be, over the course of the op-
timization, feasible. This methodology has been adopted in particle swarm optimization [67] [9], in random
search algorithm (not treated here) [68] and in evolutionary algorithms [69].
These may be gathered in two groups: resampling and repairment. The former creates a new, feasible layout
every time a violation occurs; the latter changes the position of the turbines violating the constraints, keeping
the old placement of the ”good” ones [5]. The first approach has the disadvantage of ignoring the progressive
knowledge acquired over the optimization and has therefore been discarded. The second strategy was therefore
applied. Two techniques were tried:

� The bad turbines are replaced randomly. Several attempts were done to test this strategy but in none
of the trials the algorithms were able to converge. The reason was probably that, especially at the early
stage of the optimization, the number of turbines to be replaced is high and a random positioning cancels
all the information about what the layout looked like, inhibiting the convergence.

� The bad turbines are adapted by sampling from a normal distribution [70] [71]. In this approach, a
turbine keeps randomly changing its [x, y] coordinates sampling from the inverse of a normal cumulative
distribution function until it finds a feasible spot. The mean µ (in this case equal to the original x or y
coordinates of the turbine) and the standard deviation S.D. = σ need to be set a priori. Figs 5.7a and
5.7b show how the normal sampling is performed. The normal cumulative distribution function (on the
left) is computed as follows:

CDFnormal =
1

2
[1 + erf(

X − µ
σ
√

2
)] (5.7)

where erf is the error function and X is the independent variable; the inverse of the CDF is the normal
sampling distribution function, which indicates, for each standard deviation, to what extent the windmills
can change from their original positions when a random number ∈ [0, 1] is chosen.

(a) cdf (b) cdf −1

Figure 5.7: Steps in a normal distribution

1What the user wants to achieve in the end is a feasible solution
2The graphs showing the trend of the overall constraints’ violations over time are shown in the next chapter

38 OWFLO problem setup

The expression used to draw the image on the right is as follows 3 [71]:

CDFnormal−inverse = µ+ σ
√

2 · erf−1(2 · rand[0, 1]− 1) [m] (5.8)

A turbine can move only within a certain area and has larger probabilities to be shifted by a relatively small
number (Figure 5.7b). As mentioned before, the value of the mean is equal to the x (or y) coordinate of the
turbine. The standard deviation has been set as 400 m. The reason is because with σ = 400m the turbines
have enough space to move without being placed too far away from their original position, as can be seen from
the graphs above. This approach made all the combinations converge to a solution.

5.4.4 Absence of constraints

A common approach to handle constraints within the OWFLO problem is to discretize wind farm area using a
grid which prevents all the turbines from violating any of the constraints [5]. Several authors used this approach,
which has been mostly combined with genetic algorithms [7] [37] [38] [39] [72]. The more the constraints are,
the more it is difficult to build a grid. However, this has to be done just for the initialization, as explained
before in this chapter. It can be concluded that the grid is both an initializing methodology and, at the same
time, a CH technique.

5.4.5 Conclusion on CHTs

The following table is provided to give an overview of the constraint-handling techniques used in this work.

Table 5.7: CHTs summarizing table

Constraint-handling technique Values of the parameters

Penalty function Static λ = 1 C = 1
Dynamic λ = 1 C = (0.0001 · T)α α = 1.1

(LCOE = LCOE + λ · C · g(x)) Adaptive λ = ±50 C = (0.00001 · T)α α = 1.1

Repair mechanism Normal distribution sampling: σ = 400, µ = x (or y)

Absence of constraints Grid initialization

5.5 Stopping criterion

The stopping criterion which has been considered is as follows. The algorithm stops when all the individuals of
the population differ from less than a certain tolerance between subsequent generations. This tolerance is a 10
m difference between the position of the turbines of the individuals.

5.6 Summary of the chapter

In this chapter, the way the OWFLO problem is coupled to the algorithms, the initializions and the constraint-
handling techniques is explained. The population of individuals which is needed to start the algorithms is
nothing but a large array which contains the candidate layouts (i.e. the individuals), each of them made of the
same number of turbines. This population can be initialized either via a random methodology, which places
the turbines in the OWF area without paying attention to the constraints, or via a grid-based approach, which
forces the turbines to belong to pre-defined spots, or via a feasible initialization, which yields only feasible
starting layouts.
The constraint-handling techniques which have been explored were: penalty functions (static, dynamic and
adaptive), which simply add a penalty to the objective function (to be minimized) in order to bias the al-
gorithm towards feasible solutions; repair mechanisms, which force the population of candidate layouts to be
always feasible over the iterations; absence of constraints, which is the mechanism adpoted by the grid-based
initializations.

3Equation 5.8 is also called quantile function

Chapter 6

Results

6.1 Introduction to the chapter

In this chapter, the results from the optimizations are presented. First of all, an overview of all the combinations
of the optimizing strategies is provided, as well as the assessment criteria which are used to rank them. Secondly,
the best three combinations are identified. The optimized results for PAWP and EL are then compared to the
performance of the real design. In the end, two additional studies are carried out: the former investigates on
the effect of the wind direction sampling on the optimization; the latter gives insights on the influence of the
design areas on the optimization and the potential contributions of those disciplines to the LCOE improvement.

6.2 Analysis of the combinations

In this section, an overview of all the analyzed combinations is given; after that, the motivations behind their
choice and the trends which characterize them are explained.

6.2.1 Overview of the combinations

Table 6.1 summarizes all the combinations which were tested.

Table 6.1: Summary of all the analyzed combinations of algorithm-CHT-Initialization blocks

Algorithm Constr. Handl. Technique Initialization

GA PSO DEA
Static
Pen.

Dyn.
Pen.

Adapt.
Pen.

Repair Rand.
Rand.
modif.

Equil.
Triang.

Rand.
Triang.

Square Feas.

1 � � �
2 � � �
3 � � �
4 � � �
5 � � �
6 � � �
7 � �
8 � �
9 � �
10 � � �
11 � � �
12 � � �
13 � � �
14 � � �
15 � � �
16 � � � �
17 � � � �
18 � � �
19 � � �
20 � � �
21 � � �
22 � � �

39

40 Results

It is important to note that the 16th and 17th block consist of a hybrid initialization, i.e. two initializing
mechanisms are chosen to create one population. The reason is explained in the next paragraph.
All the combinations were run from five to seven times.

6.2.2 A closer look at the combinations

As can be seen from Table 6.1, three main groups can be identified. These are the GA, PSO and DEA algorithms,
each coupled with a different initialization and constraint-handling technique. The following lines try to explain
why those combinations were selected and which are the patterns which characterize them.

Genetic Algorithms

The first three blocks (1, 2 and 3) have been chosen to investigate on how the static penalty functions, which
are the most widely used in literature, work when coupled with different initializations. The graphs illustrating
the total constraint violation magnitude (in m) of the population vs. the number of iterations are shown below.

(a) Feasible Initialization - Combination 1 (b) Random Initialization - Combination 2

(c) Random modified Initialization - Combination 3

Figure 6.1: Examples of the constraint violation plot for the genetic algorithm with static penalty (EL). The blue
trend in Figure (a) indicates that in every iteration the selected parents are feasible

As can be seen, the only satisfactory approach is combination a, as the others fail to find a feasible solution.
When a GA, initialized with a feasible population and a static penalty, selects the best individuals and then
combines them by means of crossover, then all the children which violate the constraints cannot compete with
the parents (which are all feasible). However, since the crossover mechanism is performed randomly, there might
be some children which do not violate any of the constraints. This is because it may happen for one of the two
parents to put its genes (i.e. the turbines) into the child to a (much) higher extent than the other one. The
final child will look like one of the parents with some little modifications from the other parent; thus, it will
be then very likely to respect all the constraints and even compete with other feasible individuals. The result
is a feasible solution. Figure 6.1a shows that the magnitude of constraint violation decreases for the entire
population (until it reaches 0 m), while the parents which generate the new population are always feasible. The
bigger is the population, the higher the chances are to obtain feasible children pretty soon.
By contrast, when the initialization is performed randomly (Figures 6.1b and 6.1c), the genetic algorithm imme-
diately creates children which compete against the (infeasible) parents, but it soon stabilizes on a solution which

6.2 Analysis of the combinations 41

violates the constraints, of course to a lower extent than the initial population, but which is still unfeasible.
This is not uncommon in literature. Biasing the starting population towards a good direction usually helps the
algorithm be more effective; when randomly initialized, the GA spends a large amount of time just to fall in
a feasible domain [73], with a higher risk of getting trapped into local infeasible minima. This problem might
still be solved by considerably raising the size of the population (≥ 100), but the computational effort would
then become unsustainable.

The next three blocks (4, 5 and 6) combine respectively the dynamic penalty, the adaptive penalty and the
repair mechanism with an initial feasible layout.
Regarding the first two combinations, (cases 4 and 5), a feasible starting point has been chosen because, in
analogy with blocks 2 and 3, it has been found particularly hard for a genetic algorithm to start with an infea-
sible layout and move towards a good feasible solution with a penalty: as was clear from Figures 6.1b and 6.1c,
the solution did not converge towards a feasible layout.
On the other hand, a feasible initialization, coupled with updating penalties, provided satisfactory results,
because it allows the exploration of the infeasible space whilst maintaining some feasible individuals in the
population, as Figure 6.2a and 6.2b show.

(a) Dynamic penalty - Combination 4 (b) Adaptive penalty - Combination 5

Figure 6.2: Genetic Algorithm with feasible initialization and dynamic/adaptive penalty - PAWP

As can be seen in the figure above, for the displayed example the adaptive back-up mechanism (Fig. 6.2b),
described in Paragraph 5.4.2, acts at iterations 4, 10-15: the mean LCOE raises abruptly because too many
individuals are infeasible and the penalty function suddenly increases by the factor λ. At the end, the solution
is feasible - the constraint violation magnitude is 0 - and lower (in this example just by a little quantity) than
the best individual in the starting population (i.e. the best initial guess). Instead, the dynamic penalty (Fig
6.2a) always increases a little bit: the constraint violation magnitude and the mean LCOE of the population
are high in the first iterations, but then globally decrease.

The repair mechanism (combination n◦6) obviously works with a feasible population, as the core of that block
is the feasibility.

Figure 6.3: Genetic Algorithm: mean number of turbines violating constraints - PAWP

42 Results

Figures 6.3 illustrates for the entire population how the mean number of turbines violating the constraints
diminishes over the iterations. It can be clearly seen that after some iterations the algorithm starts to create
only feasible individuals which do not need to be repaired anymore.

The 7th, 8th and 9th block just evaluate the grid-based approach. This is characterized by feasible genera-
tions. It is just important to note that if two parents generate a child which has two identical genes - if one
layout has two turbines in the same grid point ([x, y] position) - a ”repair” mechanism has been implemented:
one of the two genes is randomly replaced by another point belonging to the grid.

Particle Swarm Optimizations

Similarly to the first three blocks, combinations n◦ 10, 11 and 12 concentrate on the way static penalties deal
with different initializations. Differently from the GA, none of these combinations was able to provide a final
feasible solution. If the PSO is initialized with a feasible population - combination n◦ 12 - no progress is done
by the optimization because all the new particles cannot compete with the (good) initial guess. Instead, when
the initialization is randomly performed, the algorithm gets stuck into local (infeasible) minima. This can be
noticed from the flat trend towards the last iterations in Figure 6.4: all the new solutions computed in each
iteration cannot compete anymore with the previous ones and the algorithm sticks to the same value.

Figure 6.4: PSO: Value of the best global position of the swarm - static penalty function and random initialization
(EL) - combination 10

Figure 6.4 shows the pattern of the global best position of the swarm. Although some significant improve-
ments w.r.t. to the first iterations takes place, this is not enough to ensure a fully feasible solution1). Multiple
combinations of the inertia factors C0, C1 and C2 (see Equation 4.1)(used for the calculation of the speed of
one particle) have been tried, without success. The reason may lie in the fact that a random initialization
does not allow some more uniform placement of the turbines. A possible solution might be the exploitation of
quasi-random techniques which decrease the overall starting infeasibility of the swarm [74] (without making the
population totally feasible), but this possibility has not been explored in this work.

Combinations n◦ 13 and 14 analyse how the dynamic and the adaptive penalty functions deal with feasible
initializations. Interestingly, none of the analysed combinations provided satisfactory results. In particular,
none of these blocks was able to make some progresses. This means that after the first 1-2 iterations, the
particles do not update anymore, as no better solutions are found over the course of the optimization. The
explanation is as follows. In case of a feasible initialization, the inertia factors C0, C1 and C2 create, during the
first iterations, highly infeasible individuals which are not able to compete with the initial guess, even though
the dynamic and the adaptive penalty functions allow a high exploration of the design space (the C factor is
very low, as explained in Chapter 52). Therefore, there are two ways to solve this issue: the first is to reduce
the inertia factors and the second is to further reduce the C factor in the penalty function definition. But, if the
former is applied, then the PSO would lose its capacity to explore the design space: too similar particles would
be created from one generation to another, inhibiting the swarm from finding a solution which is not highly
dependent on the initial guess (too pronounced similarity); on the other hand, if the latter approach is applied,
the particles update over the iterations, as now the penalties are so low that the competition among old and new

1the extreme high LCOE values show that a penalty is still applied. Thereofore, the solution is still infeasible
2The C factor is not one of the inertia factors! It is defined in the penalty mechanism (Equations 5.4 and 5.6).

6.2 Analysis of the combinations 43

individuals is enhanced, however this phenomenon lasts just for some more iterations (around 5-6) and no more
progress is achieved. The actual root of the problem has not been identified yet. It seems particularly hard for
a PSO not to include too highly infeasible individuals in the optimization. That is maybe the reason why there
are no examples of dynamic or adaptive penalties applied to this algorithm. Some authors use techniques such
as a multi-swarm PSO [75] or a distance-based fuzzy function to determine the penalty coefficients [76], however
these approaches are far from the penalties described in the previous chapter. Since no further explanation can
be ultimately given, these approaches have not been considered anymore.

Combination n◦15 deals with the repair mechanism coupled with the feasible initialization. Figure 6.5 shows
that the mean number of violating turbines diminishes over the iterations, however, differently from the GA
(and, as shown in a few lines, the DEA), this number does not approach to zero towards the end of the opti-
mization. The reason lies in the fact that on the one hand the GA and the DEA are evolutionary-based, meaning
that the entire population converges towards the minimum as it is part of the evolutionary process; on the other
hand, in the PSO the particles are much more independent from each other. Therefore, when the stopping
criteria is satisfied and the optimization stops, there is no overall similarity between the swarm particles and
thus no convergence towards zero-violating turbines.

