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Abstract
The current situation with green gas emission requires the development of low-carbon energy solutions. However, a
significant part of the modern energy industry still relies on fossil fuels. To combine these two contradictory targets, we
investigate a strategy based on a combination of CO2 sequestration with enhanced oil recovery (EOR) in the hydrocarbon
reservoirs. In such technology, the development of miscibility is the most attractive strategy from both technological and
economic aspects. Modeling of this process involves solving complex nonlinear problem describing compositional flow and
transport in highly heterogeneous porous media. An accurate capture of the miscibility development usually requires an
extensive number of components to be present in the compositional problem which makes simulation run-time prohibitive
for optimization. Here, we apply a multi-scale reconstructing of compositional transport to the optimization of CO2 injection.
In this approach, a prolongation operator, based on the parametrization of injection and production tie-lines, is constructed
following the fractional flow theory. This operator is tabulated as a function of pressure and pseudo-composition which
then is used in the operator-based linearization (OBL) framework for simulation. As a result, a pseudo two-component
solution of the multidimensional problem will match the position of trailing and leading shocks of the original problem
which helps to accurately predict phase distribution. The reconstructed multicomponent solution can be used then as an
effective proxy-model mimicking the behavior of the original multicomponent system. Next, we use this proxy-model in
the optimization procedure which helps to improve the performance of the process several fold. An additional benefit of the
proposed methodology is based on the fact that important technological features of CO2 injection process can be captured
with lower degrees of freedom which makes the optimization solution more feasible.

Keywords Operator-based linearization · Reduced model · Optimization · Compositional modeling

1 Introduction

Greenhouse gas emission together with a high demand of
energy has long been a concern of contemporary society.
Near-miscible CO2 injection is among the most efficient
strategies for a tertiary recovery of oil [16]; it can also
effectively reduce carbon emissions. The produced hydro-
carbons can be seen as a low-carbon fuel due to the signifi-
cant amount of CO2 left in the subsurface as the result of the
EOR application. Nevertheless, the heterogeneity of sub-
surface with complex multi-scale characteristics requires
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a suitable and highly resolved model to comprehend the
details of flow and interactions with the subsurface.

The current economic situation, especially low oil price
and formidable cost of CO2, introduces extra challenges on
applying a miscible gas injection. However, in combined
objective of enhanced oil recovery and CO2 sequestra-
tion, the development of miscibility may become the most
attractive strategy from both technological and economic
points of view. In addition, effective miscible injection can
increase the storage capacity for CO2 sequestration in vir-
gin or depleted hydrocarbon fields. It is quite important
to develop a plausible techno-economic model to meet the
combined goals of oil recovery and carbon dioxide sequestra-
tion. This serves as a primary motivation for this study.

To simulate the miscible gas injection process, compo-
sitional modeling is inevitably employed. Compositional
models require numerical solution of nonlinear equations
that involve mass conservation of different components
and thermodynamic equilibrium. The phase behavior of
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multiphase multi-component mixtures is usually resolved
by applying an equation of state (EoS) [2, 3]. A near-
miscible gas injection process usually involves a large
number of species in solution, which significantly degrades
simulation performance. In addition, in nonlinear iterations,
thermodynamic equilibrium should be enforced in every
grid block to check the phase behavior of the mixture; this
adds to the performance penalty [10].

Thermodynamic equilibrium usually consists of two
stages: a phase stability test [20] and flash calculation [21].
Various EoS have been used to represent thermodynamic
equilibrium in a hydrocarbon mixture, starting with the clas-
sic cubic EoS [26, 31]. However, the growing accuracy
of reservoir fluid characterization and better recognition of
complex physical processes involving component interac-
tions requires an application of a more complicated EoS,
such as statistical associating fluid theory (SAFT) [1] or
cubic-plus-association (CPA) [14]. In addition, coupling
with chemical reactions requires a combination of thermo-
dynamic and chemical equilibria [17, 24]. This can signifi-
cantly increase the cost of phase-behavior computations in
compositional simulation [34].

