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Abstract

The decarbonization of economies around the world is crucial for reducing the impact of
human-induced climate change. Many proposed means to achieve this decarbonization
like the electrification of various sectors or the introduction of ‘new’ forms of energy such
as hydrogen and carbon capture and storage require existing energy infrastructures to
be expended or entirely new energy infrastructures to be created. Since energy networks
are capital intensive, minimizing their construction costs is essential for their realization.
Previous works studying the cost minimization of energy networks often neglect that
their construction costs can be influenced by geographical areas such as mountain ranges,
existing infrastructures or zoning rules. Using methods borrowed from graph theory
and geometrical computing, a method has been developed that is able to find cost-
optimal energy infrastructures in a spatial context of geographic regions with different
costs for constructing power cables or pipelines through them. The method models these
geographical areas as triangles on which borders a user-defined number of points are
uniformly placed representing potential entry and exit points for pipelines or power cables.

Experimenting with 144 randomly generated routing problems has shown that, on
average, increasing the number of these placed border points results in a reduction of the
total network costs. Although, this effect flattens when more than 7 of these points are
placed. The method is applied to two offshore electricity networks in the Dutch North sea.
These cases demonstrate the method’s strength in identifying trade-offs between energy
networks’ investment costs and their (negative) influence on their spatial surroundings.
Additionally, the method’s outcomes are well-suited to be used as a springboard for
dialogue in energy infrastructure decision-making processes. Further research could focus
on the extension of the model, by including existing connections, or the improvement of
the model, by implementing a different method for modelling geographical areas that has
a higher accuracy and is computationally faster.

iii



Contents

List of Figures vi

List of Tables viii

List of Equations ix

1 Introduction 1
1.1 A growing demand for new energy infrastructures . . . . . . . . . . . . . . . 1
1.2 The identified knowledge gap: lack of spatial cost-

differentiation in energy infrastructure modelling . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical framework 4
2.1 Energy infrastructure modelling . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The weighted region shortest path problem . . . . . . . . . . . . . . . . . . 7
2.4 Steiner trees in a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 The minimum cost weighted region steiner tree . . . . . . . . . . . . . . . . 11

3 Methodology 12
3.1 Preparing the weighted regions for model input via

triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Creating subgraphs from the triangulated regions . . . . . . . . . . . . . . . 14
3.3 Connecting the terminals with the triangulated regions . . . . . . . . . . . . 17
3.4 Determining the steiner minimum tree . . . . . . . . . . . . . . . . . . . . . 19
3.5 Determining the minimum cost weighted region steiner tree . . . . . . . . . 20

4 Model verification and validation 24
4.1 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Generating 1140 random experiments . . . . . . . . . . . . . . . . . . . . . 25
4.3 Impact of the number of placed steiner points on the relative network costs 26
4.4 Impact of input parameters on the model’s run time . . . . . . . . . . . . . 29

5 Case studies on offshore electricity networks on the North Sea 31
5.1 Natura 2000 areas as weighted regions . . . . . . . . . . . . . . . . . . . . . 31
5.2 Power cable route from wind park Doordewind to the main shore . . . . . . 33
5.3 Dutch North Sea wind park design of 2050 . . . . . . . . . . . . . . . . . . . 35

6 Cost-optimal electricity infrastructures on the North Sea 38
6.1 Connecting offshore wind park Doordewind to the main shore . . . . . . . . 38
6.2 Exploration of the North Sea’s electricity

infrastructure of 2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



7 Using energy network modelling in decision-making processes 43
7.1 Advantages and disadvantages of using graph theory models in decision-

making processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Using the developed model in the Doordewind wind farm decision-making

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 47

9 Discussion 49
9.1 Limitations of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.2 Validity of the case studies assumptions . . . . . . . . . . . . . . . . . . . . 50
9.3 Validity of the case studies results . . . . . . . . . . . . . . . . . . . . . . . 50

10 Recommendations 51
10.1 Policy recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2 Other applications of the model . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Bibliography 53

A The problem with assigning negative weights to weighted regions 58

B Algorithms used in the model 59
B.1 Decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 Bowyer-Watson algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C Verification data 61

D Offshore wind park data 62

v



List of Figures

2.1 A graph consisting of four nodes and five edges . . . . . . . . . . . . . . . . 5
2.2 Example of several sink and source nodes to be connected . . . . . . . . . . 6
2.3 A Minimum Spanning Tree based on edge lengths . . . . . . . . . . . . . . . 7
2.4 A Steiner Minimum Tree problem . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 A Convex (l) and Concave (r) Polygon . . . . . . . . . . . . . . . . . . . . . 12
3.2 A Simple Polygon (l), A Simple Polygon with a Hole (m) and Non-simple

Polygon (r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Convex decomposition of a concave polygon . . . . . . . . . . . . . . . . . . 13
3.4 The Delaunay triangulation of a Convex Polygon . . . . . . . . . . . . . . . 14
3.5 The Delaunay triangulation of a Concave Polygon . . . . . . . . . . . . . . 14
3.6 Adding m = 1 (top) and m = 2 (bottom) Steiner points to triangulated

regions and connecting the nodes . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 The area of an example with two terminals and two triangulated faces . . . 16
3.8 Two terminals on opposite river banks [27] . . . . . . . . . . . . . . . . . . 16
3.9 Application of Lee’s visibility algorithm . . . . . . . . . . . . . . . . . . . . 18
3.10 Minimum path heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Distance network heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 The capacity assignment procedure . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Edge Turn heuristic to search for the MCST . . . . . . . . . . . . . . . . . . 22

4.1 Graph G used for the verification process . . . . . . . . . . . . . . . . . . . 24
4.2 Model runs with face weights fce = [0.25, 1, 1.5, 2] . . . . . . . . . . . . . . . 25
4.3 Randomly generated example with two triangles (in blue), ten nodes (in

red) and one placed Steiner point (in green) . . . . . . . . . . . . . . . . . . 26
4.4 Boxplot of the relative network costs at different amounts of placed steiner

points m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Boxplot of the relative network costs at different amounts of placed steiner

points m without outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Line diagram of the effect of m on the average relative costs and the

computational time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Overview of the EU’s Natura 2000 areas [23] . . . . . . . . . . . . . . . . . 31
5.2 The Dutch and German Natura 2000 areas of the North and Baltic Seas . . 32
5.3 Considered routes connecting offshore wind farm Doordewind [86] . . . . . 33
5.4 Considered routes connecting wind farm Doordewind in more detail [86] . . 34
5.5 Conceptualization of Doordewind power cable routing problem . . . . . . . 34
5.6 Designated search areas for future wind farm development [66] . . . . . . . 35
5.7 The Dutch electricity grid [76] . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Conceptualization of the North Sea’s 15 wind parks routing problem . . . . 37

6.1 The tipping point of the Doordewind routing problem . . . . . . . . . . . . 38
6.2 North Sea’s future wind park sites with fc = 1.0 . . . . . . . . . . . . . . . 41

vi



6.3 North Sea’s future wind park sites with fc = 1.5 . . . . . . . . . . . . . . . 41
6.4 North Sea’s future wind park sites with fc = 2.0 . . . . . . . . . . . . . . . 41

7.1 The six investigated routes to connect wind park Doordewind . . . . . . . . 44
7.2 Conceptualization of Doordewind power cable routing problem . . . . . . . 45
7.3 The Dutch and German Natura 2000 areas of the North and Baltic Seas . . 45

A.1 Steiner Minimum Tree problem with a weighted region with a negative weight 58

B.1 Convex decomposition of a concave polygon . . . . . . . . . . . . . . . . . . 59
B.2 A triangle with its circumcircle . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.3 A Delaunay Triangulation by using the Bowyer-Watson algorithm [72] . . . 60

C.1 Model runs with region weights fc = [0.25, 1, 1.5, 2] . . . . . . . . . . . . . . 61

vii



List of Tables

2.1 Examined Minimum Weighted Region Shortest Path Problem Algorithms . 8
2.2 Evaluated Minimum Weighted Region Shortest Path Problem Algorithms . 10

4.1 Design of random experiments . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Independent Student t-test results . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Spearman rank correlation test results . . . . . . . . . . . . . . . . . . . . . 30

6.1 Relative costs of connecting wind park Doordewind at different face weights 39
6.2 Relative costs of the network connecting the Dutch North sea’s wind park

sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C.1 Nodes’ coordinates of verification example . . . . . . . . . . . . . . . . . . . 61
C.2 The costs of paths under different region weights . . . . . . . . . . . . . . . 61

D.1 Offshore windpark data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



List of Equations

2.1 Cost function for determining the cost of an energy network . . . . . . . . . . 7
3.1 Costs for edges in or on the side of a weighted face . . . . . . . . . . . . . . . . 15
3.2 Costs for edges in or on the side of a weighted face . . . . . . . . . . . . . . . . 16
3.3 Definition of the model run’s area . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Cost function of the minimum cost weighted region spanning tree . . . . . . . 21
4.1 Cost function of the minimum length weighted region spanning tree . . . . . . 27

ix



1. Introduction
1.1 A growing demand for new energy infrastructures

Greenhouse gas emissions emitted by humans are raising the temperature of the atmos-
phere, ocean and land. Today, climate extremes such as heat waves, heavy precipitation,
droughts and tropical cyclones are already more frequent due to this human-caused climate
change. If greenhouse gas emissions are not significantly reduced in the coming decades,
these weather extremes will become even more common and dire [39]. In order to reduce
these negative effects of human-induced climate change, 175 countries have agreed to
make an effort to keep the global average temperature below 2◦C above pre-industrial
levels with the aim of limiting the increase of the global average temperature to 1.5◦C by
decarbonizing their economies.

The electrification of economies around the world, combined with increased investments
in renewable energy sources and the introduction of ‘new’ forms of energy such as hydrogen
are means that can contribute to the reduction of greenhouse emissions while supporting
the global economy with the energy that it needs [38]. Successfully satisfying these
sustainability energy challenges requires existing infrastructures to be expended or entirely
new energy infrastructures to be created [32]. Examples of energy networks that contribute
to the reduction of CO2 emissions are [33]:

• Biogas networks can be employed to reduce the consumption of natural gas. Farms
in rural areas often produce a larger volume of biogas than they need to satisfy their
own demand for energy. With a biogas network, the superfluous biogas of these
farms could be transported to other nearby farms that are not self-sufficient in their
energy demand. Another option is to connect the farms to existing infrastructures
so they can supply local or national gas networks.

• Actors in industries that emit a lot of greenhouse gas emissions often advocate for
carbon capture and storage (CCS). It is a method that captures CO2 directly at
the location where it is produced like power plants or steel mills and subsequently
transports it as a commodity to storage facilities like subsurface salt caverns, instead
of emitting the gas to the atmosphere. There are plenty of underground formations in
which the entire global greenhouse gas emissions could be stored for years. However,
the availability of storage capacity differs significantly between continents [53]. Hence,
constructing a large-scale CO2 network could arguably contribute to a significant
reduction of greenhouse gas emissions.

• Hydrogen could play a major role in the energy mix of the future with its versatile
applications in industry, transport, the built environment and the electricity sector
[18]. A major barrier to the energy carrier’s development is the lack of a large-scale
transport infrastructure [5]. Realising such a large-scale network in Europe would
allow for the cost-effective transportation of hydrogen from countries where it will
be cheap to produce, like the Netherlands which will have access to a lot of offshore
generated wind energy, to densely populated areas with a high demand for energy
such as Northern Italy and Southern Germany [36].

• The North Sea is surrounded by countries like the UK, Germany, Denmark, Norway,
Sweden, Belgium and the Netherlands that all have huge ambitions to develop
offshore wind parks in the coming decades. The latter country even plans on
increasing its installed offshore wind capacity from 2.5 GW to 61.5 GW in the
next thirty years [66]. Designing an offshore electricity infrastructure that is able to
transport the generated energy to shore will be crucial for the realization of these
ambitions.
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All of these energy infrastructures that transport different energy commodities share
several characteristics that complicate their development. The energy networks all have
a long lifetime that often spans over several decades, which makes altering them once
they are developed difficult and the design of their layout and capacities all the more
important. Moreover, these networks are developed in a complex and uncertain social-
technical context, with unknown future participants whose demand of supply can fluctuate
over the years. Lastly, these networks are all capital intensive. The design and development
of infrastructures usually require billions of euros of capital investment [55]. Minimizing
the development costs of energy infrastructures is therefore essential for their development.

1.2 The identified knowledge gap: lack of spatial cost-
differentiation in energy infrastructure modelling

One method to minimize the construction costs for energy infrastructures is to base
the layout design of energy infrastructures on the outcomes of energy network cost-
optimization models. There are many academic works that use models to search for cost-
optimal energy networks for the design of networks that transport different commodities
like hydrogen, biogas and liquefied natural gas [5, 33, 34]. However, most of these works
that studied the cost-optimization of energy infrastructures neglect demarcated spatial
areas that complicate the routing of pipelines on power cables [36].

These spatially demarcated regions can be geographical obstacles like bodies of water or
mountains, existing infrastructures or buildings or zoning rules (e.g. protected areas [4]). If
cost-minimization models of energy infrastructures do make a distinction between different
types of terrain, it is only between urban and rural areas [84], or onshore and offshore
locations [43]. In other studies, different geographical limitations are considered, but are
modelled in the form of exclusive boundaries or no-go areas that pose strict limitations
on potential pipeline or power cable routes [34]. In actuality, these regions do allow for
pipeline or power cables to be developed in these areas, but at greater costs. Including
these spatial hindrances in energy network modelling would improve the alignment of these
models with reality [32].

Surprisingly, despite the fact that it has never been studied to the knowledge of
the author, academic literature frequently mentions the added value of including spatial
regions that allow for cost-differentiation in energy modelling. Almaraz et al. [16] remark
for example that geographic constraints could be introduced in modelling or geographic
information systems (GIS) could be used to validate the feasibility of results of conducted
infrastructure planning research. The International Energy Agency [37] goes even further
and claims that transmission costs can only be realistically estimated if knowledge of
geographical parameters is available.

1.3 Research questions

To answer the academic call described in the previous section, to incorporate geographical
hindrances into energy infrastructure modelling, this research strives to expand the know-
ledge base of energy modelling by incorporating geographical cost-differentiation zones.
The following main research question has been formulated with the aim to close this
discovered academic gap:

How can geographical cost-differentiation be included in energy network cost-
minimization models?

To answer the main research question above, the following five subquestions have been
formulated:

2



1. How can cost-minimal energy networks be modelled?

2. How can geographical cost-differentiation regions be modelled?

3. What input parameters influence a geographical cost-differentiation energy
network cost-minimization model’s performance?

4. How does including geographical cost-differentiation in energy network modelling
influence the discovered networks?

5. How can a geographical cost-differentiation energy network cost-minimization
model be used in energy infrastructure decision-making processes?

1.4 Research structure

Chapter 2 answers the first two subquestions by sketching a theoretical framework based
on academic literature on energy network modelling and mathematical problems that
deal with spatial cost-differentiations. Next, chapter 3 uses the knowledge presented in
the theoretical framework to describe the methodology used to develop the geographical
cost-differentiation energy network cost-minimization model. Chapter 4 answers the third
subquestion by visually and statistically analyzing the relations between the model’s input
and output parameters. Hereafter, chapters 5 and 6 answer the fourth subquestion by
presenting and discussing the outcomes of two case studies of offshore electricity networks
on the North Sea of different scales. Subsequently, chapter 7 provides the answer to
the fifth subquestion by discussing the role of network models in energy infrastructure
decision-making processes. Next, chapter 8 provides the research’s conclusion after which
chapter 9 will discuss the developed model’s results, assumptions and demarcation. Lastly,
chapter 10 gives recommendations for policy makers and future research.
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2. Theoretical framework
This chapter provides an overview of the existing academic literature on the modelling
of network energy infrastructures and geographical cost-differentiation regions with the
aim to select the methods that are most suitable for incorporating geographical cost-
differentiations in network energy modelling. Section 2.1 elaborates on three different
approaches for solving networked system design problems and argues why network theory is
the best suited approach for designing networked energy infrastructures. Hereafter, section
2.2 dives deeper into various energy infrastructure design problems that can be solved with
a network theory approach. Next, section 2.3 describes and compares different algorithms
that solve the Minimum Weighted Region Shortest Path Problem. Subsequently, section
2.4 discusses two algorithms that provide solutions to the Steiner Minimum Tree problem.
Lastly, section 2.5 combines network theory and the weighted region problem, to introduce
the Minimum Cost Weighted Region Steiner Tree problem.