Figure 6.5: PSO: mean n◦ of turbines violating constraints, repair mechanism, feasible initialization - EL

Differential Evolutionary Algorithms

As mentioned slightly above, the 16th and 17th block consist of a hybrid initialization - i.e. two initializing
mechanisms are chosen to create one population - and a static penalty. This has been done due to the issues
which combination n◦ 18 - same as 16 and 17 but with one initializing technique only - creates on the overall
convergence. In other words, block n◦ 18 starts from an infeasible population. When combining the individuals
to create a new one for the next iteration (see Equation 4.3), the static penalty approach makes the optimization
unable to escape from local (infeasible) optima, in the same way as for combinations n◦ 2, 3, 10 and 11 (Figures
6.6a and 6.6b).

(a) Random modified initialization (b) Random initialization

Figure 6.6: The ”DEA-static-random initialization”: population constraint violation plot. For reasons of simplicity,
the population is initialised first via randomly and then via random-modified initialization, despite
belonging to the same combination (Combination 18)

44 Results

The DEA’s mutation-based way of creating new individuals in the population decreases the magnitude of the
constraint violations, as can be seen in Figures 6.6a and 6.6b but, since the individuals are distributed randomly,
it is extremely difficult to eventually bias the search towards a feasible solution: there is not enough uniformity
in the starting turbines’ placement, hence the DEA is not able to force all the turbines to either stay within
the boundaries or to be at least 4D far from each other. Some authors claim that higher probabilities to obtain
feasible solutions may be yielded if the penalty was further increased: this typically results in a fast convergence
to a feasible result [43]. However, in this work the difference between the LCOE of a feasible solution (order
of magnitude: 101e/kWh) and of a penalized solution (order of magnitude: more than 103 − 104e/kWh) is
already so big that further increasing the penalty would not lead to significant improvements.

On the other hand, combo n◦ 19 (static penalty with feasible initialization) is completely useless as it does
not allow the iterations to progress. In fact, since the DEA creates new individuals by adding/subtracting their
[x, y] turbine coordinates, it is evident that all the new individuals, from the second iteration onwards, will
be extremely likely to violate the constraints. When this happens, the static penalty increases the objective
function and none of the new individuals is able to ”win” against the starting feasible ones.

That is why the hybrid initializations were done. Since with the static penalty approach the results from either
a totally infesible or feasible population were not good, the idea of combining them arose. If half of the initial
population is feasible and the other half is infeasible, then during the first iterations some new individuals might
actually compete against the infeasible half. Interestingly, after some time the optimization is able to find even
better individuals than the initial feasible ones.
The reason for that is shown in the following picture.

Figure 6.7: The ”DEA-static-hybrid initialization” optimization

In the first phase3, only the infeasible half is modified over the iterations. The mutation mechanism in Equation
4.3 keeps randomly picking three individuals from both halves. However, when the infeasible half moves towards
a certain local (infeasible) minimum - as happens in block n◦ 18 - the individuals belonging to that half will
start looking like each other. Therefore, there will be the growing probability that, when Equation 4.3 picks
three random individuals, similar individuals get picked and maybe slightly edited by the feasible individuals. An
example could be: after some time, layouts i and j come from the infeasible half and are similar to each other;
layout k comes from the feasible part. When combined by Equation 4.3, the resulting individual will look like
layouts i and j with some ”feasible” features coming from k. After some time, this will make the population
move towards feasible solutions, as the final output will be a layout with ”infeasible origins” which has been
continously modified by the feasible half.

Cases 20 and 21 respectively deal with the combination of the DEA-feasible initialization and dynamic/adaptive
constraint handling technique. The plot of the mean LCOE and the constraint violation magnitude is shown
below.

3Note: there are no ”phases”: this distinction was done just to enhance the comprehension of the hybrid initialization

6.3 Assessment of the combinations 45

(a) Dynamic penaly (b) Adaptive penalty

Figure 6.8: Differential Evolutionary Algorithm with feasible initialization and dynamic/adaptive penalty - PAWP

In analogy with Figures 6.2a and 6.2b, the adaptation mechanism (Fig. 6.8b) suddendly increases the penalty
(at iteration 28); here, at iteration 27, the magnitude of the constraint violation is so low that even if the
iteration is on a late stage, the infeasible individuals compete against the feasible. Therefore, λ raises until the
constraint violation magnitude (in black) eventually goes to 0; the dynamic penalty plot (Fig. 6.8a) shows the
same pattern as for the genetic algorithm.

In analogy with the GA, when the repair mechanism (coupled with a feasible initialization - block n◦22) is
applied to the DEA, for the entire population the mean number of turbines which violate the constraints
decreases as long as the optimization runs.

Figure 6.9: Differential Evolutionary Algorithm: mean number of turbines violating constraints - PAWP

As can be noticed, even in the DEA the population, after some iterations, stabilizes on generating only feasible
layouts, even if it takes longer than in the GA.

6.3 Assessment of the combinations

This section explains the assessment criteria which have been used to score the different combinations. After
that, the results and the consequent ranking are shown.

6.3.1 Presentation of the assessment criteria

The criteria and metrics used to evaluate each block are either taken from literature [9] or defined by the author.
These are here itemized. Since the final goal is to perform a multi-criteria analysis of the blocks, all the results
from the assessment criteria are normalized from 0 to 1. The smaller the scores are, the better performing one
block is.

46 Results

� Optimality [9] (Moptimality).
This criterion defines the absolute goodness of the final result from the optimization (in this case, how
low the LCOE is):

Moptimality = LCOE (6.1)

� Feasibility [9] (Mfeasibility)
Since some blocks may lead to slightly infeasible layouts (overall small constraint violation) which can be
further processed and modified by the user, the extent of this (low) violation is measured by this criterion.
This is done by calculating the final overall magnitude of the constraint violation:

Mfeasibility =

Nturbines∑
i=1

(g1(x) + h1(x)) (6.2)

� Precision [9] (Mprecision).
The user is obviously interested in a block which gives the same optimum consistently. Mprecision measures
the standard deviation of the optimal solutions yielded by multiple runs of the same combination.

Mprecision =

√∑Nruns

i=1 (LCOEi − LCOEmean)2

Nruns − 1
(6.3)

� Speed (Mspeed).
This criterion assesses the speed of the selected block. Since the time for one iteration might change for
each algorithm, as well as the mean number of required iterations to find a solution, Mspeed is evaluated
by taking the product of the mean time to complete iteration and the mean number of iterations:

Mspeed = niterationsmean
· Titeration (6.4)

� Random sampling (Mrandom−sampling).
Each optimization gets an output after a certain number of iterations; in every iteration, the objective
function (i.e. the LCOE) of every individual in the population (p) is evaluated. This means that the
total number of objective function evaluations in one run is equal to Nevaluations = niterations · psize. The
random sampling criteria consists of calculating the LCOE of a population of layouts 4, which is equal to
Nevaluations.
Since different initializing techniques are available to create layouts, that population is initialized in the
same way as the block under consideration. The LCOE of all the individuals in the population is computed
in WINDOW and the distribution of the results is drawn. It has been observed that the data follow a
normal trend. The cumulative distribution function is then calculated. This is the expression written in
Equation 5.7. The mean value of the objective function from the optimization is then compared to the set
of random results. If the former is lower - i.e. better - than the smallest value from the set, this means
that with the same Nevaluations, the optimizing block being analyzed performs better than a pure random
search; by contrast, if some LCOE’s from the set are lower than the LCOE from the optimization, then
the optimizing block falls into local minima and therefore performs worse than a pure random search.
However, since random search is determined by pure luck, there is no certainty that if one run is repeated,
the resulting set will still yield a better LCOE w.r.t. the optimized one. Therefore, a statistic approach
is used: the cumulative distribution function which is yielded after one run gives the probability the
random search has to provide a better LCOE than the one computed by the optimizing block. The closer
this probability is to 0, the better-performing the optimizing block is. The random sampling criterion can
eventually be defined as follows:

Mrandom−sampling =
1

2
[1 + erf(

LCOEoptimized − µrand−search
σrand−search

√
2

)] [−] (6.5)

being µ and σ the mean and the standard deviation from the LCOE distribution computed in the random
search. An example is provided below. The Particle Swarm Algorithm coupled with a repair mechanism
for Eneco Luchterduinen is displayed. As can be seen, the random search provides LCOE values which
follow quite well a normal distribution (this happens for all the other optimizing blocks - see Appendix
D). In the case displayed in Figure 6.10a and 6.10b, the optimizer is better than the random search. The
probability for the random search to find a better LCOE than the optimization is extremely low.

4This means that only WINDOW is used and no optimization is carried out.

6.3 Assessment of the combinations 47

(a) Fitted normal distribution of random sampled data (b) Scatter random sampled data

Figure 6.10: Random sampling: histogram and scatter plot - example from Eneco Luchterduinen

� Robustness (Mrobustness).
The robustness evaluates the capacity of a certain block to perform similarly for each case study. It is the
only criterion which depends on the others and this is why it has to be chronologically analyzed last. All
the values from the other criteria are normalized. In this work, the robustness has been defined as the
standard deviation of the normalized scores - from the other assessment criteria - in each use case:

Mrobustness =

Ncriteria=5∑
j=1

(√∑N
i=1(scorei − scoremean)2

N − 1

)
j

∀ assessment criteria (6.6)

N is the number of case studies (in this work 2, i.e. EL and PAWP); scorei is the score that one assessment
criterion yields w.r.t to case study i and Ncriteria is the number of assessment criteria (here: 5).

6.3.2 Overview of the scores

The final scores for the two case studies are displayed in Tables 6.2 and 6.3. Since several identical optimizing
runs have been done for each block, the final scores are the mean of the results. Data must be read with the
rule ”the lower, the better”.

Table 6.2: Overview of the scores for PAWP case study

Case study 1 - Prinses Amalia WindPark

Block
Optimality
[ce.kWh−1]

Feasibility [m] Precision [-] Speed [s]
Random

sampling [-]

1 GA-static-feas. 9.55 0 0.0369 1735.98 0.00768

2 GA-static-rand. 9.68 109.486 0.0251 1351.46 0.04682

3 GA-static-rand. mod. 9.66 973.6666 0.0288 1542.05 1.17E-02

4 GA-dynamic-feas. 9.54 0 0.0535 876.5 2.12E-03

5 GA-adaptive-feas. 9.57 0 0.0278 1116.42 0.01858

6 GA-repair-feas. 9.44 0 0.0317 1389.59 2.41169E-06

7 GA-equil. triangle 9.56 0 0.0776 1302.76 2.416E-08

8 GA-rand. triangle 9.52 0 0.0599 1140.45 0.0199

9 GA-square 9.76 0 0.4462 2145.22 2.90E-14

10 PSO-static-rand. 9.77 420.03 0.0148 1529.045 0.3148

11 PSO-static-rand.mod. 9.77 312.5 0.063498189 1564.70 0.3148

12 PSO-static-feas. no progress

13 PSO-dynamic-feas. no progress

14 PSO-adaptive-feas. no progress

15 PSO-repair-feas. 9.44 0 0.0229 8640 2.85E-06

16 DEA-static-rand.+ feas. 9.54 0 0.0397 5210.28 0.0071

17 DEA-static-rand. mod. + feas. 9.57 0 0.0309 4499.28 0.02748

18 DEA-static-rand. 9.71 2210.4 0.1085 3940.41 0.10836

19 DEA-static-feas. no progress

20 DEA-dynamic-feas. 9.53 0 0.0379 3599.94 0.00159

21 DEA-adaptive-feas. 9.56 0 0.0418 3868.37 0.00579

22 DEA-repair-feas. 9.42 0 0.0354 4406.96 7.90E-07

48 Results

Table 6.3: Overview of the scores for EL case study

Case study 2 - Eneco Luchterduinen

Blocks
Optimality
[ce.kWh−1]

Feasibility [m] Precision [-] Speed [s]
Random

sampling [-]

1 GA-static-feas. 7.36 0 0.016 739.64 0.00871

2 GA-static-rand. 7.413 1024.6 0.0542 2834.04 0.1065

3 GA-static-rand. mod. 7.440 1092.3 0.0127 964.593 0.005727334

4 GA-dynamic-feas. 7.35 0 0.0299 791.375 0.0016

5 GA-adaptive-feas. 7.364 0 0.03047 614.631 0.00323

6 GA-repair-feas. 7.32 0 0.0184 1298.192 6.07E-05

7 GA-equil. triangle 7.43 0 0.0048 665.43 7.22E-05

8 GA-rand. triangle 7.3388 0 0.0214 622.568 6.50E-07

9 GA-square 7.9551 0 0.0327 872.48 0.00033

10 PSO-static-rand. 7.5233 1167.6 0.0461 1142.05 0.9169

11 PSO-static-rand.mod. 7.48 788.6 0.0301 787.05 0.0301

12 PSO-static-feas. no progress

13 PSO-dynamic-feas. no progress

14 PSO-adaptive-feas. no progress

15 PSO-repair-feas. 7.33 0 0.00158 25072.05 0.0002

16 DEA-static-rand.+ feas. 7.365 0 0.0136 3255.195 0.0124

17 DEA-static-rand. mod. + feas. 7.39 0 0.0226 2924.324 0.0906

18 DEA-static-rand. 7.478 5757 0.0345 3134.175 0.6177

19 DEA-static-feas. no progress

20 DEA-dynamic-feas. 7.379 0 0.0092 1745.975 0.0237

21 DEA-adaptive-feas. 7.38 0.06 0.0159 1968.037 0.05491

22 DEA-repair-feas. 7.31 0 0.0106 6596.887 5.22E-06

As mentioned in Paragraph 5.3.3, the triangled-random grid, due to its irregular shape, obtains a better opti-
mality than the other grid-based approaches. As can be further seen from above, the Robustness has not been
reported in the tables. Since that criterion depends on the other criteria and on the number of case studies,
there are no values for individual cases. The way Robustness has been used is described in the next paragraph.

