BEREKENING VAN DE DEBIETVERDELING OVER DE OPENINGEN VAN
EEN GEPERFOREERD RIOOL BIJ EEN NIET-PEMANENT RIOOLDERIET

Afstudeerverslag Konstruktieve Waterbouwkunde

C.Deelen februari 1978
INHOUD

Lijst van figuren

Lijst van bijlagen

Lijst van symbolen

1 Inleiding .. 1
 1.1 Opdracht ... 1
 1.2 Probleemstelling ... 1
 1.3 Samenvatting .. 2
 1.4 Konclusies en aanbevelingen 4

2 Basisvergelijkingen ... 5
 2.1 Inleiding ... 5
 2.2 Aannamen ... 6
 2.3 Afleiding bewegingsvergelijking geperforeerd riool 6
 2.4 Bepaling regainkoëfficiënt 11
 2.4.1 Algemeen ... 11
 2.4.2 Literatuuronderzoek 13
 2.4.3 Opmerkingen en konclusies 17
 2.5 Afleiding continuïteitsvergelijking geperforeerd riool ... 19
 2.6 Bepaling afvoerkoëfficiënt 20
 2.6.1 Algemeen ... 20
 2.6.2 Literatuuronderzoek 22
 2.6.3 Opmerkingen en konclusies 25
 2.7 Afleiding bewegingsvergelijking omlooprioool 27

3 Opzet rekenprogramma ... 31
 3.1 Notatie .. 31
 3.2 Omvormen van de basisvergelijkingen 31
 3.2.1 Algemeen ... 31
 3.2.2 Vergelijkingen in secties zonder uitstrooming 32
 3.2.3 Vergelijkingen in secties met uitstrooming 32
 3.3 Start van het rekenproces 33
 3.3.1 Probleemstelling .. 33
 3.3.2 Bepaling begintoestand 34
INHOUD (vervolg)

3.4 Verloop van het rekenproces .. 37
3.5 Beëindiging van het rekenproces ... 41
3.6 Invoer ... 41

4 Computerprogramma ... 44
4.1 Stroomschema ... 44
4.2 Programma .. 45

5 Testen van het computerprogramma ... 46
5.1 Algemeen .. 46
5.2 Invoergegevens .. 46
5.3 Onderzoek naar stabilitéit en nauwkeurigheid 46
5.3.1 Tijdstap .. 46
5.3.2 Begintoestand ... 47
5.4 Testcases .. 47
5.4.1 Algemeen ... 47
5.4.2 Invloed van de hefsnelheid van de schuif 47
5.4.3 Invloed van A/νka ... 48
5.4.4 Konklusie ... 49

REFERENTIES

BIJLAGEN
Lijst van figuren

1. Regainkoëfficiënt m
2. α als functie van v_3/v_1 en a/A
3. α als functie van v_3/v_1, a/A en Re
4. α als functie van v_3/v_1 voor verschillende gaatjesvormen
5. Relatie $\alpha - v_3/v_1$ volgens Idel'cik (rechthoekige opening)
6. Relatie $\alpha - v_3/v_1$ volgens Idel'cik (ronde opening)
7. Relatie schuifverlies-hefhoogte (kromme van Weisbach)
8. Verloop van gaatjesdebieten $q(1)$, $q(3)$ en $q(5)$; heftijd schuif 20 sek.
9. Verloop van gaatjesdebieten $q(1)$, $q(3)$ en $q(5)$; heftijd schuif 2 sek.
10. Verloop van gaatjesdebieten $q(1)$, $q(3)$ en $q(5)$; heftijd schuif 0,2 sek.
11. Verloop van gaatjesdebieten $q(1)$, $q(3)$ en $q(5)$; gatdoorsnede is riooldoorsnede
Lijst van bijlagen

1 Stroomschema hoofdprogramma
2 Stroomschema subprogramma
3 Gebruikte variabelen
4 Gebruikte arrays
5 Listing van de invoer
6 Listing van de uitvoer
7 Listing van het programma
Lijst van symbolen

A leidingdoorsnede \([m^2]\)

A_0 doorsnede omloopriool \([m^2]\)

A' koefficiënt in de formule van Idel'cik voor het bepalen van energieverlies van hoofdstroom naar aftakkende stroom \([-]\)

a doorsnede gaatje \([m^2]\)

a_{min} minimale gaatjesdoorsnede \([m^2]\)

B kolkoppervlakte \([m^2]\)

C koefficiënt van Chézy \([m^4 s^{-1}]\)

c kontraktiekoëfficiënt \([-]\)

D hoogte omloopriool \([m]\)

D_l diameter hoofdleiding \([m]\)

D_a diameter aftakkende leiding \([m]\)

d hefhoogte schuif \([m]\)

da lengte van gaatje in richting hoofdstroom \([m]\)

dx afstand tussen twee gaatjes \([m]\)

E energiehoogte \([m]\)

E_1 energiehoogte in hoofdleiding bovenstrooms van aftakking \([m]\)

E_2 energiehoogte in hoofdleiding benedenstrooms van aftakking \([m]\)

\(\Delta E\) verschil in energiehoogte binnen en buiten de leiding \([m]\)

\(\Delta E_0\) energiehoogteverschil over omloopriool \([m]\)

F uitwendige kracht \([kg m s^{-2}]\)

f zijdelingse doorstroomopening per eenheid van lengte van de hoofdleiding \([m]\)

g zwaartekrachtsversnelling \([m s^{-2}]\)

H buitenwaterstand \([m]\)

H_c energiehoogte in hoofdleiding benedenstrooms van uitstrooming \([m]\)

H_s energiehoogte in hoofdleiding bovenstrooms van uitstrooming \([m]\)

h piezometrisch niveau binnen de leiding \([m]\)

h' niveau van de onderkant van de leiding \([m]\)

h_o piezometrisch niveau aan het eind van het omloopriool (gezien in stroomrichting) \([m]\)

h_1 piezometrisch niveau in hoofdleiding bovenstrooms van de aftakking \([m]\)

h_2 piezometrisch niveau in hoofdleiding benedenstrooms van de aftakking \([m]\)

h_{Li} piezometrisch niveau aan het begin van tak i (gezien in stroomrichting) \([m]\)
Lijst van symbolen (vervolg)

- h_{Ri}: piezometrisch niveau aan het einde van tak i (gezien in stroomrichting) [m]
- ΔH_s: energieverlies over de schuif [m]
- Δh: verandering van het piezometrisch niveau in de leiding tengevolge van uitstrooming [m]
- i: taknummer [-]
- K: kracht per lengte-eenheid uitgeoefend door de wand van de gaatjes in de hoofdstroomrichting [kgs$^{-2}$]
- L: lengte omlooprioool [m]
- m: regainkoëfficiënt [-]
- n: aantal openingen van geperforeerd riool [-]
- P_v: impulsvoorraad [kgms$^{-1}$]
- Q: debiet [m3s$^{-1}$]
- Q_o: debiet in omlooprioool [m3s$^{-1}$]
- Q_1: debiet in hoofdleiding bovenstrooms van aftakking [m3s$^{-1}$]
- Q_2: debiet in hoofdleiding benedenstrooms van aftakking [m3s$^{-1}$]
- Q_3: aftakkend debiet [m3s$^{-1}$]
- Q_a: aftakkend debiet [m3s$^{-1}$]
- Q_i: debiet in tak i [m3s$^{-1}$]
- Q^*: predictorwaarde van Q bij methode Heun [m3s$^{-1}$]
- q: zijdelingse afvoer uit hoofdleiding per eenheid van lengte [m3s$^{-1}$]
- q_1: debiet door io gaatje [m3s$^{-1}$]
- R: hydraulische straal van de leiding [m]
- R_o: hydraulische straal van de omlooprioool [m]
- Reg: getal van Reynolds voor gaatje [-]
- r: straal van afgeronde hoek [a]
- t: tijdparameter [a]
- t_o: begintijdstip van het rekenproces [a]
- Δt: tijdstap [a]
- Δt_{max}: maximale tijdstap [a]
- v_0: snelheid in omlooprioool [ms$^{-1}$]
- v_1: snelheid in hoofdleiding bovenstrooms van aftakking [ms$^{-1}$]
- v_2: snelheid in hoofdleiding benedenstrooms van aftakking [ms$^{-1}$]
- v_3: snelheid in gaatje (aftakking) [ms$^{-1}$]
- v_s: snelheid onder schuif [ms$^{-1}$]
- x: koërdinaatrichting evenwijdig aan as van leiding [m]
- Δx: lengte balansgebied [m]
Lijst van symbolen (vervolg)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>kolkwaterstand</td>
<td>[m]</td>
</tr>
<tr>
<td>Δz</td>
<td>energieverlies in hoofdstroming tengevolge van uitstroom</td>
<td>[m]</td>
</tr>
<tr>
<td>α</td>
<td>afvoerkoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>δ</td>
<td>koëfficiënt in formule voor regainkoëfficiënt volgens Bailey</td>
<td>[-]</td>
</tr>
<tr>
<td>ζ_{12}</td>
<td>energieverlieskoëfficiënt volgens Idel'cik voor de doorgaande waterstroom in de hoofdleiding tengevolge van uitstroom, betrekking hebbend op de snelheidshoogte in de hoofdleiding</td>
<td>[-]</td>
</tr>
<tr>
<td>λ</td>
<td>wrijvingskoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>μ</td>
<td>kontraktiekoëfficiënt onder schuif</td>
<td>[-]</td>
</tr>
<tr>
<td>ν</td>
<td>viscositeit</td>
<td>[m^2s^{-1}]</td>
</tr>
<tr>
<td>ξ</td>
<td>energieverlieskoëfficiënt voor waterstroom van hoofd- naar zijleiding, betrekking hebbend op de snelheidshoogte in de hoofdleiding</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_I</td>
<td>idem, volgens Idel'cik</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_o</td>
<td>energieverlieskoëfficiënt in omloopriool tengevolge van bocht- en intreeverliezen, betrekking hebbend op de snelheidshoogte in het omloopriool</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_c</td>
<td>energieverlieskoëfficiënt volgens Gardel voor de doorgaande waterstroom in de hoofdleiding tengevolge van uitstroom, betrekking hebbend op de snelheidshoogte in de hoofdleiding</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_d</td>
<td>idem, volgens Thoma</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_s</td>
<td>energieverlieskoëfficiënt van de schuif, betrekking hebbend op de snelheidshoogte in het omloopriool</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_{so}</td>
<td>energieverlieskoëfficiënt van de schuif in de begin-toestand</td>
<td>[-]</td>
</tr>
<tr>
<td>ξ_{wr}</td>
<td>energieverlieskoëfficiënt tengevolge van wrijving in het omloopriool, betrekking hebbend op de snelheidshoogte in het omloopriool</td>
<td>[-]</td>
</tr>
<tr>
<td>ρ</td>
<td>dichtheid</td>
<td>[kgm^{-3}]</td>
</tr>
<tr>
<td>τ</td>
<td>schuifspanning</td>
<td>[kgm^{-1}s^{-2}]</td>
</tr>
<tr>
<td>φ</td>
<td>koëfficiënt in formule voor de regainkoëfficiënt volgens Bailey</td>
<td>[-]</td>
</tr>
</tbody>
</table>
1 Inleiding

1.1 Opdracht

In het kader van het Toegepast Onderzoek van de Waterstaat betreffende kunstwerken heeft Rijkswaterstaat, Direktie Sluizen en Stuwen, in de brief d.d. 22 november 1976, het Waterloopkundig Laboratorium verzocht een onderzoek in te stellen naar de vormgeving van in- en uitlaatkonstrukties.

De opdracht is tweeledig:
- een inventarisatie moet gemaakt worden van bestaande in- en uitlaatkonstrukties aan de hand van WL-rapporten en andere publikaties. Hieruit kan wellicht een eerste indruk verkregen worden in welke omstandigheden die in- en uitlaatkonstrukties optimaal te gebruiken zijn,
- er moet een rekenprogramma worden opgesteld dat de debietverdeling over de openingen in een geperforeerd riool beschrijft bij een niet-permanent riool-debiet.

Dit verslag heeft betrekking op het tweede gedeelte van de opdracht en is geschreven door C. Deelen.

Het onderzoek heeft plaatsgehad in de periode januari t/m december 1977.

1.2 Probleemstelling

Het probleem bij het vullen en leegenv van een schutkolk is voornamelijk tweeledig. In de eerste plaats dient het schuttelen zo snel mogelijk te geschieden om lange wachtijden te voorkomen.

Daarnaast mogen de te schuttelen schepen niet teveel hinder ondervinden: de als gevolg van het instromende water ontstane waterbeweging in de kolk brengt het schip onder een helling die voortdurend varieert. De trossen moeten de horizontale beweging van het schip tegengaan.

Bij sluizen met een gering verval en/of geringe afmetingen worden in de deuren aangebrachte schuiven veelvuldig toegepast. Bij grote vervallen voldoet dit systeem minder goed vanwege de te lange vultijden en de te grote troskrachten. Bij toename van zowel de vervallen als de kolkoppervlakten is men daarom onder andere overgegaan op systemen met omloopriolen en geperforeerde riolen. Het water wordt ingelaten door middel van regelbare openingen in de hoofden. De verbinding met de kolk wordt verkregen door een aantal openingen in het riool.
De opzet van dit zogenaamde multiportsysteem is een zo gelijkmatig mogelijk over de kolk lengte verdeelde uitstrooming van het water te krijgen. Ongelijkmatigheid van de stroomverdeling heeft immers verstoringen in het wateroppervlak van de kolk en dus troskrachten ten gevolg. Faktoren die van invloed zijn op de stroomverdeling, zijn o.a.: het hefprogramma van de schuif, het aantal openingen en hun onderlinge afstand, vorm en oppervlakte van de openingen, doorsnede van het riool enz. Om op dit probleem in verband met het ontwerpen meer vat te krijgen, zal in het vervolg een rekenprogramma worden ontwikkeld, dat de debietverdeling over de openingen van een geperforeerd riool als functie van de tijd berekent bij een niet-permanent riooldebiet. Hoewel dit programma ten behoeve van schutkolken is ontwikkeld, is het ook bruikbaar voor uitlaatwerken waarbij de debietverdeling door de weerstand van achter elkaar liggende openingen wordt bepaald.

1.3 Samenvatting

Om een rekenprogramma op te kunnen stellen dat de verdeling van het debiet over de openingen van een geperforeerd riool beschrijft, zijn allereerst de basisvergelijkingen afgeleid die de stroming in een geperforeerd riool beschrijven. In eerste instantie is hierbij uitgegaan van een continu geperforeerd riool, hetwelk betekent dat de uitstrooming via een spleet met tussenschotjes plaatsvindt. Een probleem bij het afleiden van de bewegingsvergelijking is het bepalen van de kracht die door de tussenschotjes op het uitstromende water wordt uitge-
oefend. Door het definiëren van een regainkoëfficiënt m die bepaald wordt aan de hand van energieverliezen in de doorgaande stroom tengevolge van uitstroming, kan deze kracht toch in de berekening worden ingevoerd. Deze koëfficiënt m is een maat voor de stijging van het piezometrisch niveau in de hoofdleiding tengevolge van uitstroming en hangt af van de verhouding van uitstromend en doorgaand debiet.

