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SUMMARY

Time-varying linear systems are an important generalization of the more familiar time-
invariant concept. We study time-varying systems in discrete time as bounded input-
output operators acting on the Hilbert space of £,-sequences. Such operators have matrix
representations, and in our notation, causal systems correspond to operators whose matrix
representations are upper triangular. We allow the number of inputs and outputs of systems
to be time-varying, which yields matrix representations in which the entries are block
matrices themselves. The block entries need not have equal dimensions, and we allow
that some (or most) of the dimensions are zero. If all but a finite number of dimensions are
zero, then the input-output operator reduces to a finite (block) matrix, and the application
of the system to an input sequence reduces to a finite matrix-vector multiplication. This
gives a connection between the fields of linear algebra and linear system theory which
proves to be quite fruitful.

For general linear time-varying systems, we are in particular interested in state realiza-
tions. Such a realization can be viewed as the computational model by which the system
computes the output sequence from its input sequence; the states are the intermediate
quantities in the computation. The following aspects are treated.

— Realization theory: given the input-output operator of a bounded causal system, de-
termine a minimal state realization. An important role is played by a generalization
of the Hankel operator, familiar in time-invariant system theory.

— Optimal model reduction: given a state realization of a system, determine an ‘optimal’
approximant of it that has lower state dimensions. The approximation norm that is used
is a generalization of the time-invariant Hankel norm as introduced in the theory of
Adamjan, Arov, and Krein. The construction of a state realization of the approximant
and the derivation of its complexity are among the main results of the thesis.

— Inner-outer factorization, spectral factorization, and lossless embedding (‘unitary ex-
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tension’) play an important role in time-invariant system theory. State-space algorithms
are derived to compute such factorizations for time-varying systems, which gives Ric-
cati equations with time-varying coefticients. These results are instrumental in, for
example, the solution of robust control problems for time-varying systems.

— Cascade factorization of inner systems, which leads to numerically stable implemen-
tations of contractive systems, using a minimal number of parameters.

Finite (block) matrices can be viewed as special cases of time-varying systems, and with
this interpretation, the above issues translate to new insights in the field of computational
linear algebra. In particular, a state realization of a large matrix which has low state
dimensions represents a computational model of low complexity by which a matrix-
vector multiplication can be done. When a state realization is known, the connection with
system theory provides efficient ways to do matrix inversion, Cholesky factorization and
OR factorization. In addition, the Hankel-norm model reduction theory can be used to
derive, for the given matrix, an approximating computational model of lower complexity.



PREFACE

According to Israel Gohberg, in an after-dinner speech delivered at the end of a meeting
in Amsterdam (1992), “Considering extensions to time-varying systems gives ‘cheap gen-
eralizations’.” And indeed, a reader versed in time-invariant system theory will find that
many of the results in this thesis look at least familiar. Despite these ‘trivialities’, this
book has grown to be rather heavy. The catch lies, of course, in proving the details, and
in discovering which facts from time-invariant system theory do generalize, and which
facts don’t. The facts which don’t readily generalize typically make use of frequency-
domain techniques: Fourier transforms, poles, winding numbers, and although each of
these notions can be extended in some sense, the extensions turned out to be not really
applicable. Some other results which require ‘non-trivial’ new proofs are those which, in
the time-invariant context, make explicit use of the eigenvalues or invertibility of certain
matrices, whereas, in the generalization, these matrices need not even be square.

A second reason for the bulkiness of this book lies in the fact that it incorporates not
a single point of view, but rather provides cross-links between aspects of problems that
belong to different fields of science.

— The main part of the thesis is at a system theoretic level, and features mathematical
proofs of generalizations to the time-varying context of many important instruments
in system theory and control: state realizations, Hankel-norm approximations, Nehari
extensions, inner-outer factorizations and spectral factorizations.

— The second part is on computational techniques for large structured matrix problems
in linear algebra. The assumed structure is such that state space techniques from the
above-mentioned system theory can be used.

These two parts are tightly connected, and the main difference is in the customary termi-
nology. A causal linear system in time-varying system theory is related to a block-upper
matrix in linear algebra, one speaks of spectral factorization versus Cholesky factorization,
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orthogonal embedding or Nehari problems versus unitary extension problems, inner-outer
factorization versus QR factorization. The system theoretic level is more general in the
sense that it can also take infinite size matrices into account. Such matrices can be spec-
ified by a finite amount of data in a number of special cases, such as extensions of finite
matrices with borders that are constant, or periodically varying, or (under conditions) even
indeterminate. Ordinary linear algebra methods fail to handle such generalizations.

The discussion on these subjects is mixed throughout the thesis. I have tried to keep the
treatment of the computational algebra part in simple terms, in order to make potential
applications visible. Hence, most chapters start with an introduction in terms of finite
matrices, while mathematical details are subsequently treated in a systems theory context.

The scope of this thesis can be viewed as being defined by a disk that touches on the inter-
ests of three professors whose interaction with me most influenced my research during the
past years: Ed Deprettere (who likes lots of illustrations and ‘engineering’ explanations),
Patrick Dewilde (illustrations are allowed, but never explain a theorem by its proof), and
Harry Dym (no illustrations, no physical interpretations of formulas: that way you only
prove what is true instead of what you expect to be true). Not surprisingly, my interests
turn out to lie somewhere in the center of the disk. I have tried to make the compromise
clean. As a result: Ed, don’t read the theorems; Patrick, only read the theorems; Harry, I
hope that my proofs provide sufficient inspiration for a Real Mathematical Proof.
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Chapter 1

INTRODUCTION

In this work, two settings play a major role. The first is the field of linear algebra, and
in this setting, we are concerned with the derivation of efficient algorithms to do certain
matrix calculations. The second setting is concerned with linear time-varying system
theory, which will be treated at a fairly abstract level. The purpose of this section is to
provide some clear links between the two settings, by introducing how linear time-varying
system theory can be used to solve linear algebra problems.

1.1 COMPUTATIONAL ALGEBRA AND TIME-VARYING MODELING

Concepts

In the intersection of linear algebra and system theory is the tield of computational linear
algebra. In this field, the purpose is to find efficient algorithms for linear algebra problems,
such as matrix multiplication, inversion, and approximation. A useful model for matrix
computations is provided by the state equations that are used in dynamical system theory.
Such a state model is often quite natural: in any algorithm for matrix multiplication or
inversion, the global operation is decomposed into a sequence of local operations that
each act on a limited number of matrix entries (ultimately two), assisted by intermediate
quantities that connect the local operations. These quantities can be called the states of
the algorithm, and translate to the state of the dynamical system that is the computational
model of the matrix operation. Although many matrix operations can be represented in
this way by some linear dynamical system, our interest is in matrices that possess some
kind of structure which allows for efficient (“fast”) algorithms: algorithms that exploit this
structure. Structure in a matrix has its origin in the linear algebra problem, and is, to our
purposes, typically caused by the modeling of some (physical) dynamical system. Many
problems in signal processing, inverse scattering and least-squares estimation produce
structured matrices that can indeed be modeled by a low complexity network.



2 Introduction

Besides sparse matrices (matrices with many zero entries), two classical examples of
structured matrices are the Toeplitz and Hankel matrices (matrices that are constant along
diagonals or anti-diagonals), which translate to linear time-invariant (LTI) systems. The
associated computational algorithms are well known. For example, for Toeplitz systems
we have

— Schur recursions for LU and Cholesky factorization [1, 2],
— Levinson recursions for the factorization of the inverse [3],
— Gohberg/Semencul recursions for computing the inverse [4],

— Recursions for QR factorization [5].

The above algorithms have computational complexity of order O(n?) for matrices of size
(nxn), as compared to O(n®) for algorithms that do not take the Toeplitz structure into
account. Generalizations of the Toeplitz structure are obtained by considering matrices
which have a displacement structure [6, 7, 8, 9]: matrices G for which there are (simple)
matrices Fi, F, such that

G- F,GF, (1.1)

is of low rank, « say. This type of matrices occurs, e.g., in such stochastic adaptive
prediction problems as the covariance matrix of the received stochastic signal; the matrix
is called a-stationary. Toeplitz matrices are a special case for which F| = F are shift ma-
trices Z and « = 2. Related examples are block-Toeplitz and Toeplitz-block matrices, and,
e.g., the inverse of a Toeplitz matrix, which is itself not Toeplitz yet has a displacement
rank of & = 2. An overview of inversion and factorization algorithms for such matrices
can be found in [10].

In this thesis, we pursue a complementary notion of structure which we will call a state
structure. The state structure applies to upper triangular matrices and is seemingly un-
related to the Toeplitz or displacement structure mentioned above. A primary purpose
of the computational schemes considered in this thesis is to perform a desired linear
transformation 7 on some vector (‘input sequence’) «,

u=1lup ur wuz - Uyl

which yields an output vector or sequence y = uT. The key idea is that we can associate
with this matrix-vector multiplication a computational network that takes u and computes
y, and that matrices with a sparse state structure have a computational network of low
complexity so that using the network to compute y is more efficient than computing 4T
directly. To introduce this notion, consider an upper triangular matrix T along with its
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Figure 1.1. Computational networks corresponding to 7. (a) Direct (trivial) realization,
(b) minimal realization.

inverse,
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1 13 /12 | 1 -173
T= 1 1/4 r= 1 -1/4

1 1

The inverse of T is sparse, which is an indication of a sparse state structure. A com-
putational network that models multiplication by T is depicted in figure 1.1(a), and it is
readily verified that this network does indeed compute [y; yo y3 val = [ug wy us ua]T
by trying vectors of the form [l 0 O Ol upto [0 O O 1]. The computations in the
network are split into sections, which we will call stages, where the k-th stage consumes
u; and produces y;. At each point k the processor in the stage at that point takes its input
data u, from the input sequence u and computes new output data y; which is part of the
output sequence y generated by the system. The dependence of y; on 4; (i < k) introduces
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intermediate quantities x; called states. To execute the computation, the processor will
use some remainder of its past history, i.e., the state x;, which has been computed by the
previous stages and which was temporarily stored in registers indicated by the symbol z.
The complexity of the computational network is equal to the number of states at each
point. A non-trivial computational network to compute y = 4T which requires less states
is shown in figure 1.1(b). The total number of multiplications required in this network
that are different from 1 is 5, as compared to 6 in a direct computation using 7. Although
we have gained only one multiplication here, for a less moderate example, say an (nXn)
upper triangular matrix with n = 10000 and d < n states at each point, the number of
multiplications in the network can be as low as O(8dn), instead of O(1/2n?) for a direct
computation using 7.

The computations in the network can be summarized by the following recursion, for k = 1
to n:

Xeel = XA + By
=uT =4 1.2
y=H Vi = XCe+uwdy (12
or
A C
[xeer W) =D w] T, Ty = [ B: D: }

in which x; is the state vector at time & (taken to have dj entries), Ay is a di Xdk+1 (possibly
non-square) matrix, By is a | X dy,y vector, Cx is a di X | vector, and Dy is a scalar. More
general computational networks have their number of inputs and outputs at each stage not
necessarily equal to one, and possibly also varying from stage to stage. In the example,
we have a sequence of realization matrices

- 13 1 14 1 -1
Tl:[ml] TZ:[IBI] T3=[1/41] T“=[-1}’
where the ‘-’ indicates entries that actually have dimension 0 because the corresponding
states do not exist. The recursion in equation (1.2) shows that it is a recursion for
increasing values of k: the order of computations in the network is strictly from left
to right, and we cannot compute yx unless we know xi, i.e., unless we have processed
uy, - - -, ug—1. Note that y, does not depend on ug,1, - - -, #,. This is a direct consequence of

the fact that T'has been chosen upper triangular, so that such an ordering of computations
is indeed possible.

Time-varying systems

A link with system theory is obtained when T is regarded as the input-output map, alias
the transfer operator, of a non-stationary causal linear system with input # and output
y = uT. The i-th row of T then corresponds to the impulse response of the system when
excited by an impulse at time instant i, that is, the output y caused by an input 4 with
u = &. The case where T has a Toeplitz structure then corresponds with a time-invariant
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system for which the response to an impulse at time i+ 1 is just the same as the response
to an impulse at time 7, shifted over one position. The computational network is called a
state realization of 7, and the number of states at each point of the computational network
is called the system order of the realization at that point in time. For time-invariant
systems, the state realization can be chosen constant in time. Since for time-varying
systems the number of state variables need not be constant in time, but can increase and
shrink, it is seen that in this respect the time-varying realization theory is much richer, and
it will be seen later that a time-varying number of states will enable the accuracy of some
approximating computational network of T to be varied in time at will. If the network
is regarded as the model of a physical time-varying system rather than a computational
network, then the interpretation of a time-varying number of states is that the network
contains switches that can switch on or off a certain part of the system and thus can make
some states inaccessible for inputs or outputs at certain points in time.

Sparse computational models

If the number of state variables is relatively small, then the computation of the output
sequence is efficient in comparison with a straight computation of y = 7. One example
of an operator with a small number of states is the case where 7 is an upper triangular
band matrix: T = 0 for j—i> p. In this case, the state dimension is equal to or smaller
than p—1, since only p—1 of the previous input values need be remembered at any point in
the multiplication. However, the state model can be much more general, e.g., if a banded
matrix has an inverse, then this inverse is known to have a sparse state realization (of the
same complexity) too, as we had in the example above. Moreover, this inversion can be
easily carried out by local computations on the realization of T:! if 77! = S, then u = yS
can be computed via

{ Xie+1
Y

hence S has a computational model given by

XAk + ugBy o Xt = X(Ac— GDY'B)  + wDi'Bi
X3 Ci + ug Dy, Uy = =X CkDEI + ykD;1

A CszlBk —CkDZI
Sk = [ DB, D! (1.3)
Observe that the model for S = 7! is obtained in a local way from the model of T: Sy
depends only on T,. Sums and products of matrices with sparse state structures have
again sparse state structures with number of states at each point not larger than the sum
of the number of states of its component systems, and computational networks of these
compositions (but not necessarily minimal ones) can be easily derived from those of its

'This applies to finite matrices only, for which the inverse of the matrix is automatically upper triangular
again. For infinite matrices (operators) and block matrices with non-uniform dimensions, the requirement is that
T must be outer. See chapter 4.
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components. Finally, a matrix 77 that is not upper triangular can be split (or factored) into
an upper triangular and a strictly lower triangular part, each of which can be separately
modeled by a computational network. The computational model of the lower triangular
part has a recursion that runs backward:

x,ﬁA,ﬁ + ukB,i
xCl+wuD;.

I3
X1
Yk

The model of the lower triangular part can be used to determine a model of a unitary
upper matrix U which is such that U*T is upper and has a sparse state structure. Thus,
computational methods derived for upper matrices, such as the above inversion formula,
can be generalized to matrices of mixed type.

Besides matrix inversion, other matrix operations that can be computed efficiently using
sparse computational models are for example the QR factorization (chapter 4) and the
Cholesky factorization (chapter 8).

At this point, one might wonder for which class of matrices T there exists a sparse
computational network (or state realization) that realizes the same multiplication operator.
A general criterion will be derived in chapter 3, along with a recursive algorithm to
determine such a network for a given matrix T. The criterion itself is not very complicated,
but in order to specify it, we have to introduce an additional concept. For an upper
triangular (nx n) matrix 7, define matrices H; (1 <i < n), which are mirrored submatrices
of T, as

T T - Tian
Tpi Ty :
Hi = i-2,i i-2,i+1
. T2,n
Ty, o Ty Tim

(see figure 1.2). The H; are called (time-varying) Hankel matrices, as they have a Hankel
structure (constant along anti-diagonals) if T has a Toeplitz structure.? In terms of the
Hankel matrices, the criterion by which matrices with a sparse state structure can be
detected is given by the following theorem, proven in chapter 3.

THEOREM 1.1.  The number of states that are required at stage k in a minimal compu-
tational network of an upper triangular matrix T is equal to the rank of its k-th Hankel
matrix Hy.

2Warning: in the current context (arbitrary upper triangular matrices) the H ; do not have a Hankel structure
and the predicate ‘Hankel matrix’ could lead to misinterpretations. The motivation for the use of this terminology
can be found in system theory, where the H; are related to an abstract operator /{7 which is commonly called
the Hankel operator. For time-invariant systems, H1 reduces to an operator with a matrix representation that
has indeed a Hankel structure.
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Figure 1.2. Hankel matrices are (mirrored) submatrices of T.

Let’s verify this statement for our example. The Hankel matrices are

Hy=[ -], Hy=[172 1/6 124],
1/4

Hy = [ 12 igi } , Hi=| U12
1124

Since rank(H;) = 0, no states x; are necessary. One state is required for x; and one for x4,
because rank(H,) = rank(H4) = 1. Finally, also only one state is required for x3, because
rank(H3) = 1. In fact, this is (for this example) the only non-trivial rank condition: if one
of the entries in H3 would have been different, then two states would have been necessary.
In general, rank(H;) < min(i— I,n—i+ 1), and for a general upper triangular matrix T
without state structure, a computational model indeed requires at most min(i—1,n—i+1)
states for x;. The statement is also readily verified for matrices with a band structure: if
the band width of the matrix is equal to d, then the rank of each Hankel matrix is at most
equal to d. As we have seen previously, the inverse of such a band matrix (if it exists)
has again a low state structure, i.e., the rank of the Hankel matrices of the inverse is again
at most equal to d. For d = 1, such matrices have the form (after scaling of each row so
that the main diagonal entries are equal to 1)

1 —d1 1 dy apdy aiads
T= 1 ) T_l - 1 an asrds
1 —d3 I a3
1 1

and it is seen that H; of 7! is indeed of rank 1.
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Realization Embedding Factorization
Transfer- State space Lossless Lossless
operator realization embedding cascade
AcC realization
T T= [B D] >
Approximation

Figure 1.3. Objectives of computational modeling for matrix multiplication.

1.2 OBJECTIVES OF COMPUTATIONAL LINEAR ALGEBRA

Operations

With the preceding section as background material, we are now in a position to identify
some of the objectives of computational modeling, as covered by the thesis. We assume
most of the time that the given operators or matrices are upper triangular. Applications
which involve other types of matrices are viable if they provide some transformation by
which upper triangular matrices are obtained. For example, if a matrix can be decomposed
into a (block) upper and a (block) lower part, and if each of these parts has a sparse com-
putational network, then these parts can be treated separately (in matrix multiplications),
or the matrix can be factored into a product of a lower and an upper triangular matrix, and
the factors can be treated independently (in inversion problems). In addition, we assume
that the concept of a sparse state structure is meaningful for the problem, in other words
that in the application, a typical matrix has a sequence of Hankel matrices that all have
low rank (relative to the size of the matrix), or that an approximation of that matrix by
one whose Hankel matrices have low rank would indeed yield a useful approximation of
the underlying (physical) problem that is described by the original matrix.

Much of the thesis is characterized by the objective to determine for a given matrix a
computational model {T,}} of minimal complexity, by which multiplications of vectors
by T are effectively carried out, but in a computationally efficient and numerically stable
manner. This objective is divided into four subproblems, connected schematically as in
figure 1.3: (1) realization of a given matrix 7 by a computational model, (2) embedding
of this realization in a larger model that consists entirely of unitary (lossless) stages,
(3) factorization of the stages of the embedding into a cascade of elementary (degree-1)
lossless sections. It could very well be that the matrix that was originally given has a
computational model of a very high order. Then intermediate in the above sequence of
steps is (4) the approximation of a given realization of T by one of lower complexity.
These steps are reasoned below.
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Realization. The first step is, given an upper triangular matrix 7, to determine any
minimal computational network T = {Ay, By, Cy, Dk}’{ that models 7. This problem is
known as the realization problem. If the Hankel matrices of T have low rank, then T is
a computationally efficient realization of the operation ‘multiplication by 7.

Orthogonal embedding. From T, all other minimal realizations of T can be derived.
Not all of these have the same numerical stability. This is because the computational
network has introduced a recursive aspect to the multiplication: states are used to extract
information from the input vector #, and a single state x; gives a contribution both to
the current output y; and to the sequence xis1, Xks2 €tc. In particular, a perturbation in xg
(or ux) also carries over to this sequence. Suppose that 7 is bounded in norm by some
number, say || T[] < 1% so that we can measure perturbation errors relative to 1. Then
a realization of T is said to be error insensitive if | Tkl < 1, too. In this case, an error
in [x¢ w] is not magnified by T, and the resulting error in [xy,, Y] is smaller than
the original perturbation. Hence the question is: is it possible to obtain a realization for
which || T; || < 1 if T'is such that || T|| < 1? The answer is yes, and an algorithm to obtain
such a realization is given by the solution of the orthogonal embedding problem. This
problem is the following: for a given matrix T with || T|| < 1, determine a computational
model {Z;}7 such that (1) each  is a unitary matrix, and (2) T is the transfer operator
of a subsystem of the transfer operator Z that corresponds to { X;}. The latter requirement
means that 7 is the transfer operator from a subset of the inputs of X to a subset of its
outputs: X can be partitioned conformably as

Zi Zp
T = y T=%X .
[521 zn] '

The fact that T corresponds to a subsystem of X implies that a certain submatrix of X is
a realization Ty of 7, and hence from the unitarity of X; we have that ||Ty|| < 1. From the
construction of the solution to the embedding problem, it will follow that we can ensure
that this realization is minimal, too.

Cascade factorization. Assuming that we have obtained such a realization X, the next
question is whether it is possible to break down the operation ‘multiplication by X’ on
vectors [x ug] into a number of elementary operations, each in turn acting on two entries
of this vector. Because Z; is unitary, we can use elementary unitary operations (acting on
scalars) of the form

[ar  bi] [ _i* ;" ] =[ay bsl, cct+s55 =1,

3| T|] is the operator norm (matrix 2-norm) of T: || T|| = sup i, ez
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Figure 1.4. Cascade realization of a contractive 8 X 8 matrix 7, with a maximum of 3
states at each point.

i.e., elementary rotations. The use of such elementary operations will ensure that X is
internally numerically stable, too. In order to make the number of elementary rotations
minimal, the realization X is transformed to an equivalent realization ', which realizes
the same transfer operator Z, is still unitary and which still contains a realization T’ for T.
A factorization of X, into elementary rotations is known as a cascade realization of . A
possible minimal computational model for T that corresponds to such a cascade realization
is drawn in figure 1.4. In this figure, each circle indicates an elementary rotation. The
precise form of the realization depends on whether the state dimension is constant, shrinks
or grows. The realization can be divided into elementary sections, where each section
describes how a single state entry of x; is mapped to an entry of the ‘next state’ vector

Xic+1-

Besides the numerical property mentioned above, the cascade realization in figure 1.4 has
a number of other interesting properties. Firstly, it provides a realization of T with a
minimal number of parameters, and in each stage, the number of operations to compute
the next state and output is linear in the number of states at that point, rather than quadratic
as would be the case for a general (non-factored) realization. Another property is that
the network is pipelinable, which is interesting if the operation ‘multiplication by T” is
to be carried out on a collection of vectors ¥ on a parallel computer or on a hardware
implementation of the computational network. The property is a consequence of the fact
that the signal flow in the network is strictly uni-directional: from top left to bottom right,
so that computations on a new vector 4 (a new u; and a new x) can commence in the
top-left part of the network, while computations on the previous u are still being carried
out in the bottom-right part.
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Approximation. In the previous items, we have assumed that the matrix T has indeed
a computational model of an order that is low enough to favor a computational network
over an ordinary matrix multiplication. However, if the rank of the Hankel matrices of
T (the system order) is not low, then it often makes sense to approximate T by a new
upper triangular matrix T, that has lower complexity. For example, it could happen that
the given matrix 7 is not of low complexity because numerical inaccuracies of the entries
of T have increased the rank of the Hankel matrices of 7, since the rank of a matrix is a
very sensitive (ill-conditioned) parameter. But even if the given matrix T is known to be
exact, an approximation by a reduced-order model could be appropriate, for example for
design purposes in engineering, to capture the essential behavior of the model. With such
a reduced-complexity model, the designer can more easily detect that certain features are
not desired and can possibly predict the effects of certain changes in the design; an overly
detailed model would rather mask these features.

While it is fairly well known in linear algebra how to obtain a (low-rank) approximant to
a matrix in a certain norm (e.g., by use of the singular value decomposition (SVD)), such
approximations are not necessarily appropriate for our purposes, because the approximant
should be upper triangular again, and have a lower system order. Because the minimal
system order at each point is given by the rank of the Hankel matrix at that point, a
possible approximation scheme is to approximate each Hankel operator by one that is of
lower rank (this could be done using the SVD). The approximation error could then very
well be defined in terms of the individual Hankel matrix approximations as the supremum
over these approximations. Because the Hankel matrices have many entries in common, it
is not immediately clear whether such an approximation scheme is feasible: replacing one
Hankel matrix by one of lower rank in a certain norm might make it impossible for the
next Hankel matrix to find an optimal (in that norm) approximant such that the part that it
has in common with the previous Hankel matrix will be approximated by the same matrix.
In other words: each individual local optimization might prevent a global optimum. The
severity of this dilemma is mitigated by a proper choice of the error criterion. In fact, it
is remarkable that this dilemma has a neat solution, and that this solution can be obtained
in a closed form. The error for which a solution is obtained is measured in Hankel norm:
it is the supremum over the spectral norm (the matrix 2-norm) of each individual Hankel
matrix,
I Tl = sup || Hil,

and a generalization of the Hankel norm for time-invariant systems. In terms of the Hankel
norm, the following theorem holds true and generalizes the model reduction techniques
based on the Adamjan-Arov-Krein paper [11] to time-varying systems:

THEOREM 1.2. ([12]) Let T be a strictly upper triangular matrix and letT" = diag(y) be
a diagonal Hermitian matrix which parametrizes the acceptable approximation tolerance
(> 0). Let Hy be the Hankel matrix of ' T at stage k, and suppose that, for each k, none
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of the singular values of Hy are equal to 1. Then there exists a strictly upper triangular
matrix T, whose system order at stage k is equal to the number of singular values of Hy
that are larger than 1, such that

ITNT-Ty)|lu < 1.

In fact, there is an algorithm that determines a state model for 7, directly from a model of
T. T can be used to influence the local approximation error. For a uniform approximation,
T = y1, and hence ||T—T,|| < y: the approximant is jclose to T in Hankel norm, which
implies in particular that the approximation error in each row or column of T is less than
y. If one of the x is made larger than y, then the error at the i-th row of T can become
larger also, which might result in an approximant 7, that has fewer states. Hence I' can
be chosen to yield an approximant that is accurate at certain points but less tight at others,
and whose complexity is minimal.

The realization problem is treated in chapter 3, the embedding problem is the subject of
chapter 7, while the cascade factorization algorithm appears in chapter 9. The Hankel
norm approximation problem is solved in chapter 6. As applications, the QR factorization
is treated in chapter 4, and the Cholesky factorization in chapter 8.

Operands

In the preceding section, the types of operations (realization, embedding, factorization,
approximation) that are considered in this thesis were introduced. I now outline below
the types of operands to which these operations are applied. In principle, we work with
bounded linear operators on Hilbert spaces of (vector) sequences. From an engineering
point of view, such operators can be regarded as infinite-size matrices. The entries in
turn can be block matrices. In general, they could even be operators, but we do not here
consider that case. There is no need for the block entries all to have the same size: the
only requirement is that all entries on a row of the operator have an equal number of
rows, and all entries on a column of the operator have an equal number of columns, to
ensure that all vector-matrix products are well defined. Consequently, the upper triangular
matrices can have an “appearance” that is not upper triangular. For example, consider

r -

| B
BH H s==

s

where in this case each box represents a complex number. The main diagonal is distin-
guished here by filled boxes. We call such a general matrix a tableau.
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We say that such an operator describes the input-output behavior of a linear time-varying
system. The system is time invariant if the matrix representation of the operator is (block)
Toeplitz: constant along diagonals. In general, we allow the upper triangular part to have
an arbitrary structure, or even no structure at all. Special cases are periodically varying
systems, which give block-Toeplitz operators, and systems that are time-invariant outside
a finite interval in time, which give oprators that are constant at the borders. A sequence
on which the operator can be applied (the input of the system) is represented by a row
vector whose entries are again finite-size vectors conforming to the block entries of the
operator. This corresponds to a system with block inputs and block outputs. If the size of
the block entries is not constant, then the system has a time-varying number of inputs and
outputs, which corresponds physically to a system with switches that are used to switch
on or off certain inputs and outputs at certain times. It is possible to model finite matrices
this way, as was shown in the introduction. For finite matrices, there are no inputs and
outputs before and after a certain interval in time.

A causal system corresponds to an operator whose matrix representation is upper triangular.
We are interested in such systems because causality implies a computational direction:
usually we can start calculations at the top-left end of the tableau and work towards the
bottom-right end. Causality also introduces the notion of state. The number of states
is allowed to be time varying: think, for example, of switches that switch on or off a
certain part of the system. The concept of a time-varying number of states allows the
incorporation of a finer level of detail at certain intervals in time.

1.3 ABOUT THIS THESIS

The thesis contains an account of time-varying systems theory for Hilbert space operators.
A special feature is that a new notation is used that allows for expressions which are
mostly index free. The thesis is to a large extent self-contained, in the sense that all the
system theoretic results required are (re-)derived instead of ‘borrowed’ from literature.
Algorithms are usually described up to the state-space level, and only in some places at
the elementary (2 x2) level of local computations. The algorithms are intended to show
how global matrix computations can be reduced to a state-space level, but they are not
really optimized for efficiency, as this would typically require knowledge of a particular
application and would not help to make the overall picture clear.

We usually consider Hilbert space operators (‘infinite matrices’) instead of finite matrices
although, in the end, our main interest is in such matrices. Our original reason for
considering infinite matrices was that, when applying the basic operation of (row or
column) shifts to such objects, the result is (1) again an object in the same space, and
(2) the shift is invertible. At first, the impression was that this would be impossible for
finite matrices (see [13]). However, as was discovered later, with operators whose rows
and columns are permitted to have varying dimensions, it is possible to construct a theory
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on finite matrices in which the shift operator is still invertible. Such a theory is easier to
describe because then, for example, the concern of the boundedness of operators is not
a main issue. At present, the reason to consider operators rather than finite matrices is
that there is some interest in special cases such as systems which do not change outside
a finite time-invariant interval, and systems which periodically change. These cases are
usually highlighted separately at the end of the chapters.

Most of the discussion in the thesis is at a system theoretic level, and not in terms of
computational modeling (as done in this chapter). The results obtained can be listed under
the following categories.

— Realization theory for time-varying systems (chapter 3): a Ho-Kalman-like algorithm
is derived which can be used to obtain a minimal realization of a given transfer oper-
ator. Issues such as stability, controllability, realization equivalence etc. are defined.

— The realization theory can be specialized to apply to inner systems (chapter 4), and
this provides the necessary background to derive coprime factorizations and inner-
outer factorizations in state-space terms. The latter can be used, e.g., to determine the
inverse of a causal system, which is not trivial because the inverse is not necessarily
causal.

— The realization theory can also be specialized to apply to J-unitary systems (chapter
5), providing results that are useful in the solution of certain constrained interpolation
problems.

— One such interpolation problem occurs in the solution of the Hankel-norm approxi-
mation problem (chapter 6). We show what the number of states of an approximant
will be, given a certain error tolerance, how a state model of an approximant can be
computed, and how all other Hankel-norm approximants can be obtained. As a special
case, a state realization for the solution of the Nehari problem is derived.

— The orthogonal embedding problem is solved in chapter 7. This problem is in fact a
spectral factorization problem, and such problems are investigated in their own right
in chapter 8. In both cases, solutions are described by a Riccati recursive equation with
time-varying coefficients, and some properties of this recursion are investigated. In
particular, it is shown that if there is a positive semi-definite solution, then this solution
is unique and yields outer factors. It is also proven that (under certain conditions) the
recursion converges to the exact solution, even if it is started from an approximate
initial value.

— Finally, cascade factorizations for inner operators are derived (chapter 9).

The definitions and results presented in chapters 2 and 3 are used throughout the thesis.
The discussion in chapter 6 is strongly dependent on that of chapter 5, but the other
chapters can be read quite independently from each other.
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Chapter 2

SIGNALS AND SYSTEM DEFINITIONS

In this chapter, we introduce a precise notation by which signals and transfer operators
can be compactly described. In this notation, operators are decomposed into diagonals
and shift operators. The notation was originally introduced by Alpay and Dewilde in [1 ]
(and subsequently in Alpay, Dewilde and Dym [2]), who developed a generalization of
the z-transform for upper non-commutative operators, called the W-transform, and inves-
tigated the interpolating properties of lossless time-varying (or non-stationary) systems
represented by these operators. The notation has been refined a number of times, to allow
for time-varying state spaces [3] and time-varying input and output spaces [4]. The basic
mathematical properties were proven in [2] and additional properties later in Dewilde and
Dym [5].

There are a number of other approaches to describe time-varying systems. Starting in
the 1950s [6] (or even earlier), time-varying network theory and extensions of important
system theoretic notions to the time-varying case have been discussed by many authors.
While most of the early work is on continuous-time linear systems and differential equa-
tions with time-varying coefficients (see, e.g., [7] for a 1960 survey), discrete-time systems
have gradually come into favor. There are some more recent approaches which are im-
portant, running in parallel with the time-varying state-space realization theory discussed
in chapter 3. These are presented in the monograph by Feintuch and Saeks [8], in which a
Hilbert resolution space setting is taken, and in recent work by Kamen, Poolla and Khar-
gonekar [9, 10, 11], where time-varying systems are put into an algebraic framework of
polynomial noncommutative rings. In the latter approach, a different kind of generalized
z-transform is introduced. However, many of these results, in particular on controllability,
detectability, stabilizability etc., have been discussed by many authors without using these
specialized mathematical means, but rather by simply time indexing the state-space ma-
trices {A, B, C, D} and deriving expressions (iterations) in terms of these matrices. There
is usually a one-to-one correspondence between these expressions and their equivalent in
our notation.
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The original formulation in [2] of the notation that we use here favored a representation of
linear maps as vector-matrix multiplications (as in ‘u7") over the more common matrix-
vector multiplications (as in ‘Tu’).! As a consequence of this choice, the order of matrices
in familiar (state-space) expressions would appear to be reversed. Because of the close
relation of matrices with linear operators, we also apply operators on sequences that sit
at the left of the operator instead of at the right. Especially for projection operators, this
could lead to confusion, and therefore we make in this case an exception and write for
example P(uT) instead of «7P. This compromise makes the notation used here compatible
in most respects with the notation in [2, 5], while at the same time it retains the possibility
of physically correct interpretations (in terms of ‘signals’, ‘signal spaces’ and ‘systems’).
In [2, 5], operators T that are applied to physical sequences u as in 4T are analyzed via
Tf, in which f does not have an interpretation as a signal. This duality is avoided here.

