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A B S T R A C T   

This article presents a set of close approximations to model an elastic half-space supporting an embankment, 
which are evaluated in the context of phase velocity spectra, i.e. in terms of the normal wave propagation modes 
of the embankment-half-space system. The ultimate, intended target of these approximations is in the modeling 
of vertically-acting loads that may travel over the embankment with some prescribed, constant longitudinal 
speed. The proposed approximations are analogous to the well-known paraxial approximations that closely 
mimic a half-space terminating at a plane boundary, but differ from these in that the approximations herein aim 
at properly modeling not the waves with near normal incidence to the half-space, but waves which propagate at 
shallow, grazing angles along the longitudinal direction of load motion. Thus, these can be referred to as 
paralongitudinal approximations. The resulting expressions allow for a very effective simulation of the system at 
hand for loads moving with subcritical speed and solved in the context of a 2.5D solution method. Such 2.5D 
formulation considers a continuous model in the longitudinal direction and a discrete model in transverse planes.   

1. Introduction 

One of the most effective numerical tools available for the analysis of 
loads moving over an embankment relies on a semi-discrete formulation 
of the equations of motion cast in the 2.5 dimensional space. It is based 
on employing analytical tools for the solution in the direction of the 
embankment —which is also the direction of motion of the load— and a 
discretization with finite elements in the two transverse directions. This 
method is closely related to the widely known Thin Layer Method (TLM), 
which discretizes the space in just one direction, namely the depth 
[1–4]. Unlike the TLM, which presupposes horizontal layering, in this 
alternative the material properties are allowed to change in the plane of 
the discretized cross-section, in which case the embankment can roughly 
be visualized as a bundle of spaghetti in which each of the threads is 
allowed to be materially different from the neighboring ones, even if 
each is unchanging in the longitudinal direction. Each thread has then a 
cross-section in the shape of the underlying finite elements used and —at 
least initially— is infinitely long in the longitudinal direction. For this 
reason, and in analogy to the TLM, this formulation is probably best 
referred to as the Thin Tube Method (TTM). In chapter 3 of his PhD 
dissertation [5], Barbosa describes this method in detail while referring 

to it as the 2.5D Finite Element Method (2.5D-FEM). A slew of other re
searchers have also made use of the 2.5D method in Refs. [6–13]. A 
sketch for this approach is shown in Fig. 1. 

It is clear, however, that most embankments are not supported by 
rigid ground, but are underlain instead by deformable ground that to a 
good approximation could be modeled as a homogeneous elastic half- 
space. This half-space not only introduces an additional waveguide 
along which waves may propagate, but allows waves to enter the half- 
space and dissipate there in the form of radiation damping. The prob
lem with that is that the addition of the spatially unbounded half-space 
introduces significant technical difficulties in the 2.5D approach. 
Although ultimately these can be overcome by an adequately sophisti
cated model for the half-space, that extracts in turn a steep price: the 
numerical solution requires far more effort and is also prone to nu
merical errors which arise when interfacing and coordinating the 
various parts of this problem. 

For example, one alternative is to use a Green’s functions formalism 
for the half-space and assess the flexibility at the discrete nodes along 
the interface with the embankment in terms of the longitudinal wave
number. The problem with that is not only that the calculation and 
subsequent inversion of the flexibility matrix into a dynamic stiffness 
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matrix is computationally intensive —an integral must be solved in the 
transverse wavenumbers— but also that the variation of that stiffness 
matrix depends in a complicated way on the axial wavenumber and 
frequency. This is because both the horizontal wavenumber and the 
frequency remain “hidden” inside square root terms, and these prevent a 
direct representation in terms of constant stiffness and mass matrices, as 
is the case with the embankment itself. In this article, we express the 
half-space in terms of simple yet provably accurate mechanical devices 
that have stiffness and mass properties similar to those of the embank
ment, and therefore, allow a more direct solution for problems of this 
kind. 

2. Classical approach to dynamic loads acting with a layered 
medium 

Consider a horizontally layered medium that is subjected to a dy
namic source at some location, say at the free surface. When the equa
tions of motion to that problem are formulated in either two or three 
dimensions, it is found that the exact solution is ultimately cast in terms 
of Fourier and/or Hankel transforms that involve improper integrals 
over frequencies ω and over either horizontal or radial wavenumbers k, 
as detailed in Refs. [14,15]. Although these integrals can be solved 
numerically, that alternative is fraught with perils and difficulties 
because of three main reasons: 

1. The integrals must be truncated at some upper limit, yet the in
tegrands may decay only slowly with wavenumber;  

2. For lightly-damped (or even undamped) media the integrands 
contain a finite number of near singularities that must be dealt with 
appropriately; these occur at the near resonances of the system, or at 
the true resonances for media of finite depth (an open, unbounded 
system has no true resonant frequencies, but reflections at material 
discontinuities can lead to standing wave patterns occurring at some 
frequencies for which the response is large, even if not infinitely so); 
and  

3. The integrals must be replaced by discrete summations, which 
require choosing an adequately small step in frequencies and 
wavenumbers. But at the very moment that those integrals are 

discretized, that introduces eo ipso a periodicity in both space and 
time. This occurs because of the so-called aliasing problem of signal 
processing. At least partially, that aliasing problem can be overcome 
by using complex frequencies in the context of a numerical formu
lation of the inverse Laplace transform in terms of a Fourier trans
form [16]. 