Bij het afleiden van de continuïteitsvergelijking is het de afvoerkoëfficiënt α die onbekend is. Deze koëfficiënt hangt af van de verhouding van gaatjesnelheid en snelheid in hoofdriool en wordt bovendien sterk beïnvloed door de vorm van het gaatje. Aan de hand van optredende energieverliezen van hoofd- of zijleiding kan de afvoerkoëfficiënt voor een bepaalde vorm van de opening worden bepaald.

Als laatste is de bewegingsvergelijking van het omloopriool, waarin zich de schuif bevindt, opgesteld. Het energieverlies door vertraging als gevolg van de aanwezigheid van de schuif wordt in de vergelijking ingevoerd met een energieverlieskoëfficiënt \(\xi_s \), die voornamelijk afhangt van de relatieve schuifsopening.

Aangezien er in werkelijkheid sprake is van een leiding waarin zich op regelmatige afstanden openingen bevinden, wordt de leiding verdeeld in sekties met en sekties zonder uitstroming. Voor de sekties zonder uitstroming kan de bewegingsvergelijking worden vereenvoudigd. Voor sekties met uitstroming kunnen uit de differentiaalvergelijking 2 knooppuntsvergelijkingen worden afgeleid die een verband leggen tussen debieten en stijghoogten aan weerszijden van een opening.

Omdat het niet mogelijk is het rekenproces vanuit de nultoestand te starten is allereerst in permanentie een begintoestand bepaald die als startwaarde voor de verdere berekening dienst doet. Met behulp van de methode Heun kunnen de debieten op een later tijdstip worden uitgerekend; de stijghoogten volgen dan uit de knooppuntsvergelijkingen. De zo berekende debieten en stijghoogten dienen weer als startwaarde voor een volgende rekenstap. Na deze opzet van het rekenprogramma zijn achtereenvolgens stroomschema en computerprogramma opgesteld. Het programma is geschreven in de programmeertaal FORTRAN.

Tenslotte is het programma gedraaid en getest op stabilititeit en nauwkeurigheid; tevens zijn berekeningen uitgevoerd om na te gaan of met het programma de niet-permanente stroming in een geperforeerd riool redelijk goed kan worden gereproduceerd. In deze fase is het programma nog niet tot een standaardprogramma opgewerkt.
1.4 Konklusies en aanbevelingen

Uit de resultaten kan gekonkludeerd worden dat, met inachtneming van de gemaakt veronderstellingen het programma redelijk betrouwbaar is. Aangezien geen vergelijking met metingen mogelijk is, is enig voorbehoud hier natuurlijk wel op zijn plaats. Het zou daarom aanbeveling verdienen aan de hand van modelonderzoek na te gaan in hoeverre het programma betrouwbaar is. Tevens zouden dan metingen gedaan kunnen worden ter bepaling van energieverliezen tengevolge van uitstroming, dit natuurlijk vooral met het oog op de bepaling van de koëfficiënten m en α.
Het programma is erop gebaseerd dat alleen uitstroming uit het riool plaatsvindt. Het geldt dus in het geval van een geperforeerd riool in een sluis alleen voor het vullen van de kolk. Nagegaan zou kunnen worden welke aanpassingen moeten worden aangebracht om het programma ook geschikt te maken voor stroming van buiten naar binnen. Principele problemen zijn er niet, vooral omdat de weerstand van de gaatjes in dit geval beter is te definiëren dan bij uitstroming.
2 Basisvergelijkingen

2.1 Inleiding

Een multiportsysteem heeft in het algemeen de functie te zorgen voor een zo gelijkmatig mogelijk over de openingen verdeelde uitstrooming. Het debiet door een opening wordt bepaald door:
1. de gatdoorsnede,
2. het energiehoogteverschil over de opening,
3. de afvoerkoëfficiënt van de opening.

De energiehoogte buiten de leiding is gelijk aan de kolkwaterstand (dit alles ten opzichte van een bepaald nulniveau) en voor iedere opening op een bepaald tijdstip gelijk.

Het piezometrisch niveau binnen de leiding varieert als functie van de plaats en de tijd. De wrijving zorgt voor een in stroomrichting afnemende drukhoogte. Tergevolge van de uitstrooming neemt de impuls van de vloeistof in stroomrichting af en de drukhoogte dientengevolge toe. Tenslotte verandert de drukhoogte omdat er een drukverschil nodig is om de vloeistof tengevolge van het niet-permanente riooldebiet te versnellen of te vertragen.

De snelheidhoogte neemt in stroomrichting af. De onderlinge grootte van elk van deze invloeden is bepalend voor het verloop van het energieniveau binnen de leiding.

De afvoerkoëfficiënt van een opening wordt voornamelijk bepaald door de vorm van de opening en de hydraulische omstandigheden ter plaatse.

Uit het voorgaande valt af te leiden, dat er een gelijkmatige stroomverdeling is als het energieniveau binnen de leiding redelijk konstant is, en de afvoerkoëfficiënt voor alle openingen dezelfde is.

Dit is bijvoorbeeld het geval indien de leidingdoorsnede veel groter is dan de gezamenlijke doorsnede van de openings. De energieverliezen over de openingen zijn dan veel groter dan de veranderingen in energiehoogte binnen de leiding. Bovendien is de afvoerkoëfficiënt onder deze hydraulische omstandigheden voor alle openingen gelijk, zodat de stroomverdeling behoorlijk gelijkmatig is.

Daarentegen zal de stroomverdeling ongelijkmatig zijn als de riooldoorsnede van dezelfde orde van grootte is als de gatdoorsnede. De werkelijkheid zal veelal tussen twee bovengenoemde uitersten liggen. Om ook kwantitatief meer inzicht in dit probleem te krijgen, zullen de basisvergelijken van het systeem worden afgeleid.
2.2 Aannamen

Voor het opstellen van de basisvergelijkingen zijn enkele vereenvoudigende aannamen gedaan. Alleen de belangrijkste worden hier genoemd.

1. De vloeistof is onsamendrukbaar; het effekt van waterslag tengevolge van een eventueel snel sluiten van de schuif is niet in de berekening opgenomen.

2. De snelheidsverdeling over de doorsnede van de hoofdleiding is gelijkmatig.

4. De traagheidseffekten van de openingen zijn te verwaarlozen ten opzichte van de traagheid van de hoofdleiding.

5. De strooming is turbulent.

6. In eerste instantie wordt uitgegaan van een continu geperforeerd riool. Dit betekent dat de uitstrooming loodrecht op de stroomrichting in het hoofd riool via een spleet met tussenschotjes plaatsvindt.

2.3 Afleiding bewegingsvergelijking geperforeerd riool

De bewegingsvergelijking zal worden afgeleid met behulp van de impulswet. Deze impulswet wordt toegepast op een balansgebied V in één richting. Het balansgebied V heeft de lengte Δx en is verder zo gekozen, dat door de grenzen van V alleen loodrechte in- en uitstroom plaatsvindt.

De impulswet toegepast op V in x-richting luidt: de verandering per tijdseenheid van de impulsvoorraad in V is gelijk aan de som van de uitwendinge krachten in x-richting op V en het verschil van de in x-richting per tijdseenheid in- en uitgestroomde impuls. In formulevorm:
\[
\lim_{\Delta t \to 0} \frac{\dot{P}_V(t+\Delta t) - \dot{P}_V(t)}{\Delta t} = \Sigma F_{op \ V} + \lim_{\Delta t \to 0} \frac{\dot{P}_{in \ V}(t,t+\Delta t) - \dot{P}_{uit \ V}(t,t+\Delta t)}{\Delta t} (1)
\]

In deze formule betekent:

- \(\dot{P}_V(t+\Delta t)\): impulsvoorraad van \(V\) ten tijde \(t + \Delta t\)
- \(\dot{P}_V(t)\): impulsvoorraad van \(V\) ten tijde \(t\)
- \(\dot{P}_{in \ V}(t,t+\Delta t)\): van \(t\) tot \(t + \Delta t\) in \(x\)-richting ingestroome impuls
- \(\dot{P}_{uit \ V}(t,t+\Delta t)\): van \(t\) tot \(t + \Delta t\) in \(x\)-richting uitgestroomde impuls
- \(F_{op \ V}\): uitwendige kracht in \(x\)-richting op \(V\).

Achtereenvolgens zullen nu de termen uit vergelijking (1) voor het geval van een gerfureerde riool worden bepaald.

Als \(Q\) het gemiddeld debiet over \(\Delta x\) en \(A\) de riooldoorsnede is, geldt voor de impulsvoorraad van \(V\) op een tijdstip \(t\):

\[\dot{P}_V(t) = \rho \Delta x \frac{Q}{A} = \rho Q \Delta x\]

Op een tijdstip \(t + \Delta t\) is de impulsvoorraad dan:

\[\dot{P}_V(t+\Delta t) = \rho Q \Delta x + \frac{3(\rho Q \Delta x)}{\delta t} \Delta t\]

Omdat de vloeistof imcompressibel en homogeen is, geldt dat \(\rho\) konstant is.

\[
\lim_{\Delta t \to 0} \frac{\dot{P}_V(t+\Delta t) - \dot{P}_V(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\rho \Delta x \frac{\partial Q}{\partial t} \Delta t}{\Delta t} = \rho \Delta x \frac{\partial Q}{\partial t} (2)
\]

De gedurende \(\Delta t\) in \(x\)-richting in \(V\) ingestroome impuls is gelijk aan:
\[P_{\text{in}} V(t, t+\Delta t) = \left(Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right) \Delta t \cdot \rho \cdot A \cdot \left(Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right) = \left(Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right)^2 \frac{\rho \Delta t}{A} \]

Evenzo valt af te leiden dat:

\[P_{\text{uit}} V(t, t+\Delta t) = \left(Q + \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right)^2 \frac{\rho \Delta t}{A} \]

\[
\lim_{\Delta t \to 0} \frac{P_{\text{in}} V(t, t+\Delta t) - P_{\text{uit}} V(t, t+\Delta t)}{\Delta t} = \frac{\rho}{A} \left(Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right)^2 - \left(Q + \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x \right)^2 \]

\[
\lim_{\Delta t \to 0} \frac{P_{\text{in}} V(t, t+\Delta t) - P_{\text{uit}} V(t, t+\Delta t)}{\Delta t} = -2 \frac{\rho}{A} Q \frac{\partial Q}{\partial x} \Delta x \] (3)

Welke uitwendige krachten werken er op \(V \) in x-richting?

a. drukkracht

b. zwaartekracht

c. wrijvingskracht

d. kracht, uitgeoefend door de wand van de openingen.

a. Voor het bepalen van de drukkracht wordt weer een gedeelte van de leiding met lengte \(\Delta x \) bekeken:

\[h + \frac{\partial h}{\partial x} \Delta x \]

\[h' + \frac{\partial h'}{\partial x} \Delta x \]
In bovenstaande figuur is \(h \) het piezometrisch niveau binnen de leiding ten opzichte van een horizontaal vergelijksvlak en \(h' \) de hoogte van de onderkant van de leiding ten opzichte van dat vlak. De netto drukkracht over de leiding is:

\[
-\rho g A \left(h + \frac{\partial h}{\partial x} \Delta x - h' - \frac{\partial h'}{\partial x} \Delta x - h + h' \right) = -\rho g A \frac{\partial (h-h')}{\partial x} \Delta x
\]

b. Het gewicht van het moootje water in de leiding met lengte \(\Delta x \) is \(\rho g A \Delta x \).

De ontbonden kracht in x-richting is \(-\rho g A \Delta x \frac{\partial h'}{\partial x} \).

Eigenlijk doet deze kracht er niet zoveel toe omdat bij optellen van a. en b. blijkt dat de termen met \(\frac{\partial h'}{\partial x} \) tegen elkaar wegvallen.

De vergelijking geldt dus voor iedere buiselling!

c. Om de wrijvingskracht te bepalen, wordt uitgegaan van de schuifspanning langs de wand in het geval van turbulente stroming.

\[
\tau = \rho g \frac{Q^2}{C^2 A R}
\]

\(C \) is de (wrijvings)koëfficiënt van Chezy.

De totale wrijvingskracht over \(\Delta x \) wordt dan:

\[
-\rho g A \Delta x \frac{Q^2}{C^2 A R}
\]

\(R \) is de hydraulische straal van de leiding.

Aangezien \(C \) niet dimensieloos is, wordt veelal de dimensieloze koëfficiënt \(\lambda \) gebruikt.

\[
\lambda = \frac{8g}{C^2}
\]

Het is bekend dat \(\lambda \) varieert bij een niet-permanente beweging. Deze variatie van \(\lambda \) wordt verwaarloosd.

De wrijvingskracht wordt nu:

\[
-\rho g A \Delta x \frac{\lambda}{8g A R} Q^2
\]
d. Bij een nadere beschouwing van de situatie rond een uitstroomopening, valt op dat de uitstroomrichting van het uit het riool stromend water nooit loodrecht op de richting van de hoofdstroming staat.

Aangezien de grens van het gebied V waarop de impulswet wordt toegepast, zo is gekozen dat door de grens alleen loodrechte in- en uitstroming plaatsvindt, zal de uitstromende vloeistof een kracht op de wand uitoefenen. Dit houdt in dat er een uitwendige kracht door de wand moet worden geleverd.

Deze kracht is gelijk aan de per tijdseenheid in x-richting uit de hoofdleiding uitstromende impuls. Aangezien deze kracht vooralsnog onbekend is, wordt deze kracht per lengte-eenheid gelijk aan K gesteld. De totale kracht over Δx is dan −K Δx.

Het sommeren van alle uitwendige krachten levert op:

$$\sum \frac{F_{\text{op}}}{V} = -\rho g A \frac{3(h-h')}{\partial x} \Delta x - \rho g A \frac{\partial h'}{\partial x} - \rho g A \Delta x \frac{\lambda}{8g A^2 R} Q^2 - K \Delta x$$

$$\sum \frac{F_{\text{op}}}{V} = -\rho g A \frac{\partial h}{\partial x} \Delta x - \rho g A \Delta x \frac{\lambda}{8g A^2 R} Q^2 - K \Delta x$$

(4)

De impulswet levert uiteindelijk op:

$$\rho \Delta x \frac{\partial Q}{\partial t} = -\rho g A \frac{\partial h}{\partial x} \Delta x - \rho g A \Delta x \frac{\lambda}{8g A^2 R} Q^2 - K \Delta x - \frac{2\rho}{A} \frac{\partial Q}{\partial x} \Delta x$$

$$\frac{\partial h}{\partial t} + \frac{1}{g A} \frac{\partial Q}{\partial t} + \frac{2Q}{g A^2} \frac{\partial Q}{\partial x} + \frac{\lambda}{8g A^2 R} Q^2 + \frac{K}{\rho g A} = 0$$

(5)

Opgelet dient te worden dat in de bewegingsvergelijking niet de helling van het riool voorkomt. De vergelijking geldt dus ongeacht de helling van het geperforeerde riool.
2.4 Bepaling regainkoëfficiënt

2.4.1 Algemeen

De grote onbekende in de bewegingsvergelijking is K. Om meer inzicht te verkrijgen in de grootte van $\frac{K}{\rho g A}$ ten opzichte van de andere termen in de vergelijking, wordt een wrijvingsloze, stationaire stroming bekeken. De bewegingsvergelijking wordt nu gereduceerd tot:

$$\frac{dh}{dx} + \frac{K}{\rho g A} + \frac{1}{g A^2} \frac{dQ^2}{dx} = 0$$

Integreren over Δx geeft:

$$\Delta h = h_2 - h_1 = \frac{Q_1^2 - Q_2^2}{g A^2} - \frac{K \Delta x}{\rho g A}$$

Tengevolge van de uitstrooming neemt de drukhoogte in stroomrichting toe. Vanwege de aanwezigheid van K is de stijging kleiner dan $\frac{Q_1^2 - Q_2^2}{g A^2}$.