2.1 Energy infrastructure modelling

The design of networks has enjoyed great scientific interest in the last six decades. During
this period a wide variety of network design methodologies has been developed [77, 44].
Heijnen et al. [33] list three main modern approaches for resolving networked system
design problems, being agent-based modelling, Mixed Integer (Non-)Linear Programming
and graph theory. All of these approaches can be used to investigate the effects of a wide
variety of parameters such as uncertainty in demand patterns or network participants
and allows for multiple design criteria like reliability, resilience and cost-minimization
[34, 32, 33, 5]. However, there are some key differences between the three modelling
methods.

The first approach for modelling network design problems is using different agent-
based models like ant colony optimization (ACO) or particle swarm optimization (PSO)
models to search for cost-optimal network layouts. ACO models try to mimic the observed
behaviours of real ant colonies. The ants of these colonies relieve a chemical substance
called pheromone on the ground while walking from and towards a food source. Other ants
use their ability to sense different concentrations of pheromone in their surroundings and
tend to follow the routes where the pheromone concentration is higher. As an emerging
effect, the ants are able to identify and transport sources of food in an effective manner,
which makes simulating ant behaviour in models suitable for various routing problems
[12]. Heijnen et al. [32] developed an ACO routing model to find a cost-optimal topology
that connects a single source to multiple sinks. In his master thesis, Nguyen [57] expended
this model to allow for situations with multiple sources and multiple sinks.

Particle swarm optimization (PSO) models use biologically derived algorithms that
share the underlying rationale that a member of a group can benefit from the experiences
of other members of the same group [41]. Liu et al. [51] used a PSO model for finding a
Steiner Minimum Tree for the development of oil- and gas transportation networks.

A second approach formulates the networked system design problem as a Mixed Integer
(Non-)Linear Programming (MI(N)LP) problem. MILP and MINLP problems try to
optimize an objective function under a set of linear or non-linear constraints, respectively.
Using the MI(N)LP approach to model energy infrastructures requires that all the potential
power cable or pipeline connections are already laid down in these constraints beforehand.
This is not a necessity for the other two approaches, which have more freedom in that
aspect. A large benefit of the MILP approach is that it is not constricted to minimizing or
maximizing one objective at a time, but can simultaneously optimize multiple objectives
[30]. Thapalia et al. [77] have used a stochastic demand MINLP model to search for a
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cost-minimum single commodity - such as oil or gas - network consisting of a set of edges
that connect multiple sources with multiple sinks. Gorenstein Dedecca et al. [28] used a
MILP model to design an offshore electricity grid that connects offshore wind parks to the
mainland.

The third approach and most popular methodology for modelling networks in use
today is the approach of graph theory. Graph theory is a computationally fast modelling
approach that has been studied and applied on numerous occasions in the energy field such
as in the design of large-scale hydrogen networks [7, 65] and local steam pipeline networks
[35]. Because the approach has been widely utilized in the domains of system engineering
and energy network modelling, it is simpler to build upon these earlier academic efforts
[33]. Furthermore, graph theory allows for quick visualisation of found solutions which
makes it easy to communicate the method’s results with stakeholders. Additionally, these
visualisations contribute to the comprehensibility of the method’s outcomes for actors
who are not familiar with mathematical models. These observations are in line with the
findings of Zarghami et al. [87] who claim that graph theory is well suited to support
system engineers and policy makers in the design of energy infrastructures. On top of
that, graph theory is the only of the three methods that was specifically developed to
analyse networks, while ACO, PSO and MILP models originate from different fields of
research.

Unlike the MI(N)LP approach, graph theory and agent-based modelling do not require
that all potential connections are predetermined, which makes them more flexible and
applicable to a larger range of network modelling problems. In a direct comparison of
graph theory with an ABM ACO routing model, Heijnen et al. [34] found that graph
theory was the more rigid of the two methodologies. These advantages over the methods
combined with the gains that can be achieved by using graph theory that were stated
earlier, make graph theory the most suitable method for modelling the cost-minimization
of energy networks.

In summary, this section has investigated the advantages and disadvantages of three
different modelling approaches and has highlighted graph theory as the best approach for
modelling energy networks. The following section will explain how graph theory can be
used to search for cost-optimal energy infrastructures.

2.2 Graph theory

Graph theory finds its origin in the first half of the 18th century. Back then the problem
of the Seven Bridges of Köningsberg, a city in Prussia, kept mathematicians busy. The
issue at hand was whether one could walk through the city by crossing each of the seven
bridges once and only once. When Leonhard Euler proved in 1736 that there was no such
walk possible by depicting the two islands and two riverbanks as four nodes and the seven
bridges as edges, graph theory was born [20].

Figure 2.1: A graph consisting of four nodes and five edges
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Graph theory is a field in mathematics that studies, not surprisingly, graphs. A graph
consists of two sets; a set of nodes or vertices N : {n1, n2, ..., nn} and a set of edges E:
{e12, e23, ..., eij} that connect these nodes [79]. Figure 2.1 shows a simple graph with the
nodes N : {n1, n2, n3, n4} and edges E: {e12, e13, e23, e24, e34}.

Geometric graph theory is a specialization of graph theory that studies geometric
graphs. In geometric graphs, nodes are points in the geometric space, like a 2D-space, and
edges are straight lines that connect these points [59]. In other words, geometric graphs
are graphs in which the spatial position of its nodes is of essence.

An energy infrastructure network can be depicted as a geometric graph. One of the
characteristics of energy infrastructures is that they transport a commodity such as oil,
gas or hydrogen from sites of one or several producers to another location of one or several
consumers [34]. Geometric graph theory can be used to model these locations with either
a supply or demand of the commodity as source or sink nodes, respectively. Figure 2.2
shows an example of several sink and source nodes.

Figure 2.2: Example of several sink and source nodes to be connected

In order to be able to transport the energy commodity from the source or sink nodes,
these nodes will need to be connected via edges that represent pipelines or power cables.
The development of energy networks is a complex process due to the substantial capital
investments required [55]. Since the construction costs of energy infrastructures are greatly
dependent on the length of the edges [34], minimizing the total length of the network could
significantly reduce the required investment costs.

A tree is a graph that does not contain cycles. This entails that there is only one path
from each of the connected nodes to every other connected node. A graph that does not
have any cycles and connects all the nodes is classified as a spanning tree [9]. The problem
of connecting all the nodes in a weighted graph whose edges represent possible links and
whose edge weights represent the edge’s length or construction costs while minimizing the
graph’s total length or costs is a well-known problem in graph theory named the Minimum
Spanning Tree (MST) problem [29]. The two most famous algorithms for solving the
MST problem were proposed by Kruskal [46] and Prim [60] in 1956 and 1957, respectively.
However, the first known algorithm to solve the MST problem stems from the Czech
mathematician Otakar Bor̊uvka as far back as 1926. Figure 2.3 shows a minimum spanning
tree that connects all the nodes of figure 2.2 where the weights of the graph’s edges are
based on the edge lengths.

Basing the design of an energy infrastructure solely on the minimal construction
costs does not come without trade-offs. Although minimum spanning trees score well on
reducing the network’s development costs, the networks are highly vulnerable to disruptions.
In the example of the MST depicted in figure 2.3 a fallout of edge e34, would have significant
consequences for nodes 2, 4 and 6, who would be completely cut off from their commodity
supply.
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Figure 2.3: A Minimum Spanning Tree based on edge lengths

In reality, the costs of energy infrastructures are not solely based on the length of the
pipelines or cables, their capacity plays an important role as well [32, 34, 55]. Melese et
al. [55] presented a cost function to determine the costs of energy infrastructures that
takes both a pipeline’s length and its capacity into account. In their method the costs
of constructing an edge e are defined as Ce = leq

β
e . Here le is the length of edge e and

qe is the capacity of edge e. The exponent β is the cost exponent for the edge’s capacity
that represents the economies of scale that occur when installing pipelines with a larger
capacity for which holds that 0 ≤ β ≤ 1 [33]. If β = 0, the edge’s capacity has no
influence on the edge’s cost. When β = 1 building two pipelines with a capacity of 1 is
just as expensive as building one pipeline of a capacity of 2. Generally, when modelling
energy networks, β takes on a value of 0.6 indicating that economies of scale play a role
when building pipelines with a higher capacity [35]. Equation 2.1 shows the function for
determining the total investment costs C(T ) of a network T , which is found by taking the
sum of the costs of all the network’s edges.

C(T ) =
∑

∀e∈E(T )

leq
β
e (2.1)

In graph theory, the problem of connecting all the nodes in a weighted graph whose edges
represent possible links and whose edge weights represent the construction costs based
on the edge’s length and the edge’s capacity is named the Minimum-Cost Spanning Tree
(MCST) problem. Section 3.4 will elaborate on several methods that can be used to solve
this MCST problem.

In this section, graph theory was used to conceptualize energy networks as edges
representing pipelines or power cables that connect sink or source nodes representing sites
with either a demand or a supply for an energy commodity. The costs of these energy
infrastructures can be determined via the capacity and the length of these edges.

Before the ultimate goal of incorporating geographical cost-differentiation in the graph
theory framework can be reached, it is necessary to understand how geographical areas
with varying prices of constructing energy infrastructures in them can be conceptualized.
Therefore, the next section will elaborate on a mathematical problem, called the weighted
region shortest path problem, that does just that, and will select a method to solve this
problem which is suitable to be incorporated in the presented graph theory methodology.

2.3 The weighted region shortest path problem

One of the most studied problems in geometry, robotics and graph theory, is the shortest
path problem. An optimal shortest path is the path from a source to a destination node
where the (weighted) length of the path is minimized [52]. A variant of this shortest path
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problem between two points is the problem of determining the shortest path between two
points in the plane in the presence of geographical polygonal obstacles. In this problem,
the route of the path is limited by obstacles or ‘no-go areas’ that are considered to be
impenetrable [32, 34].

A generalization of the shortest path problem with obstacles is the Weighted Region
Shortest Path Problem (WRSPP) which was first described by Mitchell and Papadimitriou
in 1991 [56]. In this problem, the polygonal obstacles are not inaccessible but are now
polygonal regions which each have an associated weight that specifies the cost per unit
distance for travelling in that region. Where in the shortest path problem with obstacles
the regions in the plane have weights of either 1 or +∞ depending on whether a region
is surpassable or an obstacle, the regions in the weighted region problem can have any
weight in the range from 0 to +∞. Appendix A explains why assigning negative weights
to weighted regions is problematic. Mitchell and Papadimitriou define the problem as:
Given two points s and t and a plane P consisting of a set of faces f and face weights fc
find a path within P from s to t whose weighted Euclidean length is minimal among all
paths from s to t.

Since 1991 multiple algorithms have been proposed to solve the weighted region shortest
path problem, although most of the proposed algorithms are published by the same groups
of authors. De Carufel et al. [15] have shown that an optimal solution to the problem
cannot be computed exactly. Consequently, all examined algorithms are approximation
algorithms that are likely to produce solutions with an absolute or relative error compared
to the optimal solution. The algorithms found in the literature have been compared based
on their accuracy (the size of their maximum absolute or relative error), computational
complexity and difficulty to implement. An overview of the examined algorithms can be
found in table 2.1.

Table 2.1: Examined Minimum Weighted Region Shortest Path Problem Algorithms

Year Author(s) Type of Algorithm Weighted Regions

1991 Mitchell & Papadimitriou [56] Continuous Convex faces

1997 Mata & Mitchell [54] Discrete Convex faces

1997 Lanthier et al. [47] Discrete Triangulated faces

1998 Aleksandrov et al. [2] Discrete Triangulated faces

2000 Reif & Sun [63] Discrete Triangulated faces

2003 Aleksandrov et al. [3] Discrete Triangulated faces

2004 Roy et al. [69] Discrete Triangulated faces

Mitchell & Papadimitriou are the only authors that propose a continuous algorithm [56].
This entails that the solution space of their algorithm is way larger than that of the
other algorithms, since it is not limited to a discrete amount of options like that of the
other algorithms [40]. Consequently, the algorithm might be better able to approximate
the optimal solution. However, this larger solution space is likely to steeply increase the
algorithm’s computational complexity.

The examined algorithms make different assumptions on how to model the weighted
regions. The algorithms of Mitchell & Papadimitriou [56] and Mata & Mitchell [54]
both require that the weighted polygons are convex. This is not a generalization of the
problem, since simple polygons can be decomposed into convex sub-polygons [56], for
example with the diagonal decomposing method proposed by Fernández et al. [25]. All
the other algorithms assume that the weighted regions consist of triangulated faces. This
generalization of the weighted regions does not have to be a problem either, since convex
polygons can be triangulated into triangulated sub-polygons, for instance with Delaunay
triangulation [17]. Section 3.1 elaborates on the differences between convex, concave and
triangulated polygons.
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The algorithm of Mitchell & Papadimitriou uses a continuous Dijkstra’s method that
exploits the fact that light obeys Snell’s law of refraction and seeks the path of minimum
time. Therefore, they argue, that the shortest path through a region with a uniform
‘travelling weight’ should also follow Snell’s law. The computational complexity of their
algorithm is O(n8M), where n is the number of face vertices and M is a function of various
input variables including the number of faces and a relative error tolerance ε [56].

Mata &Mitchell have presented an algorithm that discretizes the problem by construct-
ing a pathnet graph which can be searched with Dijkstra’s algorithm to obtain an approxi-
mate shortest path. The algorithm’s time complexity is O(n3M), where n is the number of
face vertices and M is a function of multiple problem characteristics including the minimum
and maximum weight of the faces and the relative error tolerance ε [54].

Both the algorithms of Lanthier et al. and Aleksandrov et al. (1998) discretize the
weighted region problem by conceptualizing the regions as triangles with three vertex
points after which an m number of boundary nodes are placed along the edges of the
triangulated regions before Dijkstra’s algorithm is used to search for the optimal path.
Lanthier et al. [47] place the boundary points uniformly along the edges of the polygons,
while Aleksandrov et al. (1998) [2] use a logarithmic distribution for the placement of
the points. Both algorithms have a ε relative error. Additionally, the algorithm adopted
by Lanthier et al. has an absolute error of LWmax-absolute error that results from the
discretization where L is the length of the longest edge in the graph and Wmax is the
maximum face weight. The computational complexity of the algorithm of Lanthier et
al. is O(n

3

ε + n3logn) and that of Aleksandrov et al. (1998) is O(nmlog(nm). For both
algorithms, n denotes the number of face vertices. For the second algorithm, m denotes
a logarithmic function with multiple input parameters including the length of the longest
edge and the minimum angle between two edges.