The most common way to overcome the difficulties alluded to above 
is to carry out contour integrations in the complex plane and express the 
displacements at any arbitrary point in terms of the normal modes of 
wave propagation. For each given frequency ω, the normal modes 
method seeks the horizontal or radial wavenumbers kj, j = 1,2,⋯ that 
satisfy the eigenvalue problem associated with the homogeneous elastic 
equations, i.e., the free vibration solutions that may be found in the 
absence of sources. Or alternatively, given the longitudinal wavenumber 
k, one seeks the frequencies ωj that satisfy that same eigenvalue prob
lem. Once these modes have been determined, the solution for dis
placements at arbitrary points is then expressed in terms of a modal 
superposition. 

In the case of stratified media of finite depth (i.e., plates or strata) it is 
found that at any fixed frequency ω there exist only a finite number of 
wave propagation modes with real wavenumber kj, and an infinite 
number of such modes with complex wavenumbers. The former 
constitute the classical wave propagation modes or proper normal modes 
that can still be detected at remote distances from a dynamic source, 
while the latter constitute the evanescent modes, which can be detected 
only in the immediate vicinity of sources. It can also be shown that the 
exact, complete solution can be expressed by superposition of all of these 
modes, real and complex, that is, that the modal set is complete. In those 
cases, and for practical purposes, it suffices to consider the finite number 
of real modes together with a small, finite subset of those evanescent 
modes whose characteristic wavenumber has a suitably small imaginary 
part. Although the modes themselves can be found by means of the so- 
called search techniques, a far more convenient and direct approach is 
to make use of the Thin-Layer Method. That way, the eigenvalue prob
lem reduces to either a linear or a quadratic eigenvalue problem for 
which standard methods in linear algebra can be used [1]. 

On the other hand, in the case of undamped, layered media underlain 

Fig. 1. Embankment composed of 2.5D elements.  
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by infinitely deep half-spaces, there exist only a finite number of real 
modes, and no complex modes whatsoever —or at least none that are 
physically realizable. This can be demonstrated quite easily: if there 
existed a complex mode, say k, then the two dispersion conditions for the 
half-space, which relate horizontal and vertical wavenumbers for both P 
and S waves, would be of the form 

k2
+ k2

zP =(ω/α)2
, k2

+ k2
zS =(ω/β)2 (1)  

where α, β are the P and S wave velocities in the half-space. 
But if k = a − ib, a, b > 0 such that exp[i(ωt − ax)]exp(− bx) is a wave 

that propagates left to right and also decays in that direction (i.e., an 
evanescent wave), then that would imply 

kzP = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ω/α)2
− a2 + b2 + 2iab

√

(2)  

which is a complex number that lies in either the first or third quadrant, 
i.e., kzP = ±(c + i d), c, d > 0 which, in turn, would imply a variation in 
the vertical direction exp[i(ωt − cz)]exp(dz). Such a wave propagates 
upwards and decays downwards, in which case it fails to satisfy the 
radiation condition at z = − ∞, because wave energy originates at an 
infinite depth. Or alternatively, it propagates down and grows in that 
direction without any bound, in which case it fails the boundedness 
condition. Either way, we conclude that no complex, evanescent waves 
can exist.1 

Both the finite number of real modes as well as the lack of complex 
modes already indicates that the modal superposition is in itself not 
complete when the system includes a half-space. For example, the ho
mogeneous half-space has only one mode, namely the Rayleigh wave, 
which is certainly not sufficient to describe motions at arbitrary loca
tions. As it turns out, the contour integration then produces another set 
of non-singular, improper integrals referred to as branch integrals, the 
details for which need not concern us here. These do take care of the 
missing mix of body waves, some of which radiate into the half-space 
and give rise to “radiation damping”. 