6.3.3 Selection of the best optimizing blocks - Multi Criteria Analysis (MCA)

In order to fairly determine the best optimizing block, a multi-criteria analysis (MCA) has been performed.
By definition, a MCA consists of a set of m alternatives (A1, A2, ..., Am) and n decision-attributes criteria
(also called benefit attributes) (R1, R2, ..., Rn) [77]. Every decision criterion is assigned a pre-defined weight ωi
(i ∈ [1, n]) which establishes the relative importance of one criterion over the others. In this thesis, the alter-
natives are the optimizing blocks and the decision-attributes are the Optimality, Feasibility, Precision, Speed,
Random Sampling and Robustness.
The preliminary step to carry out a correct MCA is to normalize the original data [78]. After that, several
methodologies can be used in the decision-making process. In this paper, two of the most popular techniques
have been chosen: a Simple Additive Weighting method (SAW) and a Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [77] [79].
It is important to stress that some extensive research has been done on the influence of the data normalization
on the multi-criteria decision-making technique. Vafaei et al. [79] [77] generally acknowledge, thanks to consid-
erations based on the calculated average result deviation for each normalization technique, the best normalizing
method to be the vector normalization. In other words, the score that one alternative has based on a certain
benefit attribute (shown in Tables 6.2 and 6.3), is normalized as follows [79]:

rij = 1− xij√∑m
i=1 x

2
ij

(6.7)

The 1 in Equation 6.7 is used because in Tables 6.2 and 6.3 the best values are the lowest ones, whereas a
multi-criteria analyis is usually performed by maximizing the score that an alternative gets. Equation 6.7 is
used both for TOPSIS and SAW, however some authors [80] also suggest using a linear scale normalization
(which is more intuitive) to be implemented into the SAW approach:

rij = 1− xij∑m
i=1 xij

(6.8)

Both these combinations have been tried. The values from Tables 6.2 and 6.3 have been normalized both via
Equation 6.7 and by Equation 6.8. After that, a single table made of the mean values is built. The Robustness

6.3 Assessment of the combinations 49

uses the data from both Table 6.2 and Table 6.3 to yield a single value for each block. This value is normalized
and then it simply becomes a column in the mean-values table. To enhance the comprehension, the table below
shows the vector-normalized mean values from the combination of the two previous tables.

Table 6.4: Overview of the mean vector-normalized scores for the two case studies (PAWP and EL): high values
indicate a better performance. In the original table, numbers are rounded up to the 6 decimals

Block
Optimality

[-]
Feasibility

[-]
Precision

[-]
Speed [-]

Robustness
[-]

Random sampling
[-]

1 0.766 1.00 0.888 0.926 0.852 0.988

2 0.763 0.89 0.732 0.901 0.622 0.902

3 0.763 0.71 0.913 0.929 0.774 0.985

4 0.766 1.00 0.811 0.955 0.835 0.997

5 0.765 1.00 0.835 0.950 0.788 0.978

6 0.768 1.00 0.885 0.928 0.909 1.000

7 0.764 1.00 0.899 0.943 0.913 1.000

8 0.766 1.00 0.843 0.949 0.860 0.978

9 0.754 1.00 0.398 0.909 0.859 1.000

10 0.761 0.82 0.778 0.926 0.517 0.249

11 0.761 0.87 0.800 0.931 0.660 0.646

16 0.768 1.00 0.969 0.235 0.991 1.000

17 0.766 1.00 0.898 0.759 0.807 0.987

18 0.765 1.00 0.867 0.790 0.759 0.930

19 0.762 0.08 0.735 0.805 0.612 0.606

21 0.766 1.00 0.920 0.843 0.861 0.988

22 0.765 1.00 0.886 0.829 0.810 0.969

23 0.768 1.00 0.916 0.725 0.921 1.000

The next step is to choose appropriate values for the weights ωi. These will multiply each cell of the table
above. Several ways to build well performing weights exist. In multi-criteria decision analysis, they are usually
classified into three categories [78]: subjective (defined by the user), objective (defined by some algorithms) and
combined. In this work, the former has been chosen, due to its simplicity and flexibility. The weights are listed
in Table 6.5. It is crucial to stress that the sum of ωi must be 1.

Table 6.5: List of weights ωi applied to the assessment criteria Ci

Optimality Feasibility Precision Speed Robustness Random Sampling

0.25 0.1 0.1 0.1 0.2 0.25

The optimality and the random sampling have the highest influence: the former because of the desire to lower
the LCOE of an OWF; the latter because this criterion evaluates the goodness of one optimizing technique
w.r.t. to pure random search (see Paragraph 6.3.1). On the other hand, the robustness is also meant to play an
important role as it appraises the performance of one block over multiple case studies. The remaining attributes
have the same relative importance.

After having normalized and weighted all the values, either the SAW or the TOPSIS approach can be applied.
The former consists of simply adding each element belonging to the same row. The final result is the overall
score of each optimizing block; the latter is slightly more complicated and is described in full detail in Appendix
B. The final ranking of the combinations listed in Table 6.1 are shown below.

Table 6.6: Combination ranking for different multi-criteria analyses

TOPSIS vector-normalized SAW vector-normalized SAW linear-sum normalized

1) GA-equilateral triangle 1) GA-equilateral triangle 1) GA-equilateral triangle

2) GA-repair mech.-feasible 2) GA-repair mech.-feasible 2) GA-repair mech.-feasible

3) DEA-repair mech.-feasible 3) DEA-repair mech.-feasible 3) GA- static pen.-feasible

4) GA-static pen.-feasible 4) GA-static pen.-feasible 4) DEA-repair mech.-feasible

The three multi-criteria analyses give almost the same results. There is some little misalignment at the third
and fourth place, but since literature generally identifies the vector normalization to be the best in both analyses
(TOPSIS and SAW), the third place is assigned to the ”DEA-repair mech.-feas” block.
A few remarks have to be stressed.

50 Results

� The repair mechanisms have the best results in terms of optimality and random sampling. In particular,
the Differential Evolutionary Algorithm always yields a lower LCOE w.r.t. to the Genetic Algorithm in all
the analyzed cases, whilst the random sampling score is similar. The reason is because the GA exchanges
information thanks to the crossover and therefore it works with combinations of a limited set of values, i.e.
the initial population. Although there is mutation, which is meant to prevent GAs from falling into local
minima, this may not be sufficient to overcome the optimality of the DEA mutation-based way to create
new individuals. In other words, the DEA has more freedom than the GA when generating a population.

� The Genetic Algorithm is, on the other hand, much faster than the DEA and therefore is recommended
to those users who are slightly less interested in performing a detailed design and prefer having something
quicker with little loss of optimality. The higher speed of the GA can still be justified due to the mechanism
of producing new individuals over the iterations. Due to their combinatorial nature, Genetic Algorithms
converge faster as they deal with a ”closed group” of variables.

� The outputs from the repair mechanisms in different case studies are also consistent with each other (good
robustness) and precise. The spread of the LCOE values in identical runs is low, as well as the deviation
of the scores for different use cases.

� The equilateral-triangle initialization is characterized by very good values for optimality and random
sampling and excellent results in terms of precision and robustness. However, as explained in Paragraph
6.3.1, when the random sampling assessment criterion is applied to a block, the LCOE of Nevaluations
layouts is performed by using the same initializing technique of that block. Therefore, the excellent
”random sampling value” which the combination ”GA-equilateral triangle” yields is because of the starting
layouts which are triangle based and not - as many other combinations - created by means of random
feasible initialization (which usually provides lower LCOEs).
Triangle-based optimizations are precise, robust, produce feasible solutions and have some sufficiently
good optimality, although a random search (performed with random feasible individuals) would obtain
lower LCOEs. However, since triangle-based procedures are also fast - much faster than pure random
search with feasible initializations - they are suitable for preliminary estimations, which do not require
much accuracy but at least give the designer some guidelines on what to expect from a certain OWF.

Based on these considerations, the optimizing procedures which the author suggests using are the repair mechanism-
based DEA and GA.

6.4 Comparison with the real wind farms

In this section, the results from the optimizations are compared to the realised LCOE of the case studies. The
results are described and commented in Paragraph 6.4.1. Since some important issues rose on the influence of
the wind direction sampling on the optimizations, Paragraph 6.4.2 analyzes this in detail.

6.4.1 Overview of the results

In this paragraph, the mean value of the LCOE from each optimizing technique is shown for Prinses Amalia
and Eneco Luchterduinen. Figures 6.11a and 6.11b illustrate the deviation in percentage of the new LCOEs
from the realised levelised cost of energy of the wind farms5.

(a) PAWP (b) EL

Figure 6.11: Mean percentage of change from real to optimized LCOE

5The real layout of the wind farm has been set in WINDOW and the LCOE has been calculated

6.4 Comparison with the real wind farms 51

As can be noticed from the bar charts, for PAWP all the combinations yield a better LCOE than the real
case - and the best results are achieved by the repair mechanisms - but, interestingly, no optimizing block is
able to produce a result which is better than the real case (the change in percentage is positive) for Eneco
Luchterduinen. Three important observations need to be stressed.

� First of all, Figures 6.11a and 6.11b provide clear evidence that the best LCOE values are achieved by
the repair mechanisms. In fact, these yield the highest negative percentage deviation for PAWP and the
lowest positive deviation for EL. This is not a surprise, as these are the blocks with the best optimality
score.

� All the written optimizing codes are meant to provide irregular layouts, whereas, as shown in Figures 3.3
and 3.5, both the real layouts of PAWP and EL are regular. The outcome from the driver is always an
irregular layout both because of the stochastic elements which characterize the algorithms and the fact
that the initial population, even in grid-based approaches, is never regular (so that it is difficult to bias
the algorithms towards a regularly shaped layout). It is crucial to note that even if the LCOEs from
the simulations are worse than the real case for EL, in all the runs the optimizers always found a better
solution than the layouts in the initial (irregular) population (and the best layouts yield an LCOE which
is 1% more than the baseline). Further evidence of the good performance of the algorithms was obtained
as follows: the real layout of EL (with some little modifications) was used as one of the individuals in
the population. In that case, the optimal solution was better than the actual layout. Thus, if fed with a
(good) regular layout, the algorithm obtains a better value than the baseline. Indeed, no accurate study
has been carried out in this thesis about the goodness of a regular layout w.r.t. an irregular one for the
optimization. It is important to note that the wind farm boundaries of Eneco Luchterduinen are even
much tighter than in Prinses Amalia. It can be consequently possible, for a regular layout, to be better
performing in a tight area as some better exploitation of the wind resource can be achieved. Literature
usually agrees upon the fact that irregular-shaped layouts perform generally better than regular ones
[7][37][70], but this is not a rule. Therefore, further research is advised in order to better investigate on
the effect of a regular population as a starting point for the optimization.

� The wind direction sampling used to calculate the wake effects in each sector was set equal to 45◦ (Para-
graph 3.3.3). Therefore, it would be interesting to investigate on the influence of the wind direction
sampling stepsize to see whether the regular layouts might really perform better than irregular ones. In
fact, eight wind direction sectors may not be enough to properly assess how the wind farm captures the
wind resource. This is investigated in detail in the next paragraph.

6.4.2 The influence of the wind direction sampling stepsize

The reason why the real (regular) layout of Eneco Luchterduinen performs better than the ones from the
optimizations may be due to an artificial improvement, i.e. the cause may lie in the relatively rough wind
direction sampling which has been used (8 sectors of θ = 45◦ each, being θ the angle drawn by each sector). As
written by Porté Agel et al. [81], using different wind direction sampling angles can be interpreted as changing
the layout of the wind farm relatively to the incoming wind, whilst maintaining the same turbine density. An
article about the correlation between wind sampling and optimization was written by Feng and Shen in 2015
[2]. In that paper, the authors analyse how modelling the wind direction distribution may have an impact on
the overall optimization of the wind farm layout. To let the reader acknowledge how tricky this topic may be,
they provide an example. A fictitious wind farm is built. This is made of three turbines only, which are located
at the edge of a circle and which are equally spaced (blue circles). A second, identical wind farm is built in the
same way, but 15◦-rotated (in red), as Figure 6.12 shows.

Figure 6.12: Fictitious identical wind farms. The one in red is slightly rotated by 15◦ [2]

52 Results

If this example was under the assumption of a constant wind speed, uniformly distributed among all the
directions (same probability for each angle), it could be concluded that Layout 1 (in blue) and Layout 2 would
have the same power output. However, if the wind direction sampling stepsize was equal to 30 degrees, the
wind probability was still the same in each sector and the wake zones were plotted6, the power output would
be different for the two wind farms due to the wake effects, as next figure shows.

Figure 6.13: Wake development in the two layouts being ∆θ = 30◦. The red one performs better than the blue
one [2]

As Figure 6.13 shows, the expected power output from Layout 2 would be higher than Layout 1. This con-
tradicts the previous observation, which stated that the power output should be the same. This means that if
the wind is discretized into 12 sectors (θ = 30◦), one alternative becomes better than another. Nevertheless,
in reality wind comes from all the directions so that this improvement might actually be artificial. Something
similar is therefore likely to happen even for the case studies in this thesis. In other words, the real (regular)
layout - in this case of Eneco Luchterduinen - could perform worse than the ones from the optimization, if more
than 8 sectors were considered.
Therefore, the effect of the step size for the angle discretization has been studied.

Wind direction sampling without optimization

In Figure 6.14, the LCOE of a few random irregular layouts is compared to to the actual LCOE of Eneco
Luchterduinen (these layouts are not optimized). For each layout, the levelised cost of energy has been evaluated
in WINDOW for different step sizes.

Figure 6.14: LCOE difference w.r.t. EL actual layout - re-evaluated for different stepsizes for 4 random layouts

The reason why the trends are so close to each other lies in the fact that a different wind direction sampling
affects only the aerodynamic performance of the wind farm. The energy production affects the LCOE, but the

6the authors use the Jensen model and assume the wake decay coefficient α = 0.04

6.4 Comparison with the real wind farms 53

decrease (or the increase, depending on the chosen sampling) is overall small, resulting in a little variation in
the final LCOE value.

The figure shows a particular pattern. When the sampling is relatively rough (from 8 to 20 sectors), the four
random layouts obtain a lower LCOE than the one from the real, regular layout of Eneco Luchterduinen if
evaluated over 12 sectors, whereas they yield higher LCOEs than the real design when evaluated over 8 (the
set default value), 10, 18 and 20 sectors; by contrast, when the number of wind direction sampling sectors is
24 or more, the LCOE difference w.r.t. to the real layout converges towards a stabler value (the trends are
significantly smoothened) and a higher accuracy is yielded.
Indipendently from the actual LCOE values, i.e. if they are better or worse than the actual LCOE7, these
observations clearly show how a relatively rough wind direction sampling may yield contradictory results, in
compliance with the observations of Feng and Shen [2]. Furthermore, some evidence of how the LCOE improve-
ment might be artificial in some cases (12 sectors) is given.

Wind direction sampling with optimization

If the layout optimization is carried out each time over a different number of sectors, both by means of GA and
DEA, the outcome is as displayed in Figures 6.15a and 6.15b.