2.1 HILBERT SPACE DEFINITIONS AND PROPERTIES

Hilbert space plays an important role throughout, and it thus seems proper to start our
treatise with a brief review of those definitions and results that are relevant to later
chapters. The material in this section is basic and can be found in textbooks such as
Akhiezer-Glazman [12] (which we follow here), Halmos [13}, and Fuhrmann [14, chap.
2]. The main focus is on the properties of subspaces of Hilbert space. Hilbert space
theory in this section is called ‘abstract’: it is axiomatic in character, and indeed a wide
variety of linear systems satisfy the axioms. Starting in section 2.2, the abstract theory is
specialized by considering only Hilbert spaces over sequences, although the objects are
more general than ordinary sequences in the sense that they are taken non-uniform: the
entries of a sequence are (finite) vectors of possibly different dimensions. This imposes
a certain structure on the Hilbert space that is not found in standard textbooks.

Linear manifold

In this section, we consider complex vector spaces whose elements (‘vectors’) are not
further specified (they could, for example, indeed be vectors in the usual n-dimensional
Euclidean space C”, or more in general, be infinite-dimensional vectors). Besides a set of
elements, for a complex vector space H two operations are defined: the addition of two
elements of A and the multiplication of an element of H by a complex number, and H
should contain a unique null element for addition. Elements f1, f, - - -, f» in ‘H are called
linearly independent if (for complex numbers ;)

a1f1+a2f2+---a,,f,,=0 (=1 al;"':aﬂ=0'

'The original motivation was that, by doing so, the formula for the reproducing kernel of a Hilbert space
subspace becomes a format that is familiar from functional analysis.
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‘H is finite dimensional (say n-dimensional) if at most a finite number of n elements are
linearly independent. Such spaces are studied in linear algebra and yield a specialization
of the Hilbert space theory to follow below. A set M of elements of a complex vector
space H is called a linear manifold if

feM, geM = af+Bge M

for all scalars @, B. A set M is called the direct sum of a finite number of linear manifolds
MicH,
M=M+ - +M,, (2.1)

if for every g € M there is one and only one expression in the form of a sum
g=1tg+ - +&n

where g, € My, and if any sum of this form is in M. M is aiinear manifold itself. A
set of n linear manifolds { M} is called linearly independent if

fitfot- - +fi=0 (fieM) = f, -, f==0.
Linear independence is both a necessary and a sufficient condition to be able to construct

the direct sum in (2.1).

Inner product

A complex vector space H is an inner product space if a functional (-, -) : HXH —» C
is defined such that, for every f, g € ‘H and a1, & € C,

(i) @hH = (8
(it) (afi + @f2, 8) a(fi, &) + a2 8)
(iii) H=0; tH=0 e [f=0.

The overbar denotes complex conjugation. The norm of f € H, induced by the inner
product, is defined by

Ifll2 = ENV.
Some properties that follow from the definitions (i)—(iii) are
lefllz = lal-lfll (ae C)
(7. &)1 < Ifllz- Nl gl (Schwarz’s inequality)
If+glle < |Ifll+llgll  (triangle inequality).

Orthogonality

Two vectors f, g are said to be orthogonal, f L g, if (f, g) = 0. Given a set M, we write
fLMiffLm(alme M). Asetof vectors {f;} is an orthogonal set it (f;, f;) = 0 (i#)). A
vector f is normalized if || f||2 = 1. An orthonormal set is an orthogonal set of normalized
vectors.

1

P

i
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Meftric space

A metric space is a set H for which a distance d(f, g) is defined, which satisties

@) ai, g) d(g,f) > 0 when f#g
(i) arn =0
Gii) d(fg) < d{fh)+d(gh) (riangle ineq.)

Hence, an inner product space is a metric space where d(f, 8) = ||/ g|l2.

A sequence of elements f, in H has a point f€ ¥ as its limit: f, — f, if

lim d{fn./) = 0. 2.2)

We say that {f,} converges to fin norm, and call this strong or norm convergence. From
(iii) it follows that (2.2) implies

Hm d(fnfm) = 0. (2.3)

A sequence {f,} that satisfies (2.3) is called a Cauchy sequence. It is not true for every
metric space M that a Cauchy sequence {f,} converges to an element of the set: (2.3)
does not imply (2.2). If it does, then H is called complete.

A limit point of a set M < M is any point f € H such that any g-neighborhood {g :
d(f, g) < €} (¢> 0) of f contains infinitely many points of M. A set that contains all its
limit points is said to be closed. The process of adding to M all its limit points is called
closure, the set yielded is denoted by M: the closure of M. A set is dense in another
set if the closure of the first set yields the second set. As an example, the set of rational
numbers is dense in R .

If in a metric space there is a countable set whose closure coincides with the whole space,
then the space is said to be separable. In this case, the countable set is everywhere dense.

Hilbert space

A Hilbert space is an inner product space that is complete, relative to the metric induced
by the inner product. The prime example of a Hilbert space is the space ¢, of sequences
f=0--- fo i o ---1=1[fi]% of complex numbers f; such that ||f||> < c. The inner
product in this space is defined by?

fe) =) fiE.

2The meaning of the infinite sum is defined via a limit process of sums over finite sets, in case these sums
converge. See Halmos [13, §7].
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This space is separable: a countable set is for example the set of all vectors with a finite
number of non-zero rational components f;. The space ¢, is complete, and it is infinite
dimensional since the unit vectors

e = [--0 1 00 -..]
ee. = [0 0 1 0 -] (2.4)
e = [0 00 1 -.-]

are linearly independent.

A closed linear manifold in a Hilbert space M is called a subspace. A subspace is
itself a Hilbert space. An example of a subspace is, given some vector y € H, the set
{x e H: (x,y) = 0}. (The main issue in proving that this set is a subspace is the proof
that it is closed; this goes via the fact that x, = x = (x,, ¥) = (x,y). See [12].) More in
general, given a set M < M, define

Mt =dxeH : (xy)=0,Vye M}.

Again, Mt is a subspace. If M is a subspace, then M is called the orthogonal com-
plement of M. For a subspace M and vector f € H, there exists a unique vector f; € M
such that || f=fi ||z < || f—g|]2 for all g € M (g#f1). This vector f; is called the component
of fin M, or the orthogonal projection of f onto the subspace M. The vector {2 =f—fi
is readily shown to be orthogonal to M, i.e., f € ML, With respect to H, we have
obtained the decomposition

H = M&M, (2.5)

where ‘@’ denotes the direct sum (4) of orthogonal spaces. The orthogonal complement
ML is likewise written as
Mt = HeM.

Projection onto a finite-dimensional subspace

Let {e;}7 be a set of n orthonormal vectors in a Hilbert space H, and let M be the
tinite-dimensional subspace spanned by linear combinations of the {e;}:

M={m:m=aie; +mey +- -+ e, all ;e C}.

Because the {¢;} are linearly independent, any m € M can be written as a unique linear
combination of the {¢;}. It immediately follows that (m, ¢;) = &, so that

n
m=Y_ (m e)e
1
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(where (m, e;)e; can be regarded as the projection of m onto e;), and because the {e;} are
orthonormal,

n
Iml} = > lm e
1

Let f € 'H, then we have seen that there is a unique decomposition f = fi +;, with fy € M,
f» € M. Since (fy, &) = 0, we have (f, &) = (f1, &;) and hence

f=Y (ede+fr (e MY,
1

Hence the projection of f onto M is obtained explicitly as 3 7(f, e:)e;. The projection for-
mula can be extended to infinite dimensional subspaces which are spanned by a countable
sequence of orthonormal elements {e;}7.

Basis

A sequence {¢}7 of vectors of a Hilbert space  is called a basis of this space if every
vector f€ H can be expanded in a unique way in a series

=Y ag = ,{‘BLZ @
1 1

which converges in the norm of H. A Hilbert space can have a basis if and only if it is
separable. Such a basis satisties the following properties: {12]

1. the sequence of vectors is complete:® a set of vectors is complete if there is no
non-zero vector in A which is orthogonal to every vector in the set;

2. the sequence of vectors is closed: its linear envelope 3 o;¢; is dense in H. A set
of orthonormal vectors {e;} is closed if and only if for an arbitrary vector h € H,

813 =>" Ik el (2.6)
1

(Parseval’s equation). This equation can be generalized to non-orthonormal se-
quences.

An infinite sequence of vectors is complete in a Hilbert space H if and only if it is
closed in H [12]. In a separable Hilbert space, any complete sequence of orthonormal

3In Fuhrmann [14], the definitions of a complete and a closed set of vectors appear the other way round
comparing to the definitions in Akhiezer-Glazman [12]. For Hilbert spaces, they are actually equivalent [12].
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vectors {¢;} forms a basis. In addition, the cardinalities of two orthonormal bases of a
separable Hilbert space are equal: they are at most countably infinite, and if there is a
finite orthonormal basis {e;}{, then any other orthonormal basis has also n elements. The
dimension of H is defined as the number of elements in any complete orthonormal basis.
Any subspace of a separable Hilbert space is again separable; the dimension of a subspace
is defined in the same way. The dimension of a linear manifold £ is defined to be the
dimension of its closure L.

If two Hilbert spaces H and H' have the same dimension, then they are isomorphic in
the sense that a one-to-one correspondence between the elements of H and M’ can be set
up, such that, if £, g € H and f*, g’ € H' correspond to f, g, then

1. af + Bg’ corresponds to af+ Bg;
2. (8" = (fom.

In fact, the isometry is defined by the transformation of a complete orthonormal basis in
‘H into such a basis in H'.

Non-orthogonal basis; Gram matrix

At this point, we include a somewhat less succinct account of the subject of non-orthogonal
bases, and in particular on the role of the Gram matrix of such bases.

Let {fi,---,fn} be a set of n vectors in a Hilbert space . Consider the matrix A, =
[(/;,f) )=, of inner products of the f;, i.e.,

vy (af) - (f)
uf2) (faf2) (fw)2)

n =

Uif) Unf) - U

(For an orthonormal set, A, = 1.) The set of vectors is linearly independent if and only
if A, is non-singular (i.e., invertible). This can readily be shown from the definition of
linear independence: let f = fio + fran + - - - + fn0, be a vector in the linear manifold
generated by the f;, and suppose that not all ¢; are equal to zero. By definition, the
set of vectors is linearly independent if f=0 = a; =0 (G =1,--.,n). Because
f=0=({f)=0(@=1,---,n), we obtain upon substituting the definition of f the set of
linear equations

I
o

e + (i) + - + (fafl)on

|
(=}

(fufida + (ffam + - + (fufadom
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and hence s =0(i=1,---,n) follows if and only if A, is invertible.

A, is called the Gram matrix of the set of vectors. Gram matrices play an important role
in the analysis of non-orthogonal bases, as is illustrated by the following. Let {fx}7 be
a complete system of vectors in a Hilbert space H, and let A, be the sequence of Gram

matrices A, = [(f; f) )] If

limy s |[Ag}] < o
liMyye || AY] < o0

(where || - || denotes the matrix 2-norm), then {f;}7 is a basis in  [12]. Such a basis is
called a Riesz basis. It is said to be equivalent to an orthonormal basis because there is
a boundedly invertible transformation (based on A) of {fi} to an orthonormal basis.

It can be proven [12] that a sequence of linear independent vectors {f} is closed if and
only if, for an arbitrary element f€ H,

lim > (AN = IF15-

ij=1

This is a generalization of Parseval’s equation (2.6). Since an infinite sequence of vectors
is complete in  if and only if it is closed in H, a sequence of linearly independent
vectors is a basis in  if and only if it satisfies the generalized Parseval’s equation.

The precise way in which the Gram matrix enters into the above is perhaps more clearly
seen in the following application. Let {f}7 be a non-orthogonal basis in H, and let {gx}7
be an orthonormal basis. Then the {f;} can be expressed in terms of the {g;} as

fi = quRkj, where Ry =(f; q)). 2.7
P

Define R = (Rl The Gram matrix A = [(f, f:)] can be written in terms of R by the
above expansion of f; as

A= Z (auf)fha) = Z (R iRy,
x %

so that A = R*R. Suppose that both R and R™! are bounded. Then A and A™! are bounded,
so that {f;} is a Riesz basis, and the expression 3, Rx(R™");; = &; shows, with (2.7), that
each g; can be written in terms of the {f;}:

g = Z SRy
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Hence {f;} can be orthonormalized by R, where R is a boundedly invertible factor of
A. Any fe H can be written as

> 4l )

= Y RN g)

= Y iy, ®D(fa)

= Y iy R S SR
= 3 iy By LRI ()
= T AT [SEE ]
= Y fivoe RRY (S f)

= i WDk (f S

(The assumptions on R ensure that the partial sums are bounded, so that the order of
summations can indeed be switched.) Hence any fe M can be written as f = >, fici,
with coefficients ¢; = >, (A™)a(f fx). The generalized Parseval’s equation is directly
recovered from these expressions, since ||f|3 = (£, = Y_(f, fc;. Further, note that the
same derivation holds if the {f;} and {g;} only span a subspace M in H, so that the
projection of f€ H onto M can be written as

f

Puaf = ) 5 NS ) (2.8)

Bounded linear operators

Let H; and H, be Hilbert spaces, and let D denote a set in ;. A function (mapping)
T which associates with each element f € D some element g = Tf in H; is called an
operator. D = D(T) is called the domain of T, while ran(T) = {Tf : f € D} is its range.
T is linear if D is a linear manifold and T(ef+ Bg) = aTf+ BTg for all f, g € D and all
complex numbers @, f. The norm of a linear operator T is

17l = sup |72,
feDfl<t

and T is bounded if || T'|| < . A bounded linear operator is continuous: for every fo € D,
lim 7f = Tfy (fe D).
~f

If S is another bounded linear operator such that the product ST is defined, then || ST|| <
ISl
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A linear operator T is finite dimensional if it is bounded and if ran(7) is a finite-dimensional
subspace of H. Let {h} be a basis in ran(7), then the operator can be expressed as

If = Z(ﬁgk)hk
N

where {gx} is a finite system of vectors, not depending on f.

Let T:H; — M2 be a bounded linear operator defined on the whole of . The adjoint
of T is the operator T* : H — Hj, such that

(T, 8)=(fTg

for all f, g € Hy. T exists and is unique, (T*)* = T, (ST)" = T"S*, and if T"! exists then
(TN = (T*)\. Tis called self-adjoint if T = T*; a self-adjoint operator is called positive
if (Tf,/)=20 forall fe H;.

Let { ex}7 be an orthonormal basis in . The trace of an operator T is defined as
trace(T) = ) _ (Tey, &),
1

whenever this series converges absolutely. In this case, the sum does not depend on the
basis chosen. Operators with a finite trace are the so-called nuclear operators [12].

The null-space or kernel of a bounded linear operator T: H — H; is the linear manifold
ker(T)={fe H, : Tf=0}.

This linear manifold is actually closed, hence ker(T) is a subspace. On the other hand,
the range of T is a linear manifold which is not necessarily closed; it is closed if and only
if the range of its adjoint is closed. H, and H, satisfy an orthogonal decomposition as

ker(T) & ran(T*)
ker(T") & ran(T).

Hy
H,

2.9

T is said to be injective (one-to-one) if Tf = Tg => f = g, which reduces for linear
operators to the condition If =0 = f=0, i.e, T is injective if and only if ker (T) = 0.
Hence if the range of 7" is dense in H, then T is one-to-one. T is surjective (onto) if its
range is all of H,. T with domain restricted to ker(T)* maps one-to-one to the closure of
its range, but is not necessarily surjective. If T is both injective and surjective, then (by
the closed graph theorem [15]) it is boundedly invertible.

An operator P is a projection if it satisfies P? = P. It is called an orthogonal projection
if, in addition, P* = P. If M is a subspace in H, then H = M & M*; the orthogonal
projector P4 whose range is M is unique.
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The following theorem gives necessary and sufficient conditions for the range of an
operator to be closed (¢f. [13, §21], [16]):

THEOREM 2.1.  Let T be a bounded operator on a Hilbert space.

ran(T") is closed & Fe>0: || Tx|| 2 eljx|| forall xe ran(T*).  (2.10)

We know already that ran(7™) is closed if and only if ran(7) is closed.

A linear manifold (subspace) M is called an invariant manifold (subspace) under an
operator T it MT < M. M is invariant under T if and only if P sy TPy = TPp4.

An operator U is called an isometry if it satisties U*U = I, a co-isometry if UU” = [, and
unitary if it satisfies both. If U is unitary, then it is invertible, and U1 = U*. Two Hilbert
spaces H; and H; are isometrically isomorphic if there exists an invertible transformation
U such that

(UL Ugk=(fg  (forallfge Hi).

In this case, U is unitary.

2.2 NON-UNIFORM SIGNALS AND TRANSFER OPERATORS

In the previous section, we encountered the space £; as an example of a separable Hilbert
space. In this section, we generalize this space to sequences whose entries are not el-
ements of the same space. The ‘non-uniform sequences’ yielded are still vectors in a
separable Hilbert space, and since two separable Hilbert spaces of the same dimension
are isomorphic, they are in fact isomorphic to ordinary £,-sequences. While this is true
(and allows standard results from operator theory to apply in the context of non-uniform
sequences), the additional structure admits an interpretation of these sequences in terms of
signals that play a role in time-varying system theory. The necessary notation is defined
in this section.

Signals and index sequences

A signal is by definition any quantity that varies with time, space and/or possibly other
independent quantities, We consider only one-dimensional signals, which are functions of
one index: ‘time’. Also, we consider only discrete-time signals: our signal is an infinite
sequence (written as a row vector)

u=[--- u w o uy -] (2.11)

of components #;, the value of the signal at time instant i. The square surrounding uo
identifies this entry as the entry on the zeroth position. If the u; are scalar, then u is a
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one-channel signal. A more general situation is obtained by taking the u; to be (row)
vectors themselves, which makes « a multi-channel signal. It is not necessary that all u;
have equal dimensions: we allow for a time-varying number of channels, or equivalently,
for non-uniform sequences. In order to describe such objects properly, we introduce the
notion of index sequences.

Let {N;e N ,ie Z} be an indexed collection of finite natural numbers.*

N=[NIZ = [+ N MM 1e NZ

is called an index sequence. Using N, signals (2.11) live in the space of non-uniform
sequences which is the Cartesian product of the N;:

N=--~xN_1xlexN2x--. e CV,

where A; € CY so that N; is the dimension of A;. A signal in such a space can be
viewed as an infinite sequence that has been partitioned into an infinite number of finite
dimensional components. Some of these components may have zero dlmensmn to reflect
the fact that no input signal is present at that point in time: we define €’ =25 Thus,
finite dimensional vectors are also incorporated in the space of non-uniform sequences,
by putting N; = 0 for i outside a finite interval. We adopt the notation *n’ for an index set
with all its components equal to n, so that G is a (uniform) sequence of n-dimensional
vectors. If A" =C", then to retrieve N from A we write

= #(N).

It is sometimes convenient to have named operators to construct a sequence from its
entries. Following [2], we define for a given space sequence N,

u = 4, (i=k),

0. (k) @12)

1f

m:ae Ny — u=anke/\/where{
i

with adjoint
miueN — wu=ume Ny

The operator 7 constructs a sequence out of an element of A}, by embedding it into a
sequence which is otherwise zero: it corresponds to the operator mx = [--- 0 Ia; 0 -]
Its adjoint #} retrieves the k-th (block) entry of the sequence. We often implicitly use the
fact that m; = 1 and Y, mm = [y (the identity operator on ).

40 is included in N .
SActually, C© contains one element, the ‘zero-vector’ of size 1 x 0. We will not make a distinction between
the two.
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The inner product of two non-uniform sequences f, g in A is defined in terms of the usual
inner product of (row)-vectors in A; as

fe=> (g

where (f;, g:) = fig] is detined to be 0 if N; = 0.° The norm of a non-uniform sequence is
the standard 2-norm (vector norm) defined on this inner product:

w=lwl% o Julf=0w =Y llul}

so that || u||3 represents the energy of the signal. The space of non-uniform sequences in
AN with finite 2-norm is denoted by £%:

& ={ue N:||ulla<}.

This space can be viewed as an ordinary separable Hilbert space of sequences on which
a certain regrouping (of scalars into finite dimensional vectors) has been superimposed.
Consequently, properties of Hilbert spaces carry over to the present context when this
grouping is suppressed.

To illustrate some of the above, let N = [--- 0 3 2 0 ---]. An element
of the non-uniform sequence N = cV is, e.g., the vector u = [[El, 3211, 4 2]]

(suppressing entries with zero dimensions). The norm of u is then given by |||} =
62+ (32 +22+ 12y + (42 + 2%).

Operator spaces

Let M and N be spaces of sequences corresponding to index sequences M, N. When we
consider sequences in these spaces as signals, then a system that maps ingoing signals in
M into outgoing signals in N is described by an operator from M to A:

T-M—-N, y=@l.

From this point of view, we will call such an operator on signals the input-output map or
transfer operator of the system. A transfer operator is linear if for all scalars aj, @y and
U, ur € M,

(g + oua)T = ea(ur T) + e (ua 1)

in which case T'is a linear operator. Linear transfer operators correspond to linear operators
T: M — N if we write the operands at the left of the operator (as we have done here).

6More in general, we define the product of an 7 x 0 matrix with a 0 X m matrix to be the zero matrix of
dimensions n X m.



30 Signals and System Definitions

We denote by X' (M, V) the space of bounded linear operators £44 — ¢}/ an operator T
is in X(M, N) if and only if for each u € ¢4, the result y = uT is in Z:}f, in which case
the induced operator norm of 7,

71l = sup [l T |2,

[l

is bounded. It is well known that a bounded operator defined everywhere on a separable
Hilbert space H; and mapping into a separable Hilbert space H; admits a matrix represen-
tation which uniquely determines the operator [12]. The matrix representation hinges on
the choice of orthonormal bases in H; and H, for which one takes, typically, the standard
basis {e;} of equation (2.4). The same is true in the present context [2): T € XY (M, N)

oo

has a matrix representation (717, such that

y=uT & Vj:y=Y, wly. (2.13)

As is usual, we identify T with its matrix representation and write
T T To

T=[Tjljeew=| - Toa |Too| Tor -~ (2.14)
-1 Tw Tu

(where the square identifies the 00-entry) such that it fits the usual vector-matrix multi-
plication rules. The block entry T;; is an M; X N; matrix and is given by T; = mTx;. This
is seen by substitution into equation (2.13), which yields the following steps to compute
y from u: (i) constructing a sequence from each u;, (ii) applying T to these sequences,
(iii) selecting the j-th entry from each of the resulting sequences, and (iv) summing these
entries over i. With regard to (2.14), the operator T; = ;T can be called the i-th (block)
row of 7, while T7; is the j-th column of T.

T is called a Toeplitz operator if T;; = Ti; for all 4, j, i.e., if T is constant along the diagonals
of its matrix representation. Such operators correspond to time-invariant systems, as will
be discussed in chapter 3.

In Y (M, N), we define the space of bounded upper operators
UM N)Y={Te YMN):T;=0 (i>)},
the space of bounded lower operators

LIM,N)={Te X(M,N):T;=0 (i<)},
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and the space of bounded diagonal operators
D=UNL.

As a matter of notational convenience, we often just write ., 4, £, D when the underlying
spaces are clear from the context or are of no particular importance. For A € D, “A;”
serves as shorthand for the entry A;, and we write

A =diag[- - A, Ay ---]=diag[A;].
U, £ and D satisfy the following elementary properties [2]:

U-u c U L = U
L-L c L u = L (2.15)
DD < D.

The operators in ¢/ form the space of bounded causal operators. They are called causal
because the output to an input that starts at a certain time i, say (for i = 0),

u:[...() U U ]

yields an output that is zero before time &

y=ul=[---0, , w Ty +upTor, wuaToa+uiTiy +uolos, -]

If D € D and invertible, then D! € D, and (D™'); = (D;)"! [2]. However, unlike the
situation for finite-size matrices on uniform sequences, the spaces &/ and £ are not closed
under inversion: if an upper operator T € I is boundedly invertible, then the inverse is
not necessarily upper. A simple example of this is given by the pair of Toeplitz operators

T= 1 =2 , T = -12 0
. -4 -12 0
0 Lo B -4 -12 0

But also for finite-size matrices based on non-uniform space sequences, the same can
occur:

C ¢ ¢ c? c v
(1] o o c 0
e C{ 2l 2 0 m_C| -IA 12 0 2.16)
0 14 1| c| e -8 1 '
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(the underscore identifies the position of the 0O-th diagonal). When viewed as matrices
without considering their structure, T-! is of course just the matrix inverse of T. Mixed
cases (the inverse has a lower and an upper part) can also occur, and these inverses
are not trivially computed, as they require a ‘dichotomy’: a splitting of spaces into a
part that determines the upper part and a part that gives the lower part. The topic will
be investigated in chapter 4. An important special case of upper operators with upper
inverses is the following. An operator of the form (/- X), where X is a bounded operator,
has an inverse that is given by the series expansion (Neumann expansion)

I-X)"=I+X+X+ - (2.17)

only if the series converges in norm. It is known in operator theory that the series
converges strongly if and only if the geometric series 1 + || X || + || X?|| + - - - converges,
which it is known to do if the spectral radius r(X) of X is smaller than 1:7

r(X):= lim || X"||"* < 1.
n—oo

The above is consolidated in the following proposition.

PROPOSITION 2.2. IfX € U and r(X) < 1, then (I-X)™! is given by (2.17) and is also
inld.

We will use two properties related to the spectral radius of an operator in later chapters.
The first is that #(X) < || X||, because || X" ||'# < (|| X||")". The second property makes
this more precise: the sequence || X" || monotonically decreases when n goes to infinity:
R o= || X (2.18)

Xt F = | | < || X

Hilbert-Schmidt operators

Based on the space X'(M, N) of [¢M — £] operators bounded in operator norm, we
define the Hilbert-Schmidt space X2(M, N), consisting of elements of X' that are also
bounded in Hilbert-Schmidt norm. The Hilbert-Schmidt norm is defined as

Al =) Il (Ae XM A,
ij

where ||A;||3 is, in turn, equal to the sum of the entries of A;; squared. For finite matrices,
the Hilbert-Schmidt norm is usually called the Frobenius norm. X';(M, A} is thus given
by
HM,N) = {Ae XM N): ||A|4s <}
TFor readers not familiar with the concept of spectral radius, we mention that for a finite matrix X, r(X) is

equal to the largest eigenvalue of X. In the context of operators, however, the spectrum is more complicated.
See [12].
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On Y2(M, N), the Hilbert-Schmidt inner product
(A, B)ys = trace(AB")

can be defined, and the Hilbert Schmidt norm satisties || A ||%s = (A, A)us = trace(AA®). X,
is a Hilbert space for the Hilbert-Schmidt inner product (it becomes an ordinary Hilbert
space of sequences if the entries A; are written as one sequence). Related spaces are the
spaces of upper, lower and diagonal Hilbert-Schmidt spaces, given by, respectively,

U = XHnUd

Lo RORQVS (2.19)
Dy, = XHnD.

We define Py as the orthogonal projection operator of X', onto some subspace ‘H of X5.
The following projections are designated by their own symbol:

P : the projection operator of .Y, onto i3, and

Py : the projection operator of .t onto Ds. (2.20)

These projections are bounded operators on Hilbert-Schmidt spaces in the induced Hilbert-
Schmidt operator norm. They are in general not bounded operators on X' (which is one
of the reasons for introducing Hilbert-Schmidt spaces). This situation generalizes what
already happens with Toeplitz operators. An example of this, taken from [8], is the
following. Consider the semi-infinite Toeplitz matrix

0 0 0 0 0
0] -1 -12 -13 -14
I 0 -1 -12 -13
2 10 -1 -2
B3 12 1 0 -l
v 1A 12 10

The only candidate matrix representation for the upper part P(7) of T is

-1 -2 -173

0
o] -1 -12 -1 -4
0
P(D =
(1) 0
0
0
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It is proven in [8] using Fourier theory that T is bounded: ||T|| = =, while P(7) is
unbounded. However, the projection onto the central diagonal, Py, is also bounded on .t':
each diagonal of a bounded operator, taken by itself, is again a bounded operator with its
norm not exceeding the norm of the original operator.

We use the following properties of Py:

DiPyX)D;  (D1p€ D, Xe X)
Po(X*)

Po(D1XD,)
[Po(X)T

Operators in .Y, satisfy the ‘two-sided ideal’ properties: if A € X,, B € X" such that
the product AB is defined, then AB € X»; a similar result holds for BA if this product
is defined. A consequence of this property is that the Hilbert-Schmidt spaces .t'; can be
considered to be input or output spaces for transfer operators in .t', as a generalization of
£, sequences. This will be the topic of section 2.3.

Shift operators

For some index sequence N = [--- N N, ---], the k-th right-shifted sequence
is denoted N® = [... N N_is1 ---]. The corresponding right-shifted space

sequence is denoted N® = C¥ ® . The right (or causal) bilateral shift operator Z = Z on
sequences u € N is defined by (uZ); = ui, Le.,

[ Uy up ]Z = [ Uo U ]_
Zys is an operator KJZV — éﬁv P Itis readily checked from its definition that

1, itj=i+d,
Zy=mim = { 0, otherwise,

so that Z € { and Z has a matrix representation

0 Inowv, 0
INgNy
Z= 0 v,
0 0

Z is unitary on £§: ZZ' =1, Z’Z = 1, so that Z'! = Z*. The operator Z*l denotes the
k-times repeated application of Z:

Z{kl =ZnZyw - Lpren .
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Note that formally Z* is not well defined because the dimensions in the multiplications
do not match. Nonetheless, as a relaxation of notation we will, in future sections, usually
suppress dimension information in formulas and just write Z* instead of Z*I,

Since Z € U, the properties in equation (2.15) specialize to [2]

U c U

Uz c U LNZU=0
'L < £ LZNU=0
LZV' < [

The same type of properties hold for i4, and L.

It is a fundamental fact (and proven in [2]) that iy L £oZ” Vand U, L Z71£,, and that X,
admits an orthogonal decomposition

Xy = LZ27'0U, = L7 9D, ®UZ.

Diagonal shifts

One of the aspects of the operators in X’ is that they do not commute with the shift
operator: let T e X (M, A), then if we define T by

ZmTY = TZy,

that is, T = Z*TZ, then T is the operator T shifted one position in the southeast
direction: (TV);; = T j1. If T does commute with the shift operator, T = T, then
T;j = T1,-1 and T is a Toeplitz operator. More in general, the -th diagonal shift of
T e Y (M, N) in the southeast direction along the diagonals of T is defined by

1 = [ZH]" TZM,

which is in X (M®, A®). This is equivalent to saying that (T®),;; = Tiy j«. The diagonal
shift takes each of the spaces £, i/ and D into themselves (albeit with shifted index
sequences); it is readily verified that if 5, T € X’ such that the product ST is well defined,
then

(ST)(k) - S(k)j(k) , ]<k+rn) - (ﬂk))(M) .
We will in future chapters often run across products (AZ)", where A € XY (N, N D). These
are evaluated as

(AZy' = (AZD)(AZ) ---(AZ)
ZInAMAG-D A0
Zim pin}

where Al7} is defined as

Al0) I
AlnY = AWA{n1} = AlmAG-D A

(2.21)
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“ Tp

T

TioJ

Figure 2.1. Diagonal decomposition of an operator T € .

Diagonal representation
For T € X(M, N), let Ty € P(M®, A) denote the k-th subdiagonal above the central

(0-th) diagonal of T:
Ty =Po(Z*T),  (Typ)i = Tiki

Based on a recursive use of the property i/ = D +ZU, it is proven in [2] that, for T e U,

T- Z ZmT[k] € Z["*”H

k=0

so that T formally has a decomposition into a sum of shifted diagonals (see figure 2.1).
Although the collection {T}5 uniquely specifies 7, the sum need not converge to 7" for
n — oo in a uniform sense [2]. However, for operators in {4, the sum does converge in
the Hilbert-Schmidt norm, which provides another reason for the use of Hilbert-Schmidt
spaces:

Ue X, : U= Z Z{k]U[k], Uy = Po(z{_k]U).

For an operator T € I{, we can give meaning to the formal expression

oo

T=3Y 7M1, (2.22)

k=0

by premultiplying T with an element U of .t';, and analyzing the diagonals of ¥ = UT in
terms of those of U and T. In analogy with the definition of a matrix representation of
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an operator [12, §29], we say that an operator T admits a diagonal representation {7}y
written formally as (2.22), if Y in the multiplication ¥ = UT, with U, Y e &5,

U = Ei Z{l] U[,] where U[l] = PO(Z[—I']U), (2 2’%)
vy o= 3 24y where Yy = Po(Ztly) 23
is given by
Yy = Z Uff_)k]T[k] 2.24)
k=0

where the latter sum is to converge in the Hilbert-Schmidt metric. (Note the diagonal shift
in Uﬁ‘lk].) The formula for ¥};; can be regarded as a convolution product of diagonals.

Every bounded linear operator T € {{ defined throughout X', admits such a diagonal
representation: it is straightforward to show that the summation for Y is convergent.
The definition (2.24) allows the replacement of the summations that follow from the
formal series (2.22),

Y=UT = Y., UMTy
= Yo 2o Uy ZW T
= Yoy Z2HURT
= 21:0 2 1 Uﬁc-)k]TIkl’

by ¥=37 3 e 202, Ty = 3, 701y, where Yy is as given in (2.24).