Several efforts have been made to improve the perfor-
mance of compositional reservoir simulators by improving
phase-behavior computations [9, 23, 28, 35], spatial coars-
ening of compositional models [8, 30], or reformulation of
compositional nonlinear problem [38]. In this work, a newly
proposed multi-scale reconstruction in physics (MSRP)
approach by [6] is utilized for production optimization. The
algebraic multi-scale (AMS) approach was initially pro-
posed to solve an elliptic flow problem in [11]. Several
extensions of this method have been successfully developed.
However, most of the AMS methods were focused exclu-
sively on the flow solver and did not address the transport
problem, except [39], where an adaptive multi-scale finite
volume method was proposed to accelerate the transport
solver. On the basis of these ideas, an MSRP method for
reconstruction of the compositional transport problem with
an arbitrary number of components was developed in [6].

This approach suggests a two-stage reconstruction,
where, at the first stage, the boundary of a two-phase region
is recovered, and the detailed solution in the two-phase
region is reconstructed in the second stage. The MSRP
approach utilized an operator-based linearization (OBL)
technique proposed in [36]. In the OBL method, the terms
of the discretized governing equations are factorized into
space- and state-dependent operators. The state-dependent
operators are adaptively discretized in the parameter space
of the problem, and multi-linear interpolation is applied for
continuous representation [13]. This formulation helps to
avoid the performance issues associated with an accurate
phase-split evaluation and reduces the nonlinearity of the
problem. Recently, this approach was extended for adaptive

parametrization of thermal-compositional problems with
buoyancy [12].

The original study of the MSRP method was limited
to isothermal two-phase flow with fixed phase-equilibrium
ratios (K values) [5]. In this work, we introduce an appli-
cation of MSRP using the Peng-Robinson equation of state
[26]. Due to the strong nonlinearity of the CO2 injec-
tion system, constrained nonlinear optimization strategy
is utilized to determine the optimal production scenario.
For production optimization, we used only the first-stage
MSRP reconstruction as a physics-based proxy model and
compare its result with optimization of the full compo-
sitional solution. Both approaches were compared using
an idealized conceptual model with growing optimization
complexity.

2Model description

In this section, a concise simulation framework based on
[36] is presented.

2.1 Compositional framework

For simplicity, the thermal changes, capillarity, gravity, and
diffusion are neglected in the following description. The
general mass conservation equation for component i in the
two-phase compositional problem is defined as follows:

∂

∂t

⎛
⎝φ

2∑
j=1

xi,j ρjSj

⎞
⎠ + ∇ ·

2∑
j=1

xi,j ρjuj

+
2∑

j=1

xi,j ρj qj = 0, i = 1, ..., Nc (1)

In (1), t is time, φ is the porosity of the reservoir, ρj is
molar phase density, Sj is phase saturation, xi,j is the mole
fraction of component i in phase j , qj is the source or sink
term of phase j , and Nc is number of the components. The
Darcy velocity uj is defined as follows:

uj = −K
krj

μj

· ∇p, j = 1, 2, (2)

where K is absolute permeability, krj is the relative perme-
ability of phase j , μj is viscosity of phase j , and p is pres-
sure. The equilibrium relations between oil and gas phase
are required to close the system as follows:

ˆfi,o (p, T , xo) = ˆfi,g

(
p, T , xg

)
, i = 1, ..., Nc, (3)

where ˆfi,o and ˆfi,g are the fugacities for the component
i in oil phase and gas phase, respectively. Fugacity is
a function of pressure (p), temperature (T ), and phase
compositions (xi,j ), which are determined by EoS-based

820 Comput Geosci (2020) 24:819–835



flash computations. Additional equations are given as
follows to close the system of governing equations:

Nc∑
i=1

(
xi,1 − xi,2

) = 0, i = 1, ..., Nc, (4)

so + sg = 1. (5)

The overall composition of i component can be expressed as
follows:

zi =
2∑

j=1

vjxi,j , i = 1, ..., Nc, (6)

where vj is the molar fraction of the phase j (o, g). Solving
the Eq. (3) is a procedure called multi-phase flash [21],
which will provides phase composition xi,j and phase
fraction vj . Finally, the phase saturation sj can be found
from the following:

sg = vg

ρg

/

(
vg

ρg

+ vo

ρo

)
(7)

Applying two-point finite volume in space and backward
Euler in time discretizations, the general mass conservation
equation is written as follows:

V

⎛
⎜⎝

⎛
⎝φ

2∑
j=1

xi,j ρjSj

⎞
⎠

n+1

−
⎛
⎝φ

2∑
j=1

xi,j ρjSj

⎞
⎠

n
⎞
⎟⎠

−�t
∑
l∈L

⎛
⎝

2∑
j=1

xl
i,j ρ

l
j T

l
j ��l

⎞
⎠ + V �t

2∑
j=1

xi,j ρj qj = 0,

(8)

where V is total control volume and L represents the
interface which connects the control volume with another
grid blocks. In the simplified assumptions mentioned above,
φ is porosity, ��l becomes a pressure difference between
two connected grid blocks. Finally, T l

j is the transmissibility
of phase j .