De stijging Δh kan worden uitgedrukt als een fraktie van de stijging zonder aanwezigheid van K.

$$\Delta h = \frac{Q_1^2 - Q_2^2}{g A^2} - \frac{K \Delta x}{\rho g A} = m \frac{Q_1^2 - Q_2^2}{g A^2}$$

De dimensieloze koëfficiënt m wordt in de literatuur regainkoëfficiënt genoemd.

De vraag is nu welke waarde(n) m heeft. Indien er tengevolge van uitstrooming geen energieverlies in de doorgaande stroming optreedt (bij wrijvingsloze, stationaire stroming), geldt:
Voor het geval er geen energieverlies als gevolg van aftakkende stroom optreedt, is \(m \) gelijk aan 0,5.

Over het algemeen zal er sprake zijn van een energieverlies \(\Delta z \) in de doorgaande stroming.

\[
\Delta h = h_2 - h_1 = m \frac{Q_1^2 - Q_2^2}{2gA^2} = \frac{Q_1^2 - Q_2^2}{2gA^2} + m = 0,5
\]

Nu geldt er:

\[
\frac{Q_1^2}{2gA^2} = \Delta z + \frac{Q_2^2}{2gA^2} + m \frac{Q_1^2 - Q_2^2}{gA^2}
\]

\[
m \frac{Q_1^2 - Q_2^2}{gA^2} = \frac{Q_1^2 - Q_2^2}{2gA^2} - \Delta z + m < 0,5
\]

Uit bovenstaande vergelijking volgt dat \(m \) te berekenen is, indien \(\Delta z \) bekend is. Het probleem om \(K \) te bepalen is hiermede teruggebracht tot het bepalen van energieverlies in de hoofdleiding tengevolge van uitstrooming.
Voor de opzet van het rekenprogramma moet een keuze worden gemaakt voor de verliezen in de doorgaande leiding tengevolge van uitstroming. Hoewel deze verliezen van geval tot geval kunnen variëren en dan bijvoorbeeld in een model kunnen worden bepaald, wordt in het volgende een zo algemeen mogelijke keuze gemaakt om de berekening te kunnen doorzetten.

De invloed van niet-permanente verschijnselen, het doel van dit onderzoek, kan bestudeerd worden, ook als de gemaakte keuze van de verliezen niet geheel juist is.

2.4.2 Literatuuronderzoek

Over het met splitsing van de stroom gepaard gaande energieverlies in de hoofdleiding bestaat betrekkelijk weinig literatuur. Uit deze literatuur (zie [9]) blijkt dat het energieverlies voornamelijk afhangt van:
- het kotiënt van aftakkend en doorgaand debiet,
- de verhouding gatroorsnede-leidingdoorsnede,
- de vorm van de opening (scherpkantig, afgerond).

De literatuurgegevens vertonen een grote verscheidenheid. Sommige betrekken bijvoorbeeld de verhouding gatroorsnede-leidingdoorsnede in de beschouwing, anderen de vorm van de opening, weer anderen geven het energieverlies als functie van het kotiënt van de snelheden in aftakkende en doorgaande leiding. Bijna alle gegevens hebben betrekking op energieverlies bij een aftakkende leiding, niet op uitstroming door een opening. In hoeverre dit van invloed is op de meetresultaten, valt moeilijk te zeggen.

Om enige uniformiteit te verkrijgen, zijn alle gegevens omgewerkt zodat m een functie is van het kotiënt van aftakkend en doorgaand debiet. Acivos, Babcock en Pigford [1] geven proefondervindelijk bepaalde waarden van m als functie van \((v_1 - v_2)/v_1\) voor drie verschillende waarden van \(a/A\).

\[
\begin{array}{|c|c|c|c|}
\hline
1 - \frac{Q_2}{Q_1} & m & a/A = 1 & a/A = 0.5 & a/A = 0.25 \\
\hline
0.7 & 0.46 & 0.42 & 0.40 \\
0.6 & 0.50 & 0.44 & 0.42 \\
0.5 & 0.52 & 0.48 & 0.46 \\
0.4 & 0.55 & 0.50 & 0.48 \\
0.3 & 0.60 & 0.52 & 0.50 \\
0.2 & 0.64 & 0.56 & 0.54 \\
\hline
\end{array}
\]

Voor \(\frac{v_2}{v_1} \leq 1\) geldt:

\[
\zeta_{12} = \frac{\Delta z}{2g} = 0.4 \left(1 - \frac{v_2}{v_1}\right)^2
\]

\(\zeta_{12}\) is de verlieskoëfficiënt, betrokken op de snelheidshoogte van de hoofdleiding.

\[
\Delta z = \frac{v_1^2}{2g} \cdot 0.4 \left(1 - \frac{v_2}{v_1}\right)^2 = \frac{Q_1^2}{2gA^2} \cdot 0.4 \left(1 - \frac{Q_2}{Q_1}\right)^2
\]

Er geldt (8):

\[
m \frac{Q_1^2 - Q_2^2}{gA^2} = \frac{Q_1^2 - Q_2^2}{2gA^2} - \Delta z
\]

\[
+ m \frac{Q_1^2 - Q_2^2}{gA^2} = \frac{Q_1^2 - Q_2^2}{2gA^2} - 0.2 \frac{Q_1^2}{gA^2} \left(1 - \frac{Q_2}{Q_1}\right)^2
\]
Hieruit volgt voor m:

\[m = \frac{0.3 \left(\frac{Q_1}{Q_2} \right)^2 + 0.4 \frac{Q_1}{Q_2} - 0.7}{\left(\frac{Q_1}{Q_2} \right)^2 - 1} \]

<table>
<thead>
<tr>
<th>(\frac{Q_1}{Q_2})</th>
<th>(1 - \frac{Q_2}{Q_1})</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>0,09</td>
<td>0,49</td>
</tr>
<tr>
<td>1,2</td>
<td>0,17</td>
<td>0,48</td>
</tr>
<tr>
<td>1,3</td>
<td>0,23</td>
<td>0,47</td>
</tr>
<tr>
<td>1,4</td>
<td>0,29</td>
<td>0,47</td>
</tr>
<tr>
<td>1,5</td>
<td>0,33</td>
<td>0,46</td>
</tr>
<tr>
<td>1,6</td>
<td>0,38</td>
<td>0,45</td>
</tr>
<tr>
<td>1,7</td>
<td>0,41</td>
<td>0,45</td>
</tr>
<tr>
<td>1,8</td>
<td>0,44</td>
<td>0,44</td>
</tr>
<tr>
<td>1,9</td>
<td>0,47</td>
<td>0,44</td>
</tr>
<tr>
<td>2,0</td>
<td>0,50</td>
<td>0,43</td>
</tr>
<tr>
<td>3,0</td>
<td>0,67</td>
<td>0,40</td>
</tr>
<tr>
<td>4,0</td>
<td>0,75</td>
<td>0,38</td>
</tr>
</tbody>
</table>

\[\xi_c = \frac{H_s - H_c}{Q_1^2} \frac{2gA^2}{2gA^2} \]

waarin \(H_c \) de energiehoogte in het benedenstroomse gedeelte en \(H_s \) de energiehoogte in het bovenstroomse gedeelte van de doorgaande leiding is. Het is opmerkelijk dat ondanks de verschillen in afmetingen en afrondingen van de T-stukken de verschillen in \(\xi \)-waarden nihil zijn.

\[\Delta z = \xi_c \frac{Q_1^2}{2gA^2} \]

Bovendien geldt (8):
Onder leiding van Thoma zijn door het Hydraulisch Instituut der Technischen Hochschule München proeven gedaan om energieverlieskoefficiënten te bepalen.

\[
\begin{align*}
\frac{Q_1^2 - Q_2^2}{gA^2} &= \frac{Q_1^2 - Q_2^2}{2gA^2} - \Delta z \\
\frac{Q_1^2 - Q_2^2}{gA^2} &= \frac{Q_1^2 - Q_2^2}{2gA^2} - \xi_c \frac{Q_1^2}{2gA^2} \\
(1-\xi_c) \left(\frac{Q_1}{Q_2}\right)^2 &= 1 \\
m &= \frac{2 \left(\frac{Q_1}{Q_2}\right)^2 - 2}{Q_1/Q_2}
\end{align*}
\]

<table>
<thead>
<tr>
<th>(Q_1/Q_2)</th>
<th>(1 - Q_2/Q_1)</th>
<th>(\xi_c)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>0,1</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1,7</td>
<td>0,4</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>1,8</td>
<td>0,45</td>
<td>0,03</td>
<td>0,48</td>
</tr>
<tr>
<td>1,9</td>
<td>0,47</td>
<td>0,05</td>
<td>0,47</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,08</td>
<td>0,45</td>
</tr>
<tr>
<td>2,5</td>
<td>0,6</td>
<td>0,12</td>
<td>0,43</td>
</tr>
<tr>
<td>3,3</td>
<td>0,7</td>
<td>0,16</td>
<td>0,41</td>
</tr>
<tr>
<td>5</td>
<td>0,8</td>
<td>0,2</td>
<td>0,40</td>
</tr>
<tr>
<td>10</td>
<td>0,9</td>
<td>0,3</td>
<td>0,35</td>
</tr>
</tbody>
</table>
Het energieverlies $\Delta z = \xi_d \frac{Q_1^2}{2gA^2}$.

Voor $D_a/D_1 = 0,35$ varieerden de waarden van ξ_d zo sterk tussen $-0,2$ en $+0,4$ dat er geen bevredigende kromme van samen te stellen is. Bij beschouwing van de resultaten blijkt dat voor $Q_a/Q_1 < 0,5$ de waarde van ξ_d negatief is. Dit houdt in dat er sprake zou zijn van energietoevoer. De koëfficiënt m blijkt bij berekening waarden aan te nemen van 0,9!

Aangezien het officiële rapport niet beschikbaar is en een mogelijke verklaring dus niet voorhanden is, worden deze resultaten verder niet in de beschouwing betrokken.

2.4.3 Opmerkingen en konclusies

Wanneer wij de (weinige) resultaten overzien, kan het volgende worden opgemerkt:

1. Bij die onderzoeken waar proefnemingen gedaan zijn bij verschillende waarden van a/A, valt op dat de invloed van a/A op m gering is. De tendens is dat een grotere a/A een grotere m ten gevolge heeft. In de formule van Iđel'cik, die ongetwijfeld een gemiddelde waarde over veel waarnemingen geeft, wordt de verhouding a/A dan ook niet teruggevonden.

2. Voor kleine waarden van $1 - \frac{Q_2}{Q_1}$, wat inhoudt dat er een relatief kleine uitstroming is, blijkt m soms groter te worden dan 0,5. Dit houdt in dat er sprake zou zijn van een energietoevoer naar de hoofdleiding. Een mogelijke verklaring hiervoor is de volgende:

 In tegenstelling tot de drukhoogte kan de energiehoogte niet worden gemeten. Bij proeven wordt de energiehoogte berekend volgens $E = h + \frac{\bar{v}^2}{2g}$.

 Om de snelheidshoogte te berekenen wordt dus uitgegaan van de gemiddelde snelheid over de leidingdoorsnede.

Het snelheidsprofiel wijzigt indien er uitstroming plaatsvindt.

\[\bar{v}_2 > \bar{v}_1 \]
\[E_1 < E_2 \]
Als de vertraging geleidelijk is, zodat er geen energieverlies optreedt, geldt dat $E_1 = E_2$.

3. Wanneer de uit metingen berekende m-waarden worden uitgezet tegen $1 - \frac{Q_2}{Q_1}$ (zie figuur 1) blijken de resultaten aardig overeen te komen, zeker gezien de verschillende omstandigheden, waaronder de proeven zijn gedaan. Alleen de m-waarden van Acirivos voor $a/A = 1$ wijken enigszins af.

Met behulp van de lineaire regressie is de lijn bepaald die het best aansluit bij de puntenwolk:

$$m = 0,57 - 0,21 \left(1 - \frac{Q_2}{Q_1} \right)$$

(9)

De korrelatiekoëfficiënt is 0,74. Hoewel dit erg redelijk is, moet aan de getallen 0,57 en 0,21 niet een te grote nauwkeurigheid worden toegekend. Indien nog veel meer metingen aan energieverliezen beschikbaar zouden zijn, zouden deze waarden wellicht anders uitvallen.

4. Bailey [2] geeft voor de regainkoëfficiënt m de volgende empirische formule:

$$m = \alpha + \phi \log \left(\frac{Q_1}{Q_1 - Q_2} \right)$$

$\alpha = 0,39$

$$\phi = 0,142 + 0,049 \log \left(\frac{a}{A} \right)$$

Ook in deze formule is de invloed van a/A op m zeer gering. Indien voor a de gemiddelde waarde $\phi = 0,13$ wordt aangehouden, geeft dit:

$$m = 0,39 - 0,13 \log \left(1 - \frac{Q_2}{Q_1} \right)$$

Hoewel deze formule slechts geldt voor openingen met een verwaarloosbare lengte loodrecht op de hoofdstroom, is de maximale afwijking ten opzichte van de gevonden lijn slechts 0,05.

Als bewegingsvergelijking was afgeleid (5):

$$\frac{\partial h}{\partial x} + \frac{1}{gA} \frac{\partial Q}{\partial t} + \frac{1}{gA} \frac{\partial Q^2}{\partial x} + \frac{\lambda}{8gA^2R} Q^2 + \frac{K}{\rho gA} = 0$$
De termen \(\frac{1}{gA^2} \frac{\partial Q}{\partial x} \) en \(\frac{K}{\rho gA} \) worden samengevoegd tot de term \(\frac{m}{gA^2} \frac{\partial Q}{\partial x} \).

Voor \(m \) geldt dan:

\[
m = 0,57 - 0,21 \left(1 - \frac{Q_2}{Q_1}\right)
\]

\[
m = 0,36 - 0,21 \left(\frac{Q_2}{Q_1}\right)
\]

De bewegingsvergelijking die de stroming in een geperforeerd riool beschrijft, luidt dus:

\[
\frac{\partial h}{\partial x} + \frac{1}{gA} \frac{\partial Q}{\partial t} + \frac{m}{gA^2} \frac{\partial Q^2}{\partial x} + \frac{\lambda}{8gA^2R} Q^2 = 0
\]
(10)

2.5 Afleiding kontinuïteitsvergelijking geperforeerd riool

Wederom wordt het balansgebied \(V \) beschouwd:

\[
Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x = q \Delta x = Q + \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x
\]

Omdat \(\Delta x \) klein is, is de uitstroming over \(\Delta x \) gelijkmatig: \(q \) is de zijdelingse afvoer per eenheid van lengte. De totale uitstroming over \(\Delta x \) is dan \(q \Delta x \). Op grond van de kontinuïteit geldt dan:

\[
Q - \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x = q \Delta x = Q + \frac{1}{2} \frac{\partial Q}{\partial x} \Delta x
\]

\[
q = - \frac{\partial Q}{\partial x}
\]
(11)

Tevens geldt voor \(q \):

\[
q = af \sqrt{2g \Delta E}
\]
(12)
waarin: \(\alpha \) = afvoerkoëfficiënt
\(f \) = zijdelingse doorstroomopening per eenheid van lengte
\(\Delta E \) = verschil in energiehoogte binnen en buiten de leiding.

