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Preface

Exploring the coastal system by means of the heart (Lesser et al., 2004) of the DELFT3D-modelling
framework, that is, the FLOW module, contributed to the awareness that nature’s complexity, yet,
perhaps originating from simplicity, remains fascinating. The development of some basal
understanding of existing model formulations should precede analyses of its output for user-specified
conditions. Further, one can spend decades or longer on getting some idea of the intrigue and intricate
nature  of  nature.  The  author  hopes  that  the  present  work  will  serve  as  a  small  step  towards  further
investigation of a process-based model’s capability to reproduce observed cyclic bar behaviour along
sandy  coasts.  The  supervisor  of  my  traineeship  at  WL|Delft  Hydraulics,  ir.  D.J.R.  Walstra,  is
acknowledged for offering the opportunity to study this natural feature in the final months of my
study physical geography. My supervisor at Utrecht University, dr. B.G. Ruessink, is acknowledged
for his effort to provide a traineeship at the institute. Further, thanks are due to prof.dr.ir.  L.C. van
Rijn for lending out the books of Rodi and Cebeci&Bradshaw to get some first understanding of
turbulence, and to dr. C. Brière for helping me with some typical beginner Delft3D problems. The
Universal Coastal Intelligence Toolkit, initiated by dr.ir. M. van Koningsveld provides a
straightforward  way to  extract  frequently  needed data,  such as  the  bathymetric  data  for  the  present
study. Finally, I would like to thank my colleague-students on the ‘afstudeereiland’: we shared a nice
time!
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1 LONG-TERM NEARSHORE BAR
BEHAVIOUR

The behaviour of a multiple bar system in the nearshore zone of a sandy coast has been
studied, extensively. These studies focused on bar behaviour at time scales, ranging from
hours, days and weeks (e.g., Kroon, 1994), via months and seasons (e.g., van Enckevort,
2001) to years and decades (e.g., Ruessink and Kroon, 1994; Wijnberg and Terwindt, 1995).
Obviously,  time-  and  space  scales  are  related  (figure  1),  e.g.,  annual  ‘snapshots’  of  the
coastal bathymetry (e.g., the Jarkus data base of yearly (since 1964) echosoundings and
aerial photographs  of the nearshore profile along the Holland coast (of about 115km
length)) reveal the cumulative result of morphological developments on many scales
(Wijnberg and Terwindt, 1995). The present study concerns bar behaviour at the yearly to
decadal timescale. It is the yearly to decadal bathymetric developments that are often
dominated by shore-parallel nearshore bars along uninterrupted, sandy coasts (Wijnberg and
Terwindt, 1995).

Figure 1. Coupling between space and time scales of nearshore fluid motions, shaping a coast’s morphology
(left; adapted from Thornton et al., 2000). A long-term goal of nearshore research is to understand and model the
transformation of surface gravity waves propagating across the continental shelf to the beach, the corresponding
wave-driven circulation in the surf zone (besides the eventual impact of tidal motion and wind shear), and the
resulting evolution of surf zone and beach face morphology (including feedback mechanisms). From field
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experiments and numerical models it has become clear that the above-mentioned coastal system involve coupled
processes at many spatial and temporal scales (right; adapted from Thornton et al., 2000). For example, the
incident wave properties and beach profile (large-scale properties) determine the overall characteristics (e.g., surf
zone width) of nearshore waves and flows (intermediate-scale properties). However, small-scale processes
control the turbulent dissipation of breaking waves, bottom boundary layer and bedform processes that determine
the local sediment flux (Thornton et al., 2000). Meanwhile, cross-shore- and alongshore nonuniformities in
wave- and current field as well as bottom slopes cause spatial gradients in sediment fluxes, resulting in large-
scale planform evolution (e.g., erosion or accretion). The development of surf zone bathymetry in turn, affects
nearshore waves and currents.

1.1 LARGE-SCALE MORPHOLOGICAL DEVELOPMENTS

Little is known about the controlling variables for the morphological behavior of coastal stretches (of
O(100-1km) length) over a time span of years and decades. The concept of a large-scale coastal
behaviour (LSCB) region was introduced by Wijnberg and Terwindt (1995), being an area in which
the profiles show similar horizontal shifting in cross-shore direction and exhibit comparable changes
in shape. They hypothesized that regions exhibiting different large-scale coastal behaviour are
controlled by different (i) hydrodynamic forcings or differently balanced combinations of
hydrodynamic forces, (ii) sedimentological constraints (grain size, stratigraphy) or (iii) morphological
constraints (shoreline orientation, shoreface morphology, surf zone morphology), or (iv) by some
combination of these factors. By using empirical eigenfunction technique and a moving window
approach to effectively quantify large-scale morphological changes, Wijnberg and Terwindt (1995)
identified large-scale coastal behaviour regions of several sizes (5, 15, 20, 32, 42 km) along the
Holland coast, which is characterized by an alongshore varying seaward extension of the bar system,
number of bars and bar spacing. They noticed that differences in the ‘secondary’ morphology, that is,
the morphology other than the mean profile shape, such as nearshore bars, are most pronounced and
that boundaries between LSCB-regions are generally quite sharp (of O(2km)). A marked difference in
bar behaviour was found between the area northward of IJmuiden (to the Petten Seawall) and the area
southward of IJmuiden (to the harbour moles of Scheveningen); bar spacing and size of the bars are
generally larger in the latter area. The well-known long-term bar behaviour (with decay of the outer
bar at the edge of the surf zone and generation of a new bar at the foot of the beach) is comparable for
both areas. However, the length of the migrational cycle differs; in the southern area the return period
is much smaller (about 4 years versus 15 years for the area northwards of IJmuiden) and the
alongshore coherence in offshore bar movement seems to be larger (figure 13 in Wijnberg and
Terwindt, 1995).
Thus, large-scale dynamics of multiple bar systems are characterized by their cyclic net offshore
migration over years to decades, often being remarkably regular (van Enckevort, 2001). Although
quantitative descriptions of these cyclic large-scale morphological developments have been provided,
such as given above, thoroughly tested mathematical relations between morphological behaviour and
controlling variables for this timescale are rather scarce. The present effort deals with the
reproduction of observed cyclic bar behaviour by means of a bottom-up modelling approach, that is,
the prediction of a topographic response by integrating short time-scale processes, including wave
transformation, fluid motion and sediment transport. The central question is whether such an
approach (hindcast) is capable of reproducing bar behaviour, and its cyclicity in particular, properly.
As a case study, the coastal zone in the vicinity of Noordwijk, the Netherlands, is selected. Here, the
return interval is recognized to be about 4 years, allowing model computational time not to be
excessively long. Consequently, an intersite comparison cannot be made, here (see e.g., Ruessink et
al., 2003). Further, bathymetric data are available that do not suffer from applied nourishments (see
e.g., van Duin et al., 2004; Grunnet et al., 2004). Before treating model formulations, some
theoretical background of bar definition, its generation and subsequent migration is given, first
(Chapter 2). Afterwards, a description of fluid motions is provided (Chapter 3), followed by a short
overview of the governing hydrodynamic equations (including the formulation for the transport of
constituents) making up a Delft3D model (Chapter 4). Subsequently, model outputs are analyzed
(Chapter 5). Finally, conclusions are summarized in Chapter 6.
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2 BAR CONSIDERATIONS

To study bar behaviour, this chapter gives some very brief rationale behind bar definition and
theoretical considerations of its generation and successive migration. Subsequently, spatial and
temporal bar behaviour will be assessed for a specific site (Noordwijk) along the Holland coast, for
the period 1979-1983 (one bar cycle).

2.1 DEFINITION

Nearshore bars are prominent morphological features, observed at numerous sites across the world
(see e.g., Ruessink et al., 2003). Natural variability in both cross-shore and alongshore appearance of
bars, and its spatial and temporal derivatives are stunning (see e.g., Table 4.1 of van Enckevort,
2001). Several bar classification schemes have been set up (e.g., based on relation between bar
location and environmental setting (Wijnberg and Kroon (2002)), ultimately, to search for factors that
may explain intersite differences in recognized bar behaviour. Site-specific parameters, concerning
geomorphological and hydrodynamical characteristics, such as setting (open ocean versus semi-
enclosed sea), beach slope, grain size, tidal range and wave climate may cause intersite differences in
e.g., bar migration rate (at different temporal scales), but, as stressed by Van Enckevort (2001), it is
difficult to establish certain relations. Any analysis of bar behaviour, encapsulated in bathymetric
data sets, requires a proper description of spatial characteristics of the cross-shore bed profile(s). This
description has often been structured as a description of geometric parameters, such as bar amplitude,
bar  length,  bar  volume,  bar  zone  width,  or  water  depth  above the  bar  crest  (Ruessink  et  al.,  2003).
The determination of these parameters can be performed in several ways; from (i) direct computation
from bathymetric surveys (e.g., Ruessink and Kroon, 1994; figure 2) (alternatively, from remote
sources), (ii) data fitting functions (e.g., Plant et al., 2001; representation of measured bathymetry by
means of the superposition of two Gaussian-shaped sandbars on an underlying planar slope,
complemented with a third half-Gaussian bar to incorporate steepening at the shoreline; see their
figure 1), or (iii) by means of modes of a complex empirical orthogonal eigenfunction analysis, being
a technique for detecting propagating wave phenomena (bars), so that dominant cross-shore coherent
bar behaviour can be separated from less dominant noise, and hence, barred and nonbarred parts of a
profile can be distinguished (after eventual implementation of a bar amplitude threshold; Ruessink et
al., 2003).

Figure 2. Left: average profile, standard deviation and thickness of the profile bundle of a cross-shore transect at
Terschelling, the Netherlands (period: 1965-1993; Ruessink and Kroon, 1994). The profile bundle represents the
difference between maximum and minimum measured depth values. As pointed out by Ruessink and Kroon
(1994), the average profile still contains bar-like phenomena, which need to be removed for a proper
morphometric analysis. This can be done by fitting a smooth profile trough the mean profile. Subsequently, this
fitted profile can be used to define a bar in a measured profile (right). Herein, a bar is defined as the part of the
profile above the fitted line. The morphometric parameters can then be determined, such as: dc = depth of bar
crest below ordnance datum (here: NAP), Pc = bar crest position with respect to the (detrended) shoreline, hb =
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bar height (maximum deviation between measured and fitted profile), Wb =  bar  width,  Wb,s =  width  of  the
seaward facing side of a bar and Vb = bar volume (Ruessink and Kroon, 1994).

2.2 GENERATION & MIGRATION

Among other candidates (e.g., breakpoint mechanisms, harmonic wave overtake mechanism and
mechanisms based on second-order drift velocities associated with standing infragravity waves, or
those based solely on the primary orbital infragravity motions), the most suitable mechanism for
explaining bar formation and migration seemed to be the extended breakpoint hypothesis (Ruessink;
1998), combining short wave flows and infragravity motions. Mean offshore-directed currents under
breaking waves (undertow) transport sediment that is suspended by the orbital motion under a short
wave. The asymmetry of shoaling waves causes onshore-directed sediment transport. The
convergence of undertow and wave asymmetry causes sand to accumulate, hence, bars to form, just
outside the surf zone. Accordingly, this bar formation mechanism is referred to as the ‘breakpoint-
hypothesis’ (Ruessink, 1998). An extension of this hypothesis is given by Roelvink and Stive (1989)
by including wave grouping induced long-wave flow. Of interest are their findings that leaving out
one of the flow components in their model (i.e., excluding one of the comprising formulations of (i)
undertow, (ii) short-wave velocity asymmetry and (iii) group-forced infragravity orbital motions) still
resulted in bar formation, but with different bar characteristics as observed in their laboratory
experiments. It is not the aim of the present study to treat possible bar formation mechanisms,
extensively; for an elaborate overview, the reader is referred to e.g., Abdelrahman and Thornton
(1987); Roelvink and Stive (1989); Ruessink (1998).

2.3 (MODELLING) CYCLIC MIGRATION

As mentioned before, long-term sandbar behaviour often has a cyclic offshore-directed character. A
bar cycle comprises the generation of a bar near the shoreline, followed by its net offshore migration
trough the surf zone, and its final disappearance at the seaward margin of the nearshore. Bar decay
may be seen as the trigger for the onset of net offshore migration of the next shoreward-located bar
and the formation of a new bar near the waterline. The study of Wijnberg&Terwindt (1995) point at
this type of bar behaviour to be alongshore coherent for alongshore lengths of more than 10km.
Accordingly, observed bar behaviour reflects cross-shore oriented bar variability, thus, is not the
result of alongshore propagating shore oblique bars (Ruessink et al., 2003).
To develop a predictive understanding of the variability of a distinct morphologic feature (figure 3),
such as the long-term (yearly) cyclic character of bars, models can be developed that integrate short
time-scale processes, including wave transformation, fluid motion and sediment transport. By
aggregation of small- to larger-scale processes, a bottom-up modelling approach is followed. Herein,
a wave-, current- and wind field are typically imposed on an initial morphology, and a final
morphology is predicted using sediment transport formulae. If the final morphology can be well-
predicted using this approach, the morphology is said to exhibit forced behaviour (Thornton et al.,
2000). However, the predictive skill of these models is uncertain on large temporal (and spatial)
scales. Moreover, several studies indicate that such a forced behaviour is commonly not fulfilled for
(Plant et al., 2001; Ruessink et al., 2003). For that reason, a top-down modelling approach can be
followed.
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Figure 3. Left: Synthetic coastal signal (G) variations (e.g., beach behaviour), viewed as the superposition of a
deterministic annual cycle and an underlying long-term trend. Predicting the long-term behaviour would be
specified by the trend, with variance of the annual signal making up the confidence limit (cf. regionalized
variable theory; Burrough&McDonnell, 1998). In other words, and more realistic, since nearshore variability
occurs over all spatial and temporal scales (with significant energy at the longest scales), prediction of LSCB is
made beyond a certain temporal (or spatial) scale (T’) with the shorter period (or length) fluctuations considered
to be variance of the prediction (Thornton et al., 2000; right). Models for nearshore processes are typically based
on physical laws expressing conservation of mass, momentum and energy (Chapter 3). At small and intermediate
scales (figure 1), understanding the nearshore implies the understanding of both its fluid and sediment
components (Thornton et al., 2000). At the longer time scales of Large Scale Coastal Behaviour (LSCB; Section
1.1), emergent variables based on a hierarchy of time scales may dominate nearshore processes (Thornton et al.,
2000). For these longer time scales of LSCB, the primary tool is conservation of sediment mass, because of the
bathymetry being the main variable of interest. For example, annual cycles in sand bar location may have no
LSCB impact (meaning that they only deliver variance), whereas net alongshore transport gradients, dune
overtopping or offshore losses can lead to important LSCB signals (Thornton et al., 2000). In other words, if
mass conservation is implemented via a box model, fluxes within that box may be neglected, whereas fluxes
across box boundaries may control long term behaviour (Thornton et al., 2000). Forcing of large scale nearshore
variability can arise from several sources, including (i) external factors (wave-, current- and wind climates), (ii)
nonlinear interactions within these external factors, and (iii) internal (to the system) factors. (i) Directly forced
response  is  the  result  of  forcing  energy  at  the  same  frequency,  e.g.,  slow erosion  of  the  beach  due  to  a  slow
increase in wave energy (Thornton et al., 2000). (ii) Nonlinear interactions may transfer energy of the forcing
spectrum from high frequencies to LSCB, e.g., increased suspended sediment loads under winter storm waves
might tend to be carried preferentially offshore by the undertow, while summer conditions might drive only a
weak onshore transport, resulting in a net sediment loss (Thornton et al., 2000). (iii) Spontaneous generation of
LSCB variance (free behaviour: see text) is caused by instabilities and feedback within the nearshore system,
e.g., generation of ripples on an initially smooth bed (generated by an instability and feedback between a
perturbation in bed roughness that causes a disturbance to the flow and sediment transport that, in turn,
reinforces the perturbation (Thornton et al., 2000)). In terms of sandbars: these may be generated by, and may
induce the onset of wave breaking.