2.1. Dispersion spectra 

Consider a medium of either finite or infinite depth, which may or 
not exhibit horizontal layering. Let also x = (x, y) define the horizontal 
coordinates and z the depth coordinate (either up or down, as may be 
preferred). This system may in turn be subjected to dynamic sources or 
body loads b(x, t) than can act anywhere. In small strain elasticity, such 
problem is characterized by a set of second order, partial differential 
equations in the displacements u = u(x, z, t) of the form 

L(u)=b (3a)  

Bi(u)= 0 , i = 1, 2,⋯n (3b)  

where L ,Bi are appropriate linear, partial differential operators in x,y,z,
t, and n = number of boundary conditions at each boundary point. 

Now, if the sources are absent at all times L(u) = 0, then the set 
equations is said to be homogeneous. Such equations admit non-trivial 
solutions within a class of free waves which can exist and propagate 
on their own. An example of these is the Rayleigh mode observed at the 

surface of an elastic, homogeneous half-space. 
Assuming that the system is free from sources, then after carrying out 

a triple Fourier transform in the horizontal space coordinates and in 
time, we are led to a homogeneous system of ordinary differential 
equations in z in which the unknown field is of the form 

Lz(ũ)= 0 , Bi(ũ)= 0 (4a)  

ũ= ũ(k,ω, z) ,k=
(
kx, ky

)
= horizontal wavenumbers; ω= frequency

(4b) 

If we take ω as a parameter and fix it at some known value, then the 
wave propagation problem becomes an eigenvalue problem in the hor
izontal wavenumbers. For a horizontally stratified medium that is 
isotropic in the plane, the eigenvalue problem above reduces to that of 

plane (i.e. 2-D) waves with effective horizontal wavenumber k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y

√

which propagate along the arbitrary direction ϑ =

arctan(ky /kx). In that case, we are led to the simpler 2-D eigenvalue 
problem for ̃u = ũ(k,ω,z), the details of which are well known and need 
not be repeated herein. The solutions to the eigenvalue problems are 
then of one of the two forms 

ũ → ψn exp i[(ω t − knx)] , kn = kn(ω) ω is a fixed real parameter (5a)  

ũ → φn exp i[(ωn t − k x)], ωn =ωn(k) k is a fixed real parameter (5b)  

in which n = 1, 2,⋯ is the modal index and φn(z),ψn(z) are the corre
sponding eigenvectors. 

In either option, we also define 

Vph =
ω
k

= phase velocity (6a)  

Vg =
dω
dk

= group velocity (6b)  

where k = kn in the first option, or ω = ωn in the second and whenever 
these are real quantities. That is, the phase and group velocities have 
multiple, distinct branches Vph = Vph(f), Vg = Vg(f), f = 1

2π ω which 
collectively form the so-called dispersion spectra, as will be illustrated 
later on. 

When choosing the horizontal wavenumber as a real parameter, and 
in the absence of damping, the eigenvalues ωn can be shown to be always 
real and non-negative, as can be demonstrated rigorously. Thus, in that 
case all phase velocities are real as well. 

2.2. 2-D half-space approximations 

As shown in Ref. [14] and improved upon in Ref. [15], the exact 2-D 
in-plane (SV–P) and anti-plane (SH) impedances (or dynamic stiffnesses) 
of the half-space in the frequency-wavenumber domain and per unit 
area are 

KSVP = 2kμ
[

1 − s2

2(1 − ps)

{
p − 1
− 1 s

}

+

{
0 1
1 0

}]

, KSH = ksμ (7)  

where μ is the shear modulus of the half-space, and the terms in p, s 
(which are proxies for the vertical wavenumbers for P and S waves kPz =

∓i kp, kSz = ∓i ks) are defined as 

p=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(ω

kα

)2
√

, s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
ω
kβ

)2
√

(8)  

with α, β being the P and S wave velocities in the half-space. As can be 
seen, both the frequency and the wavenumber are contained within a 
square root term. This implies in turn that when these impedances are 
added at the bottom of a discrete formulation for the layers in the 
context of the TLM, the resulting equations contain terms in k,ω that 

1 In a strictly mathematical sense, one can certainly find complex solutions 
for non-physical modes which fail the radiation or boundedness conditions, or 
both; some authors refer to these as the “forbidden modes”, or as the modes in 
the lower Riemann sheet. These can be useful in the solution of certain prob
lems in which displacements within a finite, bounded region are expanded in 
terms of basis function composed of nonphysical modes, just as well as math
ematical functions can be expanded in terms of Maclaurin series that converge 
only within a circle of given radius around the expansion point, even if they fail 
to converge elsewhere. 
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remain “hidden” or “implied”. This then leads to transcendental eigen
value problems that are not amenable to simple solutions. 

