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1
Introduction

Normal springs, as shown in figure 1.1a, are often considered as elements that behave according to
Hooke’s law. This law states that the spring characteristic is linear, i.e. 𝐹 = 𝑘𝑥. This characteristic is not
always adequate in complex applications. For instance in static balancing applications, constant force
or negative stiff spring elements are desired [1]. There are also applications where stiffening/softening
or multistable behavior is desired.

(a) Helical spring (b) Shell

(c) Tape spring

Figure 1.1: Different spring elements

There are specific solutions for each characteristic, such as
coiled constant force springs [2] or buckled leaf springs [3].
These mechanisms are solutions for one application. There
are also mechanisms that can have multiple characteristics,
such as cam follower mechanisms [4]. These mechanisms
can be called force generators with a custom force displace-
ment behavior, because their force displacement curve can
be adjusted. The downside of these mechanisms is that
they usually consist of many parts and are limited scalable.
A compliant variant of such a mechanism could possibly
lower the number of parts and improve scalability.

Compliant shell mechanisms are mechanisms that can pos-
sibly have any displacement and any force characteristic
as desired. The difficulty of synthesizing compliant shell
mechanisms is to match both the required displacement
and the required force behavior, while they are both not
restricted.

A tape loop, as shown in figure 1.1c, is one type of compliant shell mechanism where the input motion
is restricted to a linear motion, which results in a linear guide [5]. By restricting the displacement,
the synthesis method can be focused on the force behavior, which results in a less complex synthesis
process. A tape loop consists of a double folded tape spring which is clamped at one side and actuated
at the other side. When a tape spring with a constant width is used, the strain energy within the tape
spring does not change when a motion is applied. However, when varying the width of the tape spring,
the strain energy changes during motion. In this way a very compact and monolithic force generator
can be designed.

In this thesis fifteen force displacement curves are identified which all describe a unique force dis-
placement behavior. These fifteen curves are used to quantify the level of customizability of force
generators. Before force generators are created from a tape loop by varying the cross-section, the
influence of the cross-section on the tape loop’s behavior is investigated. The two main subjects that
are investigated are the energy state of a tape spring and the tape spring radius. The knowledge of
the energy state is necessary for the synthesis method. The dependency of the tape spring radius on
the cross-section is investigated, to assure a pure horizontal motion, which is required for a tape loop
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2 1. Introduction

to act as a linear guide. With this knowledge, a synthesis method for a force generator using tape
loops is developed. This synthesis method is used to synthesize fifteen tape loops with each having
one of the fifteen unique force displacement behaviors.

Thesis Outline
The main work of this thesis consists of three chapters. Two of these chapters are written as stand-
alone papers and therefore there is some overlap between these papers.

Chapter two explains what force generators with custom force displacement behavior are and gives
examples of existing force generators. In this chapter, the fifteen force displacement curves are pre-
sented and used to quantify the customizability of the found force generators.

The third chapter, which is the first paper, investigates the influence of the tape spring’s cross-section
on several characteristics of a folded tape spring such as the fold angle, the fold radius and the energy
distribution.

The fourth chapter, which is the second paper, uses the knowledge of the third chapter to synthesize
a force generator with custom force displacement behavior using a folded tape spring by adjusting its
cross-section. The fifteen force displacement curves of the introducing chapter are used to check in
what level the tape loop can be customized. One of the fifteen geometries is optimized for the rquired
behavior, produced and tested in an experiment.

The thesis ends with a discussion and conclusion. Several appendices are attached which give more
explanation on the production, simulation and experiments.
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INTRODUCTION
Force generators are mechanisms that generate a force at

a certain point which is referred to as the input of the mecha-
nism. When all of the work done at the input is absorbed as
strain energy within the mechanism, the force generator is called
a spring. Most of the basic springs are linear and behave accord-
ing to Hooke’s law. However, there are situations where linear
springs do not have the right load-displacement behavior. For in-
stance when balancing a weight vertically in one direction, a con-
stant force spring is needed [1], [2]. When balancing the human
body with a wearable device, the required load displacement is
even more complex [3], [4], [5]. There are solutions using active
controlling to obtain the required load displacement [6], [7], [8].
However, this usually results in a bulky and heavy system. There-
fore passive force generators with a custom load-displacement
path are more suitable for these kind of applications.

This chapter gives an overview of the custom nonlinear
spring elements that are currently available. In the next section
the scope of this chapter and the way the literature search is per-
formed will be explained. A categorization is derived and the
force displacement curves are introduced. In the third section,
the found mechanisms are presented and are grouped into cat-
egories based on their working principle. The mechanisms are
analyzed using the defined force displacement curves and crite-
ria. The chapter ends with a discussion and conclusion.

METHOD
Scope

Within this review, only force generators that store their en-
ergy in the form of strain energy are included. Furthermore the
force generators may not contain any active controlling elements.
Only continuous mechanisms are in the scope of this review. The

TABLE 1. KEYWORDS USED IN LITERATURE SEARCH.

AND AND AND AND

adjustable ”force displacement” energy negative

variable ”force generat*” stiffness zero

tun*able ”force mechanism” constant

tailored spring* nonlinear

”load displacement” {non-linear}

customization of the spring characteristics should be more than
only scaling or (phase)shifting the load-displacement curve.

Literature Search
A literature search was performed using the Scopus database

and the TUDelft Library catalogue. The search terms that were
used to search in the title, abstract and keywords are listed in Tab.
1. Besides these including terms, the following terms were used
to exclude literature when these terms are in the title: *electr*,
active, motor, controller, magnet*, damp*, hydr*, composite,
muscle* and aerodynamic*. From the relevant articles, the cited
references were reviewed to find other relevant articles.

Categorization
The categorization is based on the way how the potential

energy at a certain displacement can be influenced. The most
basic function of potential energy stored within a spring element

1
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as a function of displacement x is given by

U(x) =
1
2

kx2, (1)

which is completely determined when stiffness k is constant.
However, the goal within this paper is to find mechanisms where
the potential energy can be freely determined independently of
the displacement. This can be done in two ways: add an extra
displacement dependent term or make the stiffness dependent on
the displacement:

U(x) =
1
2

k
(
x+C(x)

)2 (2)

U(x) =
1
2

k(x)x2. (3)

The extra C(x) term can be interpreted as a transmission between
the displacement and the spring element. The basic formula of
the stiffness term k, using bending stiffness is

k = EI, (4)

where E is the Young’s modulus which is a material property and
I is the second moment of area which is a geometry property. If
one of these terms is displacement dependent, the stiffness will
not be constant anymore, which will influence the stored poten-
tial energy at a certain location. Figure 1 summarizes the catego-
rization.

Force generators with custom
force-displacement curves

Nonlinear
spring

Linear spring
+ transmission

Material Geometry

FIGURE 1. CATEGORIZATION OF FORCE GENERATORS
WITH CUSTOM FORCE-DISPLACEMENT CURVES.

Force-Displacement Curves
Radaelli [9] defined a set of possible nonlinear force-

displacement curves. These force-displacement curves are based
on the force, stiffness and derivative of stiffness which can either

be negative, zero or positive, resulting in twenty seven different
curves. Twelve of these twenty seven force-displacement curves
are not unique, because they can be obtained by mirroring an-
other curve. This means that the definition of the direction of
the force and displacement of a mechanism are mirrored, which
physically does not change the mechanism itself. This symmetry
results in fifteen unique force-displacement curves.These fifteen
curves will be used to quantify the level of customization of the
mechanisms.

Criteria
Besides the achievable force-displacement curves, the

mechanisms will be given a score based on the following criteria.

Adjustability after fabrication The way the load-
displacement curve can be adjusted after the mechanism is pro-
duced. This adjustability of the load-displacement curved mostly
consists of scaling or (phase) shifting the curve.

Complexity of mechanism The complexity of the
mechanism itself is defined by the number of parts and the man-
ufacturability. The number of part is given a score of ’high’,
’medium’, ’low’ or ’one’. The manufacturability is given a score
between 1 and 5.

Complexity of synthesis method The complexity of
the synthesis method is given a score between 1 and 3. When
there is an analytical solution of finding the dimensions of mech-
anism to obtain the required characteristics, the synthesis method
is relatively easy, so the score of 1 is given. When an iterative
method is required to find the right design, but the relation is
clearly defined, the score of 2 is given. When an optimization al-
gorithm is required to find the right design, the synthesis method
is quit complex, so a score of 3 is given.