Het energieniveau buiten de leiding is gelijk aan de kolkwaterstand \(z \).
Binnen de leiding is het energieniveau drukhoogte plus snelheidshoogte:

\[
h + \frac{Q^2}{2gA^2}
\]

\[
\Delta E = h + \frac{Q^2}{2gA^2} - z \quad \Rightarrow \quad q = \alpha f \sqrt{2g \left(h + \frac{Q^2}{2gA^2} - z \right)}
\]

\[
q = -\frac{\partial Q}{\partial x} \quad (11)
\]

De continuïteitsvergelijking voor een geperforeerd riool wordt:

\[
\frac{\partial Q}{\partial x} = -\alpha f \sqrt{2g \left(h + \frac{Q^2}{2gA^2} - z \right)} \quad (13)
\]

2.6 Bepaling afvoerkoëfficiënt

2.6.1 Algemeen

De enige onbekende in de gevonden continuïteitsvergelijking is \(\alpha \). Het is belangrijk \(\alpha \) goed te kennen.

In de praktijk is namelijk gebleken dat bij permanente stroming in het geval van stroming van binnen naar buiten het riool, de energiehoogte in het riool redelijk konstant is. Aangezien de kolkwaterspiegel horizontaal is, heeft dit tot gevolg dat \(\Delta E \) over het riool konstant is.

De afvoerkoëfficiënt \(\alpha \) is dus de maat voor de afvoerverdeling over de lengte van het riool.

Dit is ook de reden geweest om \(\alpha \) zo te definiëren dat het betrokken is op het energiehoogteverschil en niet bijvoorbeeld op het drukhoogteverschil binnen en buiten het riool.

Bij sommige onderzoeken (lit. [5, 6]) is \(\alpha \) bepaald aan de hand van modelproeven. Ook kan \(\alpha \) worden bepaald aan de hand van gemeten energieverliezen bij stroming.
van hoofd- naar zijleiding.

Indien \(\xi \) de verlieskoefficiënt voor de waterstroom van hoofd- naar zijleiding, betrekking hebbend op de snelheidshoogte in de hoofdleiding, is, geldt:

\[
\Delta E = \xi \frac{Q_1^2}{2ga^2} + \frac{Q_3^2}{2ga^2}
\]

De tweede term geldt bij uitstroming uit een rechte pijp in stilstaand water: de uittreeverlieskoefficiënt = 1.

\[
Q_3 = a\alpha\sqrt{2g} \Delta E \Rightarrow \Delta E = \frac{1}{\alpha^2} \frac{Q_3^2}{2ga^2}
\]

\[
\xi \frac{Q_1^2}{2ga^2} + \frac{Q_3^2}{2ga^2} = \frac{1}{\alpha^2} \frac{Q_3^2}{2ga^2} \left(\frac{Q_1}{A} \right) + \frac{1}{\alpha^2} = 1 + \xi \left(\frac{v_1}{v_3} \right)^2
\]

\[
\alpha = \frac{1}{\sqrt{1 + \xi \left(\frac{v_1}{v_3} \right)^2}}
\]

Indien \(\xi \) bekend is, kan \(\alpha \) worden bepaald.

De afvoerkoefficiënt hangt in ieder geval af van \(\frac{v_1}{v_3} \).
2.6.2 Literatuuronderzoek

Uit literatuur \([2, 5, 6, 7]\) blijkt dat o.a. afhangt van \(\frac{v_3}{v_1}\), Re, a/A en \(\frac{dx}{da}\).

\[v_3\] : gaatjesnelheid, betrokken op de minimale doorsnede van het gaatje

\[v_1\] : snelheid van de doorgaande stroom

Re : getal van Reynolds van het gaatje.

\[
Re_g = \frac{v_3 a_{min}}{v}
\]

waarin:
\(a_{min}\) = minimale gaatjesdoorsnede
\(v\) = viscositeit van het water
\(dx\) = afstand tussen twee gaatjes
\(da\) = lengte van een gaatje.

1. Invloed van \(\frac{dx}{da}\).

Volgens Bailey (lit. \([2]\)) verloopt het piezometrisch niveau binnen een leiding rond een opening als volgt (gemeten):

In de berekening zal dit worden vereenvoudigd tot een rechtlijnig verloop aan weerszijden van de opening en ter plaatse van de opening een sprong
ter grootte van Δh.

Het symmetrische snelheidsprofiel in de leiding wordt tengevolge van uitstroming verstoord. Aangenomen wordt dat het snelheidsprofiel weer in evenwicht is indien het drukhoogteverloop lineair is (zie figuur). Indien $\frac{dx}{da}$ klein is, zal het snelheidsprofiel nog niet aangepast zijn bij de volgende opening. De afvoerkoëfficiënt wordt hierdoor beïnvloed. Indien $\frac{dx}{da} > 4$, wat veelal het geval is, wordt α niet door $\frac{dx}{da}$ beïnvloed.

2. Invloed van α/A.

Bij metingen (lit. [6]) is gebleken, dat de invloed van α/A op α, zeker ten opzichte van andere faktoren te verwaarlozen is (zie figuur 2).

3. Invloed van Re.

De invloed van Re op α hangt sterk af van de vorm van de opening. Voor openingen met een scherpe rand lijkt Re bijvoorbeeld van weinig invloed. Over het algemeen is de invloed van Re op α ondergeschikt aan de invloed van $\frac{v_2}{v_1}$ (zie figuur 3).

4. Invloed van $\frac{v_3}{v_1}$.

Uit proefnemingen is gebleken dat α een sterke afhankelijkheid van $\frac{v_3}{v_1}$ vertoont. In literatuur [5] is voor verscheidene vormen van openingen α bepaald als functie van $\frac{v_3}{v_1}$ (zie figuur 4). Al deze grafieken vertonen eenzelfdebeeld. Voor $\frac{v_3}{v_1} > 5$ geldt algemeen dat α konstant is.

De waarde van α voor grote $\frac{v_3}{v_1}$ hangt sterk af van de vorm van de opening: zij kan liggen tussen 0,6 (scherpkantige opening) en 1,7 (divergerende opening).
Als functie van v_2/v_1 en α/A

Reg = 1.15.10^4

$\alpha/A = 0.033$

$\alpha/A = 0.04$

$\alpha/A = 0.067$

$\alpha/A = 0.2$

WATERLOOFRUNDIG LABORATORIUM

M. 865

R. 1229-1102 FIG. 2
α ALS FUNKTIE VAN V_3/V_1, a/A EN Reg
Naast deze experimenteel bepaalde waarden van α als functie van $\frac{v_3}{v_1}$ kan α ook bepaald worden aan de hand van gemeten energieverliezen.

Eerder is in 2.6.1 afgeleid:

$$\alpha = \frac{1}{\sqrt{1 + \xi \left(\frac{v_1}{v_3}\right)^2}} \quad (14)$$

Idel'cik [4] geeft voor ξ (scherpkantige opening):

$$\xi = A' \left[1 + \left(\frac{v_3}{v_1}\right)^2 \right]$$

$A' = 1$, $\frac{v_3}{v_1} \leq 0,8$

$A' = 0,9$, $\frac{v_3}{v_1} > 0,8$

$$\Rightarrow \alpha = \frac{1}{\sqrt{1 + A' \left[1 + \left(\frac{v_1}{v_3}\right)^2 \right]}}$$
Indien α wordt uitgezet tegen \(\frac{v_3}{v_1} \) (zie figuur 5), is de vorm van de figuur dezelfde als die welke eerder gevonden werd: voor \(\frac{v_3}{v_1} > 5 \) is α konstant (α = 0,72).

Idel'cik geeft ook waarden van ξ voor openingen met ronde hoeken en voor verschillende waarden van a/A. De resultaten zijn afgebeeld in figuur 6.
Omdat het energieverlies over de openingen nu kleiner is, wordt α groter.
Ook hier blijkt dat de invloed van a/A op α te verwaarlozen is.
Resultaten van andere onderzoekers geven voor α hetzelfde beeld.

2.6.3 Opmerkingen en konklusies

1. De resultaten waarbij α als functie van \(\frac{v_3}{v_1} \) voor een bepaalde opening is gegeven (zie figuur 4), zijn niet geheel te vergelijken met die waarbij α is berekend uit gemeten energieverliezen (figuren 5 en 6).
De ξ-waarden, zoals zij bijvoorbeeld door Idel'cik zijn gevonden, hebben betrekking op het geval van een doorgaande en een aftakende leiding, in tegenstelling tot een leiding waarin zich een opening bevindt.
RELATIE \(\alpha = \frac{v_3}{v_1} \) VOLGENS IDEL'CIK

WATERLOOPKUNDIG LABORATORIUM

R.1229-1105 FIG. 5
Relatie $\kappa = \frac{v_3}{v_1}$ volgens Idle'cik

- $a_A = 0.12$
- $a_A' = 0.34$
- $a_A'' = 1$

$\frac{v_3}{v_1}$,
Aangenomen wordt dat de kontraktiekoëfficiënt in beide gevallen gelijk is aan c.

In 2 is het werkelijke optredende energieverlies gelijk aan \(\xi \frac{Q_1^2}{2gA^2} + \frac{Q_3^2}{2gc^2a^2} \).

Dit wordt benaderd door het energieverlies in 1 dat gelijk is aan

\[
\xi I \left(\frac{Q_1^2}{2gA^2} + \frac{Q_3^2}{2ga^2} \right).
\]

In de koëfficiënt \(\xi I \) zijn opgenomen bochtverliezen en vertragingsverliezen.

\[
\xi = \xi I \frac{Q_1^2}{2gA^2} = \xi I \frac{Q_1^2}{2ga^2} \left(\frac{Q_3}{ca} - \frac{Q_3}{a} \right)^2.
\]

Het werkelijke energieverlies in 2 is dus:

\[
\xi I \frac{Q_1^2}{2gA^2} + \frac{Q_3^2}{2gc^2a^2} = \xi I \frac{Q_1^2}{2gA^2} + \frac{Q_3^2}{2ga^2} \left(\frac{2c}{c} - 1 \right).
\]

Dit energieverlies is groter dan het energieverlies dat in de berekening is aangenomen:

\[
\xi I \frac{Q_1^2}{2gA^2} + \frac{Q_3^2}{2ga^2}.
\]

De berekende waarden van \(c \) zijn, afhankelijk van de kontraktiekoëfficiënt c, te groot, behalve voor het geval dat c = 1.
2. In tegenstelling tot de regainkoëfficiënt m, is het niet mogelijk α als functie van $\frac{v_3}{v_1}$ in formulevorm te geven.

Het verloop van α, en dan wel voornamelijk de waarde van α bij grote $\frac{v_3}{v_1}$, hangt zo sterk van de vorm van de opening af, dat het voor iedere berekening nodig is, α als functie van $\frac{v_3}{v_1}$ te kennen.

Vooral de waarde van α bij grote $\frac{v_3}{v_1}$ is van belang omdat bij een kleine verhouding a/A, wat meestal het geval zal zijn, de snelheden in de openingen zo groot zullen zijn, dat $\frac{v_3}{v_1} > 5$. Wellicht kan met behulp van literatuur-gegevens over bepaalde vormen van openingen een redelijke schatting worden gemaakt van het verloop van α.

2.7 Afleiding bewegingsvergelijking omloopriool

Het omloopriool verbindt het water buiten de schutsluis met het geperforeerde riool. In dit omloopriool bevindt zich een schuif. Bij heffen van deze schuif volgens een bepaald hefprogramma, gaat zich een niet-permanente stroming instellen die ervoor zorgt dat het kolkpeil gelijk wordt aan de buitenwaterstand.

\[
\begin{align*}
H & : \text{buitenwaterstand} \\
z & : \text{kolkwaterstand} \\
Q_o & : \text{debiet in omloopriool} \\
A_o & : \text{doorsnede omloopriool} \\
d & : \text{hefhoogte schuif} \\
D & : \text{kokerhoogte} \\
L & : \text{lengte omloopriool}
\end{align*}
\]
Indien de schuif voor een gedeelte is getrokken \((0 < \frac{d}{D} < 1)\) treedt er als gevolg van de aanwezigheid van de schuif energieverlies op door vertraging.

Het energieverlies over de schuif is:

\[
\Delta H_s = \frac{(v_s - v_o)^2}{2g}
\]

\(\Delta H_s\) hangt af van \(\frac{d}{D}\) en van de vorm van de schuif. Meestal wordt er een energieverlieskoëfficiënt \(\xi_s\) ingevoerd, zodanig dat geldt:

\[
\Delta H_s = \xi_s \frac{v_o^2}{2g}
\]

\[
\frac{(v_s - v_o)^2}{2g} = \xi_s \frac{v_o^2}{2g} \Rightarrow \xi_s = \left(\frac{v_s}{v_o} - 1\right)^2
\]

Aangezien geldt dat \(\frac{v_s}{v_o} = \frac{D}{\mu d}\) is er een relatie tussen \(\xi_s\) en \(\frac{d}{D}\) te bepalen, waarbij de kontraktiekoëfficiënt \(\mu\) naast de verhouding \(\frac{d}{D}\) afhangt van de vorm van de schuif.

Een voorbeeld van \(\xi_s - \frac{d}{D}\) is de kromme van Weisbach (zie figuur 7). Deze kromme is gebaseerd op model- en prototypegegevens van een vertikale schuif met scherpe onderrand in een rechthoekige koker.

Voor kleine schuifopeningen geldt dat \(\frac{v_s}{v_o} \gg 1\). Dan geldt voor \(\xi_s\):

\[
\xi_s \approx \left(\frac{v_s}{v_o}\right)^2 \quad \Rightarrow \quad \xi_s = \frac{D^2}{\frac{\mu d^2}{2}}
\]

\[
\frac{v_s}{v_o} = \frac{D}{\mu d}
\]
LEGENDA:
$$f_{SCHUIF} = \text{VERLIESKOEFFICIËNT VAN DE SCHUIF}$$
$$d = \text{HEFHOOGTE}$$
$$D = \text{KOKERHOOGTE}$$

KROMME VAN WEISBACH (1930)
UIT: HYDRAULIC DESIGN CRITERIA
CHART 534-1

RELATIE SCHUIFVERLIES - HEFHOOGTE
In de kromme van Weisbach is ξ_s als functie van $\frac{d}{D}$ gegeven. Hoe verloopt de waarde van μ?