There exist two alternatives to circumvent this problem. The first, 
which was proposed by Kumar & Naskar [17], consists in choosing the 
phase velocity Vph = ω/k instead of the horizontal wavenumber k as a 
free parameter. Then 

p=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
Vph

α

)2
√

, s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
Vph

β

)2
√

(9)  

which are both real quantities whenever Vph ≤ β. That implies in turn 
that the variation of displacements in the half-space decays exponen
tially with depth. By contrast, if Vph > β, then either s or both s, p become 
complex, and with that, the eigenvalue ωn becomes complex. If so, the 
wave radiates energy into the half-space while violating the bounded
ness condition at an infinite depth. Thus, this must be rejected. 

The second alternative consists in finding polynomial approxima
tions to p, s for small values of the phase velocity by means of Taylor 
series with Vph/β < 1 , which is what we shall explore in the ensuing. We 
start by writing the SVP half-space impedance as 

KSVP = μk

{
z11 z12

z12 z22

}

= μk Z

A =
1 − s2

1 − ps
, ξ =

ω
kβ
, a =

β
α, s =

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

, p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − a2ξ2
√

z11 = Ap, z12 = 2 − A, z22 = As

(10) 

To avoid mistakes, we proceed next to make use of the Matlab script 
given in Appendix 1. When this is carried out, we ultimately find  

which is quadratic in the frequency for any given (fixed) wavenumber k, 
where ω/(kβ) = Vph/β. These are then the approximate impedances for 

SVP waves in the half-space. 
The SH case is much simpler and we find 

KSH = ksμ≈ kμ
[

1 −
1
2

(
ω
kβ

)2
]

≡ kμ
[

1 −
1
2

(
Vph

β

)2
]

(12) 

An interesting and revealing question is now: What kind of waves 
does this approximation imply when the half-space is not overlain with 
any layers? That is, what kind of “Rayleigh waves” would it imply? This 
corresponds to the condition |K| = 0 i.e. |Z| = 0. Using Matlab, the roots 
are ultimately found to be   

Fig. 2 shows the smallest positive root ξ = ξ(ν) as function of Pois
son’s ratio ν in the interval 0 ≤ ν ≤ 0.5, after substituting a = β/ α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − 2ν)/(2 − 2ν)

√
. That root for ξ exceeds slightly the speed of shear 

waves, and with that, also slightly the speed of Rayleigh waves in the 
half-space which, depending on Poisson’s ratio, ought to lie in the 

interval [0.874≤ VR /β≤ 0.955]. But the error is no larger than about 
10%. Therefore, we are confident that the half-space approximation will 
work well when finding the real eigenvalues for a layered medium, as 
considered in the next example. 

2.2.1. Example: Layered medium over elastic half-space, exact vs. 
approximate solutions 

Consider a system of layers underlain by an elastic half-space with 
the material properties listed in Table 1. Observe that the last layer in 
this profile has the same properties as the half-space underneath, so it 
would normally be disposed of whenever the half-space representation 
is exact. Here, this buffer layer is retained deliberately so as to improve 
the performance of the half-space approximations, see also Appendix 2 
for further details. 

When this problem is solved using first the exact impedances for the 
half-space, and thereafter using the approximate impedances, we find 
the dispersion spectrum shown in Fig. 3. The two solutions are depicted 
in blue and red, respectively, and for the most part perfectly overlap 
with one another (color in online version only). Indeed, the agreement is 
nearly perfect throughout, except for a tiny loop at Vph = 150 m/s, f =
50 Hz that is missing in the approximate solution and some quite 
acceptable deviations in the first branch at very low frequencies, at 
which the true branch starts at the Rayleigh wave speed of the half-space 
while the approximate does so at the shear wave speed. Other examples 
with alternative soil profiles yielded equally good results —as does the 
SH case too— so they need not be shown. We conclude then that the 
half-space approximations proposed are very good indeed. 

A word in closing: An informed reader may perhaps have wondered 
what, if any, connections do these approximations have with the well- 
known paraxial approximations for a half-space. The short answer is 
that they are very different. Indeed, the word “paraxial approximations” 
indicates that these are intended to model waves that propagate close 

(“para”) to the normal to the boundary (the “axis”). In the case of a half- 
space with a horizontal boundary, those would be waves that propagate 
nearly vertically, i.e. are paravertical. Those waves have small horizontal 
wavenumbers k and propagate at a small angle to the vertical θ =

arcsin(k /ks), k < ks, ks = ω/β. Here, by contrast, we are seeking ap
proximations for shallow waves in the half-space that propagate nearly 
horizontally, that is, are paralongitudinal. Such waves do not propagate 
down but decay exponentially with depth, or at least this is so in the half- 
space. In other words, now the horizontal wavenumber exceeds the 
shear wave number k > ks. This is also the reason why we take Taylor 
series with respect to small values of ks = ω/β→0. 