RESULTS
Mechanisms

Figure 2 shows the schematic representations of the found
examples of force generators with custom force-displacement
behavior. The axis of the mechanisms are given for each mech-
anism, where the y-direction is mostly in the direction of the
spring element and the x-dimension is the second dominant di-
mension.

Based on the categorization in Fig. 1, there are three ways
to create a mechanism with a custom energy-displacement curve:
Nonlinear spring due to the material properties, nonlinear spring
due to the geometry and linear spring with a nonlinear transmis-
sion. The mechanisms that will be shortly described by means of
these working principles.

2
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(a) Cam-follower (b) Wrapping cam (c) Noncircular gears (d) BalanceBox

(e) Rolamite (f) Two bent leaf springs (g) Nonlinear helical spring (h) Freeform compliant

FIGURE 2. SCHEMATIC REPRESENTATIONS OF FORCE GENERATORS WITH CUSTOM ENERGY-DISPLACEMENT CURVES. UPPER
ROW IS NONLINEAR DUE TO A TRANSMISSION BETWEEN INPUT MOTION AND ENERGY STORAGE ELEMENT. LOWER ROW IS
NONLINEAR DUE TO THE GEOMETRY OF THE ENERGY STORAGE ELEMENT ITSELF.

Cam-Follower [10], [11] The input motion is a rotation
of a non-circular cam which pushes a linear spring. The shape
of the cam determines the relation between the input motion and
the spring length.

Wrapping Cam [12] The input motion is a rotation of
a non-circular cam which pulls a linear spring by a string. The
shape of the cam determines the relation between the input mo-
tion and the spring length.

Non-circular gears [13] The rotational input motion is
passed on through two non-circular gears to the rotational spring.
The profile of the two gears determines the ratio between the
input motion and elongation of the rotational spring.

BalanceBox [14], [15] The translational input motion
is converted through a parallelogram mechanism that rolls on a
path. The shape of the path determines the relation between the
input motion and the spring length.

Rolamite [16], [17] A steel band is bent around two
rollers within a casing. The profile of the band width or the ini-
tial band curvature profile determines the strain energy a curtain
displacement.

Two bent leaf springs [9] Two leaf springs are bent
between walls. The profile of the leaf springs determines the
amount of material that is bent at a curtain displacement and
thereby the strain energy. There was no article found about this
mechanism, but it is mentioned in [9].

Nonlinear helical spring [18] A ’normal’ helical
spring but with a nonconstant pitch, wire diameter or coil di-
ameter.

Freeform compliant mechanisms [9], [19] There
are two types of compliant mechanisms: Lumped compliant
mechanisms and shells. Lumped compliant mechanisms are usu-
ally planar and are the compliant equivalents of bar linkages.
Shells consist of curved planes and can act in more than two
dimensions.

Criteria
The results of the comparison using the criteria are given

in Tab. 2. The mechanisms where the energy storage element
and the non-linearity are separated are adjustable after fabrica-
tion, because the pretension of the spring element is adjustable.
This is not possible when the input motion is directly coupled to
the energy storage element, as is the case at the mechanisms in
the category nonlinear due to the geometry of the energy storage
element.

3

6 2. Force Generators with Custom Force Displacement Behavior



When the non linearity is due to the geometry of the en-
ergy storage element, the mechanism can be monolithic, which
is the case for the nonlinear helical spring and freeform compli-
ant mechanisms. The BalanceBox is the most complex system in
terms of number of parts.

The manufacturability is the most complex for the freeform
compliant mechanisms, because such a mechanism can result
in an unorthodox geometry which requires complex production
methods.

For the rolamite and the two bent leaf springs, the geom-
etry can be analytically determined, which makes the synthesis
method relatively easy. Because both the force and the displace-
ment path of a freeform compliant mechanism are not defined,
the synthesis method is very complex. The other mechanisms
need to be synthesized in an iterative way.

Force Displacement Curves
Table 3 shows the comparison of the different mechanisms

using the fifteen force-displacement curves.The wrapping cam
and noncircular gear cannot change the direction of the torque
and they can also not have a zero torque. The mechanism with
two bent leaf springs can only pull, so the curves with both nega-
tive and positive forces cannot be achieved. The nonlinear helical
spring can only have a linear or progressive positive stiffness.

DISCUSSION
For most of the mechanisms, it is not documented which

force displacement curves they can achieve. Therefore the pro-
cess of identifying the possible force displacement curves is
somewhat subjective. The method showed however that the
fifteen unique force displacement curves can be used to com-
pare different force generators with a custom force displacement
path.

CONCLUSION
An overview is presented of force generators with a custom

force displacement path that are available. The mechanisms are
categorized, based on how the input motion can be decoupled
from the strain energy: due to the material properties, due to
its geometry and due to a nonlinear transmission. Four mecha-
nisms that can be customized due to its geometry and four mech-
anisms that can be customized due tot a nonlinear transmission
have been found. There was no mechanism found that could be
customized by changing the material properties.

Fifteen unique force displacement curves were used to
quantify the force displacement behavior of the mechanisms.
Some of the mechanisms can theoretically achieve all curves
(Cam-Follower, BalanceBox, Rolamite and Freeform Compli-
ant), while others are limited.

The mechanisms were also compared using criteria. The
mechanisms that were based on a nonlinear transmission could
all be adjusted after fabrication, while all mechanisms that were
based on the geometry could not be adjusted.
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ABSTRACT
Tape springs are thin-walled structures with zero longitudi-

nal and constant transverse curvature. Folding them twice and
connecting both ends creates a tape loop which acts as a lin-
ear guide. When using a tape spring with a non-constant cross-
section, a force generator can be created. At this time there is
insufficient understanding of the influence of the tape spring’s
cross-section on its behavior. This study investigates the influ-
ence of the subtended angle on the tape spring’s behavior, espe-
cially the energy distribution and the fold radius.

A tape spring is once folded in a finite element model. By
performing a curvature analysis of this folded geometry, the dif-
ferent regions within a tape spring are identified. This informa-
tion is used to identify the amount of strain energy of each region.
Finally, the fold radius and fold angle are determined by analyz-
ing the geometry of the bent region.

The analysis showed that the energy within the transition
regions cannot be neglected. The energy within these regions as
ratio of the total energy and the length of the transition regions
both increase with the subtended angle. It is also shown that the
fold radius is not constant when the subtended angle is small.

Therefore, when designing a force generator using tape
loops, the energy within the transition regions should be taken
into account. The subtended angle should not be small to ensure
a constant radius.

∗Address all correspondence to this author.

INTRODUCTION
Compliant mechanisms are mechanisms that move due to

elastic deformation of slender segments. These mechanisms have
advantages compared to traditional mechanisms such as reduced
wear, reduced or eliminated backlash, no need for lubrication and
possibilities for monolithic designs [1].

Most compliant mechanisms consist of beam flexures that
move in a plane, such as compliant grippers [2] and MEMS de-
vices [3]. A relatively new area in the field of compliant mech-
anisms is that of shell mechanisms. These mechanisms have
curved flexures and have complex shapes and kinetics [4].

As shells are defined as curved thin-walled structures, one
of the most basic shell elements is a tape spring: a thin-walled
open cylindrical structure with zero longitudinal and constant
transverse curvature. A carpenters tape is an example of such
geometry. Despite its simple geometry, a tape spring has some
remarkable properties, such as being stiff before buckling while
being compliant after buckling, having a constant fold radius [5]
and constant moment after buckling [6]. Because of these prop-
erties, tape springs are used as hinges [7] or as deployable stiff
structures in space [8].

A special configuration of a folded tape spring is a tape loop,
which is a tape spring with multiple folds and its ends connected
to each other. Vehar [9] examined different setups with a differ-
ent number of folds. The simplest configuration of a tape loop
is with two folds, which acts as a zero force and zero stiffness
linear guide as explored by Houwers [10].

1 Copyright c© 2018 by ASME
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A two folded tape loop is the monolithical equivalent of a
rolamite, which has the same working principle [11]. A rolamite
can act as force generator by changing the geometry of the band
[12, 13]. In further analogy to the rolamite, a tape loop can be
turned into a force generator by changing the cross section of the
tape spring. Radaelli [14] suggested a constant force mechanism
using a two-fold tape loop with a tapered tape spring. However,
to make a more generic force generator out of a tape loop, more
insight into the influence of the tape spring’s cross section on its
energy state is desired.

