Wavelet de-noising of terrestrial laser scanner data for the characterization of rock surface roughness

Kourosh Khoshelham, Dogan Altundag
Optical and Laser Remote Sensing, Delft University of Technology.
June 8, 2010
Measurement of rock surface roughness

- Roughness: short-wavelength irregularities of the rock surface;

- Roughness is an important property in the study of slope stability, strength, deformability and permeability of the rock;

- Often measured by using manual tools;

- **Can roughness be measured in laser range data?**
Manual measurement vs. laser scanning

_manual method:
- Labour-intensive;
- Time-consuming;
- Limited to accessible areas.

_laser scanner:
- Fast;
- Accurate;
- Large coverage;
- High spatial resolution;
- Can reach non-accessible areas;
- Data contain Noise!
Manual measurement vs. laser scanning
Wavelet de-noising of laser range data

Noisy profile

Wavelet decomposition

Estimation of noise level

Threshold selection

Application of threshold

Wavelet reconstruction

De-noised profile

Penalized

Soft thresholding

Median Absolute Deviation

Fixed-form

Hard thresholding

DWT

WP

June 8, 2010
Calculating the threshold

Standard deviation of the noise:
\[\sigma_n = \frac{\text{Median}(|w_{l,k}|)}{0.6745} \]

Fixed-form threshold for DWT:
\[t^f = \sigma_n \sqrt{2 \log(d)} \]

Fixed-form threshold for WP:
\[t^f = \sigma_n \sqrt{2 \log \left(d \log(d) / \log(2) \right)} \]

Penalty function:
\[t^* = \arg \min_{t=1,\ldots,n} \left[-\sum_{k=1, k < t} w_k^2 + 2t\sigma_n^2(\alpha + \log(\frac{n}{t})) \right] \]

Penalized threshold:
\[t^p = |w_{t^*}| \]

Penalized low: \(\alpha = 1.5 \), medium \(\alpha = 2.0 \), high: \(\alpha = 5.0 \)
Thresholding modes

Hard thresholding

Soft thresholding
Quantification of roughness

Roughness length method

\[\log_e (s(w)) = \log_e A + H \log_e w \]

\[D = 2 - H \]
Experiments

Study area
Tailfer, Belgium

Laser reflectance image
Extracting roughness profiles from laser data

Profiles are marked by white chalk. Chalk traces are visible in laser range data.
Surface fitting

<table>
<thead>
<tr>
<th></th>
<th>Plane fitting using PCA</th>
<th>Bilinear surface fitting</th>
<th>2nd order polynomial (curved surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Residuals (mm)</td>
<td>15.1</td>
<td>15.1</td>
<td>14.1</td>
</tr>
</tbody>
</table>

June 8, 2010
Results: raw laser data

Manually measured profile:
\[D = 1.17 \]
\[A = 0.02 \]

Laser profile:
\[D = 1.96 \]
\[A = 0.21 \]

Expected range of \(D \): \(1.1 < D < 1.8 \)
De-noising results: effect of decomposition method

The two decomposition methods lead to similar fractal dimension values.
De-noising results: effect of decomposition method

Amplitude values are also similar for both decomposition methods.
De-noising results: effect of thresholding mode

- Fractal dimension values resulting from soft thresholding are below the expected range;
- Hard thresholding results in fractal dimension values within the expected range (with one exception).
De-noising results: effect of thresholding mode

- Amplitude values resulting from soft thresholding are closer to reference values;
- Amplitude values resulting from hard thresholding are about 4 times smaller than that of the raw laser data;
De-noised roughness profiles

Discrete Wavelet Transform, Penalized Low, Soft Thresholding:

Wavelet Packet, Fixed Form, Hard Thresholding:
Summary and concluding remarks

• Roughness (millimeter-scale) can be measured in laser range data provided that data are de-noised;

• Wavelet de-noising leads to significant improvement of roughness parameters derived from laser profiles;

• DWT vs. WP decomposition → no significant impact;

• Hard vs. soft thresholding → hard thresholding yields more reliable estimates of roughness parameters;

• Future research: extension from 1-D profiles to 2-D patches.
Thanks to Dr. Dominique Ngan-Tillard, Prof. Massimo Menenti and colleagues from Engineering Geology Dept. of TU Delft for their help, guidance and useful comments.

Thank-you for your attention!