Aleksandrov et al. (2003) [3] introduce another method of discretizing the weighted
region problem by placing extra points in the interior of the weighted faces instead of on
the faces’ edges. Because this method reduces the number of added points, the size of the
discretization is smaller and the computation complexity can be reduced to O( n√

ε
log n

ε log
1
ε )

where n is the number of face vertices and ε is the relative error.
Roy et al. [69] propose an algorithm that places boundary points on the edges of the

triangular faces as well. A first boundary point is placed in the exact middle of each edge.
Additional boundary points are placed in the middle of the previous center boundary
point and the triangle’s vertex until a user-defined minimum range ε near the vertex is
reached. The algorithm has a computational complexity of O(nmlog(nm)) where n is the
number of triangular faces and m is the number of Steiner points on the longest edge. The
approximation bound is (1+ 1

sin(θ)) where θ is the minimum angle incident at the vertices
of all triangular faces.

Reif & Sun [63] do not propose a new form of discretization (like the uniform or
logarithmic algorithms discretizations described above), but adopt a ”wavefront-like”
algorithm that can compute optimal paths on these discretizations more efficiently than
the shortest path finding Dijkstra’s method. Implementing this algorithm in the previously
described algorithms of Aleksandrov et al. (1998) and Lanthier et al. could respectively
match the computational complexity and relative error or reduce the time complexity from
O(n

3

ε + n3logn) to O(n3logn) and improve the algorithm’s accuracy: the relative error ϵ
is maintained, but the absolute error LW has now been eliminated.

Table 2.2 evaluates the algorithms described above on their accuracy, computational
complexity and difficulty to implement. The lighter the colour of the table’s cell, the
better the algorithm scores on the criterion. Due to the inexperience of the author with
implementing complex algorithms, algorithms that are regarded as hard to implement, are
deemed not feasible for the scope of this research.
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Table 2.2: Evaluated Minimum Weighted Region Shortest Path Problem Algorithms

Study Accuracy Computational complexity Implementation difficulty

Mitchell & Papadimitriou (1991) ε-relative error O(n8M) Hard

Mata & Mitchell (1997) ε-relative error O(n3M) Hard

Lanthier et al. (1997)
ε-relative error
LW -absolute error

O(n
3

ε + n3logn) Easy

Aleksandrov et al. (1998) ε-relative error O(nmlog(nm)) Medium

Reif & Sun (2000) ε-relative error O(n
3

ε + n3logn) Hard

Aleksandrov et al. (2003) ε-relative error O( n√
ε
log n

ε log
1
ε ) Hard

Roy et al. (2004) 1
sin(θ) O(nmlog(nm)) Medium

This leaves the algorithms of Aleksandrov et al. (1998) and Roy et al. and Lanthier et
al. [2, 69, 47]. The computational complexity of the first algorithm and the accuracy of
the second algorithm are dependent on the minimum angle among the triangular faces.
The performance of both algorithms declines a great deal if this minimum angle is rather
small. Therefore the algorithms’ performance will decrease if even one of the triangulated
weighted regions is skinny, entailing that the triangle’s height is far greater than its width
[81]. Since the algorithm will be used as part of a cost-optimization model for the design
of networked energy infrastructures, the weighted regions in practice are likely to have
all sorts of shapes; including concave polygons that will be triangulated into a number of
triangles, at least one of which is likely to be a thin triangle. Because of the implications
that the purpose of the model will bring, the algorithms of Aleksandrov et al. (1998)
and Roy et al. are not suitable for this research. As a result, the last standing algorithm
of Lanthier et al. will be implemented. This algorithm will be further elaborated on in
section 3.2.

The last two sections have elaborated on modelling cost-optimal energy infrastructures
and regions with different traversing costs independently. The upcoming section will
describe how these two distinct methods can be combined to incorporate geographical
cost-differentiations in energy network modelling.

2.4 Steiner trees in a graph

Section 2.2 introduced locations with a demand or a supply of an energy commodity
as sink and source nodes, respectively. Hereafter, section 2.3 conceptualized weighted
regions as triangles with vertex points and edges on which additional boundary points
are placed. When combining these conceptualizations to be able to design cost-optimal
energy infrastructures in a geographical context with weighted regions, the designer is
basically searching for a cost-optimal tree that connects all the source and sink nodes and
potentially uses the weighted obstacle nodes.

In graph theory, this problem is known as the Steiner Minimum Tree (SMT) problem.
Different from the Minimum Spanning Tree problem (MST) introduced in section 2.2, the
SMT does not require all the nodes of the graph to be spanned, but only some of the
graph’s nodes [83]. In a SMT, the nodes that are mandatory to be connected are known
as terminals, whereas the optional nodes are called Steiner nodes [26]. When applied to
energy infrastructures in a weighted obstacle context, the source and sink nodes form the
mandatory terminals nodes and the vertices and boundary nodes of the triangulated faces
the optional Steiner nodes.

Figure 2.4 shows an example of a simple Steiner Minimum Tree problem. The dashed
lines illustrate the potential connections with their costs that the graph can exist out of.
Just like the MST shown in figure 2.3, the goal of the SMT problem is to minimize the
total costs of the graph’s edges. Note that all the mandatory terminals, the sink and
source nodes, are connected, while only some of the Steiner nodes are used in the graph.
Two well-known heuristics for solving the SMT problem are the Minimum Path Heuristic
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Figure 2.4: A Steiner Minimum Tree problem

(MPH) and the Distance Network Heuristic (DNH) [83], which will be further elaborated
on in section 3.4.

This section has laid out the methodological groundwork for combining the modelling
of cost-optimal energy infrastructures and weighted regions by conceptualizing them as
source and sink nodes, and Steiner nodes respectively. The next section will expand on this
conceptualization by presenting a formalization of the mathematical problem that allows
for the incorporation of cost-differentiated obstacles in energy infrastructure modelling,
called the Minimum Cost Weighted Region Steiner Tree problem.

2.5 The minimum cost weighted region steiner tree

Sections 2.1 and 2.2 have demonstrated that graph theory is a suitable tool for energy
network cost minimization modelling due to its numerous well-known algorithms which
enable the researcher to explore a wide variety of energy network design factors. In section
2.3 the algorithm of Lanthier et al. [47] that discretizes weighted regions by placing
boundary nodes uniformly along the faces of weighted regions has been selected to model
geographical regions in which the cost to traverse these regions can be differentiated.
Combining the described graph theory methods, these discretized weighted regions and
the Steiner tree in a graph problem described in section 2.4, allows the modeller to search
for a cost-optimal multi-sink multi-source capacitated network which edges are able to
cross regions with various traversing costs.

To the knowledge of the author of this report, there does not yet exist such a model or
similar problem discussed in the academic literature. Therefore for the remainder of this
report, this problem will be referred to as the Minimum Cost Weighted Region Steiner
tree (MCWRST) problem, which will be defined as: Given a set of nodes N that are either
a source with a supply or a sink with a demand di and a set of faces F which each have a
face weight fc, find a minimum-cost network topology that connects all sources and sinks
with sufficient network capacity while guaranteeing that all demand of the sinks can be
satisfied by the supply sources while optionally connecting the Steiner nodes formed by
the vertex and boundary nodes of the triangulated faces. The methodology that underlies
the model developed to solve this problem will be described in chapter 3.
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3. Methodology
The previous chapter has formalized the Minimum Cost Weighted Region Steiner Tree
(MCWRST). A modelling problem that searches for a cost-optimal network that spans
all the supply and demand sites, or terminals, in a geographical context with regions
with different costs of traversing through. This chapter describes the methodology that
underlies the model developed in Python used to find this Minimum Cost Weighted Region
Steiner Tree. Before the algorithms described in sections 3.4 and 3.5 can search for this
MCWRST, a graph will need to be constructed that contains all the optional paths (and
their costs) between the terminals which may or may not surpass a weighted region.

To achieve this graph, section 3.1 will prepare weighted regions of different shapes to
be used as input in the model by transforming them into triangulated regions. Hereafter,
section 3.2 will discretize all the potential paths through these weighted triangular regions
by conceptualizing them as nodes that are connected with edges. To complete the graph,
all the terminals are connected to each other and the weighted region based on a ‘visibility’
algorithm in section 3.3.

3.1 Preparing the weighted regions for model input via
triangulation

Since the main contribution of this research is to model energy demand or supply sites
that are to be connected through an energy infrastructure in a context of geographical
areas with different costs for power cables or pipelines to ‘pass through’, being able to use
the model on an as wide range of regions as possible, is highly desirable. As discussed in
section 2.3 the method of Lanthier et al. [47] has been selected to model these regions. One
of the inputs required by their algorithm is a set F of triangulated polygons f each with
its own face weight fc and a number of additional Steiner points m that are to be placed
on the faces outskirts. To not exclusively limit the application of the model to weighted
regions shaped like triangles; regions shaped in different, more complex forms will have to
be prepared before they can be inserted into the model. Therefore this section will outline
the model’s first step, which uses geometrical techniques to transform weighted regions of
various shapes and sizes into usable triangulated regions.

Figure 3.1: A Convex (l) and Concave (r) Polygon

To enlarge the pool of usable shapes regions can take on, regions that are concave polygons
can be split into convex polygons [25], which in turn can be triangulated into triangle-
shaped regions [17]. Polygons are figures in a 2D-plane that consist of a finite number of
connected straight line segments that form a closed chain. Convex polygons are polygons
of which all interior angles have a degree smaller than 180°. A polygon is concave if only
one of its interior angles is larger than 180°. As a result, any line can be drawn through a
convex polygon while meeting the polygon’s line segments only twice, while this is not the
case for concave polygons [10]. Figure 3.1 shows an example of a convex and a concave
polygon. Note that the line drawn through the convex polygon crosses its boundaries only
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twice, while the line drawn through the concave polygon crosses the boundaries a total of
four times.

Convex decomposition is the process of splitting up a single concave polygon into
several convex polygons [19, 25]. Férnandez et al. [24] wrote a computationally quick
algorithm for decomposing concave polygons into convex polygons. The algorithm allows
for the decomposition of concave polygons with and without holes. However, the concave
polygons must be simple, which entails that none of the polygon’s straight line segments
are allowed to intersect. Figure 3.2 shows an example of two simple polygons, with or
without a hole and a non-simple polygon. Note that two of the straight line segments of
the non-simple polygon, depicted on the right in the image, intersect each other in the
middle.

Figure 3.2: A Simple Polygon (l), A Simple Polygon with a Hole (m) and Non-simple
Polygon (r)

The decompositions found by the algorithm proposed by Férnandez et al. [24] usually
result in a number of convex pieces close to the optimal solution. This entails, that for
complex concave polygons that, if optimally decomposed, consist of an X number of convex
pieces, the algorithm usually finds a decomposition that also has an X number of convex
pieces as the optimal solution or a total number of convex pieces that is not much higher
than X.

The algorithm is based on decomposing with the use of diagonals. As a consequence,
the endpoints of the partition edges must be vertices of the concave polygon. The algorithm
operates via a “divide and conquer” tactic. It starts out with the whole concave polygon to
be composed. Then given an initial vertex, a convex polygon of the partition is generated
and is cut off from the initial polygon. This process is repeated with the remainder of the
polygon until it is no longer concave.

A detailed step-for-step description of this procedure is given in appendix B.1. Figure
3.3 shows the application of the algorithm applied to the concave polygon that was
introduced in figure 3.1. The result is a convex decomposition consisting of two convex
polygons.

Figure 3.3: Convex decomposition of a concave polygon

The last step before being able to use the regions in the Weighted Region Shortest Path
algorithm of Lanthier et al. [47] is to triangulate the now convex polygons. One of the
most famous methods to achieve this is called the Delaunay Triangulation. A Delaunay
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triangulation is a set of triangles made from a set of vertices so that no vertex lies inside the
circumcircle of any triangle in the set [17]. A circumcircle of a triangle is a circle passing
through all the triangle’s vertices. The algorithm used in the model to compute the
Delaunay triangulation of the convex polygons is known as the Bowyer-Watson algorithm
[62], which, together with a figure showing a circumcircle of a triangle, is illustrated more
profoundly in appendix B.2. Figure 3.4 shows the Delaunay triangulation of the convex
polygon that was the result of the convex decomposition in figure 3.3.

Figure 3.4: The Delaunay triangulation of a Convex Polygon

Concave polygons can undergo a Delaunay triangulation as well. However, these trian-
gulations do not yield the desired result, since additional triangles that were not part of
the original polygon are added during the triangulation process. Figure 3.5 demonstrates
why concave polygons need to be decomposed into convex polygons before they can be
triangulated by displaying the Delaunay triangulation of the concave polygon presented
in figure 3.1. After the triangulation, the polygon itself is successfully cut up into three
triangles ∆123,∆135 and ∆345. Unfortunately, the Delaunay triangulation results in an
additional unwanted triangle ∆234 that was not part of the original polygon.

Figure 3.5: The Delaunay triangulation of a Concave Polygon

This section has described the methods to extend the possible shapes of regions that can
be used as input in the Minimum Cost Weighted Region Steiner Tree problem. With the
use of these decomposition and triangulation methods, the model can now use regions
shaped as concave polygons, convex polygons and triangles (which are concave polygons
as well) as input, instead of being constrained by only allowing triangle-shaped regions as
input. The following section will elaborate on how these triangulated regions are modelled
as weighted regions that contain different potential routes for pipelines or power cables to
traverse these regions.

3.2 Creating subgraphs from the triangulated regions

After the input polygons have been triangulated, they can be modelled as weighted regions
with the use of the method of Lanthier et al. [47] that was selected in section 2.3. The first
step of their method consists of placing an m amount of Steiner points evenly distributed
on the edges of the triangulated polygons. The larger the amount of Steiner nodes m that
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are placed on the edges of the weighted faces f , the more precise the shortest path through
the regions can be obtained. The downside of increasing m is that the computational time
of the algorithm will increase. In the second step the nodes of the same triangle are
connected if a) the nodes lie on different edges of the same region f or b) the nodes lie
adjacent on the same edge of region f . Figure 3.6 shows an example of these two steps
for two triangular regions with an m of 1 and 2.

Figure 3.6: Adding m = 1 (top) and m = 2 (bottom) Steiner points to triangulated regions
and connecting the nodes

Note that the amount of edges greatly increases if 2 Steiner points are placed on the faces
of the triangles instead of 1. These extra edges are likely to decrease the total costs of the
found network, because the pipelines or power cables have a lot more potential routes to
traverse through the weighted regions. For example, there are far more potential routes
to reach node 12 from node 4 in the bottom example than there are potential routes to
reach node 8 from node 3 in the bottom example. As stated above, the downside of these
extra Steiner points and edges is that the run time of the algorithms described in the rest
of this chapter will increase.

If the edges lie on different sides of the same triangulated region f , their costs calculated
as is shown in equation 3.1 in which le is their length and fce the weight of the region that
they are inside in. In this case, the region with the lighter colour blue has a face weight fc
of 2 and the region with the darker colour blue has a face weight fc of 3. Since the edge
e29 is located in the region with the lighter colour blue in the bottom example of figure
3.6, it has a face weight fc of 2.

Ce = lefce (3.1)

If the edges are part of two or more weighted regions their costs are also calculated with
the use of equation 3.1. For these cases, the face weight fc is equal to the minimum weight
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of the weighted regions that the edge is a part of. In the top example of 3.6 edges e16
and e56 are both part of two triangles. Therefore, the edge costs of e16 and e15 will be
calculated by using the weight of the cheapest, lighter color blue region as Ce = le ∗ 2.

Ce = le (3.2)

If the edges lie on the outskirt of only one weighted region, their weight is determined
solely based on their length le by using the equation 3.2. However, there is one exception
to this rule. The cost of edges that are on the brink of the model run’s area are also
determined by the formula of equation 3.1. The area is defined as the smallest rectangle
that contains all the terminals that need to be connected, the vertices of the triangulated
regions and the Steiner nodes placed on the regions’ edges. The four points of the area
can be found with the use of the minimum X- and Y-coordinates of all of these nodes as
is shown in equation 3.3.