Quite some theoretical research has been performed on tape
spring buckling [15], deployment dynamics [6] and the fold cur-
vature [16]. Seffen derived an analytical formula of the strain
energy within the bent region of a tape spring [17]. The bent re-
gion however is not the only region where strain energy is stored.
There is also a transition region between the undeformed region
and the bent region, which contains an amount of strain energy.

The total energy state of the tape loop should be known when
using tape springs as a force generator. Therefore the energy
within the transition region should be investigated to determine
whether it can be neglected or not. Another important factor to
determine is whether the fold radius remains constant while vary-
ing the cross-section, since otherwise the tape loop will not act
as a straight-line guide.

This paper will investigate the influence of the tape spring’s
cross-section on the total energy state and the geometry of a sin-
gle folded tape spring. The cross-section is adjusted by varying
the subtended angle, which is the angle in transverse direction
of the tape spring. In order to do investigate the influence of
the subtended angle, several tape springs are simulated in a finite
element method (FEM) model, where all variables are kept con-
stant except the subtended angle. The tape spring will be folded
180 degrees as to act as the half of a tape loop. By performing
a curvature analysis, the different regions of a tape spring are
identified. With this information, the energy within the differ-
ent regions can be identified. Finally, the effect of the subtended
angle on the geometry in the bent region will be analyzed.

This paper starts with the basic theory of a folded tape
spring. Then the methods used in analysis are explained. Sub-
sequently, the results of the FEM analysis are showed. In the
discussion, the influence of the results to the synthesis method of
a force generator using tape loops is discussed. Finally the paper
concludes with some remarks.

METHOD
Tape Spring Basics

Parameters of a Folded Tape Spring. A tape spring
fold is created by applying a moment to both ends of a tape
spring. A tape spring can be folded into two directions: equal
sense or opposite sense. The fold is called equal sense when
the open sides of the tape spring are facing towards each other

t

L
R

α

(a) Undeformed tape spring

R∗
θ

(b) Folded tape spring

FIGURE 1. PARAMETERS OF AN EQUAL SENSE FOLDED
TAPE SPRING.

1 2 3

FIGURE 2. DIFFERENT REGIONS WITHIN A FOLDED TAPE
SPRING: 1) UNDEFORMED REGION, 2) TRANSITION REGION,
3) BENT REGION.

and vice versa [17]. Figure 1 shows an equal sense folded tape
spring together with its original geometry. The undeformed ge-
ometry has a constant transverse radius R and zero longitudinal
radius with a so-called subtended angle α , thickness t and length
L. From now on the transverse radius will be called the tape
spring radius. The folded geometry has a fold radius R∗ with a
fold angle θ .

Tape Spring Regions. Three different regions can be
identified within a folded tape spring. Figure 2 shows a folded
tape spring with the different regions numbered.

The first region is the undeformed region. This is where the
tape spring has its original shape. The second region is called
the transition region. In this region the tape spring goes from the
original to fully deformed shape. The third region is called the
bent region. In this region the tape spring is fully deformed in
both transverse and longitudinal direction.

Equation of Energy. The potential strain energy expres-
sion for a fold in a tape spring without twist, using the definitions
as shown in Fig. 1 and 3, is given by

U =
αD
2

∫
θ/2

−θ/2

[
R

r(β )
+

r(β )
R

±2ν

]
dβ (1)
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β θ/2

r(β )

FIGURE 3. DEFINITION OF PARAMETERS ASSOCIATED
WITH DEFORMATION OF A TAPE SPRING [17].

with D = Et3/12(1−ν2), where E is the Young’s modulus and
ν the Poisson’s ratio [17, 18]. The plus-minus sign is for re-
spectively opposite and equal sense bending. This equation does
not take the transition regions into account, so the assumption
is made that the energy within in the transition regions can be
neglected.

With the use of several other assumptions, Eqn. (1) can be
simplified. It has been suggested that the fold radius is constant
(r(β ) = R∗) and that the fold radius R∗ is equal to R [5]. Fur-
thermore, because in this paper a single fold of a two-fold tape
loop is considered, the fold angle θ can be set to π . With these
assumptions, Eqn. (1) can be reduced to

U =
απEt3

12(1±ν)
(2)

where the plus-minus sign now represents respectively equal and
opposite sense bending.

Analysis Methodology
Hypotheses. In order for Eqn. (2) to describe the energy

state of the tape spring, several hypotheses need to hold:

1. The energy within the transition regions can be neglected
2. The fold radius is independent of the subtended angle and

equal to the tape spring radius
3. The fold angle is independent of the subtended angle and

has a constant value of π radians

The first and third hypotheses have only implications for the en-
ergy state of the folded tape spring. The second hypothesis is
also important for being a linear guide, as the motion of the tape
loop would not be a perfect straight horizontal line when the fold
radius is not constant.

These three hypotheses will be tested using a finite element
analysis.

Analysis Metrics. A tape spring is modeled in a FEM
model. One of the endpoints is clamped while the other endpoint

TABLE 1. USED VALUES OF TAPE SPRING PARAMETERS.

R t L θ E ν

[mm] [mm] [mm] [rad] [GPa] [-]

21 0.2 1000 π 210 0.3

is rotated π radians to create a single fold. The output of the
model is the deformed geometry and the strain energy per surface
area within the tape spring.

The deformed geometry is used to find the different regions
within the tape spring by analyzing the curvature. The curvature
in the undeformed region is zero in longitudinal and constant
in transverse direction. In the bent region, this is the opposite.
Therefore the different regions can be determined by analyzing
the curvature in transverse direction. This is done by curve fitting
circles to each transverse line in the longitudinal direction of the
tape spring. From these fitted circles the curvature is obtained.
When the curvature differs more than 0.1% from the undeformed
tape spring radius, the transition region is defined to start. When
the curvature is lower than 5% of the original tape spring curva-
ture 1

R , the start of the bent region is defined.
As the different regions are defined, the length of the transi-

tion region can be determined by measuring the length between
the start of the transition region and the start of the bent region.

The energy is summed in the transverse direction to see the
energy distribution in longitudinal direction. Using the infor-
mation about the regions, the energy related to each region is
summed to get the total energy per region.

The fold radius is determined by fitting a circle to the data
points in the bent region in the longitudinal direction.

Finally, the fold angle is determined by calculating the angle
between the edges of the bent region and the center of the fitted
circle.

Dimensional Design. Within this research, the equal
sense bent configuration will be examined. The subtended angle
will be varied between 80 and 170 degrees. All other parameters
as shown in Fig. 1 are constant as given in Tab. 1.

FEM Analysis. A Matlab based finite element software
package of the Delft University of Technology is used for this
analysis [19]. The model is based on isogeometric analy-
sis (IGA). Within this framework a geometry is defined using
NURBS. The advantage of using this method is that there is
no approximation involved in the discretisation of the geome-
try. The discretisation is realized by refinement of the paramet-
ric description of the geometry, which increases the amount of
parameters without altering the geometry itself. For a detailed
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(a) (b) (c)

FIGURE 4. FEM STEPS: A) ENDPOINT ROTATION OF π , B)
VERTICALLY DISPLACE ENDPOINTS TO SAME HEIGHT, C) FI-
NAL DEFORMED GEOMETRY.

description of the IGA working principle, the reader is referred
to [20].

The cross section of the tape spring geometry is defined by
an arc with a subtended angle α that is linearly divided into 21
points in the transverse direction. The geometry in the length
direction is then defined by linearly spacing these cross sections
in longitudinal direction over length L, divided into 300 points.
In addition, two so-called pilot points are defined at the centroid
of the cross section at both ends of the geometry in longitudinal
direction which are connected through beams to each point of the
corresponding curved edges. The motions are applied to these
pilot points.

The folding process, shown in Fig. 4, is performed in two
steps: first a rotation of π is applied to one of the pilot points
while the other pilot point is fixed, which forces the tape spring
to buckle. Secondly the rotated endpoint is translated to the same
height as the fixed pilot point while constraining the rotation.

RESULTS
Not all subtended angles resulted in a converged simulation.

