TABLE OF CONTENT

1. Chicago, Illinois, USA
2. A brief history of Chicago
3. Status Quo around industrial corridors
4. Research
5. Masterplan
6. MidCity’s Integrated Institute of Culinary Arts
7. Conclusion
Chicago, Illinois, USA
Illinois, USA
Chicago, Illinois
Chicago
GREETINGS FROM
CHICAGO
Expectations were high when visiting Chicago. The city is known for its large neo-classical buildings and a romantic image of the city was expected.
While in fact, Chicago’s down town is not THAT big. It’s a small proportion of the larger ‘Chicago Land’. The suburbs reach up to 15 km off the central Loop.
So then what is this strange place? This large suburban area with a tiny part full of high rise? To understand this, we need to dig in to the history of Chicago and how its urban layout grew into what it is today.
A brief history of Chicago
In the early 19th century, Chicago land was habitated by a large group of native Americans. The soil was perfect for European immigrants to who continued their livestock farming.
While centrally positioned between the East and West coast of the New World, Chicago started to become a relevant place only due to the large amounts of life stock that were traded.

1870’s life stock trade
While the locomotive started to be a common way of transportation for Americans and goods, the American rail network started to centralize around Chicago.
By the end of the 20th century, when large scale meat processing again boosted Chicago’s relevance, it had become one of the wealthiest city’s in America.
With the invention of electricity and the success of meat processing and trading, Chicago quickly expanded into a city where cheap land was sold to the workers, who were all able to build their cottages. Nowadays, these ‘worker cottages’ are seen as typical Chicagoan Bungalows.
The railway was a great method of transportation for large production facilities. The radial expansion of Chicago’s railways towards other city’s, started to be surrounded by large production plants, creating ‘industrial corridors’. The worker cottages started to appear around the corridors in Chicago’s famous grid plan.
Many public facilities such as schools, hospitals, libraries, sports facilities, and parks enhance the landscape, adding new amounts of quality to the life of workers.
Since the land was cheap outside the city center, not only large factories appeared, but the workers were able to settle as well. Each of them in their free standing house with garden, and sometimes even a car. A large social revolution at the time.

American Dream: a place for everyone.

Department complexes and later on malls started to dominate the workers. (Welsh, 2010, p. 12)
Since the farmers in the 1830's, Chicago had seen tremendous economic growth. The city grid was a great modular system to facilitate the economy. But what happens to a city when growth converts to shrinkage?
Many crisis had led to an economic downfall. The stock market crash and prohibition, as well as political situations such as the Cuban crisis had led to a sudden stop in the appearance of factories and worker dwellings.
When China promoted their famous ‘Made in China’ campaign, many Chicagoan production facilities chose the cheaper Chinese alternative. Factories started to be abandoned.
Status quo around industrial corridors
According to the contemporary paradigms of urban critique, technocratic, market-driven and market-oriented forms of
The current situation is that the workers have left to other suburbs for better, modern homes.
Large production facilities are unused while production takes place in the cheaper Chinese factories.
INFRASTRUCTURAL EXPANSION

INDUSTRIAL CORRIDORS
This has led to three identities of the city. The central Loop, the industrial suburbs as describes, and the newer outskirts that are now popular due to better tax and educational opportunities.
This leaves the Industrial suburb in the middle, without a clear identity.
1. Urban decay
2. Lack of MidCity identity
3. Barely interaction
CONCLUSION OF STATUS QUO

Identity

in between communities
The leftover exists of a dead body from the production era. The industrial corridors surrounded by the dwelling grid still define the physical appearance. Now the question really is, how can I, as an architect, intervene in this situation to perhaps bring back industry?
Research
When looking at an ethnicity map, it becomes clear that Chicago suffers from social segregation.
An abstract variant of this map makes it clear that there are certain points where segregation is really strong. These can be seen as ‘tripoints’ on the border between three countries.
The foul framework is to be reconsidered and adjusted rather than
A masterplan was developed to intervene in industrial corridors. Sometimes it is important to soften a border, others needed to have a solution from within. (Loures, 2014, p.)
The clearest segregation tripoint was this location, where an industrial zone is separating different social classes.
Chicago, Illinois
Galewood, Chicago
Further research was needed. Is this corridor a ‘stamp’ corridor like in whole Chicago?