It is suggested that the nearshore response is sensitive to initial perturbations in the bed profile and
that morphologic feedback to the wave- and current field can be strong (e.g., a decaying outer bar
results  in  a  larger  water  depth,  so  that  wave  breaking  shifts  in  onshore  direction).  As  such,
morphological developments do not depend solely on the instantaneous small-scale processes; they
also incorporate some degree of time history in profile configuration and may be driven by
instabilities of the well-known coupled fluid-morphology system (Thornton et al., 2000). Such a
system is thought to exhibit so-called free behaviour, in which the predictability time scales are
limited by the strength of the nonlinear feedback, or growth rate of an instability (Thornton et al.,
2000). Although only circumstantial evidence is present, the nearshore system is thought to have the
key characteristics to exhibit free behaviour (Ruessink et al., 2003): “the nearshore system is highly
dimensional and strongly nonlinear, it receives a continuous, stochastically forced input of energy
which is dissipated within the system, and it contains morphologic feedback, as changes in depth
gives  rise  to  changes  in  waves  and  currents”.  The  findings  of  Plant  et  al.  (2001)  also  point  at  the
importance of feedback mechanisms associated with surf zone sandbar response. From their analysis
it became clear that bar migration appears to be associated with a stabilizing feedback mechanism,
which drives bar crests toward equilibrium at the wave breakpoint. Of interest are their observed
differences from the classical breakpoint models, namely: (i) migration of existing bars accounts for
most of the variability of the system (not the formation of new bars), (ii) though the breakpoint is not
usually viewed as a sharply defined location under random wave conditions, the value of the
commonly used ratio of wave height to water depth, (separating onshore and offshore migration in
this study) could be sharply defined and (iii) bars may never reach equilibrium.
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2.4 EXPLORING CYCLIC MIGRATION AT NOORDWIJK

The degree of alongshore coherence in temporal changes in profile characteristics describing the
large-scale morphological behaviour (Wijnberg and Terwindt, 1995) is investigated for the present
study area (figure 4).

Figure 4. Timestacks for three transects (beachpoles 7900, 8000 and 8100 near Noordwijk), showing a bar
migration cycle within a time interval of approximately 4 years. The alongshore coherence in observed cyclic bar
behaviour on a km-scale can be clearly recognized, so that, eventually, the need for alongshore averaging of
individual transects vanishes. Although an alongshore averaging procedure may represent the mean-behaviour of
the area-mean cross-shore profile more properly, eventual (local) characteristic bar geometry may be represented
somewhat weakly. Ultimately, application of a full 3D-model (or a 2DV/2DH-model, but with less certainty,
presumably) may give insight in the effect of alongshore morphological inhomogeneities on cross-shore bar
behaviour.

m NAP



Modelling Cyclic bar behaviour Z4099 May, 2007
a bottom-up modelling approach with Delft3D

WL | Delft Hydraulics 7

8.96 8.97 8.98 8.99 9 9.01 9.02 9.03 9.04

x 10
4

-5

-4

-3

-2

-1

0

1

distance (m RD)

be
d 

le
ve

l (
m

)

Profile evolution 1979-1983 beachpole 8000

1979   A = 1952.6m2

1980         2000.6
1981         1950.2
1982         1968.8
1983         1951.2

Figure 5. Temporal cross-shore bar behaviour and computed profile volumes (xRD = [89750:90400] m) at
beachpole 8000, for each year within (t = [1979:1983]). See next page for more info. Profile volumes are quite
constant trough time, possibly inferring that the net seaward-directed bar migration has a dominant cross-shore
oriented origin. It is emphasized here, that the bed profiles shown here must be treated carefully, because of
possible effects of (i) different measurement dates of higher and lower part of the profile, as well as seasonal bias
in profile sampling due to a varying time interval between two successive profile soundings (here between 8 and
11 months), (ii) application of a linear interpolation technique (e.g., notice the absence of an intertidal bar in the
upper part of the profile of 1981, due to missing data) and (iii) ordinary measurement inaccuracies. Although the
net seaward migration of the bar system is unequivocally clear, it must be realized that the low temporal
resolution of the field data hampers an in-depth comparison with usual high resolution model predictions (i.e.
yearly measured profiles form only ‘snapshots’ of examined bar cycle).

For the present study, a profile model is employed, since cyclic bar behaviour is likely to be, in
essence, a cross-shore redistribution of sand (Wijnberg, 1995; see computed profile volumes in figure
5). The aforementioned alongshore coherence in temporal variations in bar morphology (figure 4),
such as, for instance, is recognized for the region (roughly) extending from the harbour moles of
IJmuiden to Scheveningen (km 58-98 relative to Den Helder, Netherlands) for the period 1963-1990
(Wijnberg and Terwindt, 1995) may offer the possibility to successfully reproduce the medium-term
(of O(100-1) yr) cyclic bar behaviour with a profile model.
Presumably, the effect of offshore wave forcing on cross-shore bar migration depends on the time
span (eq [4.8] of Van Enckevort, 2001). In the study of Plant et al. (1999), yearly bar migration rates
were found to vary independently of the yearly averaged wave climate. For example, net yearly
offshore bar migration rate changes during the lifetime of a bar (as can be inferred from figure 5),
while the yearly averaged wave climate remains virtually constant (Ruessink and Kroon, 1994),
suggesting that the yearly offshore bar migration rate is essentially controlled by local (referring to
the morphology of the bar itself) and non-local (referring to the morphology of seaward located bars)
morphological feedback mechanisms (Ruessink and Terwindt, 2000; see Section 2.3). It is, however,
largely unknown at which time scale the effect of direct wave forcing becomes subordinate to the
effect of feedback mechanisms.

To further investigate the potential capability of a profile model to reproduce cyclic bar migration, a
CEOF analysis (Ruessink et al., 2003) is performed (figure 6).
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Figure 6. Results of eigenvector analysis for beachpole 8000 at Noordwijk. Upper panel: perturbations relative
to mean (1979-1987) (barless) cross-shore profile, lower panel: first eigenvector (explaining 71.8% of the total
variance), representing the net seaward bar migration, clearly.

In agreement with the results of Ruessink et al. (2003), the first complex mode (depicted in lower
panel of figure 6) represents highest percentage of total depth variance. It describes the long-term
offshore progressive behaviour clearly, thereby allowing an objective separation of the barred part
from the nonbarred parts of the profile to be made, thereby supporting the present profile modelling
approach.
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3 DESCRIPTION OF FLUID MOTIONS

A material’s motion has been studied for decades, or even centuries, now. Yet, to describe these
motions remains a challenging difficulty; e.g., even though observed random (or probably better:
irregular), unsteady and three-dimensional fluid flow behaviour, known as ‘turbulence’, is an
everyday experience, turbulent fluid motion and its associated heat and mass-transfer phenomena are
still difficult to describe, and hence, to predict theoretically. The starting-point of a mathematical
description of motions of any material is formed by balance equations, to arrive at a closed system of
equations, ultimately. Meanwhile, models often incorporate assumption upon assumption regarding
fluid and flow field properties, so that solutions for the specific problem of interest crystallize. As
pointed out by Cramer (2004), the general development of the set of governing equations for any
material involves five steps:

I. Generation of balance equations representing fundamental physical laws, holding for all
materials, e.g., solids, fluids, visco-elastic materials, and rigid bodies. In the mechanical
world, these equations, usually applied in integral form to a finite mass of material, include
laws expressing conservation of mass, (linear) momenta and energy (some form of the
second law of thermodynamics).

II. Conversion of the integral equations (I) to a ‘local’ form, which then casts the conservation
laws in the form of partial differential equations (e.g., all of the dependent variables;
velocity vector, pressure, density and temperature, are functions of all independent variables;
position vector and time).

III. Specification of the material response, necessary to close the system, because the former
equations cannot be solved in a general way for the details of the material motion. The
mathematical conditions are usually referred to as the constitutive relations (e.g., stress - rate
of strain (deformation) relations).

IV. Combination of the constitutive relations with the local form of the balance equations,
yielding the so-called field equations which are the differential equations governing the
material of interest.

V. Definition of physical conditions and the shock jump (or Rankine-Hugoniot) conditions, the
latter governing the motion of propagating discontinuities. This is achieved by returning to
the integral balance laws, with the possible presence of discontinuities in basic variables
such as e.g., the stress, heat flux, particle velocity, internal energy taken into account. The
physical boundary conditions are obtained by considering only ‘material’ interfaces, i.e.,
those which comprise material boundaries. The general form of the Rankine-Hugoniot jump
conditions are obtained by restricting attention to surfaces of discontinuity which propagate
relative to the material. Finally, material-specific conditions may also need to be
incorporated.

In case of the considered material to be a so-called Navier-Stokes fluid (e.g., a Newtonian fluid), the
above-listed general, but complete set of physical conditions describing a material’s motion is known
as the Navier-Stokes equations. As stressed by Mei (2002), the full set of Navier-Stokes equations is
so complex that it is unrealistic and unrevealing to search for the most general solutions. Instead,
systematic approximations for certain specific circumstances can be obtained by means of scale
analyses, wherein dimensionless parameters (e.g., the Strouhal number, St ~ local
acceleration/convective acceleration, Froude number, Fr2 ~ inertia/body force and Reynolds number,
Re ~ inertia/viscous force) capture the relative importance of each term making up the full equations.
Generally speaking, the Navier-Stokes equations establish that changes in (mean) momentum of fluid
particles are the product of changes in pressure and dissipative viscous forces (originating in
molecular interactions) acting inside the fluid. Thus, the equations are a dynamical statement of the
balance of forces acting at any given region of the fluid. Besides their useage for modelling ocean
currents and weather systems, they are also used in e.g., the design of aircraft, the study of blood flow
and the analysis of the effects of pollution. Since they are differential equations, unlike algebraic
equations, they do not seek to establish a relation among the variables of interest (e.g., velocity and
pressure), rather they establish relations among the rates of change, or fluxes of these quantities. In
mathematical terms, these rates correspond to their derivatives. For example, in case of an ideal (i.e.,
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incompressible, inviscid and irrotational) fluid, the Navier-Stokes equations state that acceleration is
proportional  to  the  derivative  of  internal  pressure  (Euler  equations).  It  is  only  in  few cases  that  the
Navier-Stokes equations can be solved exactly; consequently, solutions of the Navier-Stokes
equations for a specific physical problem are often found using numerical methods (collectively
referred to as Computational Fluid Dynamics).
To develop some first understanding of the overall structure of equations describing fluid substances,
such  as  gases  and  liquids,  and  the  connection  of  that  structure  to  more  fundamental  physical
principles, eqs. [1] give some general form of the Navier-Stokes equations in a Cartesian coordinate
system with directions (i,j,k) = (x,y,z) for the three components of the fluid velocity vector  (NASA,
2006):

Continuity: [1a]

Momenta:

x:
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xyxx xz

[1b]
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where (instantaneous) velocity components (U, V, W), time (t), fluid density ( ), total energy (ET), pressure (P),
stress ( ), heat flux (q), and the similarity parameters: Reynolds number (Rer ~ inertia/viscous force) and Prandtl
number (Prr ~ momentum diffusivity/thermal diffusivity). The terms on the left hand side of the momentum
equations are called the advection (or: convection) terms of the equations. Advection is a physical process that
occurs in a fluid flow in which some property is transported by the ordered motion of the flow. The terms on the
right hand side of the momentum equation that are multiplied by the inverse Reynolds number are called the
diffusion terms. Diffusion is a physical process that occurs in a fluid flow in which some property is transported
by the random motion of the molecules of the fluid. Diffusion is related to the stress tensor and to the viscosity
of the fluid. Turbulence and the generation of boundary layers are the result of diffusion in the flow. The well-
known Euler equations contain only the advection terms of the Navier-Stokes equations and cannot, therefore,
model boundary layers (Cebeci and Bradshaw, 1977; Uijttewaal, 2006).

It can be noticed that the dependent variables appear in each equation [1a-c]; to solve a flow problem,
all five equations have to be solved simultaneously, being the reason for calling [1] a coupled system
of equations.  There is actually some other equation required to solve this system, because only five
equations have been shown, whereas six unknowns are incorporated. An equation of state relates the
pressure, temperature and density of the fluid; obviously, if the fluid is assumed incompressible, the
need for such an equation vanishes. Further, all terms of the stress tensor need to be specified. In
Computational Fluid Dynamics, the stress tensor terms are often approximated by a turbulence
model.
In the following, some basic principles underlying the Navier-Stokes equations will be treated more
specifically, being necessary to study fluid motions, properly. Afterwards, the implementation of
these equations in the Delft3D package (flow module) will be discussed, briefly.
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3.1 CONSERVATION LAWS

As afore-mentioned (I), to derive the Navier-stokes equations, it is convenient to consider a finite
arbitrary volume, called a control volume (figure 7), over which the principles of conservation of
mass, (linear) momentum and energy can be applied. This control volume can remain fixed in space
(Eulerian method; observation of motion of fluid particles as they pass fixed points in space
(streamline)) or can move with the fluid (Lagrangian approach; observing given fluid particles as they
move trough space (fluid particle path); see Section 4.2 on GLM reference frame).

Figure 7. Basic four modes of deformation for (or displacement in) an elementary fluid volume (with size x,
y and z) in the x-y plane, being the result of spatial variations in velocity (adapted from Van Rijn, 1994).

Linear and angular deformation involve a change in shape of the fluid element, that is, a fluid compression
(trough diffusion-dispersion), whereby heat is generated and mechanical energy is dissipated, resulting from
viscous action in the fluid. Contrarily, rotation (trough diffusion-dispersion) and translation (trough advection)
involve a deformation without a change in shape of the fluid element.
In its most general form, a conservation law states that the rate of change of an extensive property (L)
defined over a control volume (volume  and bounding surface ) must equal what is lost through
the boundaries of the volume carried out by the moving fluid plus what is created (consumed) by
sources (sinks) inside the control volume (Q). In other words (Cramer, 2004):

[2a]

where v is the velocity vector, n is the unit outward normal to the surface of the control volume; n is the most
natural way to represent the orientation of the surface: n F /  | F|,  where F(x, t)  0 is the mathematical
representation of the surface, which can be moving or stationary.

If the control volume is fixed in space (thus, the volume  and its bounding surface  are chosen
such that the integrals are always over the same mass particles), by Gauss’ theorem (between brackets
below), [2a] reads:

[2b]

which can be rewritten, yielding:

[2c]

Since  is invariant in time the d/dt and  d  operators vanish, and, as [2c] is valid for all domains,
the integral can be dropped, additionally. Assuming no sources or sinks to be present in the flow (Q =
0), [2c] reads:

[2d]
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3.1.1 Equation of continuity (conservation of mass)

Conservation of mass is a fundamental concept of physics; within some study domain, the amount of
mass remains constant, implying that mass is neither created nor destroyed. The mass of any object is
simply the product of the volume that the object occupies and the density of the object. For a fluid (a
liquid or a gas), the density, volume and shape of the object can all change within the domain with
time. In figure 8, the mass flow rate in and out of an elementary control volume of size (dx, dy, dz) is
shown. The mass flow rate out of the region (B), in the positive x-direction, is given by the mass flow
rate in (A) plus the rate of change of mass flow rate over dx (Van Rijn, 1994):

[3]

where  higher-order  terms  (from Taylor  series)  have  been  neglected  (i.e.  the  control  volume  is  assumed  to  be
infinitely small).

