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Abstract 
Safe offshore access for people and cargo is a major challenge in the offshore industry. The Ampelmann 

system is an active motion compensated system for six degrees of freedom. Creating a platform isolated 

from the motions of the vessel making offshore access as easy as crossing the street. All the Ampelmann 

system can be used for people transfer, while some of the systems can also be used as a cargo crane. The 

basic system can be divided in two main systems: the hexapod and the transfer deck and gangway. Usually 

the system is installed on a ship deck. However, in various cases the height of the Ampelmann system is 

not sufficient to reach the landing point. An often-used solution is to place the system on a pedestal which 

can be over 15 meters high. The Ampelmann system occasionally starts vibrating unexpectedly, especially 

while the system is placed on a pedestal. These vibrations are believed to be caused by the 

eigenfrequencies of the system and/or amplification caused by the motion control algorithm. In this research 

an investigation in this phenomenon was done.  

This investigation was done via an analysis of the eigenfrequencies of the active controlled hexapod. A 

finite element method model was created to determine the eigenfrequencies of the system. This model was 

made using MATLAB and the toolbox StaBIL 2.0, created by the university of Leuven. All the elements of 

the system are modeled as beams except the hydraulic actuators. The properties of the elements which 

represent the hydraulic actuators are calculated separately using a modelling study on stiffness 

characteristics of hydraulic cylinder under multi-factors.  

Possible causes for the unexpected vibrations have been investigated via measurements performed on 

Ampelmann systems. Data which was readily available is analyzed. Based on this data three possible 

causes have been determined. These are: the influence of the pedestal, residual motions due to limitations 

of the Ampelmann system and vibrations in the bottom frame due to compensating for gangway motions.  

To investigate the influence of the pedestal and the vibrations in the bottom frame two experiments have 

been performed. The residual motions have been investigated via calculations based on data already 

available. The amplitude of the response in the results from the first experiment performed to investigate 

the vibrations in the bottom frame due to gangway motions is negligible over the entire test period. The 

data from the calculations done to investigate the effect of the residual motions show no amplification. The 

results of the experiment and the calculations lead to the conclusion that these do not cause unwanted 

behavior. 

The second experiment to determine the influence of the pedestal shows four peaks in the frequency 

domain of both the signals. The first is directly caused by vessel motions. The other three have a cause 

which is not directly related to vessel motions. The data from the sensor on the Ampelmann system, at the 

top of the pedestal, does not contain a peak which is not present at the ship deck. From this it can be 

concluded that the eigenfrequencies of the pedestal do not have a relevant influence. For one of these 

peaks the amplitude of the graph related to the top of the pedestal is higher than the one corresponding to 

the ship deck. A possible explanation for this phenomenon could be the eigenfrequencies and 

corresponding eigenmodes of the ship deck. The pedestal functions as a leaver arm amplifying the rotations 

related to eigenmodes of the ship deck. This may cause the unexpected vibrations.  

Ampelmann’s motion control algorithm is complicated which makes it difficult to incorporate this algorithm 

in the FEM model. An attempt is made to create a simplified 2D multi-body model including the algorithm. 

At Ampelmann a model made by Temporary Work Design was available, consisting out of two masses, 

which should have funtioned as the base for this model. During the investigation of the model an error was 

discovered. The correction of this error resulted in an unstable system. A pole plot investigation is done. 

However, no explanation for the instablity is found.   
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1.   Introduction  
Safe offshore access for people and cargo is a major challenge in the offshore industry. The Ampelmann 

system is an active motion compensated system for six degrees of freedom. Creating a platform isolated 

from the motions of the vessel making offshore access as easy as crossing the street. All the Ampelmann 

system can be used for people transfer, while some of the systems can also be used as a cargo crane. The 

basic system can be divided in two main systems: the hexapod and the transfer deck and gangway (Figure 

1-1, left). Usually the system is installed on a ship deck. However, in various cases the height of the 

Ampelmann system is not sufficient to reach the landing point. An often-used solution is to place the system 

on a pedestal which can be over 15 meters high (Figure 1-1, right).  

 

Figure 1-1: Ampelmann system 

Hexapod 

The hexapod is based on a Steward platform [1] consisting of a bottom frame, a base frame and six 

hydraulic cylinders. The bottom frame is fixed to the vessel or pedestal. The transfer deck is connected to 

the base frame. The hexapod or Steward platform is the system that compensates the vessel motions. The 

control of the hexapod is based on the displacement and velocity measured by sensors located at the base 

frame of the system. A simplified model of the control loop is given in Figure 1-2. In this figure Xref,global and 

Xref,measured are the desired and measured location of the transfer deck and gangway and Lcyl is the length 

of the cylinders. 

 

Figure 1-2: Simplified control loop 

  

Transfer deck & gangway 

Hexapod Pedestal 
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Transfer deck & gangway 

Personnel accessing an offshore structure from a ship via an Ampelmann system commence their crossing 

on the transfer deck. The system starts up after which the people transfer begins. Personnel walk over the 

gangway to the offshore structure. The gangway can maneuver in three degrees of freedom, basically 

resembling the boom of a crane. 

Pedestal 

The pedestals, which are used by Ampelmann to increase the possible height of the landing point, are 

mostly individually designed. At the moment, Ampelmann is in the process of designing a generic A-frame 

(GAF). This will be a modular based pedestal (Figure 1-3).  

 

Figure 1-3: Generic A frame 

A-type & E-type  

Ampelmann employs three types of systems. The A-type, E-type and L-type. The L-type does not use a 

hexapod so no investigation regarding this type will be done in this research. The A-type is an offshore 

access system for performing safe transfer of personnel in sea states with a maximum significant wave 

height of 3 meters. The system weights roughly 40 tons and has a gangway length of 20 to 25 meters. The 

E-type is designed to safely transfer offshore personnel in rough sea conditions. The gangway system is 

based on the same technology as the A-type, only 1.5 times larger. As a result of its increased size, the E-

type is capable of compensating sea states up to 4.5 meters significant wave height. The systems weights 

roughly 100 tons and has a gangway length of 25 to 30 meters.  
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 Research objective  

The Ampelmann system occasionally starts vibrating unexpectedly, especially while the system is placed 

on a pedestal. These vibrations are believed to be caused by the eigenfrequencies of the system and/or 

amplification caused by the motion control algorithm. At the moment, the knowledge present at Ampelmann 

about these vibrations is mostly based on field experience. In this research an investigation in this 

phenomenon will be done. To perform this the following research goal is formulated: 

The objective of this thesis is performing an analysis on the eigenfrequencies of an active controlled 

hexapod and explain the unexpectedly occurring vibrations in the Ampelmann system. 

To reach the research goal a set of sub goals are formulated:  

1.   Design a model which can be used to calculate the eigenfrequencies and corresponding 

eigenmodes of an Ampelmann system. 

2.   Investigate whether motion compensation caused by vibrating of the pedestal can cause the 

unexpected vibrations in an Ampelmann system. 

3.   Determine the frequency content of the residual motions and compare them to the 

eigenfrequencies of the gangway which might cause the unexpectedly occurring vibrations in an 

Ampelmann system. 

4.   Investigate whether vibrations in the bottom frame, due to compensating for gangway motions, can 

cause the unexpected vibrations in an Ampelmann system 

5.   Create a simplified multibody model incorporating the motion control algorithm which can explain 

the unexpectedly occurring vibrations in an Ampelmann system. 

The first sub goal, about the eigenfrequencies of the system, helps to reach the first part of the research 

goal. The second, third and fourth aim to answer the second part of the research goal. These come down 

to investigating whatever happens below the hexapod, what happens due to limitations of the hexapod and 

what happens above the hexapod. The fifth sub goal aims to combine all the data into a single model and 

explain the vibrations. 

 

 Thesis outline  

This thesis consists out of a total of six chapters. The first step in this work is a brief discussion about control 

engineering and the motion control algorithm used by Ampelmann in chapter 2. Next, in chapter 3, a finite 

element method model is created to determine the eigenfrequencies of the system and sub-systems. In 

chapter 4 some experimental research is done to identify and explain possible causes for the unexpectedly 

occurring vibrations. In chapter 5 a simplified 2D multi-body model is created. However, due to an error, 

which will be explained later, in a template model which was supposed to be used, a small research 

regarding this mistake is done. Chapter 6 summarizes the conclusions of this research and adds 

recommendations.  
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2.   Motion control algorithm 
The Ampelmann motion control algorithm (Figure 2-3) calculates and controls the required lengths of the 

hydraulic actuators such that the transfer deck experiences no rotations and translations. The goal of this 

chapter is to get a basic understanding of motion control engineering and Ampelmann’s algorithm. First 

some general motion control engineering theory is given. Next the control algorithm is discussed. The 

algorithm consists of three parts: Signal processing, kinematics and the controller. These three parts will 

be discussed briefly.  