(a) GA (b) DEA

Figure 6.15: LCOE improvement (EL) with optimization carried out each time with a different stepsize

From these figures the following observations can be drawn.

� All the depicted values from the GA and the DEA are lower than those in Figure 6.14. This is because
the results in Figure 6.15a and 6.15b come from a sector-based optimization, which obtains better (i.e.
lower) values than the four random layouts in Figure 6.14 (which were not optimized).

� It can be further observed that the trends are in compliance with those depicted in Figure 6.14. When the
wind direction is discretized into a higher number of sectors, e.g. 24, 36, 180 or 360, the results follow a
quite stable pattern. In this case, the LCOEs from the optimization are consistently better than the one
from the real regular layout of EL (i.e. there are no ”jumps”, as happens from less sectors) confirming
the fact that irregular turbine dispositions usually perform better than the regular ones. The real layout
of EL is then fictitiously good at 8 sectors. As can be noticed from the red line in Figure 6.15a and from
the orange line in Figure 6.15b, if the outcome from the 360◦-based optimization is taken as reference,
the results from a rough sampling (8 to 20 sectors) are quite far from the red/orange line, whereas the
results from a finer sampling (24 onwards) present a small deviation. In other words, if the finest sampling
is assumed to be correct (because it is the most accurate obtainable sampling) and the optimization is
carried out at least over 24 sectors, then the final outcome does not deviate too much from the most
accurate one (θ = 1◦, i.e. 360 sect.).

7no optimization is carried out here!

54 Results

� The smooth trends due to finer sampling can be explained with the help of Figure 6.16.

Figure 6.16: Wake merging for two turbines [3]

Given two turbines 1 and 2 and assuming a linear wake profile, δαpartial is the angle at which the wake
from turbine 1 starts hitting turbine 2. Being the wake decay coefficient k (not shown in the figure) and
D the rotor diameter, the following equations might be derived due to geometrical considerations [3]:

κ = tan−1(k) [◦] (6.9)

γ = sin−1(
D cos(κ)

dh2h
) [◦] (6.10)

which holds:
δαpartial = κ+ γ [◦] (6.11)

For angles which are lower than δα, the wake incidence on turbine number 2 will be always detected in
the discretization. This means that when a sufficient degree of precision is reached in the wind direction
sampling, no further accuracy in the analysis might be achieved. If the data for the case studies in this
research are used, the expression for δαpartial becomes:

δαpartial = sin−1(
D cos(κ)

4D
) + tan−1(k) = sin−1(

cos(tan−1(k))

4
) + tan−1(k) [◦] (6.12)

The maximum value of δαpartial below which no further improvement is achieved is around 17◦ (with k
between 0.04 and 0.06). From the figures before, it can be seen that the lines are smoother starting from
24 sectors, i.e. a value of θ = 15◦. A rough wind direction sampling is the reason for the occurrence of
the irregular patterns which occur between 8 and 20 sectors. This indicates that a layout which has been
optimized for an accurate direction sampling provides good results consistently, e.g. the solution from a
36-sector based optimization is also good for 180 or 360 sectors. From the previous points, it is evident
that a more precise wind discretization helps the user trust the results from the optimization. It must be
noted that the value of dh2h in Equation 6.12 has been put equal to 4D as this is the minimum distance
the turbines are allowed to have between each other. If this distance is higher, the value of δαpartial
decreases. To provide an example, when dh2h = 5D → δα = 14◦; if dh2h = 6D → δα = 11◦ and if
dh2h = 20D → δα = 5◦. This means that 24 sectors is the minimum allowable degree of accuracy which
should be considered when performing OWFLO. In fact, if the turbines were placed further from each
other, as it would happen in a big OWF area, then there would be the necessity to use a finer sampling
(180◦ to 360◦) in order to detect some additional wake effects.

From the observations listed above, it is recommended, for the future user, to sample the wind direction at
least into 24 sectors as this choice provides very similar results to those coming from more sectors. Indeed, the
computational time plays a big role here. Though being higher than an 8-sector based optimization, it is still
reasonable for θ above 10◦, while it becomes pretty unsustainable (order of magnitude ≈ 24 hrs.) when more
sectors are considered.

As a last remark, the same analysis as Feng and Shen is carried out [2]. This consists of re-evaluating the layouts
coming from the sector-based optimization over all the other samplings. For example, the layout from the 8
sector-based optimization by means of GA is re-computed for all the other sectors. This is done in order to see
whether the optimization relative to one stepsize may lead to a bad result if re-evaluated over another stepsize.

6.4 Comparison with the real wind farms 55

In their paper, Feng and Shen select the sampling which overall gives the highest improvements consistently, as
shown in Figure 6.17.

Figure 6.17: Sensitivity analysis of the optimization. The improvement in one case may give worse results if
evaluated over other cases [2]

From the figure above, it is evident that the result which consistently gives an improvement in the power
output is the one calculated with a sampling of θ = 1◦. (In Figure 6.17, the red line: the black line, for in-
stance, yields a better output only if re-evaluated over its own original sampling of 30◦, while it fails to achieve
an improvement for a finer sampling). The authors thus recommend that choice to discretize the wind directions.

When this analysis is applied to this research, the outcome is shown in Figures 6.18a and 6.18b.

(a) GA (b) DEA

Figure 6.18: Re-evaluation of the optimization from Figs 6.15a and 6.15b over all the other samplings

As can be seen, the difference among the re-evaluations is not that high, meaning that an optimization which
is based on a low number of sectors may still obtain a good layout if re-evaluated over 180 or 360 sectors. This
might be useful to avoid the long simulations which occur when performing the optimization over more sectors.
However, two observations should be done: firstly, the re-evaluation of the 12 sector-based optimization (orange
line) yields worse results for more stepsizes; secondly, as the black line in both plots shows8, the sector-based
optimization obtains the lowest (i.e. best) LCOE values. In other words, the best result for e.g. the finest
sampling (θ = 1◦) can only be obtained when optimizing over 360 sectors; and more, the best result for e.g.
20 sectors can be achieved only by optimizing w.r.t. 20 sectors. All in all, a good outcome can still be found
when the algorithms work with less sectors and the resulting layout is re-computed, but the user should keep
in mind that no evidence can be given in advance about the goodness of the result (as the example of the 12
sector-based optimization demonstrates).

8The black line is the same as in Figs 6.15a and 6.15b

56 Results

6.5 Influence of the design areas on the optimization

The objective function which was considered for the optimization is the LCOE. This is because, as stated in
Paragraph 2.3.1, its definition is able to combine good and bad properties of a wind project so that they are
correctly weighted [6]. Since the LCOE is made by several factors, it is convenient to analyse to what extent
these factors contribute to the overall decrease of the cost of energy. The aim is trying to define what design
areas mostly influence the optimization.
The bar charts below illustrate the difference in percentage between the optimized solutions and the real design
for PAWP and EL9, taking into consideration the overall levelised cost of energy and the three main design
areas (aerodynamic performance, cable topology and support structures). The optimized solutions were obtained
thanks to the repair mechanisms-based GA and DEA, with a wind direction sampling of 36 sectors.

(a) DEA (PAWP) (b) GA (PAWP)

Figure 6.19: Mean percentage of change from real design (the line at y = 0) the optimized solution - PAWP

(a) DEA (EL) (b) GA (EL)

Figure 6.20: Mean percentage of change from real design (the line at y = 0) the optimized solution - EL

Figures 6.19a 6.19b illustrate the performance of the optimal design - from the DEA and the GA - w.r.t. the
real OWF of Prinses Amalia. As can be seen, the decrease in the LCOE is significant (around 3%). The biggest
improvements occur in the structural design, followed by the electrical costs and the AEP. This can be explained
by taking a look at Figure 3.5, where the bathymetry in correspondence with PAWP is pretty rough, with values
of the water depth ranging from 19 to 27 m; the electrical costs go down due to the clustering of the turbines in
shallower regions, which interestingly does not prevent the AEP from decreasing. The reason for that might be
because of the large area which is described by the boundaries of PAWP. Although the turbines move towards

9It is useful to remind the reader that these are the realised designs, i.e. the baseline designs computed in WINDOW and thus
subjected to its models. They do not represent the real values for PAWP and EL

6.5 Influence of the design areas on the optimization 57

shallower regions, there are still margins of improvement from the aerodynamic point of view due to the vast
available area.

By contrast, the biggest improvement in the LCOE for EL occurs in the cable topology. This is because the
bathymetry of EL (Figure 3.3) is flatter than in PAWP and the wind farm area is much tighter. This means that
no significant difference can be expected in the support structure costs when the turbines are moved throughout
the design space. Therefore, the effect of the structural design on the LCOE is not supposed to be large. The
optimizer is then more biased towards lowering the electrical costs. Clustering the turbines together to obtain
an overall smaller cable length does not affect, for the reasons described above, the support structure costs;
moreover, due to the fact that the area of EL is tight, no appreciable increase of the AEP takes place.

An important remark has to be stressed. The LCOE is not a linear function and the contributions of its pa-
rameters are not equally distributed. In addition, from the bar charts above some design areas improve more
than others, depending on the case study. However, the previous analysis just showed where the biggest changes
in the disciplines occurred, without quantifying their actual influence on the LCOE. For example, 2% in AEP
increase may have a higher weight than 14% lower electrical costs. This is why some further investigation has
been carried out. The factors which are used to calculate the cost of energy (AEP, Cinv, Cdec, etc.) were saved
for the real design of PAWP and EL. After that, some new optimizations were performed for both the case
studies with different objective functions. These were: the AEP (maximization of the energy yield), the support
structure cost (minimization of the structural costs) and the cable cost. The results from these optimizations
were then substituted into the formula of the LCOE one by one, maintaining all the other values from the
baseline design the same. For instance, if the objective function is the AEP, only that value is substituted into
the expression of the LCOE, while all the other parameters are the same as in the real design. The new value
of the cost of energy consequently shows which are the potential margins of improvement of each discipline and
to what extent the LCOE changes. This analysis is summarized by Figures 6.21a and 6.21b.

(a) EL (b) PAWP

Figure 6.21: Potential contributions to the LCOE from the optimizations of distinct design areas (GA)

From those bar charts, the following conclusions can be drawn.

� As regards Eneco Luchterduinen, Figure 6.21a is in compliance with Figures 6.20a and 6.20b. The sectors
where the highest improvements occur are also the sectors which contribute to the highest extent to the
overall decrease of the LCOE. This is because of the considerations about the bathymetry of EL and the
narrow wind farm area which have been described above.

� As regards Prinses Amalia, when the objective function is the support structure cost, its value is the
one which contributes the most to the potential LCOE improvement. Interestingly, the AEP is ranked
at the second position in this case, showcasing that it has a higher potential for LCOE reduction than
the electrical costs. In this case the bathymetry plays a significant role, as well as the aerodynamic
performance of the wind farm, which can be enhanced considerably due to the large size of the wind farm
area.

In conclusion, when the influence of the design areas on the optimization is taken into account, no general
answer can be given about which sector contributes the most, as there is a difference between the two case

58 Results

studies (PAWP and EL). However, this provides further evidence of the strength of an MDAO procedure: the
multidisciplinary optimization always tries to reach a trade-off between sometimes conflicting objectives, which
are case-study dependent.

6.6 Summary of the chapter

This chapter illustrated the results from the optimizations of two case studies: PAWP and EL. Different trends
characterize the combinations of optimizing procedures that have been analysed. The best performance was
achieved by the repair mechanism-based GA and DEA with a feasible initialization. The choice was made
thanks to some quantitative assessment criteria and a multi-criteria analysis. After having identified the best
procedure to be implemented in the driver within an MDAO workflow, the influence of the wind direction
sampling stepsize has been investigated. It has been found that when the number of sampling sectors is above
24 (corresponding to θ = 15◦) no further precision of the wake deficits is achieved; lastly, the influence of the
design areas on the optimization was analysed. The conclusion is that no general answer can be given about
what discipline mostly affects the LCOE calculation, as the results are case study-dependent. However, this
provides further evidence of the strength of an MDAO procedure, as the multidisciplinary optimization always
tries to reach a trade-off between sometimes conflicting objectives.

Chapter 7

A new case study: Borssele III

7.1 Introduction to the chapter

This chapter presents the analysis of a new case study. Since the main application of the MDAO workflow is
to carry out the preliminary design assessment, the question which arises after the discussion of the results in
Chapter 6 is whether the chosen optimizing procedures are able to deal with more complex design situations,
such as a larger number of constraints or a longer design vector. Although these more challenging situations
could have been fictitiously reproduced either in Prinses Amalia or Eneco Luchterduinen, it has been decided to
analyse a third case study, whose financial close took place recently, Borssele III. Borssele III is an interesting
project as its wind farm area is characterized by a forbidden area due to the presence of cable routes [14].
It is crucial to remark that the optimizing procedures which were selected in Chapter 6 are based on the
conditions that the wind farm layout is the design vector and that only two constraints (spacing and boundary)
are considered. Therefore, there is no evidence that their performance will be still good under more challenging
conditions, as well as it could be that some of the discarded combinations may actually perform well in this
situation. Nevertheless, it has been decided to stick to the chosen combinations and see how they perform in
Borssele III.
An overview of the new conditions is provided in Section 7.3; after that, the results are illustrated. Moreover,
an additional analysis on the effect of neighbouring wind farms has been carried out, in order to test how the
layout optimization is affected when more than one wind farm are taken into account.

7.2 Borssele III: presentation of the new case study

Borssele III is a project developed by Blauwwind II, which is a consortium composed by Shell, Eneco, Van
Oord and Diamond Generating Europe Limited (Mitsubishi). The project consists of 37 Vestas V164-9.5MW
turbines, for a total rated power of 351.5 MW. The wind farm is 71.4 km2 in size but its actual area is 64 km2,
due to existing cables/pipelines which cross the site [14]. This means that the available area for the development
of the wind farm is split into two ”allowed” zones, as shown in Figure 7.1.

Figure 7.1: Layout of Borssele III. The OT is 500 m far from the boundaries of the wind farm

59

60 A new case study: Borssele III

The offshore transformer is located outside of the wind farm, 500 m far from the boundaries. The bathymetry
is quite irregular, with values of the water depth ranging from 12 to 35 m. The grid connection point is located
in Vlissingen [14].

7.3 A more difficult optimization: presentation of the challenges

This paragraph illustrates the three challenges which have been chosen to test the optimizing procedures. It is
crucial to note that the purpose of this analysis is not suggesting a new layout for Borssele III, but just verifying
whether the optimizer is able to work under more critical restrictions.