Figure 8. Mass flow rate in and out of an elementary control volume.
The net inflow of mass in the positive x-direction per unit time is the difference between (A) and (B):

[4a]

Notice the negative sign representing the net character (i.e. if B>A then the outcome of [4a] is negative [-(B-A)
with B-A>0], which means that the net inflow of mass in the positive x-direction is negative).

Similarly, the net rate of mass flow into the region in the positive y- and positive z- direction read as:

               ,. [4b-c]

The rate of increase of mass in the region (figure 8), if not zero, is:

[5]

and thus, one can write:

[6a]

Since dy and dz do not vary with x; dx and dz do not vary with y; dx and dy do not vary with z and
dx, dy and dz do not vary with t, one is allowed to divide [6a] by the volume of the considered region
(dxdydz), resulting in:
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[6b]

Using the nabla operator for the divergence of the (instantaneous) velocity vector (v), [6b] can be
rewritten as (cf. [2d]):

[6c]

where  is the mass density. In the final expression for a compressible fluid, the substantial derivative appears.
The substantial (or material or particle) derivative is the derivative following a moving fluid parcel (Lagrangian
approach), in contrast to the spatial derivative, which is the derivative of a field with respect to a fixed position
in space (Eulerian approach). Here, the specific term ‘field’ stands for the field view, in which the dependent
variables (velocities, pressures (density) and temperatures) are taken to be piecewise continuous functions of
space and time. Basically, the substantial derivative is given by:

where (*) can denote any quantity, including tensors, vectors and scalars. Thus, this equation simply expresses
the time rate of change of (*) as experienced by a material particle; the first term on the right-hand side of the
equation is the ordinary Eulerian derivative, denoting the change of a property at a fixed point with respect to
time (also known as the local acceleration, being absent in steady flows); the second term represents the changes
brought about the moving fluid, which is known as advection or convection (the latter terms are often used
interchangeably), being absent in uniform flows.

Assuming the fluid to be incompressible (D /Dt = 0), [6c] takes on a simplified form:

[6d]

3.1.2 Equations of motion (conservation of momentum)

Knowledge of the afore-mentioned mass flow rate can be used to determine the forces on an object
(e.g., forces on an aircraft, water body, etc.), because by Newton’s second law of motion, these are
directly related to the change in a fluid’s momentum with time. Since momentum is defined to be the
mass times the velocity of an object, one can expect the hydrodynamic (or, alternatively, the
aerodynamic-) forces to depend on the mass flow rate past an object. Thus, the starting-point of the
equations expressing conservation of momentum is formed by the derivation of general expressions
for a fluid’s acceleration and forces acting on it.
3.1.2.1 3.1.2.1 Fluid accelerations
Fluid velocity may vary with position and time, that is,

[7]

in which: r = position vector with components x, y, z
v = fluid velocity vector with components U, V, W

The three velocity components in [7] are also functions of position and time:
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Since the velocity of a fluid element is a function of both position and time, for the x-, y- and z-
component the following expressions can be written, respectively:

V V V VdV dx dy dz dt
x y z t
U U U UdU dx dy dz dt
x y z t
W W W WdW dx dy dz dt
x y z t

Subsequently, the accelerations in x-, y- and z-direction can be defined, respectively:

[10a-c]

where the particle derivative can be recognized.

Obviously, in vector form, the acceleration of a fluid particle is given by:

[10d]

3.1.2.2 Fluid forces

Two general types of forces acting on a fluid element can be distinguished: (i) forces on the volume
or  mass  of  a  fluid  element  (body  forces)  and  (ii)  forces  acting  on  the  surface  of  a  fluid  element
(surface forces). Surface forces can be further decomposed into forces normal to the surface
(pressure) and forces tangential to the surface (shear). In case of an inviscid fluid, the surface stresses
are only normal stresses due to pressure (figure 9). The body force is also known as the long-range
force (Mei, 2001), because the origin of the force is far away from the zone of interest. The strength
of such forces (e.g., gravity or Coriolis force) varies very slowly, and acts uniformly on all parts of a
fluid parcel, so that the total force is proportional to the volume of fluid. Contrarily, surface forces are
commonly called short-range forces; these forces originate in molecular interactions, and, therefore,
decrease rapidly with increasing distance between interacting elements. A surface force is only
appreciable when fluid elements are in contact, meaning that it exists only on the boundary. Surface
force per unit area is called stress, which depends on time, location and on the orientation of the
surface element.
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Figure 9. Left: Normal stresses due to pressure in an inviscid fluid. Right: Additional tangential (shear) stresses
(numbers) in a viscous fluid. Note that xx, yy and zz not only represent normal stresses due to pressure; they
also contain a contribution from the fluid’s viscosity. For example, the shear stresses acting on the (dy-dz)-plane
are (1) yx (= yx)  and (3) zx (= zx),  where the first  subscript  indicates the direction of the stress;  the second
subscript indicates the plane normal to the direction in which the stress acts.

In the absence of shear stresses (i.e. when an inviscid fluid is in motion or in case of any type of fluid
at rest), the pressure p in a point below the water surface is isotropic, according to the law of Pascal:

xx = yy = zz = -p [11]

The  pressure  p  is  isotropic,  because  it  can  be  shown  that  [11]  is  valid  for  any  orientation  of  the
coordinate system (Van Rijn, 1994). The net force in the x-direction applied to the control volume by
the pressure is:

[12]

where the negative sign arises, because of a positive pressure acting inward (Cebeci and Bradshaw, 1977).

From figure  9,  the  forces  acting  on  a  fluid  element  with  size  x,  y,  z  can  be  determined.  Euler
applied the momentum balance equation (F = m·a = d/dt(mv)) to a fluid element in a gravity field.
For incompressible inviscid fluid flow, one obtains for the x, y and z-direction, respectively:

with the mass of the fluid element given by: m = z.

Together with the accelerations given by [10], the motion of inviscid fluids can be described,
yielding:
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D 1 P
Dt

v g [14a-d]

Although all real fluids are viscous, in many cases the viscous terms are negligible as compared to the
pressure and acceleration terms. An important example of inviscid irrotational (ideal) flow is
potential flow. Integration of the Euler equations given by [14] for incompressible irrotational steady
flow yields the well-known linear Bernoulli equation which relates velocity, pressure and elevation
changes in inviscid fluids (Van Rijn, 1994):

2

e
PH z constant

2g g
v

3.1.2.3 Fluid momentum

Analogous to [5], the rate of change of x, y and z-component momentum of the fluid in the control
volume can be expressed as, respectively:

          ,         ,           [15a-c]

Further, the net rate of outflow of x-component momentum via the pair of planes perpendicular to the
x-, y- and z-direction are given by, respectively (with similar expressions for the y- and z-component
momentum:

         [16a-c]

By using [12], [15] and [16], complemented with body forces, a general expression for the
conservation of x-, y- and z-component momentum can be found, which applies to unsteady, three-
dimensional compressible flows with body forces (f):
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t x y z x xf [17a-c]
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Alternatively, realizing that the right-hand side of [17a] is explicitly zero, by subtracting

(wherein the continuity equation ([6]) can be recognized) from the left-hand side of the x-component
momentum equation [17a], this left-hand side can be written as:

[18a]

Using the differentiation rule for a product, e.g., in [18a] the first two terms satisfy:
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 , [18a]

reads:

[18b]

Finally, [17a] can be rewritten, using [18b] and by dividing trough the density, :

[19]

which was already derived [14], together with its companion equations for the y- and z-direction, but now
complemented with body forces.

When any fluid is at rest on a macroscopic scale (figure 10) or the afore-mentioned inviscid fluid in
motion, no tangential stress acts on a surface. There is only the normal stress, i.e., the pressure -p ij
(where ij is the Kronecker delta; 1 for i = j and 0 for i  j), which is thermodynamic in origin, and is
maintained by molecular collisions. Denoting the additional shear stress by ij (figure 9; right) which
is due to the relative motion on the continuum scale, the stress tensor (which is symmetric as can be
shown with Cauchy’s theorem; see e.g., Mei, 2001) can be written:

ij = - p ij + ij [20]

where ij is  called  the  viscous  stress,  which,  according  to  Newton’s  postulation,  must  depend  on
gradients of the velocity, that is,:

2
i i

j k

v v
,  , ...

x xjx

Figure 10. Fluid density. The volume V of a certain region contains a
fluid  mass  M.  When  decreasing  V,  the  ratio  M / V  reaches  a
limiting value, . By further decreasing V, molecular effects appear
and the volume may contain a different total mass of molecules M at
various instants (Van Rijn, 1994). The (extended) continuum
hypothesis (I, II) as applied to Navier-Stokes fluids, implies that all
macroscopic length and time scales are assumed to be considerably
larger than the largest molecular length and time scales (Cramer,
2004).

(I) Standard continuum hypothesis: The basis for much of classical mechanics is that the media under
consideration is a continuum, meaning that matter is taken to occupy every point of the space of interest,
regardless of how closely one examines the material. This continuum hypothesis will break down as the length
and time scales of a particular problem become smaller and smaller; at a certain scale, the molecular structure
will appear and the standard macroscopic representation can be expected to vanish. Thus, the macroscopic view
holds as long as the resultant mathematical model generates results which agree with experiment. Such a model
enables one to use the field representation, that is, the view in which the velocities, pressures and temperatures
are taken to be piecewise continuous functions of space and time.
(II) Local thermodynamic equilibrium: Actually, the Navier-Stokes equations require additional constraints to be
valid (Cramer, 2004). Particularly, the constitutive assumptions and the resultant constitutive relations (i.e. the
mathematical specification of the material response laws) are only valid when the length and time scales are such
that the fluid is in local thermodynamic equilibrium (LTE), i.e., the fluid molecules must adjust their equilibrium
state rapidly enough (i.e., within the spatial and temporal gradient scale), or state it differently, the macroscopic
process must be sufficiently slow. If the spatial and temporal gradients are too large, the LTE cannot be
maintained over the macroscopically imposed time scales and the fluid behaviour is no longer accurately
described by the Navier-Stokes equations; one has to return to the kinetic theory and experiment to develop a
new model.
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It is recognized that for many fluids in nature such as water and air, the relation between the velocity
gradient (or rate of strain, or rate of deformation), vi / xi, and the (shear) stress, ij, is linear under
most circumstances. Such fluids are known as Newtonian fluids (figure 11).

Figure 11. Viscous behaviour of fluids (adapted from Van Rijn, 1994).
Fluid systems are characterized by their laminar response to applied
shearing stresses. The simplest type of fluid behaviour, that commonly
known as Newtonian, is defined by a direct proportionality between
shear stress,  and induced rate of shear, e.g.,  =  (dU/dz), where the
constant of proportionality, , is called the fluid viscosity. By exclusion,
non-Newtonian fluids embrace all fluids that do not conform to this
relation; the ratio of shear stress to shear rate becomes an apparent
viscosity which varies with the imposed conditions of shear (Dodge,
1959).

Behavioral differences of fluids, solids and visco-elastic materials can be explained by the differences in how
they resist deformation, or generally stated, in the way they respond when taken out of equilibrium. The
mathematical formulation of these material response laws is referred to as the set of constitutive relations for the
considered material, or stress-(rate of) strain relations. For fluids, these are the Navier-Stokes-Fourier conditions
that relate the stress tensor ( ),  the heat  flux vector (q),  the internal  energy (e) and the entropy (s)  to the field
quantities (r,t), T(r,t) and v(r,t), where  is the density, T is the absolute temperature, and r is the position
vector. For Navier-Stokes fluids, the stress tensor, heat flux vector, internal energy and entropy are assumed to
depend only on the density , absolute temperature T and the gradients of v and T. The dependence of the stress
on the gradients of the velocity vector can be expressed more simply, by stating that a fluid ought to resist the
formation of relative velocity differences. It is this property that distinguishes them from solids, which are
assumed to resist relative displacements. A measure of a fluid’s resistance to flow is known as its viscosity. The
above named constitutive assumptions can be simplified by introducing the requirements that (i) no heat is
transferred if the temperature is uniform, regardless of velocity gradients present in the flow and (ii) that no
stress can be generated within a Navier-Stokes fluid, solely by temperature gradients. A further restriction to
define Navier-Stokes fluids is given by the condition that the afore-mentioned dependencies must be linear in

T and v. This condition of linearity is consistent with the findings of kinetic theory for a fluid that is only
slightly out of equilibrium, being the reason for the introduction of LTE in the continuum hypothesis (figure 10).
A linear stress-rate of strain relationship is characteristic for a so-called Newtonian fluid.

For second-rank tensors, the most general linear relation is given by (Mei, 2001):

[21]

As shown by Spain (1983), in an isotropic fluid the 4th-rank tensor is of the following form:

Cijlm = ij lm + il jm + im jl) [22]

Eighty-one coefficients in Cijlm reduce to two:  and , and [21] reduces to:

[23]

where  and  are viscosity coefficients depending empirically on temperature.

It  can  be  seen  that  the  velocity  gradient  of  [23]  is  made up of  two parts,  namely,  the  rate  of  strain
tensor (eij) and the vorticity (= curl v = twice the angular velocity) tensor ( ij):

[24]

where Cijlm is a coefficient tensor of rank 4. In principle, there are 34 = 81 coefficients.
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Further, it  can be noticed that [23] only depends on the rate of strain, but not on vorticity, which is
reasonable, since a fluid in rigid-body rotation should not experience any viscous stress (Mei, 2001).
In a rigid-body rotation with angular velocity , the fluid velocity is:

 v =  × r

where the vorticity components are not zero; for example,

and hence, ij cannot depend on ij, but only on eij.

The trace of ij in [20], i.e., ii (pressure excluded) is given by

[25]

where the bulk viscosity,  k = 3  + 2  is  recognized;  is  the familiar  shear viscosity (often denoted as ,  the
dynamic viscosity, being the product of kinematic viscosity ( ) and density of a fluid ( ); Van Rijn, 1994) and 
is known as the second viscosity, arising from a fluid’s compressibility. The second viscosity is the transport
coefficient that dampens the compressional motion of a fluid, beyond the damping caused by the shear viscosity.
The damping is the result of energy exchange between the fluid’s translational degrees of freedom (acoustic
waves or shock waves) and its internal degrees of freedom (molecular rotations, vibrations, metastable
intermolecular bonds, and critical fluctuations; Gillis et al., 2005). For most fluids, from experimental experience
it is known that the second viscosity can be neglected, explaining the factor -2/3 appearing in [28].

For incompressible fluids, · v = 0 ([6d]), the viscous stress tensor (cf. [23]),

    , [26]

forming part of the total stress tensor,

[27]
  ,

is  known  as  Stokes’  law,  simply  reading  as  (Cebeci  and  Bradshaw,  1977):  stress  =  2  ×  (rate  of
strain).

Summarized, like stress is proportional to strain in simple solids (Hooke’s law), in simple fluids
stress is proportional to rate of strain (Stokes’ law). For simple substances, Stokes’ law is very
accurate; it is valid up to the highest rate of strain ever achieved in practice, even in shock waves, as
long as the fluid can be regarded as a continuum (Cebeci and Bradshaw, 1977). Stokes’ empirical law
gives the surface stresses for fluids, wherein these stresses are just linearly related to the rate of strain,
i.e., this law is valid for Newtonian fluids. In case that the fluid can be assumed incompressible,

[28],

reduces to [27].