 Control engineering 

Motion control engineering focuses on moving a load from one place to another by precisely controlling the 

position, velocity and the acceleration of the load under defined operating conditions. The basic principles 

of motion control can be divided in feedback and control. Feedback refers to the situation where two or 

more dynamic systems are connected and influence each other’s behavior over time. Control is the design 

of component of an engineering feedback system to achieve a desired behavior [2]. 

2.1.1 Feedback 

A dynamical system is a system whose behavior changes over time. Feedback is about two or more 

connected dynamic systems such that they influence each other’s behavior and are thus strongly coupled. 

Simple causal reasoning about a feedback system is difficult because the first system influences the second 

and vice versa. A consequence of this is that the behavior of a feedback system is often counterintuitive. 

This makes it necessary to investigate the entire system. Two often used terms when referring to such 

systems are open loop and closed loop systems (Figure 2-1). A system is closed loop when the systems 

are connected in a circle and open loop when this circle is broken. Feedback has potential disadvantages: 

It can create dynamic instabilities or even runaway behavior. A second drawback is that feedback can 

introduce unwanted sensor noise into a system requiring careful signal processing and filtering of the sensor 

signal [2].   

 

Figure 2-1: Closed loop (left); Open loop (right) 

2.1.2 Control  

In the area of motion control engineering the term control is defined as the use of algorithms and feedback 

in engineering systems. A modern controller senses the operation of a system, compares it to a desired 

behavior (𝑒 = 𝑟 − 𝑦), and then computes corrective actions based on a model of the system’s response to 

external inputs and actuates the system for a desired change. This loop of sensing, computation and 

actuation is a central concept in control engineering [2].  

Proportional Integral Derivative control 

Using only an on-off control often causes oscillations because the system overreacts. A small error causes 

a “full throttle” response in the system. This effect is avoided using proportional controller. The characteristic 

of the controller is proportional to a control error for small errors (equation 2.1). In this equation kp is the 

controller gain and 𝑒𝑚𝑖𝑛 = 𝑢𝑚𝑖𝑛 𝑘𝑝⁄  and 𝑒𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥 𝑘𝑝⁄  is the proportional band where the behavior of the 

controller is linear.  

𝑢 = {

𝑢𝑚𝑎𝑥 𝑖𝑓                    𝑒 ≥ 𝑒𝑚𝑎𝑥

𝑘𝑝𝑒 𝑖𝑓     𝑒𝑚𝑖𝑛 < 𝑒 < 𝑒𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 𝑖𝑓                    𝑒 ≤ 𝑒𝑚𝑖𝑛

(2.1)  
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A proportional controller is a huge improvement compared to an on-off controller. However, a proportional 

controller has the drawback that some level of control signal is required for the system to maintain a desired 

value, meaning 𝑒 ≠ 0. This can be avoided by making the control action proportional to the integral of the 

error (equation 2.2), which is called an integral controller. This controller has zero steady state error [2]. 

The problem however is that there may not always be a steady state because the system is for example 

oscillating.  

𝑢(𝑡) = 𝑘𝑖 ∫ 𝑒(𝜏) 𝑑𝜏
𝑡

0

(2.2)  

An additional refinement is to provide the controller with a predictive ability by using a prediction of the error. 

The simplest form is using a linear extrapolation (equation 2.3) predicting the error Td units of time ahead. 

𝑒(𝑡 + 𝑇𝑑) = 𝑒(𝑡) + 𝑇𝑑  
𝑑𝑒(𝑡)

𝑑𝑡
(2.3) 

Combining these three actions, proportional, integral and derivative control results in a PID controller which 

is mathematically expressed in equation 2.4. 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝜏) 𝑑𝜏
𝑡

0

+ 𝑘𝑑  
𝑑𝑒(𝑡)

𝑑𝑡
(2.2) 

 Ampelmann’s motion control algorithm  

The orientation of the bottom frame is acquired from a 6 degree of freedom motion sensor located at the 

center of the bottom frame. Using this data, the necessary lengths of the hydraulic actuators are calculated 

using inverse kinematics. These lengths are sent to a controller which controls the length of the cylinder 

using a feed forward and multiple feedback loops. 

2.2.1 Signal processing  

The sensors measure, in 6 degrees of freedom, the motions of the vessel. These contain a high frequency 

part for which the Ampelmann system should not compensate. This part of the signal is filtered using a low 

pass filter. The S-curve is used to slowly start up the system. Instead of going to full compensation instantly, 

the process is smoothened over a period of time. The main goal of this part of the motion control algorithm 

is creating a signal in which all unwanted parts are removed resulting in a clean signal which can be used 

for motion compensating. 

2.2.2 Inverse kinematics 

The pose of a Steward platform can be defined by the position and orientation of the top and bottom frame 

with respect to each other [3]. The lengths of the 6 actuators can be determined with these orientations 

using inverse kinematics. The orientation of the bottom frame is measured by a six degree of freedom 

motion sensor. This sensor is located at the center of the bottom frame while the top frame is assumed to 

be horizontal and motionless. Two local coordinate systems (Figure 2-2) are introduced one at center of 

the top frame (Ot) and one at the center of the bottom frame (Ob). The coordinates of the bottom joints are 

expressed in the coordinates system of the top frame using a rotation matrix. The required lengths of the 

hydraulic actuators can now be determined. 
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Figure 2-2: Bottom and top frame coordinate system  

2.2.3 Actuators controller  

The Ampelmann controller is relatively complicated, consisting out of a saturation block, rate limiter, lookup 

tables, S-curves etcetera. For details see appendix A. However, the general idea of the controller is the 

following: The input of the controller is the error between the reference lengths and the actual lengths of 

the actuators and the error between the reference velocity and actual velocity of the actuator. These errors 

are translated into a certain pressure. This pressure results in the output. The output is the valve position 

in the hydraulic actuators.  
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Figure 2-3: Ampelmann’s motion control algorithm 

 

 

 



 

      8 

3.   Eigenfrequencies Ampelmann system 
To mimic the unexpectedly occurring vibrations, two computer models are made. The first model will be 

used to determine the eigenfrequencies of the system. This model is made using MATLAB and the toolbox 

StaBIL 2.0 [4], created by the university of Leuven resulting in a finite element method model. The finite 

element method model will be used to determine eigenfrequencies and eigenmodes. The FEM model is 

created using the toolbox StaBIL 2.0. The toolbox consists out of a set of MATLAB functions which perform 

a matrix method based discrete-element idealization. StaBIL 2.0 is based on [5] & [6].  

A discrete-element model of the Ampelmann system will be created. In Figure 3-1 an example of the 

hexapod, transfer deck and gangway is given. The system is assumed to exist out of a set of beams coupled 

by rigidly connected joints. The interaction forces between the various elements are represented by joint 

forces. These joint forces are axial forces, shear forces, bending moments and torques. For each element 

a local stiffness and mass matrix is composed which will be transferred to the global coordinates system 

using a matrix. For elements which are long compared to their cross section dimension the elastic 

characteristics can be determined accurately [5]. The pedestal and transfer deck and gangway are all 

assembled using beam elements. The hexapod is also assembled using beam elements. However, the 

stiffness and mass of elements which represent the hydraulic actuators are calculated separately using a 

modelling study on stiffness characteristics of hydraulic cylinder under multi-factors [7].  

 

Figure 3-1: Hexapod, transfer deck and gangway (nodes and elements) 
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 Beam element 

Beam elements are assumed to be straight members of uniform cross section capable of resisting axial 

forces, bending moments about its two principal axes in plane of its cross section and a twisting moment 

about its centroidal axis. The location and positive direction of the degrees of freedom are given in Figure 

3-2. The position of the beam element in space is specified by the location of the p-end of the beam and 

the direction of the local x-axis. The stiffness and mass matrix for a uniform beam element are derived 

directly from the differential equations for beam displacements in engineering beam theory [5] & [6]. The 

entire stiffness matrix is given in appendix B. The two most dominant stiffness properties, axial and bending, 

are worked out below. For the other stiffness parameters reference is made to [5]. 