In our conceptual model, we ignored gravity, capillarity,
and thermal variations focusing mostly on compositional
effects. These assumptions were applied to simplify the
analysis of optimization results which focus mostly on
compositional effects in CO2 injection process for EOR
and sequestration. All these phenomena may increase the
complexity of proxy-model, which will be considered in our
future research. Notice that the OBL approach was already
extended for problems with buoyancy in [12].

2.2 Operator-Based Linearization

The multi-scale technique is implemented on the basis of
an OBL approach proposed by [36]. To apply OBL, the

discretized mass conservation equation (8) is written in the
following residual form:

ri (ξ, ω,u) = a (ξ) (αi (ω) − αi (ωn)) −
∑
ν

βν
i (ω)bν(ξ, ω)

+θi(ξ, ω,u) = 0 (9)

The operators in Eq. (9) are defined as follows:

αi (ω) = (1 + cr (p − pref))

2∑
j=1

xi,j ρjSj , (10)

a (ξ) = V (ξ)φ0(ξ), (11)

βi(ω) =
2∑
j

xi,j

krj

μj

ρj , (12)

b(ξ, ω) = �tTab(ξ)(pb − pa), (13)

θi(ξ, ω,u) = �t

2∑
j=1

xi,j ρj qj (ξ, ω,u). (14)

In Eqs. (10) to (14), cr is rock compressibility and T ab

is the transmissibility between grid blocks. The vector u
contains well-control variables, ω is the set of state variables
and ξ are the set of spatial coordinates. In addition, αi is
the accumulation operator, βi is the flux operator, and θi

is the source/sink operator. The OBL approach is based
on a simplified representation of the nonlinear operators
in the parameter space of the simulation problem. For
an isothermal reservoir simulation, the parameter space is
defined by the range of pressure (p) between injection and
production conditions and overall compositional (zi) range
from 0 to 1. The fully implicit method (FIM) is utilized
for time approximation, and Newton-Raphson method is
applied to solve the governing equation Eq. (9) based on the
set of nonlinear unknowns.

2.3 Multi-scale compositional transport

A solution of a compositional transport problem can be
shown in a phase diagram by the solution path in com-
positional space, which defines the compositional changes
between the initial and injection mixtures. Conservation
principles and fractional flow theory form the foundation for
the general solution method [22]. The compositional path
of the conventional compositional problem for gas injec-
tion process, when the injection mixture is a single-phase
gas and initial fluid is a single-phase liquid, always results
in two shocks (leading and trailing shocks) between single-
and two-phase regions. In a ternary diagram (Fig. 1a), it
is presented as yellow lines connecting the initial oil and
injected gas composition.

The shocks between single- and two-phase regions
are always aligned along two key tie-lines (black-dashed
lines) defined by liquid xi and vapor yi fractions of each
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(a) (b)

Fig. 1 Gas injection solution in ternary system: a ternary diagram with displacement path and two key tie-lines and b fractional flow curves for
component CO2 with solution path

component. For a fixed pressure, xi and yi remain constant,
and it is possible to construct the fractional-flow curve
corresponding with compositional transport (see, Eq. (15)).
Figure 1b shows the projection of the solution to fractional
flow curve for CO2 component with leading and trailing
shocks (yellow) connecting tangent points on initial (red)
and injection (blue) fractional flow curves respectively [22].
Note that these curves corresponds with the injection and
initial tie-lines in Fig. 1a following the relation:

Fi = xi

(
1 − fg

) + yifg, i = 1, ..., Nc − 1. (15)

The proposed multi-scale compositional transport approach
consists of two stages [5]. The first stage utilizes the set
of restriction-prolongation operators for reconstructing two-
phase boundaries (the trailing and leading shocks). The
restriction here reduces the nc − 1 transport equations to
a single equation with a special flux operator based on
the pseudo-fractional flow curve. In the second stage, the
set of restriction-prolongation operators is applied in the
two-phase region to reconstruct the solution structure of
the two-phase displacement. This stage is based on the
invariance of two-phase solutions in tie-line space reported
in [33] and adapted for practice in [35].