Thus, for a viscous fluid, the Euler equations [19] can be extended with stress terms denoting the
viscous effects, (e.g., for the x-direction reading as:)
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i.e., the additional surface stresses (note that xy = xy and xz = xz), depicted in figure 9 (right), to
yield:

[29a-d]

or in vector form (cf. [14d]):

wherein the fluid is assumed incompressible ( v = 0);  (=  = )  and  are assumed constant,  so that,  after
rearranging the order of second derivatives, the term ( v) / x can be discarded, since it is zero. Body forces are
reduced to gravity force only.

Eqs. [29] are often called the Navier-Stokes equations, however, it is emphasized here that, strictly
speaking, the term ‘Navier-Stokes equations’, does not refer to the (incompressible form of the)
momentum equation only, as can be recognized in many considerations on fluid mechanics (Cramer,
2004). Thus, [29] describe motions for a viscous fluid, under assumption of fluid incompressibility
(see Euler equations) and laminar flow conditions (i.e., Newton’s postulation for a highly viscous
fluid at low velocities, wherein the fluid flows in parallel layers, so that the shear stress  at any value
of z reads:  = (dU/dz); see note of [20]). They are also valid for instantaneous turbulent flow, in the
foregoing recognizable by the capitalized notation for the velocities and pressure (U, V, W and P).
The given formulations [29] can be extended with additional sources or sinks of momentum, such as
e.g. components of the Coriolis forces per unit mass ((fx, fy, fz)T = -2  x (U, V, W)T with  being the
earth’s rotation vector), external forces by hydraulic structures, discharge or withdrawal of water and
wave stresses. Further, they also may be applied under the so-called Boussinesq approximation,
stating that if density variations are small, the density may be assumed constant in all terms, except
the gravitational term. The Navier-Stokes equations then, for example, read:

[30a-c]

with constant reference density 0 as a mean over the entire fluid volume (Uittenbogaard et al., 1992).
Reynolds found laminar flow only to exist under special hydraulic conditions. Due to eddies created
by turbulence, mean flow velocities and pressure show small variations, which are commonly too
small to be solved by a numerical model, because of the chosen grid often being too coarse. Solving
the exact equations for frequently observed turbulent namely, would require a very fine numerical
grid (typically of O(109) grid points), because of the turbulent motion containing elements which are
much smaller than the extent of the flow domain (typically of O(103) smaller; Rodi, 1980). As
introduced by Reynolds, a statistical approach is followed, wherein the equations are averaged over a
time scale which is long compared to that of the turbulent motion. As a result of this averaging
process, unknown terms containing the transport of mean momentum, heat and mass by the turbulent
motion arise in the system of equations ([35]), which is, consequently, not closed anymore. A
turbulence model is defined as a set of algebraic or differential equations which determines the
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turbulent transport terms in the mean-flow equations and thus closes the system of equations.
Turbulence models are based on hypotheses about turbulent processes and require empirical input in
the form of constants or functions; they do not simulate the details of the turbulent motion but only
the effect of turbulence on the mean-flow behaviour.
Reynolds applied the Navier-Stokes equations to turbulent flow by introducing a time-averaging
procedure, where each instantaneous variable is represented as a temporal mean value and a
fluctuation value:

[31]
Mean values are defined as follows (e.g. for the velocity in x-direction):

[32]

where the period T should be larger than the dominant turbulence scale, but smaller than long
periodic effects such as the tidal scale. Substitution of [31] into [30] yields, e.g., for the x-direction:

2

2 2 2

2 2 2

u u' u 2uu' u'u' uv uv' vu' u'v' uw uw' wu' u'w'
t t x y z

1                                                                   p p' u u'
x x y z

[33]

Each term is now averaged over time (T), indicated by an overbar. A similar time-averaging
procedure can be executed for the equation of continuity ([6d]): u/ x + v/ y + w/ z = 0. Realizing
that, by definition, the time-averaged values of the turbulent fluctuation values equal zero, i.e.,

[34]

it follows that (under the Boussinesq assumption):

        [35ac]

From [35], it can be seen that the velocity fluctuations produce additional terms, which can be
interpreted as normal stresses and turbulent shear stresses. The correlations between these fluctuating
velocity components (e.g. u'u'  ) namely, are responsible for a loss of momentum in the mean flow
direction and therefore appear to act as stresses on the fluid. Generally, these so-called Reynolds’
stresses are much larger than viscous stresses; for that reason the latter are often neglected (see note
of [37]). Eqs. [35] can be rearranged, yielding the Reynolds equations for a fluid element in a
turbulent flow:

[36a-c]

wherein (cf. [26]):
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[37]

Assuming that u0.1w'u' the turbulent shear stress is approximately 2
T u0.01 and the viscous

stresses are of the order /huv . From this, it follows that 10000h/ufor100/ vT meaning that

in nearly all cases of interest, the turbulent stresses are much larger than the viscous stresses (Van Rijn, 1994).

How to relate the turbulent stresses (Reynolds stresses) to the u, v and w components is still
unknown. This so-called turbulence closure problem is usually solved by introducing the concept of a
turbulent viscosity ( ) in analogy with the kinematic viscosity ( ). Application of this eddy viscosity
concept, also known as the Boussinesq hypothesis, is based on the idea that Reynolds stresses, like
viscous stresses, depend on the deformation of the mean flow. The turbulent shear stress can be
represented by (Van Rijn, 1994):

[38]

e.g.          and, for uniform flow

where is a mixing length. Instead of , the turbulent (or eddy) viscosity is often denoted as T.

Several eddy viscosity distributions have been proposed of which the parabolic distribution, proposed
by  the  mixing  length  theory  of  Prandtl  is  probably  the  most  well-known  and  simplest  one.  The
mixing length concept states that a fluid parcel travels over a length  before its momentum is
transferred. Prandtl assumed that this mixing length is proportional to the distance to the bottom:  =
z, where  is known as the constant of Von Kármán (0.4). Substituting this expression for  in [38]

results in the familiar logarithmic velocity profile, often being characteristic for alongshore currents
in the surf zone (e.g. at Terschelling (Netherlands) during (almost) steady, uniform flow conditions;
Houwman (2000) and the (semi-diurnal) tidal currents observed by Gross and Nowell (1983), but
only above 1.5m above the bed). Besides algebraic equations (generally suitable for describing steady
uniform pressure-driven flow), such as the above-given example, other formulations for the eddy
viscosity are available, ranging from relative simple k-  models (also known as one-equation models)
to more sophisticated k-  models (also known as two-equation models). In k-  models, the mixing
length is still determined from an algebraic relationship, but the turbulent kinetic energy (tke or k)
produced by the roller is described by a differential equation. This k-equation contains terms
describing the time dependent effects of production- (resulting from vertical velocity gradients),
transport- and dissipation of turbulent kinetic energy (transfer to heat) in the water column. Although
good results have been achieved with k-  models in relative simple (including unsteady) flow
situations (e.g. Rodi, 1984), however, there is no consensus about a general expression for the mixing
length. This illustrates the need for the more complex, but also more generally applicable k-  model,
which is successfully applied in many flow situations (including wave breaking effects; e.g., Van
Rijn, 1983; Rodi, 1984; Uittenbogaard&Van Kester, 1996). Herein, a second differential equation is
used to describe the dissipation of turbulent kinetic energy, so that the choice for an appropriate
mixing length ( ) vanishes, since the dissipation rate ( ) is computed from the local flow conditions.
This is particular important in unsteady flow. In steady flow, the turbulent kinetic energy is generated
in the region near the boundaries. From there, it  penetrates in the flow by its own action (turbulent
mixing), supporting the local mixing length to be described by a simple, overall mixing length
formulation relating the mixing length to the distance to the boundary and the boundary conditions
(as given by Prandtl; see e.g. equation 3.22 of Houwman (2000)). Contrarily, in unsteady flow, the
local turbulent kinetic energy inside the flow is no longer related to the turbulence level at the
boundary at the same time. Consequently, there is no relationship between the local mixing length
and the distance to the boundary, in unsteady flow. In that case, the local mixing length or,
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alternatively, the dissipation rate  depends on the local state of turbulence, implying that a k-  model
is requested.
Besides the Boussinesq approximation and hypothesis, one additional assumption, generally known
as the shallow-water assumption, is needed to simplify the equations of motion (e.g., [36]), that is, to
arrive at the shallow-water equations. Herein, it is assumed that the characteristic horizontal length
scale is much larger than the characteristic vertical scale, as is the horizontal velocity compared to the
vertical velocity. It is this assumption that supports the decomposition of the turbulent viscosity into a
horizontal ( T

H) and vertical ( T
V) turbulent viscosity. Moreover, since vertical accelerations are

assumed to be small compared to the gravitational acceleration in shallow water, the vertical (z)
momentum equation, [36c], reduces to the hydrostatic pressure relation (figure 12):

[39]

Thus, buoyancy effects or sudden variations in bottom topography, which give rise to vertical
accelerations, are not taken into account by this assumption. Taking the origin z = 0 at the bottom,
integrating [39] results in:

[40]

where  = (x,y,t) is the free surface level relative to the reference plane z = 0 and pa is the atmospheric pressure.
Notice that the minus sign present in [39] vanishes here, because of the chosen reference level (z = 0 at the bed).

Figure 12. Fluid pressure field under a progressive short wave (adapted from Schiereck, 2004).

Substituting [40] into the pressure term in the momentum equation for the x-direction ([36a]) and
using Leibniz’ integration rule, yields:

[41]

From [41], it follows that the horizontal pressure gradient is made up of (i) differences of the water
level  (barotropic term), (ii) density differences in horizontal direction (baroclinic term) and (iii)
atmospheric pressure. If the density is assumed to be constant, [40] reads: p = g(  - z) + pa and the
pressure term of [36a]:

[42]

Usually, the atmospheric pressure gradient is neglected; the horizontal pressure gradient is than
purely a function of the horizontal water level differences. For example, if the atmospheric pressure
gradient is neglected, the density is taken constant, viscous stresses are assumed to be negligible
small relative to the turbulent stresses and the shallow water assumption is applied, the momentum
equations in x and y-direction may read as (see eqs. [35], [38], [42]):
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       [43a-b]

where it can be noticed that the w/ x term is neglected due to the shallow water assumption.

y
g

z
v

zy
v

y
2

x
v

y
u

xz
vw

y
vv

x
vu

t
v

x
g

z
u

zx
v

y
u

yx
u

x
2

z
uw

y
uv

x
uu

t
u

V
T

H
T

H
T

V
T

H
T

H
T



Modelling Cyclic bar behaviour Z4099 May, 2007
a bottom-up modelling approach with Delft3D

WL | Delft Hydraulics 2 5

4 DELFT3D-MODEL FORMULATIONS
4.1 SHALLOW WATER EQUATIONS

Delft3D is an integrated flow and transport modelling system; it consists of several modules of which
the flow module (Delft3D-FLOW) forms the hydrodynamic basis. For the present study, there is no
need for a coupling with the short-waves model (Delft3D-WAVE), since Snell’s law is implemented
in the wave and roller energy equations (which are solved in the flow module), allowing a model to
be run in profile mode (Van Rijn et al., 2004). For an elaborate overview of the entire numerical
modelling system Delft3D, the reader is referred to the various Delft3D User Manuals (WL|Delft
Hydraulics, 2005), and, for some test cases, e.g., Lesser et al., (2004).
The flow module solves the afore-explored unsteady shallow-water equations in two (e.g., depth-
averaged) or three dimensions. Here, a 2-DV model (alongshore uniformity) is developed. The
(incompressible) continuity equation, the horizontal momentum equations, the mass transport
equation and a turbulence closure model make up a closed system of equations. It is assumed that
modelled flow phenomena have horizontal length and time scales significantly larger than the vertical
scales. Since vertical accelerations are assumed small, relative to the gravitational acceleration, these
are neglected, so that the vertical momentum equation reduces to the hydrostatic pressure relation (eq.
[39]). To fit (land-) boundaries, use can be made of an orthogonal curvilinear coordinate system in
which the equations are formulated. For the present study, its simplified form, i.e., a rectangular grid
(Cartesian frame of reference) suffices (figure 13).

Figure 13. Offshore bed topography (studied cross-shore profile at Noordwijk indicated with a red line) and
hydrodynamic model grid draped over seabed (15-10-1979). An intertidal bar, which was present in this transect,
has been effaced to force model stability. Further, no attempts were made to test the sensitivity of horizontal and
vertical distribution of layers of the computational grid. Instead, the vertical layer distribution (12 layers) is taken
from Brière and Walstra (2006); see their table 4-1. Increasing the number of layers in vertical direction (at the
water surface and bed, particularly) enables a proper reproduction of momentum transfer due to turbulence.
Moreover, the vertical distribution of layers greatly influences bar behaviour, as shown by Brière and Walstra
(2006); their figure 4-5. It is assessed that depth-averaged cross-shore and alongshore velocities, as well as the
morphology are not very sensitive to a changing horizontal grid resolution; even when the number of grid cells
doubles, predicted morphological developments do not vary strongly (Brière and Walstra, 2006; compare results
for 70 and 140 cells in their figures 4-7, 4-8 and 4-9). Here, 87 grid cells are chosen in cross-shore direction,
with higher resolution in the bar system and on the intertidal beach (smallest cell length of about 9m), where
largest variable changes (velocities, sediment transport and bed levels) and spatial variations may be expected.
Vertical profiles for which higher temporal (O(hour)) resolution timeseries of computed hydrodynamic and
morphodynamic variables are requested, are indicated with red lines; the blue line corresponds to the fluctuating
mean waterlevel, which, together with the bed level height (orange line), define the grid cell distribution in the
vertical direction at each cross-shore point.
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In the vertical direction, a so-called -grid (Philips, 1957) is applied, in order to cope with an uneven
bed topography. This means that the vertical grid direction is stretched, obeying:

[44]

where z is the vertical coordinate,  the free surface elevation above the reference plane (at z = 0; still water
level) and h the total water depth = d (depth below reference plane) +  (by definition  0). Consequently,  = -1
at the bottom and  = 0 at the free surface. In a -coordinate system, the number of layers is the same at every
location in the horizontal plane, i.e., the layer interfaces are chosen following planes of constant . For each
layer, a set of coupled conservation equations is solved.

The partial derivatives in the original Cartesian coordinate system are expressed in -coordinates by
the chain rule, thereby introducing additional terms (Stelling and Van Kester, 1994). In case of
simulations where waves are included (4.4), the hydrodynamic equations are written and solved in a
Generalized Lagrangian Mean (GLM) reference frame (Andrews and McIntyre, 1978). In GLM
formulation, the wave-induced driving forces averaged over the wave period in the flow equations are
more accurately expressed. It extends the standard Eulerian representation with the Stokes’ drift
components (Walstra et al., 2000). Hereafter, u and v denote the GLM velocity components. The
momentum equations in x- (cross-shore) and y (alongshore)-direction in -coordinates e.g., read,
respectively (noting that z = 1/h ), see e.g., Lesser et al., 2004; Van Rijn et al., 2004:

[45a-b]

4.2 Vertical momentum equation

The vertical velocity  is defined at the iso -surfaces and computed from the continuity equation:

[46]

in which Q represents the contributions per unit area due to the discharge or withdrawal of water,
evaporation and precipitation.

 is the vertical velocity relative to the moving -plane and can be thought of as the velocity
associated with up-or downwelling motions. It must be realized that the ‘physical’ vertical velocity
(w) in the Cartesian coordinate system, following from

[47]

is not involved in the model equations; its computation is only required for post-processing purposes.
Instead, by the shallow-water assumption, the vertical momentum equation is reduced to the hydrostatic pressure
equation:

          , which, after integration reads: [48]

In case of a non-uniform density, the local density is related to the temperature (T) and density (s) by an equation
of state. In Delft3D-FLOW the empirical relation for sea water, given by Eckart (1958), is used:

[49]

where a = 5890 + 38T - 0.375T2 + 3s, b = 1779.5 + 11.25T - 0.0745T2 - (3.80 + 0.01T)s and c = 0.6980

Here, a space- and time invariant sea water temperature (10°C) and salinity (31‰ (ppt)) are assumed.
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4.2.1 Pressure gradients

By Leibniz’ integration rule, the following expressions for the horizontal pressure gradients can be obtained, also
known as Boussinesq approximations (constant density in all terms of [45], except the gravitational term; cf.
[41]):

[50]

where the atmospheric pressure (pa) is taken into account, being important when simulating storm
surges.