Area = [(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmax, ymin)] (3.3)

The dashed line in figure 3.7 illustrates an example of such a smallest rectangular that
contains all the terminals to be connected, the vertices of the triangulated regions and the
Steiner nodes placed on the regions’ edges. Because edges e34, e45, e19, e98 all lie on the
brink of this model run’s area, their costs are based on equation 3.1. On the contrary, the
edges e12, e23, e57, e78 are not on the brink of the area, so their weight solely depends on
their lengths as in equation 3.1.

Figure 3.7: The area of an example with two terminals and two triangulated faces

Figure 3.8: Two terminals on opposite river banks [27]

Figure 3.8 shows the rationalization behind this modelling choice. In the image two
terminals A and B are depicted, each on their own side of a river. The white points
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represent Steiner points which make up two potential routes for connecting the terminals
while crossing the blue weighted region which is representing a river. Note that the
locations of these Steiner nodes are chosen arbitrarily for the sake of the argument and
thus not based on the algorithm of Lanthier et al. described above.

If the costs of edges on the brink of the model’s area would solely be based on their
length le as in equation 3.2; depending on the costs of building a pipeline through the river
region with face weight fce , the path P consisting out of the edges [eA1, e12, e2B] might be
more expensive than path P consisting of edges [eA3, e34, e4B], while the last path travels
through longer distances, both over land and through the river. Therefore the costs of
edge e34 are determined by equation 3.1 with both its length le together with the weight
of the weighted region fce it is on the brink of, instead of solely on the edge’s length le.
Because in reality, the river does not discontinue at either the end of the image or model
run.

This section has made explicit how the triangulated obstacles are modelled as subgraphs
with m Steiner points placed on the outskirts of the triangles that are connected with edges.
In addition, the section has explained which edges are given a weight based dependent on
solely their length and which edges are assigned a weight based on their length and on
which region’s face weight they are a part of. The following section will describe how the
terminals, or sites with either a demand or supply for an energy commodity, are to be
connected to these subgraphs, which will result in an underlying graph in which can be
searched for the Minimum Cost Weighted Region Steiner Tree.

3.3 Connecting the terminals with the triangulated regions

After step 2 of the model that was described in the previous section, all the weighted
regions have been transformed into regions’ vertex nodes, nodes placed on the faces of the
regions and edges that connect these nodes. This section outlines step 3 of the model that
finalizes the graph by connecting the terminals to weighted regions and other terminals
‘in view’. Since edges that pass through weighted regions introduce extra costs based on
the region’s weight fce , while the costs of edges that do not traverse through weighted
regions are solely based on their length le, it is necessary to make a distinction between
these edges. As a result, an edge that connects a terminal to a weighted region or another
terminal, may only either be located inside or outside a region. Therefore, it is necessary
that terminals that are located outside a region are only connected with edges that do
not cross a weighted region, while terminals that are located inside regions should only
be connected to nodes that belong to that triangulated region or other terminal nodes
situated in that weighted region.

These separate goals can both be achieved by constructing a visibility graph. De
Berg et al. [14] define the visibility graph problem as follows: Given a set S of disjoint
polygonal obstacles, we denote the visibility graph Gvis(S) which nodes are the vertices of
S for which there is an edge between vertices v and w, if they can ‘see’ each other. That
is, if the segment v̄w does not intersect the interior of any obstacles in S.

A fast algorithm that finds the solution to the visibility graph problem and is not
that difficult to implement is Lee’s Visibility Graph Algorithm [64]. The algorithm runs
through all the vertices v of graph G and looks for all the visible vertices of that node
by using a scan line and keeping track of two lists of ‘visible nodes’ and ‘visible edges’
[13]. Both of these concepts will be further explained with the use of the example shown
in figure 3.9. In the figure the terminal nodes are shown in yellow and the vertex and
Steiner points of the weighted regions in red. The depicted example portrays how the
algorithm searches for the nodes visible to node 1. The algorithm initializes with the
scan line parallel to the x-axis beginning from point 1. The scan line is a half line, which

17



entails that it is a line that extends indefinitely in a single direction [42]. By moving in a
counter-clockwise circle, the scan line will visit all the other points one by one.

Figure 3.9: Application of Lee’s visibility algorithm

Once the scan line hits point a, it adds the point to the ‘visible nodes’ list. The scan line
also encounters two edges, eab and eac and checks if these are on the counter-clockwise
side of the scan line [64]. Since both the edges are on the counter-clockwise side, they are
added to the ‘open edges’ list. Once the scan line encounters point ab it checks if the scan
line intersects with one of the ‘open edges’ to reach the point. Unfortunately for point ab,
the open edge eac is intersected. Therefore, the point is not added to the ‘visible nodes’
list. In point ac the edge list is still not empty. However, the scan line does not need to
cross an open edge to reach point ac. Hence, the point is added to the ‘visible nodes’ list.
When the scan line visits point b, it does not add the point. Moreover, it also removes
the edge eab from the ‘open edges’ list, since it will not cross the edge again while making
its counter-clockwise circle, and adds edge eac to the ‘open edges’ list. This procedure
continues until the scan line is back where it began, parallel to the x-axis. During the
process, terminal 1 has seen vertex points a and c, Steiner point ac and terminal 2.

After the visible vertices have been identified for each node, the node is connected to
these vertices with an edge. The costs of edges that connect nodes outside of weighted
regions are equal to the edge length as in equation 3.2. Whereas the cost of edges that
connect nodes inside of weighted regions are dependent on both the edge length and the
weight of the region like in equation 3.1.

By connecting the terminals to each other and the weighted regions, the graph that
contains all the terminal nodes and the triangulated region vertex and Steiner nodes has
now been finalized. In the next section, the algorithms that use this graph to search for
the Minimum Cost Weighted Region Steiner Tree will be discussed.
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3.4 Determining the steiner minimum tree

This section will use the finalized graph constructed in the previous section to search for
the Steiner Minimum Tree (SMT). To solve this SMT problem, two well-known heuristics
called the Minimum Path Heuristic (MPH) and the Distance Network Heuristic (DNH)
will be proposed to solve this SMT problem [83]. As described in section 2.4, the Steiner
Minimum Tree is a tree that spans all the mandatory nodes called Terminals, while possibly
making use of optional Steiner nodes. In the developed model, the sink and source nodes
form the terminals, whereas the vertex and boundary nodes of the triangulated regions
are the optional Steiner nodes.

The Minimum Path Heuristic proposed by Takahashi and Matsuyama [75], is a rather
simple one. It starts by selecting an arbitrary terminal and finding the terminal closest to
it. This terminal is connected via the shortest weighted path between the two terminals.
Hereafter the closest terminal from all the (both Terminal and Steiner) nodes that are
already part of the tree is connected. This process is repeated until all the terminals are
connected.

Figure 3.10: Minimum path heuristic

Figure 3.10 shows an example of the Minimum Path Heuristic. The search process starts
from an arbitrarily chosen terminal, in this case node 1. Node 3 is the terminal nearest to
node 1 so it is connected via the shortest path [e15, e53]. The final terminal to be added to
the tree is node 2 via the shortest path [e52], making the sum of all the graph’s weighted
edges 8.

The Distance Network Heuristic as formulated by Kou et al. [45] is a bit more complex.
The heuristic is initialised by constructing a graph G with both Terminal and Steiner
nodes. It starts off by calculating the distances of the shortest paths between all the
Terminal nodes to construct a distance graph G1 that only contains the Terminal nodes
that are connected via edges whose weights represent the length of their shortest paths
and leaves out all the Steiner nodes. Subsequently, the Minimal Spanning Tree T1 of
this distance graph G1 is found by using either Kruskal’s [46] or Prim’s [60] algorithm.
Subsequently, a subgraph GS of G is constructed in which all the edges of the MST T1

are replaced by their corresponding shortest paths in G. Hereafter the MST TS of GS is
found. Finally, a MST TH is constructed from TS by removing, if necessary, nodes until
all the graph’s leaves are Terminal nodes.
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Figure 3.11: Distance network heuristic

Figure 3.11 shows an example of the DNH procedure by using the same initial graph as
used in figure 3.10. The graphs G1 and T1 depict the distance graph of G and its MST,
respectively. Graph TH shows the final graph that is constructed by replacing the edges
of graph T1 with their corresponding paths of G. Note that TH was immediately a MST
without Steiner leaves. Thus, the last two steps of the DNH algorithm needed not to be
performed. The total costs of the found network are 9, 1 more than the total costs of the
network found by the MST algorithm.

Although the MPH algorithm outperforms the DNH algorithm in most cases, the
DNH produces cheaper Steiner Minimum Trees on occasions [26]. Since both algorithms
are computationally fast and not extremely difficult to implement, both the MPH and the
DNH heuristics have been implemented in the model.

This section has described two heuristics for solving the Steiner Minimum Tree problem.
When applied to energy infrastructure modelling in a geographical cost-differentiated
content, a solution to this problem entails that a network has been found that minimizes
the total traversing costs of the pipelines or power cables, that connects all the sites with
either a source or a demand for an energy commodity, while possibly crossing regions
that have a higher cost of traversing through. The following section will introduce a new
cost factor in the form of assigning capacities to these pipelines or power cables and will
introduce an algorithm that will try to minimize the total network costs.

3.5 Determining the minimum cost weighted region steiner
tree

This section will build upon the Steiner Minimum Tree found in the previous section and
introduce a new cost factor associated with the capacities which will be assigned to the
pipelines and power cables of the energy network required to ensure that all the sink
nodes are supplied with enough energy to satisfy their demands. Subsequently, different
heuristics will be presented that are able to find improvements to the discovered Steiner
Minimum Tree, from which one will be selected to search for the Minimum Cost Weighted
Region Steiner Tree.

As shown in equation 2.1 in section 2.2, the costs of energy infrastructures’ power
cables or pipelines are depended on both their lengths (le), capacities (qe) and a cost
exponent (β) which represents the economies of scale that occur when installing pipeline
or power cables with a larger capacity. In this research, another cost factor has been
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introduced in the form of the (potential) face weight fce that a power cable or pipeline
might traverse through. If a power cable or pipeline does not cross a weighted region fce
is equal to 1. Combining these different costs results in the cost function of equation 3.4.

C(T ) =
∑

∀e∈E(T )

lefceq
β
e (3.4)

Before equation 3.4 can be used to calculate the total costs of the discovered Steiner
Minimum Tree network, the network’s edges will need to be assigned enough capacity
to satisfy all the demand and supply constraints imposed by the source and sink nodes.
Heijnen et al. [33] describe an algorithm for assigning capacity to a tree network that
guarantees that the demand of all the sinks can be delivered by the supply of the source
nodes. One additional requirement of this algorithm is that the total supply of all the
source nodes is equal to the total demand of the sink nodes.

The algorithm initializes by assigning a capacity equal to the supply or demand of a
leaf to the edge that connects that leaf to the remainder of the graph. In graph theory,
leaves are nodes with a degree of one, which entails that they are only connected to one
other node. Simultaneously, the demand or supply of the leaf is added or subtracted
from the leaf’s neighbouring node’s demand or supply. Note that the supply of the source
nodes is given as a negative number, while the demand of the sink nodes is given as a
positive number. Hereafter, the leaf node and the edge connecting the leaf are removed.
This process is repeated until all the edges have been assigned a capacity [31]. Figure
3.12 presents an example of the capacity assignment procedure using the found Minimum
Spanning Tree of figure 2.3. The supply or demand of each node is depicted as a blue
number. The edges that still need to be assigned capacity are presented as black dashed
lines. Once edges have been assigned a capacity, they and their capacity are shown in red,
where their thickness is an indicator of the edge’s capacity.

Figure 3.12: The capacity assignment procedure

If the weights of a graph’s edges are only based on the length of the graph, the minimum
length spanning tree is equal to the minimum cost spanning tree (MCST). However, as we
have seen in equation 3.4, the costs of pipelines or power cables are not only influenced
by their lengths, but by their capacity and potentially by the region that they traverse
through as well. Therefore, assigning capacities to a MST, as we have done in figure 3.12,
will not always result in the Minimum Cost Weighted Region Steiner Tree.

Searching for a multi-source, multi-sink network that minimizes the cost function of
equation 3.4 is complicated because the weight of an edge e is dependent on the needed
capacity of the edge qe, which itself is again subject to the network’s layout. This
interdependency creates a huge non-linear optimization space, where switching only one
edge in the network’s topology could alter all the assigned capacities to the network’s
edges, thereby significantly changing the total costs of the network. Subsequently, local
minima are likely to be found. Therefore, finding the Minimum Cost Weighted Region
Steiner Tree requires iterating over all trees before attributing the edge capacities after
which the network’s costs can be determined [85].
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A first heuristic for finding a minimum cost capacitated spanning tree by starting from
a MST was proposed by Rothfarb et al. [68]. Their procedure, called the Delta Change
heuristic, searches for potentially cheaper networks by connecting two nodes in the tree
that were not yet connected via an edge, thereby creating a cycle. Hereafter, one of the
pre-existing edges of the cycle is removed, before reassigning the network’s capacities and
calculating its costs. The algorithm restarts when a cheaper solution is found and ends
when this is no longer the case. In their Local Search algorithm, Brimberg et al. [10]
altered the Delta Change heuristic by removing, one by one, all the pre-existing edges of
the cycle and saving the cheapest solution, if any.

Heijnen et al. [33] proposed a different algorithm for finding a MCST based on edge
turns. Every turn an edge is removed, after which the other nodes of the two disconnected
parts of the remaining tree are connected one by one to one of the initial nodes from the
part of the tree that is disconnected. This reduces the number of possible recombinations
compared to the Delta Change or the Local Search heuristics since the recombination must
occur at one of the nodes of the removed edge.

Yeates et al. [85] add an additional algorithmic step in the process of searching for a
MCST. There High Valency Shuffle algorithm does not start from a MST, but continues
with one of the potentially, locally optimal minimum-cost capacitated spanning trees found
by the Delta Change, Local Change or Edge Change heuristics. High valency nodes are
nodes that are adjacent to at least three other edges. All the edges of these high valency
nodes are transferred to the closest node (in Euclidean distance) after which the capacity
is reassigned and the total costs are calculated. This process is repeated until no cheaper
solution is found.

A comparison of these heuristics and algorithms shows that the edge turn heuristic
performs comparably with the delta change or local search heuristic, but at quicker
calculation times. Combining the edge turn heuristic with the High Valency Shuffle
algorithm can lower the costs of the found networks by 2.6%, but the computational
time expands by more than 80 times [85]. Since a quick computational time is necessary
to quickly compare different network parameters, the Edge Turn heuristic will be used to
search for the MCST.

Figure 3.13 shows an example of one step of the Edge Turn heuristic by using the
capacitated MST of figure 3.12 as a starting point. In this step, firstly, edge e46 is removed
from the graph and replaced with edge e67. Secondly, the capacities are reassigned to the
graph’s edges. Although dependent on the value of β the total costs of the network with
the new edge e67 are probably lower than that of the capacitated MST, since the number
of edges with a large capacity is significantly reduced, while the length of only one edge
has only increased somewhat.

Figure 3.13: Edge Turn heuristic to search for the MCST
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Since the Edge Turn heuristic is used to search for Minimum Cost Weighted Trees instead
of Minimum Cost Weighted Steiner Trees, it had to be slightly altered before it could be
implemented in the model. In each turn, an edge is still removed and the other nodes
of the two disconnected parts of the remaining tree are still connected one by one of the
initial nodes from the part of the tree that is disconnected. What is different, is that these
nodes can not be directly connected via one edge in a Minimum Cost Weighted Steiner
Tree Problem, but are constrained by paths of the underlying graph. Therefore, each turn
the other nodes of the two disconnected parts of the remaining tree are connected one
by one to one of the initial nodes from the part of the tree that is disconnected via the
shortest path leading to that initial node. A shortest path is the path from a source to a
destination node where the (weighted) length of the path is minimized [52].