<table>
<thead>
<tr>
<th>$\frac{d}{D}$</th>
<th>ξ_s</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,4</td>
<td>8,1</td>
<td>0,88</td>
</tr>
<tr>
<td>0,3</td>
<td>17</td>
<td>0,81</td>
</tr>
<tr>
<td>0,2</td>
<td>43</td>
<td>0,76</td>
</tr>
<tr>
<td>0,15</td>
<td>88</td>
<td>0,71</td>
</tr>
<tr>
<td>0,1</td>
<td>200</td>
<td>0,71</td>
</tr>
<tr>
<td>0,05</td>
<td>800</td>
<td>0,71</td>
</tr>
</tbody>
</table>

Zoals ook uit andere metingen bekend is, geldt dat bij erg kleine schuifopening voor een bepaald schuiftype μ konstant is. Voor erg kleine schuifopeningen kan ξ_s dus direct worden bepaald uit

$$\xi_s = \frac{D^2}{\mu^2 d^2}$$

Tussen de doorsneden 1 en 2 van het riool is er een energiehoogteverschil van ΔE_o. De energiehoogte in doorsnede 1 is gelijk aan de buitenwaterstand H. De energiehoogte in doorsnede 2 is

$$h_o + \frac{Q_o^2}{2gA_o^2}$$

Dit energieverlies wordt veroorzaakt door intreeverliezen, sponningverliezen, bochtverliezen, schuifverliezen, wrijvingsverliezen en een drukverschil over het riool om de vloeistof te versnellen of vertragen.

$$H - \left(h_o + \frac{Q_o^2}{2gA_o^2} \right) = \xi_o \frac{Q_o^2}{2gA_o^2} + \xi_s \frac{Q_o^2}{2gA_o^2} + \frac{\lambda L}{8gA_o} Q_o^2 + \frac{L}{gA_o} \frac{dQ_o}{dt}$$

Stel

$$\frac{\lambda L}{4R_o} = \xi_{wrijving}$$

$$H - h_o = \frac{Q_o^2}{2gA_o^2} (\xi_o + \xi_s + \xi_{wrijving}) + \frac{L}{gA_o} \frac{dQ_o}{dt}$$

(15)
Het hefprogramma \(\xi_D^d(t) \) is gegeven. Omdat \(\xi_D^d(t) \) bekend is, kan ook \(\xi_D^s(t) \) worden bepaald en ingevoerd in de vergelijking.

Voor \(t = 0 \) geldt: \(\xi_D^s(t) \rightarrow \infty \)

Voor \(t \rightarrow \infty \) geldt: \(\xi_D^s(t) = 0 \)
3 Opzet rekenprogramma

3.1 Notatie

In het vervolg van dit verslag zal de volgende notatie worden aangehouden.

\[h_{Ri-1} \quad h_{Li} \quad h_{Ri} \quad h_{Li+1} \quad h_{Ri+1} \quad h_{Li+2} \]

\[\frac{dx}{Q_i} \quad \frac{dx}{Q_{i+1}} \]

- \(i \): taknummer \(i = 0, 1, 2, \ldots, n \)
- \(Q_i \): debiet in tak \(i \)
- \(h_{Li} \): stijghoogte aan het begin van tak \(i \)
- \(h_{Ri} \): stijghoogte aan het einde van tak \(i \)
- \(dx \): afstand tussen twee openingen.

3.2 Omvormen van de basisvergelijkingen

3.2.1 Algemeen

In hoofdstuk 2 is het volgende stelsel partiële differentiaalvergelijkingen dat de stroming in een geperforeerd riool beschrijft, afgeleid:

\[
\begin{cases}
\frac{\partial h}{\partial x} + \frac{1}{gA} \frac{\partial Q}{\partial t} + \frac{m}{gA^2} \frac{\partial Q^2}{\partial x} + \frac{\lambda}{8gA^2R} Q^2 = 0 \quad (10) \\
\frac{\partial Q}{\partial x} = -\alpha \sqrt{2g \left(h + \frac{Q^2}{2gA^2} - z \right)} \quad (13)
\end{cases}
\]

Opgemerkt dient te worden dat het bovenstaande stelsel differentiaalvergelijkingen van toepassing is op een continu geperforeerde leiding. Dit houdt in dat \(\frac{\partial Q^2}{\partial x} \) een continue functie is.
In werkelijkheid hebben wij te maken met een leiding waarin zich op regelmatige afstanden openingen bevinden.

De leiding wordt verdeeld in sekties met uitstrooming \(\left(\frac{\partial Q}{\partial x} \neq 0 \right) \) en sekties zonder uitstrooming \(\left(\frac{\partial Q}{\partial x} = 0 \right) \) omdat voor elk van beide gedeelten andere vergelijkingen gelden.

3.2.2 Vergelijkingen in sekties zonder uitstrooming

Indien er geen uitstrooming is, geldt dat \(\frac{\partial Q}{\partial x} = 0 \). Q is dus geen functie van x, maar alleen van de tijd t.

\[
\begin{align*}
\frac{\partial h}{\partial x} + \frac{1}{gA} \frac{\partial Q}{\partial t} + \frac{\lambda}{8gA^2R} Q^2 &= 0 \\
\frac{\partial Q}{\partial x} &= 0
\end{align*}
\]

\[
\frac{dQ}{dt} + gA \frac{\partial h}{\partial x} + \frac{\lambda}{8AR} Q^2 = 0 \tag{16}
\]

\(\frac{\partial h}{\partial x} \) kan worden benaderd door \(\frac{h_R - h_L}{dx} \) omdat \(\frac{\partial h}{\partial x} \) in een bepaalde sektie op een bepaald tijdstip konstant is. Dit houdt in dat de drukhoogte lineair verloopt.

3.2.3 Vergelijkingen in sekties met uitstrooming

Verondersteld wordt dat in een sektie met uitstrooming de traagheid en de weerstand verwaarloosbaar zijn, omdat de lengte van dit leidinggedeelte verwaarloosbaar is ten opzichte van de lengte van de tussen de openingen inliggende leidinggedeelte. Dientengevolge is ook de invloed van weerstands- en traagheidsterm, die beiden evenredig zijn met de afstand waarover zij
werken, verwaarloosbaar.

\[h_{Ri-1} \] \hspace{1cm} \[h_{Li} \]

\[\rightarrow Q_{i-1} \] \hspace{1cm} \[\rightarrow Q_i \]

Het stelsel wordt nu:

\[\frac{\partial h}{\partial x} + \frac{m}{gA^2} \frac{\partial Q^2}{\partial x} = 0 \]

\[\frac{\partial Q}{\partial x} = \alpha \sqrt{2g \left(h + \frac{Q^2}{2gA^2} - z \right)} \]

Beide vergelijkingen zijn direct naar x te integreren, hetwelk resulteert in:

\[h_{Li} - h_{Ri-1} = \frac{m}{gA^2} \left(Q_{i-1}^2 - Q_i^2 \right) \quad \text{(17)} \]

\[Q_{i-1} - Q_i = \alpha \sqrt{2g \left(h_{Ri-1} + \frac{Q_{i-1}^2}{2gA^2} - z \right)} \quad \text{(18)} \]

m en \(\alpha \) zijn functies van \(Q_i/Q_{i-1} \).

3.3 Start van het rekenproces

3.3.1 Probleemstelling

Hoe gaat de stroming in het riool direkt na het openen van de schuif verlopen? Pariset [8] heeft onder vereenvoudigende aannamen (o.a.: wrijvingsverliezen verwaarloosbaar, afvoercoëfficiënt van gaatjes is 1) berekend hoe de stroming in een geperforeerd riool gaat verlopen bij een plotselinge drukverhoging aan het begin van het riool. Het eerste gaatje levert bijna direct het volledige debiet. Het tweede gaatje gaat debiet leveren als er door de uitstoming in het eerste gaatje een druk wordt opgebouwd, die de waterkolom tussen eerste en tweede gaatje in beweging zet. Als gevolg van de traagheid verloopt het
debiet door het tweede gaatje volgens een tgh-kromme.

In de beginfase van het proces gaan dus alle gaatjes na elkaar debiet leveren. Wanneer de schuif gesloten is, geldt dat ξ_S oneindig groot is. Omdat het niet mogelijk is met deze waarde te gaan rekenen, zou voor ξ_S een grote waarde gekozen kunnen worden.

Om te kunnen starten met rekenen is het echter toch nodig (zie vgl. (28)) dat niet alle waarden van Q en h in de begintoestand gelijk aan nul zijn.

Daarom wordt aangenomen dat de schuif voor een erg klein gedeelte is geopend (bijv. $\frac{d}{D} = 0,01$) en er een permanente stromingstoestand heerst.

Als voor deze begintoestand alle debieten en stijghoogten bekend zijn, kan het rekenproces worden gestart.

3.3.2 Bepaling begintoestand

Uitgaande van een bepaalde schuifopening in de permanente begintoestand valt de bijbehorende ξ_S te bepalen. Aangezien de drukhoogte aan het einde van het omloopriool onbekend is, kan Q_o niet worden berekend, maar moet worden geschat.

Uitgaande van de geschatte Q_o kunnen alle debieten en stijghoogten in de leiding worden bepaald. Indien de som van de door de gaatjes uitstromende debieten niet gelijk is aan Q_o, wat over het algemeen het geval zal zijn, moet een betere schatting van Q_o worden gemaakt en de leiding opnieuw worden doorgerekend.
Iteratief kan op deze manier de begintoestand behorende bij een bepaalde schuifopening worden bepaald. Aangezien deze methode nogal omslachtig is, is het handiger om de begintoestand te bepalen, uitgaande van een aangenomen klein debiet door de laatste opening van het riool. Stel dit debiet Q_n.

Dan geldt:

$$Q_n = \alpha a \sqrt{2g \left(h_{Rn} + \frac{Q_n^2}{2gA^2} - z \right)}$$

$$+ h_{Rn} = \frac{Q_n^2}{2gA^2 a^2} - \frac{Q_n^2}{2gA^2} + z \quad (19)$$

Omdat er sprake is van permanentie, geldt:

$$h_{Ln} = h_{Rn} + \frac{\lambda}{8g A^2 R} \cdot dx Q_n^2 \quad (20)$$

Q_n en h_{Ln} zijn bekend. Q_{n-1} en h_{Rn-1} kunnen dan worden berekend met behulp van onderstaande vergelijkingen:

$$h_{Ln} = h_{Rn-1} + \frac{m}{gA^2} \left(Q_{n-1}^2 - Q_n^2 \right) \quad (17)$$

$$Q_{n-1} - Q_n = \alpha a \sqrt{2g \left(h_{Rn-1} + \frac{Q_{n-1}^2}{2gA^2} - z \right)} \quad (18)$$

Eliminatie van h_{Rn-1} levert op:

$$Q_{n-1}^2 \left(\frac{1}{2gA^2 a^2} + \frac{m}{gA^2} - \frac{1}{2gA^2} \right) - Q_{n-1} \left(\frac{Q_n}{gA^2 a^2} \right) +$$

$$+ \frac{Q_n^2}{2gA^2 a^2} - \frac{m}{gA^2} Q_n^2 + z - h_{Ln} = 0$$
Dit is een vierkantsvergelijking in de onbekende Q_{n-1}. Een extra komplikatie is dat α en m afhangen van $\frac{Q_n}{Q_{n-1}}$, dus van de onbekende Q_{n-1}.

Aangezien het hier gaat om kleine waarden van Q_n en Q_{n-1}, zal de fout in Q_{n-1} en de invloed van deze fout op de verdere berekening over het algemeen te verwaarlozen zijn indien aangenomen wordt dat $m = 0.5$ en α de maximale waarde heeft. De vergelijking vereenvoudigt dan tot:

$$Q_{n-1}^2 \left(\frac{1}{2g_0^2 a^2} \right) - Q_{n-1} \left(\frac{Q_n}{g_0^2 a^2} \right) + \frac{Q_n^2}{2g_0^2 a^2} - \frac{m}{g_0^2} Q_n^2 + z - h_{Ln} = 0 \quad (21)$$

Met behulp van de wortelformule kan Q_{n-1} worden berekend. Nu Q_{n-1} bekend is, kan h_{Rn-1} worden bepaald uit:

$$h_{Rn-1} = h_{Ln} - \frac{m}{g_0^2} \left(\frac{Q_n^2}{Q_{n-1}^2} - 1 \right) \quad (22)$$

Op deze wijze wordt de gehele leiding doorgerekend voor de begintoestand tot Q_n en h_{Ro}.

Voor het omloopriool geldt bij permanentie (15):

$$H - h_o = \frac{Q_o^2}{2g_A o^2} (\xi_o + \xi_s + \xi_{wr} + 1)$$

Er is sprake van een kleine schuifopening +

$$\xi_s \gg \xi_o + \xi_{wr} + 1$$

$$H - h_{Ro} = \xi_s \frac{Q_o^2}{2g_A o^2}$$

$$\xi_{so} = \frac{2g_A o^2 (H-h_{Ro})}{Q_o^2} \quad (23)$$

De relatie $\xi_s - \frac{d}{D}$ is bekend, zodat de bijbehorende $\frac{d}{D}$ kan worden bepaald. Deze verhouding moet kleiner zijn dan een van te voren vastgestelde waarde (bijv. 0,01) om een representatieve begintoestand te verkrijgen.

Is de verhouding $\frac{d}{D}$ te groot, dan moet een nieuwe kleinere Q_n gekozen worden en de leiding weer doorgerekend worden.
Dit proces herhaalt zich totdat een geschikte begintoestand is bereikt met $\frac{d}{D} < 0.01$.

Indien ξ_{so} bekend is kan met behulp van de gegeven relaties $\xi_s - \frac{d}{D}$ en $\frac{d}{D} - t$ het begintijdstip t_o worden bepaald.

In feite komt de berekening van de begintoestand dus neer op het verschuiven van de tijdsas in het $\frac{d}{D} - t$ diagram over een afstand t_o.

3.4 Verloop van het rekenproces

Indien de begintoestand bekend is, kan de toestand op latere tijdstippen als volgt worden bepaald. Voor het omloopriool (tak 0) geldt (15):
\[H - h_{Ro} = \frac{Q_o^2}{2gA_0} (\xi_o + \xi_{\text{schuif}} + \xi_{\text{wrijving}} + 1) + \frac{L}{gA_0} \frac{dQ_o}{dt} \]

\[\xi_o + \xi_{\text{schuif}} + \xi_{\text{wrijving}} + 1 = \Sigma \xi \]

\[H - h_{Ro} = \Sigma \xi \cdot \frac{Q_o^2}{2gA_0} + \frac{L}{gA_0} \frac{dQ_o}{dt} \]

\[\frac{dQ_o}{dt} = \frac{gA}{L} (H-h_{Ro}) - \frac{\Sigma \xi}{2AL} Q_o^2 \] (24)

Voor tak i (i = 1, 2, ..., n) geldt (16):

\[\frac{\partial h_i}{\partial x} + \frac{1}{gA} \frac{dQ_i}{dt} + \frac{\lambda}{8gA^2 R_i} Q_i^2 = 0 \]

\[\frac{dQ_i}{dt} = -gA \frac{\partial h_i}{\partial x} - \frac{\lambda}{8AR} Q_i^2 \]

\[\frac{\partial h_i}{\partial x} = \frac{h_{R_i} - h_{L_i}}{dx} \]

\[\frac{dQ_i}{dt} = \frac{gA}{dx} (h_{L_i} - h_{R_i}) - \frac{\lambda}{8AR} Q_i^2 \] (25)

Dit geeft het volgende stelsel differentiaalvergelijkingen:

\[\frac{dQ_o}{dt} = \frac{gA}{L} (H-h_{Ro}) - \frac{\Sigma \xi}{2AL} Q_o^2 \] (24)

\[\frac{dQ_1}{dt} = \frac{gA}{dx} (h_{L_1} - h_{R_1}) - \frac{\lambda}{8AR} Q_1^2 \] (25)

\[\frac{dQ_2}{dt} = \frac{gA}{dx} (h_{L_2} - h_{R_2}) - \frac{\lambda}{8AR} Q_2^2 \]

\[\frac{dQ_3}{dt} = \ldots \]

\[\frac{dQ_n}{dt} = \frac{gA}{dx} (h_{L_n} - h_{R_n}) - \frac{\lambda}{8AR} Q_n^2 \] (25)
Op het tijdstip \(t = t_0 \) zijn \(Q_0, Q_1, Q_2, \ldots, Q_n, h_{Ro}, h_{L1}, h_{R1}, h_{L2}, \ldots, h_{Rn} \) bekend uit de berekening van de beginstand.