Obviously, the last term in [50] vanishes if the density of water is assumed constant. For the present study, the
density of the seawater (  = 1023 kg/m3) and air ( air = 1.0 kg/m3) are assumed constant.

4.2.2 4.1.3 Reynolds’ stresses
The forces Fx and Fy in [45] represent the unbalance of horizontal Reynolds’ stresses. As explained before, these
stresses are determined using an eddy viscosity concept, in which a flow-dependent eddy viscosity coefficient
and corresponding components of the mean rate-of-deformation tensor are multiplied. For 3D shallow water
flow, the stress and diffusion tensor are an-isotropic (contrarily to what’s has been discussed before [22]). The
horizontal eddy viscosity coefficient ( H) (and diffusivity coefficient DH) is assumed to be made up of three parts
representing:
(i) motions and forcings that are not resolved by the horizontal grid (Reynolds’ averaged or eddy-resolving
computations), which is commonly known as ‘sub-grid scale turbulence’; this ‘2D turbulence’ can be determined
with a sub-grid scale model (Horizontal Large Eddy Simulation (HLES) that is generally also needed to damp
small-scale noise introduced by the advection terms), where the coefficients ( H

2D and DH
2D) must be based on

the model’s grid size;
(ii) ‘3D turbulence’, computed from a turbulence closure model; incorporated vertical coefficients ( V

3D and
DV

3D) are generally an order of magnitude smaller than the horizontal coefficients ( H and DH);
(iii) molecular (kinematic; mol) or horizontal background viscosity; these horizontal eddy viscosity
coefficients ( H

back) and eddy diffusivity coefficient (DH
back) are user-defined.

In other words: H = H
2D + V + H

back. For turbulence closure models responding to shear production only, to
account  for  all  other  forms  of  unresolved  mixing  (e.g.,  internal  waves),  it  may  be  convenient  to  specify  a
background vertical mixing coefficient, which is added to the momentum equation only (third term on rhs of
[45]). The vertical eddy viscosity coefficient is then defined by: V = mol + max( V

back, V
3D).

The -coordinate system rotates the Cartesian stress tensor and introduces additional derivatives; in Delft3D-
FLOW, the stress tensor is redefined in the -coordinate system assuming that the horizontal length scale is
much larger than the water depth and that the flow is of boundary layer type. The horizontal gradients are taken
along -planes. Thus, the forces Fx and Fy are of the form:

 [51]

For small-scale flow, the shear stresses at the closed boundaries must be taken into account (see eqs. [9.22]-
[9.24] of Delft3D-Flow Manual, 2005; used in combination with rough side walls (partial-slip)). For large-scale
flow simulated with coarse horizontal grids, i.e., when the shear stresses along the closed boundaries may be
neglected (free-slip condition), such as for the present study, the forces Fx and Fy are simplified. The horizontal
viscosity terms in Delft3D-FLOW then reduces to the Laplace operator along grid lines (where H is assumed
constant):

[52]
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4.2.3 External momentum sources or sinks

In [45], the contributions of external sources or sinks of momentum, such as external forces
by hydraulic structures, discharge or withdrawal of water and wave stresses, are represented
by Mx and My. The effects of surface waves on the flow as modelled in Delft3D-FLOW will
be described in Section 4.4.

4.2.4 Coriolis force

The Coriolis or geostrophic force term in [45], originates from the earth’s rotation, and, hence depends on the
geographic latitude ( ) and angular speed of the earth (  = 7.29.10-5 rad/s):  f  = 2 sin .  The Netherlands are
located between 50°45’ and 53°33’ NB; Noordwijk is at approximately 52° NB.

4.2.5 Transport equation

The flows in rivers, estuaries, deltas and coastal seas often transport dissolved substances, salinity
and/or heat. The flow module of Delft3D performs the hydrodynamic computations and calculation
of the transport of constituents simultaneously, being the reason for exploring the latter, here. In
Delft3D-FLOW, the transport of matter and heat is modelled by an (averaged) advection-diffusion
equation in three coordinate directions.
Basically, any constituent, except the turbulent kinetic energy (k) and its rate of dissipation ( ) is
solved with an advection-diffusion equation written in conservative form (Uittenbogaard et al., 1992):

          [53]

with the term hQ denoting the source and sink terms per unit area due to the discharge or withdrawal of water,
eventually complemented with the exchange of heat trough the free surface; c stands for the concentration of
modelled constituent.

To solve the given transport equation, the horizontal and vertical diffusivity (DH and DV) need to be
prescribed. As previously mentioned, the horizontal viscosity and diffusivity as incorporated in
Delft3D-FLOW, are assumed to be a superposition of molecular viscosity, so-called ‘2D turbulence’
and ‘3D turbulence’ (Uittenbogaard et al., 1992). The kinematic viscosity of water is of O(10-6) m2/s.
‘2D-turbulence’, being a measure of the horizontal mixing that is not resolved by the advection on the
horizontal computational grid, may be computed by a HLES model (Uittenbogaard, 1998; Van
Vossen, 2000; Delft3D-Flow Manual, 2005; B-7) or defined as a constant. Here, the contribution of
2D-turbulence, (which thus, has not been taken into account by the implemented 3D-turbulence
models), is not directly incorporated. Instead, it is indirectly incorporated by setting the horizontal
background viscosity at 0.1 m2/s (Brière and Walstra, 2006), being somewhere in the range
commonly used; see e.g., parameter behavioral studies of Ruessink et al., 2001; Ruessink, 2006. The
3D part, D3D, related to the turbulent eddy viscosity follows from a turbulence closure model (§4.1.7).
Similar to the total horizontal viscosity coefficient ( H), the total horizontal diffusion coefficient (DH)
can  be  defined as:  DH =  DH

2D +  DV +  DH
back. It is recognized (Delft3D-Flow Manual, 2005) that it

may be convenient for turbulence closure models to specify a background vertical mixing coefficient
to account for all other forms of unresolved mixing (DV

back). For example, in strongly stratified flows,
the turbulent eddy diffusivity at the interface reduces to zero and the vertical mixing reduces to
molecular diffusion, which is not realistic because internal waves may be generated. Thus, DV = Dmol
+ max(DV

back , DV
3D). For use in the transport equation, by means of the Prandtl-Schmidt number c),

the vertical eddy diffusivity is scaled from the vertical eddy viscosity, according to:

[54]

in which

c = c0F (Ri) [55]
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where c0 is purely a function of the substance being transported. F (Ri) depends on the type of turbulence model
that is used; in case of an algebraic turbulence model, F (Ri) is a damping function that depends on the degree of
density stratification present via the gradient Richardson number (Ri; see e.g., equation 9.80 of Delft3D-Flow
Manual, 2005). If the k-  turbulence model is used, this damping function equals 1, since the buoyancy term in
the k-  model automatically accounts for turbulence damping effects caused by vertical density gradients. In case
of the modelled sediment being sand, the vertical eddy diffusivity used for the transport calculations may vary
from that based on [54]; see van Rijn et al., 2004 and §4.5.1.

4.2.6 Turbulence closure model

In the flow module of Delft3D, several types of closure models are incorporated to determine V and
DV; all models (algebraic eddy viscosity closure model (AEM), k-  model and k-  model, the
constant coefficient excluded) share the afore-mentioned eddy viscosity concept (see e.g., [38]).
Further, the vertical eddy viscosity, related to a characteristic length scale and velocity scale, has the
following form:

V = c k [56]

wherein c  is a calibration constant (derived from the empirical constant (c ) in the k-  model: c  = c 1/4 = 0.09;
table 3 of Rodi, 1980),  is the mixing length and k is the turbulent kinetic energy.

For  the  present  study,  a  k-  model  is  used,  in  which  both  the  turbulent  kinetic  energy  k  and  the
dissipation rate  are produced by production terms representing shear stresses at the bed, water
surface and within the flow. The ‘concentrations’ of k and  are subsequently calculated by transport
equations.

The mixing length L is determined from  and k via (see Lesser et al., 2004):

[57]

where cD is a calibration constant (= 0.1925; Uittenbogaard et al., 1992).

The output of a turbulence closure model is the eddy viscosity at each layer interface; from this the
vertical sediment mixing coefficient is computed via available formulations (e.g., modification by the
Van Rijn’s ‘beta-factor’; see §4.5.1).

4.3 BOUNDARY CONDITIONS

4.3.1 Offshore and lateral boundary conditions

To obtain a well-posed mathematical problem with a unique solution, a set of initial and boundary
conditions for water levels and horizontal velocities must be specified. Generally, one of the main
problems is the specification of suitable boundary conditions at the open boundaries; here a
combination of processes acting on the model domain leads to a certain water level or velocity
distribution to develop in cross-shore direction. This distribution must be matched by the boundary
conditions. Thus, in order to avoid boundary disturbances this distribution must be known,
beforehand. Roelvink and Walstra (2004) suggested the model itself to determine the correct solution
at the boundary, by imposing the alongshore water level gradient instead of a fixed water level or
velocity (see e.g., their figures 2 and 4). Such a boundary condition is known as a Neumann boundary
condition. In many cases, the gradient can be assumed zero (Roelvink and Walstra, 2004); it is only
for storm surges travelling along the coast or in tidal cases that the alongshore gradient of the water
level changes with time. Further, in a model with limited cross-shore extent, the alongshore gradient
can be assumed to change hardly in cross-shore direction. For the present study (Noordwijk), at the
lateral boundaries (northern and southern limit), these Neumann boundaries are used as gradient type
of boundaries for water level. At the seaward (offshore) boundary, an external forcing by the water

kkcL D
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level is imposed with a reflection parameter (  = 200), to make the open boundary less reflective for
short wave disturbances that propagate towards the boundary from inside the model. At these open
boundaries, the flow is forced by the tides (astronomic forcing type), implying that the flow
conditions are specified using tidal constituents, nodal amplitude and phases as well as a reference
date (for determining the nodal amplitude and phase factors). To allow compression of the model
input to reduce computational time, time series of the offshore water level and time series of the
alongshore water level gradient for the lateral boundaries were made with the Delft3D-TIDE module.
These are based on 94 astronomical components of water level and water level gradient interpolated
from tidal stations in the vicinity of Noordwijk and centered around beach pole 8000, for the studied
period (astronomical boundary conditions; Walstra, pers. comm.). To check the 10-minute
predictions, these were converted back to astronomical components. To infer the accuracy of
predictions, figure 14 depicts a piece of the entire water level series at the offshore boundary.
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Figure 14. Upper panel: Water level time series at offshore model boundary, (i) based on 94 astronomical
components, (ii) constructed time series and (iii) measured ones (per 3 hours). Mid panel: measured set-up/down
(interpolated), wave height (spectral) at offshore model boundary and ( *) wind speed along vector (daily
values at Rotterdam). Lower panel: measured wind- and wave direction in degrees relative to the coast normal, at
Noordwijk approximately 28° -inclined to the North.

From figure 14, it can be seen that offshore water level predictions (timeseries) compare well with
modelled ones, based on the astronomical components. Deviations from measured water levels are
likely due to the prevailing wind and wave conditions (causing set-up/down), as can be inferred from
the lower panels. However, measured water levels are provided per 3 hours, which is a rather crude
representation of the fluctuating water level. Thus, the reconstructed timeseries of water level and its
gradients at the lateral boundaries (eventually in compressed form) are likely to be used in model
computations. It is noticed that slightly different settings for northern and southern lateral boundaries
led the model to become unstable; therefore, it is decided here to use the same water level gradients
for both lateral boundaries. Contrarily to the inflow boundaries (where a uniform velocity profile is
prescribed), along closed boundaries (water line) the velocity component perpendicular to the closed
boundary is set to zero (a free-slip condition; zero tangential stress).
For the transport boundary conditions, it is assumed that the horizontal transport of dissolved
substances is dominated by advection (Lesser et al., 2004), meaning that at the open inflow
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boundaries, a boundary condition is needed. For the present study (one sand sediment fraction), a
local equilibrium sediment concentration profile is used.
The wave- and wind boundary conditions, (after filtering) imposed at the boundaries are presented in
figure 15.

Figure 15. Left: (unfiltered) offshore wave field representation (period: 15-10-1979 upto 05-07-1983) at
measurement station ‘Meetpost Noordwijk’ (MPN; coordinates: RDx = 80.443m, RDy = 476.683m;
geographical latitude: NB = 52º16'26" and longitude: OL = 04º17'46", waterdepth  18m). Right: wind field (at
10m height) for the same period, obtained from measurements at wind station ‘Rotterdam Geulhaven’
(coordinates: RDx = 81.025m, RDy = 434.250m). Measured wind velocities are corrected for the period-mean
difference between the wind stations at Noordwijk and Rotterdam (1990-2000; WT = 1.717±0.0587 m/s); winds
are observed to be somewhat stronger at Noordwijk (likely due to a difference in roughness length: at MPN
(open water); 0.002m and at Rotterdam (open land): 0.03m (Royal Netherlands Meteorological Institute)). For a
conversion of the roughness length to the more commonly used drag coefficient (Cd), the reader is referred to
e.g., §6.2.2 of Houwman, (2000); see also [60b].

It can be noticed (figure 15) that waves coming in from directions larger than 70 degrees relative to
the coast normal (orientation of 298°N), are quite common (approximately 30% of the entire
considered period, i.e., the studied bar cycle of 3.7 years). From figure 16, it follows that waves from
these directions are generally characterized by a lower height and a lower period, with mean heights
and periods being somewhat higher for waves from the 2nd quadrant (south-easterly directions) than
those coming in from the 1st quadrant (table 1).
For the present study, the wave field is restricted to waves coming in under an angle between 0 and
70 degrees, relative to the coast normal. This restriction is necessary for Snell’s law to be used and to
avoid possible errors, related to the entrance of offshore propagating waves within the model domain.
Further, these conditions cannot be left out of consideration, since this study utilizes a hindcast (no
application of a morphological wave climate or morphological wind climate, such as employed by
e.g., Van Duin et al., 2004; Walstra et al., 2004; Brière and Walstra, 2006) to investigate cyclic bar
behaviour. It may be expected that the contribution of such high-angle incident waves to (total) cross-
shore sediment transport is subordinate to (total) alongshore sediment transport.