A TYPICAL INDUSTRIAL CORRIDOR?
It appeared that some physical appearances increase or decrease the segregating effect of the corridor. For instance the large empty production plants are seen as introverted, repelling objects where people like to stay away from.
ELABORATION RESEARCH
Not clearly visible from the outside, the area is strictly separated into different zones. Each with slightly different politics and a different tax rate.
One of the key resources of any city, especially economically committed, and ideas to help create a culturally vibrant a...
Remarkebly, north of the border appears to be a group of people who start working at an early age.

...a struggling one, is its young adults. They have the energy, and economically viable urban space. (Klimt, 2014, p. 31)
Although offering very limited economic and professional connections with few exceptions, maintain very strong and valued connections.
opportunities, like Chicago’s Galewood, future generations, sections with the city. (Klimt, 2014, p, 32)
An enterprising spirit is recorded among the communities centrally surrounding the border.
North of the border, generally speaking in the poorer area, is a large amount of vacant homes.
Just 200 meters South, remarkably large amounts of people have had higher education.
1. Poor families

2. Rich single's living

3. Lack of connecting

4. Demographic fin
CONCLUSION
OF DEMOGRAPHIC
RESEARCH

North of the border

South of the border

Activity, jobs, leisure, economy, identity...

Findings: direct motivation of intervening
research question

How can the corridor (short term) and (long term) bring back economic growth?
t term) facilitate jobs and economy?
The statistical analysis suggested three interventions that could help to shift money in the right direction. Generally speaking, the northern community is out of jobs.
In a capitalist society, public buildings are essential social assets because they are related to most people instead of a handful of users.
HUBS TO SHIFT MONEY

assets. The performance of public buildings is remarkable as

rs. (Xue et al., 2013, p. 57)
Masterplan
Leisure hub
Education hub
Cooking hub
It is seen that half empty corridors become empty, and new initiatives can quickly attract more industrial activity. So it is important to create industrial hubs that allow further expansion.
The analysis suggests a perfect catalyst: inspire the undereducated unemployed community, and attract the higher educated employed community to spend.
Architecture of public institutions have occupied a central, significant role in the city. (Ng, 2006, p. 12)
What’s on the site?

subtle, and decisive role in the quality and state of civility
The railroad yards official company name is Canadian Pacific’s (Former Chicago Milwaukee St Paul and Pacific Railroad, Milwaukee Road)
A portion of the architect's drawing of the construction on North Austin avenue, showing the south approach of which the ground is Austin avenue and that part of Cortland street to the west will be blocked off by the underpass. In the upper right hand corner of the Milwaukee and St. Paul railroad yards which hitherto were a major north-south thoroughfare. An avenue is now at the north end of the underpass, at Austin avenue.
1938 “We need to build the longest underpass in America, to fight this Chinese wall”

Already in the successful days, it was clear that a large industrial corridor like this, separates communities. It was proposed to build a large underpass.
Not only pragmatic, economic conditions are needed to oil assemblage of physical and symbolic values is fundamental
But in America’s car culture, nobody dares to walk through this underpass. 200 meters of dark tunnel create a bad reputation for commuters.
The Zenith company facilitated a radio and television plant on the site. The television's first remote control was invented and built by this company on this location.
Again, the status quo reveals a sad update of the historic success.
While no longer needed, large production plants are becoming empty. The small scale industries that the neighbourhoods actually need, are renting tiny proportions of the original building.
Large production plants do these small scale
Plants will eventually be demolished, where industries go?
The interim strategy aims at areas with little economic development, high vacancy rates of 50% and additional known social problems (Rall, Haase, et al., 2011, p. 191)
SPATIAL STRATEGY

decrement, usually draining in population leading to
inns which has led people to move to other parts of the city.
While the decaying plants are still there.
The historical facades can be preserved.
The current railway management is already selling unused tracks. The total amount can be decreased to 4: two civil and two freight tracks up and down the Loop and outskirts.
The underpass will be made attractive for pedestrians when daylight is re-introduced.
The introvert appearance of the industrial border may be softened by creating a relatively cheap park edge.
CIRCULAR GROUND DUG OUT
The existing columns are very well suitable for reuse. In fact, they are beautiful art deco styled columns with large constructional strength.
When adding a roundabout, the railway is unobstructed from other traffic.
The chef-hub and trainstation can be placed on top of the road-rail roundabout. This allows for perfect accessibility while still keeping traffic unobstructed.
The roundabout allows for a connection to all four industrial corners.
Around the hub, the small scale industries may reappear in a much more logical and attractive layout.
The elevated accessibility to the trainstation allows for the introduction of unobstructed slow traffic. Pedestrians and bikers may easily access the building, or simply cross the border.
After completion, larger scale industries (or more small scale) may appear around the existing first ring.
Large scale 3rd generation industry connects to the railway. Imitating the original Chicagoan city layout if ever needed.
Not all parts of the underpass are usable. The top layers are risky to use constructionally and are omitted. The concrete columns are easily lifted from the original location.
Characteristic Art Moderne port