7.3.1 Challenge 1: simple case

Challenge 1 consists of carrying out the optimization under the same conditions as PAWP and EL, i.e. layout
as design vector, the LCOE as objective function and two constraints. As mentioned in Paragraph 7.2, the
number of turbines to be optimally placed is fixed and equal to 37. Therefore, once that all the environmental
conditions and the fixed design parameters have been inserted in WINDOW, the algorithms run with a feasible
initialization and a repair mechanism. This challenge has been selected just to test the ”robustness” of the
optimization, i.e. the good performance of the driver with a different use case (see Paragraph 6.3 for more
information).

7.3.2 Challenge 2: optimization with forbidden zones

In Challenge 2, the optimizer is called to face a more difficult situation: being the LCOE the objective function
and the initialization feasible, one more constraint is added. This is a forbidden corridor due to the presence of
cable routes [14]. Standards also prescribe a minimum distance from the offshore transformer (OT) of 500m,
but this is already satisfied. By using the same notation as Paragraph 2.3.3, the additional constraint can be
written as:

g2(x) = (xi, yi) /∈ Z ∀i ∈ [0, 1, ..., NT] (7.1)

being Z the set containing all the points in the design space which belong to the restricted zone. When g2 is
considered, the repair mechanism in both the GA and the DEA should be modified accordingly. In particular,
the standard deviation (σ) in Equation 5.8 has been raised to 500 m (whereas for two constraints it was set
to 400 m). This is because it has been noted during the runs that if one turbine happens to be exactly in
the middle of the forbidden zone, the repair mechanism takes a long time to find a new suitable place, as the
probability to change the turbine position over a large distance is quite low (see Figure 5.7b).

7.3.3 Challenge 3: optimization with a variable number of turbines

Challenge number 3 considers the additional constraint from Challenge 2 and increases the difficulty of the
problem by varying the number of turbines, i.e. the design vector is now both the [x, y] coordinates of the
turbines and their amount. Every individual (layout) in the population of solutions has one more dimension:
[[[x1, y1], [x2, y2], .., [xN , yN]], N], where N is the number of turbines of that individual.
Doing such an analysis with N belonging to the design vector is interesting as the choice of this value is some-
thing which is difficult to make a priori. A high number of turbines ensures higher costs but it is likely to
increase the energy yield. Optimizing N means actually finding the optimum number of turbines such as below
that value the project does not ensure enough revenues and beyond which the energy output does not increase
with the same rate as the costs. However, N usually does not need to be computed, as when the concessions to
build new wind farms are given by the government, the rated power of the wind farm is a targeted fixed quantity.
The choice of the turbine is determined on the basis of the contracts with the manufacturer. Therefore, once
again, Challenge 3 has been carried out just to verify the strength of the optimizing procedure.

So far, the analysis which has been done considers a fixed N . The user was able to modify this value be-
fore starting the optimization, but this quantity remains the same over the iterations. The way Challenge 3 has
then been formulated is as follows: given a range of turbines to choose from, carry out several separate opti-
mizations with a fixed number of turbines which varies in every case; then, check for what value of N the lowest
LCOE occurs; in the end, perform a all-in-one layout optimization with a variable number of turbines to see
whether the value of both the LCOE and N are in accordance with the results from the separate optimizations.
If this happens, then it means that the optimizer is not only able to find a good (low) value of the LCOE, but
even the optimal number of turbines automatically. Figure 7.2 provides an illustration of this strategy.

7.4 Results 61

Figure 7.2: Visualization of Challenge 3

As can be seen, the separate optimization provides the lowest LCOE (i.e. the best layout) with the fixed N
used as input; the all-in-one optimization computes everything in one run. In this research, N ∈ [2, 50].

7.4 Results

The outcome from the first two challenges are compared to the output from the baseline design, depicted in
Figure 7.1. On the other hand, the outcome of the separated vs. all-in-one optimization (Challenge 3) is
displayed in Figure 7.5.

7.4.1 Challenge 1

The results from the first Challenge can be summarized by looking at Figure 7.3. Four runs have been carried
out. All of them yielded a lower LCOE value w.r.t. to the realised design.

Figure 7.3: Visualization of the results for all the runs - Challenge 1

The figure above shows that both the DEA and GA with feasible initialization and repair mechanism dealt with
Challenge 1 successfully. This is not surprising, as apart from being the combinations with the best optimality
and random sampling values (Tables 6.2 and 6.3), they also have a very good robustness, i.e. a good performance
for different case studies.

7.4.2 Challenge 2

The two optimizers were able to find solutions with a lower LCOE than the real design of Borssele III for the
conditions of Challenge 2. Moreover, all the turbines are placed only in the allowed zones. This means that the
repair mechanisms are both able to cope with the additional constraint and to yield good results.
From figure 7.4 it can be seen that the mean value of the LCOE over multiple runs for both the GA and DEA

62 A new case study: Borssele III

is higher than in Challenge 1. This was expected, as in Challenge 2 the turbines have less freedom to move
throughout the design space, with the consequence of a less effective exploration.

Figure 7.4: Visualization of the results for all the runs - Challenge 2

7.4.3 Challenge 3

The results from Challenge 3 are summarized in Figure 7.5. The blue trend represents the results from the
separate optimization. As can be seen, the lowest LCOEs occur for N = 20, N = 18, N = 21, the minimum
being in N = 20.
The all-in-one optimizations have been performed 6 times for each algorithm. The outcome is interesting. The
all-in-one optimization is able to yield LCOE values which are comparable to those coming from the separate
strategy, while finding the same value of N.

Figure 7.5: Visualization of the results for the all-in-one optimization vs. separated optimization - Challenge 3

The slight differences in the values of N obtained by the optimizers can be explained as follows. There is an
infinite range of combinations in terms of turbines’ layout. Since the implemented algorithms are meta-heuristic,
i.e. they contain some randomness in their formulation, the objective function is satisfactorily low, though not
being the overall global minimum. It can be therefore possible for the optimization to find combinations of
”N+layout” which obtain very similar LCOE values, with different numbers and dispositions of the wind
turbines. Further evidence can be obtained by looking at the values from the separate optimizations when
N ∈ [18, 22]: although the overall minimum is located at N = 20, the magnitudes of the cost of energy are very
close to each other. Therefore, in case of an all-in-one optimization, it is up to the company to decide which
alternative is the most convenient, based both on qualitative and quantitative considerations. For instance,
installing 18 turbines instead of 20 is advantageous for the installation and for the O&M, being the overall
probability of failure lower [3]; on the other hand, a higher number of turbines yields a higher energy output,
which can power more households.
It is worthwhile to point out that, as mentioned in Paragraph 7.3.3, this analysis is not meant to suggest

7.5 The effect of neighbouring wind farms 63

installing around 20 turbines in Borssele, rather than 37. The goal was just challenging the algorithm to find
the minimum LCOE with a varying value of N . Indeed, the physical and economical models in the analysis
block (WINDOW) play an important role. If some more accurate financial modeling had been included in the
tool, the optimum number of turbines would have been likely to shift. From this perspective, it is recommended
to adapt the cost models, as soon it is still possible, to the actual company’s needs. This would enable the
designer to run trustworthy all-in-one optimizations for future projects.

7.5 The effect of neighbouring wind farms

7.5.1 Overview of the problem

The last analysis which has been performed in this work is the assessment of the effect of neighbouring wind
farms on the optimization procedure. Wind farms made of a large number of turbines are known to affect the
local atmospherical conditions. In particular, some dense clustering creates obstacles to the entrainment of the
air momentum above the turbines, limiting the recovery of the wakes. This is also called deep array effect [82].
Many authors investigated on the goodness of the kinematic wake models (such as the Jensen model used in this
thesis) when dealing with large wind farms and/or groups of more than one OWF, to see whether these models
are in accordance with real data measurements without the need to pay attention to more complex fluid-dynamic
theories. Among these, Nygaard [83] carried out some very interesting research on the comparison between real
data from three large wind farms (London Array, Anholt and Walney - Walney is divided into two sub-farms)
and the wake deficits computed with the Jensen model, without noticing any particular ”deep array effect”.
Conversely, Wu [84] noticed the presence of such an interaction between the turbines and the atmosphere in
Horns Rev Wind Farm, and the related issues which arise with the adoption of simple kinematic models.
In this thesis, the focus is not on performing some validation of the aerodynamic models over real data, neither
providing an approach to incorporate the (possible) presence of deep array effects in large wind farms. Instead,
by assuming the deep array effects to be negligible and keeping the Jensen model the same, the goal is to verify
the effect of the presence of other wind farms on the layout optimization of Borssele III. In other words, the
goal is to use the optimizer to learn something about the consequences of neighbouring wind farms, in order to
lay the foundation for further research in the future.

7.5.2 Presentation of the neighbouring wind farms

To investigate how the presence of another wind farm may affect the OWFLO, two additional plants were
considered. These are the Belgian parks of Seastar and Northwind, which will be built close to the Belgian
border, being in the South-West w.r.t. Borssele III. According to 4C Offshore site, Seastar counts 29 turbines,
while Northwind is made of 72 windmills [85][86]. The layout of Seastar is representative for confidentiality
reasons, but for the calculation the real one was used. Although the OWFs of Borssele I, II and IV could have
been used, the Belgian plants were chosen because the wind has higher chances to come from the South-West.

Figure 7.6: Borssele III and the Belgian Wind Parks of Seastar and Northwind

A remark has to be stressed. To simplify the development of the codes, the wind turbines were assumed to be
the same as Borssele III, i.e. Vestas V164-9.5MW. The analysis on the effect of neighbouring wind farms is split
into two parts: the former illustrates, according to the Jensen model, the difference in the power output from
Borssele III both in undisturbed conditions and with the presence of Seastar and Northwind; the latter is the
proper optimization. In order to better notice the influence of the aerodynamic design, both the AEP and later
on the LCOE are taken as objective functions, using the spacing and the boundary constraints for Borssele III.

64 A new case study: Borssele III

7.5.3 The energy production in disturbed and undisturbed conditions

With the help of Figure 7.7, the turbines which have been chosen to test the difference in energy production
are those which are close to the South-Western boundary. These are highlighted with the purple squares.

Figure 7.7: Borssele III and the Belgian Wind Parks of Seastar and Northwind - the chosen turbines are highlighted
in purple

(a) Turbine n◦ 4 (b) Turbine n◦ 5 (c) Turbine n◦ 12

(d) Turbine n◦ 13 (e) Turbine n◦ 28 (f) Turbine n◦ 29

(g) Turbine n◦ 30 (h) Turbine n◦ 36

Figure 7.8: Power output in both undisturbed and disturbed conditions for the chosen turbines

7.5 The effect of neighbouring wind farms 65

The annual energy output w.r.t. to the wind direction from the chosen turbines has been computed in WINDOW
in both the situations. The values have been normalized and plotted in the figures above. As can be clearly
seen, the aerodynamic module in WINDOW is able to detect a change in the wind (and consequently, the power
output) entering the chosen turbines when the angle of incidence is between 150 and 300◦, whereas the power
output for all the other sectors remains the same.
The Jensen model is known to provide good results in the far wake region (between 6D to 9D) [87], whereas is
known not to perform well in the near wake region, which is generally acknowledged to be between 0 and 3-3.5
rotor diameters [3]. Since the distance between the wind farm of Borssele III and the Belgian plants is within
this range, it can be concluded that the Jensen model implemented in WINDOW is able to yield a different
energy output when another wind farm is in the surroundings.

7.5.4 The optimization with respect to AEP with neighbouring wind farms

Once that the ability of the Jensen model to detect the presence of other wind farms has been proven, the
layout optimization of Borssele III w.r.t. to the annual energy production can be carried out. As was done for
the three challenges before in this chapter, the optimizing procedures are the repair mechanism-based GA and
DEA coupled with a feasible initialization. The resulting layouts are shown in Figures 7.9a and 7.9b. It can be
clearly seen how the turbines are shifted towards the right and stretched in the direction parallel to 200◦-220◦,
which are directions where the highest deficits used to occur (as shown in Figure 7.8).

Figure 7.9: Layout optimization w.r.t. to AEP - effect of neighbouring wind farms

(a) GA algorithm (b) DEA algorithm

To further prove that the turbines’ shift on the right is caused by the presence of the neighbouring wind farms,
the optimization has been performed again in the undisturbed situation. Even if Seastar and Northwind do not
appear in the optimization, the layouts are depicted together with the two Belgian wind farm to highlight the
difference w.r.t. Figures 7.9a and 7.9b. The optimized layouts are shown in Figures 7.10a and 7.10b.

Figure 7.10: Layout optimization w.r.t. to AEP - undisturbed situation

(a) GA algorithm (undisturbed situation) (b) DEA algorithm (undisturbed situation)

66 A new case study: Borssele III

As can be noticed, the turbines tend to cluster towards the boundaries of the wind farm, including the South-
Western direction. Thus, when the influence of the two Belgian wind farms is not taken into account, the
optimized layout does not feel a shift of the turbines toward the right.
The improvement in the energy yield w.r.t. to the baseline design is shown in Table 7.1.

Table 7.1: AEP from the layout optimization of Borssele III w.r.t. to the baseline design

Baseline Design Differential Evolutionary Algorithm Genetic Algorithm

Disturbed situation 0.00 + 0.27 % +0.031 %

Undisturbed situation 0.00 + 0.32 % +0.23 %

As can be seen, the AEP improvement is higher in undisturbed conditions. This could have been expected, as
in the latter situation the incoming wind is higher.
In conclusion, the Jensen model captures the difference in the power output of Borssele III when more than one
farm are considered; consequently, the optimizer feels the presence of the neighbouring plants, yielding a layout
which is characterized by a shift of some turbines in the opposite direction than the Belgian wind farms.

7.5.5 The optimization with respect to LCOE with neighbouring wind farms

Once that the maximization of the AEP has been done according to the Jensen model and the effect of the
neighbouring wind farms has been noticed on the optimized layouts, it is interesting to try to learn something
about the consequence of considering neighbouring plants on the levelised cost of energy. The main question
to answer is whether the layout optimization w.r.t. LCOE as carried out in Challenge 1 (Paragraph 7.4) un-
der undisturbed conditions still yields a better result than the baseline design if re-evaluated under disturbed
conditions. In other words, whether there is the need to perform some optimization which considers the neigh-
bouring wind farms over the iterations or whether the results from the undisturbed case can be still valuable
if re-computed in disturbed conditions. In order to do that, four situations have been selected and compared.
These are here itemized.