Met behulp van een numerieke integratiemethode kunnen \(Q_0(t_0+\Delta t), Q_1(t_0+\Delta t), Q_2(t_0+\Delta t), \ldots, Q_n(t_0+\Delta t) \) worden berekend.

Gekozen is voor de methode van Heun, een zogenaamde predictor-korrektormethode. Uitgegaan wordt van:

\[
\frac{dQ}{dt} = f(Q,t)
\]

waarbij \(Q(t_0) \) bekend is.

De predictor luidt:

\[
Q^*(t_0+\Delta t) = Q(t_0) + \Delta t \cdot \left[\frac{dQ}{dt} \right]_{t=t_0}
\]

\[
Q^*(t_0+\Delta t) = Q(t_0) + \Delta t \cdot f(Q,t_0)
\]

Deze benadering wordt gekorriged met behulp van de korrektor:

\[
Q(t_0+\Delta t) = Q(t_0) + \frac{\Delta t}{2} \cdot \left[f(Q,t_0) + f(Q^*,t_0+\Delta t) \right]
\]

Voor het omlooprooi gelden de vergelijkingen:

\[
Q^*_0(t_0+\Delta t) = Q_0(t_0) + \Delta t \cdot \left[\frac{gA}{L} \left(H-h_{Ro}(t_0) \right) - \frac{\Sigma \xi(t_0)}{2AL} \cdot Q^2_0(t_0) \right]
\]

\[
Q_0(t_0+\Delta t) = Q_0(t_0) + \frac{\Delta t}{2} \cdot \left[\frac{2gA}{L} \left(H-h_{Ro}(t_0) \right) - \frac{\Sigma \xi(t_0)}{2AL} \cdot Q^2_0(t_0) - \frac{\Sigma \xi(t_0+\Delta t)}{2AL} \cdot Q^2_0(t_0+\Delta t) \right]
\]

Voor de andere takken geldt:

\[
Q^*_i(t_0+\Delta t) = Q_i(t_0) + \Delta t \cdot \left[\frac{gA}{dx} \left(h_{Li}(t_0)-h_{Ri}(t_0) \right) - \frac{\lambda}{8AR} \cdot Q^2_i(t_0) \right]
\]
\[
Q_i(t_0 + \Delta t) = Q_i(t_0) + \frac{\Delta t}{2} \left[2\frac{\partial A}{\partial x} \left(h_1(t_0) - h_i(t_0) \right) - \frac{\lambda}{8A} Q_i^2(t_0) - \frac{\lambda}{8AR} Q_i^{*2}(t_0 + \Delta t) \right]
\]

(28)

Met behulp van deze methode kunnen dus \(Q_i(t_0 + \Delta t), Q_1(t_0 + \Delta t), Q_2(t_0 + \Delta t), \ldots, Q_n(t_0 + \Delta t) \) worden berekend. Indien de debieten op \(t_0 + \Delta t \) bekend zijn, kunnen ook de stijghoogten op dat tijdstip worden bepaald.

Allereerst dienen daartoe voor iedere opening de koëfficiënten \(\alpha \) en \(m \) te worden bepaald, aangezien zij een functie zijn van \(\frac{Q_i}{Q_{i-1}} \).

Voor \(m \) geldt (9):

\[
m = 0.36 + 0.21 \frac{Q_i}{Q_{i-1}}
\]

Zoals reeds besproken is, hangt de waarde van \(\alpha \) naast de verhouding \(\frac{Q_i}{Q_{i-1}} \) sterk af van de vorm van de openingen. De waarde van \(\alpha \) als functie van \(\frac{Q_i}{Q_{i-1}} \) wordt in de berekening ingevoerd.

De waarden van \(\alpha \) en \(m \) kunnen voor iedere \(\frac{Q_i}{Q_{i-1}} \), waarbij \(i \) loopt van 1 tot \(n \), op een bepaald tijdstip worden bepaald.
\[Q_{i-1} - Q_i = \alpha a \sqrt{2g \left(h_{Ri-1} + \frac{Q_i^2}{2gA^2} - z \right)} \]

\[h_{Ri-1} = \frac{(Q_{i-1} - Q_i)^2}{2gA^2} - \frac{Q_i^2}{2gA^2} + z \]

De kolkwaterstand \(z \) wordt als volgt benaderd:

\[z(t_0 + \Delta t) = z(t_o) + \frac{\Delta t}{2} \left\{ \frac{Q_o(t_0 + \Delta t)}{B} + \frac{Q_o(t_o)}{B} \right\} \]

(29)

Vervolgens kan \(h_{L_i} \) worden bepaald uit:

\[h_{L_i} = h_{Ri-1} + \frac{m}{gA^2} \left(\frac{Q_{i-1}^2 - Q_i^2}{2} \right) \]

De waarde van \(h_{Rn} \) kan worden bepaald uit:

\[h_{Rn} = \frac{Q_n^2}{2gA^2} - \frac{Q_n^2}{2gA^2} + z \]

(19)

Alle waarden van \(h_R \) en \(h_L \) kunnen zo worden berekend en dienen samen met de waarden van \(Q \) als beginvoorwaarden voor een volgende rekenstap.

3.5 Beëindiging van het rekenproces

De opgestelde vergelijkingen zijn alleen geldig in het geval van stroming vanuit het riool naar de kolk.

De energiehoogte in de leiding is dus altijd groter dan de energiehoogte buiten de leiding: de kolkwaterstand.

Het rekenproces wordt beëindigd indien de kolkwaterstand hoger wordt dan de energiehoogte binnen de leiding.

Voor het geval er gerekend wordt met een konstante kolkwaterstand, wordt het proces afgebroken indien zich een stationaire toestand heeft ingesteld.

3.6 Invoer

Ingevoerd worden de volgende parameters:
n : aantal openingen
A : riooldoorsnede
a : gatdoorsnede
B : kolkoppervlak
dx : afstand tussen openingen
\(\frac{(d/D)_{\text{max}}}{\text{max}} \) : maximale relatieve schuifopeningen in de begintoestand
\(g \) : zwaartekrachtsversnelling
\(\lambda \) : buitenwaterstand
L : lengte omloopriool
\(Q_n \) : debiet door laatste gaatje in begintoestand: startwaarde voor de berekening
R : hydraulische straal van het riool
z : kolkwaterstand in de begintoestand
\(\Delta t_{\text{max}} \) : maximale tijdstap
\(\lambda \) : weerstandscoëfficiënt
\(\xi_0 + \xi_{\text{WR}} + 1 \) : verliescoëfficiënt van het omloopriool

Tenslotte worden nog enkele parameters ingevoerd die betrekking hebben op de uitvoer, zoals bijvoorbeeld het aantal tijdstappen waarna er weer waarden moeten worden uitgevoerd.

In tabelvorm worden ingevoerd:

1. de afvoercoëfficiënt \(\alpha \) als functie van \(\frac{v_3}{v_1} \)

![Diagram](attachment:image.png)

Aangezien in het programma gerekend wordt met debieten wordt \(\frac{v_3}{v_1} \) bepaald volgens:

\[
\frac{v_3}{v_1} = \left(1 - \frac{Q_1}{Q_1 - 1} \right) \cdot \frac{A}{a}
\]
2. de verlieskoëfficiënt van de schuif ξ_s als functie van de relatieve schuifopening $\frac{d}{D}$

3. de relatieve schuifopening $\frac{d}{D}$ als functie van de tijd t

In het computerprogramma is een subprogramma opgenomen dat met behulp van lineaire interpolatie bij een bepaalde waarde van de invoergrotheid de bijbehorende functiewaarde bepaalt.
4 Computerprogramma

4.1 Stroomschema

Aan de hand van de in hoofdstuk 3 besproken opzet van het rekenprogramma is het stroomschema ten behoeve van het computerprogramma opgesteld.

Uitgaande van een gegeven debiet door de laatste opening van het riool wordt in permanentie de gehele leiding doorgerekend zodat de bijbehorende schuifopening kleiner is dan de maximaal toelaatbare schuifopening in de begintoestand. Deze begintoestand dient als beginvoorwaarde voor de met behulp van de methode Heun te berekenen debieten op een hoger tijdstip. Daarna worden alle stijghoogten bepaald. De berekende Q- en h-waarden dienen op hun beurt weer als beginvoorwaarden voor een nieuwe rekenstap.

Het programma wordt beëindigd indien de lopende tijdsparameter een bepaalde waarde bereikt (in het geval van een konstante kolkwaterstand) of wanneer de kolkwaterstand hoger wordt dan de buitenwaterstand (in het geval van een oplopende kolkwaterstand).

Omdat in het programma veel lineair geïnterpoleerd zal moeten worden, is tevens een stroomschema geschreven voor een subprogramma dat lineaire interpolatie uitvoert.

Dit programma berust hierop, dat er een interval voor de invoerparameter V wordt gezocht zodanig dat $V(I) < V < V(I+1)$.

![Diagram]

Daarna kan uit de bekende waarden van $V(I)$, $V(I+1)$, $ALFA(I)$ en $ALFA(I+1)$ de bijbehorende $ALFA$ worden bepaald.

In het stroomschema van het hoofdprogramma is dit weergegeven met LININT(x, y), waarbij x de invoerparameter en y de met behulp van lineaire interpolatie berekende functiewaarde is.
De stroomschema's van hoofd- en subprogramma zijn weergegeven op de bijlagen 1 en 2.
Het met behulp van een streeplijn omlijnde gedeelte is alleen van belang bij een variërende kolkwaterstand. Indien een constante kolkwaterstand wordt aangehouden kan dit gedeelte worden weggelaten.
Voor de in het programma gebruikte symbolen wordt verwezen naar bijlagen 3 en 4.

4.2 Programma

Aan de hand van het opgestelde stroomschema is het computerprogramma geschreven. Het programma is geschreven in de programmeertaal FORTRAN.
De invoerparameters, zoals zij te vinden zijn in paragraaf 3.6 worden ingelezen via getalkaarten. Wat betreft de uitvoer: allereerst worden de ingevoerde parameters uitgeprint (zie bijlage 5).
Van de berekening worden afgedrukt de tijd, het debiet in het omloopriool, de kolkwaterstand en de debieten door de gaatjes. Er is uitvoer om een bepaald aantal tijdstippen en van een bepaald aantal gaatjes. Een voorbeeld van een uitvoer is te vinden op bijlage 6, een listing van het programma op bijlage 7.
5 Testen van het computerprogramma

5.1 Algemeen

Het testen van het computerprogramma bestaat uit twee gedeelten. Allereerst moet een onderzoek worden ingesteld naar de stabiliteit en de nauwkeurigheid van het rekenproces. Van belang hierbij is de invloed van tijdstapgrootte en berekende beginvoorwaarde op het verdere verloop van het rekenproces.

In de tweede plaats is het belangrijk te weten dat de uitkomsten reëel zijn. Aangezien het (nog) niet mogelijk is berekeningen met metingen te vergelijken wordt op een andere manier nagegaan of met het programma de niet-permanente stroming in een geperforeerd riool redelijk goed kan worden gereroduceerd.

5.2 Invoergegevens

Het programma is gedraaid met de volgende invoergegevens:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (aantal openingen)</td>
<td>5</td>
</tr>
<tr>
<td>A (riooldoorsnede)</td>
<td>0,5 m²</td>
</tr>
<tr>
<td>a (gatdoorsnede)</td>
<td>0,1 m²</td>
</tr>
<tr>
<td>B (kolkoppervlakte)</td>
<td>50 m</td>
</tr>
<tr>
<td>(d/D)_{max} (maximale schuifopening in begintoestand)</td>
<td>0,01</td>
</tr>
<tr>
<td>dx (afstand tussen openingen)</td>
<td>3 m</td>
</tr>
<tr>
<td>g (zwaartekrachtsversnelling)</td>
<td>9,81 m²/s</td>
</tr>
<tr>
<td>H (buitenwaterstand)</td>
<td>10 m</td>
</tr>
<tr>
<td>L (lengte omloopriool)</td>
<td>5 m</td>
</tr>
<tr>
<td>Q_n (debiet door laatste opening in begintoestand)</td>
<td>0,1 m³/s</td>
</tr>
<tr>
<td>R (hydraulische straal)</td>
<td>0,2 m</td>
</tr>
<tr>
<td>z (kolkwaterstand)</td>
<td>5 m</td>
</tr>
<tr>
<td>λ (wrijvingscoëfficiënt)</td>
<td>0,015</td>
</tr>
<tr>
<td>ξ_0 + ξ_{wr} + 1 (som verliescoëfficiënt omloopriool)</td>
<td>1,5</td>
</tr>
</tbody>
</table>

5.3 Onderzoek naar stabiliteit en nauwkeurigheid

5.3.1 Tijdstap

Bij het draaien van het programma bleek dat de grootte van de tijdstap nauw
verband houdt met de stabiliteit van het rekenproces. Vooral in de beginfase van het proces, waarin de schuifopening klein is en de verandering van ξ_s per tijdseenheid groot, is de grootte van de tijdstap van belang.

De tijdstap is daarom gekoppeld aan de relatieve schuifopening via de relatie $\Delta t = (d/D)^2$.

De tijdstapgrootte is echter wel aan een maximum gebonden: uit het draaien van het programma met verschillende tijdstappen is gebleken dat het rekenproces stabiel is met een Δt_{max} van 0,01 s.

Om te controleren of de berekening met een kleinere tijdstap wellicht nauwkeuriger zal zijn, is het programma gedraaid met een maximale tijdstap van 0,005 s. De verschillen in uitkomsten bleken echter vergeleken met $\Delta t_{\text{max}} = 0,01$ s te verwaarlozen.

5.3.2 Begintoestand

Het programma wordt gestart uitgaande van een berekende begintoestand. Omdat dit natuurlijk niet de juiste begintoestand is, rijst de vraag naar de invloed van deze foutieve begintoestand op het verdere verloop van het rekenproces.

Om dit na te gaan zijn de uitkomsten vergeleken van de programma's met $(d/D)_{\text{max}} = 0,01$ en $(d/D)_{\text{max}} = 0,005$. De verschillen in uitkomsten bleken nihil te zijn, zodat het rekenen met een maximale relatieve schuifopening van 0,01 in de begintoestand verantwoord is.

5.4 Testcases

5.4.1 Algemeen

Om enige zekerheid te verkrijgen dat met het programma de niet-permanente stroming in een geperforeerd riool redelijk goed kan worden gereproduceerd, zijn nog twee testcases uitgevoerd.

Ondanks het feit dat vergelijking met metingen niet mogelijk is, kan wel door variatie van een bepaalde parameter, waarvan bekend is welke invloed deze variatie op de stroming heeft, een indruk van de betrouwbaarheid van het programma worden verkregen.