dock interlocked in concrete wall/sand masses
Maximum strength is reached by cleverly positioning the columns, reusing the exact same number of elements as was built for the 1928 underpass. Speaking of sustainability in Architecture!
Research has shown that residents living in a TOD–neighborhood elsewhere in similar socio-economic standards. (Loo et al., 2004)
The introduction of a train station demands certain levels of safety and facilities. The hub will connect both locally, to the city center, as well as national, to other American cities.
MidCity’s Integrated Institute of Culinary Arts
The building has a brand, MidCity’s Integrated Institute of Culinary Arts. The reasons will be clear later...
American cuisine is largely based on French kitchen techniques, as popularized by Augustus Escoffier, the founding father of 'International Kitchen' in America.
01 local: basics knowledge, technical

02 regional: ‘French culinary tec

03 national: Pastry arts

04 global: Hospitality, innovation
difficulty

People’s decision to stay in an unpromising environment needs as much as possible be facilitated to locally yield from. People familiar. Thus, attachment to a place is larger than the will (Klimt, 2014, p. 43)
Further studies of chefschools in America indicate that the level of education is directly related to the geographic opportunities for its students.

Techniques’, sanitary

1000+ in Chicagoland

Inspiration Kitchen

50 - 100 in Chicagoland

Le Cordon Bleu

5 - 10 in Chicagoland

Ins

1 - 2 in Chicagoland

...needs to be seen as a gift. Their knowledge and skills should not be used as personal motivations not to move out are to stay in or near the city to flee from concerns about crime and safety in the city.
Simple knife skills, basic theory about hygiene and ingredients result in job opportunities in the direct neighborhood.
LEVEL 2
regional: french culinary techniques

More in depth study, as popularized by Escoffier, will allow for a further reach in cooking career.
The highest level possible will become more theoretic, about winery, pastry arts, and other advanced techniques will make chefs compete nationally. Therefore, the institute will facilitate up to this level of culinary arts.
1. Level 3 compétition
2. Hands on, learn by doing
3. Fresh ingredients
REQUIREMENTS

Innovativeness
by doing things
What’s more fresh than growing ingredients next to the kitchen?

Bringing the ingredients nearer to the kitchen increases the customers experience by allowing for higher quality food.
Spatially, the plot within the roundabout can be maximised by using everything above it.
Therefore, an extrusion of the roundabout will be used.
A sun study is needed to bring the food the nearest to the kitchen: by using a greenhouse facade.
The facade that is the sunniest, will define the building's appearance.

MAXIMISE SUNNY SURFACE
Fresh ingredients will directly influence the quality of the prepared food.
Openings are made through the building. It is important in the masterplan that all traffic streams are maximised, having no obstructions on their way.
The green facade requires further elaboration. How can the sun facade be maximised? By minimizing the structure!

UNOBSERVED FACADE
The further inside of the building will be perfectly suitable for hosting the institutes program.
To keep the building cheap, only easily constructed mass will be used for programme of the culinary art institute.
1. Sun study for wind
2. Structural solution
3. Climate study to
TECHNICAL REQUIREMENTS

Inter optimum

option for angled glass facade

bear Chicago’s extreme climates
Chicago is known for its windy climate. The summer and winter are extremely different.
Summer sun angles rise up to 70 degrees, while winter optimum is limited to only 28. This large difference in sun angles can be used cleverly in the architectural design, when the goal is to maximise the sun surface in order to produce ingredients all year long.
The floors directly behind the sun optimized facade are perfect for growing a maximum amount of vegetables and fruits throughout the year.
To combine all statements, the masterplan will look like this in an aerial of the corridor.
While the facade is maximused for sunlight, it is now relevant to minimize the structure and therefore reconsider some basic structural principles.
While a load bearing principle such as a beam or wall can hold up another mass, it is considerably inefficient in its materialization.