The following angles did converge and were included in the anal-
ysis

α = (85,90,95,100,105,110,115,120,
125,140,145,155,160,165,170). (3)

By analyzing the curvature of the cross sections in transverse
direction, the undeformed, transition and bent regions were de-
termined. Figure 5 shows the length of the transition region as
function of the subtended angle. It shows that the length of the
transition regions increases with the subtended angles.
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FIGURE 5. LENGTH OF TRANSITION REGIONS FOR DIFFER-
ENT SUBTENDED ANGLES.
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FIGURE 6. ENERGY DISTRIBUTION IN LONGITUDINAL DI-
RECTION FOR DIFFERENT SUBTENDED ANGLES. THE ORDER
OF THE CURVES FROM TOP TO DOWN IS IN THE SAME ORDER
AS THE LEGEND. SUBTENDED ANGLES ARE IN DEGREES.

The strain energy is summed in transverse direction to get
the energy distribution in longitudinal direction. Figure 6 shows
the energy distribution for different subtended angles.

Using the information of the different regions within a tape
spring, the energy related to each region could be determined.
This energy is summed per region to see the distribution between
the different regions, as shown in Fig. 7. The figure shows that a
significant part of the total energy is within the transition regions,
starting at 25% at a subtended angle of 85 degrees to 45% at a
subtended angle of 170 degrees. There is also a small amount of
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FIGURE 7. PERCENTAGE OF ENERGY PER REGION. NOTE
THE SMALL BLUE AREA IN THE LOWER LEFT CORNER.
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FIGURE 8. FOLD RADII FOR DIFFERENT SUBTENDED AN-
GLES. DASHED LINE IS THE TAPE SPRING RADIUS.

the energy in the undeformed region at smaller subtended angles.
The fold radius is shown in Fig. 8. The figure shows that

fold radius is larger than the tape spring radius, with a mean value
22.1 mm. The maximum difference between the tape spring ra-
dius and the fold radius is 7%.

The relation between the fold angle and the subtended angle
is shown in Fig. 9. The figure shows that the fold radius is not
equal to 180◦ but varies between varies from 153.6◦ to 157.7◦

with a mean value of 156.2◦. Figure 10 shows the comparison of
the energy within the bent region between the FEM model and
the equation using fold angle θ = π and θ = 2.73 (= 156.2◦).
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FIGURE 9. FOLD ANGLE FOR DIFFERENT SUBTENDED AN-
GLES. DASHED LINE IS 180 DEGREES LINE.
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FIGURE 10. ENERGY WITHIN BENT REGION COMPARISON
OF FEM AND ANALYTICAL MODEL.

DISCUSSION
It is notable that all of the geometries with a subtended angle

below 85 degrees did not results in a converged simulation. This
could be caused by the low stiffness due to the small subtended
angles of which makes the relatively long structure less stable
and therefore hard to solve.

Every curve of the energy distribution plot in longitudinal
direction shows two peaks. These peaks seem to match the edge
of bent region. From this edge on, the energy content starts to
drop. The curvature analysis showed that the curvature in the
middle of the bent region is lower than at the edges of the bent
regions. This explains the peaks at the edges of the bent regions.
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Figure 5 shows discontinuities in the relation between the
length of the transition lengths and the subtended angle. These
discontinuities can be explained by the way different regions of
a tape spring are defined. This is done by calculating the curva-
ture of the transverse lines. The distance between two transverse
lines in longitudinal direction is 1m/300 = 0.0033m, and there-
fore the length of the transition regions has fixed increments of
0.0033 m.

Figure 7 shows that the energy in the transition zone can-
not be neglected. The ratio of the transition and the bent region
increases with the subtended angle. At small subtended angles,
there is also a small fraction of the energy within the undeformed
region. This can be explained by the phenomena that a tape
spring start to behave like a flat leaf spring when the subtended
angle gets smaller. In a leaf spring, the energy is not concen-
trated at a fold like in a tape spring, but is evenly distributed in
the whole structure.

The fold radius is clearly not the same as the tape spring ra-
dius with a maximum difference of 7%. However, when compar-
ing the calculated energy with the actual fold radii using Eqn. (1)
and simplified Eqn. (2) where the radii are assumed to be equal,
the maximum difference in calculated energy is only 0.32%. This
difference is small enough to be neglected.

Furthermore, the fold radius gets larger at small subtended
angles. This can be explained by the same phenomena as with the
energy distribution. When folding a leaf spring, the smallest en-
ergy state of the leaf spring is with the largest radius as possible.
Therefore a tape spring with a small subtended angle has a large
fold radius. When using a tape spring as a force generator, this
results in an imperfect straight line linear guidance. However,
when the subtended angle is larger than 100◦, the fold radius is
fairly constant. So when keeping the subtended angle above this
value, a tape loop could be used as a linear force generator.

Figure 9 shows that the fold angle is not equal to 180 de-
grees, but varies from 153.6 to 157.7 degrees. This is explained
by the fact that the curvature of the structure in transverse di-
rection is still not zero, while the structure starts to deform in
longitudinal direction. The definition of the bent zone is that
it starts when the curvature in transverse direction is zero, so a
small part of the fold angle already occurs in the transition re-
gions. This implies that the energy within the bent region of a
tape spring fold should be calculated with a value of 2.73 radians
(= 156.2◦) radians instead π radians.

Figure 10 shows the comparison of the energy within the
bent region between the FEM model and the equation using
θ = π and θ = 2.73. The figure shows that the line of θ = 2.73
almost perfectly matches the FEM model. At low subtended an-
gles the calculated energy is higher than the FEM model and at
high subtended angles, the calculated energy is lower than the
FEM. This can be explained by the fact the the fold angle in-
creases with the subtended angle.

CONCLUSION
In this paper, the dependency of the energy distribution

within a tape spring on the subtended angle is investigated. Sev-
eral hypotheses where stated: 1) The energy within the transition
regions can be neglected, 2) The fold radius is independent of
the subtended angle and equal to the tape spring radius, 3) The
fold angle is independent of the subtended angle with a constant
value of π radians.

The first hypothesis is rejected, because a significant part
of the total energy is within the transition regions. The energy
within the transition region as function of the total energy gets
even higher at larger subtended angles. The length of the transi-
tion zones is dependent on the subtended angle as well.

The second hypothesis is rejected as well. The fold radius
gets larger with a smaller subtended angle and is always larger
than the tape spring radius. However, the consequences to the
total energy state of the tape spring are limited, because the dif-
ference in fold radius causes only a difference of 0.32% to the
total energy. Therefore this dependency can be neglected for the
determination of the total energy. However, for the linear guide,
the radius dependency can be a problem. Nonetheless, this prob-
lem can be limited by using subtended angles above 100 degrees.

The third and last hypothesis is also rejected. The fold an-
gle is not a constant of 180 degrees, but varies between 153.6
and 157.7 degrees with a mean value of 156.2 degrees. There-
fore the fold angle used to calculate the energy within the bent
region should be θ = 2.73 radians (= 156.2◦). The equation of
the energy within the bent region then becomes

Ubent = 2.73 · αEt3

12(1±ν)
. (4)

These results imply that the transition regions can not be
neglected, but should be incorporated into the synthesis method
of a force generator using two-fold tape loops. The subtended
angle should preferably be larger than 100 degrees to limit the
subtended angle dependency of the fold radius.
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ABSTRACT

Tape springs are thin-walled structures with zero longitudi-
nal and constant transverse curvature. Folding them twice and
connecting both ends creates a tape loop. A tape loop can act as
a zero stiffness linear guide when using a constant cross-section.
If a tape spring with a non-constant cross-section is used, the to-
tal energy state of the tape loop differs at different positions, so
a force generator can be created.

A synthesis method is developed to determine the required
geometry for obtaining the desired force displacement behav-
ior. Fifteen force displacement curves are defined which all de-
scribe a characteristic behavior. These fifteen force displace-
ment curves are used as input to synthesize fifteen tape spring
geometries. The resulting geometries are simulated in a finite el-
ement model to validate the synthesis method. The geometry with
a non-zero constant force characteristic, is optimized, produced
and tested in an experiment.

All fifteen force displacement behaviors could be approxi-
mated by the synthesized geometries. The optimized design suc-
ceeded to obtain the required force displacement behavior. The
experiment showed that the produced tape spring with a constant
cross-section has already irregularities in its force displacement.
When it was cut to the synthesized geometry, this resulted in a
shift of the force displacement curve.