2.3 THE DIAGONAL ALGEBRA OF X,

In the previous section, we introduced the Hilbert-Schmidt space X', which is a Hilbert
space, and we remarked that operators in this space satisfy the ‘ideal’ property

Ue Xy, Te X = Y=UTe X,.

In addition, if U € &, then the sum of the squared entries of its matrix representation is
finite. In particular, if U e ,1’2(0'1, M), then the i-th row U; = mU is in £, which is the
same space for all i (recall that C'is the space of uniform sequences with scalar entries).
Hence, we can view U as a stack of independent sequences { U;} in €24, or, mathematically,
XM can be viewed as the Hilbert space of Cartesian products * - - X M x ¢ x .. of

1 -sequences. The rows of U € ,YZ(C'I, M) act as independent inputs sequences to 7:
Y=UT & Vi:nY=mUl=xUT <& Vi:Y,=UT, (2.25)

so that applying T to U is equivalent to applying T to all rows U; independently.
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In future chapters, we will often study systems by considering the application of a collec-
tion of signals to a transfer operator T. From the properties mentioned above, it follows
that we can regard an element of A’ (C , M) as a generalized input operator, consisting
of an infinite collection of £24 sequences. Applying T directly to such generalized inputs
will then lead to a signiﬁcant simplification of notation, as less indices are required. For
example, in chapter 3 we will study the effect of applying inputs U, that stop at a certain
point in time, say (Ux =0 (k > i). This set of input signals can be applied all at once by
taking U = [(U;x] € EZ(C , M) as a generalized input operator.

Mathematically, the above concept of a generalized input sequence translates to viewing
an element of X (C , M) as a (row) sequence of diagonals. Based on this idea, a non-
commutative algebra can be set up in which diagonals play the role of scalars and the
Hilbert space of £,-sequences becomes a Hilbert space module of sequences of diagonals
(¢f. [171). In the same way, the scalar Hilbert space inner product translates to a diagonal
inner product in the Hilbert space module. This idea of such a diagonal algebra originates
to Alpay, Dewilde and Dym [2]. We omit the (rather standard) proof that an algebra is
obtained, and confine ourselves to proving the properties that we actually need.

Diagonal inner product

Let M be a space of (non-uniform) sequences. Define
M = e, M).

An operator U € X" consists of rows U; = mU € M such that U = 3, #i Ui M
is the direct orthogonal sum of its subspaces AmAM = .. .0x0x M x0x.- ., which
are isomorphic to #41, and the rows of XM act as independent input sequences to 7.
Counsequently, the norm of an operator on Kz is equal to

HS
17l = sup AUTlls
b 0T

In the space YZM we define the diagonal inner product as [2]8
{A, B} = PyAB") (A Be M) (2.26)

Some properties are that {A, B} € Da(M, M), and that (A, B)us = trace{A, B}. The i-th
entry of {A, B} on the diagonal is equal to the ordinary inner product of £ ,-sequences
(Ai, By):

{A, B} = diagl (A;, B)1Z.,

8The diagonal inner product does not evaluate to a scalar and hence it is not an inner product in the usual
Hilbert space theory, but rather in a Hilbert space module sense.
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where A; = mA and B; = mB are the i-th rows of A and B, respectively. In particular, we
have that

A=0 & (AAws=0 o {AA}=0, (2.27)
(DA, B)ys =0 (all De D) < {A B} =0. (2.28)

The observation that the diagonal inner product does not render a single number but rather
a diagonal of inner products is useful in the determination of projections onto subspaces,
discussed later in this section.

Positive and contractive operators

A Hermitian operator A in X'(M, M) is positive, A = 0, if for all u € £M,
(uA, u) 2 0.

We say that A is strictly positive,® notation A > 0, if there is an £> 0 such that, for all u
in ¢,
(uA, 1) 2 g(u, u).

It is known that a positive operator A € X is strictly positive if and only if A is boundedly
invertible in .X'. The above definitions can be formulated in terms of the diagonal inner
product, as follows.

PROPOSITION 2.3.  Let A € X (M, M) be a bounded Hermitian operator.

A>0 & foral Ue XM . {UA U} 20,
A>0 N Je>0: forall Ue XM : {UA U} = e{U, U}.

PrOOF This is an immediate consequence of the fact that a Hermitian diagonal operator
is positive if and only if all its diagonal entries are positive, and the fact that the diagonal

inner product is a diagonal of ordinary inner products: {UA, U} = diag[(UA, U) 1=,
where U; = ;U is the i-th row of U. Thus

{UA U} 20 & (UAU)=20 (all i)
(=4 (UA, U>H5 = Zi (U,‘A, U;) >0.

The same reasoning applies to the second part of the proposition. o

Let T be an operator in X' (M, N). T is said to be contractive if y = uT = ||y|| < | ull,
that is, if (uT, uT) < (u, u) for all u € £41. T is strictly contractive if there is £> 0 such

9More precisely, uniformly strictly positive.
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that (uT, uT) < (1 — £)(u, u) for all u € 85"‘. Hence T is contractive, respectively strictly
contractive, if
I-TT" >0, resp. I-TT" > 0.

In the latter case, I-TT" is boundedly invertible. Because of the identity I+T*(I-TT)'T=
(I-TT)! itis clear that I— TT" >> 0 implies that / — T"T > O also.

Left D-invariant subspaces

Consider the space Xs*. Since it is a Hilbert space in the Hilbert-Schmidt inner product,
we can talk about subspaces of Xs™: closed linear manifolds of a subset of elements of
XM. Here, we are interested in subspaces that satlsfy the additional property of left D
invariance: a subspace (or linear manifold) H m X is said to be left D invariant if

Fe H = DF e 'H for any diagonal D € D(C’ ety ie,

DPH cH.
A left D-invariant subspace has the property that it naturally falls apart into independent
slices: in the same sense as we wrote XM = ... M x M x. .. earlier, we can write
H=--XHoxH; x--- (2.29)

where each M; = m/H is an ordinary subspace in 2. This is because if F € M, then
DF € 'H. By taking D equal to [D; = 1, Dy = 0 (k#0)], that is, D = n;m; € D, it follows
that #imF = ©'F; € H, so that F € H = F; € H;. Because the H; are uncoupled, it is
seen that the D-invariance property inhibits subspaces H to have a ‘vertical’ structure, in
which one row F; gives conditions on other rows of F. A closely related alternative to
the description (2.29) is provided by the following lemma:

LEMMA 2.4. Let H be a left D-invariant subspace, and let H; = nyH. The spaces m'H,;
are subspaces of H which are pairwise orthogonal and together span H:

H='-~@ﬂ6H0@ﬂTH1®

PROOF Note that an element of #H; has all its rows equal to zero, except possibly
for the i-th row. n;M; is a subspace of H because ZH; = m mH = DH < 'H, where
D=n m e D. 7r7-£ is orthogonal to #;H; if i#j because, for F € Hi, Fj € 'H;, we have
that (7 F, jF)HS = trace @ (F;, F;)m; and trace #{m; = 0 (i#). The collectlon {m'H;}
span H because Youmm=1 o

Let M be a left D invariant subspace in X3, Each of its slices H; is a subspace in the
Hilbert space £44. Let N; be the dimension of the subspace ;. If each of these dimensions
is finite then we say that H is of locally finite dimension. Note that the dimension of H
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is equal to the sum of all N;, and hence M can still be an infinite dimensional subspace in
M. The index sequence N = [N;]=, is called the (left) dimension sequence of the left
D-invariant subspace H, and we write

N = s-dim(H).

The orthogonal complement of a subspace H in XM is
H: = {Fe Xy : (EGus=0, all Ge H}.

Since A’zM is a Hilbert space, H* is a subspace, and H @ H' = 12/"‘

PROPOSITION 2.5.  If'H is a left D invariant subspace in Y™, then H* is left D invariant
too, and
MY = {Fe XM : {EG}=0, al Ge H}.

PROOF A straightforward proof uses (2.28) twice. Let F € HY, G € H, then the
D-invariance property of ‘H implies

(EDG)ps=0 @ DeD) e {FG}=0 o (DEGus=0 (alDe D),
so that DF € HL. o

Consequently, 7+ also falls apart into subspaces (H1);, and it is easy to show that (H1); =
(M1, so that the orthogonal complement of a left D-invariant subspace H consists of the
complement of its slices H;.

We list some more properties of D-invariant subspaces. If A < . is a left D-invariant
subspace, then so is A+, If A and B are left D-invariant subspaces, then so are P4(B)
and P 41 (B), the projections of B onto A and A+, respectively. If A or B is locally finite,
then so is P4(B).

If two linearly independent subspaces A and B of XM are locally finite, then so is their
direct sum A + B. If A is a left D-invariant subspace and B € X is a bounded linear
operator, then AB is also a left D-invariant subspace, with

s-dim(AB) < s-dim(A). (2.30)

Bases of locally finite subspaces

Let M be a left D-invariant subspace of Xs™. Since X3 is separable in the Hilbert-
Schmidt metric, H has an orthonormal basis. We have seen that H falls apart into slices
H; = nH, which are subspaces in %"‘. If each of these subspaces has finite dimension
(N;, say), then we have called H locally finite. We consider basis representations for such
subspaces in this section.
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Figure 2.2. Basis representation Q of some subspace in X3,

Let M; have an orthonormal basis {(g:)1, - - -, (gi)w: }, with each (g;); € #1. Because of
lemma 2.4, an orthonormal basis of H is the set {7(g:);} G=1,---,Ni, i =—o0,---, ).
It is notationally convenient to collect the set of (g;); into one operator Q. This is done
in two steps.

o Stack {(¢;);},=1.n into one operator Q; € [C" — £1]. Note that A; = Q,Q; is the
Gram matrix of the basis of ;. In the current situation, the basis is orthonormal
and A; = 1. ‘H; is generated by Q; in the sense that H; = CYQ;: it consists of all
linear combinations of the (g;);.

¢ Stack the Q; into one operator

Q=Y 7q, .30

with rows 7;Q = Q;. See figure 2.2.

We call Q an (orthonormal) basis representation of the given basis of . A number of
properties of such a basis operator are listed below.

PROPOSITION 2.6.  Let M be alocally finite D-invariant subspace in X5™, with s-dim(H) =
N, and let Q be an orthonormal basis representation for H. Let N = CY ThenanyFe H
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can be uniquely written as

F = DrQ,
for a certain Dp € DY . In particular, Q is bounded on D¥ and generates M via
H = DYQ.
PROOF Let us start from the orthonormal basis {(g)1, - - -, (gi)n, } of each H;. Because

{7 (q)} G=1,---,Nj, i=—oo,..., ) is a basis of , any F € H can be written as the
linear combination of the basis sequences

F=Y (@) %) (2.32)
6

where the coefficients (e); are uniquely determined by F and ) l(e);* = || F || < o=.
Using Q;, equation (2.32) becomes

F=Y & rQ, (2.33)
where @ = [(@)1, - - -, (@)n] € CP satisties 37, 1| &2 < . In terms of Q, equation
(2.33) in turn becomes

F=DrQ,  Dp=diagle]Z, € DY, (2.34)

so that H = DévQ. The expression H = Dé‘fQ shows that Q is bounded as a [D; — 3]
operator. m]

Q can be viewed as an operator mapping 12/" to XM, but then it need not be a hounded op-
erator. A simple example of an unbounded Q is obtained by taking Q; ={--- 0 0]
(all i), and recalling that an ¢,-sequence need not be summable. Although it is usually
enough to consider Q with domain restricted to D,, sometimes we need properties which
seem to involve a more general domain, and we derive these properties below. (A reader
not interested in these details can continue with proposition 2.6.)

To start, note that along with Q, operators DQ and QX (D € D, X € ') are also bounded
[D, — X3] operators since DD, € D,, A,X € X,. The domain of definition of Q can
be extended: for example, the operator ZQ is also a bounded [D,; — X%] operator, and is

consistently defined via
D(zQ) = ZDVQ). (2.35)

Q is also bounded on all finite sums of terms of the type DZ*Q. The result is that Q is
densely defined on Xﬁv .

We have defined, in equation (2.20), the operator Py on X, as the projection onto D,. We
have already extended Py to operators in X': Po(X) = diag(X;] € D, where X;; = mXn}
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is bounded for each i. Py can also be extended to unbounded operators that are bounded
as [Py — X,] operators: because 7 m € D, and hence BimQ € Ay, Q; = mQaf =
m(7 mQ) is bounded for each i. Thus Po(Q) = diag(Q;;) is well defined and bounded:
Po(Q) € D. The extension satisfies the usual ‘homogeneity’ rule for Py: if Dy € D,
then Po(D1QD3) = D1Py(Q)D;.

PROPOSITION 2.7.  Let Q be an operator densely defined on X3V which is bounded as a
[T’é‘f — XM operator. Q has a (not necessarily bounded) adjoint Q" acting from M
to X,

The operator Po( - Q*) is a bounded operator in X5, and it is the adjoint of the operator Q
restricted to Ds.

PROOF Because Q is densely defined on .’t’ZN , it has, according to [12, §44], an adjoint
operator Q" acting from X to X3V,

Let dom(Q) be the domain of Q in .Yz-"f . The domain of Q" consists of all elements
G € XM for which there is a G’ € X3V such that

(FQ, G)ps = {F, G')us, G'=GQ’ (2.36)

for every F € dom(Q). The existence of Q" implies: if F € dom(Q) then for all
G € dom(Q") there exists 2 G' = GQ" € X{V such that (2.36) holds, and G’ is unique.
Restricting F to D, < dom(Q) in which it is a bounded operator, it follows for all F € D ﬁ‘f
that

(F,G"Yus = (F, Po(G Y s

and (FQ, G)us = (F, Po(GQ"))us. Hence Py(-Q’) is the adjoint operator of [Q restricted
to PJ’]. Since the latter operator is bounded, its adjoint is a bounded [¥M — D{]
operator. O

As a corollary, Py(- QQ™) is a bounded [fo - Dﬁ‘f ] operator, hence
Aqg :=Py(QQ") € DN, N)

is well defined by the extension of the domain of P, discussed earlier. The operator Ag
is the Gram operator of the basis {(n;‘q,-)j} of . It is a diagonal operator whose entries
A; = Q;Q; contain the Gram matrices of the bases of the subspaces H; of H. Because
these bases have been chosen orthonormal, Ag = 1.

Finally, using the definition (2.35), the adjoint of - (ZQ ) restricted to D; is formally equal
to Po(Z! - QMYD: let D e Dy, X € Y, then
{pzQ, x} = {ZDVQ X} (2.37)
{D(])Q, Z-IX}(—I)
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{DD, Po(Z1XQ")}
{D,Py(Z'xQ")}.

The computing rules on unbounded basis operators introduced so far are sufficient for
our purposes. The importance of such basis representations is illustrated by the following
proposition.

PROPOSITION 2.8,  Let ‘H be a locally finite D-invariant subspace in XM, and let Q be
a basis representation of H. Let F € H, then

F=Py(FQ")Q.

PROOF Let N = s-dim’H and N = CV. According to (2.34), any element ¥ of H has a
representation F = DgQ in terms of Q, where Dy € Dé" . The diagonal of coefficients
Dr is obtained as

D =Py(FQ").

Since F € VM, we have indeed that Dp € D{. m

Non-orthogonal bases of locally finite subspaces

The preceding discussion can be generalized to non-orthonormal bases. Again, let H be
a locally finite left D-invariant subspace in Y™, falling apart into subspaces H; = mH
with tinite dimensions N;. For each i, let {(fi)i, -, (fi)v,} be a Riesz basis of H;, i.e.,
a complete system of vectors whose Gram matrix A; = [((fi);, (/i) ]2',;:1 is bounded and
houndedly invertible. The total collection { #7(f;); } (=1, - -, Nj, all i) is a Riesz basis of
‘H if the corresponding Gram operator A is bounded and boundedly invertible. The latter
condition is equivalent to demanding that A be strictly positive: A > 0. We call such a
basis a strong basis. For a strong basis, we can in the same way as for an orthonormal
basis construct operators F; and stack these into an operator F. We obtain the same results:
F generates H via
H = D{'F,

it is in general an unbounded operator, densely defined on ,1’2N , but it is bounded as a
[DY — M] operator, and its adjoint F” exists in X, but is also unbounded in general.
The operator Po(-F*): XM — DY is well defined and bounded, and is the adjoint of F
with domain restricted to P4/, Consequently, the operator Ap = Po(FF™) is in D(N, N),
and in fact equal to the Gram operator A of the chosen basis:

Ar = Po(FF*) = diag[A;].

If Q is an orthonormal basis representation of 7, then F can be expressed in terms of Q:

F =RQ, R e DN, N),
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where R is given explicitly as R = Po(FQ").
If F is a given strong basis representation, then it can be orthonormalized by factoring Af
into invertible factors R as

AF = P()(FF‘) = RR".
Since Ag >> 0, this is always possible. The orthonormal basis representation Q is given
by Q = R°'F; indeed

Ag =Py(R'FF'R™*) = R'Py(FF )R ™ = 1.

Orthogonal projection onto subspaces

Having investigated left D-invariant subspaces and their basis representations, we turn our
attention to the projection onto subspaces. The following proposition is used.

PROPOSITION 2.9.  Let M be a locally finite left D-invariant subspace in XM, and let
Q be an orthonormal basis representation of H, then (for X € X5M),

X1H o Py(XQ")=0.

PROOF Any Y in H can be written as ¥ = DQ, forsome D€ D;. Then X L Y& {X, Y} =
Po(XY*) = 0, and Po( XY*) = Po(XQ'D*) = Po( XQ')D*. Letting Y range over H, this
expression is = 0 for all D in D5, and it follows that Po( XQ™) = 0. ]

Let H be a subspace in X3™. Then XM = H@H™, so that every X € X3 can be written
(uniquely) as X = X; + X,, where X; € ‘H and X; € H*L. The operator of (orthogonal)
projection onto H is defined as Px(X) = X,.

THEOREM 2.10.  Let H be a locally finite left D-invariant subspace in XM, and let Q
be an orthonormal basis representation of H. The orthogonal projection of any X € X' M
onto M is given by

P (X) = Po(XQ")Q. (2.38)

PROOF Let X = X; + X», where X; = Py (X) € H and X, € H+. Then

PxQHQ = Py((X; +X)Q")Q
= Po(X1Q)Q + Py(X,Q")Q
= Py(X;Q)Q [prop. 2.9]
= X [prop. 2.8]

Hence Py (X) = P(XQ") Q. a
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COROLLARY 2.11.  Let ‘H be a locally finite left D-invariant subspace in ‘tzM and let
F be a strong basis representation of H. The orthogonal projection of X € XM onto H
is given by

Py (X)=Po(XF')AF F. (2.39)

PrROOF If F is a strong basis representation generating H, then F = RQ, where Q is
an orthonormal basis representation and R € D is any boundedly invertible factor of
Ar = RR*. Inserting Q = R~'F in (2.38), the result is obtained. O

Equation (2.39) generalizes the projection formula (2.8) to the present diagonal algebra
context. As in the classical context, an operator P defined everywhere on A, is an
orthogonal projector if and only if it is idempotent and Hermitian: PP =P, P* = P. These
properties are readily verified for the definition in (2.38):

P is idempotent since

Py (P (X)) = Po (Po(XQ™)-QQ") - Q =
Py(XQ)Py(QQ")-Q = Py(XQ") - Q = Py (X).

Py is Hermitian if {P#(A), B} = {A, Px(B)} for all A, B € X,. Expanding the first term
yields
{P3(A), B} = Py (Po(AQ")-QB") = Py(AQ") Po(QB").

The second term is equal to

{Ar PH (B)}

Po(A [Po(BQ™)- Q] )
Py (AQ" Po(QB"))
Py(AQ") Po(QB*).

Hence Py is Hermitian.

Matrix representations of operators in 15 — .15

In standard Hilbert space theory, it is known that any bounded operator T mapping a sep-
arable Hilbert space H; into a separable Hilbert space H, admits a matrix representation
[T;]. The entries Tj; follow by selecting orthonormal bases in H; and H». For example,
if u and y are (scalar) £>-sequences, and {e} is the standard orthonormal basis in £;, then
T;; is defined by the inner product Ty = (&;7T, ¢;). This definition is such that y = 4T can
be written as the (strongly converging) summation

v =Y uTy
. i
where u; = (4, ¢;) and y; = (¥, ¢;). Indeed,

yi=(e)=le)=y wuleLe)=y uly.
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A similar representation holds for non-uniform sequences. We now consider the case
where T is a bounded operator mapping &’ into . Elements of X have matrix repre-
sentations, rather than vector representations: they have entries which are doubly indexed.
Consequently, a general operator T from ., to .¥, does not have a matrix representation
[7}] but rather a tensor representation [Ty,;] with four indices, corresponding to

Y=UT < Y= Z U Tgij
fg

Because {(f, & i,/)} is a four-dimensional lattice, [Tf;] is a four-dimensional object which
cannot, in general, be represented by a two-dimensional matrix. T has a matrix represen-
tation as an [¢; — £>] operator only in the special case where T is associative in Z, in
the sense that Z(UT) = (Z*U)T. This is equivalent to the existence of an ¢, operator T”
(which we identify with 7), such that

(M U)T = m(UeT") (2.40)

(where Uy = m U is the k-th row of U). This is in fact the rule used in equation (2.25),

and
Y=UT = () ,mUT

S (mUNT

2k (UT") [by (2.40)]

Ek 72’; Yk .

If (2.40) holds, we can use the usual ¢, matrix representation of 7’ to represent 7. How-
ever, a general operator in [Y; — &3] need not satisfy (2.40), and a typical example
is provided by the operator P defined in (2.20): the projection onto the upper Hilbert-
Schmidt space i, which is not associative with Z. Before deriving a tensor representation
for such operators, we remark that, throughout the thesis, all operators are left D invariant,
in the sense that

D(UT) = (DU)T, allDe D.

Consequently, in the expression Y = UT, the entry Y;; is only dependent on the entries of
the i-th row U, rather than all entries { Uy, }, so that it suffices to have a representation of
T in only three indices. To reduce this number to two, we sometimes use a representation
of elements in X, as ¢;-sequences of diagonals. The result is a representation of 7 as a
matrix whose entries are diagonals.

Thus, for U = 32U} € X, define the ‘vector representation’ {J, which we call its
diagonal expansion, as

U

-~~+Z—1U[_1]+U[o]+ZU[1]+Z2U[2]+~--
1 -1 ~2)
R o (]%_)”Z—l'f’U[()]'i'UEl])Z'F Ule ZZ+ (2.41)

ry 1 —1 -2
v [ Uiy Uy’ U
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Figure 2.3. Diagonal expansion of an operator in 2 into a sequence of its diagonals.

See figure 2.3. U is an element of the space £;(D) of square summable sequences whose
entries are in . With the inner product (U, ¥) = trace (E U? Yf;]")*) = trace(U¥"), this
space is isometrically isomorphic to X', and with regard to diagonal inner products, we

have that .
Py(UY") = UY". (2.42)

The correspondernce between U € .t and ¥ can be viewed as a generalization of the scalar
z-transform, which associates to an £;-sequence a polynomial in z. The generalization
is obtained by replacing z by Z and scalars by diagonals. Other generalizations (i.e.,
other isomorphisms) along these lines are possible, but the definition (2.41) is such that
(DU = DU (where D € D): it keeps entries Uj; that are on the same (i-th) row of
U also on the same ‘row’ of U. Here, the i-th row of U is defined to be the sequence
obtained by selecting the i-th element of every diagonal in the sequence of U. We keep
the notation - for the operator on £,(D) that is isomorphic to the same operator in Xz,
so that (U™Y~= (D)™ is the diagonal shift of the entries in the sequence.

Operators T € [.Y; — ;] have corresponding operators T € [€2(D) — £,(D)], where the
correspondence is provided by the chosen isomorphism between A" and £H(D). If T'is a
left D-invariant operator, then this property carries over to 7, because

DY = (DY)~= (DUY"T=(DOT.

This shows that T maps rows of U into rows of Y. Consequently, T can be represented
by a matrix whose entries are diagonals:

1 Topo Ty
To- T (2.43)
T Tio T

~
Il
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where Tj; € DM, N)if Te [¥M — X]. We call T the diagonal expansion of the
operator 7. T has the same operator norm as 7, in the metric induced by the diagonal
expansion,

A third representation of T is obtained by constructing a sequence of £, operators Ty from
T. These operators are such that entry (i, ) of the matrix representation of Ty is equal to
the k-th entry along the diagonal of T,, We call the 7 the snapshots of the operator 7, and
k has the interpretation of ‘point in time’ in this representation. The connection between
T and {Tk} amounts to a simple reordering of a matrix of diagonals into a sequence
(“diagonal’) of matrices. Te maps the k-th row Uk of U to the k-th row ¥ of ¥.

The operators {T;} can be obtained from T directly, without reverting to 7. With Y= UT
and Uy denoting the k-th row of U as before, let the £, operator T} be equal to the mapping
of Ui to Yy, i.e., Yi = UgTy. [Note that, because of the left D invariance of 7, there is no
transfer of Uy to Y; for i#k.] T; satisfies the equation

(”,:Uk)T= ﬂ;(Uka) (244)

which is seen to be a generalization of (2.40): the Ty are not all equal to the same 7”.
The fg-sequences Ue and U, are closely related: U, = U Z, so that Uy is just a shifted
version of 0. It follows that Ty = Z*TiZ* = TS, so that Ty is equal to Ty, modulo a
diagonal upward shift over k positions.

To illustrate the above definitions, consider the operator P, the projection of X, onto I4;.
The diagonal expansion of P is

0 0
P= 0 0
0 I
and it maps sequences U = [ .S Uﬁ, Uglz) to sequences UP =

[- 00 o Uy ] The snapshots P, and Py are
) 0 0 0
P = 0 Py = 0 1 0
0 1 0 1
L | L 1
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where the underlined entry of Py is at the (k, k)-th position.

Bibliography

(1]

(2}

(3]

4

—

(5]

[6]

(7]

(8]

(91

[10]

[11]

D. Alpay and P. Dewilde, “Time-varying signal approximation and estimation,” in
Signal Processing, Scattering and Operator Theory, and Numerical Methods (M.A.
Kaashoek, J.H. van Schuppen, and A.C.M. Ran, eds.), vol. Il of Proc. Int. Symp.
MTNS-89, pp. 1-22, Birkhauser Verlag, 1990.

D. Alpay, P. Dewilde, and H. Dym, “Lossless Inverse Scattering and reproducing
kernels for upper triangular operators,” in Extension and Interpolation of Linear
Operators and Matrix Functions (I. Gohberg, ed.), vol. 47 of Operator Theory,
Advances and Applications, pp. 61-135, Birkhauser Verlag, 1990.

A.J. van der Veen and P.M. Dewilde, “Time-varying system theory for computa-
tional networks,” in Algorithms and Parallel VLSI Architectures, I (P. Quinton and
Y. Robert, eds.), pp. 103-127, Elsevier, 1991.

PM. Dewilde and A.J. van der Veen, “On the Hankel-norm approximation of upper-
triangular operators and matrices,” to appear in Integral Equations and Operator
Theory, 1993.

P. Dewilde and H. Dym, “Interpolation for upper triangular operators,” in Time-
Variant Systems and Interpolation (1. Gohberg, ed.), vol. 56 of Operator Theory:
Advances and Applications, pp. 153-260, Birkhauser Verlag, 1992.

L.A. Zadeh, “Frequency analysis of variable networks,” Proc. IRE, vol. 38, pp. 291-
299, Mar. 1950.

L.A. Zadeh, “Time-varying networks, I,” Proc. IRE, vol. 49, pp. 1488-1503, Oct.
1961.

A. Feintuch and R. Sacks, System Theory: A Hilbert Space Approach. Academic
Press, 1982.

E.W. Kamen, P.P. Khargonekar, and K.R. Poolla, “A transfer-function approach to lin-
ear lime-varying discrete-time systems,” SIAM J. Control and Optimization, vol. 23,
pp. 550-565, July 1985.

P.P. Khargonekar and K. Poolla, “On polynomial matrix fraction representations for
linear time-varying discrete-time systems,” Lin. Alg. Appl., vol. 80, pp. 1-37, 1986.

K. Poolla and P. Khargonekar, “Stabilizability and stable-proper factorizations for
linear time-varying systems,” SIAM J. Control and Optimization, vol. 25, pp. 723~
736, May 1987.



52 Signals and System Definitions

[12] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, vol. 1
and II. Pitman Publishing Ltd, London, 1981.

[13] P.R. Halmos, Introduction to Hilbert Space. Chelsea Publ. Comp., NY, 1951.
[14] P.A. Fuhrmann, Linear Systems and Operators in Hilbert Space. McGraw-Hill, 1981.

[15] N. Dunford and J.T. Schwartz, Linear Operators, vol. 1, 2. New York: Interscience,
1963.

[16] R.G. Douglas, “On majorization, factorization and range inclusion of operators on
Hilbert space,” Proc. Amer. Math. Soc., vol. 17, pp. 413-415, 1966.

[17] R.P. Gilbert and G.N. Hile, “Hilbert function modules with reproducing kernels,”
Non-linear Analysis, Methods and Applications, vol. 1, no. 2, pp. 135-150, 1977.



Chapter 3

REALIZATION THEORY

With the notation and preliminary results given in chapter 2, the ground has been prepared
to solve the realization problem: the problem to determine a (state-space) model that
matches a given transfer operator (input-output mapping). In addition to a treatment of this
problem, a number of important issues in realization theory pass in review: controllability,
Lyapunov equations and state similarity. We consider only systems for which the number
of states is finite at any point in time. The resulting state-space theory has aspects of both
LTI finite- and infinite-dimensional systems theory.

This chapter has two levels. We start with an introduction of time-varying state-space
realizations and some elementary properties, and derive a realization algorithm for finite
matrices without actually using the diagonal notations (section 3.2). With this preparation,
a mathematically more rigorous approach is taken, fully exploiting chapter 2, to derive
reminiscent realization algorithms for more general bounded upper operators (sections 3.3
and 3.4). These are used to prove a Kronecker-type theorem which claims the existence
of minimal realizations for certain upper operators, and relates the minimal number of
states that are needed at each point in time to the rank of a Hankel operator. The chapter
finishes with some examples and computational issues.!

3.1 REALIZATIONS OF A TRANSFER OPERATOR

Transfer operator

In chapter 2 we introduced the spaces of bounded non-uniform sequences as signal spaces.
Let £ and fﬁ‘f be two such spaces. The input-output behavior of a linear time-varying
system is described by its transfer operator: an operator T mapping signals from £7 to
Pﬁ". Here, M is the input space of the system, and A is the output space. In general, the

I'The material in this chapter was reported in part in [1].
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number of inputs and outputs of the system can be time-varying, too: even if we start with
the assumption that a system has a constant number of inputs and outputs, factorizations
of T in future chapters introduce in a natural way new systems that have time-varying
signal spaces. Hence M and A need not be ‘uniform’ space sequences, but can be of
the full generality as introduced in chapter 2.

All transfer operators which we consider are assumed to be bounded operators acting on
Hilbert spaces: systems that map signals of bounded energy to other signals of bounded
energy. Other spaces, such as £., could have been considered as signal spaces [2], but £,
is mathematically more attractive: many facts in operator theory are simplest for Hilbert
spaces, and some facts, such as the existence of an adjoint operator, are only true for such
spaces. One could restrict the attention further and consider only compact sequences:
signals which are non-zero only on a finite number of instances in time. The argument
for doing so is that most of the mathematical complications which are still present in the
Hilbert space context disappear, and since such sequences are dense in ¢, the resulting
system theory (save for the mathematical details) is closely related to the Hilbert space
realization theory. This is the approach taken in the parallel development of a time-varying
system theory by Gohberg, Kaashoek and Lerer in [3].

The Hilbert space setting is generalized by considering the space XYM = X(C', M) as
signal space, where M is some space sequence, and viewing a signal in this space as a
collection of ¢-signals whose total energy is bounded. Considering such a collection
has notational advantages in the analysis of time-varying systems, as exemplified in the
following paragraph. As a relaxation of notation, we will often write just .V, instead
of XM when the precise form of M is of no particular interest. We will also often
use the subspaces 4, and £, of X, as signal spaces: the spaces of upper and lower
Hilbert-Schmidt operators as defined in (2.19).

A transfer operator T is said to be causal if it is an upper operator: T € U. T is causal if
and only if
Ue l, = Y=UTell,. 3.0

An expression of causality in terms of ¢,-sequences is more elaborate, and we have to
define the space of sequences ¢ (q, b) of sequences whose support lies in the interval [a, b].
The transfer operator T is causal if it maps a sequence that is zero before time 7 into one
that is also zero before time i: u € ¢5(i, ) = y = uT € £,(i, =), for any i. This collection
of signals is contained in ¢/ in a natural way: take U = #7u (¢f. equation (2.25)). We call
U, the space of ‘future’ input or output signals, with respect to the central diagonal. The
subspace £,Z! is complementary to I/, with respect to ¥, and corresponds to signals
lying in the past.

The rows of T can be viewed as the impulse responses of the system. Indeed, in the
single-input single-output case, if the unit impulse at time i, (u € €4, u; = 1, u; = 0 (j#i)),
is the input signal, then y=uT=1[--- 0 Ty Ty Tio ---1is the resulting output, which
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Figure 3.1. Time-varying state realization

is precisely the i-th row of T. An obvious extension holds for general sequences.

Realizations

We are interested in systems that admit a dynamical realization in the form of the state
recursion

Xkl
Yk

in which we require the matrices {A, B, Cx, Dx} to be uniformly bounded and to have
finite (but not necessarily fixed) dimensions. The realization is causal automatically:
Yie =0 (k< i) if ug = 0 (k < i) with the assumption that x_.. = 0. See figure 3.1.