Table 1. Wave characteristics.
__________________________________________________________________________________________
‘quadrant’ angle Hm0 Tm02 Percentage of occurrence
number (°N) (m) (s) (of total time; 10873 (3-hour) points,

(15-10-1979 upto 05-07-1983))
mean ± std mean ± std %

1 8-118  0.61±0.32 3.66±0.72 12.63
2 118-228  0.87±0.52 3.99±0.73 17.02
3&4 228-(36)8 1.19±0.78 4.56±0.81 70.35
_________________________________________________________________________________________

 0.0 - 2.5
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 7.5 - 10.0

 10.0 - 12.5

 12.5 - 15.0

 15.0 - 17.5
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 2.0 - 2.5
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Since waves and wind are often correlated (wave- and current-driven transport are often directed
similarly), tide-induced transport (particularly affecting alongshore-directed sediment transport, in a
cyclic manner) is often of minor influence and net (~ yearly) bar behaviour is recognized to be a
dominant cross-shore oriented process (e.g., among others, Van Enckevort, 2001), intervention by
means of replacing these waves by the condition: Th0 = 0°, Hm0 = 0.1m and Tm02 = 1s, probably may
be justified. For such a condition, one may expect negligible sediment transport to occur in cross-
shore direction. Furthermore, effects of storm(y) conditions may dominate bar behaviour (typically
represented by low-angle incident waves), which, indeed, is recognized on the short timescale;
offshore migration during storm conditions and onshore bar migration and beach restoration during
(enduring) calm-weather conditions (among others, Van Rijn et al., 2003). Alongshore transports are
calculated, however, since they are not used for bed level update in the present profile model, by
analyzing model predictions, the afore-introduced condition may be verified (i.e., investigating the
impact on bar migration).

Figure 16. Offshore wave data (0.03-0.5Hz). Upper panel: angle of incidence (°N), mid panel: wave height (Hm0
(m)), lower panel:  wave period (Tm02 (s)).  In each panel,  wave angles of 3rd and 4th quadrant (228-(36)8°) are
represented by gray dots, those of the 1st quadrant (8-118°) by green dots and those of the 2nd quadrant (118-
228°) by blue dots, where the ‘quadrants’ are defined in the coastal coordinate system (see table I).

4.3.2 Vertical boundary conditions

In the -coordinate system, the bed and the free surface correspond with -planes (  = -1 and  = 0
respectively). The vertical velocity relative to the moving -plane ( ) at these boundaries equals zero,
expressing the impermeability of the surface and the bottom. At the seabed, the boundary conditions
for the momentum equations read:

             [58a-b]

where bx and by are bed shear stress components that include the effects of wave-current interaction.
Similarly, the friction due to wind stress at the water surface may be included:

[59a-b]
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where  is the angle between the wind stress vector and the local direction of the grid-line y is constant. The
magnitude of the wind shear-stress is defined as:

[60a]

Often, the magnitude is determined by the following widely used quadratic expression:

[60b]

where a is  the  air  density,  U10 is  the  wind  speed  10  meter  above  the  free  surface  and  Cd is  the  wind  drag
coefficient, dependent on U10. Here, a constant Cd (= 0.002) is assumed (see e.g., Houwman, 2000).

For the transport boundary conditions, the vertical diffusive fluxes trough the free surface and bed are
set to zero.

4.4 SOLUTION PROCEDURE

To solve the partial differential equations, these should be transformed to the discrete space. A
thorough treatment of the numerical aspects of Delft3D-FLOW is beyond the scope of the present
study. For a full description of the space discretisation, time integration and numerical solution
methods applied in Delft3D-FLOW, the reader is referred to the Delft3D-Flow Manual; 2005 and
work of Leendertse (1987), Stelling (1984) and Uittenbogaard et al. (1992). The Delft3D-FLOW
module is a numerical model based on finite differences. The spatial discretisations of the shallow
water equations are performed by draping a grid (here: rectangular) over the model area, whereby the
grid is assumed to be orthogonal and well-structured. The variables are arranged in a pattern called
the Arakawa C-grid (staggered grid; Lesser et al., 2004; Delft3D-Flow Manual, 2005). In this
arrangement, the water level points (pressure points) are defined in the centre of a cell; the velocity
components are perpendicular to the grid cell faces where they are situated (see e.g., figure 2 of
Lesser et al., 2004; figure 10-3 of Delft3D-Flow Manual, 2005).

4.4.1 Hydrodynamics

To solve the continuity and horizontal momentum equations, Leendertse (1967, 1971, 1973)
introduced an alternating direction implicit (ADI) method, wherein one time step is split up into two
stages of equal duration. In both stages, all terms of the model equations are solved consistently, with
at least second order accuracy in space. For the spatial discretisation of the horizontal advection
terms, in the present study the so-called Cylic method (scheme) of Stelling and Leendertse (1991) is
followed. For the water level gradient and the advection terms, time levels are alternating; if in one
stage a term is taken implicitly in time, this term will be taken explicitly in time in the other stage.
For the entire time step, each separate term is still integrated second-order accurate in time. The
advantage of the ADI method is that the implicitly integrated water levels and velocities are coupled
along grid lines, leading to systems of equations with a small bandwidth (Lesser et al., 2004).
Substitution of the discrete momentum equations in the continuity equation leads to a tridiagonal
system of equations for the water levels (Delft3D-Flow Manual, 2005). The computed water levels
are substituted back in the discrete momentum equations, so that the velocities can be solved. As
stressed by Stelling (1984), a robust solver for the shallow water equations has to satisfy some
demands. Besides (i) its suitability for both time-dependent and steady state problems, a solver has to
be (ii) unconditionally stable, (iii) accurate (at least second-order) and (iv) computationally efficient.
The choice for a certain time integration method (the ADI method being the standard in Delft3D-
FLOW), and (subsequent) advection scheme (here: cyclic algorithm) gives rise to a time step
limitation, for a model to behave stable and to yield accurate predictions (i.e., avoidance of
inaccurately predicted flow patterns; ADI effect; e.g., bad flow field reproduction for regions,
characterized by steep bottom gradients). Dependent on the kind of application (e.g., length scale,
velocity scale, eventual incorporation of density effects), several time step limitations are available
for the shallow water code Delft3D-FLOW (Delft3D-Flow Manual, 2005; Table 10-1). More
generally, the Courant number, defined by:

s*s*s uu
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[61]

wherein: t = time step (seconds), g is gravitational acceleration, h = water depth, { x, y} is a characteristic
value of the grid spacing in either direction (of which the minimum is commonly taken).

gives an indication of the maximum time step that can be used. For critical situations (e.g., flow along
irregular (staircase) closed boundaries, flow around islands, flow over tidal flats) the ADI-method is
inaccurate for Courant numbers larger than 4 2. A rough estimate for common situations for which
the ADI-method is stable, yielding accurate predictions, is given by the criterion: Cr < 10 (Lesser et
al., 2004). Based on [61], one can determine a maximum time step to be approximately 12 seconds
(0.2 minute) for the present study. This value is determined by taking the maximum h/ x (computed
for  each  grid  cell)  value  (here:  0.25)  where  h  fluctuates  owing to  tides,  waves,  wind and bed level
changes. From test simulations, it became clear that a time step of 0.25 minute led the model become
unstable. Therefore, for the final model simulations, a time step of 0.1 minute is used. No further
sensitivity tests were carried out, however, Brière and Walstra (2006) found stable solutions to be
obtained with a time step of 0.2 minute, for their simulations. Consequently, model computational
time could have been reduced here with a factor 2. Given the relative long computational time (here,
about 13 days were needed to calculate (with a morphological acceleration factor of 2) the considered
bar return period of approximately 4 years), it is worthwhile to test several time steps in future
modelling activities.

4.4.2 Transport equation

The transport equation, formulated in a conservative form (finite volume approximation) is also
solved using the afore-mentioned cyclic method (Stelling and Leendertse, 1991). An algorithm in
Delft3D-FLOW accounts for the possible horizontal diffusion along z-planes in the -coordinate
system, which causes artificial vertical diffusion (Stelling and Van Kester, 1994). This effect arises in
areas characterized by steep bed slopes, in combination with vertical stratification. Additionally, a
horizontal Forester filter based on diffusion along -planes is applied to remove any possible negative
concentration values (Lesser et al., 2004). This filter is mass conserving and does not induce
significant amplitude losses in sharply peaked solutions (Lesser et al., 2004).

4.5 WAVES

Several processes arise due to wave action in coastal areas (Delft3D-Flow Manual, 2005):
Enhancement of vertical mixing of momentum due to (i) the generation of turbulence near
the water surface by whitecapping and wave breaking, and (ii) energy dissipation near the
bottom;
Generation of a net mass flux, affecting the current profile;
Generation of cross-shore water level variations (set-up/down) and longshore currents due to
variations in the wave-induced momentum flux (radiation stresses). Circulation cells may be
generated when the morphology is alongshore inhomogeneous;
Enhancement of the bed shear stress, affecting the stirring up of sediments and increasing
the bed friction.

It is of importance to note that these processes are usually accounted for in a wave averaged manner.
Basically, some processes act at a specific location or interface, such as the enhanced bed shear stress
or wave breaking at the surface, while others have a certain vertical distribution, such as the energy
dissipation due to bed friction in the wave boundary layer. In the -coordinate system, Delft3D-
FLOW solves the so-called long wave equation, because of the pressure assumed to be hydrostatic
(figure 12), which is not obeyed by short waves. The model is not capable of resolving the scales of
short waves. For that reason, in analogy with turbulence, the equations of motion are averaged over
the wave period (or many wave periods), to obtain the wave-induced force (Mi in [45]). Generally,
this wave-induced force can be written as the gradient of the radiation stress tensor (Mi = - Sij xj),

y,x
ght

Cr
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where wave propagation models are typically used to express Sij in terms of wave parameters
(energy, E; phase and group velocity, c and cg;  length, L and period T). It  must be realized that the
afore-mentioned procedure is only justified when the mean motion is uniform with depth. However,
this requirement is often not fulfilled for by nature. Consequently, the afore-mentioned GLM method,
which writes the flow equations in a coordinate system that moves with the Stokes drift is needed, so
that a distinction can be made between the mean and oscillating motion. The computational
procedure in the GLM formulation only differs from that applied in the Eulerian formulation at the
boundaries. The velocity at the bottom is not the total velocity, but the Eulerian velocity; the bed
shear stress is corrected for the Stokes drift. At lateral boundaries, the prescribed velocity is the
Eulerian one, while addition of the Stokes drift is performed by Delft3D-FLOW (Delft3D Flow
Manual, 2005). In Delft3D-FLOW, the radiation stress gradient is modelled as a shear stress at the
water surface. The simplified expression of Dingemans et al. (1987), leaving out all contributions that
are not related to dissipation of wave energy, is implemented (see Delft3D-Flow Manual, 2005; p. 9-
58):

[62]

where M is the wave forcing due to radiation stress gradients (N/m2),  D  is  dissipation  of  breaker  energy
(W/m2),  represents the angular wave frequency (rad/s) and k  is the wave number vector (rad/m).

An in-depth exploration of the incorporation of other wave-induced processes to Delft3D-FLOW is
not given in the present report; the reader is referred to e.g., Delft3D-Flow Manual (2005; Section 9.7
on wave-current interaction), Walstra et al. (2000) and Van Rijn et al. (2004). Here, a brief overview
of the effects of wave is given, only:

The enhancement of vertical mixing of momentum due to shear at the bed is accounted for
by the TR2004 parameterisation (see eq. 2.2.15 of Van Rijn et al., 2004, where the nonlinear
wave approximation method of Isobe and Horikawa (1982), modified by Grasmeijer (2002),
is followed to include the effects of wave asymmetry on the bed shear stress and transport of
sediment). Several other methods can be found in the Delft3D-Flow Manual (2005, §9.7.5).
The wave-induced mass flux is included and is adjusted for the vertically non-uniform
Stokes drift (Walstra et al., 2000; Delft3D-Flow Manual, 2005, §9.7.2).
The additional production of turbulence due to dissipation in the bottom wave boundary
layer and by wave breaking and whitecapping is included as extra production terms in the k-
 turbulence closure model (Walstra et al., 2000).

(Longuet-Higgins) streaming (a wave-induced current in the bottom boundary layer,
oriented in the direction of wave propagation) is modelled as a time-averaged shear stress,
which results from the horizontal and vertical orbital velocities, being not exactly 90° out of
phase. This additional shear stress acts across the thickness of the wave boundary layer
(Walstra et al. 2000) having its maximum at the top of the layer and decreasing linearly
towards the bottom. As shown by Brière and Walstra (2006), streaming has negligible
effects on the barred zone, which is recognized to be mainly controlled by offshore-directed
flow induced by wave breaking and wave mass transport. Instead, streaming leads to
undesirable erosion of the lower shoreface by onshore transports. For that reason, streaming
is excluded in the present model (‘fwfac = 0’).
Following Reniers et al (2004), infragravity motions can be included. From their model
results, it has become clear that these motions are the underlying mechanism for the
development of an alongshore quasi-periodic bathymetry of shoals cut by rip channels. As
pointed out by Van Rijn et al. (2003), the modelling of low-frequency wave mechanics does
not seem to be very important for the simulation of the inner and outer bar behaviour on the
storm scale, since the models neglecting low-frequency effects performed reasonably well.
Contrarily, low-frequency effects may be of crucial importance for the beach zone.

4.6 SEDIMENT TRANSPORT FORMULATIONS

In most models the convection-diffusion equation, given in eq. [53], forms the basis for computing
the transport of suspended sediment. This transport mode is often found to have the major influence

kDM
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on bar behaviour (among others, Brière and Walstra, 2006; Ruessink, 1998). If the mixing or eddy
viscosity coefficient can be taken constant in space and time, analytical solutions can be found,
following, e.g., Nielsen (1979) (Van Rijn, 1993). Often, these assumptions can not be carried trough,
consequently, a numerical solution must be found, which requires the specification of the fall velocity
(ws), the sediment mixing coefficient ( s) and boundary conditions at the bed and sea surface
boundaries (Section 4.2). For an extensive overview of many transport formulations (for both
cohesive and non-cohesive sediment) and incorporated processes (e.g., hindered settling, turbulence
damping), for both suspended and bed load, in case of currents and waves, or combined, the reader is
referred to Van Rijn (1993). For more recent developments, see e.g., Van Rijn and Walstra (2003);
Van Rijn et al. (2004); Van Rijn (2006a and 2006b). Several validation tests and sensitivity analyses
have been carried out by Brière and Walstra (2006) to investigate the influence of the various
parameter(s) (formulation(s)) involved, mainly in terms of bar dynamics (profile model with a
morphological tide and morphological wave climate; Walstra et al., 2004). For the present work, the
updated TRANSPOR2004 formulations (Van Rijn et al., 2004), implemented in Delft3D, are
adopted. These formulations can be combined with the so-called bed roughness predictor (Van Rijn
et al., 2004, §2.2.1; Van Rijn, 2006a), Below, a brief overview is given, in order to get some ‘top-
down feeling’ for the formulations.

4.6.1 TRANSPOR2004 - Delft3D

Generally, the bed load transport vector is made up of (i) the current-related transport vector (qb,c
(current direction)) and (ii) the wave-related transport vector (qb,w (wave direction)), the latter having
a direction which can strongly be affected by the current field (Van Rijn, 1994). The suspended load
transport consists of a current-related part due to advective processes (qs,c (current direction)) and a
wave-related part, mainly resulting from wave asymmetry effects (qs,w (wave direction, always
onshore)). The transition between suspended- and bed load transport is typically assumed to occur at
a certain height above the bed (e.g., the well-known reference height ‘a’ of Van Rijn, 1993). Here, it
must be realized that in the updated expressions of TRANSPOR2004, the wave-related suspended
sediment transport is also considered as belonging to bed load transport, since it responds almost
instantaneously to changing flow conditions (Van Rijn et al., 2004, their §3.2.3; Brière and Walstra,
2006; Delft3D-Flow Manual, 2005, Chapter 11).