COMPRESSIVE FORCES
TENSILE FORCES

least material

Much less material is needed using tensile forces, to keep up the same amount of mass.
A smart combination will be designed, using the right amount of tensile and compressive forces. Of course, earlier studies have been taken place and can be used to find the perfect solution. Therefore, some references are worth mentioning.
Surpassing the Gothic architectural tradition, Antoni Gaudi studied organic geometry using catenary arches. The catenary arch is the most efficient shape to convey a force.

CATENARY ARCH
optimum moment
The Saarinen architects reversed the catenary arch, turning the tensile forces into a purely compressive moment.
SOM designed a combination using an external structure. The efficient use of steel allows for free floor plans without any columns.
The Marquette Plaza shows the same principles, but reversed. The tensile forces clearly allow for lesser material than the compressive elements. Indicating that tensile forces are more suitable for maximum daylight.
This tilt bridge exists of two efficient moments in the shape of catenary arches. Their strength is only possible due to the tensile connection of opposing them.
Applying this concept on the Culinary Institute will allow for a maximised surface on the sunny side. Ideal for growing fruit and vegetables.
The facade itself should then exist as a tensile skin. Frei Otto’s revolutionary lightweight structures are a perfect solution to keep the large surface financially feasible and technically possible.
Like the London Velodrome, basically a mesh of steel wires will be used on MIICA’s sunny facade.
The tensile connection between the opposite curvature of the arches will be used to attach the skin on.
While not strong enough for purely tensile keeping up the che school floors, additional compressive columns are added ONLY beyond the center of gravity. So structurally, the building will still be materialized as efficient as possible.
To suspend the floors between the steel wire mesh, special floor anchors have been developed.
These anchor consoles will be attached to the mesh every two meters. This way the compressive columns will be very slender.
HOW DOES A THIN SKINNED BUILDING SURVIVE CHICAGO’S EXTREME CLIMATE?
Designing smart architecture will help in achieving an efficient climate for the interior programme.
Programmatically, the different zones are positioned in a way that the sun does not negatively affect its use. A large atrium will separate the actual programme of the school from the captured ultraviolet heat.
The greenhouse will filter most of the UV low frequencies. During the summer, when leaves are blocking the sun, the programme behind the atrium will be least heated.
SUMMER SECTION
GEOTHERMAL HEATING - GROUND TEMPERATURE WILL BE USED AS A CONSTANT TEMPERATURE EQUALIZER BETWEEN CHICAGO'S EXTREME SUMMER AND WINTER CLIMATES.

SUMMER HEAT IS STORED MARCH - SEPTEMBER, GENERATED BY CLIMATE FACADE.

HIGH CAPACITY PUMPS WILL TRANSFER THERMAL ENERGY FROM FACADE TO FLOORS DURING WINTER, TO SOIL DURING SUMMER.

FLOORS WILL COOL DOWN USING GEOTHERMAL COOLING DURING THE SUMMER, SIMULATING A THERMAL MASS BARELY IMPRESSIONABLE BY THE SUN.

OUTSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY. WARMTH IS ESCAPING NORTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY. WARMTH IS ESCAPING SOUTH OF THE BUILDING.

THE PRESSURE DIFFERENCE IS BEING USED TO GENERATE ELECTRICITY USING MICRO TURBINES.

HIGHER LEVELS OF THE INSIDE ATRIUM ARE USED TO WARM UP THE CLOSED GEOTHERMAL WATER SYSTEM.

VEGETABLES AND FRUITS INSIDE THE GREENHOUSE FACADE WILL BLOCK MOST OF THE SUMMER SUN, PREVENTING THE PROGRAMMATIC PART OF THE BUILDING TO EXCESSIVELY HEAT, WHILE STILL ALLOWING MAXIMUM DAY-LIGHT.

35°C
30°C
38°C
45°C
32°C 21°C
85°C 7°C
22°C
23°C
GEOTHERMAL HEATING - GROUND TEMPERATURE WILL BE USED AS A CONSTANT TEMPERATURE EQUALIZER BETWEEN CHICAGO'S EXTREME SUMMER AND WINTER CLIMATES.

SUMMER HEAT IS STORED MARCH - SEPTEMBER GENERATE BY CLIMATE FACADE.

HIGH CAPACITY PUMPS WILL TRANSFER THERMAL ENERGY FROM FACADE TO FLOORS DURING WINTER, TO SOIL DURING SUMMER.