XA + wi By, _ Ay Clc
X Cr + upDy T = [ B, Dy (3.2)

Realizations of the type (3.2) can be rewritten by assembling the matrices {A;}, {Bx} etc.
into diagonal operators on spaces of sequences of appropriate dimensions:

- 0 0
A= A C= Ce (3.3)
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Let £/ be the space of input sequences, Zé‘f the space of output sequences, and let us

define B =---xByx By x--- as the sequence of spaces to which the state belongs. Then
= [ .. u Uy ] e Eé\’i
y = [ i oyl e &
x = [--- Xy Xx---] € B
_xz—l = [ .. X2 X3-- ] € B(—l) A

A discrete-time causal time-varying linear realization T consists of the set of four maps

A € DB B, C € DB N), (3.4)

B e DM, By, D e DWM,N), -
which together represent the dynamical state equations

xZ' = xA+uB A C

OV S N Y e

This definition constitutes the same set of time-varying state equations as in (3.2), but
now written in an index-free form. The state equations (3.2) are recovered by taking the
k-th entry of each sequence and the corresponding k-th entry along the diagonal of each
realization matrix. A difference between the equations (3.2) and (3.5) is that the former
equations suggest a recursion which can be carried out to obtain the next state xx,; and
current output y; from the current state xx and input ug, whereas the equations (3.5) are
implicit conditions which some sequences «, x and y have to satisfy. In this case, the
solutions are more general, as we will see shortly.

If (/- AZ) is boundedly invertible, then x can be eliminated from equations (3.5):

uBZ(I- AZ)™
u [D+BZ(I- AZ)y'C]

X
Yy

Hence the transfer operator of which T is a realization is given by T = D+ BZ({ —-AZ)"!C.
It also follows that BZ(I — AZ)~! is a bounded operator, so that x is a bounded signal:
x € ¢8. Note the similarity of this expression for the transfer operator T and the familiar
expression of the transfer function T(z) = d + bz(1 - az)~l¢ for time-invariant systems
with a time-invariant realization {a, b, ¢, d}. The difference is that the transfer function
is not a function of Z. Formal replacement of Z by a diagonal operator V € D leads to
the W-transform [4], which is the generalization of the time-invariant z-transform to the
present context. This transform is briefly discussed in section 5.3.

However, note that although (/ — AZ) € U, the inverse (/ —AZ)7!, even if it is bounded,
is not necessarily upper, as the example in section 2.2 showed. This means that the
transfer operator described by equations (3.5) is not necessarily causal, contrary to the
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causal recursion (3.2) from which it was derived. The situation is as follows. According
to proposition 2.2, (/- AZ) has an inverse which is upper and given by

(I-AZY ' =1+ AZ+AZAZ + - -

it and only if the spectral radius £4 := r(AZ) < 1. We say that the realization is strictly
stable if £4 < 1. If this is the case, then xZ™' = xA + uB implies

uBZ + xAZ
uBZ + uBZ(AZ) + x(AZ)
uBZ + uBZ(AZ) + uBZ(AZ)* + - - - (3.6)

=
I n

which is now convergent for any u € £, and equal to x = uBZ(I-AZ)™!. Hence, the solution
of the realization equations (3.5) for a given u is the same as the solution generated by
the recursion (3.2), and

uD + uBZC + uBZAZC + uBZ(AZY*C + - - -
uD + uZBOC + uZ2BOAVC + uZPBOARIC 4 ...

<
|

(3.7)

If Z4 = 1, then (3.6) may or may not converge to a sequence x with bounded entries,
depending on u and B. We limit our attention to the causal interpretation of (3.5), that
is to solutions x and y of inputs u# for which (3.6) converges pointwise to a sequence x,
which, however, need not necessarily be in ¢,. We say that the realization is bounded if
the entries x;, of x are bounded for all u € ¢,. This condition is satisfied at any rate if
ly < 1; for €4 > 1, it depends also on B. The analysis of £4 to characterize strictly stable
(¢4 < 1), marginally stable (€4 = 1) and unstable (£4 > 1) systems replaces the notion in
LTI systems theory of poles (eigenvalues of A) that lie in, on, or outside the unit disc.

The above summarizes down to the following definition. T is said to be a realization of
a transfer operator T € I/ if its diagonals T satisfy (¢f. equation (3.7)

0, k<0,
Ty = & D, k=0, (3.8)
BOAIYC k>0,

This is equivalent with requiring that the entries T; of T are given by
0, i>j

Ty = ¢ D, i=j
BiAiv1 - A1 G, i<j
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and in both cases we obtain

D, B_Cy B_jAC, B_A)AIC; -
> A
T= B()(/l BO IFZ (3.9)
D, B, C,
0 Dy

If an upper operator has a state realization with state-space sequence B where each By has
finite dimension, then we say that it is a locally finite state operator. This is a generalization
of the concept of rational operators to time-varying systems. The order of the realization
is the index sequence #(IB) of the state space B.

The realization (3.5) can be generalized further, by considering generalized inputs U in
XM and outputs Y in XM:

XZ'! = XA+ UB A C

Y = XC+UD T_[B D] (3.10)

If £, < 1, then again X = UBZ(I- AZ)™}, so that X € ,1’2’3. Realization (3.5) is recovered
by selecting rows of U, Y and X. The recursions corresponding to this realization are
generalizations of (3.2), and are obtained by selecting the k-th diagonal of U, ¥, X in
(3.10):

-1

el = XA+ UnB

. 3.1D)
Y[k] X[k](, + U[k]D

Note the diagonal shift in X{¢,}). The same remarks on the relation between this recursive
realization and the equations (3.10) as made on the £,-realizations are in order here. The
realization is bounded if all X are in D¥ for any U e M.

State transformations

Two realizations T and T’ are called equivalent if they realize the same transfer operator
T, that is, if and only if

D D’

B(k)A{k—l}C = Bl(k)Al{k—l}Cl (all k> 0) . (3. 12)

If {A, B, C, D} is a bounded realization of a system with transfer operator T, then an
equivalent bounded realization can be found by applying a state transformation R: x = x ‘R
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on the state sequence x of the system, where R € D(B, B) is a bounded and boundedly
invertible diagonal operator. The transition operator T is then transformed to

e[ e

(Note the diagonal shift in [R(‘”]—l. We write, for shorthand, R~ = [RD)] ') This is
readily derived by starting with the given realization

xZ1' = xA+uB
y xC+ uD

and inserting x = x'R. Then

’RZ'1 xRA + uB

XRC + uD

0

= xXRC + uD

=

= x'RARCD + yBRD
X'RC + uD

|3
- ><
[

= x'A" + uB’
= x'C" + uD’

0

[ x'Z'RD = x'RA + uB

T and T’ indeed realize the same transfer operator T we have already D = D’, and

B/(k)Al{k—l}Cl = BRR-k-1), R(k—l)A{k—l}R—(k-Q) R R(k-—2)A{k—2}R—(k—3) o RODAMRT . RC
B A1}

Stability and strict stability are properties that are preserved under the transformation:

Lragen = lim,_. || (RARCDZ)y ||\
= lim,o. || (RAZR')" ||V
limy . || RAZY'R™! || (3.14)
litmy e || RV - || CAZY"[[V2 - || R
ly

Al

since || R[] — 1 and ||R7' || — 1. Because f4 < fpagcn can be proven in the same
way, it follows that £, = fpap-cv.

Subclasses of time-varying systems

Although the main line of this thesis considers (locally finite) bounded upper operators in
general, it is often instructive to examine the behavior of certain subclasses of systems.
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One of the main reasons is a practical one: it takes an infinite amount of data to describe
a general time-varying system, so that computations on this data are also infinite. Here,
computations are typically recursions such as in (3.2), another prototype example being

A = AlAAc+BiBe,  k=--,-10,1,.. (3.15)

(a Lyapunov recursion). Hence, computations are not independent from each other: they
depend, at the k-th stage, on data of the previous stages, and we will encounter later also
some cases where computations depend on data of later stages.

Finite-size matrices can be embedded in the above definitions in many ways. For example,
if the input space sequence M =...XM_ xxM1 x --- has M; = for i outside
a finite interval, [1, n] say, and if also the output space sequence A has N; = @ for i
outside [1, n], then T € U (M, N) is an upper triangular nxn (block) matrix. In this case,
the state space B can be chosen to have zero dimensions outside the index interval {2, n],
so that we start and end with zero states. Doing so yields the computational networks in
the form described in chapter 1. Finite matrices are an important subclass of the bounded
operators, because (i) initial conditions are known precisely: we start with zero states,
and (if) computations are typically finite, so that boundedness and convergence are not
issues. For example, £4 = 0 because we start and end with zero states, so that Al =[]
for i > n. The Lyapunov recursion (3.15) can be solved for kK > 1 by starting with initial
value Ay =[-1].

A second important subclass of time-varying systems are systems which are time-invariant
outside a finite time interval, again say [1,n]. This class properly contains the finite
matrix case. Computations on these systems can typically be split into computations on
the time-invariant part, for which classical solutions can he obtained, and computations
on a time-varying part, which will typically involve recursions starting from initial values
provided by the time-invariant part. Boundedness is usually reduced to a time-invariant
issue. For example, 44 is equal to max(r(A—.), (A.)) which is governed by the behavior
of the time-invariant parts. Turning to our Lyapunov recursion: an initial value for k=1
is obtained from k = 0. Since A; = Ag because of the time-invariance before k = 1, the
recursion becomes a Lyapunov equation for k < 1,

Ao = A6AOA0 + BSB() .

This equation can be solved analytically using an eigenvalue decomposition (Schur de-
composition) of Ag.

A third subclass is the class of periodically varying systems. If a system has a period n,
then it can be viewed as a time-invariant system 7 with block entries Tj; = Ti; of size
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nxn: Tis a block Toeplitz operator. For the Lyapunov recursion, this yields

B1AA3 - - A,

BoAs - - -A,

A'=A1A; Ay, B' = .
B,

where A’ and B’ are finite matrices (not diagonals). Again, classical time-invariant so-
lutions can be computed for this block system, providing exact initial conditions for
recursions within the block. The Lyapunov recursion becomes a finite matrix equation:

A'=A"A'A"+B"B’.

It follows that A; = A’. From (3.15), Ay, - - -, A, can be determined.

Finally, the largest class which we consider in any detail is the class of strictly stable
systems: systems which have a realization for which £4 < 1. Recursions on such systems
are typically convergent, that is, independent of the precise initial value at k = —eo. This
means that it is possible to limit attention to a finite time-interval, and to obtain arbitrarily
accurate initial values for this interval by performing a finite recursion on data outside the
interval, starting with initial values set to 0. For the Lyapunov recursion example, Ay can
be determined as

A = AB AoAg + 3630
ASA:I A1 A1Ap + BSB() + ASB: B_1A¢
= Ay AL ARAL Ay +
+ {BjBo+AyB: B iAo+ iy AL A% BLBLA L - Ao}

If the system is strictly stable, then ||JA_, - - - Ao}| can be made arbitrarily small by choosing
n large enough. Neglecting for this n the first term gives an approximation for A;. The
same approximation would have been obtained by choosing A, = 0, and computing A,
via the recursion (3.15).

3.2 REALIZATIONS FOR FINITE MATRICES

The purpose of this section is to present some results on the realization theory for time-
varying systems in a leisurely manner, as an introduction of some important concepts and
as a preparation for a more formal and detailed discussion in section 3.4. Throughout,
an important role is played by an operator related to the given transfer operator, mapping
“past” inputs to “future” outputs: the Hankel operator. The relevance of this operator
to the realization theory of time-invariant systems has been known since the early 1960s
and resulted in Ho and Kalman’s canonical realization algorithm in 1966 [5]. It was
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stressed that the fundamental properties that enable one to derive a realization are not the
linearity or time invariance of the system, but rather its causality and the existence of
a factorization of the Hankel operator? into a surjective and an injective part [6]. Thus,
the problem of realization was moved into the algebraic context of module theory and
consisted basically of the identification of invariant factors (or invariant subspaces) of
the Hankel operator. The algorithm derived by Ho does not require knowledge of these
invariant factors but uses the underlying structure to derive properties of a Hankel matrix
which is a representation of the Hankel operator. These properties are (1) the factoring
into full rank factors C and O, where the rank is equal to the degree of the system, and (2)
shift-invariance. The exploitation of these properties provides explicit formulas for the
realization matrices. The description of the algorithm has been simplified throughout the
years by a number of authors, to the point where a three-line algorithm suffices: construct
a Hankel matrix, determine a factorization into minimal-rank factors (i.e., determine bases
for its column space and row space), and construct the realization matrices from these
factors.

In the 1970s, a new tool carried over from linear algebra into the world of system theory:
the singular value decomposition. With this tool, a numerically robust way became avail-
able to compute the factorization of the Hankel matrix. The SVD was incorporated into
the realization algorithm by Moore in 1978 (see [7, 8]) in the context of continuous-time
systems for the purpose of balancing the realization. There are closely related papers by
Zeiger and McEwen [9] and by Pernebo and Silverman [10]. It was realized at that time
that a balanced realization can be approximated very straightforwardly, and the resulting
combination (reported by Kung in 1978 [11] for discrete-time systems) gave rise to a class
of robust identification algorithms, called Principal Component identification techniques.

This description paved the way for modern subspace-based identification algorithms,
where the purpose is to determine a realization from measured input/output data in the
presence of noise. Although the Hankel matrix is not known in these algorithms, the
key operation is again to identify bases for the column space and row space of the ma-
trix nonetheless. Such algorithms rely on the linearity of the system: by taking linear
combinations of the available data, inputs “in the past™ are constructed, along with their
outputs “in the future”. An overview of these identitication algorithms appears in [12, 13].
Related applications are direction-of-arrival estimation in antenna array signal processing,
which concerns the estimation of the angles of arrival of a number of narrowband plane
waves impinging upon an antenna array. The shift-invariance property is provided by
structural properties of the antenna array, which should typically consist of (at least) two
subarrays, where the second array is equal to a spatially translated copy of the first array.

In this chapter, we follow related strategies. We first derive, in this section, a realization
algorithm for finite upper triangular matrices. The algorithm is based on the properties of
a sequence of “Hankel matrices” and generalizes Ho’s algorithm to time-varying systems.

2called the “restricted input/output map” in [6]
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A more formal framework results if a Hankel operator is defined which represents the
sequence of Hankel matrices. We first explain the connection between both descriptions.
Subsequently, section 3.4 covers the abstract realization theory, based on an analysis of
this Hankel operator.

Realization algorithm for upper triangular matrices

To avoid a discussion on boundedness or convergence at this point, let us assume that
we are given a finite upper triangular matrix 7, as a special case of a bounded operator.
Assume that we know some time-varying realization {A, B, C, D} of T, where A, B,C,D
are diagonals with entries A;, B;, C;, D;, as in equation (3.3), and the realization equations
are given by (3.5) or equivalently, by (3.2):

Xirl = XkAk + ukBk
Vi X G + Dy,

The objective is to tind those properties of this realization that would enable us to derive
it directly from T if it had been unknown, i.e., to find a realization scheme.

The key idea leading to such a realization scheme is the following observation. Denote
a certain time instant as ‘current time’, say & = 0. Apply an input sequence u € £ to the
system which has values only up to £ = —1 and which is equal to 0 from & = 0 on. Such
an input is said to be in ‘the past’, with respect to time k = 0. The corresponding output
sequence y = uT is taken into account only from time k£ = 0 on, ie., we record only the
‘future’ part of y. See figure 3.2(a). The following two observations form the cornerstone
of realization theory. Let yy; denote the half-sided sequence yiy = [yi Yi1 -] € £3,
and likewise define u,g) = [ w1 w2 ---1 € £;. First, note that the future output sequence
is dependent only on x¢:

yay = [yo vy -] = x%[Co ACr ApAICy ---].

Hence upon applying all possible inputs that stop at k& = —1, the corresponding possible
outputs yso) are seen to be limited by the finite dimension of xq to be in a two-dimensional
subspace in £3. This subspace is called the output state space at time k = 0. The key
feature of this subspace is, for realizations with finite-size state matrices {A, Be, Ci, D}
(which are the only ones we consider), that its dimension is not infinite but finite (and for
our purposes typically low): its dimension is at most equal to the number of states of the
realization at time k& = 0. Of course, if we select another point in time as current time,
then, mutatis mutandis, the same is true.

A second observation is almost trivial. If we stop the input at £ = —1, but now only record
the output from & = 1 on, then we reach a subset of the subspace {yp1}. This subset is
again a subspace, now of the form

XoAo [C1 A(Cy AjA G - -] (3.16)
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Figure 3.2. (a) Principle of the identification of a time-varying state-space model. In this
diagram, the ‘current time’ is 0. All possible inputs up till time k = —1 (‘the
past’) are applied, and the corresponding output sequences are recorded from
time k = 0 on (‘the future’). Thus, only part of T is used: Hy, a Hankel
operator at instant k = 0 (b). This should be done in turn for all .
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A refinement of this observation leads to the mathematical concept of shift invariance.
The appearance of Ay in this expression enables us to identify it.

Write uyo) = (4o u-y w3 ---1. Then from the relation y = «T follows yqo) = upyHo,
where
T.o T, T2
Taoo Ty
Ho=| 15, . (3.17)

H, is a mirrored submatrix of T (see figure 3.2(b)): it is a submatrix because the part below
row (—1) of T'is multiplied by u, uy, etc., which are all equal to zero, and because the part
corresponding to the left of the O-th column of T is not included in y go). The mirroring
is caused by the definition of u,() as a reversed sequence of the non-zero part of 4. The
reversal in this definition is not essential but is traditionally included because this keeps
the infinite sides of sequences and matrices like Hy at the right and bottom. Repeating the
same exercise for the signal pairs u,(), Ypo), it follows that Hq generalizes to a sequence of
operators Hy, with similar definitions. We call the H the (time-varying) Hankel operators
at time k. This is in analogy with the time-invariant case, where T has a Toeplitz structure
so that the H, are all the same and do indeed possess a Hankel structure (constant along
anti-diagonals). Although we have lost the traditional anti-diagonal Hankel structure, we
retain two important properties: the rank property and a shift-invariance property. The
rank property was formulated in chapter | as follows:

THEOREM 3.1.  The number of states that are needed at stage k in a minimal compu-
tational network of an upper triangular matrix T is equal to the rank of its k-th Hankel
matrix Hg.

This is a Kronecker-type theorem. We are now ready to prove this theorem.

PROOF The rank property is the following. Suppose that {Az, B, Ci, Dy} is a realization
for T so that the entries T; are given in terms of the {Ak B, Ci, D¢} as in equation (3.9).
Then a typical Hankel matrix has the following factorization:

[ B,C, B1A,C; B1A2A3Cy
BoA ByA1A2C3
Hy = B_1A)A1C;
- B
B-zA_l
= BaALA, | [Co AcCt AAIC: -] = GOo. (3.18)
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Hence, the multiplication yroy = up)Ho is split into two stages using an intermediate
quantity xp which is precisely the state at time k = 0:

Xo = upolo
Yoo = %0

This factorization is very typical of any state realization. From the decomposition H, =
C:O it is directly inferred that if A, is of size (dyXdg.1), then Co and O/ have d; columns
so that rank(Hy) is at most equal to di. If the decomposition is minimal, that is, if C and
O are full-rank factors (C;Cy > 0, OOy > 0), then rank(Hy) = di. It remains to prove the
existence of a realization {Ay, By, Ci, D} for which di = rank(H,): if it does, then clearly
this must be a minimal realization. To find such a minimal realization, take any minimal
factorization Hy = C,Oy into full rank factors Cx and OOx. We must show that there are
matrices {Ag, Bk, Cx, Dy} such that

By
Ce= | Be2din Or=[Ck ACiri ArAra1Corz 1. (3.19)

To this end, we use the fact that H; satisfies a restricted shift-invariance property: for
example, with H§™ denoting Hy without its first column, we have

B
B,A
Hi =| BiALA, | A [C1 AICy AlAG - ).

In general, Hf" = CxkAxOks1, and in much the same way, H) = Ci-1As1 Ok, Where H) is
Hy deprived from its first row. The shift-invariance properties carry over to C; and Oy,
e.g., Or = AxOy,1. This is the property hinted at in equation (3.16).

Let be given the sequence of Hy, and for each H any full rank decomposition Hy = C;O.
From the shift-invariance property O = A;Oy,; we can determine A, as follows. Because
Ok has full rank, O, O, > 0 50 that (O, Oy, ) is invertible, and hence Oy, has a right
inverse O}, = 0},(010},,)™" such that O, Of,, = L It follows that A, = OO}, .
The other state matrices can be determined from the factors O, and Cy as well: Cy follows
as the first column of the chosen Ok, while By is the first row of Cy,;. It remains to verify
that ¢ and Oy are indeed generated by this realization. This is rendered straightforward
by a recursive use of the shift-invariance properties. o

The construction in the above proof produces a realization algorithm (algorithm 3.1) which
we formulate for finite (n X n) upper triangular matrices 7. In this algorithm, a Matlab
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In: T (an upper triangular n X n matrix)
Out: {T} (a minimal realization, in output normal form)

On+1=[']’cn+l=[']
tork=n,. -1

rH, = UkaV;
dp, = rank(Z;)
G = (U, Lidy)
Ok = V;(lidk, Z)
Ar = [0 O]
Ck = Ok(:, l)
B, = Cui(l)

| D, = T(kk)

end

Algorithm 3.1. The realization algorithm.

notation is used: A(:, 1:p) denotes the first p columns of A, and A(l:p, :) the first p rows.
The key part of the algorithm is to obtain a basis Oy for the row space of each Hankel
matrix Hy of T. The singular value decomposition (SVD) [14] is a robust tool for doing
this. It is a decomposition of Hy into factors Uy, Zx, Vi, where Uy and Vj are unitary
matrices whose columns contain the left and right singular vectors of Hy, and X is a
diagonal matrix with positive entries (the singular values of H,) on the diagonal. The
integer dj is set equal to the number of non-zero singular values of Hy, and V;(1:dy, :)
contains the corresponding singular vectors. The rows of V*(1:dy,:) span the row space
of Hi. Note that it is natural that d; = 0 and d,,1 = 0, so that the realization starts and
ends with zero number of states. The rest of the realization algorithm is straightforward
in view of the shift-invariance property. It is in fact very reminiscent of the Principal
Component identification method in system theory [11]. For later use, we remark that this
algorithm has the property AxA; + CC;, = I the realization is in ‘output normal form’.
We show in the following section how the ‘canonical observer realization’ theorem yields
such realizations: in fact, it uses the same algorithm but for operators rather than matrices.

The above is only an algorithmic outline. Because Hy,) has a large overlap with H, an
efficient SVD updating algorithm can be devised that takes this structure into account,
Other decompositions from linear algebra that identify subspaces can be used instead. In
theory a (R factorization of the H, should work, although this is not advisable in practise
because (R is not rank revealing: the addition of a small amount of noise on the entries
of T will make all Hankel matrices have full rank, thus producing a realization of high
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order. Decompositions that can be used instead of QR are rank revealing QR [15, 16, 17],
and the URV decomposition [18], which is equivalent to SVD but computationally less
demanding.

Note that, based on the singular values of Hy, a reduced order model can be obtained by
taking a smaller basis for (O, a technique that is known in the time-invariant context as
balanced model reduction. Although widely used for time-invariant systems, this is in
fact a “heuristic” model reduction theory, as the modeling error norm is not known. A
precise approximation theory results if the tolerance on the error is given in terms of the
Hankel norm, which is the subject of chapter 6.

Numerical example

As an example of the realization theorem and algorithm 3.1, let the transfer matrix be
given by

[ .800 .200 | .050 .013 .003 ]
900 .600 | .240 .096 .038

1

0

g 0 .800].500 .250 .125 (3.20)
0

0 0 .700 .400 .240
0 0 0 .600 .300
0 0 0 0 0 .500

The position of the Hankel matrix H4 is indicated (recall that this submatrix must be
mirrored to obtain H4). The SVDs of the Hankel matrices are

Hi=[]

H, = [ .800 .200 .050 .013 .003 ] =1 - 0.826 - [ .968 .242 .061 .015 .004 ]

. = | 600 .240 .096 .038
37 1 .200 .050 .013 .003

955 .298 .685 0 922 .356 .139 .055
.298 —-.955 0 .033 -.374 .729 511 .259

etcetera. In the above, columns and rows that correspond to zero singular values have
been omitted. The non-zero singular values of the Hankel operators of T are

H; H; Hj Hy Hs Hg
.826 .685 .631 .553 .406
033 .029 .023
.001
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Hence T has a state-space realization which grows from zero states (i = 1) 10 a maximum
of 3 states (i = 4), and then shrinks back to O states (i > 6). The realization algorithm
(algorithm 3.1) yields as time-varying state realization for T

T : : T, = [-247_—038 | .968
1T 7826 1.000 ?7 7654 010900

© 384 —.038 —.()()()} 470 -.030| .882

.922
861 .237 | -.450
Ty=| 913 .I58 -.037|-374 Ty = 19 971! .138

| 573 012 .OOO| .800 266 012] 700
[ 493 | .870

Ts = | .870 | —493 Ts : 1'(5)88 ]
| 300} . - )
As is seen from the table of singular values, Hy is close to a singular matrix, and hence

one expects that T can be approximated by a matrix close to it such that only two states
are needed. That this is indeed possible will be shown in chapter 6.

3.3 THE HANKEL OPERATOR

Hankel operator definitions

A more formal approach to the derivation of a realization of a time-varying transfer
operator T is based on the properties of a restriction of the domain and range of T to
become an operator mapping inputs in £,Z! (representing inputs in ‘the past’) to the
part of the corresponding outputs in /{, (the part in the ‘future’). In later chapters, other
restrictions of T to operators between subspaces of .Y, will play important roles as well.
Using the projection operators defined in chapter 2, define the past of a signal U € .t'; as
U, = Pgz1(U), and its future part as Uy = P(U), so that U = U,+Uy. The same definitions
apply to the past and future part of an output Y. With these definitions, the action of T
on an input U € X, can be broken down into three operators,

Yp = UpKT
— 3.
Y=UT & { Y, = UHr+ Uy 3.21)
where
Hy . L2770V S U, UHr = P(UPT)
Kr: L7V 5 £,770, UKr = Pez(U,T) 3.22)
Er: Uy—> U, UEr = P(UT) = UfT.

Note that due to causality there is no transfer from Uy to Y,. Hr is called the Hankel
operator of T: it is the map of inputs in £,Z! to the part in X, of the corresponding
outputs. See figure 3.3(b).
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The first property to note on these operators is that they are left D invariant: if Yy =
U,Hr = P(U,T), then DY; = DP(U,T) = P(DU,T) = (DU,)Hr. Consequently, as discussed
in section 2.3, these tensor operators have matrix representations in the form of snapshots
and diagonal expansions. With the operator m; as defined in (2.12), snapshots Hj are
obtained according to equation (2.44),

(7%, Ux)Hr = m,(UpHy) (Ue L2771 (3.23)

where U, = mU is the k-th row of U, so that H, is obtained as the operation of Hr on
an input restricted to the £;-sequence Uy. Since U € £,Z7!, Uy is a sequence which has
zero entries from its k-th entry on. Likewise, Y € 4> has rows Y; which have zero entries
before time k. Hence, in the computation of Y, = UpHy = m[(n; Ux)Hr], only the quadrant
from the right of and strictly above entry (k, k) of the matrix representation of T is used.
Consequently, Hy has a one-sided infinite matrix representation, and as it is customary to
have the infinite sides at the right and bottom of the matrix representation, we write it as
a mirrored submatrix of 7, which yields Hy as used in the previous section:

Ttk Tiipnr Tiorpe2
Tiakx  Ti-aisl

Tiesk (3.24)

H =

H; in equation (3.24) maps sequences Upg) = [ Urk-1 Uri—2 -- -1, which are isomorphic
to Us, to sequences yu = [ Yk Yiksr Yers2 -+ -] which is isomorphic to Y, with the zero
entries before entry Y, omitted. Hy according to this definition is not precisely the same
but isomorphic to the definition in (3.23), where the isomorphism consists of the removal
of zero rows and columns and a mirroring. We use the definition of H; in (3.24) from
now on.

A second representation of Hy is obtained in the form of diagonal expansions, as in-
troduced in chapter 2. Inputs and outputs are represented as vectors whose entries are
diagonals. This defines Hilbert spaces which are isomorphic to L£2Z7! and U, and are such
that Hr can be represented by a matrix of diagonal entries. Because we act on L,Z7 and
U,, rather than X3, the definition of the diagonal expansion of a signal is done slightly
more specifically than in chapter 2. For ¥ € i, we define the diagonal expansion of Y as
a one-sided sequence of diagonals ¥,

= Y[0]+ZY[1]+Z2Y[2]+~-~ = Y[()]+YEI)Z+YS]2)Z2+~.-

o )y
Y Yoy Yoy Y

(3.25)

Y is an element of the space £4(D) of one-sided square-summable sequences whose entries
are diagonals. It is isomorphic to i4,. Analogously, for U € £,Z™!, the diagonal expansion
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lX([%)Zl — —
. 1 i 1 P ]
vy —{ 17—
Kr Kr
X([l)l] Up Y, U Y,
n 1 (DI I () P(F")
Ul T )
X0 Hr X
Uoggp — T [— VYo Fo
xqP U, Y U Y,
8] ! Er S/ / Er /
U — T —Hyp
& = 1 ] 1 Tr
Xy —

‘
¢

(a) () (c)

Figure 3.3. () realization T, (b) splitting into past and future signals, (c) representation
by T, and T}

of U is also designated by Ue £5(D), now defined by

U Z—IU[_1]+Z—2U[_2]+-~ = U(*'I)Z‘I+UE:§])Z‘2+...

[-1]
. (3.26)
1) 2)
U Ut vl

il

Take U € L£,Z7'. Corresponding to the operator Hr, the operator Hy acts on diagonal
expansions U. The definition

-1 -2
Iy 7{[21 ) 7([31 )
. Ty T
fr=| 1, (3.27)

is such that
Yf= UHr € U, = Y}= ﬁﬁ]‘
The connection of Hy with the sequence of snapshots Hy is obtained by selecting the &-th

entry of each diagonal in Hy and constructing a matrix from it: this yields precisely H.
The same expansions can be done for Ky and Er; for example, K7 : £,(D) — £5(D) and
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K;: £7 — ¢; are given by

ﬁ&{) 0 Ky, 0
- MU 5e Ko Kiaia
Kr=| 7 4 Ki= '

Ty T TR ’ = | Kisim Kizi2 Kisis

(1 [0]

Factorization of Hy

If a realization {A, B, C, D} of T is given, then we know from (3.18) that the H; admit
a factorization into Hy = C,O. An obvious question that emerges is whether A7 admits
such a factorization. The answer should be affirmative, of course, in view of the close
connection between Hr and its snapshots Hx. While a mathematical factorization into
operators is certainly possible, we relegate that to the following paragraph and first check
the factorization property on the diagonal expansion Hy of Hr. With a state realization
{A, B, C, D} the diagonals Tj;; of T are given by equation (3.8). Hy in terms of A, B, C, D
then follows as the matrix of diagonal operators

BOC BOACED BOAACH D
BYALC BOALACED BOADAACH D)

Hr = BAOADADLC BOADADLACED

We can distinguish operators (column and row sequences with entries that are diagonal
operators)

B

B@AD
C:= | BHA®4D 0 = [C ACTD AACDCED ], (3.28)

C is called the controllability operator, while ( is called the observability operator. These
are generalizations of the corresponding concepts in time-invariant systems theory.? It
is straightforward to verify that if {4, B, C, D} is a realization of 7, then Hr admits a
decomposition Hy = CO. The operators ( and O of (3.18) are obtained by selecting the
k-th entry of each diagonal in C and O.

If Uy =0, then ¥y = U,Hy. The following construction shows that the existence of a
realization implies that Hy can be factored into two operators. According to the state

3C is often called the reachability operator in recent literature.
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equations in (3.11), Xjo; is equal to

Xo= = UDBY+x45A0
= U}PHB(” + UEE)Q]B(Z)A(]) +X§3)2]A(2)A(I)
B
B@AWM

(U8, UZ 1| BoAA0

= 0, (3.29)

Hence Xjo| = U,C. We can continue the above derivation via

Xo = Po ([ Uﬁ)l]Z“1 + Uff)z]Zz-p [ ZBD + Z2BOAW 4 23RO 4D 40 +‘_.])
= Po([Z Uiy + 22Uty + - -1 BZ+ BZAZ + BZAZAZ + - - ])
= Po(U,[BZ+ BZAZ + BZ(AZY +- 1)
= PO(UPF*) (3.30)
where
F' := BZ+BZAZ +BZ(AZf +- - - . (3.31)

(We will keep this definition for F throughout the rest of the section.) The summation
in (3.31) need not converge to a bounded operator, but if the realization is bounded
(X € Dy for all U € X3), then Po(-F") is a bounded [X; — D] operator. From
now on, we assume that the realization satisfies this condition. [The realization theory
in section 3.4 establishes that bounded operators T which are locally finite always admit
bounded realizations, so that it is enough to consider such realizations.] The expression
Xio1 = U,C shows that the diagonal expansion of Po(-F") is equal to the controllability
operator C, that is

[Po(-F)] ™~ = C. (3.32)

If ¢4 < 1, then the summation in the definition of F* can be summarized to F* = BZ(I -
AZ)', which is now a bounded operator: F € £Z7, and hence Xio) is given by

Xjo] = Po(UBZ(I- AZ)™")

This expression could have been obtained directly from the closed-form expression for X
which we obtained earlier, X = UBZ(I - AZ)™!, by computing Xio0) = Po(X).

If Up=0 then, for k 2 0, Yj = Xy C = XGA®AED ... A0C, 50 that

Yf = Y[0]+ZY[1] +Z2Y[2]+---
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Xio)(C+ZAVC + ZZAPAVC + - - )
Xioy I+ AZ+AZAZ+ - )C
Xio/Fo (3.33)

]

where
Fo:=(I+AZ+(AZ) +--)C. (3.34)

Again, this operator need not be bounded in X', but it is bounded as a [DB — X,] operator.
If ¢4 < 1, then Fo = (I-AZ)y"!C, and
Yr= X[o](I—AZ)_] C

A reformulation of (3.33) leads to

Vo= e My Y e
X0 [C ACED  AACDCED L. ]
X(0O.
This shows that the diagonal expansion of Fy is equal to the observability operator:
Fo=0.