� Situation A: the LCOE of the baseline design in disturbed conditions, depicted in Figure 7.7, has been
computed only for Borssele III, i.e. the results from WINDOW are gathered separately for Borssele III in
order to obtain the LCOE of that farm only, tough still paying attention to the presence of the other two
plants (for the AEP calculation). This case will be also named as ”Disturbed baseline”. It is fundamental
to note that this LCOE is not the same as the one used as baseline design in Figure 7.3. In fact, when
Northwind and Seastar are taken into account, less wind is available for Borssele III, as shown in Figure
7.8. The different in percentage between the baseline undisturbed design and Situation A is shown in the
Table below.

Table 7.2: Difference between baseline design in undisturbed and disturbed conditions

Baseline Design Undisturbed Baseline Design Disturbed

LCOE 100% + 2.188 %

AEP 100% -2.696 %

� Situation B: the best layout from the runs in Challenge 1 (Genetic Algorithm), which was computed in
undisturbed conditions, is re-evaluated over the disturbed case, in analogy with Situation A for the baseline
design. The LCOE of the GA-optimized layout is calculated for Borssele III by taking into consideration
Seastar and Northwind. This situation will be also called ”GA undisturbed - re-evaluated”

� Situation C: this is the same as Situation B but for the Differential Evolutionary Algorithm and will be
referred to as ”DEA undisturbed - re-evaluated”.

� Situation D: a new optimization is carried out. This utilizes a GA combined with feasible initialization and
repair mechanism and considers the presence of the neighbouring wind farms in all the iterations. This
situation will be also called ”Disturbed Optimization ”. Only the Genetic Algorithm has been used as it
is faster than the DEA: considering all the turbines of all the wind farms is particularly computationally
expensive for the PC.

The comparison of these four situations takes place in two steps. In the former, Situation A is compared with
Situations B, C and D, to see whether the results from the undisturbed case-optimization (i.e. Challenge 1)
are still valuable if re-computed in disturbed conditions and whether the ”Disturbed Optimization” is actually
useful. The latter appraises the performance of Situation D w.r.t. Situations B and C, to show where the

7.5 The effect of neighbouring wind farms 67

biggest differences between undisturbed optimization and disturbed optimization lie.
The layout coming from the optimization in Situation D is shown below. It can already be seen how this is
similar to Figures 7.9a and 7.9b, showcasing the important role of the AEP.

Figure 7.11: Situation D - resulting layout. The better exploitation of the wind resource is visible

Step 1

If the LCOE of the baseline design of Borssele III in the disturbed case (Situation A) is used as reference, the
bar chart in Figure 7.12 illustrates the values of the LCOEs of Situations B, C and D.

Figure 7.12: Comparison between the Situation A (dashed line) and Situations B (in gold), C (in orange) and D
(in yellow)

As can be seen, the layout optimized by means of GA in Challenge 1 does not obtain a better (i.e. lower)
LCOE than the baseline (green dotted line) if re-evaluated under disturbed conditions; by contrast, the DEA
still yields a better result. On the other hand, the ”Disturbed Optimization” largely outperforms Situation
B and C. From this graph, it can be concluded that the results from the undisturbed optimization might be
still good, but there is no evidence for this to happen. It seems like the DEA outperforms the GA just thanks
to pure luck. The ”Disturbed Optimization” obtains a better LCOE than the baseline design because they
are both evaluated under disturbed conditions. This means that taking into considerations neighbouring wind
farms has the effect to shift the optimum.

68 A new case study: Borssele III

Step 2

As was shown in Step 1, the effect of neighbouring wind farm on the optimization w.r.t. the LCOE is not
negligible. The layouts which had been optimized in undisturbed conditions might still perform better than the
baseline, but they are outperformed by the layout computed in disturbed conditions. Figures 7.13a and 7.13b
illustrate where the biggest differences between Situation B and C and Situation D come from.

Figure 7.13: Step 2 visualization: comparison of the ”Disturbed Optimization” (Situation D) with the undisturbed
optimization re-evaluated in disturbed conditions (Situations B and C)

(a) Situation D (bars) vs. Situation B (GA - dashed line) (b) Situation D (bars) vs. Situation C (DEA - dashed line)

As regards the GA (Figure 7.13a), the LCOE from Situation D is lower than the one in Situation B. This was
evident also from Figure 7.12. This is due to the higher AEP which the Disturbed Optimization is able to yield
w.r.t. the ”GA undisturbed - re-evaluated”, although the investment costs are slightly higher.
When Situation D is compared to Situation C (DEA algorithm) (Figure 7.13b), almost the same graph as for
the GA is obtained. The LCOE is lower (as was also shown in Figure 7.12). This is caused by the higher AEP
which the optimizer obtains w.r.t. to the ”DEA undisturbed - re-evaluated”. In this case, the AEP increase is
not as high as in Figure 7.13a but this is compensated by smaller investment costs.

From this analysis, three conclusions can be drawn:

1. neighbouring wind farms have the effect to shift the optimum;

2. when the optimization considers the effect of neighbouring wind farms over the iterations (Situation D),
the result is better than the undisturbed optimization re-evaluated in disturbed conditions (Situation B
and C);

3. The difference between the ”Disturbed Optimization” and the ”GA/DEA undisturbed - re-evaluated”
mostly lies in the AEP. Situation D ”feels” the less incoming wind due to the presence of neighbouring
wind farms and just moves the turbines to get a higher AEP, while obtaining (almost) the same investment
costs as in Situation B and C

7.6 Summary of the chapter

In this chapter, a new case study is taken into account, Borssele III. This plant is characterized by more
challenging conditions due to the presence of some forbidden areas within the boundaries of the wind farm.
Since companies are interested in using the MDAO procedure to carry out a preliminary design analysis, it
is important to check whether the optimizing strategies in the driver are able to yield satisfactory results in
more complex design situations. Therefore, three challenges have been designed. The first consists of the
optimization in the same conditions as PAWP and EL (only two constraints, LCOE as objective function and
layout as design vector); in the second case, the optimizer is called to face a situation when only some areas are
allowed, as it happens in reality (three constraints, LCOE as objective function and layout as design vector); the
third one is the same as the previous one but it adds a design variable, i.e. the number of turbines (all-in-one
optimization). To check whether the driver is able to deal with this last challenge, the results from the all-in-one
optimization have been compared to the results from the separate optimization, in which the (varying) number

7.6 Summary of the chapter 69

of turbines is fixed in every run. All the challenges highlight the ability of the optimizer to cope with more
complex design requirements. On a later stage, the effect of neighbouring wind farms (Seastar and Northwind
- Belgian border) on the AEP of Borssele III has been investigated. By neglecting the so called ”deep array
effect” and maintaining the Jensen model, the driver is able to feel the difference in the power output when
more than one wind farm are considered. The result is that the algorithm tries to push the turbines of Borssele
away from the (fixed) windmills of the neighbouring wind farms. When layout optimization w.r.t. the LCOE is
taken into account, the optimizations carried out in Challenge 1 can no longer guarantee a better layout w.r.t.
the baseline if re-evaluated in disturbed conditions. Therefore, in case it is known that there are (or will be)
neighbouring wind farms and this is taken into account during the design, it is suggested using an optimization
under disturbed conditions.

70 A new case study: Borssele III

Chapter 8

Conclusion and recommendations

8.1 Conclusions

Within the MDAO domain, two components are identified. The former is called analysis block and it com-
prehends all the modular tools which refer to a specific physical/economic discipline (the WINDOW tool); the
latter is the driver, i.e. an optimizing procedure which calls the analysis block in each iteration [9].

This thesis focuses mostly on the analysis of the driver within an MDAO procedure. As mentioned throughout
the report, the driver is the optimizing strategy, which is made of initialization of the optimization (i.e. the
initial guess), the way constraints are implemented (constraint-handling techniques - CHT) and dealt with and
the choice of the algorithm. No clear guidelines exist to give the designer any clue about what optimizing strategy
performs best when dealing with OWFLO. Therefore, several combinations have been tried. Six different initial-
izations1 have been coupled with three algorithms (GA, PSO and DEA) and four CHTs, i.e. static, dynamic,
adaptive penalty functions and a repair mechanism.

� The first question this research aims to answer is: what is the best optimizing routine - in terms of ini-
tialization, CHT and choice of the algorithm - to be coupled with the analysis block within an MDAO
procedure which can be satisfactorily applied to the future design procedure of engineering companies?
Several quantitative assessment criteria have been defined by the author. These evaluate the goodness of
each chosen combination over two case studies, i.e. Eneco Prinses Amalia Wind Park and Eneco Luch-
terduinen. Among all the analyzed combinations, the best performances were achieved by a Differential
Evolutionary Algorithm (DEA) and a Genetic Algorithm (GA) coupled with a feasible initialization and
a repair mechanism as constraint-handling technique. The PSO performs quite well when coupled with
a repair mechanism, though obtainining a lower score than the other two. As already explained in Para-
graph 6.2.2, the DEA and the GA are evolutionary-based algorithms, i.e. the entire population converges
towards the minimum as it is part of the evolutionary process; on the other hand, although some authors
rightly claim that the strongest aspect of the PSO is the collaborative research carried out by the parti-
cles [56], in the PSO the individuals are more independent from each other than the GA or the DEA as
they only ”feel” the best local and global position found that far. This smaller interaction between the
individuals in the population may be the reason why the PSO has a worse performance than the other
algorithms. By constrast, the GA and the DEA obtained the best scores. It is worthwhile to point out
that the DEA has a higher optimality than the GA. This can be explained due to the crossover-based
nature of the genetic algorithms. Since the GA combines the chromosomes inside the individuals without
creating new chromosomes, it works with a ”closed group” of variables, while the DEA has more freedom
to explore the design space and thus find better LCOE values.
After having identified the best procedure to be implemented into the driver, the influence of the wind
direction sampling stepsize has been investigated. It has been found that when the number of sampling
sectors is above 24 (corresponding to θ = 15◦) no further precision of the wake deficits is achieved. In other
words, when a sufficiently high angle discretization is used, the results from the optimization are more
trustful because the turbines belonging to a wake are always detected. However, as was already noted in

1Random, random-modified, equilateral triangled grid, random triangled grid, square grid and feasible

71

72 Conclusion and recommendations

6.4.2, 24 sampling sectors is the minimum allowable degree of accuracy which should be considered when
performing OWFLO. Indeed, it works fine as soon as the turbines are more clustered together, something
that happens in tight OWF areas; by contrast, the minimum angle stepsize which is needed to detect a
turbine belonging to a wake decreases (so the number of sector increases) when the turbines are quite far
from each other, as it happens for big OWFs.

� The second research question to answer was: which design areas - aerodynamic wake models, support
structure design and cable topology - mostly affect the optimization and to what extent?
No general answer can be given about what discipline mostly affects the LCOE calculation, as the results
are case-study dependent. As regards Eneco Luchterduinen, the sector which influences the optimization
the most is the cable topology due to the relatively flat bathymetry and the narrow wind farm area; as
regards Prinses Amalia, the support structure design and the AEP have the most prominent effect on
OWFLO. Due to the presence of this misalignment, it is impossible to say a priori which discipline will
bias the result the most. However, this provides further evidence of the strength of a multidisciplinary
procedure: the MDAO workflow always tries to reach a trade-off between sometimes conflicting goals,
which are dependent on the case study under consideration.

� The third research question to answer was: is the chosen optimizing procedure able to deal with more
complex design situations?
Three challenges, characterized by an increasing difficulty, have been considered over the new case study
of Borssele III. The first one is similar to the previous two case studies of EL and PAWP, i.e. same con-
straints, objective and design vector; the second one takes into account the presence of a forbidden zone
inside the boundaries due to the presence of cable routes; the third one adds the number of turbines to the
design vector, to see whether the optimizer is capable of finding the optimal number of turbines as well
as its optimal layout. All the three challengese were successful and highlighted the ability of the driver
to deal with more complex situation. This is promising in case the designer is called to face additional
constraints, which are likely to occurr in real projects.

� An additional analysis on the effect of neighbouring wind farms on the layout optimization of Borssele
has been done. According to the Jensen model and by adopting the same optimizing strategies as in
the three challenges, it was observed that considering the presence of other plants affects the AEP. A
comparison between the optimized layout in undisturbed conditions and the optimized layout in disturbed
conditions highlighted that in case during the design process of an OWF it is known that there are (or will
be) neighbouring wind farms, this should be taken into account within the optimizer, as the two optimal
values are too different from each other.

8.2 Recommendations

While conducting this research, the study found out some points of interest which would be interesting to
further investigate on. These are itemized below.

8.2.1 Recommendations for designers

� grid-based optimizations are fast, reliable and obtain sufficiently low LCOEs. Therefore, it is recommended
to use them at a very preliminary stage of the design, to at least have an idea on what to expect when
performing some layout optimization.

� due to its higher speed, the use of a genetic algorithm instead of the DEA is recommended to those users
who are slightly less interested in performing a detailed design and prefer having something quicker with
little loss of optimality.

� the wind direction sampling should be made of at least 24 sectors. It has been found that beyond this
value the turbines belonging to whatever wake are always detected. This is important as it defines the
minimum degree of accuracy which is required to perform a trustworthy optimization. However, it is
advisable to use even more than 24 sectors, as when there is some large spacing among the turbines in an
OWF, then the minimum angle which is needed to detect a turbine in a wake decreases, making a finer
sampling necessary.

8.2 Recommendations 73

8.2.2 Recommendations for future research

� Some more in-depth validation of the analysis block is encouraged from the physical point of view. Since
the wake models are well developed and multiple tools are available, it is recommended to act on the
support structure design and on the cable topology module. As regards the former, the effect of fatigue
should be taken into consideration, as well as its interaction with the turbulence intensity; as regards the
latter, it would be desirable to try to include some additional considerations which are not purely based
on the distance between the turbines, but even on other factors such as additional constraints. However,
the aerodynamic module should not be neglected. In particular, some validation over real data per wind
direction sampling sector is advised to have more adherence with reality in the subsequent optimization.

� It might be worth trying to investigate on the implementation of the deep array effect on the analysis block.
This would allow the user to convincingly carry out some optimization in presence of neighbouring wind
farms, without assuming the Jensen model to be correct. However, two bottlenecks should be considered.
Firstly, a good, complete theory has not been fully developed yet; secondly, there is the risk, for the
computational time, to be too high due to the large amount of calculations which are required over the
iterations. From this point of view, it looks more profitable to include the deep array effect only when
optimizing w.r.t. the energy production, in order to save some additional time.