Then again, when applying the proposed approximations in the 

context of moving loads that move with velocity below the critical speed 
at which the response grows without any bound [18], it will be found 
that there are no waves that propagate either down into the half-space or 
laterally along the surface, and this is the reason for why the proposed 
method is applicable in that case. Indeed, if such waves existed, they 
would radiate energy away from the moving load and damp out the 

KSVP ≈ kμZ= kμ
{

2
1 + a2

[
1 a2

a2 1

]

−

(
ω
βk

)2 1
2(1 + a2)

2

[
1 + 3a4 −

(
1 − a2)2

−
(
1 − a2)2 3 + a4

]}

(11)   

ξ2 =
±

̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + a4

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 − a2(1 − a2) ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3a8 − 2a6 + 5a4 − 4a2 + 2

√√

, a≤
1
2

̅̅̅
2

√
, ξ=Vph

/

β (13)   
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solution. Still, such waves may well exist in the super-critical regime V >

Vcr (where V is the speed of the load and Vcr is the critical speed), in 
which case the only way to have a steady-state (Galilean-type) solution 
would be for the load to recline back a little. That would add a small 
horizontal component Fx supplying the power Π = FxV needed to 
compensate for the energy lost to radiation. But in that regime, the 
approximations given herein would cease to work as intended. 

2.3. Applications to 2.5D embankments 

Consider an embankment for a high-speed rail line that is underlain 
by a homogenous, elastic half-space. When the TTM is used to discretize 
the embankment, we are led to a discrete element mesh in the plane y− z 
that is continuous in the axial direction x, as shown in Fig. 1. The nodes 
of this mesh along the bottom interface are in contact with the elastic 
half-space, to which they are bound. The elastic response of the half- 
space is then captured by means of the discrete approximation pre
sented earlier. For this purpose, we proceed to lump at each of the inner 
node an impedance matrix 

Kapprox =ℓ

⎡

⎢
⎢
⎢
⎣

KSVP
xx 0 KSVP

xz

0 KSH
yy 0

KSVP
zx 0 KSVP

xx

⎤

⎥
⎥
⎥
⎦

(14)  

where ℓ is the inter-nodal distance, which we assume to be uniform, and 
the elements of this matrix follow from the preceding. For the outer 
nodes at the intersection of the slopes of the embankment with the half- 
space, we use half as much, since those nodes receive contribution from 
one side only. We mention in passing that this simple way of adding 
approximate impedances to the discrete nodes along the embankment- 
half-space interface contains one additional approximation. Indeed, it 
distributes plane-strain stiffnesses for longitudinal waves and neglects 
wave propagation in the lateral direction. In short, the approximations 
are functions of the longitudinal wavenumber only. This should not have 
a major effect while greatly simplifying the half-space model. 

One last observation: In an actual implementation it is necessary to 
consider also an implied imaginary factor in one or two of the compo

nents, which is done to achieve symmetric matrices. In addition, the off- 
diagonal signs must be reversed if the vertical axis points down, not to 
mention changing appropriately the locations of the matrix elements 
whenever the coordinate axes are taken in some other order, say with 
the y axis being the longitudinal one. These are, however, details that are 
rather familiar to those who make regular use of the TLM and TTM 
methods, and are described in detail in Ref. [5], in which case they need 
not be elaborated upon herein. 

2.4. Dispersion spectra for an embankment 

Consider an embankment with the simple cross-section shown in 
Fig. 4, in which only the right half of the mesh is used on account of 
symmetry. The embankment rests on a homogeneous half-space, of 
which an upper buffer layer of the same properties as the half-space is 
added so as to improve the accuracy of the solution. The springs at the 
bottom of the buffer region correspond to the half-space stiffness ap
proximations given by the matrix Kapprox. The refinement of the mesh is 
dictated by the highest frequency of interest, i.e. the shortest possible 
wavelength, which is estimated as λmin = βmin/fmax. The standard 
recommendation is 6 elements per wavelength for linear elements, and 3 
elements per wavelength for quadratic elements. But considering the 
fact that in a 2.5 D model most of the waves will be propagating in the 
longitudinal, continuous direction, and less so consist of lateral re
verberations, this criterion could be relaxed somewhat, especially 
because the element size is conservatively being defined at the highest 
frequency, and not at the typical or dominant frequency of the response. 

Fig. 2. Approximate eigenvalue for a homogeneous half-space vs Poisson’s ratio.  

Table 1 
Soil profile.  