Combination of (3.29) and (3.33) yields the observation that the map Hr: U, — Yy can
be split into a map Po(-F*): U, — X{q] followed by the map Fo : Xjo} — ¥r. Hence Hr
has a factorization:

THEOREM 3.2. Let T € U have a bounded locally finite realization {A, B, C,D}. Let F
and Ky be as given in (3.31) and (3.34). Then Hr has a factorization into

Hr = Py(-F")F,. (3.35)
This factorization is totally equivalent to Hr = CO and Hy = C¢Ox. In view of (3.21) and

the factorization of the Hankel operator, the computation of ¥ = UT can be split into two
operations,

T, = [P(-F) Kr]
[X[Ol Yp] = UpT)p g
h 3.36
{ Yy = [Xqop UrlTy where T = [g‘) } (3:36)
T

where T, is a ‘past’ operator and Ty is a ‘future’ operator. See figure 3.3(c). The expression
of Hr in equation (3.35) recalls the projection formula (2.38) in chapter 2, where F and
F, play the role of basis representations. The precise relations are investigated in section
3.4, but with the above observation in mind, we define at the present point the ‘Gram’
operators or Gramians corresponding to F and Fy as

Po(FF') € DB, B)
Po(FoF;) € D(B,B).

Ar
Ar,
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Controllability and observability

An important aspect of the factorization Hr = Po(-F")Fy is the investigation of the
(local) minimality of this factorization, since this implies the minimality of the dimension
sequence #(B) of Xg) and thus the minimality of the realization. Let {A, B, C,D} be a
bounded locally finite realization of T where A € D(B, B&D).

DEFINITION 3.3.  Let F* be given by (3.31). A realization is said to be controllable if
the range of Py( - F*)| Loz is dense in D? and uniformly controllable if its range is all of

DE, that is, if Po(£,Z7 F*) = D¥ (the operator is ‘onto’).

If P0(~F*)| £,z is regarded as an operator from £,Z7' — D, then its adjoint op-

erator is - F with domain D?. In view of (2.9), we obtain the decomposition DP¥ =
ran[Po(-F")|, ,.,|®ker[-F|,, ]. The realization is controllableif and only if ker [-F|,, | =
0, ie., it DF =0 (D e D?) = D = 0, so that the operator -FII72 is ‘one-to-one’. In
terms of diagonal inner products, we know that DF = 0 < {DF,DF} = 0, and
{DF, DF} = Po(DFF’D) = DPy(FF*)D*. This implies that the realization is controllable
if and only if the Gram operator Ay = Po(FF") > 0. The realization is uniformly con-
trollable if Ay is uniformly positive. Reverting to diagonal expansions, application of
(2.42) to (3.32) gives Po(FF™) = C*C, so that the realization is controllable if C*C > 0 and
uniformly controllable if C*C is uniformly positive, that is, if C*C > 0. In summary:

PROPOSITION 3.4. A realization is controllable if and only if A := Po(FF*) = C*C >0,
and uniformly controllable if and only if Ag = C*C > 0.

Observability is defined in much the same way.

DEFINITION 3.5.  Let F be given by (3.34). A realization is observable if Py(UF}) is
dense in Df (the operator-Fo|T,2 is one-to-one), and uniformly observable if Po(i4,Fj) =

D5,

DEFINITION 3.6. A realization which is both controllable and observable is said to be
minimal.

PROPOSITION 3.7. A realization is observable if and only if Ag, := Po(FoFg) = O0* >0,
and uniformly observable if and only if Ag, = OO" > 0.

The map Po(-F): fan- F]m] > ran [Po( - F*)] is one-to-one and hence has an algebraic
inverse, although it is not necessarily bounded. If a realization is controllable, then
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ran[Po(-F*)] = D2, so that for any Xjo) € D¥ there is an input U € £Z7 such that
X0 = Po(UF™). However, this U need not be bounded. If a realization is uniformly
controllable, then only a bounded input is needed to reach any state in D 3:

LEMMA 3.8. A realization is uniformly controllable if and only if there exists M < oo
such that

D X = Po(UF)
VXgeD¥ e Lzt ¢ ol
0] € Dy € L2 {(2) | Ullas < M| X0y ||as

PROOF We apply theorem 2.1 to the operator Po(-F*)| . ., and its adjoint F|p,:

ranPo(-F*)| ., is closed

. 3.37
& 3e>0: VUe m[Fl,]: [P(UF)las 2 &]| Ullas. (3.37)

In the remainder of the proof, regard - F = -F|D2, with adjoint Po(-F*) = Po( -F")lﬂzz_l.

(=) If the realization is uniformly controllable, then ran [Po(-F")] = DJ is closed. A first
implication is that for any X[o; € D, there is an U € tan[-F] such that X{o) = Po(UF").
Taking M = 1/ein (3.37), it follows that for any U € tan [ F] and X[o) = Po(UF"), it holds
that || U[| < M| X[ ||.

(<) Suppose, conversely, that there is M < e such that for all X(o; € DP¥ we can find a
Ue £22“ such that (1) X[o] = P()(UF‘) and (2) ” U”HS < MHX[()] ||]-15. It then follows
from (1) that @ [Po(-F*)] = D5, and it remains to show that ran [Po(-F™)] is closed.
The map Po(-F*) : fan[-F] > tan [Po(-F")] is one-to-one, so that (2) holds for all
U e ran [-F] and Xjo; = Po(UF"). Applying (3.37) with £ = I/M shows that ran [Po(~F*)]
is closed, so that the realization is uniformly controllable. 0o

Lyapunov equations
Equation (3.31) yields the expression
F* = BZ+F'AZ.

However, care must be taken in the use of this expression, since F* is not necessarily a
bounded operator on .Y,. However, Po(-F") is a bounded operator on .Y, which leads to
the following proposition.

PROPOSITION 3.9.  Let {A, B, C,D} be a bounded realization, and let the operator F*
be given by equation (3.31), with Gramian A = Po(FF*). Then Po(-F*) is a bounded
operator on X3, and satisfies

Po(-F*) = Py(-[BZ+F AZ)) (3.38)
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The adjoint of Po(-F*) satisfies (on D¥, and by extension everywhere on X, where it is
bounded)
F = ZB +Z'A'F (3.39)

Ar satisfies the equation
ASV =B'B+ATApA. (3.40)

PROOF It was argued before that Py(-F*) is a bounded operator on .Y,. The indicated
equation follows directly from rewriting equation (3.31) for P o( - F*). The expression for
the adjoint is then obtained along the lines of the proof of proposition 2.7. Consequently,
the Gram operator Ar = Po(FF") satisfies

AP Po(Z'FF*Z)
Py(Z[Z*B* + ZA’F] [BZ+ ¥ AZ|Z")
Py(B*B) + Py(A*FF A) + Po(B*F"A) + Po(A’FB)
= BB+ A'Py(FF)A + 0 + 0.

Equations of the type
A'MA+B'B=MD, Me DB, B). (3.41)

are known as Lyapunov or Lyapunov-Stein equations. As discussed at the end of section
3.1, this equation in diagonals can be viewed as a recursive relation My, = ALM Ay +B; By
of the entries of the diagonals. The recursion is obtained by selecting the k-th entry of
each diagonal. If ¢4 < 1, then, as is easy to verify by substitution, the equation has a
solution given by

M=) ARy B B*DA,
k=0

where A} = A® ... A was defined in equation (2.21). This summation is precisely
equal to the summation that results in the computation of Ar = C*C, and hence M = Ar
and the summation converges. Moreover, this solution is unique: if A is another solution,
then
M-A)P = A" M-A)A
= M-A = ARy M- A)EDAK

and ¢4 < | implies A} — 0 so that A = M. If ¢4 = 1, then the Lyapunov equation does
not have a unique solution. For example, if A =17 and B = 0, then the resulting equation
is MY = M so that any M = of with @ € C will do, whereas Ar = 0 in this example.

In the same way, we obtain the dual to proposition 3.9.
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PROPOSITION 3.10.  Let {A, B, C,D} be a bounded realization, and let the operator Fy
be given by equation (3.34), with Gramian Ar, = Po(FoFy). Then

OH'DZBZ FU = C+AZFO

On Xy: Po(-Fp) Po(-[C* +Po(-F)Z°A"]) (3.42)

The expression on DB is also bounded on dense domains in X2. Ay, satisfies the dual
Lyapunov equation
Ar, = CCT+AAGPA". (3.43)

Again, if £4 < 1, then the solution to the equation Q = CC* +AQ“VA* is unique and equal
to Ar,.

Lyapunov equations arise in the normalization of a given realization. Suppose that we are
given a bounded minimal realization {A, B, C, D} of some locally finite operator T € U.
The objective is to find a similar realization {A’, B/, C’, D} which is in input normal form,
i.e., for which Ag: = I. In view of (3.40), such a realization satisfies A”*A’+B’*B’ = I. Let
F and Fy be the controllability and observability operators of T as in (3.31) and (3.34),
and define F' and F{ likewise for T’. If R is a state transformation that brings T into T
according to (3.13), then F = R*F’ and RF, = F, and the corresponding Gram operators
satisfy

Ar R*ApR

Ap; = RARRK

(3.44)

The first equation gives
Ar=R'R

so that the required state transformation R is given by a factor of Ap. R is boundedly
invertible if and only if Ar is uniformly positive, that is, if the given realization is
uniformly controllable. If £4 < 1, then R is obtained by solving the Lyapunov equation
(3.41) for M, followed by solving the factorization M = R"R. Another way to arrive at the
Lyapunov equation directly is by inserting the relations A’ = RARCY and B’ = BR"D
into the normalization condition A’*A’ + B’*B’ = I, and putting M = R*R. Likewise, a
realization in output normal form (for which AFO’ =Isothat A’A”" +C'C’* =) is obtained
by factoring A, = R"'R™", and it is seen that the given realization must be uniformly
observable. Again, if {4 < 1, then R can be obtained by solving the Lyapunov equation
Q = CC* + AQDA* for Q after which R is obtained as a factor of Q~!. The Lyapunov
equation is directly obtained by inserting the relations A’ = RARY and C’ = RC into
the condition A’A"™ + C'C”* = I.

Nerode state-space definitions

Let T € U{(M, N) be a bounded causal transfer operator of a linear time-varying system
mapping signals in ,1’2"" to signals in A’{" . Hr=P(- T)[ £z is the operator T with domain
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and range restricted to two complementary subspaces, £2Z7! and U, respectively. Since
T is bounded and the projection operator P is contractive on X, Hr obviously is also
bounded, so that its adjoint Hy : i{y = £,Z7) exists and is bounded. In the study of the
Hankel operator, we study the effect of inputs in £,Z' onto outputs in i, i.e., we study
the range and kernel of Hy and Hj. Note that neither ran(Hr) nor ran(Hy) have to be
closed.

Define

K
H

ker(Hy) = {Ue £, : P(UT) =0}

ran(Hy) = Pz (UT). (3.45)

K is called the input null space. It is a left D-invariant subspace in £,Z7!. X defines
equivalence classes in £,Z7!: we say that an input U; € £,Z7! is Nerode equivalent
to Us € L£,Z7! if they have the same future outputs: P(U;T) = P(U,T). Consequently,
P[(U; - Uy)T) =0, hence U, is Nerode equivalent to U, if Uy — U, € K.

M is called the (natural) input state space. Itis a left D-invariant linear manifold in £,Z7}.
Since ker(Hr) @ ran(Hy) = L2Z7! (¢f. equation (2.9)), the space H is the complement of
K in £,Z71:

HeK = L7, (3.46)

In the same way, define the (natural) output state space Ho to be the the range of Hr, and
the output null space Ko to be the kernel of T*:

Ho
Ko

ran(Hy) P(L,Z7'T)
ker(Hy) = {Yel,:P(YT)=0}.

(3.47)

Hy is the left D-invariant manifold containing the projections in i, of all outputs of the
system that can be generated from inputs in £,Z7'. K is its complement in Uy:

Ho @ Ko = U (3.48)

The null and state spaces satisfy the following relations:

PKT) = 0
P (KoT?) = 0
_ _ (3.49)
He = HHr = P(HT)
H = HoHy = Przi(HoT).

(The last two equations follow from inserting (3.46) and (3.48) into the definitions of 1
and Mo, and using the first two equations.) These relations ensure that H and Ho have
the same dimension sequences:
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LEMMA 3.11.  If'H and Hy are locally finite subspaces, then

s-dim(H) = s-dim(FH).

PROOF  Apply the property mentioned in equation (2.30) to (3.49): Ho = HHr and
H = HoH}. This yields s-dim(Ho) < s-dim(H) and s-dim(%) < s-dim(H). m

PROPOSITION 3.12.  Let {A, B, C,D} be a bounded locally finite realization of T, A €
D(B, BY), and let F and Fy be the associated controllability and observability operators
(equations (3.31), (3.34)). Then Ho < DE¥, and H < DEF.

If the realization is controllable, then Ko = kerPo(-¥g)|,, , Ho = DJFo.

If the realization is uniformly controllable, then Ho = DS K.

If the realization is observable, then K = ker Po(-F*)| ., H = DBF.

If the realization is uniformly observable, then H = DB F.

PROOF Hr has the factorization Hr = Po(-F*)Fy, so that Ho = ran Hr < DEF,. If the
realization is uniformly controllable, then Po(£,Z7! F*) = DF, so that, indeed, Hy = PEF,.
Also, Ky = ker Hy = ker Py(- F{;)F]I " If the realization is controllable, then F is one-to-
one and Ko = ker Py(- FS)]I ,,» With complement H = 7an( - FO)IT’2= DB F. The remaining
statements are proven in the same manner. a

PROPOSITION 3.13.  If a realization of T is both uniformly controllable and uniformly
observable, then Ho = DEFy and H = DEF are closed subspaces, i.e., the ranges of Hr
and Hy are closed subspaces.

Conversely, let Ho and H be closed subspaces. If the realization is controllable, then it

is uniformly controllable. Likewise, if the realization is observable, then it is uniformly
observable.

PROOF The first part of the lemma follows immediately from lemma 3.12: since the
realization is uniformly controllable, ran Hr = Po(L,Z'F)Fy = DEF,. Because the
realization is uniformly observable, Dng is a closed subspace, and hence ranHr is a
closed subspace.

To prove the second part, we again apply theorem 2.1, in the form

ran Po( -F')’Lzz_l is closed
& Fe>0: VDemmPo(-F)|, .0 ||DFllus2 el Dllus.
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Let the realization be controllable, then M closed implies with proposition 3.12 that D 5F
(the range of F restricted to DF) is closed. Then the range of the adjoint of F is also
closed, that is, ran Pg(-F')|£ZZ_, is closed, and hence by definition 3.3 it is equal to

DE. Hence || DF||us 2 £]| D ||us for all D € DF. But || DF || = trace DAgD", so this
inequality implies Ag > 0: F is uniformly controllable. o

Proposition 3.12 has a direct corollary, which is part of a Kronecker theorem for time-
varying systems. The second part appears as theorem 3.28 in the next section.

COROLLARY 3.14. (KRONECKER’S THM, I) Let T € U be a locally finite transfer oper-
ator which has a bounded realization with state-space sequence B. If the realization is
minimal, then s-dimH = s-dim M, is equal to the sequence of dimensions of B.

This corollary is also true at the local level: if the realization is minimal and the k-th
slice mHo = (Ho) of Ho has a dimension dx, then dy is equal to the number of states of
the realization at point k. It is also true that (M)« is isomorphic to the range of Hy, the
k-th snapshot of the Hankel operator, where the isomorphism consists of the conversion
of ¢>-sequences to £3-sequences, and that di is equal to the rank of the Hankel operator
at point k, i.e., the rank of A,.

It remains to prove the converse of the corollary, i.e., to show that if s-dimH = s-dimH, =
[---do & dy ---]is auniformly bounded sequence of dimensions, where dj = rank Hy,
then there exist realizations of T with d; equal to the system order at point k. We call
the sequence the minimal system order of T. The actual construction of such minimal
realizations is the subject of the following section, where the converse of corollary 3.14
appears as theorem 3.28.

Numerical example

To illustrate some of the above with a numerical example, consider again the transfer
matrix 7" given in equation (3.20). The range of the Hankel operator Hy is given locally
by the row spaces of the Hankel matrices {H,}. These are given in turn by the V-matrices
of the SVDs of the {H,} that have already been computed in the previous section. Hence,
for example,

01 = (Fo) =[]
Oy =(Fo)y = .968 .242 .061 .015 .004 ]

~ 922 .356 .139 .055
03 =(Fo)s = 2 0 J

-374 729 511 .259
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etcetera. The operator Fy as used in the present section is obtained by stacking these
matrices into one upper operator. This gives

-

968 242 061 .015 .004
0 .922 356 .139 .055
0 -374 .729 511 .259

(3.50)

- [
0
0
0

Using the realization of T derived in the previous section, it is readily verified that, indeed,
F satisfies equation (3.34). A straightforward way to do this is to check that, for each &,
Ok = [Ce AkCrst AkAs1 Ciaz - -]

3.4 ABSTRACT REALIZATION THEORY

We continue with the analysis of Hr and its characteristic subspaces, H and Ho. We show
how a shift-invariance property on these spaces, along with the choice of a basis in either
one of them, produces minimal realizations which are either in ‘input normal form’ (or
in ‘canonical controller form”) or in ‘output normal form’ (canonical observer form). In
all cases, bounded realizations with £4 < 1 are obtained.

Shift-invariance properties

In chapter 2, we defined Z to be the bilateral right shift operator in £,, and hence by
extension the bilateral shift in X,. We now define the unilateral or restricted shift operator
Z with domain and range restricted to £,Z! as ZU = P.,z1(ZU) = ZU - Py(ZU) for
Ue L,Z7'. The restricted shift operator S = Z~! on U, is defined as SY = P(Z"'Y).

The null and state spaces satisfy the following shift-invariance properties, which are of
crucial importance for the derivation of state realizations.

LEMMA 3.15. Let'H, K and Ho, Ko be as defined in equations (3.45), (3.47). Then

Z'K < K
ZH < H; ZH < H
ZKy < Ko
SHo Hos SHo < Ho

N
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PROOF

(Z'K < K): If Ue K, then P(UT) = 0, hence UT € £,Z" and thus Z7'UT € £.Z7),
too. But this means that P(Z™' UT) = 0 so that Z7'U € K.

(ZH c'H):
ZH = PL;Z'l [ZPﬂzzAl (1127")]

Pzt (24T
Pz [ULT] = H.

n

(ZH < H): In general, let U, X € £,Z'. Then

{ZUX) = {Pez(ZU)X)
{zU, X}

{UH, Z2 XD} = {U, Z7X} D

(Use has been made of the fact that ZD = DCVZ.) In particular, if U € H, X € K, then
the shift-invariance of X implies Z*X € K, hence U L Z'X, i.e, {U,Z'X} = 0. But this
implies that ZU L X. Since X can be any element of X, ZU 1 K, hence ZH < H.

The remaining three properties (and proofs) are dual to the above. o

Canonical controller operator realizations

Let T be a given bounded linear causal time-varying system transfer operator in (M, N),
and assume that its shift-invariant input/output state and null spaces, M, Ho, K and Ko,
are known. H is such that P(£,Z7'T) = P(HT), hence the effect of any input in the past
(£>Z7") on the future output in I, is equivalently described by a (unique) representative
element X of A, called the state. The point is that 7, as a subspace of £,Z7, is assumed
to be a much smaller dimensional space than £,Z!, so that the state indeed “summarizes”
the past input. A refinement of these observations yields the construction of an operator
state-space model (since X is an operator in £,Z°!), in a way that is already familiar
from a number of other contexts (see e.g., [6, 19, 20, 21, 22]). By choosing a basis in
H, the desired result, a minimal state-space realization involving only diagonal operators,
is obtained. The realization that is obtained by choosing the state in 7{ is called the
canonical controller state realization, in analogy with the canonical controller realizations
described in Kailath [23]. Alternatively, we can choose the state operator in the output
state space, which we call the canonical observer realization. We present both solutions.

For a given input U in .t and instant k£, we have defined the past input with respect
to time instant 0 to be U, = P.,z«(U). More in general, let the past input U,y (with
respect to instant k) be denoted by Upgy = Pz (Z” kU). To obtain a canonical controller
operator state realization, define the state X; € H at instant k to be the projection of the
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past input onto H:
Xk=P7¢(Up(k))=P'H(Z_kU)E [:22_1. (351)

We use, in the following theorem, diagonal representations of U, Y € X' as in equation

(2.23), viz.
Py(Z*Uy,
Po(Z+Y).

U
Y

> ZHUw, U
> 7Y, Yy

THEOREM 3.16. Let T € U(M, N') be a given transfer operator with input state space
H. WithUe 12/"' Ye ,1'2N , let Y € ’Dé‘f and X; € 'H be given by the operator state

equations
XkC + U[k][)
where A, B, C, D are bounded operators satisfying

[A c]_[Pﬁ(zl.) Po(~7)] A: HoH C: Ho>DY

B D| | Py(zZ") P(-D B: PM>H D: DM DY
(3.53)

[Xk,,] f XA + Uy B (3.52)

Then Y= UT and Xk = PH(Up(k)).

PROOF We first show that defining ¥ by ¥ = UT and X; by (3.51) implies the realization
equations (3.52). Since Upg € L£2Z7' = H @ K, and Po(KT) = 0 by definition of K, we
have

Po(UpwT) = Po[Px(Upw)T+Px(Ups)T]
= Po( X, T).
Hence
1. Y=UT & Yoo = Po(Z+*Y)
= Po(Z—kUT)
Po [ Pr,z1(Z*NT] + Py [ Po(Z*U)T |
= Po(UppT) + Po(UT)
= Po(XiT) + Po(UyT)
= XkC + U[k]D.
2. Xt = Pr(Upsn)
P')-((Z_k_1 U)

PH(Z'lUp(k)+Z—1U[k])

Py [Z'P3(Up) + Z'Px(Upw) ] + Pr(Z7Upy)
P (Z'Xe) + Pu(Z7'Up)

XkA + U[k]B.

where in making the last step the fact is used that K is shift-invariant (Z7'K c K)
and that H L K.

mono
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To prove that the equations yield ¥ = UT and X, as specified, we first show

=Py(Z7). (3.54)
Indeed, let G, = GA”, for some G € H. Then
G =GA = Py (Z'G),
3 =GA? = (GAA
= Py(Z'Gy)

= Py [Z'Py(Z'G)]
= Py [ZPH(Z'G)+ Z'Px(Z7'G)]
= P'H(Z_ZG)

where we have used the fact that K is Z~! invariant so that Z~'X is orthogonal to . The
result on A" follows by repeating these arguments.
With this result, X, given by (3.52) is obtained as

X, = Up—)B + Up—2)BA + U[k_3]BA2 + -
Pr(Z WUy + 22Uy + - - )

= Pr(Upw),
and hence satisfies (3.51). With this Xy, Yy = Po(Z*Y) follows from Y = XiC+ UyD
by reversing the derivations of the equalities in the first step. 0O

A is the restricted shift operator in H. It is clear that || A || < I, and that if there exists an
X € 7 such that Z'X € 7, then ||A || = I. Let r(A) denote the spectral radius of A:

r(A) = lim || A"||'".
n—yoo
Since || A || < 1 we have that r(A) < I also.

Canonical controller realization

Although the above state-space description in terms of operators is the core of any state
realization, it is in its present form not yet very useful for our purposes. If we assume
the state space to be of locally finite dimension, then by choosing an orthonormal basis
representation Q in 7, it is possible to “precompute” the effect of the operators A, B and
T on Q, and arrive at a state-space description with diagonal operators A, B, C, D only.
This is demonstrated in the following theorem, where the crucial step is the definition of
A via QA = ADQ. Some care must be taken if Q is an unbounded operator on X,. It
can be shown that this happens only if r(A) = 1, and that (A) = | coincides with ¢4 = 1,
where ¢4 = r(ZA) is the spectral radius of the operator ZA. Nonetheless, Q is bounded as
a [P — X,] operator, and this property is sufficient to prove the theorem.
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THEOREM 3.17. (CANONICAL CONTROLLER REALIZATION) LetT € {(M, N) be a given
transfer operator with input state space ‘H of locally finite dimensions. Let d = s-dim (H),
and put B =C*. Let Q be an orthonormal basis representation of H: H = DEQ, Ag = 1.
Take U e XM, Ye XN with diagonals Uy = Po(Z*U) and Yy = Po(Z+Y).

Then

D= XpwA+ UgB
Y=UT RN le+i] [k] W 3.55
[ Yig X C+ UpD :33)

where

A C]_[P(Z'QQ)Y PyQD Ae DB BD)  Ce DB N)
B D |7 | P(Z'Q)  Py(D Be DIM,BY)  De DM, AN).

PROOF For a given X in 7, proposition 2.8 showed that X; can be written in terms
of the basis Q of H as Xy = XjyQ, where Xy = Po(XiQ") € DB. Starting with the
operator realization in theorem 3.16 for a certain k and Xy, write the new state Xy,.; € H
as Xis1 = Xpe1;Q. Then

Xirl =Xe)Q = XiA + UwB
= Pr(Z'Xp) + Pr(ZUy)
= Py(Z'X:Q")Q + P(Z'Uu» QHQ  [thm. 2.10]
= P(Z'X1»QQ")Q + Py(Z'UuQMHQ
= XPo(Z1'QQHQ + UYPy(Z'QHQ,
that is,

Xpap = X3 Po(Z7'QQ") + UG Po(Z7'Q).

Putting AV = Po(Z71QQ") and BV = Py(Z1Q"), i.e, A = Po(Z'QQ")Y and B =
Po(Z1Q")D, gives the first part of the result. In the same way, C = Py(QT) is derived
via
XiC = Po(XiT) = Po( Xy QT)
=Xy Po(QT).
@]

The theorem shows that knowledge of an orthonormal basis of the input state space is
sufficient to construct A and B operators, and that knowledge of the response of the
system to this basis gives the corresponding C operator. The realization corresponds to a
factorization of Hr as

“Hr = Po(-Q)YP(QD)

because Xk = PH(Up(k)) = X{k]Q with X[k] = Po(Up(k)Q*), and Yf(k) = P(XkT) = X[k]P(QT).
The realization is uniformly controllable: Aq = I. Comparing with the factorization of



3.4 Abstract realization theory 87

Hr obtained in section 3.3, it is seen that the operator Fo = P(QT) is the observability
operator. Fy is one-to-one, because

DFy=0 &  POQN=0
=S DQe K
= D=0.

Hence the canonical controller realization is observable and minimal. It is not necessarily
uniformly observable: if it is, then the range of Hr is a closed subspace (proposition
3.13), which need not be the case.

Before deriving realizations of T for more general bases in 7, and for bases in Hy, we
first investigate the canonical controller realization in more detail.

The above definition of A is connected to the definition of A via the chosen basis as
DQA = DYADQ  (any D € DE).

From A” = Py (Z™ -), viz. equation (3.54), it follows by recursive application of the above
expression that
DQA" = D™AQ  (any D e DB,

where A7H = AW ... AV Application of the projection formula of theorem 2.10, Py () =
Po(- QM)Q, results in

DQA" = Pn(Z7DQ) = Py(Z"DQQ)Q
= D"PW(Z7QQ")Q
= D®Waln}Q

which yields, because Q is a strong basis representation and the relation is valid for any
D € D%, the expression

Al = P(Z7"QQY)  (n=0). (3.56)

Hence Q and A are closely connected. In particular, it will be possible to relate the
stability properties of A to the boundedness of Q, as is shown in the following lemma.

LEMMA 3.18.  Let Q be an orthonormal basis representation of ‘H, and let the operator
A and A be as given in theorems 3.16 and 3.17. Then

I £y = r(A) < ||Al = ||lA]l £ 1,

2. Q is bounded on X; & €4 < 1.
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PROOF

1. Because the set of operators {XQ} spans H for X € DB, and since Q is an or-
thonormal basis representation, X = XQ satisties || X||us = || X ||us = || X ||as.
Hence

sup (| XA ||
Xe D§
[1X]]ms < 1

= sup | XA Qs
XeD§
1X[|ns < 1
= sup || XA" || s
XeH
IX]|as < 1
| A™ ]| (3.57)

Consequently, £4 = r(A). The relation r(A) < ||A|| is immediate, and (3.57)
specializes to || A|| = || A||. Finally, A" = P»(Z™"-) implies || A || < 1, as remarked
before.

| Azy|| = || A

2. Because we know already that £4 < 1, the proof that Q is bounded if and only if
£4 <1 can consist of the two steps,

(a) £4 =1 = the operator [I+AZ+ (AZ)* + - - -] is unbounded on D2,
(b) Q bounded = the operator [/+AZ +(AZ)? + - - ] is bounded on D% .
Proof of step 2a. By definition, £, = r(AZ) = lim ||(AZ)"||'". Because ||AZ|| <
n—yoo

1, and || (AZ)" ||'* monotonically decreases when n goes to infinity (viz. equation
(2.18)),

=1 = ||AZ"||"* = 1 (forall n)
= | (AZ)"|| = 1 ( for all n)

= sup || DAZ)*||us = 1 ( for all n). (3.58)
| D) ass1

Because || AZ|| < 1 implies || D(AZY*™ ||us 2 || D(AZ)" ||us for any D € D, we have
from (3.58) that

n
sup 3 [ DXAZ) s = sup nl| DAZY s = . (3.59)
L D
But since, for any n,

sup [ [1+AZ+AZ) + - ] |l 2 sup > I D@2 I3,
k=0
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it follows from (3.59) by taking the limit for n — oo, that the left-hand side of
the above expression is equal to infinity. This proves that [1 +AZ+(AZ)? + - - ] is
unbounded on D5.

Proof of step 2b. 1f Q is a bounded operator, then for any choice of D € D,
the operator P(DQQ") is bounded and in i,. But, using (3.56), P(DQQ") can be

evaluated as

P(DQQ") S0 Z'Po(Z"DQQ")
5o Z'DW Py(Z"QQ")
= 3 77D A{n}
D Zg’ (AZ)
D[I+AZ+(AZP+-- ] .

Hence Q bounded implies that [I+AZ+(AZ) + - -] is bounded on D;. m

The following lemma also summarizes some material from section 3.3.

LEMMA 3.19.  The realization in theorem 3.17 has the following properties:
1.

Al = PyZ7QQY),  (n>0). (3.60)
2.
OnXy,: Po(Z!' QHCY = Pyo(-[Q'A+B]
On D% . -ZQ = A'Q+-B
K ) (3.61)
On Xy : Po(-T) = Po(-[D+Q'C))
On X, ‘T = D'+-CQ.
The property on D can be extended to (dense domains in) XE.
3. Q' has diagonals (Q*)y = Po(Z7'Q") given by
o 0, i<0,
(Q )[i] = { B(,‘)A{,‘_l} L i>0. (362)

so that Q" satisfies the relation Q*Z™! = Q*A+B. The operator Po(- Q*) is bounded
on X, and has a diagonal representation, in the sease of (2.22), given by

Po(- Q") = Po( - [BZ + BZAZ + BZ(AZY + - - 1)),

4. AA+B'B=1

5. If ¢4 < 1 then the above equations simplify to Q* = BZ(I-AZ)™, so that Q" € ZU
is itself bounded on X, and Q € LZ7! is bounded on X, too.
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PROOF
1. This is just equation (3.56).

2. Substituting X = Po(Z*UQ") and Xp1) = Po(Z*'UQ") into the relation X{;}, =
XA + UyB yields Po(Z*1UQ")D = Py(Z*UQM)A + Po(Z*U)B for all U € X,
and hence

Pz - Q)Y = Po(-[Q°A+ B)). (3.63)

By taking adjoints (¢f. equation (2.37)), it is seen that Q satisfies the relation ZQ =
A’Q+B* on DJ, but by extension everywhere on X where it is bounded. From
the factorization - Hy = P(-T)| ., = Po(- Q") Fo, where Po(Fo) = C, and Po(T) = D,
the remaining two equations fofiow.

3. The above result implies Po(Z*1Q")D = Py(Z*Q")A + Po(Z*B) which is equiv-
alent to
@)l = (Q)wA +Py(Z*B) (3.64)

where of course Po(Z*B) = B (k = 0); Py(Z*B) = 0 (k#0). Since Q is a basis
representation for a subspace in £,Z7, it follows directly that (Q")y =0, (k <0).
Evaluating (3.64) for k=0, |, - - - leads to

(Q')EI]” = B = Q) = BY
Q) = Qs = (Q)y = BPAD
Q@) = @A ’21) = (Q)y = BRA*D...AD = pRAK-1

4. Combining the first two expressions in equation (3.63) and using the orthonormality
of the basis, Aq =/, gives

1= AGY

Po(QQ")Y
Po([A*Q+B"1[Q’A + B])
A*Py(QQ)HYA+ BB
A’AQA +B'B

A*A+B'B.

5. From (3.62), it is seen that we can write
Q ST ZQN)
S° ZBOAT-1}
BZ + BZAZ + BZ(AZY + - - -

if this sum converges. If £4 < 1, then the sum I+ AZ + (AZ)> + - - - converges and is
equal to (/- AZ)™, so that in this case Q" = BZ(/—AZ)™!. At the same time, this
shows that Q" and hence Q are bounded operators. o
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Property 3 is the same as equation (3.31). It has been derived here based on the definitions
of A and B in terms of Q.

Related realizations can be derived if a different, possibly non-orthogonal basis in 7 is
chosen. For canonical results, we have to require that this alternative basis is a strong
basis. The realization that is obtained in this case is linked to the realization based on Q
via an invertible state transformation.

THEOREM 3.20. Let T e U(M, N) be a given transfer operator with input state space
‘H of locally finite dimensions. Let d = s-dim(H), and put B = ce.

IfF is a strong basis representation of H, such that Ag = Po(FF*) > 0 and Ag < oo, then
T has a state realization
A C | _ [ AFPo(ZIFF* )L AF Py (FT)
B DI~ Po( Z'F* )P Po(T)
Ae DB, B Ce DB, N)
B e DM, BED) De DM, N).