FLOORS WILL COOL DURING GEOTHERMAL COOLING DURING THE SUMMER, SIMULATING A THERMAL MASS BARELY IMPRESSIONABLE BY THE SUN.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING. THE PRESSURE DIFFERENCE IS BEING USED TO GENERATE ELECTRICITY USING MICRO TURBINES.

OUTSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING NORTH OF THE BUILDING.

LEVELS OF THE INSIDE ATRIUM ARE USED TO WARM UP THE CLOSED GEOTHERMAL WATER SYSTEM.

VEGETABLES AND FRUITS INSIDE THE GREENHOUSE FACADE WILL BLOCK MOST OF THE SUMMER SUN, PREVENTING THE PROGRAMATIC PART OF THE BUILDING TO EXCESSIVELY HEAT, WHILE STILL ALLOWING MAXIMUM DAY-LIGHT.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.
WINTER SECTION
GEOTHERMAL HEATING - GROUND TEMPERATURE WILL BE USED AS A CONSTANT TEMPERATURE EQUIVALENT BETWEEN CHICAGO'S EXTREME SUMMER AND WINTER CLIMATES.

SUMMER HEAT IS STORED MARCH - SEPTEMBER GENERATED BY CLIMATE FACADE.

HIGH CAPACITY PUMPS WILL TRANSFER THERMAL ENERGY FROM FACADE TO FLOORS DURING WINTER, TO SOIL DURING SUMMER.

FLOORS WILL COOL DOWN USING GEOTHERMAL COOLING DURING THE SUMMER, SIMULATING A THERMAL MASS BARELY IMPRESSIONABLE BY THE SUN.

OUTSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING NORTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

THE PRESSURE DIFFERENCE IS BEING USED TO GENERATE ELECTRICITY USING MICRO TURBINES.

HIGHER LEVELS OF THE INSIDE ATRIUM ARE USED TO WARM UP THE CLOSED GEOTHERMAL WATER SYSTEM.

VEGETABLES AND FRUITS INSIDE THE GREENHOUSE FACADE WILL BLOCK MOST OF THE SUMMER SUN, PREVENTING THE PROGRAMMATIC PART OF THE BUILDING TO EXCESSIVELY HEAT, WHILE STILL ALLOWING MAXIMUM DAY-LIGHT.
GEOTHERMAL HEATING - GROUND TEMPERATURE WILL BE USED AS A CONSTANT TEMPERATURE EQUALIZER BETWEEN CHICAGO'S EXTREME SUMMER AND WINTER CLIMATES.

SUMMER HEAT IS STORED MARCH - SEPTEMBER, GENERATED BY CLIMATE FACADE.

HIGH CAPACITY PUMPS WILL TRANSFER THERMAL ENERGY FROM FACADE TO FLOORS DURING WINTER, TO SOIL DURING SUMMER.

OUTSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING NORTH OF THE BUILDING.

INSIDE ATRIUM EXCESSIVE AIR PRESSURE DUE TO LOW FREQUENCY WARMTH IS ESCAPING SOUTH OF THE BUILDING.

THE PRESSURE DIFFERENCE IS BEING USED TO GENERATE ELECTRICITY USING MICRO TURBINES.

LEVELS OF THE INSIDE ATRIUM ARE USED TO WARM UP THE CLOSED GEOTHERMAL WATER SYSTEM.

VEGETABLES AND FRUITS INSIDE THE GREENHOUSE FACADE WILL BLOCK MOST OF THE SUMMER SUN, PREVENTING THE PROGRAMMATIC PART OF THE BUILDING TO EXCESSIVELY HEAT, WHILE STILL ALLOWING MAXIMUM DAYLIGHT.

-15°C 5°C 12°C 19°C -12°C 19°C 17°C 11°C 20°C 21°C
MIICA’S MARKET MODEL
Architecture of public institutions have occupied a central, sacred role in the city. (Ng, 2006, p. 12)
A commercial model is needed to allow for a large investment on this location. The key is to converse the food chain into a value chain. In short, the students need to be as close as possible to the consumer, which will most likely be the trainstation commuters.
All educational programme will be converted into a valuable facility around the train station. For instance, the bakery class will be a real bakery. The library, a real book store, and the pastry class will be a real preparation for the restaurants' desserts.
CROSS SECTION
18 floors of programme will facilitate the chef school. The lowest floors are the most commercially potential ones due to their close connection to the large audience.
Different target groups appear at different times. For instance the industrial workers around the building will most likely arrive at, or depart from the trainstation around 7 am and 5 pm. This is a direct opportunity for the building the offer breakfast and dinner.
Students will be present during most of the day, but as well in the evening. Naturally, they will be working hard to serve the restaurant visitors at the later hours.
commercial peak times