In conclusion, a tape loop can act as an all-purpose force
generator using the developed synthesis method. However, be-
fore practical application, several production challenges need to
be overcome.

INTRODUCTION
Tape springs are thin-walled structures with zero longitudi-

nal and constant transverse curvature. A carpenters tape is an
example of such geometry. Despite its simple geometry, a tape
spring has some remarkable properties, such as being stiff before
buckling while being compliant after buckling, having a constant
fold radius [1] and constant moment after buckling [2]. Because
of these properties, tape springs are used as hinges [3] or deploy-
able stiff structures in space [4].

By making multiple folds and connecting both ends, a tape
loop is created. Vehar [5] examined different setups with a dif-
ferent number of folds. A tape loop with two folds is the simplest
configuration, which acts as a zero force and zero stiffness linear
guide as explored by Houwers [6].

A mechanism that has a similar working principle as a two-
fold tape loop is a rolamite [7]. A rolamite can act as force gen-
erator by changing the geometry of the band [8, 9]. In further
analogy to the rolamite, a tape loop can be turned into a force
generator by changing the cross section of the tape spring. In
this way a monolithic equivalent of the rolamite is obtained. One
of the advantages of using a tape loop as a force generator is
that because of its monolithic geometry, it is theoretically highly
scalable, especially for smaller scales. This makes it for example
interesting for minimally invasive surgery by using a nearly con-
stant force mechanism using a two-fold tape loop with a tapered
tape spring as suggested by Radaelli [10].

De Jong [11] (chapter three of this thesis) has shown that
both the length of the transition regions and the energy within
the transition regions as ratio of the total energy increases with
higher subtended angles. Another observation was that the fold
radius and angle are influenced by the cross section. This effect
is limited when the subtended angle is above 100 degrees.
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Within this paper, a synthesis method is developed to syn-
thesize a force generators using two-fold tape loops. The synthe-
sis method consist of an analytical model with the desired force
displacement behavior as its input. The model is used to syn-
thesize fifteen different tape spring geometries that all describe a
unique force displacement behavior. All these fifteen geometries
are modeled in a finite element model to validate their force dis-
placement behavior. The geometry with non-zero constant force
behavior is investigated more in-depth and is tested in an experi-
ment.

This paper starts with the basic theory of a folded tape
spring. Then the synthesis method of a tape loop and the ex-
periment are explained. The results of the synthesis method and
the experiment are presented. In the discussion, the results of
the synthesis method and experiment are interpreted. Finally the
paper concludes with some remarks.

METHOD
In this section, the synthesis method of a force generator

using folded tape springs is explained. It starts by explaining the
basics of a tape spring. Then the synthesize method is presented.
Fifteen different force displacement curves are presented, which
are used to synthesize fifteen tape loop geometries. The section
ends with explaining the detailed synthesis and experiment.

Tape Spring Basics
Parameters of a Folded Tape Spring. A tape spring

fold is created by applying a moment to both ends of a tape
spring. Figure 1 shows an equal sense folded tape spring to-
gether with its undeformed geometry. The original geometry has
a constant transverse radius R and zero longitudinal radius with a
so-called subtended angle α , thickness t and length L. From now
on the transverse radius will be called the tape spring radius. The
folded geometry has a fold radius R∗ with a fold angle θ .

There is some discussion whether the fold radius is equal to
the tape spring radius [1,4]. De Jong [11] concluded that the fold
radius is larger than the tape spring radius with a maximum of 7%
when keeping the subtended angle above 100◦. This difference in
radius results in a difference in energy state less than 0.5%. The
fold radius is hard to determine so for the reason of simplicity,
the fold radius is assumed to be equal to the tape spring radius,
R∗ = R.

Tape Spring Regions. Three different regions can be
identified within a folded tape spring. Figure 2 shows a folded
tape spring with the different regions numbered.

The first region is the undeformed region. This is where the
tape spring has its original shape. The second region is called
the transition region. In this region the tape spring goes from the
original to fully deformed shape. The third region is called the

t

L
R

α

(a) Undeformed tape spring

R∗
θ

(b) Folded tape spring

FIGURE 1. PARAMETERS OF AN EQUAL SENSE FOLDED
TAPE SPRING.

1 2 3

FIGURE 2. DIFFERENT REGIONS WITHIN A FOLDED TAPE
SPRING: 1) UNDEFORMED REGION, 2) TRANSITION REGION,
3) BENT REGION.
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Lclamping

Lbent

FIGURE 3. TWO-FOLD TAPE LOOP.

bent region. In this region the tape spring is fully deformed in
both transverse and longitudinal direction.

Tape Loop. By folding a tape spring twice and connect-
ing both sides, a two-fold tape loop is created. The motion is
applied to the upper side of the loop while the lower side is
clamped, as shown in Fig. 3.

Using a tape spring in the two-fold tape loop configuration
has two implications for the parameters: 1) the folding angle θ is
π radians, 2) the subtended angle α can have a maximum value
of π radians, because otherwise the two sides of the tape loop
would collide.

Range of Motion. When the transition region hits the
clamping, the part of the tape spring at the edge of the clamping

2
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FIGURE 4. ILLUSTRATION OF THE RANGE OF MOTION.
THICK LINE IS ORIGINAL POSITION, THIN LINE THE POSI-
TION AFTER THE DISPLACEMENT. THE CIRCLES INDICATE
THE MIDDLE OF THE TAPE LOOP.

wants to flatten in transverse direction. This flattening is however
restricted by the clamping. This results in a high stiffness in the
direction of the motion, which limits the range of motion (ROM).

The length of the motion without this stiffening effect is de-
termined by the length of the undeformed region at the side of
the clamping. This length is the total undeformed length divided
by two minus the length of the clamping

Lundef,lower =
Lundef

2
−Lclamping

=
L−2 ·Lbent−4 ·Ltrans

2
−Lclamping

=
L−2 · (πR)−4 ·Ltrans

2
−Lclamping

=
L
2
−πR−2 ·Ltrans−Lclamping

(1)

When a motion is applied to the tape loop, the whole structure
shifts in that direction. However, the point at which the motion is
applied rolls to that direction as well. Figure 4 shows an example
to illustrate this behavior. Because of this behavior, the ROM is
twice the length of the undeformed region at the lower side

ROM = 2 ·Lundef,lower (2)

Equation of Energy. De Jong [11] suggested that the
strain energy in the bent region of a single equal sense folded
tape spring can be approached by

U = 2.73 · αEt3

12(1+ν)
(3)

In that research, the subtended angle remained constant over the
length of the tape spring. In this paper however, the subtended

angle will not be constant but it will have a profile. The sub-
tended angle α is therefore not a constant value, but is the aver-
age subtended angle in the bent. Furthermore, there are two folds
in a tape loop, so when the profile of the cross section is equal for
both folds, the energy is twice the energy of a single fold. These
additions result in

U = 2.73 · αbentEt3

6(1+ν)
(4)

Relation Between Radius and Thickness. The von
Mises principal plane stress is given by

σν =
√

σ2
1 −σ1σ2 +σ2

2 . (5)

Using Kirchhoff-Love plate theory for an isotropic and homoge-
neous plate without shear strain, ~σ is given by

~σ =

[
σ1
σ2

]
=

E
1−ν2

[
1 ν

ν 1

]
~εmax (6)

where ~εmax is the maximum strain. In case of an equal sense
folded tape spring, the maximum strain in longitudinal direction
is ε1 = t/2R and in transverse direction ε2 =−t/2R. Substituting
these values in Eqn. (5) and (6) results in an expression of the
von Mises stress

σν =
Et
√

3
2R(1+ν)

. (7)

This expression shows that the von Mises stress increases with
the thickness and decreases with the radius. According to the
von Mises yield criterion, a material starts to yield when the von
Mises stress reaches the yield strength of a material, so σν < σy
to prevent plastic deformation. Using this criterion, Eqn. (7) can
be rearranged to obtain the relation between t and R

t <
2σy(1+ν)

E
√

3
R. (8)

Maximum Energy. Substitution of Eqn. (8) into Eqn.
(4) with the maximum average subtended angle of π results in
the maximum energy that can be stored in a tape loop as function
of the material parameters and radius

Umax = 2.73 · 4π

9
√

3
·

σ3
y (1+ν)2

E2 ·R3 (9)
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Lbent

Lprofile

FIGURE 5. SCHEMATIC REPRESENTATION OF THE TOP
VIEW OF AN UNFOLDED TAPE SPRING WITH SUBTENDED AN-
GLE PROFILE.