5.4.2 Invloed van de hefsnelheid van de schuif

Pariset [8] heeft onder vereenvoudigende aannamen berekend hoe de stroming
in een geperforeerd riool gaat verlopen bij een plotselinge drukverhoging aan het begin van het riool, dus bij het in zeer korte tijd trekken van de schuif. Volgens Pariset levert het eerste gaatje bijna direct het volledige debiet en verloopt het debiet door het tweede gaatje volgens een tgh-kromme. Om te bekijken of dit ook met het rekenprogramma kan worden gereproduceerd, is het programma gedraaid met 3 heftijden: 20,2 en 0,2 seconden. De resultaten (in dit geval de debieten door het 1e, 3e en 5e gaatje) zijn te vinden op de figuren 8, 9 en 10. Uit deze figuren blijkt inderdaad dat, hoe kleiner de heftijd, hoe duidelijker dit verschijnsel zich manifesteert: bij een heftijd van 0,2 s gaan de gaatjes vrijwel na elkaar debiet leveren.

5.4.3 Invloed van A/nMa

Van belang voor de gelijkmatigheid van de uitstroming in permanente toestand is de verhouding riooldoorsnede-totale gatdoorsnede. Indien de riooldoorsnede groter is dan de totale gatdoorsnede zijn de energieverliezen over de openingen veel groter dan de veranderingen in energiehoogte binnen de leiding. De stroomverdeling over de openingen is dan behoorlijk gelijkmatig. Bij verkleining van deze verhouding riooldoorsnede-totale gatdoorsnede zal de verdeling ongelijkmatiger worden.

Om dit effect te bekijken, is het programma gedraaid met verschillende waarden van A/nMa. De resultaten zijn (q(1) en q(5) in permanente toestand):

<table>
<thead>
<tr>
<th>A (m²)</th>
<th>a (m²)</th>
<th>A/nMa</th>
<th>q(1) (m³/s)</th>
<th>q(5) (m³/s)</th>
<th>q(1)/q(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0277</td>
<td>0,4466</td>
<td>0,062</td>
</tr>
<tr>
<td>0,25</td>
<td>0,1</td>
<td>0,5</td>
<td>0,0425</td>
<td>0,5643</td>
<td>0,075</td>
</tr>
<tr>
<td>0,5</td>
<td>0,1</td>
<td>1</td>
<td>0,5207</td>
<td>0,6359</td>
<td>0,819</td>
</tr>
<tr>
<td>1</td>
<td>0,1</td>
<td>2</td>
<td>0,6599</td>
<td>0,6894</td>
<td>0,957</td>
</tr>
<tr>
<td>2,5</td>
<td>0,1</td>
<td>5</td>
<td>0,7095</td>
<td>0,7092</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Inderdaad neemt de gelijkmatigheid van de uitstroming af bij afnemende A/nMa. De resultaten voor het geval A/nMa = 0,2 verdienen nadere aandacht. Het verloop van q(1), q(3) en q(5) is te vinden op figuur 11. De leiding op deze figuur is op schaal afgebeeld. Vanwege de geringe riooldoorsnede ten opzichte van de gatdoorsnede speelt de traagheid in dit geval een belangrijke rol. In eerste instantie neemt het eerste gaatje al het debiet op. Als het tweede en derde gaatje debiet gaan
leveren wordt het debiet door het eerste gaatje kleiner en zal op den duur zelfs kleiner worden dan nul; met andere woorden: het eerste, en ook later het tweede en derde gaatje zullen debiet gaan aanzuigen.

5.4.4 Konclusie

Bovenvermelde resultaten wettigen wel de gedachte dat het computerprogramma redelijk betrouwbare resultaten geeft. Hoe betrouwbaar de resultaten zijn, zal pas kunnen blijken uit vergelijking met metingen in een modelonderzoek.
VERLOOP VAN GAATJESDEBIJETEN $q[1], q[3] EN q[5]$

HEFTIJD SCHUIF: 20 SEK.

WATERLOOPKUNDIG LABORATORIUM

R.1229-1108 FIG. 8
VERLOOP VAN GAATJESDEBIETEN q_1, q_3 EN q_5

HEFTIJD SCHIJF : 2 SEK.

VERKennisKundig LABORATORIUM

R.1229-1109 FIG. 9
IN GAATJESDEBIETEN q[1], q[3] EN q[5]

EFTIJD SCHUIF: 0,2 SEK.

HLOOPKUNDIG LABORATORIUM

R.1229-1110 FIG.10
VERLOOP VAN GAATJESDEBIETEN q[1], q[3] EN q[5]

GATDOORSNEDE = RIOOLDOORSNEDE

WATERLOOPKUNDIG LABORATORIUM

R.1229-1111 FIG. 11
REFERENTIES

1 ACRIVOS, A., BABCOCK, B.D. and PIGFORD, R.L.
Flow distributions in manifolds.

2 BAILEY, B.J.
Fluid flow in perforated pipes.

3 Debietbepaling als functie van de schuifopening bij niet-permanente stroming in een riool.

4 IDEL'CIK, I.E.
Memento des pertes de charge,

5 JONKER, C.
Shipping locks Kainji Dam.
Waterloopkundig laboratorium, Verslag modelonderzoek M 780, juli 1965.

6 JONKER, C.
Zoutbestrijding Kreekraksluizen.

7 JONKER, C. en KOLKMAN, P.A.
Bepaling van de afvoerkapaciteit, debietverdeling en drukhoogteverloop van een geperforeerde leiding bij konstante druk buiten de leiding.

8 PARISET, E. and GAGNON, A.
High lift locks: some hydraulic problems and solutions.
REFERENTIES (vervolg)

9 WATERING, W.P.M. van de.
Energieverliezen bij leidingvertakkingen.

10 WINDSOR, J.S, and VALLEE, H,
Computer model for a lock manifold system.
Proceedings, Journal of the Waterways and Harbors Division, ASCE, Vol. 95,
Bijlage 1
Stroomschema hoofdprogramma

START
READ: INVOER
WRITE: INVOER

\[W = 0 \quad V_B = (I - W) \times \frac{A_G}{G_A} \]
\[A_K = ALFAB \quad 6A \times G \times (QK)^2 \times (AG) \]
\[HR(N) = \frac{Q(N)}{2 \times 6A} - \frac{Q(N)}{2 \times 6A^3} + Z \]
\[U(N) = \frac{Q(N)}{2 \times 6A^3} \]

\[HL(N) = HR(N) + \frac{L_0 \cdot Q(N)}{6A \times G \times HS \times \beta} \]
\[M = 0.5 \quad R = \frac{1}{2 \times 6A} \quad L = \frac{Q(N)}{6A} \]
\[X = 2 \times HL(N) - \frac{M}{2 \times 6A^3} \times Q(N) + \frac{Q(N)}{2 \times 6A} \]
\[F = \frac{L + \sqrt{L^2 - 4 \times R \times X}}{2 \times R} \]
\[Q(N-1) = F \quad U(N-1) = Q(N-1) - Q(N) \]

\[W = \frac{Q(N)}{Q(N-1)} \]
\[M = 0.56 + 0.21 \times W \]

\[HR(N-1) = HL(N) + \frac{M}{6A^3} \times (Q(N) - Q(N-1)) \]

\[N, N-1 \]
\[N = 2 \]
\[N = 2 \]

\[KS = \frac{2 \times G \times H \times (H - HR(U))}{Q(U)} \]
\[LININT(KS, DDB) \]
\[DDI = DDB \]
\[QN, 0.5 + QN \quad N = NOOD \quad Q(N) \]
\[DDI < DDO \]
\[LININT(CDI, T3) \]
\[T0 = T3 \]
w = 0

\[o = (l - w) \times \frac{R}{A} \]

LININT (O8, ALFAB)

\[H = \frac{Q}{2 \times c \times (y4 + y3)} - \frac{c}{2 \times c} \]

\(J < D \)

KS = K

DT < (DDAB)²

DT > DMAX

\[A = A2 + B \]

\[A+ \text{STOP} \]

LININT (A92, T1)

LININT (DA2B, K)

K = KS + 8

J = J + 1
Bijlage 2

Stroomschema subprogramma

\[\text{START} \]
\[J = 1 \]
\[V(J) > V(J+1) \]
\[I = 2 \]
\[VB > V(I) \]
\[\begin{align*}
J_1: & \quad I = N \times J_1, J = J_1 - 1 \\
& \quad V(J) = V(J+1) \\
& \quad J_1 = J + 1 \\
\end{align*} \]
\[JR = NV \]
\[JL = NV - 1 \]
\[ALFA = ALFA(JL) + \frac{VB - V(IL)}{V(JR) - V(IL)} \times \left[ALFA(JR) - ALFA(JL) \right] \]
\[I = 2 \]
\[VB < V(I) \]
\[\begin{align*}
J_1: & \quad I = N \times J_1, J = J_1 - 1 \\
& \quad V(J) = V(J+1) \\
& \quad J_1 = J + 1 \\
\end{align*} \]
\[JR = NV \]
\[JL = NV - 1 \]
\[ALFA = ALFA(JL) + \frac{VB - V(IL)}{V(JR) - V(IL)} \times \left[ALFA(JR) - ALFA(JL) \right] \]
Bijlage 3

Gebruikte variabelen:

A doorsnede hoofdriool
AA2 lopende tijdsparameter
AG gatdoorsnede
AK afvoerkoëfficiënt
ALFAB afvoerkoëfficiënt, bepaald met behulp van lineaire interpolatie uit de V-ALFA tabel
B kolkoppervlakte
D parameter die aangeeft om de hoeveel rekenstappen er uitgevoerd moet worden
DDAB relatieve schuifopening, bepaald met behulp van lineaire interpolatie uit de T-DDA tabel
DDB relatieve schuifopening, bepaald met behulp van lineaire interpolatie uit de KSIS-DD tabel
DDO maximale relatieve schuifopening in begintoestand
DD1 relatieve schuifopening
DT tijdstap
DTMAX maximale tijdstap
DX afstand tussen de openingen
DO lengte omloopriool
E lopende variabele
F parameter die aangeeft om de hoeveelheid gaatjes er uitgevoerd moet worden
FX wortel van vierkantsvergelijking ter bepaling van $Q(N-1)$
G zwaartekrachtsversnelling
GA hulpparameter: $G\times (AK)^2 \times (AC)^2$
H buitenwaterstand
HS hydraulische straal
I lopende variabele
J lopende tijdsparameter
JL parameter in subprogramma LININT
JR parameter in subprogramma LININT
K verlieskoëfficiënt van de schuif
KD parameter die aangeeft om de hoeveelheid rekenstappen er uitgevoerd moet worden
KS verlieskoëfficiënt van de schuif
KSI verlieskoëfficiënt van het omloopriool
KSISB verlieskoëfficiënt van de schuif bepaald met behulp van lineaire interpolatie uit de DD-KSIS tabel
L parameter bij het bepalen van de wortel van een vierkantsvergelijking
LA weerstandskoëfficiënt van het riool
M regainkoëfficiënt
N aantai openings in het geperforeerde riool
NKSIS aantal ingevoerde punten van KSIS-DD tabel
NOUD aantal openings in het geperforeerde riool
NT aantal ingevoerde punten in T-DDA tabel
NV aantal ingevoerde punten in V-ALFA tabel
P predictor bij methode Heun
QN debiet door laatste opening in begintoestand
QO debiet in omloopriool
R parameter bij het bepalen van de wortel van een vierkantsvergelijking
TB tijd bepaald met behulp van lineaire interpolatie uit de DDA-T tabel
TSTOP tijdstip waarop de berekening moet worden gestopt
TO begintijdstip van de berekening
VB invoerparameter bij de bepaling van ALFA
W hulpparameter ter bepaling van ALFA en M
X parameter bij het bepalen van de wortel van een vierkantsvergelijking
ZO kolkwaterstand
Bijlage 4

Gebruikte arrays:

- Q(I) : debiet in tak I
- U(I) : debiet door gat I
- HL(I) : drukhoogte aan het begin van tak I (in stroomrichting gezien)
- HR(I) : drukhoogte aan het einde van tak I (in stroomrichting gezien)
- HX(I) : gradiënt van de drukhoogte in tak I

Voor deze arrays geldt: I = 1,2,...,N.

Het verband tussen α en \(\frac{V_3}{V_1} \) is in het programma ingeroerd middels twee arrays

ALFA(I) en V(I) waarbij I = 1,2,...,NV.

Analoog zijn de relaties d/D - t en \(\xi_s - d/D \) ingevoerd met behulp van de arrays:

- DDA(I) I = 1,2,3,...,NT
- T(I)
- KSIS(I) I = 1,2,3,...,NKSIS
- DD(I)
INVOERPARYMETERS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5000</td>
</tr>
<tr>
<td>AG</td>
<td>0.1000</td>
</tr>
<tr>
<td>B</td>
<td>50.0000</td>
</tr>
<tr>
<td>DDD</td>
<td>0.0100</td>
</tr>
<tr>
<td>DO</td>
<td>5.0000</td>
</tr>
<tr>
<td>DTMAX</td>
<td>0.0010</td>
</tr>
<tr>
<td>DX</td>
<td>3.0000</td>
</tr>
<tr>
<td>TSTOP</td>
<td>5.0000</td>
</tr>
<tr>
<td>G</td>
<td>9.8100</td>
</tr>
<tr>
<td>H</td>
<td>10.0000</td>
</tr>
<tr>
<td>HS</td>
<td>2.0000</td>
</tr>
<tr>
<td>KSI</td>
<td>1.5000</td>
</tr>
<tr>
<td>LA</td>
<td>0.0150</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>ZO</td>
<td>5.0000</td>
</tr>
<tr>
<td>Q(N)</td>
<td>0.0100</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

DO VERLIESKOEFFICIENT SCHUIF:

<table>
<thead>
<tr>
<th>DD</th>
<th>KSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>1983735.00</td>
</tr>
<tr>
<td>0.002</td>
<td>495935.00</td>
</tr>
<tr>
<td>0.003</td>
<td>220415.00</td>
</tr>
<tr>
<td>0.004</td>
<td>123765.00</td>
</tr>
<tr>
<td>0.005</td>
<td>79350.00</td>
</tr>
<tr>
<td>0.006</td>
<td>55105.00</td>
</tr>
<tr>
<td>0.007</td>
<td>40485.00</td>
</tr>
<tr>
<td>0.008</td>
<td>30995.00</td>
</tr>
<tr>
<td>0.009</td>
<td>24490.00</td>
</tr>
<tr>
<td>0.010</td>
<td>19840.00</td>
</tr>
<tr>
<td>0.011</td>
<td>16395.00</td>
</tr>
<tr>
<td>0.012</td>
<td>13775.00</td>
</tr>
<tr>
<td>0.013</td>
<td>11740.00</td>
</tr>
<tr>
<td>0.014</td>
<td>10120.00</td>
</tr>
<tr>
<td>0.015</td>
<td>8815.00</td>
</tr>
<tr>
<td>0.016</td>
<td>7750.00</td>
</tr>
<tr>
<td>0.017</td>
<td>6665.00</td>
</tr>
<tr>
<td>0.018</td>
<td>6120.00</td>
</tr>
<tr>
<td>0.019</td>
<td>5495.00</td>
</tr>
<tr>
<td>0.020</td>
<td>4960.00</td>
</tr>
<tr>
<td>0.021</td>
<td>4500.00</td>
</tr>
<tr>
<td>0.022</td>
<td>4300.00</td>
</tr>
<tr>
<td>0.023</td>
<td>3750.00</td>
</tr>
<tr>
<td>0.024</td>
<td>3445.00</td>
</tr>
<tr>
<td>0.025</td>
<td>3175.00</td>
</tr>
<tr>
<td>0.026</td>
<td>2935.00</td>
</tr>
<tr>
<td>0.027</td>
<td>2720.00</td>
</tr>
<tr>
<td>0.028</td>
<td>2530.00</td>
</tr>
<tr>
<td>0.029</td>
<td>2360.00</td>
</tr>
<tr>
<td>0.030</td>
<td>2200.00</td>
</tr>
<tr>
<td>0.035</td>
<td>1820.00</td>
</tr>
<tr>
<td>0.040</td>
<td>1240.00</td>
</tr>
<tr>
<td>0.045</td>
<td>980.00</td>
</tr>
<tr>
<td>0.050</td>
<td>790.00</td>
</tr>
<tr>
<td>0.055</td>
<td>655.00</td>
</tr>
<tr>
<td>0.060</td>
<td>550.00</td>
</tr>
<tr>
<td>0.065</td>
<td>470.00</td>
</tr>
<tr>
<td>0.070</td>
<td>400.00</td>
</tr>
<tr>
<td>0.080</td>
<td>310.00</td>
</tr>
<tr>
<td>0.090</td>
<td>245.00</td>
</tr>
<tr>
<td>0.100</td>
<td>203.00</td>
</tr>
<tr>
<td>0.110</td>
<td>164.00</td>
</tr>
<tr>
<td>0.120</td>
<td>136.00</td>
</tr>
<tr>
<td>0.130</td>
<td>117.00</td>
</tr>
<tr>
<td>0.140</td>
<td>100.00</td>
</tr>
<tr>
<td>0.150</td>
<td>88.00</td>
</tr>
<tr>
<td>0.200</td>
<td>43.00</td>
</tr>
<tr>
<td>0.300</td>
<td>17.00</td>
</tr>
<tr>
<td>0.400</td>
<td>8.10</td>
</tr>
<tr>
<td>0.500</td>
<td>4.00</td>
</tr>
<tr>
<td>0.600</td>
<td>2.00</td>
</tr>
<tr>
<td>0.700</td>
<td>0.90</td>
</tr>
<tr>
<td>0.800</td>
<td>0.40</td>
</tr>
<tr>
<td>0.900</td>
<td>0.08</td>
</tr>
<tr>
<td>1.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