supportive interaction
Overlaying these graphs reveals something interesting: the peak times during the day are at breakfast, lunch and dinner. There are the moments where students have the most interaction with other groups of people.
Different target groups appear at different times, but also find their destination at mixed locations. These zones are becoming clear when grouping the people according to the building programme.
These selected interaction clusters indicate important moments and locations in the building. For many people, they define a relevant part of the institute whilst socially interacting.
HOW DOES THE PUBLIC PERCEIVE THESE INTERACTION CLUSTERS?
Four plans will elaborate on representative interactions and activities. The groundfloor, where commuters enter the building. The second floor, where breakfast and lunch is bought near the trainstation. The Greenhouse floors, and the lastly the restaurants with higher quality food where people have more time to enjoy their meal than lower in the building.
The ground floor hosts food and beverage accommodations for the most speedy visitors. To still support a healthy lifestyle, fruits and vegetables are served in ‘on the go’ meals.
The large atrium will be the breathing heart of the building. The vertical transportation true the atrium is promoted by using direct staircases to the platforms and other relevant destinations such as the ‘on the go’ restaurants.
The platforms are easily accessible through the open atrium. The commuter then never leaves the ‘outside’. In other occasions, the commuter easily takes a left or right through their favourite restaurant, to pick up a meal and still being able to jump their train. Visitors who take more time for a higher quality meal, may find their way up the building.
Healthy lifestyle is promoted using home grown fruits and vegetables for hasty commuters. The customer is constantly serviced by students. By injecting the student in real life situations, they are prepared for the most realistic situations after graduations.
Customers are capable to seeing how their meal can be fresh and still quickly made. Besides take away, the environment as well offers to be the destination, for instance for guests who come for lunch or dinner to recharge between working hours.
The greenhouse is aiming at producing the maximum amount of fruits and vegetables. Because of this logistic operation, customers are not allowed. However, they clearly see what’s being grown inside the building and recognise these ingredients from their meals.
Inside the greenhouse, students learn about the ingredients to best prepare them for their job. A good chef is aware of the anatomy and properties of his ingredients. This is a literal example of hands on theory.
The higher in the building, the less accommodations for customers and thus the more theoretical the classes will be. For one exception...
While the building is greatly facilitating a gradient in theoretical labs, the highest floor on the North side is perfectly suitable for hosting a panoramic restaurant. This adds to the potential value of the Public Private Partnership.
Conclusion
Not only shows the building to be an eye-catcher, it attracts 3rd party investors that will make the MIICA brand possible. The chefschool is capable of preparing the poor community for a practical job in society. The building after all catalyzes small scale industries, of which the workers can have their breaks at, and arrive through, the building.
MIICA OFFERS
1. direct jobs
2. long term knowledge
3. fusing communities
4. regional connectivity
5. a future home for industries
Bibliography of quotes

- Loo, Chen, Chan (2010), Rail-based transit oriented development: Lessons from New York City and Hong Kong, in Landscape and Urban Planning 97 (Journal), pp 202-212.
- Ng A. (2006), Adding value to public buildings and public spaces, in Post 97 public architecture in Hong Kong, Architectural Services Department, Hong Kong.
- Xue, Hui, Zang (2013), Public Buildings in Hong Kong: A Short account of evolution since the 1960’s, in Habitat International 38 (Journal), pp 57 - 69.
July 3, 2015

How can a single intervention trigger an attractive production neighborhood to facilitate economic growth in a decaying industrial area?

Meet Galewood, Chicago. An area in between downtown *The Loop* and the outskirts of the city. From the earliest days of Chicago in the 1830’s, the area has shown economic growth. Up until mid-twentieth century, when production shifted to Asia and cheaper land was found outside the city with better tax rates and education, leaving Galewood with an urban layout once designed for growth.

This master thesis aims at finding the right solution to a series of contemporary urban problems. The result is an elegant chef school, well connected to The Loop as well as other important hubs. The designed building recatalyses the area, bringing back industry in a different scale. And with that, prosperity for the surrounding communities.