Using this equation, the von Mises stresses will be just as high as
the yield stresses. In practice, a safety factor should be incorpo-
rated to prevent plastic deformation.

Maximum Force. The force exerted by the tape loop is
the difference in energy divided by its displacement. Theoreti-
cally, a tape loop can go from maximum energy (α = π radians)
to zero energy (α = 0 radians) in a displacement of two times the
arc length of the bent πR, when only taking the energy within the
bent region into account. Note that the displacement is twice the
arc length of the bent because of the same phenomena as illus-
trated in Fig. 4. The theoretical maximum force is therefore

Fmax,theoretical =
U(π)−U(0)

2πR

= 2.73 · 2
9
√

3
·

σ3
y (1+ν)2

E2 ·R2.

(10)

However, in [11] the lower boundary of π/2 radians for the sub-
tended angle is given to prevent undesired behavior. This results
in the maximum force

Fmax =
U(π)−U(π/2)

2πR

= 2.73 · 1
9
√

3
·

σ3
y (1+ν)2

E2 ·R2.

(11)

Range of Desired Behavior. Besides the physical
range of motion, there is a limited range where the tape loop
can generate the desired force. Figure 5 shows a schematic rep-
resentation of the top view of an unfolded tape spring profile.
The dashed box shows the part of the tape spring that is in the
bent when the tape spring is folded. The maximum shift of the
bent to the right is the total length of the profile Lprofile minus the
arc length of the bent Lbent. Because of the same phenomena as
explained at the range of motion section, this length is multiplied

by two

RODB = 2
(
Lprofile−Lbent

)
= 2

(
Lprofile−πR

) (12)

This means for example that there is zero range of desired behav-
ior when the length of the profile is the same as the arc length.

Synthesis Method.
De Jong [11] showed that a significant part of the strain

energy is stored in the transition zones and that it does not scale
linearly with increasing subtended angles. The description of
the energy within the transition regions is therefore complex.
For the reason of this complexity, the synthesis method will
first be simplified by taking only the energy in the bent region
into account. The next step is performing a more in depth
analysis, to compensate the error involved in this simplification.
Because the force exerted is calculated by the difference in
strain energy, the error involved in this simplification is lim-
ited to the difference of the strain energy in the transition regions.

The synthesis method consists of three steps

1. Obtain average subtended angle from desired force displace-
ment behavior, given as numerical polynomial

2. Construct average subtended angle polynomial from sub-
tended angle polynomial with parametric coefficients

3. Solve coefficients of the parametric subtended angle poly-
nomial using the numerical polynomial of the average sub-
tended angle

The synthesis method starts by defining the desired force equa-
tion as a polynomial

F(x) =
n

∑
k=0

akxk, (13)

where the coefficients ak are real numeric values, based on the
desired force displacement behavior. The strain energy is ob-
tained by integrating the force equation

U(x) =
∫

F(x)

=
n

∑
k=0

ak

k+1
xk+1 +C.

(14)

The expression of the strain energy of Eqn. (4) can now be sub-
stituted into Eqn. (14). After some rearranging, the following

4

23



expression for the average subtended angle is obtained

αbent(x) =
6(1+ν)

2.73 ·Et3

n

∑
k=0

ak

k+1
xk+1 +C (15)

The second step is to define the cross-section profile as a polyno-
mial, but with parametric coefficients

α(x) =
n

∑
k=0

bkxk (16)

The average subtended angle over the bent length Rθ , is calcu-
lated by integrating Eqn. (16) with the boundaries x and x+β ,
divided by β , where β is the arc length of the bent Rθ

αbent(x) =
1
β

∫ x+β

x
α(x)dx

=
1
β

n

∑
k=0

bk

k+1

[
(x+β )k+1− (x)k+1

] (17)

The third step is solving Eqn. (17) using Eqn. (15), which re-
sults in the unknown values of the parametric polynomial coeffi-
cients bk of the geometry equation. Constant C is still unknown.
This constant is introduced in Eqn. (14) at the integration of
the required force to obtain the required strain energy. Constant
C therefore determines the base energy level of the tape spring.
The value of this constant is given by constraining the minimum
subtended angle to 100 degrees, as advised by [11].

Force Displacement Curves. In the chapter two, fif-
teen unique force displacement curves were defined to quantify
the level of customizability of a force generator with custom
force displacement behavior. These fifteen curves are used as
input of the synthesis method for two purposes: 1) To verify
whether the synthesis method can be used to attain geometries
with the desired force displacement behavior and 2) to verify
whether a two-fold tape loop can be used as an all-purpose force
generator.

The polynomial input force displacement curve of Eqn. (13)
is constructed by defining the required force at the start, the mid-
dle and the end of the motion. A polynomial is fitted through
these data points. Table 1 gives an overview of the data points
together with its polynomials used for constructing the required
force curves. The synthesis method is based on two tape spring
folds. For this analysis, a single fold will be used, so Eqn. (15)
is multiplied by two.

The performance of the synthesis method is verified by sim-
ulating the resulting geometries in a finite element model. The

TABLE 1. DATA USED FOR CONSTRUCTING THE FORCE
FUNCTIONS

Function Nr Datapoints [N] Force Polynomial [N]

1 ( 0.2, 0.4, 1.0) 5
4 x2 + 1

5

2 ( 0.2, 0.6, 1.0) x+ 1
5

3 ( 0.2, 0.8, 1.0) − 5
4 x2+2x+ 1

5

4 (-0.4,-0.2, 0.4) 5
4 x2 − 2

5

5 (-0.4, 0.0, 0.4) x− 2
5

6 ( 1.0, 0.5, 1.0) 25
8 x2− 5

2 x+1

7 ( 0.6, 0.6, 0.6) 3
5

8 ( 0.5, 1.0, 0.5) − 25
8 x2+ 5

2 x+ 1
2

9 ( 0.5, 0.0, 0.5) 25
8 x2− 5

2 x+ 1
2

10 ( 0.0, 0.0, 0.0) 0

11 ( 1.0, 0.4, 0.2) 5
4 x2−2x+1

12 ( 1.0, 0.6, 0.2) − x+1

13 ( 1.0, 0.8, 0.2) − 5
4 x2 +1

14 ( 0.4,-0.2,-0.4) 5
4 x2−2x+ 2

5

15 ( 0.4, 0.0,-0.4) − x+ 2
5

force displacement behavior of the simulated geometries is com-
pared with the force displacement curve given as input of the
synthesis model. This comparison is done by performing a least-
squares polynomial fit through the simulated data, with polyno-
mials that have the same order as the original force displacement
curves. For example in case of function number 1, the equation
of the polynomial fit is constructed by a quadratic term and a
constant, i.e. c1x2 + c2. The norm of the residuals gives an in-
dication on how well the simulated data can be described by a
polynomial with the same order as the original polynomial.

Detailed Synthesis. The synthesis method only takes
the energy in the bent region into account, while a significant
part of the energy however is stored in the transition regions.
Therefore the actual force displacement behavior will not exactly
match the desired force displacement behavior. To illustrated that
the force displacement behavior can be tuned to match the re-
quirements, the geometry with non-zero constant force behavior
(function number 7) is synthesized in more detail. The constant
force behavior is chosen because Radaelli [10] proposed a con-
stant force mechanism with a tapered cross-section, while the
FEM analysis in Radaelli’s research showed that a tapered ge-
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FIGURE 6. ILLUSTRATION OF ENERGY DISTRIBUTION FOR
DIFFERENT SUBTENDED ANGLES. BLUE IS ENERGY IN BENT
REGION, RED IS ENERGY IN BENT REGION PLUS ENERGY IN
TRANSITION REGION

ometry results in a small stiffness.
This stiffness can be explained by the fact that while the en-

ergy in the bent region scales linearly with the subtended angle,
the energy in the transition region scales progressively. There-
fore the total energy state of the tape loop does not scale linear
with the subtended angle but it increases progressively, which is
illustrated in Fig. 6.