PROOF The realization follows from theorem 3.16 in the same way as the realization
in theorem 3.17 was derived, but now with the projector onto H written in terms of F:
P () = Po(- F')AE' F (viz. equation (2.39)), and the choice of Xy = Po(XeF”) so that
X = Xy A'F. (Rest of proof omitted.) 0

When F is written in terms of an orthonormal basis representation Q of A,

F=R'Q

Ar =Po(FF")=R'R
(where R € D(B, B) is a boundedly invertible factor of Ay), then the above realization
based on F can be ‘normalized’ to obtain the realization based on Q via a state transfor-
mation X — X’R, where X’ is a state in the realization based on Q. That this is the case
is readily verified by the derivation

Xy = X[’k]Q Xu»R'Q
XR'RF
X[k]AI_;IF

= Py(XiF)AFF.

It can also be verified on the realizations. Let {A’, B/, C’, D} be the realization based on
Q in theorem 3.17, then e.g.,

A'=RARD

R AF! Po( Z7'FF)CD RED

R (R'R™) Po(Z'FF" )Y =1
Py(Z ' R*FF°R)D

= Po(Z1QQ")D.
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The realization based on the basis representation F of H provides a factorization of Hr
into

Hr = Po(- F)AFPFT).
The realization is uniformly controllable by construction: the controllability Gramian is
Ar > 0. Writing Fo = A;'P(FT), the fact that F, is one-to-one on D¥ is proven in the
same way as done for the realization based on Q, and hence the realization is observable
and minimal.

Using the state transformation by R, it is straightforward to derive the following equivalent
to lemma 3.19.

LEMMA 3.21.  The realization in theorem 3.17 has the following properties:
1. Al = ALPPy(ZFF), (n20).

2. 44 <1,

3.
OnXy: Py(Z' - FHD = Po(-[F*A+ B]),
onDE : -ZF = -A'F+-B*,
on Xy : Po(-T) = Po(-(D+F(]),
on X, : -T* = -D*+-CF.

The property on D, can be extended to (dense domains in) X.
4. ¥* has diagonals given by

. 0 i<0,
F )m={ BOATF1} >0,

so that F satisfies the relation F*Z' = F*A+ B.
5 A'ApA+B'B=A{V.

6. If¢4 < 1 then F* satisfies F* = BZ(I-AZ)™, so that ¥* € ZI is a bounded operator,
and F e £Z7! is also bounded.

Canonical observer realizations

In the previous section, we defined the state X at point & to be the projection of the ‘past
input’ U, = Pr,z1(Z*U) onto the input state space H. Selecting an orthonormal basis or
another strong basis produced a canonical realization which we have called the canonical
controller realizations because they are defined at the input side of the transformation by
the system 7, that is, the side at which the state is controlled. It is possible to derive
realizations based on the definition of state at the output side of the system, which will
give canonical realizations in the observer form (in which the state is observed at the
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output). To this end, define the state X, to be the projection of the past input, after
transformation by 7, onto the output state space Ho:

X, =P Up(k)T) € Ho. (3.65)

THEOREM 3.22. Let T € U(M, N) be a given transfer operator with output state space
Ho. With U e XM, ¥ e X having diagonals Uy = Po(Z*U), Yi = Po(Z+Y), let
Yy € DY and Xi € UV be given by the operator state equations

Xt = XieA+UpgB
. 3.66
[ Y[k] = Xk(, + U[k]D ( )
where A, B, C, D are bounded operators satisfying

A Cl_[ pz'y P A: Ho—Ho C: Ho—>Dy
B D| | PZ' D P B: DM —>H, D: DM DY

Then Y = UT, i.e., {A, B, C,D} forms an operator realization of T.

PROOF First assume that ¥ = UT and X, is given by (3.65). Then the realization equations
(3.66) are implied:
L. Xpr1 = P(UpgyT)
= P(P;, 2 (Z*1U)T)
= P( [Z-lpczz—l (Z_kU) +Z1 U[k] 1T)
P(Z' Uy T + Z'UpT)
P(Z—l Up(k)T) + P(Z-l Ulk]T)

= P(Z'P(U,pD) + P(Z'UpT)
= P(Z“Xk) + P(Z—l U[le)
= XkA + U[k]B.

Note: if X; € Ho, then XiA = P(Z1X;) € Hp because of the shift-invariance
property of H, (lemma 3.15).

2. Yy = Po(Z*Y)
Po(ZHUT)
Po( UpyT) + Po( Uy T)
Po(Xy) + UpgPo(T)

: XkC + U[k]D.

Let Yy be as defined in the state equations (3.66). To prove that {A,B, C,D} forms
indeed an operator realization of 7, we first show

A PZz!'-)
A?' P(Z—lp(z—l ) = p(z—2,)
= A" = PZ7").
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so that BA™ =P (Z™'P(Z"' - T)) =P(Z™ - T). Hence X; given by the state equations
is
Xe = Yo UunBA™
P30 27" UenT)
P(UpT),

according to the definition (3.65). With this X, Yjx) given by the state equations is seen to
be equal to Py(Z*Y) by reversing the line of equalities in the second item above. ]

THEOREM 3.23. (CANONICAL OBSERVER REALIZATION) Let T € U(M, N) be a given
transfer operator with output state space Ho of locally finite dimensions. Let d =
s-dim(Ho), and put B = C%. Let G be an orthonormal basis representation of Ho:
Ho = DEG, A¢ = 1. Take U € XM, Y e XV with diagonals Uy = Po(Z*U) and
Y = Po(Z*Y).

Then
~1)
= XA+ UpB
=UT [k+1] {k] (k] 3,
r=v It [ Yy = XwC+UwD, G-
where
A C | _ Po(Z GG Py(G) A € D(B, BD) Ce D(B,N)
B D | | P(ZITGHD  Py(D) B e DM, BD) De DM, N).

PROOF The proof follows closely that of theorem 3.17. For a given Xy in Ho, put
Xk = X[le, for X[k] € DZB Then

X = Xie)G = P(Z7'Xy) + PZ'UyD
= Py, (Z7'X) + Py (Z'UwT)
= Py (Z7XyG) + Py (Z'UWD)
= Po(ZlX[kIGG*)(} + Po(z—lU[k]TG.)G
= X P(Z'GGYG + URP(ZITG)G.

Hence A = Py(Z!GG*)D and B = Py(Z"'TG™)D. In the same way,

Po(Xy) = Po(Xi»G)
= X Po(G),

hence C = Py(G). ]
The factorization of Hr that corresponds to this realization is given by

Hr = Po(-TGH G
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because Y}“(k) = P( Up(k)T) = Xk = PHQ(Xk) = P()(Xk(}*)(‘r, and hence

Yigy = Upw Hr

X["] = Po(X -}*) = PO(P(UP()()T)G*)
g = Po(Up(k)TG*)
Y/(k) = X[k]G.

The observability Gramian is equal to Ag = I. The controllability operator F* is given by
F* =Pz(TG"), or F = Pz (GT"). Its kernel ker F = 0 because, for any D € D¥,

DF=0 (=4 PL;Z“ (DGT) =0
o DG e K
= D=0.

Hence, the realization is controllable (but not necessarily uniformiy).
LEMMA 3.24.  The realization in theorem 3.23 has the following properties:

LAl <1, <1,
2. G has diagonals G = Po(Z7'G) given by

. 0 i<0,
Gy = { AC 30, (3.68)
G satisfies the relations
onDy: -G = -C+-AZG,

on ;1’2 . P()( . G*) PO(Z—l . }*)(_I)A* + P()( . C*),

onXy: Po(-T) = Po(-D) + Py(Z! - GHDB*,
on Xy -T = D+ -BZG.

The property on D, can be extended to (dense domains in) X,. In the sense of
(2.22), G has (on D, ) a diagonal representation

G=C+AZC+(AZYC+---.
3. AAT+CC =L
4. If by < | then G = (I-AZ)'C, so that G € U is a bounded operator.

PROOF

1. ||A]| <1 is proven as in lemma 3.19.
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2.

According to lemma 3.15, P(Z~ "Ho) = Hy. Hence, for any D € Dy,

P(Z'DG) Py, (Z'DG)
Py(Z'DGGH G
DOPLWZ GG G
= DWADG,

(3.69)

Likewise,
P(Z"DG) P(Z'P(Z'DG))
= P(Z™'DWADG)

= ... = DmAlRG.

Since we know already that Py(G) = C, it follows that

A P(G)
AlnlC,

G = Po(Z7G)

From (3.69) it is also inferred that

DG Py(DG) + ZP(Z'DG)
DPy(G) + ZDWADG

D[C+AZG],

so that G = C + AZG. Taking the adjoint of the above expression (cf. equation
(2.37)) leads to
Po(-G*) = Po(Z! - GHTVA* + Po(- C).

The remaining two equations are proven in the same way as in lemma 3.19,

Inserting G = C + AZG into the expression for its adjoint leads to

I=Ac = Py(GG)

Po(Z1AZGG') VA" + Py CC*)
APy (GG")DA* + CC

= ANSYAT+CC

= AA'+CC.

If 44 < 1, then (/- AZ) is invertible in /4, so that

G=C+AZG & (-AZ)G=C & G=(I-AZ)'C.
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THEOREM 3.25.  Let T € U(M, N) be a given transfer operator with output state space
‘Ho of locally finite dimensions. Let d = s-dim(Hy), and put B = c’.

If Fy is a strong basis representation of Ho, such that Ag, = Po(FoFj) > 0 and A, < oo,
then T has a state realization

A c]_ Po(Z'FoF; )TVAR™ Po(Fy)
B D || PZ'TF)OAFTY  Po(T)

A e D(B,BD) Ce D(B,N)
Be DM, BD) De DM, N).

PROOF The proof follows from theorem 3.23 and follows the lines of the proof of theorem
3.20, with state transformation X = X'R, and an orthogonal basis G such that Fy = RG.
0

The factorization of Hr corresponding to this realization is
Hr = Py(-TFy) AGFy.

The realization is uniformly observable by construction: the observability Gramian is
Ar, > 0. The controllability operator is given by F* = Pm(TF(})A;(‘); the fact that ¥

is one-to-one on DF is proven in the same way as before, and hence the realization is
controllable and minimal.

LEMMA 3.26.  The realization in theorem 3.25 has the following properties:
1. €4 <1,
2. Fy has diagonals (Fo)y = Po(Z7'Fy) given by

0 i<0,
F0m={ Oic oy (3.70)
so that on DE - Ko = -C+ -AZF,,

on Xz : PU( FB)
onXy: Po(-T)
on A, -T

Po(Z! - F})DA™ + Py(-C*),
Po(-D*) + Po(Z7! - Fp)DB?,
-D + -BZF,.

The property on D can be extended to (dense domains in) X5
3. AARVA" + CC” = Ag,.
4. If by < 1, thenFy = (I-AZ)'C.
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Connection between controller and observer realizations

Because the canonical controller and observer realizations both provide a factorization of
the Hankel operator Hr, there is a connection between the two representations.

THEOREM 3.27. Given a bounded system transfer operator T € I{ with finite dimen-
sional state spaces H and Hy, let F be the representation of a strong basis in H. Put

Fo = AF'P(FT)

and suppose that ¥y represents a strong basis (Ar, > 0). Then the canonical realization
based on F (theorem 3.20) is identical to the canonical realization based on ¥ (theorem
3.25).

PROOF Let X be the state of the canonical realization based on F, and X’ be that of Fy.

We will prove that, when Fo = AF' P(FT), these states are the same. The proof hinges on
the fact that P(UpgT) = P( P (Uyw) T') by definition of . Let

[ Xk Pr(Upgy) X

X; P(UppT) X;

(according to the definitions (3.51), (3.65) leading to theorems 3.20 and 3.25). Then

X[klAI_;IF

Xi = PUpwD
P(Px(Upw) T)
P(X,T)
P(X[k]AEIFT)
X[k} AEIP(FT)
= XuFo.

If Fo is a strong basis representation, then X, Fo = XiFo implies Xy, = Xp). a

The above theorems, along with proposition 3.13, prove the converse of corollary 3.14:

THEOREM 3.28. (KRONECKER’S THM, II) Let T € U be a locally finite operator. If the
range of the Hankel operator Hy has s-dimH, = d, then there exist bounded minimal
realizations {A, B, C,D} for T with £4 <1 and A € D(B, B™V), where B =C’.

It is possible to choose the minimal realization to be either uniformly controllable or
uniformly observable, but both can occur for the same realization if and only if the range
of Hy is closed.

A generic way to choose the basis representations Q and G is obtained via a singular
value decomposition of Hy. Let T € U be locally tinite. Then there exists Q, G, Z such
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that

R DPFQ = H, Ag=1
“Hr=Po(-QHEG  with PPG Ho, Ac =1 (3.71)
z D(B,B), L =1X.

m

This factorization of Hy is obtained by computing the singular value decomposition of its
QIldthOIQ H, (as in section 3.2), putting the singular vectors whose span is the range of

H; and Hy into Q; and Gy, and putting the non-zero singular values into Zk Then Q, G
are obtained by stackmg the Q; and G; (like was done in equations (2 31) and (3.50)),
and setting £ = diag[%]~.. Since || Hell = || 2]l also ||Hr|| = ||£||. Based on the
above factorization of Hr, the factorizations corresponding to the canonical realizations
as derived in this section are

Hr [Po(- Q)] (EGI=Po(-F)Fy, (F=Q, Fo=5G)

[Po(-QHE] G=Py(-F")F),  (F'=2Q, Fj=G).

The factorization of Hy on the first line corresponds to a canonical controller realization on
Q for which Af, = i‘?, while the second factorization corresponds to a canonical observer
realization based on G and has Ag: = $2. The actual construction of the realization based
on G, according to theorem 3.23, can be done along the lines of algorithm 3.1 in section
3.2.

Anomalies
In the previous sections, some anomalies were noted:

1. The basis representations Q, G of H and H, can be unbounded, which occurs if
and only if {4, = 1.

2. Hy, H; can have ranges Ho, H which are not closed.

We show that these phenomena are unconnected, and that the second item is governed by
the singular values £ of the Hankel operator.

PROPOSITION 3.29.  Let T € I be a locally finite operator, and let its Hankel operator Hy
have a singular value decomposition given by (3.71). H and M are closed subspaces if
and only if Sis boundedly invertible, and a realization of T which is uniformly controllable
and uniformly observable exists if and only if this condition holds.

PROOF  Consider the SVD-based factorization of Hr in terms of (3.71). A realization
based on Q is uniformly controllable, and because Fy = ZG, the observabﬂlty Gramian is
Af, = 32 Hence the realization is observable. It is uniformly observable, £2 > 0, if and
only if 31 is bounded. According to proposition 3.13, this occurs if and only if H and H ¢
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are both closed subspaces. Proposition 3.13 already implied that any other realization can
be both uniformly controllable and uniformly observable if and only if these subspaces
are closed. 8]

If Q is bounded and 31 is bounded, then G and F, are bounded, because Hr = Po(- Q)EG
is bounded, and also Po(- Q") is bounded. If Q is unbounded and Z™! is bounded, then
G and Fy are unbounded.

It is however not true that Q and G bounded implies that £~ is bounded. A counterex-
ample is provided by taking

Q, G and 3 are given by

1[0 0 0 0
I o . 1 1/4
Q=10 10 . G=1 9 13

[\old
It
(=]

1

Q and G are bounded, but $-1 is unbounded. A realization based on Q yields A =0,
By =1, G, =21, Dy =0 (k= 0). Indeed, the realization is not uniformly observable.

It is also not true that £~! bounded implies that Q, G are bounded. A counterexample is
obtained by considering inner operators (operators T which are both unitary and upper).
As shown in chapter 4, such operators have Hankel matrices Hj that are isometries, so
that £ = Iz. We also show in that chapter that a unitary realization T = {A, B, C, D}
realizes a unitary operator 7. It is, however, possible to construct a sequence of unitary
matrices Ty such that £4 = 1, a trivial example being

Ck Sk * *
T, = P N Celr+ S =1,
S G

where ¢ — 1 for k — o, With Z4 = 1, Q and G are unbounded.

It has thus been shown that there is no connection between the properties £4 <1 (Q and
G bounded) and the fact that H and H, are closed subspaces (X boundedly invertible).
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As a pathological example in which some of the above-mentioned aspects occur, consider
the operator
I 12 14 18 /16
0 12 14 18 1/16
r= 0 14 18 1/16

0

T is a bounded operator: it is equal to a diagonal scaling of the bounded LTI system
Z(1 — 1222)7". One possible (SVD-based) factorization of its Hankel operators Hy is (for
k>0)

1 : 1

Ho=0p — N SRV, Y
f k\/% 1 p[ ]

S 4

where o; = Zk_\{? and p is equal to the norm of the vector [1 1/22 1/4 --.]. Each AHankel
matrix Hy has only one singular value unequal to 0, and oy — 0 if kK — o=, hence ¥ is not
boundedly invertible. Q and G follow from the above decomposition as

[ [ ]
I Ty
Vellve S
Clo v ow O G= P Yy
11110 rp 2
A AR OVE _
i : o

G is bounded, but Q is unbounded, which can be seen, e.g., from the fact that the norms
of its columns are unbounded. A realization based on G has

C = 117 , (k>0), (3.72)

so that £, = 1/2, but By = 5& — 0 (k = ) and the realization is not uniformly

controllable. A realization based on Q is

— 1 k. k
A = W;W‘?é? -1 (3.73)
Bk = Vm 4 0

and indeed €4 = 1, which was to be expected as Q is unbounded.
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3.5 STATE-SPACE ISOMORPHISMS

We now go into some details of the concept of state similarity, and the equivalence of
two state models that realize the same transfer operator. This subject has been studied for
finite dimensional time-invariant systems in, among others, [6]. For infinite dimensional
systems, the situation is more complex and a number of extra conditions have to be
introduced concerning the boundedness and closed-rangeness of the controllability and
observability operators. This theory was set up by Helton [20] and Fuhrmann [24, 19],
and explained in detail in [25]. The results are readily applicable to our context, where
instead of a time-invariant infinite number of states, we have an infinite sequence of a
finite number of states. The relevant extra concepts with regard to controllability and
observability have already been introduced in section 3.3. We follow the treatment in
Fuhrmann [25].

LetT=[55]. T = [;;,’ gj], A map R € D(B,B) is said to intertwine realizations
(T,T")if D=D’ and

B = B/RED
RA = A'RCD (3.74)
RC = ('

(Note that the property is not symmetrical.) T is a transformation of T if there exists
also an operator R’ € D(B, B) such that

B’ = BR'CD
R'A’ = AR'D (3.75)
R'C' = C

T and T’ are similar if there exists a boundedly invertible R such that R satisfies (3.74) and
R’ = R satisfies (3.75), in which case T and T’ are related by the state transformation
formula (3.13). T and T’ are quasi-similar if R is algebraically invertible but the inverse
is not necessarily bounded, that is, if R is one-to-one with dense range.

Let F and Fy be the controllability and observability operators of T, and let F’ and F;
be likewise for T’. If R intertwines (T,T’), then F = R*F’ and RF, = F/, and the
corresponding Gramians satisfy

Ar
Ags

0

R*Ap/R
RAg,R".

LEMMA 3.30. IfR intertwines (T, T’), then T and T’ realize the same operator T.
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PROOF Immediate, in view of (3.12): for k > 0, the diagonals T of T are

B!k g k1)

= B'®AGD | 4DRC
= BIORWAK-D A
= BRaAllUC,

Ty

(]

The converse of this lemma is not true, unless further assumptions are made on the
realizations T and T’, as done in theorem 3.34 below.

LEMMA 331, IfT and T’ are both controllable, then if these realizations are quasi-
similar, they are similar.

PROOF If T and T’ are quasi-similar, then there is an R such that (3.74) holds, and an
R’ such that (3.75) holds. The operator R’R intertwines T with itself, that is

B = BR'CDRED,
R'RA = AR'CDRED,
R'RC = C.

so that BOAUIIR/R = BWA-1) | Consequently, if F defined in equation (3.31) is the
basis of the input state space corresponding to the chosen realization, then F*R’'R = F*, or
F'(I-R'R) = 0, so that (/—R’R)"F = 0. But since the realization is controllable, ker F = 0,
hence R’'R = I. Similarly, follows that T’ intertwines with itself, which yields RR’ = 1.
Hence R is boundedly invertible, n)

LEMMA 3.32.  Let be given realizations T and T'. If T’ is controllable, then if R
intertwines (T, T"), it is unique. The same holds if T is observable.

PROOF If R intertwines (T, T'), then F = R*F’. If R; also intertwines, then (R—R;'F' = 0.
Since T’ is controllable, ker F/ = 0, and (R —R;)*F’ = 0 implies R = R;. m]

THEOREM 3.33.  Let be given realizations T and T’, and an operator R intertwining
(T, T").

— If R has dense range and T’ is controllable, then T is controllable. Conversely, if T
is controllable, then R has dense range.

— If R is surjective and T’ is uniformly controllable, then T is uniformly controllable.
Conversely, if T is uniformly controllable, then R is surjective.
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— IfR is one-to-one, then T observable implies that T' is observable. If T’ is observable,
then R is one-to-one.

— IfR* is surjective, then T uniformly controllable implies that T ' is uniformly control-
lable. If T’ is uniformly observable, then R is surjective.

PROOF If R intertwines (T, T'), then F = R*F’. R has dense range if and only if ker R* = 0.
T is controliable if and only if ker F = 0. If ker F’ = 0 and kerR* = O then kerF = 0
so that T is controllable. Conversely, F = R'F’ = kerF o kerR", so that if T is
controllable, then ker R* = 0. This proves the first item.

If R is surjective, then ran R = DZ. T is uniformly controllable if and only if ran [Po(-F")]
DB, Since F* = F”R, this shows that if T is uniformly controllable and R is surjective,
then T is also uniformly controllable. It also proves the converse statement.

The remaining two items are dual to the above. o

THEOREM 3.34. Let T and T’ realize the same transfer operator. (1) If T is controllable
and observable, and T' is observable and uniformly controllable, then there exists an
R € D(B,B) which is one-to-one and has dense range, and intertwines (T,T'). (2)
If in addition T is uniformly controllable, then R is boundedly invertible and the two
realizations are similar.

PROOF If T and T’ realize the same transfer operator 7, then Hr = Po(-F)Fy =
Po(-F”")F,. We first show that there exists an R which is one-to-one and has dense
range (hence is algebraically invertible) such that Po(-F*) = Po(-F")R and RF, = F;.

Indeed,

F'Hy Po(F'F""YF} = Ap/F,

Po(F'F")Fo.

Hence F = RF, with R = A\ Po(F'F"). Because T’ is observable, ker R < ker F{ =0 and
R is one-to-one. Inserting the expression for F| into that of Hr yields Hy = Po(- F)Fy =
Py(-F'")RF,. Because T is observable, Py(-F*) = Po(-F")R and F = R'F’. Because F
is controllable, ker F = 0, and hence ker R* = 0 so that R has dense range.

It remains to show that R intertwines (T,T’). Firstly, RF, = F; implies RC = (.
Likewise, Po(-F*) = Po(-F'*)R implies B = B’R"V. Finally, again using this relation and
F* = BZ+F"AZ (¢f. equation (3.39)) gives

AP Py(Z'F/F*)CDRED

= AZPy(Z'F'F)Y

= A§/Po(Z'F'[BZ+F AZ)V
= AFPo(Z'F'F'AZ)Y

A'RED
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AR Po(F'FHA
RA.

If T is also uniformly controllable, then DB = ranPy(-F*) = ran Po(- F'*)R. Because
ran Po(-F'*) = D¥ also, it follows that R is of full range. Because R is also one-to-one,
it is boundedly invertible and the two realizations are similar. a

A dual result holds if T is uniformly observable. A consequence of this theorem is that
all uniformly controllable minimal realizations are similar, and all uniformly observable
minimal realizations are similar. Theorem 3.33, in addition, yields that a uniformly con-
trollable realization is similar to a uniformly observable realization only if H 7 has closed
range, so that the realizations are both uniformly controllable and uniformly observable.

An example of the latter situation is obtained by taking canonical SVD-based realizations,
as before:

Po(-F”) F}, (F'=2Q, F} =G)
Po(-F) Fy, (F=Q, Fo=2G).

Hr [Po(- Q)] G

[Po(- Q)] EG)

The intertwining operator between the realizations is given by R = £. Hence R is a
state transformation only if T is boundedly invertible, that is, if H7 has closed range. In
this case, both realizations are uniformly controllable and uniformly observable: the first
realization has Af = 22, Ag; =1, while the second realization has Ap =1, Ag, = 32,

Finally, we remark that if two realizations T and T’ are similar with similarity transfor-
mation R, then A’ = RAR™D. As noted in equation (3.14), ¢4 = ¢4, so that the two
realizations have the same stability properties. However, if the two realizations are not
similar (the intertwining map R is not boundedly invertible), then it is not necessarily true
that 4 = f4,. An example of this was given in the previous section, equations (3.72)
and (3.73). This effect is comparable to what occurs in infinite-dimensional LTI system
theory, where it was noted that for infinite-dimensional systems, minimal realizations of
the same system do not necessarily have A-operators with the same spectrum [25].

Finally, we remark that, even in cases where R is not boundedly invertible, it is still
possible that RAR™CY and BR" are bounded. For example, the canonical controller and
observer realizations are connected to each other via a state transformation R = £, and
both are bounded realizations even if £ is not boundedly invertible. For time-invariant
infinite-dimensional discrete-time systems, it was proven by Young [22] that also a state
transformation by $12 (which will lead to balanced realizations: realizations with equal
and diagonal controllability and observability Gramians) give bounded realizations. We
expect the same to be true in the time-varying context.
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3.6 DISCUSSION

Historical notes

The concept of state originated as an abstraction of computer memory in automaton
theory [26]. It entered system theory in the late 1950s when the connection with first-
order differential equations became clear. During the 1960s, much effort was put into the
construction of state models for continuous-time LTI and LTV systems specified by their
impulse response (‘weighting pattern’) H(7, 7), such that y(z) = f H(t, Du(7r)dr. Among
the initial results was the proof that realizability is equivalent to the separability of the
impulse response matrix into H(z, 7) = ¥()O(7). However, the effective construction of
this factorization was difficult, and even not always possible, and the direct realizations that
were produced were not always asymptotically stable [27]. For LTI systems, state-space
realization synthesis began with the work of Kalman and his co-workers [28, 5, 6], Gilbert
[29] and Youla [30]. The use of the Hankel matrix, which does not require a separable
form of the impulse response matrix, resulted in the Ho-Kalman algorithm [5], which
was independently obtained by Youla and Tissi [31]. For continuous-time time-varying
systems with a constant system order, a realization theory was developed by Silverman
and Meadows [32, 33, 34]. Controllability and stability issues were treated also in [35].
Kamen extended Kalman’s algebraic module theory to incorporate a continuous-time pure
delay operator [36, 37}, and considered the realization by state-space models of systems
Ay(?) = Bu(t), where A and B are matrix polynomials in the differential operator p and
unit delay operator d. For time-varying systems, these results could be extended by using
a non-commutative ring of polynomials [38].

Discrete-time realization theory for LTV systems started its development in the 1970s
with the work of Weiss [39] and Evans [40]. The concepts of controllability, observabil-
ity and minimality were defined (see also [41]), but the realization theory was limited
to state dimensions of constant rank. An algebraic approach was followed by Kamen,
Khargonekar, and Poolla [42, 43, 44], who defined time-varying systems via modules of
non-commutative rings of polynomials acting on signals in £ ..(Z). Many definitions and
results in [43] can be translated directly into the diagonal algebra considered in this thesis:
instead of Z, two operators z and o are used, where ¢'is a time-shift operator on sequences,
and z is an algebraic symbol. The description of objects using z and o is equivalent to
our description of diagonals and polynomials (in Z) of diagonals. The aspect of varying
state dimensions was generalized only morevecently in [1], and in parallel in a realization
theory for lower triangular block matrices by Gohberg, Kaashoek and Lerer [31, in which
again operators on £.(Z) were considered. As discussed by Murray in [2], operators on
L.. in their generality do not have an adjoint operator. As a remedy, he defined a ‘crossed
product’ algebra as a subalgebra of operators on L., such that an involution (*) can be
defined, and proved some aspects of state realizations in that algebra.

In a parallel evolution, mathematicians and ‘fundamental’ engineers considered state-
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space theory for operators on a Hilbert space. Besides the mathematical elegance, Hilbert
space theory seemed necessary to incorporate infinite dimensional systems in a state space
theory. Such systems arise in a natural way in the time-continuous context of systems
which contain ‘pure delays’, e.g., networks with lossless transmission lines. Scattering
theory for such networks was developed by Phillips and Lax [45], but without using
state-space theory. Connections between the fields of Hilbert space operator theory (in
particular the work of Sz.-Nagy and Foias [46] and network synthesis were made by
Livsic in 1965 in Russia and with other viewpoints by Dewilde [47 ], Helton [48, 20, 49]
and Fuhrmann [50, 51, 52, 25] in the U.S.A. These efforts put the algebraic realization
theory of Kalman into the Hardy space context of shift-invariant subspaces a la Helson
[53], Beurling-Lax representations of such subspaces by inner functions [54, 55], and
coprime factorizations. More recently, additional results on this type of realization theory
(the existence of balanced realizations for infinite-dimensional discrete-time systems) have
been obtained by Young [22]. These ideas and results on infinite-dimensional realization
theory of operators in Hilbert space are fundamental to the time-varying realization theory
as treated in this chapter, and to a number of results in the chapters to come.

Finally, one different but related approach to the time-varying realizations of operators in
Hilbert space is the work of Feintuch and Sacks [21]. Their theory is based on a Hilbert
space resolution of the identity in terms of a nested series of projectors that endow the
abstract Hilbert space with a time structure. The projectors are projectors of sequences
onto the past, with respect to each point & in time. With the projectors, one can define
various types of causality, and the theory provides operators with a state structure via a
factorization of the Hankel operator, which is also defined in terms of the projections.
Many of the issues mentioned in the present chapter are also discussed in the book [21],
but in a different language.

Computational issues

We mention some issues related to theorem 3.1 and the corresponding realization algo-
rithm, which are of some importance for a practical implementation of the algorithm.

Let T be a given upper triangular matrix, and consider its sequence of Hankel matrices
{Hy}, where Hj has rank di. If for each Hy a submatrix H, is known such that rank(H,) =
di also, then it is possible to determine a realization of T based on factorizations of
the H, rather than factorizations of H,. This generalization of the time-invariant analog
[56] is useful since it can yield considerable computational savings if the H are small in
comparison with Hy. A remaining practical problem is how to obtain the A, in an efficient
way, because, unlike the time-invariant case, T need not be diagonally dominant even if
its Hankel matrices have low rank, so that the ﬁlk can still be matrices of large size. A
trivial example of the latter is provided by taking T to be an n X n matrix consisting of
zeros, except for the (1, n)-entry.

In this section, we use the matrix =, := ([, 0 0 ---] to select the first r rows of a matrix
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Figure 3.4. Relation between H; and Hy,;.

at its right. We use, as before, the notation Hf~ to denote Hy with its first column deleted,
and let t denote the generalized (left or right) inverse of a matrix. The following result
(and proof) can be found in [3].

THEOREM 3.35.  Let T be an upper triangular matrix with Hankel matrices Hy having
rank dy. For each k, suppose that the numbers r(k) and c(k) are such that the submatrices
H, = m(k)Han(k) has rank di. Let H; = C,Oy be a factorization of Hy into minimal rank
factors. Then a realization of T is given by

A = Clﬁk,kn@T, Ce = Opm,
By = mCy, Dy = Ty,

where Hye1 = mgHE e 1)

PROOF A diagram of the relations between Hj, Hy., and Hyy,, is provided in figure 3.4,
The proof consists of two parts. We first verify that H, has a minimal factorization into
rank dy factors C; and Oy such that

8k = ﬂ',(k)Ck, @k = Okﬂ;(k) . (3.76)

Indeed, let Hy = (,kOk be a minimal factorization, then Hk = m(k)Hk o = (n,(k)ck)(Ok (k)).
Because rank(Hy) = dy also, it follows that 7,,Cx and O, T are full rank factors of Hy,
so that these are related to the given factorization Hk = (,kOk as (,k = (n',(k)ck)Rk and
Oy = R} ((91c Tw)» Where Ry is an invertible state transformation. Putting Ci = CxRy and

Ok = R Oy gives (3.76).
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The second step is to verify that {Ay, By, Ci, D¢} is a realization of T. This is done by
proving that this realization is precisely equal to the realization based on the full-size
factors C; and (%. The main issue is in proving that A, = CJHSCO! is equal to A;.
Expressions for these generalized inverses are

¢l = Clmg
OII = ﬂZ@OI

hecause CJCx = ClmuyC = CICx = 1y, and likewise for Of. Hence A, = CIHy O]
(’:’lﬂr(k)H;—ﬂ:(kl\@l = (A/’,TCI:Ik,kH@]I = Ak. With less effort, it follows that By = mCy
m n,(k)Ck = m(,’k = By, and likewise Cy = Cy. O

The content of the theorem is such that we can work with finite matrices without loss
of accuracy, as long as we are sure that the finite Hankel matrix has a rank equal to the
actual system order at that point. Hence, a remaining problem is to obtain the submatrices
{I:Ik} as required in the theorem. If, for some &, the submatrix Hy of rank di is known,
then it is possible to determine the next submatrix Hy,, iteratively in a number of ways.
One solution is as follows. For ease of description, the single-input single-output case is
considered, so that the rank of Hy, differs at most 1 from the rank of Hy.

1. Remove the first column of I:Ik, and add a new row on top. This is a skeleton for
Hy.1, but its rank might be too low (by 1 in the scalar case).

2. Add columns until the rank of the matrix increases by 1. This might not occur, in
which case we try to remove as many columns from the right side without decreasing
the rank.