 

Figure 3-2: Beam element 

3.1.1 Axial stiffness 

The differential equation for axial displacement is: 

𝐹1 = −
𝑑𝑢1 

𝑑𝑥
𝐸𝐴 (3.1) 

 

This equation can be integrated and by assuming the following boundary conditions: The left end of the 

beam at 𝑥 = 0 has a displacement u1 and the right end at 𝑥 = 𝑙 has zero displacement (Figure 3-3). This 

results in the following solution: 

𝐹1 =
𝐸𝐴

𝑙
𝑢1 (3.2) 

 

From equation 3.2 and force equilibrium in the x direction, the axial stiffnesses can be computed: 

𝑘1,1 = −𝑘7,1 = 𝑘7,7 =
𝐸𝐴

𝑙
(3.3) 
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Figure 3-3: Axial stiffness beam element 

3.1.2 Bending moments 

The differential equation for deflection of the beam is:  

𝐸𝐼𝑧
𝑑2𝑢2

𝑑𝑥2
= 𝐹2𝑥 − 𝐹6 (3.4) 

 

The following boundary conditions are assumed:  

𝑢2 = 𝑢8 = 0
𝑑𝑢8

𝑑𝑥
= −

𝐹2

𝐺𝐴𝑠
       𝑎𝑡 𝑥 = 𝑙

(3.5) 

 

Equation 3.4 can be integrated and by applying the boundary conditions, equilibrium and symmetry, the 

bending stiffness can be determined: 

𝑘6,6 = 𝑘12,12 =
(4 + 𝛷)𝐸𝐼𝑧

(1 + 𝛷)𝑙

𝛷 =
12𝐸𝐼

𝐺𝐴𝑠𝑙
2

(3.6) 

 

The bending stiffness in the direction of u5
 and u11 can be determined in a similar way. Using the moment 

of inertia (I) and the effective shear area (As) with respect to the y-axis.  

 

Figure 3-4: Bending stiffness beam element 
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 Hydraulic actuator 

Each hydraulic actuator is assumed to exist out of two elements (Figure 3-5). One represents the cylinder 

and one represents the piston. For all the degrees of freedom except the axial directions both the cylinder 

and the piston are modeled using the beam theory as explained in paragraph 3.1. However, the axial 

stiffness of a hydraulic actuator is significantly affected by the characteristics of, for example the bulk 

modulus of the hydraulic oil. The determination of the axial hydraulic actuator stiffness is based on [7].  

 

Figure 3-5: Hydraulic actuator 

The main factors affecting the hydraulic actuator stiffness (Figure 3-6) are the hydraulic oil stiffness [Ko], 

the piston rod axial stiffness [Kr], the cylinder barrel expansion stiffness [Kp], the flexible hose expansion 

stiffness [Kh] and the sealing ring deformation stiffness [Ks]. The total stiffness can be determined as the 

sum of the reciprocals of the all the stiffnesses [7]. The level of influence of each stiffness according to [7] 

is: the hydraulic oil stiffness is about 80 %, the expansion deformation of the cylinder barrel is about 10 % 

and the axial deformation of the piston rod is about 6 % of the total. The other factors are smaller than 3 % 

and are neglected because of their small contribution. The cylinder actuator stiffness can be calculated 

using equation 3.7. The piston rod in general is a solid cylindrical steel rod. The axial stiffness is calculated 

based on beam theory, as given in paragraph 3.1. 

1

𝐾
=

1

𝐾𝑜
+

1

𝐾𝑟
+

1

𝐾𝑐

(3.7) 

 

 

Figure 3-6: Hydraulic system [7]; 1 cylinder barrel, 2 hydraulic oil, 3 piston sealing, 4 rod sealing, 5 piston rod, 6 
flexible hose, 7 metal pipe 
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3.2.1 Cylinder barrel expansion stiffness 

The cylinder barrel expansion stiffness is produced by the movement of the piston as a result of the radial 

cylinder expansion caused by a pressure change [ΔP]. The radial deformation [ΔD] due to a pressure 

change can be computed using equation 3.8, with Do as the outer barrel diameter Di as the inner barrel 

diameter, Eb is Young’s modulus and υb as the Poisson ratio.  

∆𝐷 =
𝐷∆𝑃

𝐸𝑏
(
𝐷𝑜

2 + 𝐷𝑖
2

𝐷𝑜
2 − 𝐷𝑖

2 + 𝜐𝑏)          ;          𝜆𝑐 =
𝐷𝑜

2 + 𝐷𝑖
2

𝐷𝑜
2 − 𝐷𝑖

2
(3.8) 

 

By calculating the volumetric change as a result of the radial deformation caused by the pressure change 

and using the spring stiffness equation 𝐾𝑠𝑝 = 𝑑𝑓 𝑑𝑥⁄ , the cylinder barrel expansion stiffness is given by 

equation 3.9. In this equation A is the cross section of the cylinder, L is the length of the cylinder and V is 

the volume of the cylinder. 

𝐾𝑐 =
∆𝑃𝐴2

∆𝑉
=

𝐸𝑏𝐴

2𝐿
∗

1

𝜆𝑐 + 𝜐𝑏
 (3.9) 

3.2.2 Hydraulic oil stiffness 

The hydraulic oil stiffness can be computed using the following equations:  

𝐾𝑜 = 𝐸𝑜

𝐴2

𝑉
(3.10) 

The oil bulk modulus [E0] is influenced by the amount of air in the fluid and the pressure of the fluid. The oil 

bulk modulus can be described using equation 3.11 [8]. In this equation, E0
’ is the oil bulk modulus without 

air, pa is the atmospheric pressure, α is the relative air content in oil under atmospheric pressure and n is 

the isentropic coefficient (n = 1.4). 

𝐸𝑜 = 𝐸𝑜
′

1 +  𝛼 (
𝑝𝑎

𝑝𝑎 + 𝑝
)
1 𝑛⁄

1 +  𝛼 𝐸0
𝑝𝑎

1 𝑛⁄

𝑛(𝑝𝑎 + 𝑝)(𝑛+1) 𝑛⁄

 (3.11) 
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 FEM model  

3.3.1 A-type 

In Figure 3-7 the FEM model of the A-type on a pedestal is plotted. The pedestal consists out of two GAF 

modules. To get some confidence the mass of the model is calculated and compared to masses from real 

systems. The mass is calculated using the volumes and densities of the elements. This results in a 

difference of less than 10 % for the A-type system when compared to the actual system, which is heavier. 

The object only contains structural members. The difference of 10 % can be explained by some 

miscellaneous like pipework and a stairway. In Figure 3-8 the first four eigenmodes of the system according 

are plotted and in Table 3-1 the corresponding eigenfrequencies are given.  

 

Figure 3-7: FEM model A-type system 
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Figure 3-8: Mode shapes 1 to 4 A-type system 

Table 3-1: Eigenfrequencies A-type system 

Mode Eigenfrequency 
A-type [Hz] 

1 0.54 

2 2.25 

3 3.19 

4 3.95 
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3.3.2 E-type 

In Figure 3-9 the FEM model of the E-type on a pedestal is plotted. The pedestal consists out of two GEF 

[9] modules. To get some confidence the mass of the model is calculated and compared to masses from 

real systems. The mass is calculated using the volumes and densities of the elements. This results in a 

difference of less than 15 % for the E-type system with the real system being heavier. In Figure 3-10 the 

first four eigenmodes of the system according to the FEM model are plotted and in Table 3-2 the 

corresponding eigenfrequencies are given.  

 

Figure 3-9: FEM model E-type system 
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Figure 3-10: Mode shapes 1 to 4 E-type system 

Table 3-2: Eigenfrequencies E-type system 

Mode Eigenfrequency    
E-type [Hz] 

1 0.44 

2 1.73 

3 2.18 

4 2.70 
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 Concluding remarks 

A discrete-element model of both the hexapod systems are created to determine the eigenfrequencies of 

the systems. The models are created using MATLAB and the toolbox StaBIL 2.0. All the elements of the 

system are modeled as beams except the hydraulic actuators. The properties of elements which represent 

the hydraulic actuators are calculated separately using a modelling study on stiffness characteristics of 

hydraulic cylinder under multi-factors [7]. The first four eigenfrequencies of both types of system, based on 

the model, are given in Table 3-3. Analyzing the eigenfrequencies and the eigenmodes of both the systems, 

the first two eigenfrequencies seem to be dominated by gangway vibrations. These eigenfrequencies 

correspond eigenfrequencies calculated in an earlier theoretical study done at Ampelmann about fatigue 

life of a gangway [10].  