In order to obtain constant force behavior, i.e. the energy
in-/decreases linearly, the geometry should compensate the pro-
gressive increasing energy curve. Therefore several geometries
with a digressive increasing geometries were synthesized. The
geometries were defined by three points, which are located at the
start, middle and end of the tape spring. The starting and end-
ing point are respectively the minimum and maximum subtended
angle, with values of 100 and 145 degrees. The middle point is
defined as the average of these angles times a factor (1+η)

α

(
L
2

)
= (1+η) ·

(
α(0)+α(L)

2

)
(18)

where the tape spring’s length L = 1m and η are values between
0 (linear line) and 0.1 with increments of 0.02. By fitting a
second order polynomial trough these points, the geometries as
shown in Fig. 7 are obtained.

Experimental Method.
Tape Spring Production A tape spring is produced

from spring steel (1.4310) according to the characteristics shown
in Tab. 2. The detailed synthesized geometry is used for the ex-
periment. The profile of the subtended angle is cut out with a
laser cutter.

0 0.25 0.5 0.75 1

100

115

130

145

η = 0.0

η = 0.1

FIGURE 7. GEOMETRIES FOR OBTAINING CONSTANT
FORCE BEHAVIOR. THE DOTS INDICATE MIDPOINT OF TAPE
SPRING. EACH LINE IS INCREMENTED WITH η = 0.02.

TABLE 2. TAPE SPRING CHARACTERISTICS OF PRODUCED
TAPE SPRING.

R t L α E ν σ

[mm] [mm] [mm] [◦] [GPa] [-] [MPa]

26 0.2 1000 150 210 0.3 1600-1800

Measurement Setup. A single fold tape spring is tested
on a universal testing machine Z005 of Zwick/Roell. The testing
machine makes a vertical translation while measuring the force
in the same direction. One end of the tape spring is clamped at
the load sensor, which is on the moving part of the machine. The
other end is clamped at an aluminum profile which is clamped to
the ground. The measurement setup is shown in Fig. 8.

During motion, the length and therefore the weight beneath
the load sensor changes. Therefore the measurements are com-
pensated for the gravity by setting the load to zero at the start of
the measurement and subtracting the gravity

Fz =V ·ρ ·g

=

(
Rt
∫ Lstart+x/2

Lstart
α(L)dL

)
·ρ ·g

(19)

, where Lstart is the length of the tape spring that is already under
the load sensor when the load is set to zero.

Measurement Scheme. Four different measurements
are performed:

1. Baseline measurement one: To investigate the force dis-
placement profile of the produced tape spring itself. The
measurement is performed with a tape spring without the
subtended angle profile cut out. The load sensor is set to
zero at the start of the experiment.

2. Baseline measurement two: To investigate the influence of
the measurement setup, the same measurement is performed

6
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FIGURE 8. MEASUREMENT SETUP. RED DELINEATED
STRUCTURE IS FOLDED TAPE SPRING.

with another tape spring. Another goal of performing the ex-
periment with two tape springs is to pick the best performing
tape spring for cutting out the profile. The load sensor is set
to zero at the start of the experiment.

3. Curved measurement: Measurement with the subtended
angle profile cut out. The load sensor is set to zero at the
start of the experiment.

4. Curved upside down measurement: Because the load sen-
sor is set to zero at the start of the experiment with the curved
geometry, the force generated due to the subtended angle
profile cannot be measured. Therefore a second measure-
ment is performed where the tape spring is rotated 180 de-
grees, without setting the load sensor to zero again. When
there is a force generated by the tape spring, this will result
in twice the force in the other direction.

All experiments are repeated five times and averaged to filter out
random noise.

RESULTS
Synthesis of Profiles.

The comparison between the desired force displacement be-
havior and the force displacement behavior according to the FEM
simulation of the fifteen synthesized geometries is shown in Fig.
9. All of the curves FEM model follow roughly the curves of

the analytical model. Some of the functions show that the force
suddenly increases at the end of the displacement. This increase-
ment is most clearly visible at function numbers 3, 8 and 13.

Although all FEM force displacement curves follow roughly
the analytical curves, function number 7 does not succeed to ob-
tain the right force displacement characteristic. Function number
7 should have a constant force and zero stiffness, yet it shows that
the force is increasing, i.e. the stiffness is not zero.

This observation is confirmed by Fig. 10, which displays
the norm of the residuals of the fitted polynomials, normalized to
the maximum value. This figure shows also that function num-
ber 2, 12 and 13 have higher residual norm than other function
numbers.

Detailed synthesis.

Figure 11 shows the force displacement curves of the de-
tailed synthesis of function number 7. It shows that when η =
0.00, there is a positive stiffness. When η = 0.02, the force is
nearly constant between a displacement of 0.25 m and 0.75 m.
The mean force between these displacements is 0.45 N with a
maximum difference of 1.8%. When η is larger than 0.02, the
stiffness becomes negative. When the values of η are getting
higher, the curve gets more bent.

Another observation is that there is a large stiffness at the
beginning and end of the displacement, regardless of the value of
η .

Experiment.

The resulting force displacement curves of the baseline mea-
surements are shown in figure 12. The shaded areas represent the
data points of all five measurements. It shows that the measure-
ments are repeatable, because these shaded areas are small. The
measurement also shows that there is a significant amount of hys-
teresis in the tape springs, which is the largest in the second tape
spring. Both tape springs show many irregularities. Both tape
springs show large peaks around 0.48m and 0.58m. The first
tape spring has less peaks and less hysteresis and is therefore
used for the other experiments.

Figure 13 shows the measurements of the tape springs with
the subtended angle profiles cut out. The figure shows that these
measurements are repeatable as well. The black dashed line is
the mean line of the both average hysteresis lines. The average
value of this line is 0.46 N. This line is the line where the two
curves are mirrored, and therefore it represents where the x-axis
should be.

Figure 14 shows the curved line, shifted so that the average
line matches the x-axis. The hysteresis of this curve is 53 %.
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FIGURE 9. FORCE DISPLACEMENT CURVES OF SYNTHESIZED TAPE SPRING PROFILES.
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FIGURE 10. NORM OF RESIDUALS OF FITTED POLYNOMI-
ALS. VALUES ARE NORMALIZED TO THE MAXIMUM VALUE.

DISCUSSION
Force Displacement Curves.

The stiffening at the start and end of the displacement is
caused by the transition regions that reach the clamping. The
tape spring wants to flatten in transverse direction, which is pre-
vented by the clamping. This results in a high stiffness.

Function number 7 has the largest norm of the residuals.
This is because the force displacement behavior of this geom-
etry increases, while the desired force displacement behavior is
a constant. The resulting force displacement curve is therefore
one order higher than desired. The reason for this behavior can
be explained by the fact that the energy within the transition re-
gion scales progressively with the subtended angle. With a linear
increasing subtended angle profile, this results in a progressively
increasing energy profile and therefore a stiffness is induced.

Function number 13 has the second highest norm of the
residuals. This is because there is no proportional term in the de-
sired force function. When the proportional term is added to the
force function, the norm of the residuals is lower than 0.1. The
force displacement curve however is still progressively decreas-
ing, so the desired force displacement behavior can be obtained
using the synthesis method.

Function number 2 and 12 have the third highest norm of the
residuals. Both of these function show a curved line instead of
a linear in-/decreasing force displacement curve. The resulting
force displacement behavior is therefore, just as function num-
ber 7, an order higher than the input force displacement curve.
The norm of the residuals of function number 2 and 12 is how-
ever three times smaller than the norm of the residuals of number
function, so this behavior is less significant.
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FIGURE 11. FORCE DISPLACEMENT CURVES OF DETAILED
SYNTHESIS FOR DIFFERENT VALUES OF η .

FIGURE 12. BASELINE MEASUREMENTS OF TWO DIFFER-
ENT TAPE SPRINGS. SHADED AREA IS DATA OF DIFFERENT
MEASUREMENTS. DASHED LINE IS MEAN VALUE OF HYS-
TERESIS LOOP.

FIGURE 13. MEASUREMENT OF CURVED TAPE SPRING.
SHADED AREA IS DATA OF DIFFERENT MEASUREMENTS.
COLORED DASHED LINE IS MEAN VALUE OF HYSTERESIS
LOOP. BLACK DASHED LINE IS MEAN VALUE OF BOTH LOOPS.