This section has outlined the final step of the model in which a (potentially local
minimum) cost-optimal Minimum Cost Weighted Region Steiner Tree has been found. All
the network’s edges now have sufficient capacity to satisfy the demand of all the sites with
a demand for an energy commodity. Furthermore, the total costs of these networks are
now dependent on the power cables’ or pipelines’ lengths, capacities and the face weight of
regions that they potentially cross. Lastly, the developed model has applied a heuristic to
search for MCWRSTs that have lower total costs than the Steiner Minimum Trees. The
next chapter will validate the model presented in this chapter and investigate the relations
between certain input and output parameters.
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4. Model verification and
validation
This chapter contains the verification and exploration of the model presented in the
previous chapter. The model has three distinct outputs, (1) the discovered network’s
topology with its (2) associated total network costs and the (3) time that the model
takes to run an experiment. Section 4.1 will verify the model by comparing the observed
behaviour in network topology and associated total costs with the anticipated results by
differentiating a weighted region’s face weight. Hereafter, section 4.2 will generate 1140
random experiments. The data extracted from these random experiments is analysed in
sections 4.3 and 4.4 to investigate the impact of the number of placed Steiner points on
the relative network costs and the input parameters on the model’s run time, respectively.

4.1 Model verification

A model must be tested and verified by its developer in order to guarantee that it is correct
in its predictions of the performance of the real-world system that it attempts to represent
or to forecast the difference between two different model configurations. Verification entails
the process of assuring that a model is correct and matches agreed-upon specifications and
assumptions. When the process of verifying a model is done well, it leads to improving a
model’s credibility by decision-makers [11].

To verify the model that was presented in chapter 3, the example graph G of figure
4.1 will be used. In this example the two red terminals a and b need to be connected
while potentially crossing the weighted region that is depicted in blue by making use of
the connections with the green Steiner nodes. The locations of the graph’s nodes can be
found in appendix C.

Figure 4.1: Graph G used for the verification process

Because one of the goals of this verification is to observe behaviour in different network
topologies, the model will be verified by using different values of the blue weighted region’s
face weight fc as variations in other input parameters such as the demand or supply of
the source and sink node, will not variate the discovered network topologies.

If the face weight fc of the weighted region rises, the Minimum Cost Weighted Region
Steiner tree should make less and less use of the edges that intersect the weighted region. If
the face weight fc drops, it becomes cheaper to utilize the edges intersecting the weighted
region.
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Figure 4.2: Model runs with face weights fce = [0.25, 1, 1.5, 2]

Figure 4.2 shows the optimal found MCWRST with different inputs of the face weight
fc. As anticipated, the discovered optimal network avoids the weighted region more if
it becomes costlier to cross the region. Appendix C presents the data underlying the
examples with various face weights depicted in figure 4.2 that demonstrate that the model
achieves the desired results.

In this section, the effect of differentiations in a weighted region’s face weight fc on
the discovered network’s layout and total costs have been verified. If a region becomes
costlier to traverse through, the model successfully finds networks that reduce the length
of pipelines or power cables that traverse the region or even avoid the region altogether.
Nevertheless, the face weight fc is not the only input parameter that has an impact on the
model’s outcomes. Therefore the next section will generate 1140 random experiments that
will be used to analyse the impact of all the input parameters on the model’s outcomes.

4.2 Generating 1140 random experiments

The previous section has successfully demonstrated that the model performs as it should
in one artificial example. Nevertheless, the results of a single example cannot be used to
draw conclusions about the model’s behaviour in general. Furthermore, real-life cases are
likely to be more complex than the example presented in the previous section, with more
nodes and triangulated obstacles for example. To get a better insight into how the model
behaves in different circumstances and explore the model’s behaviour on a different scale,
this section describes how data has been randomly generated with the use of a design of
experiments. In the following sections, this data will be used to analyse if and to what
extent the input parameters influence the model’s outcomes.

Table 4.1 presents the design of experiments that indicates which values the input
parameters can take on. For example, the amount of triangles in each scenarios is either
one, two or three and there are scenarios in which these nodes can be allocated a demand
between 1 and 25 and scenarios in which the nodes’ demand can fluctuate between 1 and
50.

Table 4.1: Design of random experiments

Input parameter Min Max ∆ #Experiments

#Terminals 5 15 5 3
#Triangles 1 3 1 3
Min face weight fc 0.5 1.5 1 2
Max face weight fc 2 4 2 2
Max demand 25 50 25 2
Max supply 25 50 25 2
#Steiner nodes m 1 10 1 10
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The upper six input parameters of the table, namely, the number of nodes, the number
of triangles, the minimum and maximum face weight fc and the maximum demand and
supply the sink or sources could take on were used to create random examples. In every
example, the nodes were randomly given a non-zero value in the range of the negative
maximum supply and the maximum demand, making them either a source or a sink node.
Each example contains one of the possible combinations that the input parameters can
take. Making the total examples that were conducted 114 (= 32 ∗ 24) examples. The
triangles and the nodes are randomly placed in an area of 100 by 100 while making sure
that the triangles do not intersect each other. These examples were run 10 times, with
the number of Steiner nodes that were placed on the triangles’ faces increasing from 1 to
10, resulting in a total of 1140 experiments.

Figure 4.3 shows an example randomly generated by the model that consists of two
triangles and ten nodes. Since there is only one Steiner point placed on each face of the
triangles, one can deduce that this is the scenario’s first run and that 9 more runs of the
same scenario will be run; every time with a higher number Steiner nodes.

Figure 4.3: Randomly generated example with two triangles (in blue), ten nodes (in red)
and one placed Steiner point (in green)

4.3 Impact of the number of placed steiner points on the
relative network costs

This section will use the data extracted from the randomly generated examples described
in the previous section to visually inspect the impact of the number of Steiner points on
the relative network costs and the time the model takes to run one experiment. These two
outputs are the most important to evaluate, because the relative network costs represent
the accuracy of the found network and the run time determines the model’s usability.
Naturally, there is a trade-off between these two outputs. Because adding more Steiner
points increases the number of potential routes to traverse through the weighted regions,
adding more Steiner points will most likely lead to a solution closer to the optimal solution,
thereby positively contributing to the model’s accuracy. However, more placed Steiner
points will increase the number of edges the algorithms described in the previous chapter
will have to check, which will expand the model’s run time and decreases the model’s
usability.

To be able to compare the network costs of the 10 different experiments conducted per
randomly generated example, the total costs of each run were relativised by using equation
4.1. To find the relative costs of an experiment the difference between the cost of the model
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run with m amount of Steiner nodes placed on each edge and the minimum costs of the
10 runs of the same example was divided by the scenario’s run with the minimum costs.

Cmrel
=

Cm − Cmin

Cmin
, m = {1, 2, ..., 10} (4.1)

Figure 4.4 shows the observed change in relative network costs at various numbers of
Steiner points placed on the faces of the triangles. Three matters catch the attention.
First and second, the average relative costs decline as more Steiner nodes are placed on
the triangulated faces; although the rate of decline of average relative costs becomes less
and less as the number of placed Steiner nodes surges. Third, the spread of observed
relative costs decreases as the amount of Steiner nodes increases.

Figure 4.4: Boxplot of the relative network costs at different amounts of placed steiner
points m

The first observation can be explained by the fact that placing more Steiner nodes will
increase the number of potential paths that an edge can take to cross a weighted region.
With many potential paths, it becomes more likely that there is a path whose costs are
close to the cost-optimal path that can be taken to traverse a region. Because the Steiner
nodes are placed uniformly on the regions’ faces, the distance between Steiner decreases
with each extra placed Steiner node. This decreased distance between Steiner nodes
explains the second observation that the decline of average relative costs decreases with
an increase in placed Steiner nodes.

The third observation regarding the decrease in the spread of observed relative costs
can be justified by the fact that placing a few Steiner nodes can result in a ‘lucky’ outcome
that is very close to the cost-optimal outcome as well as an ‘unfortunate’ underlying graphs
with potential paths that are relatively far away from the optimal paths.

Figure 4.5: Boxplot of the relative network costs at different amounts of placed steiner
points m without outliers
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Figure 4.5 presents the same data as figure 4.4, but its vertical axis showing the relative
network costs is shortened; thereby not showing the outlier data points. This makes the
decline in spread, average relative costs and decline in average relative costs stand out
even more.

In figure 4.6 two line diagrams are presented that show the average relative costs and
the computational time needed to run the experiment in blue and orange, respectively.
Not surprisingly, the model takes longer to run as the amount of placed Steiner nodes
increases. However, the increase looks to be exponential; a hypothesis that will be further
explored in section 4.4.

Figure 4.6: Line diagram of the effect of m on the average relative costs and the
computational time

In the evaluation of their algorithm, Lanthier et al. [47] remark that six Steiner points per
triangulated region suffice to obtain results close to the optimal approximations. After an
inspection of 4.6, this number does not seem to be in line with the perceived behaviour of
the model described in this report. The average relative costs of the found solutions seem
to descend rather steeply until seven Steiner nodes are placed on each face. A potential
explanation for this aberration is that the algorithm of Lanthier et al. solves the weighted
region path problem, while the developed model searches for a Minimum Cost Weighted
Region Steiner Tree, which has a lot more different input parameters than the former
problem. These additional input parameters might require a bit more precision to obtain
a MCWRST that is close to the optimal approximation.
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4.4 Impact of input parameters on the model’s run time

The data generated in section 4.2 with the use of running randomly generated examples,
can be used for more than to visually demonstrate the influence of the amount of placed
Steiner points m on the relative network costs and the computational time. Another
application of the data is to search for statistical relationships between the input parameters
and the model’s computational time, or in other words, the time the model needs to run
one experiment, as well. Therefore this section will investigate if there are statistical
relations between the minimum and maximum face weight fc, the maximum demand and
supply and the number of nodes, triangles and Steiner points on the one hand and the
model’s run time on the other with the use of two distinct statistical tests.

The first test to determine statistical relationships is known as the independent Student
t-test. This test determines whether there is a significant difference between the means of
two unrelated groups. The test’s hypothesis assumes that the mean of these two groups
is equal [49]. Applied to the data gathered in this research, the test assumes that the
model’s run time of two different sets of experiments is equal. Since the test requires
a categorization into two distinct groups, the minimum and maximum face weight and
maximum demand and supply qualify for this test because as can be seen in table 4.1
these input factors have been varied for two values. The results of the conducted Student
t-tests that investigated the correlation between these inputs and the computational time
are shown in table 4.2.

Table 4.2: Independent Student t-test results

95% Confidence Interval
Parameter Groups ∆Mean Lower Higher 2-tailed Significance Conclusion

Max Supply [25,50] 0.063 -0.066 0.193 0.337 Insignificant
Max Demand [25,50] -0.240 -0.369 -0.111 0.000 Significant
∆SD [0,25] 0.001 -0.129 0.130 0.989 Insignificant
Min Face Weight [0.5,1.5] -0.023 -0.152 0.107 0.731 Insignificant
Max Face Weight [2,4] 0.248 0.119 0.377 0.000 Significant

The significance level, also known as alpha, is a value that tells us how likely it is that
the hypothesis is true. Normally, in statistical hypothesis tests, a test’s hypothesis can
be rejected if the significance level is lower than 0.05 [49]. From the results presented in
table 4.2, the hypotheses that the values of the Max Demand and Max Face Weight do
not influence the computational time can thus be disregarded, because their significance
level is much lower than 0.05. On the contrary, the hypotheses that the max supply and
the minimum face weight do not influence the model’s run time, cannot be rejected. The
∆Mean column shows, the direction and quantity of the discovered (significant) statistical
links. For example, the average run time of experiments with a maximum demand of 50
had a run time which was 0.240 minutes or 14.4 seconds lower than that of experiments
with a maximum demand of 25.

What strikes the attention is that an increase in both the maximum demand and
the maximum face weight has a significant effect on the model’s run time, while an
increase in the maximum supply or minimum face weight does not. To investigate if
this difference in influence on the model’s run time was related to the absolute difference
between the maximum supply and maximum demand that the nodes could be assigned,
an extra Student t-test has been performed which results are shown in row ∆SD of table
4.2. This does not seem to be the case however, as the significance level of the test is
much higher than 0.05. With no further statistical background, the author does not have
an explanation for this remarkable difference. Later on in this section, an explanation for
the difference in the influence of variations in the minimum and maximum face weight on
the model’s run time will be investigated.
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The other three input parameters of the number of nodes, triangles and Steiner points
have been varied 3 or 10 times and can therefore not be categorized into two groups. As
a consequence, the independent t-test cannot be applied to these parameters. The inputs
are technically of a ratio scale. However, the range in which they are randomly generated
is rather small. Hence, instead of a Pearson correlation test used for values with an interval
or a ratio scale, a Spearman rank correlation test, which is normally used on parameters
of an ordinal scale is used to test their influence on the run time. Although the latter test
has last proving power, in this case, it is the safer option to reduce the chance that the
hypothesis is not unjustifiably rejected. The Spearman rank correlation test indicates the
strength and direction (either negative or positive) of a relationship between two variables
[6]. Table 4.3 presents the results of these conducted Spearman correlation tests.

Table 4.3: Spearman rank correlation test results

Parameter Input Spearman coëfficient 2-tailed Significance Conclusion

#Terminals [5,10,15] 0.684 0.000 Significant
#Triangles [1,2,3] 0.433 0.000 Significant
#Steiner points [1,2,. . . ,10] 0.407 0.000 Significant
∆Face Weight [0.5,1.5,2.5,3.5] 0.037 0.158 Insignificant

From the table above, it can be deduced that there are positive relations between the
number of nodes, triangles and Steiner points and the model’s run time. This effect is the
strongest for an increase in the number of nodes followed by the number of triangles and
lastly the number of Steiner points placed on the edges of the triangles. These effects can
be quite easily explained. An increase in the number of terminals greatly increases the
number that for example the edge turn heuristic described in 3.5 needs to be repeated.
Whereas an increase in the number of triangles or Steiner nodes greatly increases the
number of potential paths there are to connect two nodes, which will increase the time for
one repetition of for example the edge turn procedure.

To investigate if the difference in significance in the influence between changes in the
minimum and maximum face weight is dependent on the difference between the minimum
and the maximum face weight an additional Spearman rank correlation test was performed.
As can be seen in the bottom row of table 3.5, there is no significant relation in the
difference between the minimum and maximum face weights and the model’s run time.
An alternative explanation for the significant influence of an increase in the maximum
face weight on the model’s run time is that a higher face weight might increases the
importance of finding the ‘cheapest’ path through a weighted obstacle, which might lead
to more repetitions of the edge turn heuristic, for example, until a local minimum is found.

This section has demonstrated that there are statistical relationships between the input
parameters of the number of terminal, triangles and Steiner points, the maximum face
weight and the maximum demand that can be assigned to nodes and the model’s run time.
The latter statistical link is negative, while all the others constitute positive relationships.
These conclusions have some complications for the model’s usability. Especially when the
model is used to design large networks with a large number of sink and source nodes,
networks in a context of a lot of weighted obstacles, or the design of a very precise cost-
optimal network by increasing the number of Steiner points, the model might take an
extremely long time to run, which deteriorates the model’s usability.
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5. Case studies on offshore
electricity networks on the North
Sea
This chapter outlines the cases of two wind park projects on the North Sea of different
scopes which will be used to showcase some application possibilities of the developed model
that was verified in the previous chapter. Section 5.1 gives some background information
on Natura 2000 areas and describes how these areas can be used as inputs for the weighted
regions in the model. Sections 5.2 and 5.3 discuss the routing problems of connecting a
wind park with the mainland through the Waddenzee and the design of the power cable
infrastructure in the entire Dutch North for the year 2050, respectively.