The proxy model for compositional simulation, utilized
in this work, uses the first-stage multi-scale reconstruction
from [5]. A restriction operator combines two fractional-
flow curves for injection and production tie-lines (red and
blue curve from Fig. 1b), defined as follows:

F ini
I = xini

I (1−fg)+yini
I fg, F

inj
I = x

inj
I (1−fg)+y

inj
I fg .

(16)

The equivalent fractional flow curve (green in Fig. 2),
serving as the restriction operator, is constructed by taking
a convex hull on the union of both curves.

FR = conv(F inj
I ∪ F ini

I ). (17)

This means that the green line in Fig. 2 repeats the fractional
flow curve for the initial tie-line starting from the left and
switches to the injection tie-line in the intersection point.
Next, the equivalent values of Fi and zi from the green
curve are tabulated into the restriction operator and the
reduced system is solved. The reduced system of equations
contains the restricted transport equation based on the
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Fig. 2 Analytical fractional flow for CO2
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constructed pseudo-fractional flow curve. Notice that by
structure, this system is very close to the conventional
binary compositional problem.

Once the solution of the restricted system is found, the
full system is reconstructed based on the prolongation oper-
ator. This operator applies interpolation for all components
in the solution between initial and injection compositions
using the solution of the restricted system κ(zR) (cor-
responds to the CO2 component in this example) as an
indicator:

κ(zR)
[
R
1 =⇒ R

nc−1
]

: z = I{zini,zinj}(zR). (18)

Here, κ is the interpolation-prolongation operator, zR is the
restricted solution, and I is the piecewise linear interpolation
function. Referring to this linear interpolation, the transport
solution of other components in the multicomponent system
is reconstructed and used as a proxy model in place
of the full compositional model. Notice that this system
can accurately predict only the boundaries of the two-
phase region and their dynamic propagation in space; for
a really accurate solution, the second-stage multi-scale
reconstruction should be applied [5].

3 Economic model

The techno-economic model is applied to evaluate the
economics of a combined CO2 EOR and sequestration
application. Several economic studies of CO2 injection
processes have been performed in [4, 15, 29, 32]. McCoy
and Rubin [19] proposed several regression equations for

assessment of the capital cost of CO2 injection projects,
which are validated in [37] and [4]. Referring to [32], this
techno-economic model uses simulation input data and oil
production rate, gas injection rate, and bottom hole pressure
(BHP) to define different costs and revenues of the project.

On the basis of reservoir-simulation data, an economic
model is developed to estimate the profitability of CO2

injection for enhanced oil recovery (EOR) and CO2

sequestration, which will reflect on the net present value
(NPV). The general economic parameters of a CO2 injection
process are listed in Fig. 3.

This figure shows that the cost of a CO2 injection
project can be divided into two parts, which are capital
cost and operational cost. Dominant revenues from the
gas injection project mainly originate from oil sales and
carbon sequestration incentives. A previous economic study
of CO2 injection projects [15] indicates that CO2 purchasing
cost is one of the most sensitive parameters when NPV is
evaluated.

In this work, we identify that CO2 processing cost has a
similar impact on NPV as CO2 purchasing cost. The CO2

processing cost model in this work is based on [32], and is
expressed in terms of the pump capital cost as follows:

Cpump =
(
1.35 × 103 × Wp

)
+ 0.085 × 106, (19)

where Wp is pumping power requirement, which is
expressed in kW, which in turn varies with CO2 injection
pressure. Other parameters in the economic model are listed
in Table 1. Some of them are obtained by introducing the
regression equations listed in [19], such as those for well
engineering cost and CO2 processing equipment cost.

Cost

CAPEX

OPEX

Drilling & Completion

Injectors & producers equipment

Processing equipment

Wells work-over

CO2 purchase

CO2 transportation

CO2 processing

Lift Facility maintenance

Revenues

Oil sales

CO2 storage

NPV

Depreciation & Tax

Fig. 3 General economic parameters for CO2 injection project

823Comput Geosci (2020) 24:819–835



Table 1 The values for
economic parameters Parameters Units Remarks

CO2 storage incentives 50 $/t [19]

Well engineering cost 501644 $ [19]

CO2 processing equipment 10637265 $ [19]

Wells work-over 241429 $ [19]

CO2 purchase cost 24 $/t [15]

CO2 transportation 0 $/t CO2 source in situ

CO2 processing cost 10 $/t [29]

Lift facility maintenance 0.6 $/t [29]

Tax rate(royalty, severance tax) 0.4 [-] [19]

Depreciation Linear over 10 years $

Discount rate 12 [–] [37]

4 Numerical results

In this section, we demonstrate the comparison between
solutions of the proxy model and the full compositional
model. Here, we limit our investigation to a conceptual 1D
reservoir model for simplicity of the optimization results
interpretation. In this model, the injection well on the left
operates at a constant gas rate when the production well is
controlled by BHP which serves as a control variable for
optimization.