� As already mentioned in Paragraph 6.4.1, no accurate study has been carried out in this thesis about
the goodness of a regular layout w.r.t. an irregular one as a starting point for the optimization. It is
important to note that the wind farm boundaries of Eneco Luchterduinen are even much tighter than in
Prinses Amalia. It can be consequently possible, for a regular layout, to be better performing in a tight
area as some better exploitation of the wind resource can be achieved. Literature usually agrees upon
the fact that irregular-shaped layouts perform generally better than regular ones [7][37][70], but this is
not a rule. Therefore, further research is advised in order to better investigate on the effect of a regular
population as a starting point for the optimization.

� The O&M cost model implemented in WINDOW is extremely simplified. Although developing a good
O&M forecasting cost model is a difficult task, it might be worth writing down some piece of code by
using the data the company is in possession of. It is importanto to stress that the effect of a more accurate
model on the layout optimization is not expected to be large. However, this would help the designer have
a more precise overview of the operational expenditures (OPEX) to include in the overall cost model.

� As already mentioned in Chapter 3.2.2 and 7.4.3, it is highly recommended to include a more detailed cost
model, based on data which are not normally available in literature. In particular, two levels of analysis
should be considered: the project level and the shareholders level. As regards the former, it would be
desirable to include the timing of the CAPEX vs. the start of energy production, i.e. do not make all the
investment costs occur in year 0 of the project, as there is a gap between the capital expenditures and the
energy selling. Furthermore, developing a more detailed cost model for raw material (procurement and
installation) is advised.
Regarding the shareholders level, a good suggestion would be starting with a more in-depth definition of
weighted average cost of capital (WACC) instead of the real interest rate in LCOE formulation, and the
inclusion of company-sensitive information, such as contracts with turbine manufacturers when defining
the cost of a turbine.

74 Conclusion and recommendations

References

[1] S. S. Perez-Moreno; M. B. Zaaijer; K. Dykes; K. O. Merz. Multidisciplinary design analysis and optimization
of a reference offshore wind plant, IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 042004.

[2] W. Z. Shen J. Feng. Modelling wind for wind farm layout optimization using joint distribution of wind
speed and wind direction, Department of Wind Energy, Technical University of Denmark, DK-2800 Lyngby,
Denmark; 2015.

[3] C. M. Engelen. The nonlinear effect of combining uncertainties on the energy yield of an offshore wind
farm - a case study for array efficiency and availability, TU Delft MSc thesis, 2015.

[4] Global Wind Energy Council. Global Wind Report Chapter on Global Offshore, 2016.

[5] S. M. Fragoso Rodrigues. A multi-objective optimization framework for the design of offshore wind farms,
2016, Delft.

[6] M. B. Zaaijer. Great expectations for offshore wind turbines: emulation of wind farm design to anticipate
their value for customers, 2013, Delft.

[7] B. Divacco G. Mosetti, C. Poloni. Optimization of wind turbine positioning in large wind farms by means
of a genetic algorithm, 1992.

[8] A. Maselis. Layout optimization of offshore wind farms affected by wake effects, cable topology and support
structure variation, 2016, Delft.

[9] M. Zaaijer S. S. Perez-Moreno. How to select MDAO workflows, January 2018.

[10] D. J. Wilde P. Y. Papalambros. Principles of optimal design - modeling and computation, 2nd edition,
2000.

[11] M. B. Zaaijer. Economic aspects (Introduction to Wind Energy course slides), 2016-2017; TU Delft.

[12] J. Wilkes et al. N. Fichaux. Oceans of opportunity - Harnessing Europe’s largest domestic energy resource,
European Wind Energy Association, Brussels; 2009.

[13] A. Ning A. P. J. Stanley, J. Thomas. Gradient-based optimization of wind farms with different turbine
heights, National Renewable Energy Laboratory, 2017.

[14] Netherlands Enterprise Energy. Borssele Wind Farm Zone - Wind Farm Sites III and IV, 2016.

[15] Mathematics. https://math.stackexchange.com/questions/2374635/point-inside-a-convex-polygon.

[16] I. Katic N. O. Jensen. A simple model for wind cluster efficiency, European Wind Energy Association,
Conference and Exhibition, 7-9 October; Rome, 1986.

[17] A. Crespo P. Enevoldsen R. Gomez-Elvira J. Hernandez J. Hojstrup F. Manuel K. Thomsen S. T. Frandsen,
L. Chacon. Measurements on and modelling of offshore wind farms, Tech rep. 1996.

[18] Danish Energy Agency. Recommendation for the fulfillment of the requirements found in technical criteria,
Tech. rep, 1992.

[19] H. A. Madsen G. C. Larsen, J. Hoistrup. Wind fields in wakes, 1996.

[20] J. F. Ainslie D. Quarton. Turbulence in wind turbine wakes, Wind Engineering, 1990, pp. 15-23.

[21] K. C. Williams L. R. Esau. On teleprocessing system design: part II - a method for approximating the
optimal network, IBM Systems Journal, vol. 5, no. 3, pp. 142-147; 1966.

75

76 REFERENCES

[22] J. Lysgaard J. Bauer. The offshore wind farm array cable layout problem: a planar open vehicle routing
problem, Journal of the Operational Research Society, 2014.

[23] G. Katsouris. Infield cable topology optimization of offshore wind farms, TU Delft MSc thesis, September
2015.

[24] J. Kollowitz. Defining the wake decay constantc as a function of turbulence intensity to model wake losses
in onshore wind farms, Uppsala, 2016.

[25] DNV. Guidelines for the design of wind turbines, 2002.

[26] NEN-EN-IEC 61400-3. Wind turbines - Part3: design requirements for offshore wind turbines, 2009.

[27] R. P. Brent. Algorithms for minimization without derivatives, 1973; Englewood Cliffs, NJ: Prentice-Hall.

[28] J. Douglas Faires R. L. Burden. Numerical Analysis, Ninth edition, 2005.

[29] https://www.investopedia.com/terms/w/wacc.asp. Weighted average cost of capital.

[30] Eneco Luchterduinen Offshore Wind Farm in Noordwijk, https://www.power-technology.com/projects/
eneco-luchterduinen-offshore-wind-farm-noordwijk/2017.

[31] Vestas Brochure. General Specifications V112-3.0 MW 50/60 Hz.

[32] Eneco Princess Amalia Offshore Wind Farm Project, https://www.power-technology.com/projects/
princess-amalia/, 2017.

[33] Vestas Brochure. General Specifications V80-2.0 MW 50/60 Hz.

[34] A. Vire’. Aerodynamic theory of wind turbines, ”Introduction to Wind Energy” course slides; Delft, 2016.

[35] A. Daneshbodi. The effect of wake models and environmental conditions on wind farm layout optimization,
MSc thesis, TU Delft (2018).

[36] X-S. Yang. Metaheuristic Optimization, 2011.

[37] M. M. Abdullah S. A. Grady, M. Y. Hussaini. Placement of wind turbines using genetic algorithms,
Renewable Energy 30(2):259-270; 2005.

[38] P. Noghreh A. Emami. New approach on optimization in placement of wind turbines within wind farm by
genetic algorithms, 2009.

[39] G. Yang X. Li X. Zhang C. Wan, J. Wang. Optimal micro-siting of wind turbines by genetic algorithms
based on improved wind and turbine models, 2009.

[40] G. Yang X. Zhang C. Wan, J. Wang. Optimal micro-siting of wind farms by Particle Swarm Optimization,
Tsinghua University, Beijing; 2010.

[41] A. Bengin B. Rasuo. Optimization of wind farm layout, University of Belgrade, January 2010.

[42] S. Okdem D. Karaboga. A simple global optimization algorithm for engineering problems: differential
evolution algorithm, 2004.

[43] J. Lampinen. A constraint-handling approach for the differential evoluation algorithm, Lappeenranta Uni-
versity of Technology, Finland; 2002.

[44] G. C. Larsen A. Tesauro, P-E. Rethore’. State of art of wind farm optimization.

[45] U. Bodenhofer. Genetic Algorithms: theory and application, third edition, 2004.

[46] M. C. Ferris E. J. Anderson. Genetic Algorithms for combinatorial optimization: the assembly line balancing
problem, 1991 (revised on Januray 1993).

[47] V. Mallawaarachchi. Introduction to Genetic Algorithms - Including Example code, 2017.

[48] https://nl.mathworks.com/help/gads/how-the-genetic-algorithm-works.htmlf6199. How the ge-
netic algorithm works, 2018.

[49] R. Eberhart J. Kennedy. Particle Swarm Optimization, 1995.

[50] http://www.swarmintelligence.org/tutorials.php PSO tutorial.

[51] R. Eberhart Y. Shy. Parameter selection in Particle Swarm Optimization, 1998.

[52] W. G. Macready D. H. Wolpert. No free lunch theorems for optimization, IEEE Transaction on evolutionary
computation, I, 67-82 (1997).

[53] D. Filko E. K. Nyarko, R. Cupec. A comparison of several heuristic algorithms for solving high dimensional
optimization problems., Osijek, Croatia; 2014.

[54] S. Salsa M. Bramanti, C. Pagani. Analisi Matematica 2, 2013, Zanichelli.

[55] L. Johanning M. Khorasanchi S. Barbouchi A. Pillai, J. Chick. Comparison of osshore wind farm layout
optimization using a genetic algorithm and a particle swarm optimizar, ASME 2016 35th International

REFERENCES 77

Conference on Ocean, Offshore and Arctic Engineering; OMAE2016; June 19-24, 2016, Busan, South
Korea.

[56] J. Kennedy M. Clerc. The particle swarm - explosion, stability and convergence in a multidimensional
complex space, IEEE Transactions on evolutionary computation, vol. 6, No. 1; February 2002.

[57] Y. Shi R. C. Eberhart. Comparing inertia weights and constriction factors in particle swarm optimization.

[58] A. K. Qin B. Kazimipour, X. Li. Effects of population initialization on differential evolution for large scale
optimization, Congress on Evolutionary Computation, July 6-11; Beijing, China; 2014.

[59] A. K. Qin B. Kazimipour, X. Li. Initialization methods for large scale global optimization, Congress on
Evolutionary Computation, June 20-23; Cancun, Mexico; 2013.

[60] O. Kramer D. Luckehe, M. Wagner. Constrained evolutionary wind turbine placement with penalty func-
tions.

[61] R. Guanche B. Perez, R. Mingues. Offshore wind farm layout optimization using mathematical programming
techniques, Renewable Energy 53 (2013), pp 389-399; 2013.

[62] X. Zhang J. Wang, X. Li. Genetic Optimal Micrositing of Wind Farms by Equilateral-Triangle mesh, Tongji
University; Tsinghua University, China.

[63] Z. Michalewicz S. Koziel. Evolutionary algorithms, homomorphous mappings and constrained parameter
optimization, 1999, Massachussets Institute of Technology.

[64] C. A. Coello. Constraint-handling techniques used with evolutionary algorithms, Av. IPN No. 2508, Col.
San Pedro Zacatenco; Mexico, D.F. 07360 (2007).

[65] X. Yao T.P. Runarsson. Constrained evolutionary optimization - the penalty function approach, 2002.

[66] D. W. Coit A. E. Smith. Penalty functions, Department of Industrial Engineering, University of Pittsburgh,
Pennsylvania; 1996.

[67] R. Eberhart X, Hu. Solving constrained nonlinear optimization problems with particle swarm optimiza-
tion, Purdue University; Department of Biomedical Engineering, Department of Electrical and Computer
Engineering.

[68] W. Z. Shen J. Feng. Solving the wind farm layout optimization problem using random search algorithm,
Technical University of Denmark, 2015.

[69] A. Paniagua-Tineo L. Prieto-A. Portilla-Figueras B. Saavedra-Moreno, S. Salcedo-Sanz. Seeding evolution-
ary algorithms with heuristics for optimal wind turbines positioning in wind farms, 2010.

[70] Z. Song A. Kusiak. Design of wind farm layout for maximum wind energy capture, 2009.

[71] M. J. Wichura. The percentage points of the normal distribution, Applied Statistics, 37, 477-484.

[72] C. Chen M. Soltani-Z. Chen P. Hou, W. Hu. Optimization of offshore wind farm layout in restricted zones.

[73] U. Akyazi L. Aksoy. Advanced topics in computer sciences genetic programming.

[74] A. Abraham M. Pant, R. Thangaraj. Low discrepancy initialized particle swarm optimization for solving
constrained optimization problems, Fundamenta Informaticae 95 (2009) 121, DOI 10.3233/FI-2009-186, IOS
Press.

[75] P. N. Suganthan J. J. Liang. Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-
Handling Mechanism, In IEEE Congress on Evolutionary Computation (2006).

[76] A. W. Mohemmed K. A. Aziz N. A. A. Aziz, M. Y. Alias. Particle swarm optimization for constrained
and multiobjective problems: a brief review, 2011 International Conference on Management and Artificial
Intelligence IPEDR vol.6 (2011) IACSIT Press, Bali, Indonesia.

[77] A. Celen. Comparative analysis of normalization procedures in TOPSIS method with an application to
Turkish Deposit Banking Market, INFORMATICA, 2014, Vol. 25, No. 2, 185208.

[78] C.F. Zhang J.H. Zhao J.-J. Wang, Y.-Y. Jing. Review on multi-criteria decision analysis aid in sustainable
energy decision-making, School of Energy and Power Engineering, North China Electric Power University,
China; 2009.

[79] L. M. Camarinha-Matos N. Vafaei, R. A. Ribeiro. Normalization techniques for multi-criteria decision
making: analytical hierarchy process case study, IFIP International Federation for Information Processing,
2016.

[80] R. Ginevicius. Normalization of quantities of various dimensions, Journal of Business, Economics and
Management, 9:1, 79-86; 2008.

[81] C.-H. Chen F. Porté-Agel, Y.-T. Wu. A numerical study on the effect of wind direction on turbine wakes and
power losses in a large wind farm, Wind Engineering and Renewable Energy Laboratory (WIRE), Ecole

78 REFERENCES

Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, Lausanne CH-1015, Switzerland;
2013.

[82] R. J.A.M. Stevens, D. F. Gayme, C. Meneveau. Generalized coupled wake boundary layer model: appli-
cations and comparisons with field and les data for two wind-farms, Wind Energ., 19: 2023-2040.

[83] N. G. Nygaard. Wakes in very large wind farms and the effect of neighbouring wind farms, 2014 J. Phys.:
Conf. Ser. 524 012162.

[84] F. Porte-Angel Y.-T. Wu. Modeling turbine wakes and power losses within a wind farm using LES: An
application to the Horns Rev offshore wind farm, Renewable Energy 75, 945 (2015).

[85] Northwind Wind Farm. https://www.4coffshore.com/windfarms/seastar-be-be06.html.

[86] Seastar Wind Farm. https://www.4coffshore.com/windfarms/seastar-be-be06.html.