Table 3-3: Eigenfrequencies Ampelmann systems  

Mode Eigenfrequency 
A-type [Hz] 

Eigenfrequency    
E-type [Hz] 

1 0.54 0.44 

2 2.25 1.73 

3 3.19 2.18 

4 3.95 2.70 
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4.   Experimental research  
To identify possible causes for the unexpected vibrations, measurements are performed on Ampelmann 

systems. The goal of this chapter is performing an investigation into the unexpectedly occurring vibrations. 

First experimental theory needed for this investigation is discussed, next data which is already available is 

analyzed. Based on this analysis, possible causes are determined. Next some calculations and two sets of 

experiments are performed investigating the possible causes. 

 Experimental frequency analysis 

In general, frequency analysis in the field of vibration analysis is based on the discrete Fourier transform 

(DFT). This is a method used to transform measured samples into a frequency spectrum. The discrete 

Fourier transform is defined as [11]: 

𝑋(𝑘) = ∑ 𝑥(𝑛) ∗ 𝑒−𝑗2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑛=0

 (4.1) 

The inverse discrete Fourier transform (IDFT) is defined as: 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘) ∗ 𝑒𝑗2𝜋𝑘𝑛 𝑁⁄  

𝑁−1

𝑛=0

 (4.2) 

When the following sampled signal is assumed: 𝑥(𝑛) = 𝑥(𝑛∆𝑡) and N samples, which is called the 

blocksize, have been collected. N is usually taken to be an integer power of two (2𝑝) to use and optimize 

the fast Fourier transform algorithm (FFT). This is an algorithm which computes the DFT in a faster way 

then using equations 4.1 directly.   

4.1.1 Discrete Fourier transform 

In Figure 4-1 a summary of the DFT is given. This summary is based on [11]. First a continuous signal (A.1) 

is transferred to the frequency domain (B.1) using the regular Fourier transform. The next step is to sample 

the time signal (A.2 and A.3). This is equivalent to multiplying the continuous signal by an ideal train of 

pulses with an unit value at each sampling instant and otherwise zero. In the frequency domain this 

operation corresponds to the convolution with the Fourier transform, which in this case is a train of pulses 

at multiples of the sampling frequency (B.2 and B.3). Measurements are only performed during a finite 

period in time, which is a multiplication of the continuous signal with a rectangular window (A.4 and A.5). In 

the frequency domain this is equivalent to the convolution with a sinc function: 𝑠𝑖𝑛𝑐(𝑥) = 𝑠𝑖𝑛(𝑥) 𝑥⁄   (B.4 and 

B.5). The result of this truncation is uncertainty in the frequency domain, which can be seen by the ripple 

of the spectrum in (B.5). The final step is carried out in the frequency domain (B.6 and B.7). The DFT only 

calculates the spectrum at discrete frequencies, i.e. it is a multiplication of the spectrum with a train of 

pulses with a frequency increment of ∆𝑓 = 1 𝑇⁄ . In the time domain (A.6 and A.7) this step is equivalent to 

the convolution of a train of pulses with a separation of T.    
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4.1.2 Spectrum averaging    

Many measurement signals contain random noise, either because the signal is random, or because it is 

periodic or transient but contains contaminating noise. When this is the case, spectra are often averaged 

frequency by frequency to reduce the random error of the spectrum estimate. The entire time signal is 

divided into M segments (Figure 4-2). Of each segment the DFT is calculated. The squared magnitude 

value for each frequency is averaged. In case of periodic of transient signals typically 3 – 10 segments are 

necessary. Overlapping processing means using the same time sample more than once, so the final value 

will contain more DFT results from the same data. This process gives a better result because the time 

window used before the DFT calculation removes some information at the ends, where the window 

approaches zero. The amount of overlap that should be used depends on the time window. With the 

Hanning window, which is used, an overlap of 50% is usually seen as optimal [12]. 

 

Figure 4-1: Summary of discrete Fourier transform [11] 
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Figure 4-2: Segment-based frequency domain averaging [12] 

4.1.3 Forward kinematics of a Stewart platform 

The steward platform mechanism is a parallel kinematic system that can be used as the basis for controlled 

motion in six degrees of freedom. The mechanism consists out of a stationary platform and a mobile 

platform connected via, in the case of Ampelmann, six hydraulic actuators. The desired position and 

orientation of the mobile platform is achieved by combining the lengths of the six struts, transforming the 

six transitional degrees of freedom into three positional and three orientational ones. The lengths of the 

actuators cannot be changed independently, but only in a way that the hexapod construction allows [1]. 

The main difficulty with parallel manipulators is the complexity of controlling their movement. The inverse 

kinematics (see paragraph 2.2.2) can be defined as finding the actuator lengths needed to position the 

mobile platform in a desired position. The solution to this problem is not complex and can be computed in 

a short time. The forward kinematics of a parallel manipulator is finding the position and orientation of the 

mobile platform when the actuator lengths are known. This problem has no known closed form solution 

[13]. 

The forward kinematics of a hexapod system can be formulated mathematically in several ways. Every 

representation of the problem has its advantages and disadvantages which become clear when a different 

optimization algorithm is applied. The forward kinematics given below are based on [13]. The most common 

approach, which is also the one used by Ampelmann, uses three positional coordinates of the center of the 

mobile platform (t) and three angles to define its orientation. The hexapod geometry is defined with six 

vectors for the base platform (bi) and six vectors for mobile platform(pi), which define the six joint 

coordinates on each platform. The actuator vector (li) is expressed in equation 4.3, where R is a rotation 

matrix calculated from the rotation angles. 

𝑙𝑖 = −𝑏𝑖 + 𝑡 + 𝑅 ∗ 𝑝𝑖  (4.3) 

For an arbitrary solution to the forward kinematics problem the error can be expressed as the sum of the 

squares of the difference between the calculated lengths and the actual values (see equation 4.4), D is the 

distance between each vector pair. This results in an optimization function which relates all the unknows. 

This function is non-linear due to the trigonometric function in the rotation matrix. However, the function is 

derivable and is the most common representation of the forward kinematics problem.  

𝑓 =  ∑(𝐷 (𝑏𝑖 , 𝑡 + 𝑅 ∗ 𝑝𝑖)
2 − 𝑙𝑖

2  )2

6

𝑖=1

 (4.4) 
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 Pre-processing  

The Ampelmann system contains a lot of sensors. The data they provide is continuously stored, for a period 

of two weeks, and available through the Ampelmann system data network (ASDN). The Ampelmann system 

uses two motion reference units (MRUs), where one functions as a redundancy for the other. The two 

sensors are located on the bottom frame (Figure 4-3). Also, the length of the cylinders is measured over 

time. The Ampelmann system is not able to compensate for all the motions resulting in some residual 

motions. In the figures discussed in this paragraph for clarity only part of the measured signal, namely one 

window as explained in paragraph 4.1, is shown in the time series.  

4.2.1 A-type and E-type  

In Figure 4-4 and Figure 4-5 the normalized translations and rotations for two A-type Ampelmann systems 

are plotted in the frequency domain. Both systems are installed on identical vessels. However, the A-28 is 

installed on the ship deck of the Esvagt Froude, while the A-29 is placed on a pedestal on the Esvagt 

Faraday (see appendix D). In Figure 4-7 and Figure 4-8 the normalized translations and rotations for two 

E-type Ampelmann systems are plotted in the frequency domain. One of the systems is placed on a 

pedestal (E-04) on the Siem Barracuda while the other is attached to the ship deck (E-14) on the Olympic 

Orion (see appendix D). The vessel on which the systems are located differ from each other, so the 

comparison is not as good as for the A-type system. For both of the systems the motions in the time domain 

are plotted in appendix C.  