Layer β [m/s] Shear wave 
velocity  

ρ [Mg/m3] Mass 
density  

ν Possion’s 
ratio  

h [m] 
Thickness  

1 250 1.6 0.25 0.35 
2 300 2.3 0.30 0.30 
3 250 2.2 0.30 0.50 
4 100 2.0 0.30 1.50 
5 150 2.0 0.30 3.00 
6 150 2.0 0.30 ∞   

E. Kausel and J.M.O. Barbosa                                                                                                                                                                                                               



Soil Dynamics and Earthquake Engineering 155 (2022) 107090

6

Taking advantage of the geometric symmetry, the discrete model can 
be reduced in size such that only half of the embankment is needed. This 
is accomplished by cutting out the right half and adding appropriate 
boundary conditions at the left edge of the model that represents the 
mid-plane. As shown schematically in Fig. 4, for symmetric modes the 
boundary conditions required are vertical rollers, while the anti- 
symmetric modes would require horizontal rollers. But inasmuch as 
the antisymmetric modes play no role when the vertical traveling load is 
applied at the upper surface in the mid-plane, this second set of 
boundary conditions will not be considered herein. 

With reference to the material properties listed in Table 2, the depth 
of the embankment is chosen to be that of layer 1, namely Hemb =

0.6 m, and its half-width at the top is Lemb = 2.5 m. Choosing also the 
lateral slopes to have an inclination of 45◦, then the added half-width is 
Lslope = 0.6 m so that the total half-width at the bottom is 2.5+ 0.6 =

3.1 m. A buffer layer of total depth Hbuffer = 5 m with the same material 
properties of the half-space is added at the bottom for increased 

accuracy (see also Appendix 2). Here we arbitrarily choose the total 
width of the buffer layer to be equal to the width of the embankment, i.e. 
Lbuffer = 0. The cross-section is then discretized into quadrilateral ele
ments of maximum dimension 0.1 m, which results in a mesh of the type 
shown schematically in Fig. 4 but much more refined and deeper than 
shown —this is to allow for proper labeling of the figure. 

We comment in passing that Fig. 4 does not show any loads being 
applied onto the discrete model because only the spectral lines for phase 

Fig. 4. Discrete 2.5D model (schematic only).  

Table 2 
Soil profile of embankment and half-space for 2.5-D example.  

Layer β [m/s] Shear wave 
velocity  

ρ [Mg/m3] Mass 
density  

ν Possion’s 
ratio  

h [m] 
Thickness  

1 200 1.6 0.20 0.60 
2 300 2.0 0.35 ∞   

Fig. 3. Dispersion spectrum, comparison of exact (blue) vs. approximate (red). [Note: Color in online version only]. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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velocities are being considered herein. 
Fig. 5 shows the spectral lines of the symmetric modes for the problem 

at hand while restricting the number of 2.5D modes so as to save in 
computation time. To help in the interpretation of the spectra obtained, 
we have also added in black and red dashes the 2-D modes for SVP waves 
in a layered half-space with the same material properties as in Table 2. 
We computed these spectral curves with both the exact formulation 
(black dotted curves) and the approximate half-space impedances (red 
dashed curves). The antisymmetric modes could readily be obtained 

with the same formulation while using alternative boundary conditions 
for the model. 

Within the frequency range shown, there are four such SVP modes. 
Of these, the fundamental SVP mode shown in red practically coincides 
with the fundamental embankment mode, merely showing a modest 
discrepancy in the very low frequency range below some 25 Hz or so; 
this is certainly an artifact caused by the half-space approximation 
added at the bottom of the 2.5 D model, as can be seen by comparing the 
first red (approximate) and first black (exact) curves for the plane strain 

Fig. 5. Phase spectra for embankment underlain by an elastic half-space. Solid blue lines = 2.5D embankment model; dashed red lines = approximate 2D phase 
velocity spectra for SVP waves; black dotted lines = exact 2-D spectrum. [Note: Color in online version only]. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Amplified spectrum showing the osculation points.  
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spectra. The true spectral curve for the fundamental mode starts at the 
Rayleigh wave speed of the half-space, while the approximate one starts 
at the shear wave velocity of that half-space. This occurs because the 
typical wavelengths at very low frequencies exceed the depth of the 
discrete model. Indeed, at a phase velocity of Vph = 150 m/s and fre
quencies well below f = 25 Hz, the wavelengths will be longer than λ >

150/25 = 6 m, which already exceeds the total depth of the discrete 
model used. If the physical problem being studied were to involve 
mainly low frequencies, then a simple remedy to the spectral artifact 
could consist in using a coarser finite element mesh with a thicker buffer 
layer, say increase from 5 m to perhaps 10 or 15 m. That coarser and 
deeper model will surely improve matters considerably —at least in the 
low frequency range, if that were all that is needed. As for the other two 
higher modes, their error is much less and they too merge with modes of 
the embankment. Finally, and at least in principle, one could refine the 
mesh as the frequency increases, but that is surely not very practical, and 
it could lead to other artifacts related to the fact that the more refined 
meshes have more degrees of freedom and thus more modes. That would 
also greatly complicate modal superposition. 