[87] A. Raheem-Y.-K. Wu R. Shakoor, M. Yusri Hassan. Wake effect modeling: a review of wind farm layout
optimization using Jensen’s model, Renewable and Sustainable Energy Reviews 58 (2016) 10481059.

[88] Eneco B. V. Wind. Eneco Databreeze (private website).

[89] M. B. Zaaijer. Wind climate and energy production (”Introduction to Wind Energy” course slides), TU
Delft, 2017.

[90] P. Bhattacharya. Weibull distribution for estimating the parameters, Kolaghat, India.

[91] K. Yoon C. L. Hwang. Multiple attribute decision making: methods and applications, 1981, New York:
Springer-Verlag.

Appendix A

Weibull distribution

The wind data have been taken from Eneco’s private database [88]. Eneco’s offshore wind farms Prinses Amalia
and Luchterduinen have been taken into account. In these OWFs, both the magnitude and the direction of the
wind are recorded on a 10-min basis for every turbine at the hub height.
The Weibull distribution function is as follows [89]:

f(U) =
k

a
(
U

a
)k−1e−(

U
a)k (A.1)

in which U is the independent variable representing the wind speed, a and k are respectively the scale and the
shape factor. These two factors are the only things which are needed to represent the wind conditions [89].
Estimating the values of a and k starting from the measurements may not be an easy task. Several approaches
exist in literature. The Maximum Likelihood Estimator (MLE) procedure has been chosen [90]. This is as
follows.
Let x1, x2, ..., xn be a sample of size n (i.e. the wind speed bins) which is drawn from a probability density
function (pdf) f(x, θ) where θ is not known. In this case, θ is a vector equal to: θ = [a, k]. The Likelihood
function is thus defined as:

L =

n∑
i=1

f(x, θ) (A.2)

The MLE of θ is the value of θ which gives the maximum L or, equivalently, the logarithm of L. The MLE is a
solution of [90]:

d(log(L))

dθ
= 0 (A.3)

If the Weibull probability density function is considered, the following expression can be written:

L(U1, U2, ..., Un, a, k) =

n∑
i=1

(
k

a
(
U

a
)k−1e−(

U
a)k) (A.4)

Taking the logarithms of equation A.4, differentiating w.r.t. a and k and equating everything to 0 yields:

∂log(L)

∂k
=
n

k
+

n∑
i=1

log(Ui)−
1

a

n∑
i=1

Uki log(Ui) = 0 (A.5)

and
∂log(L)

∂a
= −n

a
+

1

a2

n∑
i=1

Uki = 0 (A.6)

On eliminating a between these two equations and simplifying, the output is as follows:∑n
i=1 U

k
i log(Ui)∑n

i=1 U
k
i

− 1

k
− 1

n

n∑
i=1

log(Ui) = 0 (A.7)

79

80 Weibull distribution

This complicated way of writing Equation A.7 can be actually represented in the form:

xn+1 = xn −
f(xn)

f ′(xn)
(A.8)

which can be solved iteratively. In fact:

f(k) =

∑n
i=1 U

k
i log(Ui)∑n

i=1 U
k
i

− 1

k
− 1

n

n∑
i=1

log(Ui) (A.9)

and

f ′(k) =

n∑
i=1

Uki (log(Ui)
2)− 1

k2

n∑
i=1

Uki (klog(Ui)− 1)− (
1

n

n∑
i=1

log(Ui)

n∑
i=1

Uki log(Ui)) (A.10)

Once that k is found, a is equal to:

a =

∑n
i=1 U

k
i

n
(A.11)

This procedure maximizes the Likelihood function. However, the author has decided to perform some optimiza-
tion by minimizing the negative Likelihood function. This has been done through the scipy.optimize package
available in Python. The objective function is −log(L) and the shape and scale factor are found in an iterative
way by the optimizer.

(a) PAWP Weibull Distrib. Sector 0 (b) PAWP Weibull Distrib. Sector 1 (c) PAWP Weibull Distrib. Sector 2

(d) PAWP Weibull Distrib. Sector 3 (e) PAWP Weibull Distrib. Sector 4 (f) PAWP Weibull Distrib. Sector 5

(g) PAWP Weibull Distrib. Sector 6 (h) PAWP Weibull Distrib. Sector 7

Figure A.1: Weibull fit for Prinses Amalia: 8 windrose sectors

81

(a) EL Weibull Distrib. Sector 0 (b) EL Weibull Distrib. Sector 1 (c) EL Weibull Distrib. Sector 2

(d) EL Weibull Distrib. Sector 3 (e) EL Weibull Distrib. Sector 4 (f) EL Weibull Distrib. Sector 5

(g) EL Weibull Distrib. Sector 6 (h) EL Weibull Distrib. Sector 7

Figure A.2: Weibull fit for Eneco Luchterduinen: 8 windrose sectors

82 Weibull distribution

Appendix B

Multi-criteria analysis approach: TOPSIS

The TOPSIS procedure was originally proposed in 1981 by Hwang and Yoon [91]. In this method, each attribute
- i.e. an assessment criterion - is assumed to have a tendency towards monotolically increasing utility. In words,
at first Positive Ideal Solutions (PIS) and Negative Ideal Solutions (NIS) are computed. The former maximizes
the ”benefit” attributes and minimizes the ”costs”, whereas the NIS does the other way round [77]. In short,
PIS gathers all the best obtainable scores while NIS takes the negative ones.

The strategy works as follows. In a MCA problem there are m alternatives (A1, A2, ..., Am) and n criteria
(R1, R2, ..., Rn). Each alternative is appraised by those criteria (or attributes). The matrix which displays the
score of each alternative based on all the criteria is denoted by Q = (qij)m·n. Let W = (w1, w2, ..., wn) be the
weight vector which satisfies the following condition:

∑m
j=1 wj = 1.

The TOPSIS consists of these steps:

1. Complete the decision matrix Q and normalize it by means of either vector or linear sum normalization.

2. Weight Q by multiplying the normalized matrix by the relative importance of the attributes: vij = qij ·wj
(being i = 1, 2, ...,m and j = 1, 2, ..., n), where qij represents each element of Q and vij is the weighted
normalized element. The weighted Q is called V .

3. Compute the PIS and NIS by doing:

PIS = [v+1 , v
+
2 , ..., v

+
n] where v+j = maxi(vij) (B.1)

NIS = [v−1 , v
−
2 , ..., v

−
n] where v+j = mini(vij) (B.2)

4. Calculate the distance of each alternative from PIS and NIS:

d+i =

√√√√ n∑
j=1

(vij − v+j)2 (B.3)

d−i =

√√√√ n∑
j=1

(vij − v−j)2 (B.4)

where i = 1, 2, ...,m

5. In the end, find the closeness coefficient [77] CCi which is defined as:

CCi =
d−i

d+i + d−i
where i = 1, 2, ...,m (B.5)

The best alternative is the one with the highest closeness coefficient, i.e. the one which has a final score which
is the closest to the PIS.

83

84 Multi-criteria analysis approach: TOPSIS

Appendix C

Triangular grids

In Section 5.3.3 the Grid initialization by means of triangulation has been illustrated. Since the PyDistMesh

tool was not available, the algorithms have all been developed by the author.
In their paper, Wang et al. [62] also investigate on the orientation of the grid. In this study, for reasons of
simplicity, this will be neglected. The equilateral-triangle grid strategy is as follows.

Algorithm 8 Equilateral-triangle grid creator

set: desired spacing among turbines, desired number of turbines, boundaries (S), xmin, ymin, xmax, ymax, linspacex =
0, linspacey = 0
initialise x = xmin and y = ymin, number of turbines = 0
WHILE x < xmax DO:

x = x+ spacing, linspacex = linspacex + 1 % How many sectors to divide x-axis into
END
WHILE y < ymax DO:

y = y +
√

3
2
∗ spacing, linspacey = linspacey + 1 % How many rows. The rows are

√
3

2
∗ spacing from each other

- equilateral triangle
END
set allowable x, y positions: x = linspace(x, xend, linspacex), y = linspace(y, yend, linspacey) % In this way we
create a rectangular grid, being the x points far from each other by exactly the desired space and being the y points

far (
√
3

2
∗ spacing) from each other

FOR all the rows DO:
IF the row is odd DO:

do not modify the row
ELSE:

shift all the points in the row by spacing
2

% in this way every two rows we shift to the right all the available
points, to create the equilateral-triangle grid

END
END
WHILE number of turbines ¡ desired number of turbines DO:

WHILE turbine is not within the boundaries DO:
randomly place a turbine in the equilateral-triangle grid
number of turbines = number of turbines + 1

END
END

85

86 Triangular grids

Algorithm 9 Random trinagled Initialization

set: spacing, boundaries (S), desired number of turbines
initialise Nspots 6= 0, Nturbines = 0
WHILE Nspots 6= 0 DO:

WHILE spot does not violate the constraint DO:
IF iterations in while loop = 3000 DO:

stop while loop
ELSE DO:

add spot, Nspots = Nspots + 1
END

END % Now we have the maximum number of points the space which can be put in the search space without
violating the constraints.
Perform Delaunay triangulation to create a meshgrid with the computed spots1

WHILE Nturbines < desired number of turbines DO:
place a turbine in one of the spots computed before

END % the turbines can occupy these spots only

Appendix D

Random sampling: graphs

These figures are taken from the case study of Eneco Luchterduinen

(a) Combination n. 1 (b) Combination n. 1 (c) Combination n. 2

(d) Combination n. 2 (e) Combination n. 3 (f) Combination n. 3

(g) Combination n. 4 (h) Combination n. 4

Figure D.1: First 4 combinations - random sampling

87

88 Random sampling: graphs

(a) Combination n. 5 (b) Combination n. 5 (c) Combination n. 6

(d) Combination n. 6 (e) Combination n. 7 (f) Combination n. 7

(g) Combination n. 8 (h) Combination n. 8 (i) Combination n. 9

(j) Combination n. 9 (k) Combination n. 10 (l) Combination n. 10

Figure D.2: Combinations 5-10 - random sampling

89

(a) Combination n. 11 (b) Combination n. 11

(c) Combination n. 15 (d) Combination n. 15

(e) Combination n. 16 (f) Combination n. 16

Figure D.3: Combinations 11-16 - random sampling

90 Random sampling: graphs

(a) Combination n. 17 (b) Combination n. 17 (c) Combination n. 18

(d) Combination n. 18 (e) Combination n. 19 (f) Combination n. 19

(g) Combination n. 20 (h) Combination n. 20 (i) Combination n. 21

(j) Combination n. 21 (k) Combination n. 22 (l) Combination n. 22

Figure D.4: Last combinations - random sampling

	Summary
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Problem analysis
	1.3 Objective
	1.4 Methodology
	1.5 Thesis outline

	2 The Offshore Wind Farm Layout Optimization problem (OWFLO)
	2.1 Introduction to the chapter
	2.2 Optimization: definition and terminology
	2.3 Presentation of OWFLO
	2.3.1 The objective function
	2.3.2 The design vector
	2.3.3 The constraints

	2.4 Summary of the chapter

	3 The Python framework
	3.1 Introduction to the chapter
	3.2 Multidisciplinary Design Analysis and Optimization (MDAO)
	3.2.1 Overview about the MDAO workflow
	3.2.2 The analysis block: WINDOW
	3.2.3 The driver: the optimizing strategy

	3.3 Presentation of the case studies
	3.3.1 Eneco Luchterduinen
	3.3.2 Eneco Prinses Amalia Wind Park
	3.3.3 Input data for WINDOW - site conditions and fixed design parameters

	3.4 Validation of WINDOW
	3.4.1 Introduction to the validation
	3.4.2 Results and discussion from the validation

	3.5 Summary of the chapter

	4 The algorithms
	4.1 Introduction to the chapter
	4.2 Overview of the available algorithms
	4.3 The selected algorithms
	4.3.1 Genetic Algorithm
	4.3.2 Particle Swarm Optimization
	4.3.3 Differential Evolutionary Algorithm

	4.4 Tests on known functions
	4.5 Summary of the chapter

	5 OWFLO problem setup
	5.1 Introduction to the chapter
	5.2 Preparation of the algorithms for OWFLO
	5.2.1 Genetic Algorithm
	5.2.2 Particle Swarm Optimization
	5.2.3 Differential Evolutionary Algorithm

	5.3 Initialization
	5.3.1 Overview of the initializing techniques
	5.3.2 Random initialization
	5.3.3 Grid initialization
	5.3.4 Smart random initialization
	5.3.5 Conclusions on the initialization

	5.4 Constraint-handling techniques (CHT)
	5.4.1 Overview of the constraint-handling techniques
	5.4.2 Penalty functions
	5.4.3 Repair mechanisms
	5.4.4 Absence of constraints
	5.4.5 Conclusion on CHTs

	5.5 Stopping criterion
	5.6 Summary of the chapter

	6 Results
	6.1 Introduction to the chapter
	6.2 Analysis of the combinations
	6.2.1 Overview of the combinations
	6.2.2 A closer look at the combinations

	6.3 Assessment of the combinations
	6.3.1 Presentation of the assessment criteria
	6.3.2 Overview of the scores
	6.3.3 Selection of the best optimizing blocks - Multi Criteria Analysis (MCA)

	6.4 Comparison with the real wind farms
	6.4.1 Overview of the results
	6.4.2 The influence of the wind direction sampling stepsize

	6.5 Influence of the design areas on the optimization
	6.6 Summary of the chapter

	7 A new case study: Borssele III
	7.1 Introduction to the chapter
	7.2 Borssele III: presentation of the new case study
	7.3 A more difficult optimization: presentation of the challenges
	7.3.1 Challenge 1: simple case
	7.3.2 Challenge 2: optimization with forbidden zones
	7.3.3 Challenge 3: optimization with a variable number of turbines

	7.4 Results
	7.4.1 Challenge 1
	7.4.2 Challenge 2
	7.4.3 Challenge 3

	7.5 The effect of neighbouring wind farms
	7.5.1 Overview of the problem
	7.5.2 Presentation of the neighbouring wind farms
	7.5.3 The energy production in disturbed and undisturbed conditions
	7.5.4 The optimization with respect to AEP with neighbouring wind farms
	7.5.5 The optimization with respect to LCOE with neighbouring wind farms

	7.6 Summary of the chapter

	8 Conclusion and recommendations
	8.1 Conclusions
	8.2 Recommendations
	8.2.1 Recommendations for designers
	8.2.2 Recommendations for future research

	A Weibull distribution
	B Multi-criteria analysis approach: TOPSIS
	C Triangular grids
	D Random sampling: graphs