5.1 Natura 2000 areas as weighted regions

The extensive network of Natura 2000 areas provides a ‘safe haven’ for treasured and
threatened species in Europe. The areas, that are protected under European Union (EU)
law, stretch over 18% of the EU’s land area and 8% of its marine territory across all of
its 27 member states [21]. The main objective of the Natura 2000 project is to create
a coherent European ecological network that is able to ensure the survival of the most
valuable and endangered animals and plants residing in the European Union [82]. The
rationale behind the network is to combat habitat fragmentation, which is the primary
cause of the extinction of plants and animals [61]. Figure 5.1 presents an overview of all the
Natura 2000 areas, showing both the protected terrestrial and marine regions. Note that
this map was created in 2018. Subsequently, the map still displays the Natura 2000 areas
of the United Kingdom, even though the country has stopped being an official member of
the European Union since the end of January 2020 and thereby ceased being a part of the
Natura 2000 network.

Figure 5.1: Overview of the EU’s Natura 2000 areas [23]
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The EU member states specifically appoint certain areas as Natura 2000 areas which are
then protected by the Birds Directive (Directive 79/409/EEG) and the Habitats Directive
(Directive 92/43/EEG). These directives provide three different types of legal protection
for Natura areas. With regards to its Natura 2000 areas a member state is obliged to [82]:

1. Take necessary conversation measures to preserve the natural habitats and species
for whom the area is assigned.

2. Ensure that existing use of the assigned Natura 2000 area; through recreation,
agriculture, fishing or military use, for example, shall not lead to a significant deterio-
ration of the quality of the habitat or disturbance of the species for whom the area
is assigned.

3. Assess each new plan or project that potentially has significant implications for the
site’s conservation objectives. The competent national authority shall only agree to
the plan or project after having ascertained that the project will not adversely affect
the integrity of the site concerned.

The development of new energy infrastructures only concerns the third form of protection
of the habitats. Therefore, the other two forms of protection will not be discussed any
further. A consequence of the third form of protection for the development of energy
infrastructures in or around Natura 2000 areas is that, without prior authorization, it is
prohibited to realise an infrastructure project that could potentially harm the quality of
a natural habitat or have a disturbing effect on the species for which the area is assigned
[70].

If an ecological assessment of an infrastructure project shows that it will harm the
quality of a natural habitat or interfere with the species that inhabit it, a project can
only be permitted by the competent national authority if, and solely if, the requirements
of the so-called ‘AIC-exception’ have been fulfilled. This ‘AIC-exception’ entails that a
permit for such a project can only be given if there are no Alternative solutions and
there are Imperative reasons of overriding public interest, including those of economic or
social nature. Moreover, the member state should take Compensatory measures, before
the construction of the project can start, to ensure that the coherence of the Natura 2000
network is not altered, even temporarily [82].

(a) The Dutch North Sea [58] (b) The German Seas [22]

Figure 5.2: The Dutch and German Natura 2000 areas of the North and Baltic Seas
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The dark green shapes in figure 5.2a represent the six Natura 2000 areas located in
the Dutch North Sea. Likewise, the blue, orange and green polygons in figure 5.2b
represent the German Natura 2000 areas in the North and Baltic seas. Since these
areas could obstruct potential cable routes or require additional Compensatory measures
if power cables do cross Natura 2000 areas, these areas should be taken into account while
developing energy infrastructures. Especially during the routing planning phase of energy
infrastructure layouts the effects of Natura 2000 areas on potential pipeline or power cable
routes should be assessed. Modelling these habitats as weighted regions as described in
sections 2.3 and 3.2 could assist routing planners in comparing the network cost reductions
obtained if Natura 2000 areas are crossed instead of avoided. Subsequently, these benefits
could be compared to the costs of potentially required compensatory measures. This
allows the routing planner to identify the tipping point at which the price of required
compensatory measures, avoiding the areas becomes more economically appealing.

5.2 Power cable route from wind park Doordewind to the
main shore

The Dutch government aims to expand its installed wind capacity from the currently
installed capacity of 6.6 GW (on both land and sea) to an installed capacity of 21 GW
by 2030 [50]. To realize this goal, the government plans on developing several offshore
wind farms on the North Sea in the next decade. One of these planned wind farms, called
‘Doordewind’, will have an installed capacity of 4 GW and will be located north of the
Wadden islands [67]. During the routing planning phase of the power cable connecting
‘Doordewind’ to the mainland, two onshore landing points, Eemshaven and Vierverlaten,
were considered, which are visualized in figure 5.3. In the image, ‘Doordewind’ is depicted
as the blue triangle labelled with the number 5. The other blue polygon in the image
labelled ’5 mb’ is a potential site for the development of offshore wind energy after 2030
which will be disregarded in this application example of the model.

Figure 5.3: Considered routes connecting offshore wind farm Doordewind [86]
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Figure 5.4 shows the last part of the considered routes that connect Doordewind with the
mainland in more detail. A report of Royal HaskoningDHV commissioned by the Ministry
of Economic Affairs and Climate Policy [70] reviewed the potential routes on their impact
on ecology, the feasibility of required technology, space occupancy and estimated costs.
The research concluded that route 11, heading to landing point Vierverlaten and route 6,
connecting the Doordewind to the Eemshaven were the most promising.

Figure 5.4: Considered routes connecting wind farm Doordewind in more detail [86]

The power cable route to Vierverlaten has the disadvantage that it crosses the Wadden
Sea and the Wadden Island Schiermonnikoog, both part of the Natura 2000 area shown
as the North Sea coastal zone D in figure 5.2a. A choice for this route will entail the
digging of long underground power cables through this valuable and protected landscape
[86], which could have a negative impact on this Natura 2000 habitat. The other potential
route, to the Eemshaven landing point however, could cross two of the German Natura
areas shown in figure 5.2b.

Figure 5.5 shows the conceptualization of the routing problem which consists of finding
the most cost-effective route from the Doordewind wind park to one of the two landing sites
which can be used to compare the economical benefits of the shorter route 11 with the more
Waddenzee friendly route 6. The weighted region that represents the North Sea coastal
Natura 2000 area is depicted as the black dashed line polygon. The two potential landing
points are depicted as red circles and the offshore wind farm Doordewind is represented
by the green circle. In section 6.1 the results of this investigated routing problem will be
presented.

Figure 5.5: Conceptualization of Doordewind power cable routing problem
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This section has discussed the first case study of the routing problem of connecting 1 wind
farm in the Dutch part of the North Sea with 2 potential landing points while potentially
crossing 3 Natura 2000 areas. Because this routing problem only contains one wind farm
that needs to be connected, the case study’s outcome will likely be a single power cable
from one of the two landing points to the wind farm, which can hardly be called an
energy network. To show the full potential of the developed model, the following section
will elaborate on the second case study which entails the design of an entire power cable
infrastructure spanning 15 Dutch offshore wind farms with 4 potential landing sites.

5.3 Dutch North Sea wind park design of 2050

The sustainability goals of the Dutch government for the year 2050 are even more ambitious
than those of 2030. Their aim is to have completely switched to renewable energy sources
in 2050. Offshore wind energy will play an important role in the energy mix of the future,
with predicted scenarios of having between 38 and 72 GW installed offshore wind energy
capacity in the North Sea [66]. To realize this ambition the Dutch government has already
assigned 15 areas of the Dutch part of the North Sea in which market players could develop
wind parks in the next three decades. Figure 5.6 shows these zones in orange and yellow.
If all of these zones are fully developed, the total installed offshore wind capacity could
reach 61.5 GW [1].

Figure 5.6: Designated search areas for future wind farm development [66]

Of these 15 wind park locations, only the Borrsele wind park, off the coast of the southern
province Zeeland, is completely operational. The wind farms Hollandse Kust South and
North and the wind farm north of the Wadden islands already generate electricity, but
their capacity will be greatly expanded in the coming years. The current installed capacity
of offshore wind farms is 2.5 GW, which is only a fraction of the potential 61.5 GW that
could be installed in 2050 [1].
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As can be seen in figure 5.7, power generated on the North Sea is currently transported
to four landing points, located at Borrsele, Maasvlakte, Beverwijk and Eemshaven that
connect the offshore wind parks to the high voltage net [66]. In this conceptualization of
the offshore wind power cable infrastructure system of 2050 design problem, it is assumed
that in the coming decades, these four landing points will remain in use and no additional
landing points will be constructed.

Figure 5.7: The Dutch electricity grid [76]

Comparing the sites assigned for future wind farm development and the power landing
points with the Natura 2000 areas on the North Sea depicted in sections 5.6, 5.7 and
5.1 respectively, six Natura 2000 regions stand out. The Dutch Vlakte van de Raan, the
Voordelta, the Frisian Front and the North Sea coastal zone and two protected regions in
the German North Sea are all Natura 2000 areas that block potential pipeline routes that
directly connect wind farm sites with straight cables with the landing points. Therefore
these areas should be included in the process of designing a power cable infrastructure
that transports the produced power of future wind parks.
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Figure 5.8: Conceptualization of the North Sea’s 15 wind parks routing problem

Figure 5.8 shows the conceptualization of the routing problem that aims to connect all the
fifteen wind parks with the four onshore landing sites. The three dashed-lined polygons
represent the four Natura 2000 areas that could alter the most economically viable power
cable layouts. Because the two Natura 2000 areas, Voordelta and Vlakte van de Raan,
are adjacent (see figure 5.2a), the most southern polygon represents both of these areas.
Considering that only 4.1% of the potential capacity of 2050 is currently installed, the
existing offshore power cables are not considered in the design of the offshore power cable
infrastructure of 2050.
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6. Cost-optimal electricity
infrastructures on the North Sea
This chapter discusses the outcomes of the two case studies that were introduced in the
previous chapter. Section 6.1 displays two potential routes for connecting the Doordewind
wind farm with the Dutch coastline and shows how various face weights fc influence
the relative costs of these routes. Next, section 6.2 discusses three different discovered
electricity network topologies that connect 15 Dutch wind farms with 4 landing points on
the Dutch coastline.

6.1 Connecting offshore wind park Doordewind to the main
shore

This section will apply the model to the real-life case of the routing problem that concerns
connecting the offshore wind park Doordewind to one of two landing points on the northern
part of the Dutch coastline as described in section 5.2. The coordinates of the wind farm,
the two landing points and the weighted region polygon representing the North Sea coastal
Natura 2000 area as depicted in figure 5.5 were extracted from QGIS by using the UTM
zone 31N coordinates reference system. The UTM system measures coordinates between
certain degrees of longitude in meters [80], which makes modelling the distance between
two coordinates more straightforward. Just as in the development plans, the Doordewind
wind park has a capacity of 4 GW. As is common practice in the modelling of energy
infrastructures [34, 35, 55], the cost capacity exponent β is set to 0.6; indicating that there
are economies of scale advantages to building higher capacity pipelines. The number of
Steiner points placed on the edges of the triangulated faces m is set to 10, because the
exploratory results of section 4.3 have indicated that the benefits of setting a higher m
are minimal.

(a) fc = 2.99 (b) fc = 3.00

Figure 6.1: The tipping point of the Doordewind routing problem

By using the input data described above, different power cable routes could be compared
on their costs for different values of the face weight fc for the Dutch and German maritime
Natura 2000 weighted regions. The cost-optimal route for low values of the face weight
fc is the route with the shortest length from Doordewind to Vierverlaten. When the face
weight fc increases, travelling through the Natura 2000 area becomes more expensive, and
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the route with the longer distance to Eemshaven becomes more economically attractive.
Figure 6.1 shows that the tipping point of the cost-optimal route lies around a face weight
fc value of 2.99. Increasing this value with only 0.01 to 3.00 alters the most cost-optimal
route from Vierverlaten to Eemshaven. Note that at a weighted region weight of 2.99 a
Natura 2000 area is still traversed, while in the example of a face weight of 3.00 all the
weighted regions are avoided.

Table 6.1 presents the chosen landing points and the related relative costs of connecting
Doordewind at different values of face weight fc. Experiments 3 and 4 illustrate the tipping
point of this routing problem at which an increase of the face weight fc of only 0.01 results
in a different power cable layout. Note that the capacity of the pipelines is never divided
between the two landing points, but in all experiments only one landing point is connected
to Doordewind with a power cable of 4 GW that can handle the full capacity of the wind
park. This observed model behaviour is easily explainable with the cost capacity exponent
β which was set at 0.6. Because of the economies of scale that the parameter represents,
it will always be more cost-effective to construct one power cable with a capacity of 4
GW than, for example, two pipelines of the same length with a capacity of 2 GW. The
one exception is if β is assigned a value of 1 at which there are no economies of scale
at play and the costs of constructing two power cables of 2 GW is equal to the costs of
constructing one power cable of 4 GW.

Table 6.1: Relative costs of connecting wind park Doordewind at different face weights

Experiment Face weight fc Power to VV (GW) Power to EH (GW) Relative costs

1 1.00 4 0 0.0%
2 2.00 4 0 +8.32%
3 2.99 4 0 +15.29%
4 3.00 0 4 +15.30%
5 4.00 0 4 +15.30%

The last column of the table shows the relative costs of the different routes. Since this
Doordewind power farm case is used solely as an example to demonstrate a single source
application of the model, the input parameters do not represent the actual material or
digging costs associated with power cables of different lengths and capacities. Therefore,
the total costs of the different routes can only be compared relatively and not absolutely.

Not surprisingly, the more expensive it is to traverse the weighted region, the higher
the relative costs become. After the tipping point of a face weight of 2.99 − 3.00, the
relative costs do not increase when the face weight is further increased. If figure 6.1b is
closely inspected, one might notice that the power cable layout does not intersect any of
the weighted regions. Therefore the costs of the power cable route to Eemshaven will not
be affected by a further increase in the face weights of the North sea’s weighted regions.

Even though the model does not allow for an absolute comparison of the costs of the
different routes, the model’s outcomes are not that different from that of the extensive
report conducted on this routing problem by Royal HaskoningDHV. Their report con-
cluded that there are too limited distinctions between the potential routes, cost-wise,
because the distances of the routes are all quite similar [70]. The report even goes so far
as to not make any distinction whatsoever in the evaluation of the routes on costs, because
the required investment costs of the different routes are in the same order of magnitude.
A maximum difference of 15.3% (since a face weight less than 1 does not seem realistic for
a protected weighted region like that of a Natura 2000 area) seems also in the same order
of magnitude, thus the model is quite accurate in its predictions.
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6.2 Exploration of the North Sea’s electricity
infrastructure of 2050

In the previous section, the problem of connecting the wind park Doordewind was des-
cribed. Although this application example demonstrated how a change in a weighted
region face weight fc influenced the chosen power cable route, it did not show the full
potential of the model. Instead of solving the Minimum Cost Weighted Region Steiner
Tree problem as discussed in 2.5, it compared the costs of two minimum cost weighted
region shortest paths. To do show the full potential of the model, this section will explore
the case that was introduced in section 5.3 different power cable infrastructure layout
designs that connect all the planned wind park sites for 2050 in the Dutch part of the
North Sea.

The coordinates of the wind farm and landing points were extracted from QGIS with
the UTM 31 North zone. The capacities of the wind farms were taken from 4C Offshore,
a company that provides an online Geographical Information System that contains infor-
mation about all contemporary and future wind farm sites [1]. Appendix D contains data
on all the coordinates and capacities of the wind farms utilized in this real-world example.
The total potential capacity of the fifteen wind park combined is 61.5 GW. Because today,
only 2.5 GW of offshore wind energy capacity, or the small fraction of 4.1% of the potential
offshore wind energy capacity of 2050, is installed, the assumption is made that there is no
existing power cable infrastructure yet in place. Just like in the scenario described in the
previous section, the cost capacity exponent β and the number of Steiner points placed
on the edges of triangulated faces m have been given values of 0.6 and 10, respectively.