For all the systems, in the frequency domain a JONSWAP spectrum can be distinguished between roughly 

0 Hz and 0.75 Hz as a result of the vessel motions. The energy in the frequency range between 0.75 Hz 

and 6 Hz for the systems placed on a pedestal (A-29 and E-04) is higher and more distributed than for the 

system placed on the deck (A-28 and E-14). Indicating motion not directly related to vessel motions. For 

the system located on the deck four clear peaks are visible at 2.3 Hz, 2.6 Hz, 4.8 Hz and 5.1 Hz.  

In Figure 4-6 and in Figure 4-9 the difference between the two MRUs for the two A-type systems and E-

type system in heave are plotted in the time and frequency domain. Most of this difference is located in the 

lowest part of the spectrum (0 Hz – 0.03 Hz). Some clear peaks for the system attached to the ship deck 

again are visible in the relative higher frequency range (1 Hz – 6 Hz) at the same frequencies as in the 

heave direction.  
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Figure 4-3: Location of the motion sensors 

 

 

Figure 4-4: Translations A-type systems 

MRU 2 

MRU 1 

Bottom frame 
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Figure 4-5: Rotations A-type systems 

 

Figure 4-6: Difference between MRU 1 and MRU 2 in heave direction for A-type systems 
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Figure 4-7: Translations E-type systems 

 

Figure 4-8: Rotations E-type systems  
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Figure 4-9: Difference between MRU 1 and MRU 2 in heave direction for E-type systems 

 Possible causes of unexpectedly occurring vibrations  

In Figure 4-10 a schematic overview of an Ampelmann system is given. Based on paragraph 4.2 three 

possible causes are determined. These possible causes come down to investigating the influence of the 

parts above (gangway) the hexapod, the influence of parts of the system bellow (pedestal) the hexapod 

and the working limits of the Ampelmann system resulting in residual motions.   

 

Figure 4-10: Overview Ampelmann system 
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4.3.1 Influence of the pedestal 

In Figure 4-11 a schematic cross section of an Ampelmann system on a pedestal is given. When the 

pedestal is excited and starts vibrating the system will try to compensate for these. However, these extra 

motions are not directly related to vessel motions. In Figure 4-4, Figure 4-5, Figure 4-7 and Figure 4-8 the 

six degrees of freedom of an A-type and E-type Ampelmann system, placed on a pedestal and attached to 

the ship deck, are plotted in the frequency domain. In all the degrees of freedom the influence of the 

pedestal is clearly visible. More energy is contained in the relative higher frequencies (0.75 Hz – 6 Hz). 

These motions are measured by the MRUs which results in the system trying to compensate for these 

motions. This might result in a vicious circle resulting in unintended vibrations in the systems. The following 

will be investigated: 

Compensating for motions caused by vibrations in the pedestal can cause the unexpected vibrations in an 

Ampelmann system. 

 

Figure 4-11: Cross section of Ampelmann system; vibrations caused by a pedestal  
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4.3.2 Residual motions  

Due to the limitations of the Ampelmann system some residual motions exist (Figure 4-12), which means 

the transfer deck and gangway are not fully compensated. For example: the cylinders of the Ampelmann 

systems have a limited range. The cylinders must be prevented from running in to their buffers. Because 

of this the cylinders are never controlled to more than 80 % of the maximum rake. Secondly when the 

cylinders are over 50 % of their rake, the system starts to partially compensate for the measured motions. 

Also, the frequency filter in the motion control algorithm (Figure 2-3) can cause lag. These cause residual 

motions. When peaks in the frequency domain of these motions correlate to the eigenfrequencies of the 

transfer deck and gangway, vibrations can occur. The following will be investigated: 

The frequency content of the residual motions corresponds to the eigenfrequencies of the gangway which 

can cause the unexpected vibrations in an Ampelmann system. 

 

 

Figure 4-12: Cross section of Ampelmann system; residual motions 
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4.3.3 Vibrations in the bottom frame due to compensating for gangway motions  

In Figure 4-13 a schematic cross section of an Ampelmann system is given. The pushing and pulling of the 

hydraulic cylinders against their gimbals results in a response in the bottom frame. As a result, the bottom 

frame will deform resulting in motions in the MRUs. In Figure 4-6 and Figure 4-9 the difference between the 

two MRUs in heave direction is plotted. In these figures the fluctuations in the time domain might indicate 

vibrations in the bottom frame. When the Ampelmann system starts compensating for motions with the 

same frequency as the eigenfrequency of the bottom frame, large motions might arise. These motions are 

measured by the MRUs which leads to the system trying to compensate for these motions. This might result 

in a vicious circle introducing unintended vibrations in the systems. The following will be investigated: 

Vibrations in the bottom frame due to compensating for gangway motions can cause the unexpected 

vibrations in an Ampelmann system. 

 

 

Figure 4-13: Cross section of Ampelmann system; vibrations in the bottom frame 
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 Measurements on the Ampelmann system 

An experiment can be classified based on the input or loading using the following: Is the input dynamic or 

static? Is the input controllable and whether the inputs are measurable. An experimental procedure can be 

roughly divided into a number of steps [14]. These steps are: 

1. Selection of inputs, their locations and their means of measurement.  

2. Selection of outputs, their locations and their means of measurement. 

3. Gathering and transmission of signals to a recorder/logger. 

4. Conversion of the signal to a storable form.  

5. Data storage 

The sensors which will be used for measuring during the different tests are all iXblue Octans (look for 

technical specifications in appendix E). This is the same MRU which is used on the Ampelmann systems. 

The Octans is a gyrocompass and motion sensor measuring displacements and accelerations in six 

degrees of freedom. The Octans is a fiber optic gyroscope. In these types of gyroscope, pulses of light are 

sent through windings of fiberglass, both clockwise and counterclockwise. When the sensor rotates, a tiny 

difference can be measured in the arrival time of the light pulses, when comparing the clockwise pulses 

with the counterclockwise pulses.   

All signals measured on mechanical systems are defined continuous in time. When they are recorded, they 

are measured in time discrete signals with a sampling frequency. The sampling frequency of the sensor is 

set at 50 Hz. According to the Nyquist frequency, the sampled signal, which is continue, can only be 

uniquely represented by discrete samples if it is sampled using a frequency larger than twice the highest 

frequency in the analogue signal. This means that the lowest frequency to be investigated is 25 Hz. This is 

well above the frequencies of the vibrations which are the subject of investigation.  

4.4.1 Influence of the pedestal 

To investigate the possible influence of the pedestal on the bottom frame the following test is performed: A 

ship to ship MRU (Figure 4-15) are placed on the ship deck. The data from the ship to ship MRU and the 

MRUs which are already on the system are compared. From this data the influence of the pedestal can be 

determined. The measurements are taken from an E-type (E-04) system. This system is placed on the Siem 

Baracuda (appendix D). The measurements are performed during regular operations of the system.    

During this experiment the input will be the vessel motions at the base of the Ampelmann system or the 

pedestal. These motions are uncontrollable but measurable. The output will be the system responses. The 

measurements are done using the MRUs of the Ampelmann system and a ship to ship MRU. The gathering 

of the data is done using CPU of the Ampelmann system. This makes sure all the signals are synchronized 

time wise and will automatically convert the data to usable format and is stored. 
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Figure 4-14: MRU locations 

 

 

 

Figure 4-15: Ship to ship MRU 
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Results 

In Figure 4-17 the translations and in Figure 4-18 the rotations in the time domain of the two MRUs are 

plotted. The rotations for both the MRUs are roughly the same (for the difference see appendix F). The 

trend and the amplitude are reasonably the same. However, this is not the case for the translations. This is 

because the motions measured by the MRUs are translated to the center of gravity of the Ampelmann 

system. This is done using leaver arm as indicated in Figure 4-16 by dX and dZ. The leaver arm of the 

MRU, which is fitted on the system, is precisely known. Determining the exact leaver arm for the ship to 

ship Octans proofed to be difficult. Because the leaver arm for the ship to ship MRU are large, the 

translations for the most part are determined by the rotations of the MRU. When the leaver arm are not 

precisely correct, the translations will contain an error.   

In Figure 4-19 translations and in Figure 4-20 the rotations in the frequency domain are plotted. The energy 

of the motions measured by the regular MRU, which includes the pedestal, contains more energy in the 

relative higher frequencies when compared to the ship to ship MRU. This is the same as in paragraph 4.2. 