4.6.1.1 Bed-load transport of non-cohesive sediment (sand)

Bed load transport is calculated following the afore-mentioned approach of Van Rijn (1993), where it
represents the near-bed transport occurring below the reference height, a (Van Rijn et al., 2004;
Brière and Walstra, 2006):

        [63]

where ks,c is the overall current-related bed roughness, ks,c,r the current-related bed roughness height
due  to  ripples  and  ks,w,r the wave-related bed roughness height due to ripples. Van Rijn (1993)
showed that mega-ripples and dunes are related to the water depth and the flow regime (mobility
parameter). The physical bed form roughness of these elements is roughly of the order of half the bed
form height. A direct parameterization of this effective (equivalent) bed roughness is proposed by
Van Rijn (2006a); thus, herein the effective bed roughness is expressed as a function of the water
depth and mobility parameter.  Alternatively, bed roughness and shear stress parameters can be based
on the well-known Chézy or Manning formulations (see Brière and Walstra (2006; their Section 4.4)
for a comparison between these bed roughness formulations, in terms of their effects on predicted bed
profiles).

The present approach computes the bed load transport vectors at the water level points and relocates
them at the velocity points, using an upwind computational scheme to ensure numerical stability
(Lesser et al., 2004; Delft3D-Flow Manual, 2005). It is of importance to notice that the transport
equation for bed load is based on the concept of an instantaneous bed shear stress, wherein nonlinear
wave effects are taken into account. Further, the bed load vector is modified to account for the slope
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of the bed (Brière and Walstra, 2006). The bed load transport components in (m,n)-direction then
read, respectively (Brière and Walstra, 2006):

[64a-b]

in which: fbed, fbedw and fsusw are calibration factors, enabling one to tune the overall significance of each transport
component.
As shown by Brière and Walstra (2006), morphologic developments of a bar system (Egmond, the Netherlands,
after one year) are strongly determined by the applied scaling of the wave-related bed- and suspended load
transports (fbedw and  fsusw). In the surf zone, the wave-related bed load transport is onshore-directed.
Consequently, reducing fbedw (<  0.5)  leads  to  farther  offshore  migration  of  the  bar  system  and  the  profile  to
become quite irregular (Brière and Walstra, 2006; their figure 4-17). Contrarily, increasing fbedw too  much  (>
1.5), led the profile to become unrealistic flat, resulting from bed slope effects. Therefore, it is recommended to
apply factors in the range of 0.5 to 1.5. In the present study, the wave-related bed load transport is unscaled (fbedw
= 1). The wave-related suspended load scale factor, fsusw, is a function of the complicated -phase-factor ([-1 1])
proposed by Dohmen-Janssen (1999). The latter factor is incorporated to account for the wave-related suspended
transport to be eventually directed against the direction of wave propagation, depending on the bed form
roughness and the magnitude of the asymmetric wave motion. Brière and Walstra (2006) showed that an increase
of  fsusw results in a reduction of the offshore bar migration, whereas lower values suppress morphological
developments, by smoothing the bed profile (their figure 4-19). This is due to the fact that wave-related
suspended load transports are added to the bed load, which is affected by bed slope gradients. Therefore, they
suggest a fsusw-value of 0.3, which is adopted here. Current-related transports are offshore oriented as a result of
wave breaking and Stokes drift. Scaling of the current-related transport (fbed) is observed to hardly influence bar

dynamics on a time scale of 1 year (Brière and Walstra, 2006; their figure 4-16). b,m b,n bu , u and u are the

Eulerian velocity components and magnitude in the bottom computational layer,  is the local angle between the
direction of wave propagation and the computational grid (°). For more details on the computation of the bed
load transport, in case of the presence of waves, and including the wave-related suspended sediment transport
(with a phase lag coefficient ( ) of 0.1), one is referred to Van Rijn (2006a), Brière and Walstra (2006) and Van
Rijn et al. (2004).

4.6.1.2 Suspended-load transport of non-cohesive sediment (sand)

The current-related suspended load transport, defined as the transport of sediment by the time-
averaged current velocities, and including the wave stirring on the sediment load (Brière and Walstra,
2006), follows from:

[65]

where fsus is a calibration factor; Brière and Walstra (2006) found a strong correlation between this scaling factor
and migration rate of the bar system, implying that this type of sediment transport dominates bar behaviour.
Besides, fsus also affects beach morphological processes, significantly (see their figure 4-15). It is observed that
large coefficient values (fsus between  0.6  and  2)  causes  unrealistic  erosion  of  the  upper  part  of  the  profile.
Commonly, fsus is  taken  to  be  1.0  (Brière  and  Walstra,  2006).  Further,  h  =  water  depth,  za is  the  height  of  a
([63]), c is the concentration profile and u is the velocity profile, including eventual effects of wave-current
interaction.

As follows from [65], the current-related suspended sediment transport is calculated by taking the
product of the velocity profile and the concentration profile, which is obtained by solving the
advection-diffusion equation ([53]; c = F(effective fall velocity, bed shear velocity, near-bed
Richardson number)). As mentioned before (§4.1.6 and §4.1.7), the vertical eddy diffusivity given by
[54] needs to be modified in case of the modelled sediment being sand. To incorporate the difference
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between fluid and granular diffusion (Van Rijn, 1994), the so-called Van Rijn’s -factor is
introduced, thereby extending [54] into:

[66]

where the -factor (limited between 1 and 1.5; Van Rijn et al., 2004) may written as:

[67]

where: ws = sediment fall  velocity (depending on the sediment size;  see e.g.,  Van Rijn,  1994; Van Rijn et  al.,
2004; §3.2.3.2. As shown by Brière and Walstra (2006; their figure 4-25), the grain size has a marked effect on
bed profile developments) u*,c is the current-related bed shear stress velocity (see e.g., Brière and Walstra, 2006;
Appendix A-3).

Eq. [67] is only valid for situations without waves (Lesser et al., 2004); for simulations including
waves, using the k-  turbulence closure model, [67] needs slight modification. As Van Rijn’s -factor
is intended to apply to the current-related mixing only, the -factor applied to the total mixing
computed by the k-  model can be reduced to an effective -factor (Lesser et al., 2004):

[68]

wherein c and w are the current- and wave-related bed shear stresses, respectively;  follows from [67].

In the updated TRANSPOR2004 formulations, the -factor is expressed differently to [68]; see Brière
and Walstra (2006; A-6). In the present study, the vertical diffusion coefficients are computed from
the Van Rijn’s parabolic-linear mixing distribution for current-related mixing (‘epspar = true’). The
equilibrium sediment concentration profile is reconstructed following a well-known Rouse law (see
e.g., Van Rijn et al., 2004, eq. 3.2.60; Brière and Walstra, 2006, Appendix A-6) and the concentration
below the reference level is fixed to the reference concentration (ca). Moreover, the sediment mixing
coefficients can be calculated entirely apart from the turbulence closure model; the wave-related
sediment mixing coefficient near the bed can be found using the updated expression of
TRANSPOR2004 (Van Rijn, 2006b).
Finally, it should be noticed that sediment transported below the reference height is regarded as
belonging to bed load transport; this means that sediment transported below the reference height must
be subtracted to the suspended sediment transport, to prevent double counting (correction vector; see
Brière and Walstra, 2006; their §2.2.6 and A-7; Van Rijn et al., their figure 3.2).

4.7 MORPHODYNAMICS

The exchange of sediment between the bed and the water column can be modelled using sink and
source terms acting on the near-bottom layer that is entirely above Van Rijn’s reference height (a).
This first computational cell above ‘a’ is called the reference layer (or ‘kmx layer’, for short; Van
Rijn et al., 2004). The sediment concentration in the cells that lie below the kmx layer are assumed to
rapidly respond to changes in the bed shear stress, and have the same concentration as the reference
layer (Van Rijn et al., 2004). Each half time step, source and sink terms model the erosive flux from
the reference level due to upward diffusion and the deposition flux due to sediment settling. The
quantity of sediment entering the flow due to upward diffusion, and dropping out of the flow due to
sediment settling are given by, respectively (Van Rijn et al., 2004):

[69a]
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[70a]

wherein: Dv is the sediment diffusion coefficient evaluated at the bottom of the kmx cell (often denoted as s)
and ckmx,bottom is the concentration at the bottom of the kmx cell (= 1ckmx, where 1 is a correction factor and ckmx
is the average concentration of the kmx cell; see Van Rijn et al., 2004; their eq. [3.2.62]). It is noted here that E
and D are actually determined per sediment fraction; in the present study, however, only one fraction (sand) has
been incorporated. See Van Rijn et al., 2004 and Lesser et al., 2004 for details.

In TRANSPOR2004, [69a] and [70a] are approximated by the following expressions, respectively:

[69b]

 [70b]

where: 2 is  a correction factor for sediment concentration (Van Rijn et  al.,  2004; their  eq.  [3.2.63]),  z  is  the
difference in elevation between the centre of the kmx cell and Van Rijn’s reference height (= zkmx – a).

Finally, [69b] and [70b] are subdivided into a source and sink term, which can be solved,
subsequently. More details can be found in Van Rijn et al. (2004).
The bed level can then be updated (per half a computational time step), by taking the net sediment
change due to (i) suspended transport (difference between source and sink terms) and (ii) bed load
transport ([64]), with (iii) the correction for suspended sediment transport below the reference height
(a) taken into account. Mathematical formulations are provided by Lesser et al. (2004). Before
updating bed levels, the suspended and bed load transports can be multiplied by a so-called
morphological acceleration factor, to deal with the difference in time scales between hydrodynamic
and morphologic developments. This implies that long morphological simulations can be achieved
using hydrodynamic simulations of only a fraction of the required duration (for an example, the
reader is referred to e.g., Brière and Walstra, 2006; their table 3-1). For the present study, there is no
direct need for such a morphological scale factor (hindcast). However, as suggested by Walstra (pers.
comm.), computational time may be reduced tremendously, when use is made of this factor.
Accordingly, model input has to be compressed with applied morphological scale factor.

4.8 PARAMETER SETTINGS

For convenience, table 2 lists the main model parameters applied in the present Delft3D profile
model.

Table 2. Summary of parameter settings applied in the computations
__________________________________________________________________________________________
Parameter Value/Setting Description
__________________________________________________________________________________________________________________________________________________________________________________________________________

Grid
Anglat 52 ° Latitude of model centre (Coriolis)
MNKmax [87 3 12] Grid dimensions; number of cells in cross-shore, alongshore and vertical
direction
Thick [2; 3.2; 5; 7.9; Layer thickness from top to bottom in percentage (%) of total water
depth ( -grid)

12.4; 19.6; 19.6;
12.4; 7.9; 5; 3.2; 1.8]

Constants
Ag 9.81 m/s2 Gravitational acceleration
Rhow 1023 kg/m3 Water density
Rhoa 1.0 kg/m3 Air density
Tempw 10 °C Water temperature
Salw 31 ppt Salinity

z
cc

E kmxa
s2

skmx1 wcD
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Wstres [0.00063; 0; Wind drag coefficients ([1st breakpoint; wind speed; 2nd breakpoint; wind
speed])

0.00723; 100]
_

Dt 6 s Computational time step
Dryflc 0.1 m Minimum depth of drying and flooding

Waves (including rollers and application of Snell’s law)
GamDis -1 Breaker criterion of Ruessink et al. (2003), based on local condition
(H/h)
Betaro 0.05 Steepness of wave front (not very important for wave height modelling,
but of utmost

importance for current modelling; see e.g., Ruessink et al., 2001), see
also B-14 of Delft3D-Flow Manual (2005)

F_lam 0.00 Breaker delay of Roelvink et al.,1995; their eq. (1)

Roughness
Roumet Manning Type of bottom friction formulation
Ccofu 0.026 m1/3s-1 Uniform bed roughness in u-direction
Ccofv 0.026 m1/3s-1 Uniform bed roughness in v-direction
Rouwav VR04 Bottom stress formulation due to wave action; here TRANSPOR2004
formulation
Irov free Wall roughness; type of slip condition (free/partial/no); here tangential
(shear) stresses

at boundaries are neglected (§4.1.3), i.e., a free-slip condition is applied.
Viscosity
Vicouv 0.1 m2/s Uniform background horizontal eddy viscosity (§4.1.6)
Dicouv 0.1 m2/s Uniform background horizontal eddy diffusivity ( c = 1; see §4.1.6)
Htur2d No (en/dis)abling use of HLES subgrid model (‘2D turbulence’; §4.1.3)
Vicoww 0.000001 m2/s Uniform background vertical eddy viscosity (§4.1.6)
Dicoww 0.000001 m2/s Uniform background vertical eddy diffusivity (§4.1.6)
Xlo 0 m Ozmidov length scale
Tkemod k-  model Type of turbulence closure model (‘3D-turbulence’)

Sediment
Namc1 Sediment sand Type of sediment (sand or mud)
RhoSol 2650 kg/m3 Sediment density
SedDia 200 m Median sediment (sand) diameter (d50)
SedD10 150 m d10
SedD90 300 m d90
CDryB 1600 kg/m3 Dry bed density
Iopsus 1 Suspended sediment size is calculated dependent hydrodynamic
conditions and d50
FacDSS 1.0 Factor to determine initial suspended sediment diameter (=
FacDSS*SedDia)

Morphology
MorFac 2 Morphological scale factor (note that boundary conditions (timeseries of

waves/wind/astronomic water level) need to be compressed with this
factor, too)

MorStt 120 minutes Start time for bed updating (relative to simulation start time); smoothing
the

hydrodynamic boundary conditions
Thresh 0.2 m Threshold sediment thickness for reducing sediment exchange
MorUpd yes Updating bathymetry during flow run
EqmBc yes Equilibrium sediment concentration profile at open (inflow) boundaries
DensIn no Including the effect of sediment on water density; here, water density is

assumed constant; there is no need for an extension of Eckart’s empirical
relation (eq. [49]) (see Lesser et al., 2004; their eq. 18)

AksFac 1.0 Factor to determine Van Rijn's reference height (a) = AksFac * ks
(where ks =

effective bed roughness); (sub-paragraph 4.5.1.1)
RWave 1.0 Factor to determine wave related bed roughness = RWave * estimated
ripple height.
AlfaBs 1.0 Longitudinal bed gradient factor for bed load transport (§4.5.1)
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AlfaBn 50 Transverse bed gradient factor for bed load transport (§4.5.1)
Sus 1.0 Suspended transport factor (§4.5.1)
Bed 1.0 Bed load transport factor (§4.5.1)
SusW 0.3 Wave-related suspended transport factor (§4.5.1)
BedW 1.0 Wave-related bedload transport factor (§4.5.1)
SedThr 0.1 m Minimum depth for sediment calculations
ThetSD 1.0 Fraction of erosion to assign to adjacent dry cells
FWFac 0.0 Tuning parameter for wave streaming (Section 4.4)
EpsPar true Only for waves in combination with k-  turbulence model (sub-
paragraph 4.5.1.2)

true : Van Rijn's parabolic-linear mixing distribution for current-related
mixing

false: vertical sediment mixing values from k-  turbulence model
UpdInf true Updating bed at inflow boundaries; true: down-wind approach,

false: bed level constant
NeglectEntrainment  true Concept for morphology updating due to suspended transport

_________________________________________________________________________________________

5 MODEL RESULTS

The present chapter aims at presenting some exploratory results (a phenomenological approach) of
the afore-described profile model (with settings given in table 2, unless specified otherwise).