It is patently clear that the embankment displays a combination of 
the plane strain SVP modes plus a slew of other modes that ultimately 
are non-planar SVP modes propagating at some angle with respect to the 
longitudinal axis and reverberating laterally back and forth between the 
slopes as they advance in the longitudinal direction. In the case of the 
antisymmetric modes (not shown, but which could be excited by non- 
symmetric sources) such additional modes will include also helical 
modes (torsional modes). 

In addition to the laterally reverberating modes, there exist also a 
number of modes that still propagate mainly in the longitudinal direc
tion yet remain locally confined to the sloping part. These are similar to 
the SVP modes for a shallower depth of soil over elastic half-space, 
which causes their phase speeds to be higher when compared with 
those which dominate near the center of the embankment. These are 
modes whose modal amplitudes are significant only within the slopes, 
and are especially noticeable when softer layers outcrop on the slopes 
and become exposed there. 

The phase velocity spectrum in Fig. 5 also exhibits many points at 
which the branches seem to cross each other. Upon magnification it is 
seen that these are merely apparent crossings, as demonstrated in Fig. 6. 
It is seen that these apparent crossings constitute osculation points at 
which branches come exquisitely close together, only to avoid contact 
with each other in their very closest approach [19]. Still, amongst the 
waves that reverberate laterally in a geometric and materially sym
metric embankment of finite width, the spectral branches of the 
uncoupled symmetric and antisymmetric modes will surely exhibit 
plenty of crossings with each other even if not with themselves. This 
concept helps significantly when sorting out spectral branches obtained 
numerically. 

2.5. Application to moving loads such as in high-speed rail 

It is well-known that the response of an embankment caused by 
moving loads can be formulated and obtained in the frequency domain 
in terms of the normal modes of wave propagation of the system. That is, 
the response functions are obtained by modal superposition. Hence, if 
the dispersion spectra for waves in the embankment-half-space system 
are provably accurate, then so will also be the response functions. Thus, 
there is no doubt in our minds that the proposed model will be accurate 
when used in the context of moving loads. 

However, we emphasize that the approximate impedances for the 

half-space used are predicated on the assumption that the travel velocity 
of the load does not exceed the speed of shear waves in the half-space, i. 
e. they are not transonic, because that was one of the key assumptions in 
the development of the half-space approximations. Inasmuch as the 
system behavior changes dramatically once this physical barrier is 
crossed, i.e. once the load becomes supercritical [18], the approximations 
will break down and be useless in the domain of very high speeds. 

In the preceding we focused solely on the dispersion spectra for the 
symmetric modes, i.e. those that exhibit symmetry with respect to the 
vertical mid-plane. In fact, these are the only modes that will be excited 
by moving loads that in the transverse direction are symmetrically 
distributed, such as a single rail line at the center of the embankment. If 
the loads were non-symmetric, say an embankment with two rail lines, 
that load would in addition require the determination of the wave 
spectra for antisymmetric loads, inasmuch as non-symmetric loads can 
always be expressed as a superposition of symmetric and antisymmetric 
loads. Of course, that poses no additional difficulties and can readily be 
handled by the same formulation even if with different boundary 
conditions. 

3. Conclusions 

We have introduced and verified a model for “paralongitudinal” ap
proximations to the impedance of an elastic half-space. These allow to 
model shallow waves that are guided longitudinally within the ground 
above as well as along the superficial layers of half-space underneath. 
Within the half-space, the motions are assumed to decay exponentially 
with depth as well as laterally away from the embankment. That is, we 
assume implicitly that in the dispersion condition for the half-space 

k2
s ≡

(
ω
β

)2

= k2
x + k2

y + k2
z (15)  

the longitudinal wavenumber in the half-space, say kx, dominates over 
the other two (kx > ks), in which case the lateral wavenumbers ky, kz are 
purely imaginary and represent waves that decay exponentially with 
lateral and vertical distance to the embankment. This implies in turn 
that there is no radiation of energy into the half-space, or to the sides of 
the embankment. But this also means that the approximations provided, 
when used in the context of moving loads, cease to be applicable once 
these loads travel at supercritical (“transonic”) speeds. But inasmuch as 
the vast number of engineering applications is for loads that travel at 
subcritical speeds, this is not an important shortcoming. 
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Appendix 1. Paralongitudinal approximations to the half-space 

The brief Matlab program shown in Fig. 7 can be used to obtain the paraxial approximations summarized in the ensuing: 
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z11 =
4(1 + a2) − ξ2(3a4 + 1)

2(1 + a2)
2  

z12 =
4a2(1 + a2) + ξ2(1 − a2)

2

2(1 + a2)
2  

z22 =
4(1 + a2) − ξ2(3 + a4)

2(1 + a2)
2  

Brief symbolic Matlab program to obtain the Taylor series expansion.  