4.1 Restricted solution

Figure 4 shows the estricted solution zR , which yields
the shock reconstruction curves for simulation results for
the growing BHP at the production well. All simulation
results are shown for the model with parameters specified
in Appendix A. The K-value table in this work is obtained
from the embedded constant composition expansion (CCE)

experiments in [7] based on the PR EoS, which is shown
in Tab 10. It is clear that the K value system does not
develop miscibility even when BHP provides the pressure
at the displacement front close to the first-contact minimal
miscibility pressure (FC MMP) for this system (around
126 bars at T = 373K). This happens due to the inability
of the K-value model to predict miscibility accurately, since
compositional dependency is not captured in this model.

It can be overcome by either extension of the K
value parameterization with additional degrees of freedom,
e.g. [27], or incorporation of EoS-based phase behavior [2].
However, it is clear that the two-phase boundaries can be
accurately represented by the restricted model for K-value-
based physics. In addition, the complexity and structure
of the restricted solution are invariant with respect to the
number of components present and only depends on initial
and injection tie-lines in the multicomponent system (see,
[5] for details).
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Fig. 4 Shock reconstruction of the four-component system for two different BHP controls at production well (K values)
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Fig. 5 Shock reconstruction of the four-component system for two different BHP controls at production well (EoS model)

Next, the results of the restricted solution for the
compositional problem based on the EoS is shown. The
structure of the compositional transport solution depends
on key tie-lines [22]. For the restricted solution, we follow
the same strategy as before and construct the restriction
operator based on combined fractional flow (16) according
to the first stage of MSRP approach [5]. The solution of the
restricted transport equation reconstructs the boundaries of
the two-phase region using one transport equation instead of
nc − 1 equations in the conventional compositional model.

The results of quaternary system reconstruction are
shown in Fig. 5. Here, you can see that for a high BHP

value, the structure of the solution is much closer to
miscibility (leading and trailing shocks stays closer to each
other) than in the K-value approximation. This happens
because the EoS-based phase behavior correctly represents
the compositional dependency of the solution. Similar to the
K-value model, the restriction stage requires the solution of
only one equation instead of nc − 1, where nc is the number
of components.

Next, we present the simulation results for more
realistic multicomponent mixture. Here, we used the
eight-component system from [38] with compositional
parameters shown in Table 9 (see Appendix). In cooperating
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Fig. 6 Shock reconstruction of the eight-component system for two different BHP controls at production well (K values)
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Fig. 7 Proxy model for a four-component system (K-value based)

with the K values generated using [7], and shown in
Table 11, the restricted solution based on the first-stage
reconstruction of MSRP approach, is present in Fig. 6.

4.2 Prolongation of proxymodel

Here, we illustrate the construction of the proxy model using
an interpolation-based prolongation operator Eq. (18) for

both restricted solutions from 4.1. It can be seen in Figs. 7
and 8 that the prolongation operator does not reconstruct
the full structure of the solution but only one indicator
component. However, the prolongation yields a full
compositional solution in every control volume, which then
can be used in a multiphase flash procedure to predict
phase behavior. This procedure provides the boundary of the
two-phase region in space.
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Fig. 8 Proxy model for a four-component system (EoS based)
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Fig. 9 Proxy model for an eight-component system (K-value based); BHP = 80 bars

Next, we construct the proxy model for the eight-
component case. Similarly to a previous case, we apply
an interpolation-based prolongation operator Eq. (18) for K
values system which yields the first-stage MSRP approach
shown in Figs. 9 and 10 for given two BHP values
80 bars and 140 bars respectively. The compositions of these
components and K-value tables are shown in the Appendix
(Tables 9 and 11). This proxy model still cannot recover the
full solution of the eight-component model and the second-
stage MSRP approach should be employed to reconstruct
the solution in two-phase region (see details in [5]).