3. Finally, try to remove as many of the bottom rows without decreasing the rank of
the matrix.

An important step in such an updating scheme is the determination of the rank of a matrix
that differs from the previous one by a column or a row. Since, in the end, we also need
a factorization of the matrix, it makes sense to combine the determination of the rank and
the factorization of the new matrix. The combination is provided, for example, by an SVD
updating scheme for computing the SVD of A = [A; b] from an SVD of A; (updating),
or for computing the SVD of A, if the SVD of A is known (deflation). Algorithms to do
this are known (see e.g., [57]); they require O(n?) operations for matrices of size n x p.
Since the SVD is rather expensive to update, it might be useful to consider other types of
decompositions. In [18], Stewart introduces the URV decomposition of a matrix, along
with updating schemes. The URV decomposition of a matrix A is not unique; it is a

decomposition of A into
A= U[ k- F J v

0 G



110 Realization Theory

where R and G are upper triangular, R is invertible, and F and G are small in norm. In
principle, F and G are to be equal to 0, but the URV decomposition is designed to be
‘rank revealing’, which makes it robust in the presence of numerical errors. The notions
of ‘small’ and ‘invertible’ must be made more precise. With g1 = -+ 2 0 > Op1 2 -+ - 2
Op, it is required that gy is large compared to o1, the smallest singular value of R is
approximately equal to oy, and || F||} +|| G ||} ~ o}, + - - + 0. The user must furnish
a tolerance to distinguish ‘small’ from ‘large’ singular values, i.e., specify the maximal
condition number of R. The URV decomposition is cheaper to update than the SVD, since
R need not be made upper triangular. The algorithm described in [18] is of order O(n?).
A crucial step is the estimation of the condition number of an augmented matrix. An
overview of numerical algorithms to carry out this estimation is described in [58]. Such
algorithms also typically require O(n?) flops.
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Chapter 4

INNER OPERATORS

4.1 REALIZATION OF INNER OPERATORS

An operator V € X is an isometry if VV* = I, a co-isometry if V'V = 1, and unitary if both
VV* =1and V'V =1, or V! = V*, Equivalently, an operator is an isometry if its domain
and range are closed subspaces in A, and if inner products are conserved: for F,G e X7,
(FV, GV)us = {F, G)ps, or {FV,GV} = {F, G}. An operator is inner if it is both unitary
and upper. Systems described by isometric or inner operators are interesting for a number
of reasons. For example, isometric systems satisfy an energy conservation property: let
UYe X,

it VW=l then Y=UV = ||Y|lus=|Ulas
if Vvv=] then Y=UV = H Y“H_g = H U”HS.

Another elementary property is that they leave orthogonality intact:

it vw=1I then X1lY e XV1iyv
it Vvv=l then XL1Y & XV LYv:.

If V is an isometry, then it maps closed sets into closed sets, since distances between
elements of the set are preserved.

For finite matrices (operators in L/(M, ) with index sequences that vanish outside a
finite interval), a non-trivial inner matrix is possible only if the dimensions of M and N
are varying. This is because a scalar upper triangular and unitary matrix is diagonal.

Let V = [4 ] be a realization operator. The realization is called unitary if VV* =/ and

V'V=1l

We first show that if an operator is inner and locally finite, then it has a realization that
is unitary. Conversely, if a realization is unitary and has ¢, < 1, then the corresponding
transfer operator is inner. With these results, we look at certain standard factorizations of
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transfer operators 7. The first factorization that we consider is what we call the external
(or inner-coprime) factorization: factorizations of the type

T=A'V

where V is inner and A € /. In this factorization, V captures the output state space of
T: Ho(V) = Ho(T). Because of this property, inner operators play an important role in
the derivation of reduced-order models discussed in chapter 6. The factorization can be
derived in two ways: via a constructive proof using realizations, and in a very straight-
forward way via a generalization of the classical Beurling-Lax theorem to the present
context. This theorem also provides a second factorization: the inner-outer factorization

T=TV

where, again, V is inner, and Tp € i is outer: it satisties the range condition Uy To = .

For time-invariant single-input single-output systems, the inner-outer factorization is a
factorization of an analytical (causal) transfer function T(z) into the product of an inner
and an outer system: T(z) = V(z2)To(z). The inner factor V(z) is analytical (i.e., has its
poles outside the unit disc) and has modulus 1 on the unit circle, whereas the outer factor
To(z) is analytical and may have zeros outside the unit disc only.! Such functions are
called minimum phase in engineering. For example, (with |e], 18] < 1)

Zz—a* _ zz—a‘ . l-az
1- Bz l-az 1-Bz°

The resulting outer factor is such that its inverse is again a stable system, provided there
are no zeros on the unit circle. For multi-input multi-output systems, the definition of
the outer factor is more abstract (see e.g., Halmos [1]) and takes the form of a range
condition: To(z) is outer if To(z)H2 = H?, where H? is the Hardy space of analytical
m-dimensional vector-valued functions. A generalization of this definition applies in the
time-varying context.

The existence of inner-outer factorizations in any context is more or less fundamental to
analytical Hilbert spaces. There are abstract mathematical formulations of it which also
apply to the time-varying setting (for example, [2, 3]), but a computational scheme acting
on state-space realizations was still lacking up to now. One of the aspects of time-varying
systems is that the state dimension can vary, and therefore, the number of ‘zeros’ in the
inner and outer factors can vary, too. The theory in this chapter handles such variations
automatically.?

An application of the inner-outer factorization is the computation of inverse systems: itT
is a causal and invertible system, then its inverse is not necessarily causal: the inversion

'Here, we use the mathematical convention to write the z-transform as a series in z rather than z -,
2The material in this chapter has been submitted for publication in [4 ].
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might have introduced an anti-causal part. This effect is known as a dichotomy; it is in
general not a trivial task to determine the causal and anti-causal parts of 77!, With the
inner-outer factorization, however, the inverse of the outer factor is again causal, whereas
the inverse of the inner factor is fully anti-causal, and determines which part of the inverse
outer factor is made anti-causal. This application of the inner-outer factorization plays a
crucial role, e.g., in the computation of optimal feedback controllers [5]. This application
is briefly discussed in chapter 10.

State-space properties

For an operator T € {{, we defined the input/output state and null spaces in chapter 3
in terms of the ranges and kernels of the Hankel operator Hr and its adjoint (equations
(3.45), (3.47):

K(IN = Ker(Hy) {Ue L,Z71: P(UT) =0}
H(T) = ran(Hy) Pe, 2 (UoT)

Ho(T) = ran(Hy) = P(L,Z7'T)
Ko(T) ker(Hy) = {Ye U, :P(YT)=0}.

These subspaces provide decompositions of £,Z! and U, as

HTD ®© KM L7}
Ho(T) @ Ko(T) = U,.

For inner operators V, the null spaces take on a more specific structure.

PROPOSITION 4.1.  Let V e U be an inner operator. Then

K(V) Lzt v, H(V) L2270 & L7270 v
Ko(V) UV, Ho(V) Uy & UV,

H and Hy are closed subspaces.

PROOF In general, for a bounded operator, X,V < X,. From VV* = [, it follows that
Xy = LV = (L2Z7' @UL)V*. Because V'V =1, L,Z7'V* LU, V7, so that

Xy = L7V @ ULV,

Both £,Z7'V* and U,V are closed subspaces, and because V € U, (Z'V*' < £,Z7).
Projecting onto £,Z7! yields that

Pr LV = L7706 L7V
is a closed subspace, so that H is closed. Hence

L2770 = L,77'V @ H, @.1)
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so that K = £,Z7'V*. The result on Ko follows in the same way by dual arguments.

O
COROLLARY 4.2. Let V € U be an inner operator. Then
Ho = HV
H = HoV.
PROOF From (4.1), it follows immediately that
L2 @ HV = L,Z7'V.
Hence HV c U, and HV = P(L,Z7}V) = Hy. Dually, we have that H = HoV". 0

For general operators 7, we had already that Ho = P(HT). The fact that, for inner
operators, Ho = HV shows that the Hankel operator of V, Hy, satisties - Hy = -V on H.
Since -Hy = 0 on K, it is seen that Hy is an isometry. Consequently, its non-zero singular
values are all equal to 1: £ in the SVD-based factorization Hy = Py(- Q‘)f:(} (equation
BI)is =1,

COROLLARY 4.3. Let Ve U be a locally finite inner operator. If Q is an orthonormal
basis representation of the input state space H of V, then G = QV is an orthonormal basis
representation of its output state space Ho, and the canonical controller realization based
on Q (theorem 3.17) and the canonical observer realization based on G (theorem 3.23)
are equal.

PROOF According to theorem 3.27, a basis of H is obtained as Fo = P(QV). Because
Ho = HV, it follows that Fg = P(QV) = QV = G. G is an orthonormal basis of Ho,
because Ag = Po(QVV' Q") = Ag = I. The canonical realizations are obtained from
theorems 3.17 and 3.23, respectively, as

_ [ P(Z7QQ)TY Py(QV) ;[ Po(ZIGGHY Py(G)
V= pzi) ) Baw) ] and V7 = [PO(ZIV(:;*)<—” Po(V) } 4.2)

The fact that both realizations are equal follows directly by inserting G = QV. a

If V is not inner, but rather an isometry, then the properties listed in proposition 4.1 and
corollary 4.2 hold only partially:
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PROPOSITION 4.4, Let Ve . Then

Ko = UV @ ker(-V'|, ),
ker(-V*|, )=0 = Visinner
VW=l = Uz’
H = HV*
\ LV = Uy @ H
(K = L2V @ ker(-V|LZZ4).
VY=l = ker(-V|Lzz_ﬁ=0 = Visinner
Ho = HV
[:?_Z_IV = £22‘1 @ ﬁo

PROOF Let VV* = 1. Because V is an isometry, the subspace A,V = ran(V) is closed.
Because oV = L,Z7 1V @ U, V, both i,V and £,Z7'V are closed subspaces.

U2V < Ko, because P, ([2V]1 V') = 0. The remaining subspace Ky & 4,V consists of

elements

Ko & UV {(Xelh:Prz1(XV)=0 A PXV")=0}
{Xe l: XV =0}

ker( - V*}le).

Hence Koy =,V @ ker(- V* |z42)'

To prove H = HyV*, take U € £,Z7'. Then UV = U, + Y, where U; € £,Z7! and
Y = P(UV) € Hy c Us. All of Hy can be reached by Y if U ranges over £,Z7\.
Multiplication by V* gives U = U, V*+YV*, and since V* € L, it follows that YV* € £,Z7!,
and this is true for all Y € Hy. Hence HoV* < £,Z7! and also

HoV* < L2771,

Since H = P,z (U V*) = Ppz1 (Ho V'), we obtain H = Hy V™.
The expressions for Hy and Ko combined give

Uy = Ho ® thV ® ker(-V'|,,)
hence UL V™ = HoV* +Us. Because HoV* = H € £,Z7), the two components are actually
orthogonal.
If ker(-V* |uz) =0, then

Xelh, XV=0 = X=0.
This implies

XeZmU, XV'=0 = X=0 (al ne Z),

since (Z"X)V* =0 & XV* = 0. Letting n — o yields ker(- V*) = 0, so that V has a left
inverse, which must be equal to the right inverse V*. Hence V'V =1 and V is inner.

Dual results hold in case V'V =1. 0
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Unitary realizations

The purpose of this section is twofold. We show that (i) if a locally finite operator V
is inner, then it has a unitary realization V (which is obtained by a canonical realization
based on Q or G); and conversely, (if) if V is a unitary realization with £4 < 1, then the
corresponding operator V is inner.

THEOREM 4.5. Let V € U be a locally finite inner operator. Let Q be an orthonormal
basis representation for H(V).

The canonical controller realization V based on Q is unitary (VV* = I, V'V =), and
identical to the canonical observer realization based on G = QV.

PROOF Let V be given by the canonical realization (4.2). This realization satisfies the
properties (lemma 3.19):

7ZQ = A'Q+B", 4.3)

A'A+B'B = 1. (4.4)
Po(-V) = Po(-[D+QC))

V' = D'+CQ. @.5)

To verify that V'V =1, we have to show the following three relations:
A'A+B'B 1
C'C+D'D I
A'C+B'D = 0

A"A+ B*B = I is equal to equation (4.4). To prove C*C+D*D = I, use equation (4.5) and
the fact that Q is strictly lower:

P(V'V)=1 = Py([D"+ C'QIID+Q’(])
= D'D+C'Py(QQ") C
= D'D+C'C =1

To prove A*C +B*D =0, use Py(ZQV) = Py(ZG) = 0 and equations (4.3), (4.5):
Py(ZQV) =0 = Po([B* +A™QIID+Q'C])

B*D+A'Py(QQ") C
B'D+A'C = 0.

Hence V'V = . Dually, we have for the realization V' in equation (4.2) the properties

listed in lemma 3.24;
G = C+AZG, 4.6)

AA" + CC* = 1.
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Po(- V) Po(-D*) + Py(Z7! - GHDpr
V = D+ BZG.

4.7)

We have to show V'V* =], ie.,

AAT + CC* = ]
BB + DD* = [
AB* + CD* = 0.

The first equation is again immediate. To prove BB* + DD* = I, use (4.7) and VV* = I

P(vWv=1 = Po([D + BZG) D") + Po(Z"'[D + BZG] G*)-DB*
= DD* + BPy(GG"D B*
= DD*+ BB =1.

Finally, to prove AB* + CD* =0, use Po(GV") = Po(Q) = 0, and equations (4.6), (4.7):

Py(GV)=0 = Po( [C+AZG] D) + Po(Z7V[C + AZG] G*)“VB*
= CD* + APy(GG")VB*
= CD"+AB" = 0.

Hence V/V'™ =1, Since V=V’ if G = QV (corollary 4.3), it follows that V is inner.
0O

The converse of this theorem is in general true only if, in addition, £4 < 1. If {4 = 1, then
additional assumptions on the controllability and observability of the realization must be
made.

THEOREM 4.6. LetV = [ 2 IL) be a state realization of a bounded transfer operator
V. Let Ar and Ay, be the controllability and the observability Gramians of the given

realization. If £4 < 1, then

V'V =] = Viv=1I Ar=I, 4.8)
Vv =7 = V=1, Agp,=1. )
If ¢4 <1, then
V'V=I, Ap=1 = Vv=1,
VV =1, Ag, =1 = VW =1,

PROOF 1If 44 < 1, then V'V = [ implies a.0. A*A + B'B = I. This expression can be
compared with the Lyapunov equation for F: A*ApA + B'B = ALV, Since #4 < 1, the
equation has a unique solution, which must be Ag = 1. A dual result holds for Af, in case
VvV =1,
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Assume V'V =] and A = I. Since it is an orthonormal basis, we write Q for F from
now on. Equations (4.5) hold:

Po(-V) = Po(-[D+QCD)
V' = D +CQ.

To show V*V = I, we show that Po(Z"V*V) is = I for n = 0, and = 0 otherwise. For n = 0:

Po(V'V) = Po(ID"+C'QI[D+QC))
= Po(D'D) + Po(D*Q"C) + Po(C*QD) + Po(C'QQ7C)
= D'D+C'C = 1.
For n> 0,
Po(Z"V'V) Py(Z"[D* + C*'QI[D+Q’C])

Po(Z"D*D) + P(Z7D*Q*C) + Po(Z7C*'QD) + Po(Z7C*QQ"C)

Using equations (3.60) and (3.62), viz.

Py(z7QQ") = Al (n20)
Py(Z7Q) = B®WAl-1 (n>0).
gives
Po(Z"V'V) = 0+ 0+ D@WBWAUIYIC 4 C*®WAlnIC
= [D'B+ CAI™Al-IC
= 0.
Taking adjoints shows that Po(Z™V*V) = 0 for n <0, too. Hence V'V =1
The fact [VV" =1, Ag, =1] = VV* =1 can be shown in a dual way. a

If ¢4 < 1, then more elementary means suffice to verify the theorem: one can evaluate
I-V*V and I—- VV*, The proof goes as follows.

I-V'V = I-[D+BZ(I-AZ)"'C|[D+ BZ(I- AZ)"\ C]
= I-D'D - C*'U-Z'A")"'Z'B'D - D*BZ(I-AZ)"'C
- C'I-Z'A*Y'Z’B*BZ(I- AZ)"'C
= [-D'D + C*U-Z'A)Y'Z’A’C + C'AZU-AZ)Y'C+
- C(I-Z'AY'Z{I-A"A} Z(I - AZ)"IC
= C'C+ CU-Z'AYZA +AZ- - A AZ}(I-AZ)y'C

since B*D=—-A*C, B'B=1—-A"A and - D*D = C*C, and hence

-y

CU-Z AU -Z'AI-AZ) +
+Z'A + AZ—- - T'A'AZ} (I - AZ)'C
0.
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Figure 4.1. A lossless realization.

I-VV* =0 is verified by an analogous procedure.

Theorems 4.5 and 4.6 have an interpretation in terms of conservation of energy, and
these interpretations lead to alternative proofs. Let V be a realization for some bounded
operator, such that VV* = 1. With [X{.}}, Yug] = [Xjq U]V, this property ensures that,
for each £,
-1
| Xy Yialllis = 1 Xy U Ifs (4.9)

Summing this equation over all & yields
Yl + 1 X s = 1) Ullzs + 11X s

If £4 < I, then X € X so that || X ||}5 < e, and it follows that || Y ||gs = || U||us, so that
VV" = I In the case where ¢4 = 1, || X||%s can be unbounded: energy can remain in the
state X for k — oo, s0 that the system is not lossless. If the realization has observability
Gramian equal to /, this can in fact not occur, but observability cannot be determined
from AA*+ CC" =1if ¢4 = 1.

An alternative proof of theorem 4.5 is as follows. Let VV* =1 and let V be a realization
based on an orthonormal basis representation G. As in equation (3.36), see figure 4.1,
the computation of ¥ = UV can be split into a past and a future part, according to the
decomposition U = U, + Uy € L2Z7' @4y, and a similar decomposition of Y. The state X[
is given by X|p) = Py(U,VG®). We show that the energy conservation relation between
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the past and future parts can be expressed as

“ UP Hgis ” YP “2—15 + ”X[U] ”2-15 (4.10)
I Yrll7s Ul + 11 X0 lls

Indeed, the first equation can be proven by taking U = U, (Ur=0). Then ¥ =Y, +
Y = ¥, + X, 50 that | Y2 = [| ¥, |2+ | IR = || Y, [P + || X . Since VV* = 1,
| Y]|? = || Uy ||*>, which proves the first equation in (4.10). The result also holds when
Us#0, because the realization is causal. The second equation is derived in much the
same way: Yy = P(U,V) + UyV. Because P(U,V) = X|0/G € Ho and UsV € Ko, these two
components are orthogonal and || ¥f||? = || Xjo ||* + || Ur||*-

Equation (4.10) is obtained for a decomposition into past and future parts with respect to
the O-th diagonal. Generalizing for the k-th diagonal, equation (4.9) can be obtained by
taking differences between the relations at point k and at point k+ 1. Since the realization
is minimal, Xp can take on all possible values: [Xj) Upl is full range. Then (4.9)
implies VV* = 1.

Example

As an example, let Ve U(M, N) be given by
'boo 0 0 0 -]

0 4 #M
0 0 d by 0 0O -
v=| . . =7 o #A

0 0 0 O dy by - #B

H

—_—
S — —
——
O = -
_——_

—

n
e
S==

where d,2 + b,? = | (the underlined entries form the main diagonal). V is an isometry:
VV* = [. It has an isometric realization, VV* = I, given by

V= [?1_’7] (even i), V= [A*L] (odd i).

See figure 4.2. Let b; — 0, for i — . Then the output state space Ho(V) = P(L:Z7'V) s
not a closed subspace: it is the range of the Hankel operator Hy of V, with snapshots
by O
(Hy):i=0 (eveni), (Hy=| 0 0 (0dd i).

The row range of (Hy); determines i-th slice of Ho(V). For odd i, the Hankel matrix has
rank 1, but the range of the whole collection is not closed because b; — 0 but never
becomes equal to 0.
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Figure 4.2. A simple isometric system.

V can be extended to an inner operator V, by adding extra inputs. This is straightforwardly
done by completing each realization matrix V; to a unitary matrix W;, which yields

(eveni),  W;= [#] (odd i).

0
0 ...
— My = 202020..]
W= 0 0 d& b 0 - BNy = (111111 ..]
0 0 b —d O #8y = [010101 .-,

W satisties WW* = Iy, and W'W = I;,,. Its output state space is closed, and it is the
closure of the output state space of V: Ho(W) = Ho(V). Indeed, the snapshots of the
Hankel operator of W are given by
bia
d

0
0
0 (odd i),

(Hw),‘ =0 (even l), (Hw),' = 81

and each odd Hankel operator snapshot has one nonzero singular value, equal to 1.
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4.2 INNER FACTORIZATIONS

External factorization

Let T € U be some transfer operator. We call an external factorization a factorization of
the form
T =A"V,

where A = VI" € I and V € I{ is an inner operator. The factorization is such that V is
the inner system (of smallest possible degree) such that A = VT™ is upper. We show that
if T has a locally finite state space and has a uniformly observable realization for which
44 < 1, then such a factorization exists and can be readily computed from this realization.
V has the same output state space as 7. However, if {4 = 1, then if V is constructed in
the same way, it can happen that it is isometric rather than inner. An isometric V is not
acceptable: although A = VT is upper, T# A"V. The coanstruction of an inner V that meets
both conditions gives systems with have a larger state space than 7, and presumably V is
not locally finite.

The external factorization is a ‘poor man’s’ coprime factorization (or stable-proper fac-
torization). For example, a left coprime factorization of 7€ X is a factorization

T=M!N, MNell,

such that [M N] has a right inverse in /. Without the latter constraint, the connection
for Te U is trivial: take M=I, N=T. For Te L, let T; = T" € {4, then an external
factorization gives

T1=AU = T=UA

so that T = M~'N with M = U, N = A. The omission of the constraint that [M N] has a
right inverse in {/ makes the external factorization easier to compute. We show later in
this section that the factors A and U can be such that they are inner coprime, i.e., such
that they do not contain common inner factors. In this case, the external factorization can
be called an inner-coprime factorization [6]. Time-varying coprime factorizations have
been reported in [7, 8, 9].

To obtain a better understanding of the external (inner-coprime) factorization, consider
the scalar time-invariant case. Let

-
T=—+, LA < 1.
g A

Then T has an inner-coprime factorization as

i
Y

- z-f A_l—az

T=A"V= : , = s .
z-p 1-f 1- A -4
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Hence the poles of T are collected in the inner factor V. These poles also appear as poles
of A, unless they are matched by complementary zeros of T.

The following simple observation is crucial in the computation of the inner factor.

PROPOSITION 4.7.  Let be given operators T € I and V € U. Then A := VI is upper if
and only if U,V < Ko(T).

PROOF Ae U & Pgzi(lhrA)=0. Substitution of A= VI~ yields

Pp,z1(UhA) P,z (UVT)
c Prz1(Ko(DT)

= 0.

O

Ko(T) is the largest subspace in /4> which is mapped by T™ to upper. Hence the system V
of lowest complexity such that A = VI™ € I{ is obtained if 4,V = Ko(T). If V is inner, then
from proposition 4.1, we have that Ko(V) = if,V, which provides the following additional
result.

COROLLARY 4.8.  IfV is inner, then A = VI* is upper if and only if Ho(T) < Ho(V).

The next step to prove the existence of the external factorization is to construct an operator
V such that ¢,V < Ko(T), or, assuming V can be inner and in view of proposition 4.1,
Ho(V) = Ho(T). This can be done in a state-space context, by acting in a local way on a
realization of 7. Let T be a locally finite operator in /4. We start from a realization of T’
in output normal form, such that

AA* +CC =1, (4.11)

which means that at each point & in time the equation AzA; + CiC; = I is satisfied. Such a
realization is obtained from a canonical observer realization (viz. lemma 3.24). We assume
that T € (M, N), with state-space sequence B, so that A € D(B, B=V). For each time
instant k, augment the state transition matrices [Ax Ci] of T with as many extra rows as
needed to yield a unitary (hence square) matrix Vy:

B Nk

B A Ci
A% = . 4.12
¢ (M) [(Bv)k (Dv)k] (-12)

The added rows introduce a space (My), with dimensions satisfying #B; + #(My) =
#Bi1 +#N . From AzA; + CiCp = [ it follows that #B.1 +#Nj = #Bx, hence #(My), 2 0.
Assemble the individual matrices {A, (Bv)i, Ci, (Dv)i} in diagonal operators {A, By, C, Dy},
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and define V by taking the corresponding operator V as a state-space realization for V.
When we assume that this realization of V is minimal (in this case: uniformly controllable),
then V is inner, and because T and V have the same (A, C)-matrices, Ho(V) = Ho(T), as
required to make A€ U.

Although the construction is the same whether £4 < 1 or £4 = 1, the proof that it yields an
external factorization is less elementary (and only conditionally true) for the case £4 = 1,
so these cases are treated separately.

THEOREM 4.9. Let T be a locally finite operator in Y. If T has a realization that is
uniformly observable and has £4 < 1, then there exists an inner operator V with a unitary
realization V such that

T=AV
where A=VT € l.

PROOF Under the present conditions on 7, it has a minimal realization T which is in output
normal form and has ¢4 < 1. Then the above construction gives a unitary realization V.
Since this realization has ¢4 < 1, theorem 4.6 ensures that V is a minimal realization
and that the corresponding operator V is inner, by construction such that H o(V) = Ho(T).
Application of corollary 4.8 shows that A := VT is upper. Because V is inner, this implies
that 7= A*U. a

Instead of applying corollary 4.8, the fact that A = VT is upper can also be verified
by a direct computation of A, in which we make use of the relations AA™ + CC* = I,
ByA® + DyC* = 0:

A=Vr Dy +ByZ(I-AZ)"'C] [D" + C*(I-Z"A*)"'\ Z'B"]

Dy +ByZ(I-AZy'C| D* + DyC'U-Z'A*Y'Z'B" +
+ ByZ(I-AZ)"' CC*(I-Z'A*)1Z'B
[Dv+ByZ(I-AZY'C] D* — BvA*I-Z'A')'Z'B" +
+ ByZ(I- AZy  (I-AA"Y (- Z'A*Y ' Z'B".

Now, we make use of the relation
Z(1-AZy Y (I - AA Y- Z*A*Y\ 2"
= (|- ZA) ' Z(I- AA*) (Z- A™) !
=(I-ZA)Y! + A*(Z-A*Y
=(I-ZA)" + A*(I-Z'AY'Z"
which is easily verified by pre- and postmultiplying with (/—ZA) and (Z—A "), respectively.
Plugging this relation into the expression for A, it is seen that the anti-causal parts of the
expression cancel, and we obtain

A = [Dy+ByZ(I-AZ)'C] D* + By(I-ZA)'B"
= DyD*+ ByB* + ByZ(I- AZy Y (AB* + CD").



4.2 Inner factorizations 129
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Figure 4.3. External factorization: (¢) The structure of a state realization for an example
T, (b) the structure of the corresponding inner factor V and (c¢) of A such that
T=A"V.

Hence A has a realization

A

A AB +CD } @.13)

=| By DyD*+ByB

This realization is not necessarily minimal: if, for example, T is itself inner, then B = By
and D = Dy, so that C4 =0.

Because the A; are not necessarily square matrices, the dimension of the state space may
vary in time. A consequetnce of this is that the number of inputs of V varies in time for
an inner V having minimal state dimension. The varying number of inputs of V are of
course matched by a varying number of outputs of A*. Figure 4.3 illustrates this point.
(It is possible to extend V such that its state dimension becomes constant.)

If £4 = 1, then the proof becomes more complicated: the realization V need not be
uniformly controllable, so that it is not minimal. Consequently, the corresponding operator
V need not be inner, but it is in any case an isometry. It is possible to show that A := VT~
is again upper. However, if V is not inner, then T#A"V. Although it is possible to extend
V in a minimal way to an inner system, i.e., to construct an inner system W such that
Ho(W) = Ho(V), this does not really help because now A := WT™ is no longer upper. The
remainder of this section is devoted to a derivation of these observations.
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PROPOSITION 4.10.  Let T € i{ be locally finite. Let T be a minimal realization of T in
output normal form. Let V be as constructed in equation (4.12). Then V is an isometry
(VV* =1) and is such that A = VT" is upper.

If V is a minimal realization, then V is inner and T = A*V.

PROOF T has a minimal realization T in output normal form (Ag = I), so that {4 < L.
Construct V as before. It is a unitary realization, and because it shares A and C with
T, it also has the same observability operator G. Hence theorem 4.6 ensures that the
corresponding operator V is an isometry: VV* = [,

From VV® = [, we can prove A = VT" is upper, by showing that Po(Z"A*) = 0 (n > 0).
To show this, use equation (4.7) and

PyZz"GGH=A" ) (n>0); Po(Z"G)=AYC, (n20).
(lemma 3.24). Then, indeed, for n > 0,

Po(Z7A") Py(ZTV")
Po(Z[D + BZGIDy,) + Py(Z! [D+BZG*])(‘”B;
0 + BY"PH(Z™'G)D;, + 0 + BWPy(Z"GG") VB,
BPWAUYCD, + BW[AIM DB,
B(”)A{nml}[CD:,+AB;]

= 0.

(By doing the same for Py(Z™"A), we see that A in (4.13) is still a model for A.)

For the case 44 = 1, the construction yields an operator V which is isometric and whose
realization is uniformly observable (as inherited from T). However, note that we have
not shown that the realization is uniformly controllable, or even controllable at all: the
realization might be too large. According to proposition 4.4, K o(V) = U V@ ker(- V* !z 42),
so that

U, = Ho(T) @ Ko
= DG @ Ko 414
= H) @ ker(-V'|,) @ WV (4.14)
= Ho(V) @ Ko(V)

If V is minimal, then Ho(V) = 7,G, i.e., ker(- V*qu) = 0, so that V is inner (proposition

4.4). In this case, Ho(V) is closed and Ho(V) = Ho(T), so that T= A"V with A upper.
O

The term ker(- V*’I 42) represents the fact that V is an isometry, rather than unitary. It
consists of elements Y in I/, for which YV* = 0, so that there is no input U such that
UV =Y. In the following section, we show how V can be extended with an isometry U
(UU* = 1), defined by iU = ker(-V‘]Ih), so that UV* =0 and V*'V+ U'U = I. This can
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be used to show that T# A"V if V is not inner. Indeed, because UL U = Ko(V) & Ko(T) (by
equation (4.14)),

T=A"V T =vvr
U-V'VT =0
Uor =0
Ur =0
U U < ker(- T“|Mz).

U

But ker(-T* ]“2) c Ko(T), while UfoU = Kop(V) & Ko(T). Hence T#A™V, and an isometric

system is not suitable for an external factorization. W = [x] is inner, and is a minimal
unitary extension of V in the sense that Ko(W) = oL W = ULV @ ULU = Ko(V), and
Ho(W) = Ho(V). Because Ho(W) < Ho(T) (equation (4.14)), WT™ is not upper and W is
also not suitable for an external factorization.

One remaining issue on the external factorization is to explain why (and when) it can be
called inner coprime. Two upper operators 77 and 75 are called (left inner) coprime if
they do not have a common left inner factor {6], i.e., if

T, = WI]
T, = W,

(where T7, € { and W is inner) implies W € D. With this definition of inner coprime-
ness, it is possible to show that A and V in the factorization T = A™V are inner coprime
it Ko(T) =U>V = Ky(V). Indeed, suppose that they have a common left inner factor W,
then T= A]V,, where

A, = WAel

V1 = WVeld.

On the one hand, I,V = LWV, < UV, On the other hand, A} € U = UhA, =
U V\ T} = [ULVIIT < Uy, hence ULV, < Uy V, since ULV = Ko(T) is the largest subspace
in {4, that is mapped by T* to {{;. Combining both observations gives i{,V, = iV, so
that V; is equal to V, up to a left diagonal unitary factor.

Beurling-Lax theorem

The existence of the external factorization was shown to depend on the construction of
an inner operator V such that i,V is equal to some specified subspace Ko(7), the output
null space of the system 7. There is, however, a more fundamental result, which claims
that any subspace Ko that is left D-invariant and Z-invariant (i.e., such that ZK ¢ < Ky) is
of the form {2V, for some isometric operator V. Such a theorem is known in the Hardy
space setting as a Beurling-Lax theorem [10, 11, 1]. It not only provides the external
factorization, but other factorizations as well, such as the inner-outer factorization.

In the theorem below, it follows that the input space sequence of V € U(M, N) satisfying
Ko = UMV is of locally finite dimension only if A’y €3 ZKy is a locally finite subspace.
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Although M will be locally finite in the application to inner-outer factorization, we will
prove theorem 4.11 for the more general situation. This calls for an extension of some of
the definitions in chapter 2, to include operators with matrix representations whose entries
are again operators. The extensions are straightforward (see [12]).

THEOREM 4.11. (BEURLINGLAX,I) All DZ-invariant subspaces Ko in 112N have the form
Ko = UMV, where V € U(M, N) is an isometry (VV* = 1).

PROOF Let Rg = Ko & ZKy. This is a D-invariant subspace in ug\f . We can assume it is
non-empty, for else Ko = ZKo = Z"K for all n > 0, and since X € iy = limye P(Z7X) =
0, this implies that Ko = 0, and there is nothing to prove. Likewise, define R, =
7'Ko & 2" K. Then R, =Z"Rg, and Ko =R @R @R, @ - - .

Suppose s-dimRo = M, and define the sequence of Hilbert spaces M to have entries
My = CM (M, = £, if M = ). Then there exist isometries Vi : My — (Ro) such
that (Ro)x = My V. Let V be the operator whose k-th block-rows is equal to Vj. Stacking
the Vi into one operator V, we obtain an orthonormal basis representation of R, as in
chapter 2, such that

Ro =DMV, Po(VV*) = 1.

Then R, = D,Z"V. Because R; L R, (i#)), it follows that D,Z"V L D,V (n 2 1) for all
D1,2 € Dz, i.e.,

Po(Z'VV*) 0

Py(vv*zZ™ = 0

so that VV* = I: V is an isometry. The orthogonal collection {D,Z"V} € Ko (n 2 0), and
together spans the space i, V. Hence Ko = {D,Z"V} = lhLV.