FIGURE 14. MEASUREMENT OF CURVED TAPE SPRING,
SHIFTED TO RIGHT HEIGHT. SHADED AREA IS DATA OF DIF-
FERENT MEASUREMENTS. COLORED DASHED LINE IS MEAN
VALUE OF HYSTERESIS LOOP.
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FIGURE 15. CLOSE UP OF PRODUCED TAPE SPRING. RED
BORDER SHOWS DENTS IN MIDDLE OF TAPE SPRINGS.

Detailed synthesis.
By using a higher order polynomial than the linear curve

of function number 7, a more constant force-displacement curve
is obtained. At higher values of η , the stiffness becomes nega-
tive, just as in function number 12. This makes sense, because
the function then become the same as the geometry of function
number 12, which is also has negative stiffness behavior.

Experiment.
The base line measurement was performed with a tape

spring with a constant subtended angle and therefore it should
have a zero force displacement curvature. The experiment how-
ever showed a curve with a lot of irregularities. In order to un-
derstand these peaks, the production process of the tape springs
will be explained.

Ideally the tape spring would be rolled to get a constant cur-
vature in transverse direction. The yield strength of the spring
steel however was too high, which resulted in a large spring back
and a radius of 100 mm instead of 21 mm. To obtain a smaller
tape spring radius, the curve was approached by multiple small
sharp bents in the bending machine. Therefore the tape spring
did not have a constant curvature, but it had locally high and
low curvatures. The tool of the bending machine had a length
of 0.5 m and therefore this process was done in two steps. This
resulted in small dents in the middle of the tape spring, as shown
in Fig. 15.

The produced tape springs had a tape spring radius of
19 mm, which is 2 mm smaller than specified. When the radius
is too small, the stress within the tape spring will be too high,
which results in plastic deformation. Because this plastic defor-
mation was unavoidable, the tape spring were plastic deformed
on purpose in a controlled way. This is done by first flatten the
tape springs in transverse direction in a rolling machine. The
next step was roll bending in longitudinal direction. The third
step was folding the tape springs 180◦ by hand and applying the

displacement over the whole range of motion.
This way of producing tape springs result in non-constant

tape springs with a lot of imperfections. The force displacement
behavior of the tape spring is however very sensitive for these
imperfections. The peaks for example shown in Fig. 12 at 0.48 m
and 0.58 m occurred at the moment the dents in the middle of the
tape spring entered the bent region.

Therefore, future research should be done on how a tape
spring should be produced.

CONCLUSION
Theoretically tape loops can be used to act as an all-purpose

force generator. All fifteen unique force displacement behaviors
could be obtained using the presented synthesis method.

The synthesis method only gives a rough estimation of the
tape spring behavior. By using the knowledge of [11], the tape
springs can be optimized for the desired behavior, which is done
for a non-zero constant force tape loop.

The fabrication of tape springs however, remains challeng-
ing. Furthermore, tape springs are very sensitive for fabrication
errors, which makes it even more challenging to produce tape
springs which are able to act as force generators.
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5
Discussion

The first goal at the start was to find an analytical description of the total energy state of the tape spring
with varying subtended angle. This analytical description was found for the bent region. For the energy
in the transition region however, this was more complex. Several attempts were performed to describe
the energy in the transition zones. The difficulty is that both the length of the transition regions and
the distribution of the energy within the transition regions do not scale linearly with the subtended
angle. In the end, a synthesis method without the transition regions could approach the required force
displacement behavior. In order to synthesize the geometry for a given force displacement behavior
exactly, the transition regions should be taken into account.

For the finite element simulation of the folded tape springs, a software package based on IGA was
used. This software package turned out to be very sensitive for the given simulation parameters. The
main parameters that influenced the solvability of the simulation were the number of time steps and
the refine count of the geometry. When a wrong combination of parameters was used, the whole
simulation did not solve. Therefore a lot of attempts needed to be made in order to find parameters
that did solve. Eventually by using a cluster, a lot of simulations could be run simultaneously, which
accelerated the process of finding the right parameters.

The tape springs for the experiment were not produced in an optimal way. The main problem was that
the forming process of a thin spring steel plate with high yield strength is challenging, because of the
high spring back. A possible way of improving the manufacturability is by performing the forming pro-
cess before performing the hardening process of the steel plate. This can however results in unwanted
and unknown prestresses in the material. Another difficulty was cutting the subtended angle profile in
a curved steel plate. This problem could be solved by cutting the profile in a flat plate before applying
the forming process. The downside of switching the processes is that the forming process will be more
complicated. Another solution for the manufacturing problems could be using another material such
as plastics or composites.

Although tape loops are promising, there are also several limitations. The hysteresis is very high,
which can probably be caused by constant plastic deformation. When this is the case, a solution for
the hysteresis could be using tape spring with a higher radius, because a higher radius would results
in lower stresses and therefore no plastic deformation. Another drawback is that at higher scale, the
weight of the tape loop itself becomes dominant. Therefore a tape loop at higher scale is not suitable
for applications where the input motion is vertically. There is a trade-off between large energy storage
and the range of motion. This is because the energy storage increases with higher subtended angles
while the range of motion decreases. The length of the transitions regions and the energy within
these regions does increase with higher subtended angles as well. While the transition regions are
not incorporated into the synthesis method, this will results in synthesized geometry with less accurate
force displacement behavior. Therefore the subtended angle should be preferably not too high.

Overall, when the production issues are solved, tape loops can be interesting for small scale applications
where a simple monolithic solution is required.
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6
Conclusion

In this thesis a method was presented to synthesize force generators with a custom force displacement
behavior using two fold tape loops.

The thesis started with introducing a way to quantify the level of customizability of force generators with
custom force displacement behavior. This method consists of fifteen force displacement curves that
all describe a unique force displacement behavior, based on their force, stiffness and the derivative of
stiffness which can either be positive, zero or negative. Eight different force generators with a custom
force displacement curve were found and analyzed using these fifteen curves.

In the next chapter, the influence of varying the subtended angle on the behavior of folded tape springs
was investigated. The two main subjects of the chapter were the energy state of the tape spring and
the tape spring radius under influence of the subtended angle. It was discovered that a significant
part of the strain energy is stored in the transition regions. The distribution of the energy between
the transition region and the bent region is not constant for different subtended angles, while the part
of the energy within the transition region gets larger for higher subtended angles. The fold radius
that should be used for calculating the energy within the bent regions is found to be 𝜋 instead of 𝜋.
Another conclusion of this chapter is that the fold radius is not equal to the tape spring radius, despite
suggestions otherwise in other papers. The fold radius even gets larger for smaller subtended angles
which can be explained by that it starts to behave like a leaf spring. However, when the subtended
angle is above 100 degrees, the fold radius remains nearly constant with a value of 5% larger than the
tape spring radius. A tape loop can therefore act as a linear guide when keeping the subtended angle
above 100 degrees.

In the fourth chapter, this knowledge was used to construct a synthesis method for the synthesis of
a force generator with custom force displacement behavior using two fold tape loops. The fifteen
unique force displacement curves that were presented in the second chapter were used as input of
the synthesis model to calculate fifteen geometries. These resulting fifteen geometries were simulated
in a finite element model to validate their behavior. The FEM model showed that all the synthesized
geometries had similar force displacement behavior as the input of the synthesis method. The geometry
with constant force behavior however still showed a small stiffness. Therefore that geometry was
optimized for zero stiffness behavior. Using the knowledge of the second chapter, the geometry could
be optimized for obtaining a non-zero constant force characteristic. This showed that 1) the synthesis
method can be used to calculate geometries that approach the desired force displacement behavior
and 2) tape loops with varying subtended angles can be used as force generator which can achieve
all fifteen force displacement curves. The tape spring geometry with non-zero constant force behavior
was produced and tested in the experiment. The produced tape spring with a constant subtended
angle already had irregularities in its force displacement curve, while this geometry should results in a
zero force and zero stiffness mechanism. Therefore the tape spring with the constant force geometry
resulted in a force displacement path with irregularities as well. The force displacement path of this
tape spring has made a shift upwards, which means that the geometry exerts a force. It can be
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concluded that producing a tape spring is challenging while the force displacement curve of a tape
spring is very sensitive to fabrication errors.

In conclusion, all fifteen unique force displacement behaviors can be obtained using tape loops, so
therefore tape loops can be synthesized as all-purpose force generators.
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