The prolongation yields a full compositional solution at
every grid block, which then can be used in a multiphase
flash procedure to predict phase behavior. This provides an
accurate reconstruction of the two-phase boundaries. In our

proxy model, we are using this prediction to compute phase
rates at wells. As a result, this proxy model will be applied to
evaluate economic performance of the CO2 injection project
together with full eight-component model in terms of NPV.

5 Conceptual optimization problem

Figure 11 shows the transport solution for both fully
compositional and proxy models for different BHP controls
at the production well and a fixed rate at the gas injection
well. It is clear that with increasing pressure, both models
capture the development of miscibility since the BHP
control at the production rate will apparently control the
pressure at the displacement front. Due to the development
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Fig. 10 Proxy model for an eight-component system (K-value based); BHP = 140 bars

of miscibility, the leading and trailing shocks get closer
to each other and the displacement efficiency grows.
Next, we investigate optimal production strategies for this
model.

In the optimization stage, the full four-component system
together with the proxy two-component system is used to
determine oil production. Net present value (NPV) is used
as an indicator to estimate the economic profitability of the
project. The simulation time is divided into several periods
where changes in BHP at the production well are applied.
Here, we make sure that the time period for simulation
covers the breakthrough of the trailing shock at the lower
limit of pressure. Next, we estimate the optimal production
strategy with a different numbers of control variables.

5.1 NPVwith a limited number of control parameters

The NPV distribution as a function of a single BHP control
is evaluated here. We compare the NPV curve vs. BHP
control for both the proxy and the full compositional model.
The simulation time is defined to be long enough for the
breakthrough of both leading and trailing shocks of the
solution. The NPV plotted as a function of control BHP is
shown in Fig. 12.

Here, the green solid curve is the NPV results from the
full four-component model, and the red-dashed curve is
the NPV results from the proxy model. While there are
some discrepancies in the proxy solution due to the limited
application of the MSRP (only first stage of reconstruction),
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Fig. 11 Transport solution and pressure profile for five different BHP controls at the producer

the model captures the correct boundaries of the two-phase
region and yields the correct maximum of the NPV function.
To reduce the differences in NPV evaluation, the second
stage of the MSRP reconstruction can always be performed.

Notice, that this behavior is expected. In most of current gas
injection projects, the cost of CO2 remains a major factor for
project economy. In ourmodel, the simplified physical assump-
tions and CO2 sequestration credits yield the development

Fig. 12 NPV with one control parameter

of miscibility as an optimal strategy to improve NPV. The
BHP corresponding to the maximum value of NPV in
Fig. 12 is located close to the minimal miscible pressure
of this system which is followed by the NPV reduction
due to the growing cost of pumping. The majority of proxy
models for gas injection problems poorly approximate the
development of miscibility which requires an application
of high-fidelity compositional models. We demonstrate
that our proxy model is able to capture the near-miscible
behavior and correctly identify the maximum of the
NPV.

Next, we introduce two simulation time periods and two
control variables (BHP1 and BHP2) for NPV evaluation. For
this situation, the prediction of optimal controls for both
periods is not as simple as in the previous example. Perform-
ing an exhaustive search in the space of control variables,
we evaluate the NPV function (shown in Fig. 13). While the
NPV function is different for the proxy and the full model,
the maximum NPV is reached at the same control values,
i.e., around BHP1 = 95 bars and BHP2 = 118 bars. These
values are conditioned by the obvious strategy for pro-
duction controls when in the first-time interval, the lower
BHP at the production well provides the near-miscible
pressure at the displacement front. In the second-time inter-
val, the higher pressure at the production well provides near-
miscible pressure until the breakthrough to the production
well. The near-miscible strategy is optimal since it
maximizes the oil recovery and sequestrationof CO2.
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Fig. 13 NPV with two control parameters

In order to illustrate optimization procedure, the opti-
mization trajectory is constructed. Figure 14 gives the result
of the optimization trajectory for the full physics model and
proxy model respectively. For the proxy model, the number
of optimization steps is less than that of the full physics model.
In addition, it is faster for the proxy model to acquire a near
optimal NPV result with the same optimization strategy.
Table 2 presents more details of both optimization runs.

Next, we look into the form of the NPV function for the
more realistic eight-component system with compositions

and corresponds thermodynamic characteristics shown in
the Appendix (Tables 7 and 9). The objective function for
two control variables is shown in Fig. 15.