5.1 MORPHOLOGICAL ACCELERATION FACTOR

As mentioned, usage of a morphological scale factor to accelerate morphological developments
greatly favours computational time. Determination of the model’s sensitivity to changing upscaling
factors is thus indispensable. Figure 17 depicts predicted cross-shore bed profiles after one year, for
different factors.

Figure 17. Comparison between 4 predicted (after one year) cross-shore bed profiles for different morphological
acceleration factors (hence, compression of time series of boundary conditions (tides, winds, waves) with these
factor-values (f1, f2, f4, f8). Default parameter settings were used (table 2, but with time step = 0.25 minute). It
should be noted that the correction vector (subparagraph 4.5.1.2) of the suspended sediment transport was
wrongly implemented in the algorithm (not reversed in the flow transport solver). However, it is questionable
whether this significantly affects total computed sediment transport, since suspended sediment transport
generally dominates total sand transport (figure 23). The initial bed profile (measured at 15-10-1979, but without
intertidal bar) is given by the gray-coloured line.
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As can be seen from figure 17, the outer bar zone gets a flattened appearance for increasing factors of
time series compression (factor = 8), which is in contrast with field observations. For all factors,
though more pronounced for higher compression factors, the morphologic development of the inner
bar zone is badly reproduced. Moreover, and likely being (partly) associated with the former, the
intertidal area and dune foot are eroded excessively.  For that reason, implementation of a fixed layer
is inevitable. Only slight differences are recognized between application of no morphological factor
(f1)  and  a  factor  of  2  (f2).  Therefore,  it  is  decided  to  carry  out  longer-term  computations  with  a
morphological acceleration factor of 2.

5.2 FIXED LAYER

A fixed layer is implemented in the profile model to prevent the intertidal area and dune foot from
being eroded enormously. It is questioned here, at what cross-shore location the seaward limit of the
fixed layer should be located. Figure 18 shows model results for different seaward extensions of the
implemented layer: at (approximately) mean water line (MWL), low water line (LWL) and at z = -
2.6m NAP (  MSL  MWL), respectively. It can easily be recognized that incorporation of a fixed
layer yield improved results, in terms of maintenance of the bar system (figure 18). Of interest is the
similar behaviour of the outer bar zone (x < 1450m approximately) for the implemented fixed layers
at different heights, perhaps suggesting that farther offshore located bars are less sensitive to shallow
water processes (e.g., in view of the outer bar zone to act as a hydrodynamic filter, thus indeed
controlling inner bar zone morphologic behaviour). Furthermore, predicted morphologic
developments within this zone compare well with results of the model in which no fixed layer is used.
Contrarily, the height at which a fixed layer is implemented, greatly influences the morphological
behaviour  of  the  inner  bar  zone.  In  all  cases,  a  new bar  is  generated  at  the  foot  of  the  beach face,
followed by its offshore migration. Meanwhile, the outer bar migrates offshore and changes shape
(seaward oriented face becoming relative steep, whereas the opposite occurs at the landward-facing
side), however, it is still far from its final decaying stage. As can be seen from figure 18, the higher
the seaward limit of the fixed layer is positioned, the more seaward the newly generated bar is
predicted to be migrated after one year. Further, it is assessed that the generation and migration of a
new bar coincides with erosion and steepening of the beach face, if the fixed layer does not extend to
the inner subtidal trough (cf. green and yellow lines with blue line in figure 18).
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Figure 18. Morphologic developments after one year for different heights of the implemented fixed layer
(dashed lines). Default parameter settings were used (table 2). The models in which a fixed layer was
implemented were solved with the correct flow transport solver. For comparison, model result without a fixed
layer is shown, also.

Obviously, one may wonder what is the effect of different fixed layer heights on the long-term
behaviour of the bar system. Figure 19 shows that bars that existed in the initial profile, migrated
further offshore and show somewhat decreasing bar amplitudes after 1.5 year. In case of a fixed layer
at (approximately) MWL, even a fourth bar is generated, pointing at an overestimation of observed
offshore migration of the bar system (cf. Brière and Walstra, 2006).
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Figure 19. See figure 18, but now computed bed profiles after 1.5 year are shown. Different implemented
seaward extensions of a fixed layer clearly controls predictions of a newly formed bar.

Unfortunately,  after  1.5  year,  in  the  model  with  a  fixed  layer  at  about  MWL, an  error  in  the  wave
module arised. It is therefore, decided to use a fixed layer extending towards the LWL for longer-
term computations.

5.3 TRANSVERSE BED GRADIENT FACTOR

The bed roughness formulation appeared to have the major effect on the modelling of natural bar
dynamics (Brière and Walstra, 2006; see also implication at figure 3, text). Herein, bed slope effects
may play an important role, as they modify the bed load transport vector (as well as wave-related
suspended sediment transport) in the TRANSPOR2004 formulations. The commonly used default
value of the transverse bed gradient factor (fALFABN) amounts 1.5. As can be seen from figure 20, both
coefficient values produce morphologic irregularities; the default value of 1.5 clearly leads to a wave
train alike barred profile. Contrarily, fALFABN = 50 generally leads to damping of morphologic entities;
it is only the outer bar that maintains its bar shape. In both cases, the upper part of the profile suffers
from unrealistic erosion again, demonstrating the need for a fixed layer (Section 5.2).
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Figure 20. Morphologic developments after one year for two different values of the coefficient (fALFABN), needed
for the computation of the transverse bed slope, which modifies the direction of the bed load transport vector
(subparagraph 4.5.1.1). Default parameter settings were used (table 2), but with astronomic tidal boundary
conditions (no morphological acceleration factor) and a time step of 0.25 minute. See figure 17 for note on flow
transport solver. No fixed layer was implemented.

Moreover, the combination of a default transverse bed slope factor of 1.5 and implementation of a
fixed layer does not yield reliable morphologic predictions (figure 21). Here, a high value of 50
seems to better reproduce natural bar dynamics. Obviously, this is only a crude approximation, likely
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accounting for other unresolved processes. Therefore, future modelling studies should include a
thorough sensitivity analysis on this aspect.
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Figure 21. Morphologic developments after one observed bar return interval (about 4 years) for two different
values of the coefficient (fALFABN) are shown. See table 2 for model settings, but with a fixed layer at z = -0.95m.
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5.4 ANALYSIS OF PREDICTED LONG-TERM BAR
BEHAVIOUR

This section highlights modelled bar behaviour with model settings presented in table 2,
complemented with a fixed layer at approximately LWL. In figure 22, measured and modelled cross-
shore bed profiles are compared.

Figure 22. Comparison of measured and modelled bed level heights. Dates (2* days after 15-10-1979; lower
right corner of each panel) correspond to: 15-10-1979, 19-09-1980, 22-05-1981, 02-06-1982, 05-07-1983,
respectively.

It is unequivocally clear that the present model is not capable of accurately reproducing observed
cross-shore bed profiles. Both shape and cross-shore position of bars cannot be predicted, accurately
(figure 22). The modelled outer troughs are too flat, as compared to observations, or probably better
stated: the landward-oriented slopes of the outer and middle bar are too gentle. Further, generation of
a new bar is preceded by unrealistic deepening (steepening) of the trough (beach face), which
separates the subtidal area from the intertidal area. Troughout the model run, velocity gradients near
MSL are frequently predicted much too large (> 5m/s per 0.5 a time step) than one may expect to
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occur. Overall speaking, the model is capable of reproducing cyclic bar behaviour (arrows in figure
22). However, as also pointed out by Brière and Walstra (2006), the Delft3D models which have been
set up thus far,  seem to overestimate the offshore migration of the bar system. Since the wave- and
current field can be predicted reasonably well by profile models (Van Rijn et al., 2003), it is likely
that sediment transport formulations must be further improved, to obtain more realistic morphologic
developments. Brière and Walstra (2006) suggest to mainly attempt to improve the predictions of the
wave-related suspended load transport. According to their sensitivity analyses, an increased
suspended wave-related onshore transport results in unrealistic flattening of the bed profile, which is
caused by bed slope effects that are acting on the combined wave-related bed load and suspended
load transports in the present transport formulations. Therefore, they suggest to (i) consider both
modes of transport separately and (herewith associated) (ii) to exclude bed-slope effects on the wave-
related suspended sediment transport.
To further study modelled cyclic bar behaviour, figure 23 depicts some modelled hydrodynamics,
sediment transport and (resulting) morphology, each making up the components of the coastal
morphodynamic system.
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Figure 23. Modelled short-wave energy (a), combined wave- and current-related cross-shore suspended- (b) and
bed (c) load transport, and bed level height (d) at 87 cross-shore points, with daily temporal resolution. For
comparison, measured bed level heights are given in (e). Alongshore transports (gradients) are not used for bed
level update. A fixed layer at z = -0.95m prevents (modelled) unrealistic erosion of the intertidal beach and dune
foot, likely being the result of omitted processes (e.g., infragravity waves) and assumptions which are not
fulfilled for (e.g., absence of alongshore morphologic nonuniformities, which could have driven alongshore
sediment supply), besides the presence of small longshore transport gradients due to slight numerical
inaccuracies, which cannot be avoided (Brière and Walstra, 2006).

By comparing the upper and lower panel of figure 23, one may conclude that ‘spikes’ in short-wave
energy (storm periods) accelerate the offshore-directed bar migrational trend. Fair-weather periods
are predicted to affect migration of the most inner bar, particularly. More offshore located bars
(deeper water) are less vulnerable to this calm weather periods; the bar flattens, however, its crest
position remains virtually constant. The predicted ongoing offshore movement of a bar in very
shallow water (h < 3m approximately, such as the most inner bar shown here) is in agreement with
the given hypothesis in Ruessink (1998; Section 7.2). Herein, it is postulated that a bar in its initial
state does not seem to exhibit a net tendency to move either onshore or offshore, on an annual scale.
This implies that the offshore annual transport approximately equals the onshore annual transport.
However,  if  the  annual  frequency  distribution  of  H/h  in  the  inner  bar  zone  changes,  the  afore-
mentioned equilibrium is disturbed. A shift towards more wave breaking conditions (or more intense
breaking) can be expected to increase the annual offshore transport relative to the annual onshore
transport.  Such a shift towards more frequent and/or more intense surf zone conditions in the inner
bar zone may be established by the increasing water depth over a decaying outer bar (Ruessink, 1998;
Ruessink and Terwindt, 2000).
As  can  be  seen  from  the  mid  panels  of  figure  23,  the  total  sediment  transport  is  predicted  to  be
strongly dominated by the suspended load (note the different scales) (cf. Ruessink, 1998; the
horizontal velocity asymmetry of short waves and the undertow being the most important small-scale
hydrodynamic processes to be incorporated, for upscaling to medium-scale morphodynamics).
Maximum values for both transport modes are typically predicted for storm(y) conditions, while
during low-energetic conditions, less sediment transport is predicted to occur. Of interest is the
predicted cross-shore varying direction of the total bed load transport, especially for storm(y)
conditions. Generally, the total suspended sediment transport is directed similarly, across the entire
profile. As expected, maximum offshore-directed suspended load transports are found over the bar
crests (up to -3.5×10-4 m3/m/s), with much lower predicted values for the troughs (-0.03 to -0.13×10-4

m3/m/s). Onshore predicted suspended load transports are also computed, for some periods, however,
they do not show distinct patterns and are usually not larger than 0.07×10-4 m3/m/s. Contrarily,
opposite directions in bed load transport can be recognized across the profile, for storm(y) periods,
particularly (e.g., period [200-250] days). At the bar crests, small offshore-directed bed load
transports are predicted (about -0.16×10-4 m3/m/s), whereas in the troughs onshore-directed bed load
transports are commonly predicted (0.05 to 0.3×10-4 m3/m/s with outliers up to 1.5×10-4 m3/m/s). The
transition between onshore and offshore directed bed load transports is found to be quite sharp, likely
indicating the effects of the bed slope. Moreover, this transition seems to vanish at the outer bar for
increasing outer bar depths (period [350-400] days and period [575-600] days), i.e., for a decaying
outer bar (cf. Ruessink and Kroon, 1994).
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6 CONCLUSIONS & RECOMMENDATIONS

The present study revealed that a profile model, based on the shallow-water equations, complemented
with a k-  turbulence closure model and the TRANSPOR2004 sediment transport formulations (Van
Rijn et al., 2004), is capable of reproducing frequently observed cyclic bar behaviour along sandy,
uninterrupted coasts, though mainly in a qualitatively manner. A bottom-up modelling approach
(hindcast) was employed to model one recurrence interval of about 4 years at the Noordwijk site,
which forms part of the Holland coast, being the study object of several earlier studies (e.g., Wijnberg
and Terwindt, 1995; van Enckevort, 2001). The main findings of this study are summarized below,
complemented with some recommendations for future modelling activities.

It has become clear that a fixed layer need to be incorporated in the present model, to
prevent for unrealistic erosion on the intertidal area and near the dune foot. This area is
typically affected by processes having a 3-D character (e.g., Reniers et al., 2004), which are
not accounted for in the present study. Further, although constant gradient conditions are
adopted in longshore direction, Brière and Walstra (2006) assessed small longshore transport
gradients, which can not be avoided. The offshore extension of a fixed layer is observed to
be a determinant factor for the location of generation, and subsequent offshore migration of
a new bar (figure 19). Contrarily, fixed layers at different heights do not control
morphological behaviour of (initially) existing outer bar zone. A thorough analysis of the
(long-term) effects of fixed layers on bar behaviour may form the subject of future
modelling studies.
Though the implemented transport formulations have been proven to better describe both
hydrodynamics and sediment transport (Van Rijn et al., 2004; Brière and Walstra, 2006),
considerable uncertainty related to the bed roughness still exists (likely being reflected by
the unrealistic high value of the transverse bed gradient factor used in the present work).
Particularly, onshore suspended load transport due to asymmetric oscillatory wave motion
forms a source of uncertainty; as suggested by Brière and Walstra (2006), here included bed
slope effects on the suspended wave-related transports should be excluded. Improving the
former will possibly improve the rate of modelled offshore migration of the bar system,
which is overestimated in the present study.
As pointed out by e.g., Wijnberg (1995) (and also deducible from model predictions; figure
23), observed cyclic bar behaviour is not related to changes in offshore forcing, as the wave
climate lacks cyclicity on the same scale as the bar cycle. From presented model predictions
(Section 5.4), it followed that the outer bar crest depth indeed seems to control its own
degeneration and the offshore migration of landward bars. This points at the importance of
morphologic feedback mechanisms in the nearshore system as is hypothesized in earlier
studies (e.g., Ruessink and Terwindt, 2000). Free behaviour of a coast’s morphology
possibly demands for a top-down modelling approach, wherein the system may be modelled
in terms of simpler, carefully chosen set of equations derived from empirical study of the
system (Thornton et al., 2000; see also Section 2.3). The presence of feedbacks in the system
suggests that both the chronology of wave events and initial morphological state are not the
key factors for longer-term behaviour of the bar system (e.g., Southgate and Capobianco,
1997). Yet, these feedback mechanisms (which may have both a local (referring to the bar
morphology itself) and non-local character (referring to the morphology of seaward located
bars))  are  not  well  understood,  although considerable  progress  is  on  the  way (Plant  et  al.,
2001; Ruessink et al., 2003). Thus, future modelling efforts may use morphological wave-
and tide climates (e.g., van Duin et al., 2004; Brière and Walstra, 2004) to investigate
underlying mechanisms for cyclic bar behaviour. This is even more supported by the relative
long computational time needed for the present modelling study, although (i) being
successfully reduced by a factor 2 (by means of application of a morphological acceleration
factor) and (ii) usage of larger time steps is here not tested thoroughly (§4.3.1).
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