Figures 6.2 to 6.4 on the next page show three discovered networks that connect all the
fifteen wind park sites with the four landing points on shore for different face weights fc of
the Natura 2000 areas being 1, 1.5 and 2, which have been chosen, since they demonstrate
all the potential network topologies with their associated total network costs that have
been observed during experimentation with this case study. The thickness of the black
lines that connect the nodes, indicates the capacity of the power cables. All three found
networks are forests instead of trees. Forests are graphs that consist of disjoint trees. This
was to be expected, since if the discovered cost-optimal networks had been trees, they
would only have made use of one landing point, which would have increased the total
length of the power cables significantly.
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Figure 6.2: North Sea’s future wind park sites with fc = 1.0

Figure 6.3: North Sea’s future wind park sites with fc = 1.5

Figure 6.4: North Sea’s future wind park sites with fc = 2.0
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Two Natura 2000 zones, the Frisian Front and the North Sea coastal zone, are never
crossed or surpassed in all of the three scenarios. Figure 6.2 shows that if the weighted
regions are assigned a face weight equal to that of the exterior of weighted regions, both
the Natura 2000 areas before the coast of the southern province of Zeeland and the two
included maritime German Natura 2000 areas are crossed. When the face weights of the
weighted regions are increased to 1.5 as shown in figure 6.3, the northern power cable
starts avoiding the German Natura 2000 areas and the southern power cable chooses a
shorter route through the weighted region before the Zeeland delta. At a face weight fc
of 2, the Natura 2000 region for the coast of Zeeland is also evaded.

Table 6.2 presents the relative costs of five conducted experiments with different face
weights fc that illustrate the tipping points in the discovered optimal networks. When
the face weight surpasses the 2, the relative costs of the found networks do not increase
anymore. This is due to the fact that all the weighted regions are already avoided by the
power cables in the fc = 2 experiment. Moreover, the difference between the relative costs
over all experiments is rather small. This can be explained by the fact that most of the
wind sites can be connected to a landing point or each other without ever having to cross
a weighted region. Therefore an increase in the face weight of weighted regions will barely
affect the network’s costs.

Table 6.2: Relative costs of the network connecting the Dutch North sea’s wind park sites

Experiment Face Weight fc Power LP1 Power LP2 Power LP3 Power LP4 Relative costs

1 1.0 35300 24628 0 1502 +0.0%
2 1.5 35300 24628 0 1502 +1.42%
3 2.0 35300 24628 0 1502 +1.46%
4 2.5 35300 24628 0 1502 +1.46%
5 3.0 35300 24628 0 1502 +1.46%

A remarkable observation that can be made when looking at table 6.2 is that the landing
points are assigned the same capacity in each scenario. In other words, the same wind
sites are connected to the same landing point for each of the five experiments. Another
interesting outcome of the experiments is, that there is never a power cable connected to
LP3, which represents the Maasvlakte landing point. This is surprising, since in reality,
four wind parks were connected to the Maasvlakte as can be seen in figure 5.7. Apparently,
more factors than just the required network investment expenditures were taken into
consideration in designing the North Sea’s power cable infrastructure layout. Therefore,
the next section will investigate which other factors play a role in decision-making processes
regarding the design of energy infrastructures and how the developed model can be of use
in this decision-making process.
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7. Using energy network
modelling in decision-making
processes
The previous chapter examined how the developed model can be used to identify the
energy infrastructures with the lowest investment costs in a context of regions with
varying costs for constructing power cables. However in practice, several other factors
than merely the minimization of initial investment costs are considered when comparing
various energy network designs. Therefore, this section will discuss how the insights gained
from the model could be used in a decision-making process regarding the design of energy
infrastructures. First, section 7.1 will elaborate on the benefits and limitations of using
graph theory models in decision-making processes. Second, section 7.2 will discuss how
the model described in chapter 3 could have been used in the decision-making process of
the first real-life case study of connecting wind farm Doordewind with the Dutch coastline.

7.1 Advantages and disadvantages of using graph theory
models in decision-making processes

This section will discuss two advantages and four limitations of using the results of
graph theory models in real-life decision-making processes. A first advantage of graph
theory is that it is able to optimize several different parameters. This makes it a rather
suitable method to consult during decision-making processes when there is a strong relative
importance of one parameter over another [74]. In these situations, the graph theory
model’s outcome which has optimized this most important parameter could be used as a
starting point, initial design or food for thought in the decision-making process. Later on
in the process, this initial design could be modified or altered to better fulfill the wishes of
the actors involved or better satisfy the constraints set by other, less relevant, parameters.

A second advantage of using graph theory models in decision-making processes is
that both the assumptions and outcomes of graph theory models are easy to interpret.
Rudin [71] warns of the rise of the application of black box models in high-stakes decision
making, like in that of critical (energy) infrastructures, in society. She argues that adopting
black box models which employ prediction techniques that are not even comprehensible to
their developers, causes transparency and accountability problems, especially in the public
sector. If possible, these black-box models should be replaced by interpretable models.
For example, instead of using a black box preventive criminal behaviour model that uses
unclear and non-transparent prediction strategies, crime fighters could use conventional
graph theory algorithms combined with a social graph model which maps the social
connections between criminals known to the police to predict which small-time criminals
are likely to become the ‘Escobars’ of the future.

Unfortunately, there are also downsides to using graph theory. Zarghami et al. [87]
mention five limitations of using graph theory networks in decision-making processes
concerning infrastructures:

1. A graph is merely a model of a network that simplifies the network as a set of
nodes that are connected with edges. This abstractification does not quite capture
the complexity of real-world networks which impedes a realistic depiction of infra-
structures.

2. Using graph theory to identify the most ‘important’ actors, locations or connections
in a network is highly dependent on the chosen characteristic to measure ‘importance’.
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3. Each infrastructure is unique and is developed in a different technological, political
and social context. Using graph theory as a ’one-size-fits-all’ approach therefore
might lack effectiveness in some cases, because the conventional graph theory tools
are not able to include these contextual differences.

4. Graph theory methods are static in the sense that they can only provide snapshots
of the development of a network at discrete times. In reality, the topological charac-
teristics are likely to variate over time as a response to a change in internal and
external factors.

5. Because graph theory focuses on the connections between demand or supply sites
rather than on the sites themselves, exclusively using graph theory tools yields
insufficient data on the changes that some of these sites are not able to deliver
their supply or have a lower demand than anticipated [8].

This section has mentioned some benefits and limitations of using graph theory models
in decision-making processes in general. The following section will elaborate on how the
model developed in this research report could be used in the decision-making process
regarding connecting a Dutch North Sea wind farm to the Dutch coastline.

7.2 Using the developed model in the Doordewind wind
farm decision-making process

As discussed in chapter 5, the Dutch government is planning to develop several offshore
wind farms in the Dutch North Sea in the coming decade. One of them is called Doorde-
wind, a 4 GW wind park located north of the Netherlands which is planned to be realized
in 2030. A technical report that studied the ‘best’ way to connect the wind farm with a
power cable that will transport the electricity generated by the wind farm to the Dutch
shore, came up with six potential power cable routes which are depicted in figure 7.1.

Figure 7.1: The six investigated routes to connect wind park Doordewind

Naturally, one of the evaluation criteria was the initial investment costs of the power cables.
However, the different routes were also evaluated on five other criteria being their (1) life-
time costs, (2) the realisation time which includes the design, permit and construction
phase, (3) effects on nature, (4) feasibility of required construction methods and (5) the
effects of topology on the location and stability of underwater gullies and salt marshes
[70].

The model described in this research report is probably not very helpful in evaluating
the realisation time, life-time costs and feasibility of required construction methods of the
different routes. Nevertheless, by conceptualizing the protected nature areas underwater
gullies and salt marshes as weighted regions, the model could be of use to quantify the
trade-offs between the initial investment costs on the one hand and the effects on nature
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Figure 7.2: Conceptualization of Doordewind power cable routing problem

and the effects of the routes’ topologies on the location and stability of underwater gullies
and salt marshes on the other. Figure 7.2 illustrates how this research studied the first of
these trade-offs by conceptualizing the protected Natura 2000 areas as weighted regions.

The very specific evaluation criterion of the effects of the power cable routes on the
stability of underwater gullies and salt marshes is a clear example of the third limitation of
using graph theory models in infrastructure modelling mentioned in the previous section
that every infrastructure is unique and developed in its individual context. Luckily,
because the developed model allows for the modelling of concave, convex and triangulated
polygons as weighted regions, the model might still be of service for a broad spectrum of
specific spatial requirements.

Next to the evaluation criteria mentioned in the technical report, the responsible
minister of Economic Affairs and Climate laid down two additional objective criteria to
evaluate the routes. The timing of finalizing the power cable should match the demand
expectations for sustainable energy. Additionally, the landing point should be able to
absorb the electricity generated by the wind parks and transform it so it can be transported
via the national high-voltage grid [86]. Both of these additional criteria are possible
explanations for the discrepancy shown in figure 7.3 between the cost-optimal network
designed by the model and the real-life Dutch electricity grid.

(a) Cost-optimal design by the model (b) Real-life Dutch electricity grid

Figure 7.3: The Dutch and German Natura 2000 areas of the North and Baltic Seas
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The model only took the initial investment costs into account, which resulted in an offshore
electricity infrastructure that did not assign a single power cable to the Maasvlakte landing
point (the second-most bottom landing point in figure 7.3a. In reality, the Maasvlakte
landing point is close to the Rotterdam harbour which is the home of one of the largest
industrial complexes in the Netherlands, as well as, South-Holland, the most densely
populated province of the country, which both have a large demand for electricity.

Ultimately, the minister of Economic Affairs and Climate decided to disregard all the
power cable routes that ended up at the Vierverlaten landing point, because there was no
political support for the construction of the power cable in the region [86]. Graph theory
models are likely to be ill-equipped to make these kinds of political considerations.

46



8. Conclusion
The pressing issue of human-induced climate change demands the decarbonization of
economies around the world in the coming decades. Satisfying these sustainability challen-
ges requires the development of new energy infrastructures and the expansion of existing
energy networks for which minimizing their capital investment costs is crucial. However,
the models that estimate the required investment costs of energy networks, currently lack
the possibility to include spatial regions in which the costs of constructing pipelines or
power cables can be differentiated. Therefore this research has tried to answer the main
research question: How can geographical cost-differentiations be included in network energy
infrastructure cost-minimization models? To this end, a new problem called the Minimum
Cost Weighted Region Steiner Problem has been formulated. To solve this problem, a novel
method was proposed that combined algorithms borrowed from the fields of graph theory
and computational geometry.

The developed method finds a cost-optimal topology for new energy infrastructures of
multiple sites with either a demand or a supply of an energy commodity in a context of
weighted regions. Weighted regions are geographically limited areas in which the costs of
constructing energy infrastructures can differentiate. The model exploits the geographical
locations of the demand or supply sites and weighted regions, the demand or supply of
the sites, the relative costs of constructing energy networks in these weighted regions
and a user-defined number of points placed on the borders of the weighted regions that
represent potential paths that can be taken to cross these regions to construct a network
layout of pipelines or power cables with specific lengths, capacities and routes to traverse
the weighted regions that ensures that the demands of all sites are satisfied.

Through a series of randomly generated experiments, the influence of input parameters
on the model’s performance has been investigated. Although the literature study has
shown that the optimal solution to Weighted Region problems cannot be computed exactly,
adding more points on weighted regions that represent potential paths to traverse these
regions results, on average, in discovered networks that appear to get closer and closer to
this optimal solution. Nevertheless, the gains of adding more border points on weighted
regions seem to flatten after more than 7 points are placed on the edges of the weighted
regions, while simultaneously the model’s run time starts to increase steeply.

The statistical tests performed on the data gathered from the randomly generated
experiments indicate that there are statistical relationships between the input parameters
of the max demand of sink nodes, the maximum weight assigned to weighted regions,
and the number of terminal nodes, triangles and placed border points on the model’s
computational time. This entails that if the values of these input parameters are increased,
the model will, on average, require a longer time to run.

The performed case studies have shown that the total costs and network topologies
are highly dependent on the weights assigned to weighted regions. Only a small rise
in the weight assigned to a region can alter the taken route of a specific pipeline or
power cable greatly, often leading to networks that choose to avoid weighted regions
altogether. Nevertheless, a change in the weight assigned to regions did not impact the
overall construction costs of the discovered network topologies in a remarkable manner.

Since the desirability of energy infrastructures is not solely dependent on a mini-
mization of the investment costs required to construct them, the outcomes of the model
are not ready-to-use designs that can be implemented immediately. However, the networks
provided by the model are suitable as a starting point in decision-making processes and
can clearly quantify the trade-offs between the required investments costs on the one hand
and the difficulties that arise when constructing energy infrastructures in areas that are
protected by nature conservation laws, are politically or culturally sensitive or owned by
other actors.
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In conclusion, this study has proposed a new method that allows for cost variation
of geographical demarcated areas in energy network modelling. To quote George Box;
“all models are wrong”, but hopefully this new approach can contribute to making energy
network modelling a bit less so.
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9. Discussion
This chapter contains a discussion of the conducted research described in this report.
This section addresses five limitations of the developed model, the validity of the model’s
underlying assumptions and the validity of the results obtained from the developed model.

9.1 Limitations of the model

The first major limitation of the proposed methodology is that it searches for networks
while only optimizing one criterion: minimizing the construction costs of the energy
network’s pipelines or power cables. In reality, there are more costs associated with
the development of an energy network like the construction of gas compressors [86] or
electricity transformers and more criteria to optimize like a network’s reliability, robustness
and resilience. As discussed in chapter 7, the cost-optimal offshore electricity grid discover-
ed by the model differs quite a lot from the electricity grid already in place. This
discrepancy can partly be assigned to this limitation, since the assignment of power cables’
capacities to different landing points is not solely dependent on cost-minimization as in the
model, but dependent on factors like onshore electricity demand and required construction
methods as well.

A second limitation of the model is that it is only capable to design entirely new
energy infrastructures. These ‘greenfield’ roll-outs of new networked infrastructures are
rare in the developed world. Most networked infrastructures in use today have evolved
over several decades, or even centuries, in an organic way. Over the years, small local
networks have grown into national or international networks [35]. Due to this limitation,
in the second case study that explored the North Sea’s offshore electricity infrastructure,
an assumption has been made that all of the wind farms had still to be connected, while
in reality three smaller wind farms were already connected to the Dutch coast. Because
the power cable infrastructure that was already in place was neglected, the investment
costs estimated by the model will be higher than is realistic.

A third limitation is that the model is not able to assign negative weights to weighted
regions, a problem that is elaborated on in appendix A. As a result, the model cannot
allow for regions in which the constructor receives money to build an energy network. This
limitation might have less practical implications than the previous two, since it is unlikely
that a rational actor would pay for the disturbance caused by a pipeline or power cable
on his or her land.

Another limitation of the model is that it requires that the total demand of the
sink nodes is equal to the total supply of the source nodes. This limitation might be
incompatible with the design of modern electricity networks that experience an increase of
intermittency on the demand site due to the rise of sustainable electricity generation. To
ensure that electricity networks can always meet the electricity demands of households and
the industry, the total installed capacity of both sustainable and fossil electricity suppliers,
must be higher than the total demand for electricity.