The peaks in the frequency graphs are roughly located at: 2,8 Hz, 5,4 Hz and 8,1 Hz for all the degrees of 

freedom. This is because the data measured by both the MRUs is measured with respect to a fixed 

coordinate system. As a consequence, the motions of the pedestal have an influence in multiple directions 

in the MRU’s local coordinate system. Another consequence of this dependency is that Figure 4-19 and 

Figure 4-20 are similar. 

Four peaks can be identified in both the signals. The first is directly caused by vessel motions so a 

JONSWAP spectrum. The other three have a cause which is not directly related to vessel motions. The 

second and third peak have roughly the same amplitude for both the data sets. However, the fourth peak 

of the system MRU Octans 1 has a much larger amplitude compared to the amplitude of the ship to ship 

Octans. Around the frequency of this peak, 8,1 Hz, more energy is present at the top of the pedestal than 

at the bottom. For this frequency the pedestal seems to amplify the energy present at the ship deck.  

 

 

Figure 4-16: Leaver arms (dX & dZ) 



 

      32 

 

Figure 4-17: E-04 Translations (time domain) 

 

Figure 4-18: E-04 Rotations (time domain)  
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Figure 4-19: E-04 translations (frequency domain) 

 

Figure 4-20: E-04 Rotations (frequency domain) 
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Possible cause 

As in the previous paragraph is stated, the pedestal seems to amplify energy present at the ship deck. A 

possible explanation for this phenomenon could be found in the eigenfrequencies and corresponding 

eigenmodes of the ship deck. In Figure 4-21 a schematic drawing showing this characteristic is given. The 

ship deck bends according to a certain mode shape. The pedestal functions as an arm increasing the 

amplitude of the motion of the Ampelmann system on top. The system will try to compensate for these 

motions. The compensation for this motion will occur with the same frequency as the eigenfrequency of the 

ship deck adding more energy at this frequency to the system. This might result in a vicious circle resulting 

in unintended vibrations in the systems.  

The different stiffeners in a ship deck of a crane vessel close to a heavy-duty crane are in general much 

heavier than the stiffeners below the main deck to cope with the forces introduced by the crane. In general, 

the Ampelmann system is placed on the main deck of a vessel not specifically engineered to cope with the 

system. An Ampelmann system introduced roughly the same dynamic forces as a crane. This supports the 

idea that vibrations in the ship deck might cause the unexpected vibrations.  

 

 

 

Figure 4-21: Schematic overview ship deck vibrations 
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4.4.2 Residual motions 

To investigate the possible influence of the residual motions and if they can cause the vibrations, these 

residual motions are calculated. For these calculations the forward kinematics as explained in paragraph 

4.1.3 are used. The forward kinematics require as input the motions at the base of the hexapod, which is 

the Octans data, and the corresponding cylinder lengths (Figure 4-22). For this data again the Ampelmann 

system data network (ASDN) is used. To make sure sufficient residual motions are present during the 

sampled time, data is used while the vessel containing the Ampelmann system was in the most severe sea 

state available.  

 

Figure 4-22: Cylinder lengths and reference motions 

Results  

In Figure 4-23 the residual motions in the time and frequency domain are given. In Table 4-1 the first five 

theoretical eigenfrequencies of a typical Ampelmann gangway are given based on a fatigue analysis done 

at Ampelmann [10]. The frequencies given in Table 4-1 coincide with the inverted peaks in the frequency 

graph. Meaning the motion control algorithm and Ampelmann system is good at compensating for vibrations 

with the eigenfrequency of the gangway. In the graph no amplification of energy can be distinguished. 

Because of this it can be concluded that the residual motions do not cause the unexpected vibrations.  
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Figure 4-23: Residual motions (time and frequency domain) 

 

Table 4-1: Theoretical eigenfrequencies gangway [10] 

MODE NUMBER EIGENFREQUENCY  

1st 0,45 

2nd 1,28 

3rd 1,64 

4th 2,19 

5th  3,02 
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4.4.3 Vibrations in the bottom frame  

To investigate the possible influence of the gangway on the bottom frame/MRUs the following test is 

performed. The gangway on an A-type Ampelmann system is given an excitation using the hydraulic 

cylinders normally used for luffing. This resembles the effect of hitting a beam with a hammer. The gangway 

will start vibrating in a decaying manner with its damped eigenfrequency. The hydraulic actuators will “feel” 

these motions and transfer them into the bottom frame. For the experiment the A-20 will be used. During 

the tests the system in placed unbolted on the factory floor. 

During this experiment the input will be a blow with the gangway resulting in a decaying vibration of the 

gangway. This blow is uncontrollable and unmeasurable. The output will be the system responses. The 

responses in the bottom frame are measured using the MRUs of the Ampelmann system which are located 

on the bottom frame. The gathering of the data will be done using CPU’s of the Ampelmann system. This 

makes sure all the signals are synchronized time wise and will automatically convert the data to usable 

format and is stored. 

An overview of the experiment is given in Figure 4-24. During the experiment multiple blows are given with 

the gangway using a different amount of extension of the gangway and different orientations of the 

gangway. The lengths of the gangway are gangway completely retracted, gangway halfway extended and 

fully extended. The first orientation is with the gangway perpendicular to the two MRUs. The second 

orientation is while the gangway is in line with the two MRUs. For the second orientation due to limited 

space the test can only be performed with a retracted gangway. This sequence will be performed twice. 

The first time while the system is in the neutral position, meaning the motion control algorithm is not 

activated. The second time will be performed while system is actively compensating and the motion control 

algorithm is activated. 

 

Figure 4-24: Overview experiment vibrations in the bottom frame 
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Results 

In Figure 4-25 the translations and rotations of both the MRUs for the entire sampled time is plotted. In 

Figure 4-26 the translations and rotations of both the MRUs during a single blow of the gangway is plotted. 

From the plots the conclusion can be drawn that the gangway is not able to cause vibrations in the bottom 

frame. For all six degrees of freedom the amplitude of the motions is negligible over the entire test period. 

Since no responses haven been detected in the bottom frame during this test the conclusion is drawn that 

what happens on the top of the hexapod cannot cause vibrations in the bottom frame.  

 

Figure 4-25: A-20 Translations and rotations (entire sampled time) 

 

Figure 4-26: A-20 Translations and rotations (sampled time series during single blow with gangway) 
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 Concluding remarks 

To identify possible causes for the unexpected vibrations, measurements are performed on Ampelmann 

systems. Data which was already available at Ampelmann is analyzed and based on this data three 

possible causes are determined. These are:  

• the influence of the pedestal,  

• residual motions due to limitations of the Ampelmann system  

• vibrations in the bottom frame due to compensating for gangway motions.  

To investigate the influence of the pedestal and the vibrations in the bottom frame two experiments are 

performed. The residual motions are investigated via calculations based on data readily available. 

The result of the experiment, which is performed to investigate the vibrations in the bottom frame due to 

gangway motions, show that for all six degrees of freedom the amplitude of the response in the bottom 

frame is negligible over the entire test period. Using these results the conclusion is drawn that the gangway 

is not able to cause the unexpectedly occurring vibrations. The results from the calculations done to 

investigate the effect of the residual motions show no amplification concluding that the residual motions do 

not cause the unwanted behavior.  

The experiment to determine the influence of the pedestal shows four peaks in the frequency domain of 

both the signals. The first is directly caused by vessel motions. The other three have a cause which is not 

directly related to vessel motions. The data from the sensor on the Ampelmann system, at the top of the 

pedestal, does not contain a peak which is not present at the ship deck. From this it can be concluded that 

the eigenfrequencies of the pedestal do not have an influence. For one of these peaks in both of the data 

sets, namely the fourth peak at 8,1 Hz more energy at the top of the pedestal is present than at the ship 

deck. At this frequency the pedestal seems to amplify the energy present at the ship deck. A possible 

explanation for this phenomenon could be the eigenfrequencies and corresponding eigenmodes of the ship 

deck. The pedestal functions as a leaver arm amplifying the rotations related to eigenmodes of the ship 

deck. This may cause the unexpected vibrations. 
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5.   Analytical model 
Ampelmann’s motion control algorithm is complicated which which makes it difficult to incorporate this 

algorithm in the FEM model. Because of this there is a need for a second model. This model is a simplified 

2D multi-body model. The degrees of freedom will be based on the direction of the most dominant 

eigenfrequency and corresponding eigenmode determined using the FEM model. Using the simplified 

multibody model, the equations of motion will be derived where the motion control algorithm will be included. 