The pressure interval is corresponding to the lower and
upper limit of the BHP values of the production wells,
which range from 80 to 160 bars. In this eight-component
system, given the similar optimal pressure sets for both
proxy and full physics model, both models capture the
similar highest NPV value. The result is shown in the
Table 3.

Fig. 14 Optimization trajectory for quaternary system
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Table 2 Optimization results for two constant initial BHP

Initial guess Model # of NPV($) Controls for

iter. time periods

1 2

BHP = 70 bars Full model 14 260,927 94.85 118.55

Proxy model 5 260,866 94.83 120.41

5.2 Optimization withmultiple controls

Next, we apply production optimization based on five
control variables (BHPs) corresponding to five time periods
in the simulation. In this study, we use the “fmincon”
function from the Matlab optimization toolbox [18]. In
“fmincon,” the “sqp” algorithm has been chosen. The
optimizer is utilized to provide BHP controls at each
time period and obtain an optimal NPV result during the
CO2 injection process. All BHP controls were bounded by
BHPmin = 60 bars and BHPmax = 140 bars. Note that the
expected optimal strategy should include a gradual increase
of BHP at each consecutive control interval to provide
near-miscible conditions at the displacement front.

We test several initial guesses for the optimization with
five control parameters. For this number of controls, several
local minima can exist and the optimizer struggles with
finding a single global extremum. However, based on the

Table 3 NPV result and optimal pressure sets for an eight-component
system

Model
NPV($)

Controls for time periods

1 2

Full model 279,576 100 bars 138 bars

Proxy model 279,866 100 bars 137 bars

structure of solution in Fig. 11, we can predict a near-
optimal BHP strategy where BHP should monotonically
increase with time to provide the near-miscible pressure
at the displacement front. Using this strategy with BHP
= [63; 77; 83; 102; 121] at five controls intervals as the
initial guess, we perform the optimization. The results of
optimization based on the full and proxy models are present
in Table 4. You can see that the proxy model performed
fewer iterations and obtained a similar NPV.

In addition, we perform two more optimization runs with
different initial guesses when all BHP controls have been
set to 70 bars and 100 bars respectively. The results can also
be seen in Table 4. In these optimization runs, both models
cannot converge to the same optimal strategy but get close
to it. The proxy model performs quite robustly and proves
to be applicable for optimization of gas injection process in
the idealistic reservoir.

Fig. 15 NPV with two controls: eight-component system
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Table 4 Optimization results for constant initial BHP

Initial guess Model # of NPV($) Controls for time periods

iter. 1 2 3 4 5

Near optimal Full model 6 261,100 60.00 76.18 79.21 88.21 117.65

Proxy model 3 261,064 60.00 76.08 80.07 85.00 117.99

BHP = 70 bars Full model 11 261,007 60.00 79.33 90.76 63.02 126.11

Proxy model 12 260,247 60.97 60.05 89.62 117.41 127.74

BHP = 100 bars Full model 9 260,093 60.00 87.86 107.42 82.86 121.16

Proxy model 7 260,817 60.00 95.05 105.73 61.97 118.87

6 Conclusions

In this work, we extend the multi-scale reconstruction in
physics (MSRP) approach for the EoS-based gas injection
problems. In particular, we parametrize the restriction
operator of the first-stage MSRP reconstruction in the
pressure interval and obtain the restricted solution using
the operator-based linearization framework. The restricted
solution was prolongated to the full compositional solution
using interpolation operator. The obtained proxy model
can accurately predict the boundaries of the two-phase
region and has been utilized in this work for production
optimization in a simplified physical assumptions of the
forward problem.

Referring to previous economic assessments of CO2

injection projects, a techno-economic model has been
developed to analyze the revenues of CO2 injection for the
combined objective of EOR and sequestration. A general
application of the proposed proxy model for optimization
of gas injection process is demonstrated in this study.
Starting with a limited number of controls, we show that the
objective function of the full physics compositional model
and the proposed proxy model share similar extrema for a
limited number of control parameters. To test the robustness
of the proposed proxy model in relatively complicated
cases, the general form of the objective function was
evaluated for a limited number of control parameters. Based
on these evaluations, we demonstrate that both full physics
and proxy models share similar extrema.