Lastly, the model only accepts weighted regions in the form of convex, concave or
triangle-formed polygons. In nature and practice however, obstacles with different costs
of constructing energy networks in them are not always made up out of straight lines.
This makes the model less suitable for very detailed designs in which the precise route
through an obstacle is required.
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9.2 Validity of the case studies assumptions

One of the assumptions that was made while designing the second case study that shows
the application of the model, was that the wind farms that will be developed on the
Dutch North Sea will be connected solely to the Dutch shoreline and subsequently to
the Dutch electricity grid. However in reality, the countries neighbouring the North
Sea plan on connecting their North Sea energy systems in order to better deal with the
intermittency inherent to the generation of wind energy. During production spikes, the
energy can be allocated to other countries, while during a shortage of wind, energy can
be bought from abroad. These plans are not just ambitions for the far future. The
North Seas Energy Cooperation (NSEC) which was founded in 2016 by Ireland, the
United Kingdom, Sweden, Norway, Denmark, Germany, the Netherlands, Belgium and
Luxembourg, is already working on concrete cross-border network projects that have the
potential to use economies of scale to reduce the costs for all countries. Two examples
in which the Netherlands are involved are a WindConnecter that will connect the Dutch
wind park IJmuiden Ver not only to the Netherlands, but to the United Kingdom as well
and an energy hub that will allocate electricity generated by Danish, German and Dutch
wind farms to these countries where it is needed the most [66]. Since there are already
concrete plans to interconnect wind farms from different countries in the next decade, the
assumption that the Dutch power cable infrastructure of 2050 will only be connected to
the Dutch shoreline does not seem that realistic.

9.3 Validity of the case studies results

The case study used to show different applications of the model concerned connecting the
wind park Doordewind with a planned capacity of 4 GW to two potential landing points in
the northern part of the Netherlands. Since the method described in this research report
assumes some level of economies of scale when constructing pipelines or power cables with
a larger capacity, the results of all scenarios contained a single power cable of 4 GW that
connected the wind park through different routes with one of the two landing points. In
reality, the routing plans for connecting the wind farm have been finalized and the choice
was made to connect the site with two power cables, each with a capacity of 2 GW [70, 86].
This is an interesting discrepancy between the outcome of the model and the observed
decision-making process, for which the next chapter will make some suggestions fur further
research.

Figures 6.2 to 6.4 show the model’s designs of the Dutch North Sea’s power cable
infrastructure that connects all the current and potential offshore wind sites with the
mainland. Interestingly, in all of the designed scenarios, the wind farms are connected to
either the landing points of Eemshaven, Beverwijk or Borrsele, but never to the Maasvlakte
landing point. Figure 5.7 presents the current onshore and offshore electricity grid, on
which can be seen that the wind farms Dutch Coast South and even the IJmuiden Far
wind site, which is much closer to the Beverwijk landing point, are connected to the
Maasvlakte landing point. Both of these discrepancies between the model’s outcomes and
either the observed decision-making process or the existing power cable layout were not
expected and therefore interesting. As a consequence, the following chapter will make
some recommendations for further research that might overcome these discrepancies.
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10. Recommendations
The last chapter of this report will give several recommendations to both policy makers
who are part of the decision-making processes that realize energy infrastructures and
researchers in the field of energy infrastructure modelling who would like to use this model
for different research or expand on the knowledge gained in this research.

10.1 Policy recommendations

The main contribution of the model developed in this research is that it is able to
generate cost-optimal energy networks in a context of spatial regions with different costs of
constructing energy networks in them. Policy makers could use this model’s contribution
to their advantage in three ways.

First of all, the model is well suited to identify, quantify and visualize the trade-offs
between the construction costs of energy networks on the one hand and their influence on
their spatial context on the other. During different stages of the design process, discussions
about the energy infrastructures’ impact on nature, the possibility of obtaining land from
other actors or the traversing of regions with a high cultural or societal relevance can
now be assisted with numbers in a quick and easy manner. An example of an energy
infrastructure project that might have benefited from the developed model is the Keystone
Oil Pipeline which was planned to transport oil from the Canadian province of Alberta
to refineries in Texas and Illinois in the United States. The oil pipeline became highly
controversial because it crossed protected nature reserves as well as areas sacred to the
indigenous Sioux population. Eventually, the permit for the last phase of the pipeline was
revoked on the first day of office of president Joe Biden [78]. If the model would have
been used to quantify the trade-offs between the proposed sensitive route and a longer,
more delicate, route, in combination with a cost-benefit analysis that included the costs of
potential harm to nature and political and cultural risk, a different route for the pipeline
might have been chosen which could have resulted in a successful completion of the project.

A second application of the model for policy makers arises in projects including
several geographical regions with varying costs of constructing energy networks in them.
Finding the cost-optimal network becomes a complex task in these circumstances. In these
situations, the model is able to represent reality better than other models known to the
author.

Thirdly, the cost-optimal outcomes of the model can be used as a starting point in
the decision-making processes of energy infrastructures. As mentioned in section 7.2,
the design of energy networks is dependent on many factors of which the criterion of
minimizing the initial investment costs is often an important one. Initializing the decision-
making process with a cost-optimal network might assist policy makers in tweaking this
first design to perform better on other evaluation criteria, while keeping the investment
costs relatively low.

10.2 Other applications of the model

As discussed in the previous discussion chapter, it is anticipated that the collaboration
between countries bordering the North Sea in developing their offshore energy infrastruc-
tures will enhance in the coming decades. Therefore, the developed model could provide
a blueprint of a cost-optimal design of an offshore electricity infrastructure that connects
all the to be constructed wind farms on the North Sea that potentially cross Natura 2000
areas which could be used to start discussions between the countries on the division of
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development costs between them and the utilization of the limited space the North Sea
provides.

In addition, the model could also be used to research the two proposed cases of
connecting wind farms on the North Sea in more depth. The (Dutch) North Sea is not
simply split between protected Natura 2000 zones and areas suitable for the development
of offshore wind parks. The crowded marine region is, among other things, also used
for fishing, sand mining, shipping, military purposes and (digital) communication infra-
structures [67]. Expanding the model’s inputs by including these marine areas with other
purposes as weighted regions, might ensue in results that are better aligned with reality.

10.3 Further research

A first direction for potential research can be found in improving the algorithm of Lanthier
et al. [47] that was selected in section 2.3 to solve the weighted region shortest path
problem. In a later paper, Lanthier et al. [48] proposed an interval scheme instead
of the fixed scheme to place Steiner nodes on the edges of triangulated regions that
can reduce the number of Steiner points placed on some edges considerably, thereby
reducing the computational time of the model. Other researchers familiar with energy
network modelling could also try to implement the other examined algorithms that solve
the Minimum Weighted Region Shortest Path Problem also mentioned in section 2.3 in
the described methodology to compare their performance and potentially point out the
algorithm best suited to solve the described Minimum Cost Weighted Region Steiner Tree
problem.

Another avenue for further research is to expand the developed model via existing
connections. Most developed countries already have energy infrastructures in place that
need to be expanded [32] or adapted [36] to provide energy to a greater amount of their
populations or reach their sustainability goals and have therefore no need to design energy
infrastructures from scratch. Integrating these existing connections as an optional input
parameter, for example by using the method proposed by Heijnen [31], increases the
application possibilities of the model to not only be limited to the design of ‘green-field’
infrastructures.
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A. The problem with assigning
negative weights to weighted
regions
This appendix demonstrates why assigning negative weights to weighted regions leads to
problems when searching for shortest paths. Figure A.1 shows an example of an underlying
graph in which the minimum Steiner tree algorithms described in section 3.4 could look
for a minimum length spanning tree. A minimum length spanning tree in this example
would connect source node A with sink nodes B, C and D while possible connecting the
Steiner nodes of the obstacle depicted with the grey nodes. Note that the weights assigned
to the edges are for an illustration of the problem and do not exactly match their relative
length. Moreover, some of the edge weights of the triangulated obstacle are not shown in
the figure to keep the illustration clear.

Both the Minimum Path Heuristic and the Distance Network Heuristic described in
section 3.4 will have no difficulty in connecting the nodes A, C and D by picking either
eAC and eAD, eAC and eCD or eCD and eAD. The problem arises when the shortest path
needs to be found from node A to node B, this is when the used shortest path algorithm
(Dijkstra’s) encounters negative cycles. In an undirected graph, a negative cycle is a
cycle whose edges all have a negative weight. The concept of a shortest path becomes
meaningless if it encounters a negative cycle on one of the possible routes that connect
two nodes [73].

One of the negative cycles that can be encountered between nodes A and B is the
cycle [6,2,4] whose edges all have a weight of -1. As a result, every time the path chooses
this route, the length of the path decreases by 3. This cycle will constantly be ‘walked
through’ by Dijkstra’s algorithm, thereby never ending and never giving a result.

Figure A.1: Steiner Minimum Tree problem with a weighted region with a negative weight

Please note that finding the shortest path by using a detour, namely by looking for the
longest path by first multiplying all the edge weights with -1 is not an option. This creates
new negative cycles, like [A,5,6] for example, which will still ‘break’ the used algorithm.
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B. Algorithms used in the model
This appendix dives deeper into some of the algorithms used in the methodology described
in chapter 3 and were only briefly discussed in the research’s main text.

B.1 Decomposition algorithm

This section describes the algorithm proposed by Fernández et al. [24] that can be used to
decompose convex polygons. Convex decomposition is the process of splitting up a single
concave polygon into several convex polygons [19, 25].

This procedure to generate a convex polygon out of a concave polygon works as follows.
The algorithm runs through the vertices v1, v2, ..., vn of concave polygon P in clockwise
order. The vertices of the next future convex polygon to be cut off are stored in a list
L, initially with only one vertex. The adjacent vertices of P to this initial vertex are
added to this list (in clockwise order) as long as it is possible to generate a convex polygon
from the vertices (thus as long as there will be no interior angles larger than 180° when
connecting the first vertex with the last vertex of the list). When this is no longer possible,
the convex polygon to be cut off is obtained by adding a diagonal edge, joining the last
and first vertices v of L [24]. This process is repeated with the remainder of the polygon
until it is no longer concave.

Figure B.1: Convex decomposition of a concave polygon

Figure B.1 shows the convex decomposition of the concave polygon that was introduced
in figure 3.1. The decomposition algorithm starts with vertex n1 which it added to the
list L before continuing clockwise to the other vertices. The algorithm stops adding nodes
to the list at vertex v4, since connecting v1 to v4 would create a polygon with an interior
angle larger than 180°, namely ̸ 234. The convex polygon with the vertices from list
L = [v1, v2, v3] is cut off from the initial polygon. Since the remainder of the polygon is
now convex as well (polygon P with vertices [v1, v3, v4, v5] has no interior angles larger
than 180°), the algorithm is brought to an end.
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B.2 Bowyer-Watson algorithm

The Bowyer-Watson algorithm is used to compute Delaunay Triangulations. A Delaunay
Triangulation is a set of triangles made from a set of vertices so that no vertex lies inside
the circumcircle of any other triangle in the set [17]. Figure B.2 shows a circumcircle of a
triangle that, by definition, passes through all the triangle’s vertices.

Figure B.2: A triangle with its circumcircle

The Bowyer-Watson algorithm initializes by drawing a ‘super-triangle’ that contains all
the points that one wants to triangulate. One by one, consider each point inside the larger
‘super-triangle’. For each of these points, save all the triangles whose circumcircles contain
the point, which we will call ’bad triangles’. If any, remove all the edges that are shared
by at least two ‘bad triangles’. For every edge belonging to a ‘bad triangle’ that was not
removed, form a triangle by connecting the point to the two vertices adjacent to the edge.
These steps are repeated until there are no more ‘bad triangles’ after which the vertices
of the ‘super triangle’ and all edges adjacent to them are removed [62].

Figure B.3: A Delaunay Triangulation by using the Bowyer-Watson algorithm [72]
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C. Verification data
The graph used in the verification process described in section 4.1 used the example shown
in figure C.1 to assure that the model performs as it is supposed to. This appendix presents
the calculations that underlie the assumptions of the model and thereby proves that the
model’s outcomes are accurate.

Figure C.1: Model runs with region weights fc = [0.25, 1, 1.5, 2]

The costs of the spanning trees, represented by the black lines in the figure above, are
calculated with the formula shown in equation 3.4. To calculate the total costs we therefore
need the length of the edges le, which can be calculated by using the nodes’ coordinates
presented in table C.1, the capacity of the edges qe, the capacity cost exponent β, which
is 0.6 and the weight of the region fce which is varied in the different model runs as is
shown in the caption of figure C.1.

Table C.1: Nodes’ coordinates of verification example

Node a b 0 1 2 3 4 5 6 7 8 9 10 11

X −0.2 1.2 0 0.25 0.5 0.75 1 0.875 0.75 0.625 0.5 0.375 0.25 0.125
Y 0.5 0.5 0 0 0 0 0 0.25 0.5 0.75 1 0.75 5 0.25

Assuming that the region depicted in blue has a positive face, there are four routes from
terminal a to terminal b that are in the running for becoming the cost-optimal route. These
routes are [a, 8, b], [a, 9, 7, b], [a, 10, 6, b] and [a, 11, 5, b]. Note that route [a, 0, 1, 2, 3, 4, b] will
never be less costly than route [a, 11, 5, b], since the combined length of edges ea0 and e4b is
larger than the combined length of edges ea11 and e5b, all the edges have the same capacity
and do not cross a weighted region. Therefore it does not matter if the path from Steiner
point 0 to 4 is free of costs, the other paths will be cheaper in all scenarios wherein the
region has a positive weight.

Table C.2 shows the total costs of the different paths from a to b under variations of
the region’s weight fc. The lighter the colour of the cell, the cheaper the path is compared
to the other potential paths. The paths that traverse the weighted region fc less, or not
at all, become more attractive as the region weight increases.

Table C.2: The costs of paths under different region weights

Paths
Region weight

0.25 1 1.5 2

[a, 8, b] 27.26 27.26 27.26 27.26
[a, 9, 7, b] 20.96 23.93 25.99 27.89
[a, 10, 6, b 16.25 22.19 26.15 30.11
[a, 11, 5, b] 16.01 24.88 30.83 36.77

.
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D. Offshore wind park data
This appendix provides the data of the offshore wind parks that were used to model the
offshore wind park cases described in chapter 4 and which results were presented in chapter
5. Table D.1 shows the UTM coordinates, (potential) capacity and (planned) construction
year of the 15 wind farm sites in the North Sea and the 4 landing points on the Dutch
shoreline.

Table D.1: Offshore windpark data

Code Name Capacity (MW) UTM Coordinates (31N) Construction year

NW1 Borssele wind farm 1,502 (500000, 5714697) 2021
NW2 Dutch Coast (South) 1,649 (576031, 5802408) 2023
NW3 Dutch Coast (North) 879 (590118, 5828643) 2024
NW4 Dutch Coast (West) 2,100 (547400, 5830000) 2026
NW5 North of the Frisian Islands 1,300 (694032, 5991602) 2026
NW6 Ijmuiden Far 6,000 (536000, 5854000) 2028
NW7 Nederwiek 6,000 (515000, 5887000) 2029
NW8 Doordewind 4,000 (670500, 6017250) 2030
NW9 Lagelander 4,000 (561400, 5905500) >2030
NW10 Search Area 3 2,000 (550000, 5970000) >2030
NW11 Search Area 4 10,000 (680000, 5970500) >2030
NW12 Search Area 5 2,000 (641150, 6023000) >2030
NW13 Search Area 6 10,000 (611000, 6027500) >2030
NW14 Search Area 7 8,000 (580500, 6020000) >2030
NW15 Search Area 8 2,000 (594500, 5919000) >2030
NA1 Eemshaven - (757600, 5928500) -
NA2 Beverwijk - (607700, 5817000) -
NA3 Maasvlakte - (571200, 5759500) -
NA4 Borssele landing point - (539700, 5699500) -

.
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