AFVOERKOEFFICIENT ALFA:

<table>
<thead>
<tr>
<th>V</th>
<th>ALFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.50</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.50</td>
<td>0.00</td>
</tr>
<tr>
<td>3.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

RELATIEVESCHUIFOPENING:

<table>
<thead>
<tr>
<th>DDA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>400.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Bijlage 6

<table>
<thead>
<tr>
<th>TIJDSTIP</th>
<th>G(t)</th>
<th>KOLKWATERSTAND</th>
<th>DEBIETEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0022</td>
<td>0.0264</td>
<td>5.0000</td>
<td>0.0063</td>
</tr>
<tr>
<td>0.0045</td>
<td>0.0344</td>
<td>5.0000</td>
<td>0.0051</td>
</tr>
<tr>
<td>0.0134</td>
<td>0.0726</td>
<td>5.0000</td>
<td>0.0052</td>
</tr>
<tr>
<td>0.0239</td>
<td>0.0736</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0346</td>
<td>0.2040</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0534</td>
<td>0.0261</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0634</td>
<td>0.2672</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0734</td>
<td>0.3272</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0934</td>
<td>0.0039</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1034</td>
<td>0.4035</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1134</td>
<td>0.4400</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1234</td>
<td>0.4755</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1334</td>
<td>0.5103</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1434</td>
<td>0.5436</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1534</td>
<td>0.5768</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1634</td>
<td>0.6090</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1734</td>
<td>0.6405</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1834</td>
<td>0.6714</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.1934</td>
<td>0.7017</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2034</td>
<td>0.7314</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2134</td>
<td>0.7604</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2234</td>
<td>0.7868</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2334</td>
<td>0.8165</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2434</td>
<td>0.8437</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2534</td>
<td>0.8704</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2634</td>
<td>0.8965</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2734</td>
<td>0.9221</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2834</td>
<td>0.9473</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.2934</td>
<td>0.9721</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3034</td>
<td>1.0020</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3134</td>
<td>1.0343</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3234</td>
<td>1.0671</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3334</td>
<td>1.0900</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3434</td>
<td>1.1125</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3534</td>
<td>1.1347</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3634</td>
<td>1.1566</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3734</td>
<td>1.1763</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3834</td>
<td>1.1996</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.3934</td>
<td>1.2206</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4034</td>
<td>1.2414</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4134</td>
<td>1.2619</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4234</td>
<td>1.2823</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4334</td>
<td>1.3002</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4434</td>
<td>1.3217</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4534</td>
<td>1.3410</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4634</td>
<td>1.3603</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4734</td>
<td>1.3769</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4834</td>
<td>1.3975</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.4934</td>
<td>1.4159</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5034</td>
<td>1.4341</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5134</td>
<td>1.4520</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5234</td>
<td>1.4698</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5334</td>
<td>1.4874</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5434</td>
<td>1.5047</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5534</td>
<td>1.5219</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5634</td>
<td>1.5390</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5734</td>
<td>1.5556</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5834</td>
<td>1.5725</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.5934</td>
<td>1.5890</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.6034</td>
<td>1.6054</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.6134</td>
<td>1.6216</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.6234</td>
<td>1.6377</td>
<td>5.0000</td>
<td>0.0050</td>
</tr>
</tbody>
</table>

VI-1
PROGRAM DEBIET (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
DIMENSION Q(30),ALFA(30),V(30),DD(100),T(30),KKSIS(100),DDA(30)
*
INTEGER D,F,E
REAL KKSIS,LAA,KSI,K,M,KSI50,L
READ(5,500)D,F,E,NV,NKKSIS
READ(5,500)A,B,0.000,OMAX,DX,6,TSTOP
READ(5,500)HS,KSI,LA,ZO,Q(N),BO
READ(5,500)Vi(1),I=1,NV
READ(5,500)ALFA(I),I=1,NV
READ(5,500)DO(I),I=1,NKKSIS
READ(5,500)KKSIS(I),I=1,NKKSIS
READ(5,500)T(I),I=1,NT
READ(5,500)DDA(I),I=1,NT

WRITE(6,6000)
WRITE(6,6010)
WRITE(6,6020)A
WRITE(6,6030)AG
WRITE(6,6040)B
WRITE(6,6050)CDO
WRITE(6,6060)DD
WRITE(6,6070)OMAX
WRITE(6,6080)DX
WRITE(6,6090)TSTOP
WRITE(6,7000)G
WRITE(6,7100)H
WRITE(6,7110)HS
WRITE(6,7120)KSI
WRITE(6,7130)LA
WRITE(6,7140)N
WRITE(6,7150)ZD
WRITE(6,7160)Q(N)
WRITE(6,7170)D
WRITE(6,7180)F
WRITE(6,8000)
WRITE(6,8010)
WRITE(6,8020)(Vi(1).ALFA(I),I=1,NV)
WRITE(6,8060)
WRITE(6,8060)
WRITE(6,8070)
WRITE(6,8070)
WRITE(6,8050)DO(I),KKSIS(I),I=1,NKKSIS
WRITE(6,8060)
WRITE(6,8060)
WRITE(6,8050)DDA(I),T(I),I=1,NT

50 FORMAT(B110)
500 FORMAT(2F10.0)
6000 FORMAT(1X,3X,76CHARACTERS-STROMING IN EEN GEPERFORERD RI00L BIJ EEN
INIKT-PERMANENT RI00LEBIET://)
6010 FORMAT(1X,.10X.17CHAINPARAMETERS:)
6020 FORMAT(1X,15X,6H1A = ,F30.4)
6030 FORMAT(1X,15X,6HAG = ,F30.4)
6040 FORMAT(1X,15X,6HBO = ,F30.4)
6050 FORMAT(1X,15X,6HDDO = ,F30.4)
6060 FORMAT(1X,15X,6HDD = ,F30.4)
6070 FORMAT(1X,15X,6HMAX = ,F30.4)
6080 FORMAT(1X,15X,6MTMAX = ,F30.4)
6090 FORMAT(1X,15X,6HTSTOP = ,F30.4)
7000 FORMAT(1H,15X,6HG = .F10.4)
6100 FORMAT(1H,15X,6HH = .F10.4)
6120 FORMAT(1H,15X,6HKS = .F10.4)
6130 FORMAT(1H,15X,6HLR = .F10.4)
6200 FORMAT(1H,15X,6HJ = .15)
6150 FORMAT(1H,15X,6HZ0 = .F10.4)
6160 FORMAT(1H,15X,6H)(N) = .F10.4)
6170 FORMAT(1H,15X,6H0 = .15)
6180 FORMAT(1H,15X,6HF = .15)
8000 FORMAT(1H,10X,23HAFVOERKoeffizient ALFA:)
8010 FORMAT(1H,13X,1HV,20X,4HALFA/)//
8020 FORMAT(1H,16X,22HRELATIVE SCHUFOPTENING)/
8030 FORMAT(1H,13X,24HRELATIVE SCHUFOPTENING)/
8040 FORMAT(1H,13X,2HDD,20X,4HKIS//)
8050 FORMAT(1H,16X,27.2)
8060 FORMAT(1H,13X,26HHERLIESKoeffizient SCHUI:)
8070 FORMAT(1H,13X,3HDAA,20X,1HT//)
8080 FORMAT(1H,16X,23.2)
NOU=D=N
QN=G(N)
1600 W=0,
 80 VB=(1.,-W)*(A/AG)
 CALL LININT(VB,V,ALFA,ALFAB,NV)
 AK=ALFAB
 GA=G+AK*2+AG*2
 HR(N)=G(N)**2/(G(A)**2)+G(N)**2/(2.+GA)+Z0
 U(N)=G(N)
1900 HL(N)=HR(N)**(LA*DX*G(N)**2)/(8.+GA**2+HS)
 M=0.5
 A=1./((2.*GA)
 L=G(N)/GA
 X=Z0+HL(N)-M*G(N)**2/(G(A)**2)+G(N)**2/(2.*GA)
 FX=(-L+SQRT(L**2-(4.*R+X))/)1/(2.*R)
 Q(N-1)=FX
 U(N-1)=G(N-1)-G(N)
 W=G(N)/G(N-1)
 N=0.35+0.21*W
 HR(N-1)+HL(N)*M/(G(A)**2)+(G(N)**2-G(N-1)**2)
 IF(N.EQ.2160 TO 2500
 N=N+1
 GO TO 1900
2500 KS=(2.*G**2*(H-HR(1))/G(1)**2
 CALL LININT(KS,KSIS,00,DOB,KNSIS)
 D01=DOB
 IF(D01.LT.0001)GO TO 2600
 GN=0.5*GN
 M=NOU
 G(N)=QN
 GO TO 1600
2600 CALL LININT(001,DOA,TB,NT)
 TO=10
 WRITE(6,8090)
 WRITE(6,9000)TO
 WRITE(6,9010)G(1)
 WRITE(6,9000)HR(1)
 WRITE(6,9030)KS

I-11
115 WRITE(6,7010)
116 WRITE(6,7020)(1.0(I),U(I),HL(I),HR(I),I=1,NVDU,F)

C
6090 FORMAT(1H1,10X,14HBEGINSITUATION:////)
9000 FORMAT(1H,15X,6HT =,I15.4)
9010 FORMAT(1H,15X,6H(1) =,I15.4)
9020 FORMAT(1H,15X,6HR(I) =,I15.4)
9030 FORMAT(1H,15X,6HKS =,I15.4)
7010 FORMAT(1H,5X,3HTAK,20X,1HG,20X,1HU,20X,2HHL,20X,2HHR////)
7020 FORMAT(1H,17,F23.5,F21.5,F22.5)

KD=0
WRITE(6,9040)

C
J=1
N=NVDU
DT=0.01*2
AN2=TO+DT
CALL LININT(AD2,T.DDA,DDAB,NT).
CALL LININT(DDAB,DO.KS1S.KSISPKSIS)
K=KSISPKS

2650 GO=Q1(1)
 P=Q1(1)+DT*(((G*A/DD)*((H-HR(I))=(((KSI+KS)*G1)**2)/(2.*A*DD)))
 Q1(1)=Q1(1)+(DT/2.)*((2.*G*A/DD)*((H-HR(I))=(((KSI+KS)*G1)**2)/(2.*A*DD)))
 I=2

2700 HX(1)=HL(I)-HR(I)/DX
 P=Q1(1)+DT*(((G*A/HX(I))=(((LA+Q1(I)**2)/(8.*A*HS)))
 Q1(1)=Q1(1)+(DT/2.)*((2.*G*A/HX(I))=(((LA+Q1(I)**2)/(8.*A*HS))+(P**2+Q1(I)**2))
 U(I-1)=Q1(I-1)-Q1(I)
 IF(I.EQ.N)GO TO 2750
 I=I+1
 GO TO 2700

2750 U(I)=Q1(I)
 I=2

150 IF(ZO.GT.H1STOP)
151 W=Q1(1)/Q1(I-1)
152 VB=(1.-W)*A/AG
 CALL LININT(VB.V,ALFA,ALFAB.NV)
 AK=ALFAB
 M=0.36+0.2*W

155 HR(I-1)=Q1(I-1)-Q1(I)**2/(2.*G*AK**2+AG**2)-Q1(I)**2/(2.*G*A**2)+
 120 HL(I)=HR(I-1)+(M/(G*A**2))*Q1(I-1)**2-G(I)**2)
 IF(I.EQ.N)GO TO 2900
 I=I+1
 GO TO 2900

2900 W=0.
 VB=(1.-W)*A/AG
 CALL LININT(VB.V,ALFA,ALFAB.NV)
 AK=ALFAB
 HR(N)=Q(N)**2/(2.*G*AK**2+AG**2)-Q(N)**2/(2.*G*A**2)+Z0
 IF(J.LT.D)GO TO 2920
 D=0+KD
 WRITE(6,9050)AA2.G1.ZO.(U(E),E=1,N,F)
 CONTINUE
 KS=K
 DT=DDAB**2
IF (DT.GT.DTMAX) DT=DTMAX
AA2=AA2+DT
IF (AA2.GT.TSTOP) STOP
CALL LININT(AA2, DDAB, DOAB, NT)
CALL LININT(DDAB, DD, KSISB, KSISB, MKSIS)
k=KSISB
j=j+1
GO TO 2650
160
C 9040 FORMAT(1H1.5X.BHTIJDSTIP.10X.4HG(1).10X.14HKOLKWATERSTAND.13X.
 *8HDEBIEuten///)
C END

SUBROUTINE LININT 74/74 OPT=1

1 SUBROUTINE LININT(VB,V,ALFA,ALFAB,NV)
 DIMENSION V(1),ALFA(1)
 J=1
IF(V(J).GT.V(J+)) GO TO 105
5 DO 100 I=2,NV
 IF(VB.GT.V(I)) GO TO 100
 JR=1
 JL=I-1
 GO TO 110
100 CONTINUE
 JR=NV
 JL=NV-1
110 ALFAB=ALFA(JL)+((VB-V(JL))/(V(JR)-V(JL)))*(ALFA(JR)-ALFA(JL))
 RETURN
15 DO 106 I=2,NV
 IF(VB.LT.V(I)) GO TO 106
 JR=1
 JL=I-1
 GO TO 111
20 CONTINUE
 JR=NV
 JL=NV-1
111 ALFAB=ALFA(JL)+((VB-V(JL))/(V(JR)-V(JL)))*(ALFA(JR)-ALFA(JL))
 RETURN
END