In addition, a constrained nonlinear optimization is
applied to determine an optimal production strategy for the
gas injection operation in the simplified physical setting. For
an optimization model with more control parameters, when
the initial guess of controls is near the optimal solution,
we show that both full physics model and proxy model
converge to similar optimal solution. For arbitrary initial
guesses, the converged optimal strategy may differ between
the proxy and the full compositional models due to a local
extrema of both objective functions.

Through the optimization process in four-component
system, we have shown that by providing the optimizer
with the same input parameters in both the full physics
model and the proxy model, the optimal solution with
the proposed proxy model is usually more feasible (takes
less iterations) than the full physics model. In addition,
the forward simulation of the proposed proxy model is
significantly cheaper (proportional to the reduction in the
number of components) than the full-physics model and
becomes comparable with the conventional black oil model.
In our future work, we will extend the proposed model
for a more realistic situation involving more governing
physics.
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Appendix A: Fluid and rock interactions

The simulation model in this study is a 1D homogeneous
model (K = 20 mD), 1000 m long with one injection well
on the left and one production well on the right boundaries.
The finite volume discretization is applied based on the
standard Cartesian grid with the block sizes: �x = 1 m,
�y = 10 m, �z = 1 m. For the well model, the Peaceman
formula [25] is utilized with rw = 0.15 m. The injection
well is controlled by a constant gas rate qg = 2m3/day. The
rest of parameters are specified in tables below. For the K
value model, we perform the CCE using PVTi module [7]
where we generate K-value table corresponding to given
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Table 5 Hydrodynamic
parameters Phase Oil Gas

Rock compressibility, 1/bar 10−5

Porosity 0.3

Residual saturation (Sjr) 0.0 0.0

End point relative permeability (Krje) 1.0 1.0

Saturation exponent (nj ) 2.0 2.0

Viscosity, cP (μj ) 0.5 0.1

Table 6 Thermodynamic
properties quaternary system Components CO2 C1 NC4 C10

Critical pressure, bars 73.87 43.04 37.47 24.20

Critical temperature, K 304.7 190.60 419.5 626.0

Critical volume, m3/kg-mole 0.094 0.098 0.258 0.534

Acentric factor 0.225 0.013 0.1956 0.385

Molar weight, g/mol 44.01 16.04 58.12 134.0

Binary interaction, CO2 – 0.1 0.1 0.1

Binary interaction, C1 0.1 – – 0.041

Table 7 Thermodynamic
properties for eight-component
system

Components CO2 C1 C2 C3 NC4 C6 C8 C15

Critical pressure, bars 73.87 43.04 48.84 42.45 37.47 30.10 28.79 17.60

Critical temperature, K 304.7 190.60 305.43 369.80 419.5 507.5 575.00 724.00

Critical volume, m3/kg-mole 0.094 0.098 0.148 0.200 0.258 0.351 0.433 0.779

Acentric factor 0.225 0.013 0.0986 0.1524 0.1956 0.299 0.312 0.55

Molar weight, g/mol 44.01 16.04 30.07 44.097 58.12 84.00 107.00 206.00

Table 8 Quaternary system
Quaternary system

Compositions CO2 C1 NC4 C10

Initial oil compositions 0.33 0.03 0.24 0.40

Injection gas compositions 1.00 0.00 0.00 0.00

Table 9 Eight-component
system Eight-component system

CO2 C1 C2 C3 NC4 C6 C8 C15

Initial Oil Compositions 0.20 0.01 0.01 0.01 0.01 0.10 0.19 0.47

Injection gas Compositions 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10 K-value table for
quaternary system Pressure Compositions

CO2 C1 NC4 C10

40 bars 6.70 8.60 1.20 0.00085

80 bars 2.05 4.70 0.54 0.005

120 bars 1.33 2.51 0.31 0.09
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Table 11 K-value table for
eight-component system Pressure Compositions

CO2 C1 C2 C3 NC4 C6 C8 C15

65 bars 4.31 6.73 4.33 3.05 1.22 0.50 0.23 0.0016

100 bars 1.88 3.25 2.12 1.56 0.95 0.48 0.27 0.08

140 bars 1.21 1.38 0.99 0.81 0.65 0.45 0.33 0.12

initial compositions in Table 10. The K-value table is
present as a function of pressure with three pressure values
employed (see Tables 10 and 11 for details).

For the K-value model, we perform the CCE using PVTi
module [7], where we generate a K-value table correspond-
ing to given initial compositions in Tables 8 and 9. The
K-value table is present as a function of pressure with three
pressure values employed (see Table 10 and 11 for details).
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