In Figure 5-1 an overview of the desired result is given. The system is represented by three masses: The 

pedestal + Bottom frame, Top frame and the gangway. The pedestal is assumed to be rigidly connected to 

the ship deck. At Ampelmann an analytical model (Figure 5-2), made by Temporary Work Design (TWD), 

is available which will be used as a start.  

 

Figure 5-1: Overview of desired result 

 Model by Temporary Work Design  

Temporary work designs (TWD) has produced a model for Ampelmann (Figure 5-2) [15]. This model is a 

dual lumped mass model consisting out of two masses which represent the compensated part of the mass 

and the uncompensated part of the mass of the system. The equations of motion of this model have been 

determined by TWD and are given in equation 5.1.  

𝐼1�̈�1 + 𝐵𝜃�̇�1 + 𝐾𝜃𝜃1 = −𝐹1𝑑ℎ + 𝑇1

𝐼2�̈�2 = −𝑇1

𝑀2 �̈�2 = −𝐹1

  (5.1)   

F1 and T1 represent the actuator forces and the reaction forces between the two masses. However, because 

the controller of Ampelmann is based on velocity the controller cannot be added in this way. To overcome 

this a cylinder model is introduced (Figure 5-3). A velocity input is given to the cylinder, which results in 

velocity input �̇�𝜃 & �̇�𝑦, in other words force is created by moving one end of the spring. The stiffness of the 

cylinders is assumed to be infinitely high, which means the position of the cart is equal to the position of the 

compensated mass. The new equations of motion are given in equation 5.2 [15]. 
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𝐼1�̈�1 + 𝐵𝜃�̇�1 + 𝐾𝜃𝜃1 = −𝐹1𝑑ℎ + 𝑇1

�̇�2 = �̇�𝜃 + �̇�1

 �̇�2 = �̇�𝑦 − �̇�1𝑑ℎ

𝐼2�̈�2 = −𝑇1

𝑀2 �̈�2 = −𝐹1

  (5.2)   

 

Figure 5-2: TWD model [15] 

 

Figure 5-3: Introduction of cylinder model [15] 
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In Figure 5-4 an overview of the control loop is given. The plant represents the transfer function from cylinder 

velocity to MRU position. AC represents the actuator dynamics, which in practice means a delay. For more 

details about the control loop reference is made to [15] & [16]. Using this control loop and the analytical 

model a state space model is created.  

 

Figure 5-4: Control loop in analytical model 

 Differentiation error 

As per definition the transfer function is the output divided by the input: 𝐺(𝑠) = 𝑦(𝑠) 𝑢(𝑠)⁄  [17]. In equation 

5.3 to 5.6 the transfer functions are worked out.  

Laplace transform of equations of motions. 

(𝐼1𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃) θ1(𝑠) =  −𝑑ℎ 𝐹1(𝑠) + 𝑇1(𝑠)

𝑠 𝜃2(𝑠) = 𝑠 𝐿𝜃(𝑠) + 𝑠 𝜃1(𝑠)

𝑠 𝑌2(𝑠) = 𝑠 𝐿𝑦(𝑠) − 𝑑ℎ 𝑠 𝜃1(𝑠)

𝐼2𝑠
2 𝜃2(𝑠) = −𝑇1(𝑠)

𝑀2 𝑠
2 𝑌2(𝑠) =  −𝐹1(𝑠)

(5.3)  

Differentiating θ2 and Y2 and rewriting. 

(𝐼1𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃) θ1(𝑠) =  −𝑑ℎ 𝐹1(𝑠) + 𝑇1(𝑠)

𝐼2𝑠
2  (𝐿𝜃(𝑠) + 𝜃1(𝑠)) = −𝑇1(𝑠)

𝑀2 𝑠
2 (𝐿𝑦(𝑠) − 𝑑ℎ 𝜃1(𝑠))  =  −𝐹1(𝑠)

(5.4) 

Rewriting. 

(𝐼1𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃) θ1(𝑠) =  𝑑ℎ 𝑀2 𝑠

2 (𝐿𝑦(𝑠) − 𝑑ℎ 𝜃1(𝑠)) − 𝐼2𝑠
2  (𝐿𝜃(𝑠) + 𝜃1(𝑠))

((𝐼1 + 𝐼2 + 𝑑ℎ2𝑀2) 𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃) θ1(𝑠) = 𝑑ℎ 𝑀2 𝑠

2𝐿𝑦(𝑠) − 𝐼2𝑠
2  𝐿𝜃(𝑠)

(5.5) 
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𝑃𝜃 =
𝜃1

�̇�𝜃

=
−𝐼2 𝑠

2

(𝐼1 + 𝐼2 + 𝑑ℎ2𝑀2) 𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃

𝑃𝑦 =
𝜃1

�̇�𝑦

=
𝑑ℎ 𝑀2 𝑠

2

(𝐼1 + 𝐼2 + 𝑑ℎ2𝑀2) 𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃

(5.6) 

In the model the second step, the differentiation of the θ2 and Y2, has not been done. In practice this means 

that instead of the acceleration, the velocity is entered. This results in the transfer functions given in 

equations 5.7. When the correct transfer functions are used, the real value for one pole and a zero becomes 

positive (Figure 5-5), indicating an unstable control loop. In appendix F the response of the system is given. 

This response goes to infinity, as is to be expected with an unstable control loop. 

𝑃𝜃 =
𝜃1

�̇�𝜃

=
−𝐼2 𝑠

(𝐼1 + 𝐼2 + 𝑑ℎ2𝑀2) 𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃

𝑃𝑦 =
𝜃1

�̇�𝑦

=
𝑑ℎ 𝑀2 𝑠

(𝐼1 + 𝐼2 + 𝑑ℎ2𝑀2) 𝑠
2 + 𝛽𝜃𝑠 + 𝐾𝜃

(5.7) 

 

Figure 5-5: Pole-Zero map of closed loop, Left with error & right without error 

 Pole plot investigation  

In Figure 5-6 the pole plot of the plant and the controller are given. In Figure 5-7 the pole plots of the 

lowpass feed forward are given. The plots of the plant, controller and the lowpass feed forward all are stable 

since there are no poles with a positive real value. However, the pole plot of the open loop system does 

have poles with positve real values and thus is unstable.  
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Figure 5-6: Pole zero maps; Left: plant, Right: controller  

 

Figure 5-7: Pole zero maps; Left: lowpass filter feed forward, Right: open loop 

 Concluding remarks  

Ampelmann’s motion control algorithm is complicated which makes it difficult to incorporate this algorithm 

in the FEM model. An attempt is made to create a simplified 2D multi-body model including the algorithm. 

TWD has produced a model, consisting out of two masses, which should have funtioned as the base for 

this model. During the investigation of the model an error was discovered. The correction of this error 

resulted in an unstable system. A pole plot investigation is done. However, no explanation for the instablity 

is found.   
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6.   Conclusion and recommendations  
 Conclusion 

The Ampelmann system occasionally starts vibrating unexpectedly, especially while the system is placed 

on a pedestal. These vibrations are believed to be caused by the eigenfrequencies of the system and/or 

amplifications caused by the motion control algorithm. In this thesis an investigation has been done into 

this phenomenon. A discrete-element model of the Ampelmann system was created to calculate the 

eigenfrequencies of the system. This model has been created using MATLAB and the toolbox StaBIL 2.0. 

The first four eigenfrequencies, calculated using the model, are given in Table 6-1. 

Table 6-1: Eigenfrequencies A-type and E-type systems  

Mode Eigenfrequency 
A-type [Hz] 

Eigenfrequency    
E-type [Hz] 

1 0.54 0.44 

2 2.25 1.73 

3 3.19 2.18 

4 3.95 2.70 

 

To identify possible causes for the unexpected vibrations data, which was readily available at Ampelmann 

through the Ampelmann system data network, has been analyzed. Using this, three possible causes have 

been determined. These causes are: the influence of the pedestal, residual motions due to limitations of 

the Ampelmann system and vibrations in the bottom frame due to compensating for gangway motions. To 

investigate these three cases, two sets of experiments and a calculation based on already available data 

have been done (see paragraph 4.4).   

The experiment, which has been performed to investigate the vibrations in the bottom frame due to 

compensating for gangway motions, shows that the response in the bottom frame is negligible. Using this 

result, it was concluded that the gangway is not able to cause the unexpectedly occurring vibrations. The 

results from the calculations done to investigate the effect of the residual motions showed no amplification 

of energy. From this it was concluded that the residual motions do not cause the unwanted behavior.  