Appendix 2. The buffer layer 

In the main body of this article we mentioned the need and convenience of adding a buffer layer with the same properties of the half-space when 
the latter is represented in terms of approximate impedances. Here we elaborate some further on why this is necessary. For this purpose, we consider 
the rather simple plane strain problem of a single discrete layer that is underlain by an elastic half-space while both are subjected to SH waves. As 
shown in Ref. [4], when the half-space is represented exactly below the discrete layer and the degree of freedom of the interface with the half-space is 
condensed out, one recovers at the surface of that combination the exact SH impedance. That this is so is nothing short of incredible, because the 
discrete layer cannot transmit waves of very high frequencies, yet the combination still works perfectly well for any frequencies and any horizontal 
wavenumbers. 

Indeed, consider a single discrete layer of thickness h coupled to a half-space expressed in terms of its exact SH impedance. The combined 
impedance matrix is 

K=

{
K11 K12
K12 K11 + Kex

}

where the exact half-space impedance is 

Kex = μ k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Ω2

√
,Ω =

ω
kβ

=
Vph

β 

Also, using the so-called midpoint rule, the element impedances for the discrete (TLM) layer can be shown to be given by 

K11 =
μ
h

[
1
4
κ2( 1 − Ω2)+ 1

]

,K12 =
μ
h

[
1
4

κ2( 1 − Ω2) − 1
]

, κ= kh 

The impedance of this combination as perceived from the upper surface follows then from the condensed impedance 

Keq =K11 −
K2

12

K11 + Kex
≡ Kex ∨ k,∨ω 

That this is so can readily be seen by assuming the identity to be true: 

K11(K11 + Kex) − K2
12 ≡ Kex(K11 + Kex)

K2
ex = K2

11 − K2
12→ Kex =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
11 − K2

12

√

= μk
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Ω2

√

Astonishingly, we have recovered the exact SH impedance, and this no matter how thick the buffer layer should be. This is because the thickness 
ultimately drops out: 
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K2
11 − K2

12 =
(μ

h

)2
{[

1
4
κ2( 1 − Ω2)+ 1

]2

−

[
1
4
κ2( 1 − Ω2) − 1

]2}

=
(μ

h

)2
{[

1
4

κ2( 1 − Ω2)+ 1 +
1
4
κ2( 1 − Ω2) − 1

][
1
4

κ2( 1 − Ω2)+ 1 −
1
4
κ2( 1 − Ω2)+ 1

]}

=
(μ

h

)2
{[

1
2

κ2( 1 − Ω2)
]

[2]
}

= μ2k2( 1 − Ω2) ≡ K2
ex 

However, by the time that we replace the half-space by its approximation 

Kapp = μ k
(

1 −
1
2

Ω2
)

the condensed impedance will no longer be exact: 

Keq =K11 −
K2

12

K11 + Kapp
∕= Kex 

Still, the ratio R = Keq/Kex is close to 1 for a broad set of wavenumbers k > ω/β (such that Vph < β). For example, Fig. 8 shows this ratio when h = 1,
k > 1, Ω = 0.8. As can be seen, R ≈ 1 in the entire range of wavenumbers. Moreover, for phase velocities satisfying the restriction Ω < 0.8, the ratio 
equals 1 for practical purposes.

Fig. 8. Ratio of apparent stiffness to exact stiffness for Ω = Vph/β = 0.8.  

By way of contrast, the ratio Kapp/Kex is not anywhere near as good (i.e. close to 1). Hence, we conclude that adding a buffer layer is a necessity for 
the accurate representation of the half-space. Similar (even if more complicated expressions) apply also the SVP case. 

In general, it behooves to choose a buffer whose thickness is roughly equal to four times the depth of the soil times the ratio of shear wave velocity 
in the half-space and the average of the shear wave velocity in the soil. In the example shown in the text, this is hbuffer ∼ (4)(0.6)(300)/(200) = 3.6 m. 
This is the wavelength in the half-space that corresponds to a quarter-wavelength in the soil. The buffer layer should be so constrained that it re
produces the behavior of the plane-strain modes (constrain the lateral motions for the symmetric modes, and the vertical-longitudinal motion for the 
antisymmetric modes). 
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[16] Kausel E, Roësset JM. Frequency domain analysis of undamped systems. J Eng 
Mech 1992;118(4):721–34. 

[17] Kumar J, Naskar T. A fast and accurate method to compute dispersion spectra for 
layered media using a modified Kausel-Roësset stiffness matrix approach. Soil 
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