The experiment done to investigate the influence of the pedestal shows that amplification of energy at a 

certain frequency, namely 8,1 Hz, is present. The pedestal could be the cause of the problem. However, 

instead of “internal” vibrations due to eigenfrequencies (as explained in paragraph 4.3.1), the amplification 

seems to have a different origin. The pedestal functions as a leaver arm amplifying the rotations related to 

eigenfrequencies and corresponding eigenmodes of the ship deck. This may cause the unexpected 

vibrations. 

An attempt has been made to create a simplified multibody model incorporating the motion control 

algorithm. This model was supposed to be an extension to a model made by technical work design available 

at Ampelmann. However, an error in the model has been discovered. The correction of this error caused 

the model to become unstable. Instead of expanding the model, a pole plot investigation for all the sub 

parts of the model has been done. However, no explanation for the instablity was found.   

The objective of this thesis was creating a dynamic model to calculate the eigenfrequencies of the 

Ampelmann system and explain the unexpectedly occurring vibrations in the Ampelmann system. The 

eigenfrequencies have been determined using the created MATLAB model. Three possible causes for the 

unexpectedly occurring vibrations have been investigated. One of these three, the stiffness of the ship deck 

(paragraph 4.4), was found to be a plausible cause.  
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 Recommendations 

The general consensus at Ampelmann was that the unexpectedly occurring vibrations are caused by 

eigenfrequencies and corresponding eigenmodes of the pedestal. In this research an indication was found 

that the origin of the problem is not the pedestal itself, but instead the pedestal functions as an amplifier. 

Further research is necessary. For example, a desk study could be performed where ship decks, on which 

the phenomenon occurred, are compared to ship decks on which nothing happened. This research might 

result in a correlation between deck stiffness and the chance of having the unexpectedly occurring 

vibrations.   

In this research an attempt was made to expand a simplified multibody model of the Ampelmann system. 

However, the correction of a discovered error in the model resulted in the system having positive real poles, 

meaning there is an instability in the system. Instead of expanding the model a pole plot investigation is 

done trying to discover the cause of this real positive pole. The cause of this pole has not been found, so 

further research is necessary. The model is now based on a linear system of equations. It is reccomanded 

to investage wheater these are appliclable for the Ampelmann sytem. The added value of building a 

relatively simple computer model, in which the motion control algorithm is incorporated, could be quite 

significant. What could be investigated within this model is:  

• How does Ampelmann’s algorithm handle vibrations introduced to the base of the system or to the 

base of the pedestal?  

• What is the effect of the height of the pedestal?  

• Are there other situations in which the controller becomes unstable? 

At the moment Ampelmann is designing the generic A frame, which is a modular pedestal for A-type 

systems. During the design a lot of research has gone into defining the desired eigenfrequencies of this 

frame hoping to prevent the unexpectedly occurring vibrations. Based on this thesis, the eigenfrequencies 

of the pedestal do not play a significant role in preventing these. Instead, the focus should be on the 

connection between the vessel and the Ampelmann system. 

Ampelmann is designing a new gangway system capable of lifting up to 5 tons, where previous systems 

where capable of lifting up to 1 ton. The different stiffeners in a ship deck of a crane vessel close to a heavy-

duty crane are in general much heavier than the general stiffeners below the main deck. These heavier 

stiffeners are implemented to handle the forces introduced by the crane. To cope with these higher loads 

of the larger Ampelmann systems, it is recommended that extra reinforcements are added to vessels on 

which these systems will be installed. It should be noted that these reinforcements are not be limited to the 

main deck but should reach deeper into the ship spanning multiple decks.  

In this research in almost all the graphs in the frequency domain peaks are found at 2.3 Hz and 2.6 Hz. The 

cause of this peaks could not be identified. What could cause these peaks is for example: the internal 

workings of the sensor or the cabinet of the sensor. Further research into the cause of this peaks is 

recommended.  
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8.   Appendix  
A. Standard block diagram elements 
 

 

 

 

 

Figure 8-1: Standard block diagram elements [2] 



 

      50 

B. Beam stiffness matrix 

𝐾 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝑙

0
12𝐸𝐼𝑧

𝑙3(1 + 𝛷𝑦)

0 0
12𝐸𝐼𝑦

𝑙3(1 + 𝛷𝑧)

0 0 0
𝐺𝐽

𝑙
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

0 0
−6𝐸𝐼𝑦

𝑙2(1 + 𝛷𝑦)
0

(4 + 𝛷𝑧)𝐸𝐼𝑦

𝑙(1 + 𝛷𝑧)

0
6𝐸𝐼𝑧

𝑙2(1 + 𝛷𝑦)
0 0 0

(4 + 𝛷𝑦)𝐸𝐼𝑧

𝑙(1 + 𝛷𝑦)

−𝐸𝐴

𝑙
0 0 0 0 0

𝐸𝐴

𝑙

0
−12𝐸𝐼𝑧

𝑙3(1 + 𝛷𝑦)
0 0 0

−6𝐸𝐼𝑧

𝑙2(1 + 𝛷𝑦)
0

12𝐸𝐼𝑧

𝑙3(1 + 𝛷𝑦)

0 0
−12𝐸𝐼𝑦

𝑙3(1 + 𝛷𝑧)
0

6𝐸𝐼𝑦

𝑙2(1 + 𝛷𝑦)
0 0 0

12𝐸𝐼𝑦

𝑙3(1 + 𝛷𝑧)

0 0 0
−𝐺𝐽

𝐴
0 0 0 0 0

𝐺𝐽

𝑙

0 0
−6𝐸𝐼𝑦

𝑙2(1 + 𝛷𝑦)
0

(2 − 𝛷𝑧)𝐸𝐼𝑦
(1 + 𝛷𝑧)

0 0 0
6𝐸𝐼𝑦

𝑙2(1 + 𝛷𝑦)
0

(4 + 𝛷𝑧)𝐸𝐼𝑦

𝑙(1 + 𝛷𝑧)

0
6𝐸𝐼𝑧

𝑙2(1 + 𝛷𝑦)
0 0 0

(2 − 𝛷𝑦)𝐸𝐼𝑧

(1 + 𝛷𝑦)
0

−6𝐸𝐼𝑧

𝑙2(1 + 𝛷𝑦)
0 0 0

(4 + 𝛷𝑦)𝐸𝐼𝑧

𝑙(1 + 𝛷𝑦) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛷𝑦 =
12𝐸𝐼𝑧
𝐺𝐴𝑠𝑦𝑙

2

𝛷𝑧  =
12𝐸𝐼𝑦

𝐺𝐴𝑠𝑧𝑙
2
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C. Time domain A-28, A-29, E-04 & E-14 

 

Figure 8-2: Time domain A-28 system 

 

Figure 8-3: Time domain A-29 system 
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Figure 8-4: Time domain E-04 system 

 

Figure 8-5: Time domain E-14 system 
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D. Vessels on which the different systems are installed 
 

 

Figure 8-6: A-28 without pedestal (upper), A-29 with pedestal (lower) 

 

Figure 8-7: E-04 on pedestal (upper), Olympic Orion, no picture with Ampelmann system available (lower) 

  

A-28 

A-29 

E-04 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.marinetraffic.com%2Fnl%2Fais%2Fdetails%2Fships%2Fshipid%3A3350517%2Fmmsi%3A219613000%2Fvessel%3AESVAGT%2520FARADAY&psig=AOvVaw2ddUZl3-gnw1Jtr50fO647&ust=1570087445981000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMiD7NSF_eQCFQAAAAAdAAAAABAE
https://www.fleetmon.com/vessels/siem-barracuda_9660114_8762140/photos/2014585/
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E. MRU (Octans) specifications 
 

 

 

 

Figure 8-8: MRU (Octans) specifications 
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F. Octans & ship to ship data E-04 (difference) 

 

Figure 8-9: E-04 Translations difference (time domain) 

 

Figure 8-10: E-04 Rotations difference (time domain) 
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Figure 8-11: E-04 translations difference (frequency domain) 

 

Figure 8-12: E-04 Rotations difference (frequency domain) 
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G. Excitation analytical model 
 

 

 

Figure 8-13: Response analytical model 
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