If V, is another orthonormal basis representation of R, then V= ViR, with R € DN, N)
and R unitary. This is proven by

ULV = U,

112V1 = IhV = { (12VV; - 112

= V1V€11
VWi e U

= VWeD. =

3Let N be the index sequence corresponding to A/, with entries N;. It follows that the dimension sequence
M has entries M; < N; + Nis1 + - - -. Although M; can be infinite, an orthonormal basis for (Ro); = mRo is still
countable, and the construction of an orthonormal basis representation of R ¢ can be done as explained in the
proof of the theorem.
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The above proof is in the style of the proof given in Helson [1, §VL.3] for the time-
invariant Hardy space setting. This proof was in turn based on Beurling’s work [10] for
the scalar (SISO) case and Lax [11] for the extension to vector valued functions.

A remaining issue is to give conditions under which V is actually unitary. For time-
invariant systems, this condition is that K is “full range” [1]. Systems T for which
Ko(T) is full range were called “roomy” in [6]. Systems of finite degree are roomy: if
Ho(T) is finite dimensional, then its complement Ko(7) is automatically full range. For
time-varying systems, only less definite results can be obtained.

If Vis inner, then Ko(V) = U,V = K. If V is an isometry but is not inner, then
U = Ho(V) @ K§ ® Ko,

where Ko(V) = Ko @ K, Ko =V and K} = {X € U, : XV* = 0} (proposition 4.4). Let
us call Ko a “full range subspace” if V is inner, i.e., if K} = 0 (proposition 4.4). We want
to determine conditions on A’y for which this happens. To this end, K is constructed
from Ky without use of V.

In this section, let X, = P(Z™7Ky). Define Ho = U & Ko, and, for n> 0, H, = P(Z7"H,).
We show that Ko is a “full range subspace” if | J; K, = Us.

LEMMA 4.12.  With the above definitions, for n >0,

Ko © K
K/é = U & U;k”

PROOF Because ZKy c Ko, it follows that Ko = P(Z™'ZKy) < P(Z'K) = k1. Repeating
the argument gives K, < K,.,1. Let X € If. Then, because Ko =U,V,

Xe K XV =0
Po(XV'Z"y =0 (allne Z)
X L P(Z7Ky) (all n20)
X1 s P(Z7Ko) (alln=0).

098¢

(]

Hence K, is full range if and only if |J; K, = t;. This property can also be given in
terms of H,:
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LEMMA 4.13.  With the above definitions, for n > 0,

Hn = 112 H K-:ny
Huet < Ha,
Ki = Mo Ha
PROOF
Xelh @ K, ©& Xel, X1k,
e Xelh, Z’X1K
o Xel,, Z"XeH
e Xelh, XeZHp
o Xe P(Z"Hy) = H,.
Hence H, = U, & K,. The remaining issues are a corollary of lemma 4.12. ]

LEMMA 4.14. K is a doubly shift-invariant subspace: ZK{ < K{§, P(Z'K{) = K.
PrROOF ZK§ < K, because

ZK, = {ZX:Xe K{)
= {ZX:Xe U, A XV =0}
= {ZX:Xelh n ZXV' =0}
= {Y€Z123W=0}
c K.

On the other hand, P(Z'K§) < K¢, because P(Z"VH,) = Hpsi © Hn, and Hy, = (g Ha-
Hence P(Z7 (Voo Hn) = Hast S (Voo Ha. Letting n — oo yields P(ZIK{) c K{. O

There are connections between the fact that a subspace is doubly shift-invariant and the
occurrence of ¢4, = | in realizations which have this subspace in their observability space
D,F,. For example, if Ko = U,V where V is not inner but an isometry, and if V has
a realization which is unitary and uniformly observable, then the realization cannot be
uniformly controllable (for else V is inner), so that we must have £4 = 1 (theorem 4.6).
In this case, Ko(V) =V @ K{, and Ho(V) = D2F & K.

The above lemmas are summarized in the following theorem.

THEOREM 4.15. (BEURLINGLAX,II) Intheorem 4.11, V is inner if and only if n‘g; Hn=0,
where Hy = Uy & Ko and H, = P(Z7Hy) (n=>0).

The fact that K} is shift-invariant (lemma 4.14) ensures, according to theorem 4.11, the
existence of an isometry U such that K¢ =, U:



4.2 Inner factorizations 135

COROLLARY 4.16. If Ve UM, N} is an isometry, then there exists an isometry U €
UMy, N such that ker( - V"|MN) = 112""”U. The operator
2

1Y)

is inner, with Ho(W) = Ho(V).

PROOF If V is an isometry, then (proposition 4.4)

U = Hoy(v) ® ker(-V*|, ) ® UMV, (4.15)

where K{ = ker(- V*j : 42) is shift-invariant, so that according to theorem 4.11 there exists

an isometry U € U(My, N) such that K§ = 43U, In view of proposition 4.4, W is
inner it WW* =1 and ker(- W*iuz) =0. WW* = I requires UV* = 0, which is true because

UV L ULU. Hence W =UU @ U, V, and since Ho(W) o Ho(V), we must have (from
equation (4.15)) that Ho(W) = Ho(V) and ker( - Wluz) = 0. Hence W is inner, and Ho(W)
is closed. a

Inner-outer factorizations
An operator Ty € {{ is said to be (left) outer if
U,Ty = U;. (4.16)

Other definitions are possible;* the above definition is such that Tan( - Tp) = X571y = X2, S0
that ker(- 73) = 0 and Ty has an algebraic left inverse (which can be unbounded if ¥, T,
is not closed).

A factorization of an operator T into T = TyV, where T is outer and V is inner (or an
isometry) is called an outer-inner factorization. This factorization can be obtained from
theorem 4.11 by taking a different definition of Ky than was the case in the external
factorization (where we took Koy equal to the output null space Ko(7)). Note that the
closure in (4.16) is necessary: for example, the system 7 = I— Z has inner factor V =1
and of necessity an outer factor Tp = [~ Z. T is not boundedly invertible, and I, Ty is
only dense in {{,. This happens when 4,7 is not a closed subspace. The time-invariant
equivalent of this example is T(z) = 1 —z, which has a zero on the unit disc. Again,
V(z) = 1, and Tp(z) = T(z) is not boundedly invertible. Also note that if T is not an
invertible operator, then it is not possible to obtain an inner factor: only an isometric
operator can be obtained, since we have chosen Ty to be invertible.

*See e.g., Arveson [2], who, translated to our notation, requires that {4, Ty is dense in P(Y,Tp) and that the
projection operator onto the range of T is diagonal.
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THEOREM 4.17.  (INNER-OUTER FACTORIZATION) Let T € U(M, N). Then T has a fac-
torization
T =T,V

where V € U(My, N) is an isometry (VV* = I), Ty € U(M, My) is outer, and My c M
(entrywise). V is inner if and only ifker(-T") = 0.

PROOF Define Ky = i,1. Then Ko is a D-invariant subspace which is shift-invariant:
ZKo < Ko. According to theorem 4.11, there is a space sequence My and an isometric
operator V € U(My, N) such that UMT = UVV. By construction, UMT = D3V @
ZUMT with My of minimal dimensions. Because also UMT = [DM @ ZUMIT, but
DMT is not necessarily orthogonal to Z/ MT, it follows that My c M. In particular, the
entries of My are finite vector spaces.

Define Ty = TV*. Then UpTy = U TV = LTV* = U VV* = Uy, so that T is outer. It
remains to prove that T = T,V, i.e, T=TV'V. This is immediate if V is inner. If V is not
inner, then corollary 4.16 ensures the existence of an isometry U such that

Uy = Ho(V) ® U & UV,

where K = U = ker(~V"|uz), and W = [Y] is inner and such that Ho(W) = Ho(V).
Then U+ V'V=1I VU =0, and

T=TV'V = TI-V'Vy=0
= TU*U=0.

But U, TU* < U, VU = 0, which implies TU* = 0. Hence T = TpV.

In terms of the definitions of the previous section, we have K¢ = 4,7, and

Ho = Ko & Wl = {Xel: PXT) =0}

H, = P(Z"Ho)

{P(Z7X): X € Uy ~ P(XT") =0}
(P(Z"X):Xely A P(Z(Z"X)T ) =0}
{PZ"X):Xelh A P(ZZPZ"X)T" ) =0}
= {Xel:P(Z'XT")=0}.

Hence K =M, ={X € U, : XT" =0}. K{ is empty if and only if ker(oT”|uz) =0, that
is, if and only if ker(- T") = 0. The rest follows from theorem 4.15. a

A more general result was obtained by Arveson [2], who showed the existence of the
inner-outer factorization in the general context of nest algebras which also applies to our
model of time-varying systems.
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If ran 7' is not all of X, then V is not full range either: V is not inner. One can in this case
also define a factorization based on the extension of V to an inner operator W, where W is
defined as in the above proof. Let T€ U(M, N), Ve UMy, N), and We UMy, N).
Define Ty = TW* € X' (M, Mw). Then T= Ty W, and

UMT, ULTW = U,VW' = Uh[0 1]

UM < uMv,

so that T is upper but not precisely outer:> it reaches only a subset of IIQMW. This is the
best we can hope for, in view of the fact that T is not full range.

The inner-outer factorization is based on the identification of a subspace Ko = I, T as
Ko =, V. The complement in I, of this space is Ho(V) ® K} and is characterized by the
elements X € U, satistying Po(l,TX™) = 0, that is, X7~ L I{,. Hence

Ho(V) @ Kf = {Xely:XT" € L277'} = {X el : P(XT") =0}. (4.17)

In this expression, Kf = U U = ker(- V*|1 12) according to its definition. We now show
that also K§ = ker(~T‘|uz) = {X € Uy : XT" = 0}. Indeed, if X € K{, then X = X, U for
some Xj € U, and because UT™ = 0, it follows that X7T* = (0. Conversely, if XT* = 0,
then XV*T§ = 0, and because ker(- Tp) = 0, it follows that XV* = 0 so that X € K/. Hence
K= ker(-T‘|uz).

In equation (4.17), Ho(V) @ K is the subspace in 4, on which - T* = - Hy.. Note that if
T is itself inner, then Kg =0 and -T" = - H} on all of H(7), so in this case the result is
V=T and Ty = I, save for unitary diagonal factors.

Computation of the inner-outer factorization 7 = VT

In this section, we work with a dual factorization of T: T = VT (for different V and
Ty), where Ty is ‘right outer’: L£,Z71T; = £,Z7' (or Told; = U,), and where the left
inner (isometric) factor V satisties V'V = I and is obtained by identifying the subspace
K(V) = £L,Z71V* with £,Z-1T*. For this factorization,

HV)®K' = {Ue LoZ 1 UTelh}, K’ = ker(-T|, ,.).
We have defined in chapter 3 the decomposition of T, restricted to £,Z7!, as

'Tl£227|= -Kr + -Hp, 'KT=P[,ZZ‘1('T)-

It is thus seen that H(V) is the largest subspace in £,Z! for which H(V)Kr = 0 and
which is orthogonal to X/, This property provides a way to compute the inner-outer
factorization.

3Ty is outer according to Arveson’s definition [2].
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Let Q be an orthonormal basis representation of H(V): H(V) = D,Q, and let Fy be a basis
representation of Ho(T), or more generally, a subspace in X, containing Ho(7). The fact
that H(V)Kr = 0 translates to the condition QT € . Because H(V)T < Ho(T), we must
have that QT = YF, for some bounded diagonal operator Y, which plays an instrumental
role in the derivation of a state realization for V. It remains to implement the condition
H(V) L K'. Suppose that Q has a component in K’, so that DQ € K, for some D € D,.
Then, since K’ = ker(- 7| i)

DQe KXK' & DQT=DYFy=0 <& Deker(:Y)

Hence (V) = D,Q can be described as the largest subspace D,Q for which QT = YF,
with ker(-Y) = 0.

If B is the state space sequence of 7, and By is the state space sequence of V, then
Y € D(Bv, B). The condition ker(-Y) = O implies that By — B (pointwise), so that the
state dimension of V is at each point in time less than or equal to the state dimension of
T at that point.

PROPOSITION 4.18.  Let T € U be a locally finite transfer operator, let T = {A, B, C, D}
be an observable realization of T, and assume £4 < 1. Let V be a left inner (isometric)
factor of T so that Ty = V*T is right outer. Then the pair (Av, By) that corresponds to an
orthonormal basis representation Q of H(V) satisfies

(i) A, YA+ByB = Y
@)y AYYC+BD = 0
(i) AyAv + ByBy = I
(iv) ker(-Y) = 0.

and conversely, all solutions (Ay, By) of these equations give basis representations of

H(V).
PROOF Let Fy = (/- AZ)"'C. We use in this proof the relations

T = D+ BZF,

Fo C +AZFO

ZQ = AjQ + By.
(¢f. lemmas 3.19, 3.26). Observability implies that Ho(7) < D,Fy, and hence P(QT) = YFy
for some hounded Y € D, and we will show that Y is given by a solution to equation (7).
Indeed, let Y be defined by P(QT) = YF,. Then P(Z'YF;) = YVP(Z ! Fy) = (YA)V Fy.
On the other hand,

AV P(Z71QT) P(Z'[AQIT)
P(Z'[ZQ - B}IT)
P(QT) - B;\"BVF,

= YF, - ByVBOF,.
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Hence, because observability means that -F0[ D, is one-to-one (definition 3.5),

P(Z'YFy) = P(Z1QD)
o (AYA)DF, + (ByB)VF, = YF,
o ApYA + ByB = YD,

Conversely, since ¢4 < 1 implies that any solution Y of ({) must be unique, it follows that
this solution will satisfy P(QT) = Y'Fy.

Let Y be given by P(QT) = YF,. To derive the equivalence of (ii) with the condition
QT =1U, we use the fact that QT € U & Po(Z*QT) =0 for all n> 0.

n=1: PyZQD = Py([A[Q+ByIT)
A;Py(QD) + ByD

ALYC + ByD

Hence Py(ZQT) =0 < ALYC+ ByD = 0. For n > 1, assume Pyo(Z*~'QT) = 0. Then

Po(Z"![ZQT1)

Po(ZH ALQIT) + Po(Z'ByT)
AYUPY(ZIQT) + B VUP(ZIT)
0+0.

Py(Z"QT)

Hence (it) is both necessary and sufficient for the condition Q7 € U to be satistied. The
fact that we took Q to be an orthonormal basis representation implies condition (i), and
condition (iv) has already been derived. 0O

It is possible to construct solutions (A, By) for the four equations in proposition 4.18,
and from these solutions a realization V for the inner (isometric) factor V of T follows.
Taking the k-th entry of each diagonal in (i)-(iv) gives the recursive equations

0] AU YA + By By = Yy
(ll) A;/,k Y Ck + BI,'ka = 0
(iid) Ay Avk + By By =
(iv) Yis1 full row-rank.

Ay and By can be computed from these equations starting at some point in time, once an
initial value for ¥ is known (this is discussed below). The recursion for Y44 is convergent
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because ¢4 < 1. At each point in time, the computation requires four steps:

- . - 1
Apy _ Y. Ci ..
(a) B, | T | D } [for (ii)]
. « | A .
k) Y, = AL By [ B ] [for ()]
k
() Y’gl = g;: ] Y, [QR-factorization of Y{,, for (iv)]
Ave | _ [A ] o
(d) BV:k ] - | B{/’k Q],kr

where [ - J* denotes the linear algebra operation of taking a minimal orthonormal basis of
the full orthogonal complement of the column space of its argument (the basis vectors
form the columns of the result). Steps (a) and (b) determine Y;,,, which can be too large:
its kernel is not necessarily empty. In step (c), a unitary matrix Q = [5*] is computed
such that the kernel of Yy, is determined as the span of the rows of (0, x, and subsequently
removed, which yields Yy, and Ayy, Byg.

With Ay and By known, we can proceed in two directions. It was noted in the previous
section that it will not always be possible to obtain an inner factor V: if ker (- T| [,22")¢0’
then V will be isometric. V can be extended to an inner operator W= [U V], where U is
the isometry satisfying £,Z1U" = ker(- T | LZZ-l)' The resulting W is too large in the sense

that U*T = 0, but since H(W) = H(V), a realization W is readily obtained from Ay, By:

_ Ay Cw
W= [Bv Dw]

where Cy and Dy are obtained by the condition that W is unitary: WW* =1, W'W =/
(¢f. theorem 4.6). This leads to the condition

N L
O B I s ]
DW,k Bch

A realization for U is obtained from the condition U*T = 0, where U*T evaluates as

Ur = [122, + C;{Q]T
- gﬁﬁffﬁgé] +C,YF, (4.18)
= [DyD+ CyYCl +[D;B + C;;YAIZF,
Hence
or-0 o { G810
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and in view of the above steps (a)-(d), it follows that
Cu A | e
’ = g ..
[ Dy ] [ By, Cox

Finally, Cy and Dy can be obtained as the complement of [ Av Cu J, ie.,

By Dy
5 1
(e) (’V.k — A{/,k
Dy B{,,k

With V known, a realization for the outer factor T is obtained by evaluating Ty = V*T in
terms of state-space quantities. This yields, much as in equation (4.18)

Ty = [CyYC+DyD] + [CyYA+ D,B]F,

Hence a realization of Ty is given by

Ty =

A ¢ ] . (4.19)

CyYA+D,B CLYC+DyD

An algorithm to compute V and T, from a realization of T for finite nxn (block) matrices
is given as algorithm 4.]. The body of the algorithm consists of the steps explained above.
One issue that remains to be discussed concerns the initialization of Y. In the algorithm
for finite matrices, we can take ¥; = [-] because the input space M for T (and hence
V) has empty dimensions before time instant 1, so that a minimal realization for V has
zero states before time instant 1. For the more general class of systems which are time
invariant before, say, point 1 in time, an initial value for Y is determined in the following
way. Y1 now has to satisfy an equation rather than a recursion:

Yi=Y = A*V,OYOAO +B*V,OBO’

where, as before,

A*V,OAV,O + B*\‘/,()BV,O = 1,

A;,_OY()CO + B:,‘OD() = 0.
We show that the solution of these equations is the same as the classical solution of the
inner-outer factorization, and is determined by the zeros of the time-invariant part of T
that are in the unit disc. For convenience of notation, define y = Yy, @ = Ag, b = By,
c=Cy, d= Dy, @=Ayg, f= Byo. We also assume that ¢ (and hence T) is invertible, and
that its zeros are distinct. Then

y = o'va+ §b F = —aycd?!
0 = od'yc+ fd =N y = ay(a—cd'b) (4.20)
I = da+ fp I = da+ B
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In: {T:} (an observable realization of T)
Out:  {Vi}, {(Tok} (realizations of the isometric and outer factors)
Yy=[-1]
fork=1,---,n
w [ - [na)
_B{,’k L Dx
. . | YeA
(b) Y = [Ay Byl [ ;;?kk]
(c) h o = 8;’;] Y.,  [QR-factorization of Y]
Al _ [Al]
@ [BVJC- - [Bux Cix
- -
I F N
Dy, _B{,_k
[ Ave Cux
vV, = kS
¢ | Bvux Dk }
T = | A Ci
L i C:/’kYkAk'*'Dr/,kBk Ct/,kYka +D*V,15Dk
end

Algorithm 4.1. Inner-outer factorization algorithm for 7= VT (finite matrix case).

Bring in eigenvalue decompositions of « and (a— cd1b):
a=ror'; a-cd'b = syst.

Then
(r'ys) = #(rys)y.

Because both ¢ and w are diagonal matrices, the above expression shows that (r*ys)
must be a rectangular diagonal matrix (or a permutation thereof), and hence the diagonal
entries of ¢ are equal to a subset of the diagonal entries of y*. In view of the requirement
o'a=1- BB, ¢ can contain only the entries of ¥~ that are smaller than 1. Because V
must be of the highest possible system order and y must have full row rank, ¢ is precisely
equal to those entries.

It remains to note that the entries of y~! = eig(a—cd™'b)™! are equal to the zeros of T. This
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is because T = d™' + d”'bz [I—- (a—cd‘lb)z]_l cd™ has poles equal to eig(a — cd'b)™\.
With the poles of the inner system thus determined, it is a straightforward matter (involving
a Lyapunov equation) to compute o 8, and y from (4.20). In particular, one can choose
the non-zero values of y’ := r'ys in any way. Then substitution in the equations (4.20)
leads to the Lyapunov equation

orre+y (sted (s ed™)' Y™ = r'r.

—* /o=

This gives r, and then y follows as y = r"y’s™.

Closed-form expression for the outer factor realization

In the time-invariant setting, it is well known that the outer factor Ty of 7 can be written in
closed form in terms of the original state matrices {A, B, C, D} of T and only one unknown
intermediate quantity, which is the solution of a Riccati equation with {A, B, C, D} as pa-
rameters. One way to obtain the Riccati equation is by performing a spectral factorization
of the squared relation 77T = T;T,. Riccati equations can be solved recursively; efficient
solution methods for the recursive version are the square-root algorithms, in which extra
intermediate quantities are introduced to avoid the computation of inverses and square
roots. The algorithm to compute the realization for Ty given in (4.19) can be viewed as
such a square-root algorithm: besides Y, it contains the intermediate quantities A y and By.
We show in this section how the corresponding Riccati recursion can be derived.

THEOREM 4.19.  Let T € U be a locally finite transfer operator, let T = {A, B, C, D} be
an observable realization of T, and assume £, < 1. Then a realization of the outer factor
Ty of T so that Ty = V*T is given by

O L | P
R C'MA+D*B C'MC+D'D
where M 2 0 is the solution of maximal rank of the recursive Riccati equation
M = A"MA+B'B — [A"MC+B'D] (D'D + C*MC)! [D'B + C'MA] (4.21)
and R is a minimal full range factor (ker(-R*) =0) of
RR* = (D'D+C'MO)T,
provided the pseudo-inverse is bounded (see proposition 4.20 below).

PrOOF Let Ty be given by equation (4.19), so that Cy and Dy are given, according to

steps (¢) and (e), as
11
Cy _ YcC _ YC
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R € D(N, Ny) is a diagonal whose ‘tall’ matrix entries R, make the columns of [Y;,f*]

isometric, removing columns that are linearly dependent:
R (D'D+C'MCO)YR = Iy, where M :=Y'Y.

Let X = DD + C*MC, then R*XR = I implies RR* = Xt, where ()t denotes the operator
pseudo-inverse [13]. According to step (¢), (Y*Y)™D = (¥*Y’)Y, so that we obtain from
step (b)
!
e = @y B Ly s |
B, B

. . Yc A . YA
[A"Y* B](I—[ D ]RR[(,Y* D])[ B J
A*'Y'(I-YCRRC'Y')YA + B'(I-DRR'D*)B —
—A'Y"(YCRR'D*)B — B'(DRR'C*'Y")YA,

and with M = ¥"Y this yields
MY = A"MA + B'B — [A"MC+B'D|RR" [D'B+ C'MA| .

This equation has more solutions M. As Y € D(By, B) has By of maximal possible
dimensions such that ker( - ¥Y) = 0, the solution M of the Riccati equation must be positive
and of maximal rank to yield an outer factor Ty. (Note that if D*D is invertible, then
M =0 is always a solution, and yields Tq = T.) ]

The resulting Riccati equation bears a close resemblance to the Riccati equation that will
be obtained later in the solution of the time-varying lossless embedding problem (chapter
7). The connection between the two problems is that both problems can be described as
a spectral factorization problem. This connection is discussed in chapter 8.

By taking the k-th entry of each diagonal in equation (4.21), we obtain the recursion

M, = A;MkAk + B;Bk— (4 23)
~ [AfMcCi + ByDy] (DyDi + CiMC)t [DiBi + CiMAc] e

Initial conditions for the recursion can be obtained in special cases. For example, when
T starts with zero states at some point ko in time, then My, = [-]. If T is time invariant
before ky, then M, is given by a time-invariant Riccati equation. Again, the solution
requires eigenvalue decompositions, and must satisfy the side conditions that M, = 0 and
has maximal rank. Riccati equations are studied in more detail in chapters 7 and 8.

In the above proof, we required the boundedness of the pseudo-inverse of (D*D+ C*MC)!
in case this operator is not uniformly positive (this is no issue when D*D is uniformly
positive). For historical reasons, the issue of boundedness is investigated in closer detail
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for a related Riccati equation which occurs in the solution of the embedding problem
(chapter 7), where we discuss that pseudo-inverses can become unbounded if the range
of their operand is not closed. We will show that if ran(-7) is closed, then the pseudo-
inverse is also bounded. This condition is a generalization of the time-invariant “no zeros
of T are on the unit circle”. If ran(- 7) is not closed, then £,Z7' Ty is dense in £,Z7!, but
not closed. In this case, Ty has a one-sided inverse which is unbounded. Similar issues
played a role in the embedding problem [14], where it could be shown that, even when
R became unbounded, the product R*(D*B + C*'MA) and R*(C*MC+ D*D) would remain
bounded because of range conditions that are automatically satisfied. The same happens
here, although the analysis is much simplified by the fact that we know already from the
constriction in algorithm 4.1 that there exists a realization T ¢ which is bounded.

PROPOSITION 4.20.  In theorem 4.19, (DD + C*MO)! is bounded if ran(- T) is closed.

Whether the range is closed or not, M is bounded, as are the products R*(D*D + C*MC)
and R*(C"MA+ D*B).

PrROOF If ran(-Ty) is closed, then T, has a one-sided inverse which is again upper.
It follows that in this case ran(-Dy,) is closed, so that D;ODT0 =XRR*'X =XX{X=X=
D*D+C*MC has closed range and a bounded pseudo-inverse. Because Ty = V*T, ran(- Tp)
can be closed only if ran( - 7) is closed. If ran( - 7) is closed, then (X, V)T; is closed. But
from V'V = I it follows that X,V = X5, so that in this case ran(- Tp) is closed, too.

Because the realization of T is observable, it was argued in proposition 4.18 that Y (and
hence M) is bounded. From the first equality in (4.22) we see that [;"] is obtained

by taking an orthonormal basis in the closure of the range of [’;)C] R is unbounded

if the latter range is not closed. Nonetheless, [gt] is well-defined and isometric, and

D} = R(D'D + C*MC) = [[Chv,]*[}g] is bounded. In the same way, it is shown that

Cr, = R(C*MA+D*B)= [(¥]"["] is bounded. 0

“Square-root” solution of the Riccati equation

The computation of the outer factor can be done along the lines of theorem 4.19, which
essentially boils down to recursively computing M in equation (4.23). However, as is
well known, M\, in the Riccati recursion can be computed more efficiently using square-
root algorithms (see e.g., Morf [15] for a list of pre-1975 references). In such algorithms,
the square-root Y of M is computed, rather than M itself. The square-root algorithm that
corresponds to the above equations is very related to algorithm 4.1, but is written in a
more structured way. The algorithm acts on data known at the k-th step: the state matrices
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Ak, Bi, Ci, Dy, and the matrix Y. This data is collected in a matrix T;:

! Yk| Ak|Ck
Tk"[ |1HBk|Dk]

The algorithm consists in computing a unitary matrix W such that W, T has zero entries
(of maximal dimensions) in the indicated positions:

Yk+1 0
WT,=| 0|0 | =T/, (4.24)
Ne | R,

where the non-zero block entries in T, are defined as Yi,.1, N and R;'. Given Y, W,
can be obtained by a simple (JR-factorization. Yy, is used in the recursion for the next
step. The connection with the Riccati equation is given by the following lemma.

LEMMA 4.21.  In the above square-root algorithm, My = Y; Y, and Ry, satisfy the relations
in theorem 4.19, and { W} is the realization of the inner factor W which embeds V.

PROOF Since W, is unitary, (T)*T; = (T,")*T;’. Writing out the corresponding equalities
gives

C,:Mka + D;Dk = R;*R;l
A;Mka +B;Dk = N;R;l
A;MkAk + B,:Bk = Mpg+ N;Nk

{ CGMCi+ DDy = (ReR;)™
A;MkAk + B;Bk - (A;Mka + B;Dk)RkR;(D;Bk + C,:MkAk) = Mk+1 .

Hence M; and Ry satisfy the equations in theorem 4.19.

It remains to show that Wy, when taken equal to the realization of the inner factor W
as computed in algorithm 4.1, indeed satisties equation (4.24). In the notation of that

algorithm, let
_[Av|Cu Cv | _{| AV ]|, Cv
L e A L

where 0 = [g;] Then

Al YA AL 1T nc

) vk k k 9+ Vi (187

W*[YkAk chk] _ L[ ] ]IL[BQk]{Dk
: =

By | Dx cm YkAk [ Cyx ][ YiCi ]

) 0
* R; Q

= 0
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Inner-outer factorization examples

We finish this chapter with some examples of the inner-outer factorization algorithm on
a time-invariant system and on a number of finite (4 X 4) matrices. In the finite matrix
case, interesting things can occur only when T is singular or when the dimensions of T
are not uniform.

1. Consider the time-invariant system

_z-a l—az_z—a*
T 1-82 1-Bz l—az’

A state-space realization of T is

_|la ¢ _ B 1
T_[b d]_[l—a*ﬂ —a‘]'
Its zeros are (a—cd by = (B— (1 -’ ) = &’. Hence « is indeed a solution

of equation (4.20). Substitution leads to f= (1 - a*®)'? and y= §".

2. Using algorithm 4.1 on

01 4 6
00 2 5
T‘OOQ%
00 00

(the underlined entries form the O-th diagonal) yields an almost trivial isometric
factor V or inner factor W:

1 00 -1 000 My = (11 1]
01 0 0100

V= = W= ¥Nw = [0 2
0 0 1 001 0 Ry = [0
00 0 0001 v

It is seen that V is not inner, because 7 is singular. W is the inner extension of V.
The only effect of W is a redefinition of time intervals: W acts as a shift operator.

Ty = W'Tis
01 46
WT=|0 0 2 5 zﬁ/”“:{?}iﬂ
00 0 3 L =
0000
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The multiplication by W* has shifted the rows of T downwards. This is possible:
the result Ty is still upper. V*T is equal to W*T with its last row removed.

3. Take
01 4 6
01 25 #M [1 ]
T= = #N (1
0 01 3 4B
0 0 0 1

Hence T is again singular, but now a simple shift will not suffice. The algorithm
computes W as

. —0707 0577 0367 0.180
wo | 0707 0577 0367 -0.180 z/\A/AWW - {(‘) bl
~ 0 0577 -0.733 —-0.359 s -

' 0 0 -0440 0.898
0 —1414 —4243 —7778
To=WT=| 0 0 L1732 2309 = F) o 2}
0 0 0 —2273 oo =
0 0 0 0

V is equal to W with its last column removed, so that Ty = V*T is equal to the above
T, with its last row removed.

4. In the previous examples, we considered only systems T with a constant number of
inputs and outputs (equal to 1), for which V #17 only if T is singular. However, a
non-identical V can also occur if the number of inputs and outputs of T varies in
time. Thus consider

1.000 0.500 0.250 0.125

1.000 0.300 0.100 0.027 M = [2110]
T= 0 1.000 0.500 0.250 #N = [1111]
= [0121

0 0 1.000 0.300 #B

=0.707 0.099 0.025 -0.699

—0.707 -0.099 -0.025 0.699 My = [2
V= 0 0599 -0.005 0.139 Ny = [I
[0

0 0 0999 0.035 #By =
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In this case, V is itself inner. The outer factor Ty follows as

—1.414 -0.565 -0.247 -0.107

I V' Te 0 LOL0 0509 0.257 # Mo, (1111
T aT 0 0 100l 0.301 #N7, = [1 111
0 0 0 -0.023

An interesting observation from these examples is that the inner-outer factorization of finite
matrices 7'is equal to the QR factorization of 7 when it is considered as an ordinary matrix
without block entries. In combination with the external factorization, this observation can
be used to efficiently compute the QR factorization of a general block matrix (mixed upper-
lower) if both its upper and its lower parts have state realizations of low dimensions.
Let X be such a matrix, then first compute U such that T = UX is upper (U follows
from an external factorization of P(X*) = A"U), and subsequently compute the inner-
outer factorization of T as T = VIy. Then the (R factorization of X follows as X =
(U"V)T,. Note that, if the square-root algorithm is used, then in this scheme the global
OR factorization of X is replaced by local QR factorizations of state-space matrices.

As mentioned in the introduction, another application of the inner-outer factorization is in
the inversion of matrices. Equation 2.16 showed that the inverse of a block-upper matrix
need not necessarily be upper again. The same is obvious for a matrix of mixed causality,
say again X. Assume that X is invertible and that we know state realizations of its upper
and lower part of low order. To compute the state realization of the lower and upper
parts of X!, first compute the (R factorization X = U*VTy, as above. Here, all factors
have known state realizations. Then X! = T;1V*U, where V" and U have known state
realizations. A state realization of T;! is straightforward to compute, and was given in
equation (1.3).
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Chapter 5

J-UNITARY OPERATORS

! In the previous sections, we studied systems by their transfer operators T, by means of
certain characteristic subspaces of 7. One other way to study operators is by their graphs:
let Te /X, and y = uT, then the graph of T is the subspace H < X3 X X spanned by

fu yl =ull T] (all ue Xy). (5.1)

In this respect, T is called the angle operator for H. A given subspace in X'y X.¥; does not
always have an angle operator; if it does, then the subspace is generally called admissible.
The advantage of using graphs to represent operators is that cascade connections of inner
operator two-ports lead to the application of linear matrix operators to subspaces, rather
than complicated linear fractional transforms. (This is explained in section 5.1.)

In (5.1), if we call || u]|%s the ingoing energy of the system T, and || y||} the outgoing
energy, then we say that the system is contractive if || u||%s — || ¥||%s is positive for all
possible u, isometric if it is always equal to zero, and expansive if it is always negative.
For a given graph H, we can check the type of the corresponding angle operator by
evaluating the sign of || x; |45~ || %2 ||4s, for all elements x = [x; x;] in M. To this end, it
is usetul to define an indefinite metric for such subspaces, based on an indefinite diagonal
inner product [, - I:

{xx} = {x, 0}

{xJ, x}, where J = [ ! —I] .

x=[xi x]: [x, x]

Here, {-, -} is the usual diagonal inner product as defined in equation (2.26). J is called
a signature operator, and elements of subspaces H are said to be J-positive, J-neutral or
J-negative if their ‘J-norm’ (which is a diagonal) is entrywise positive, zero or negative,

IStarting from this section, operators in .Y, are rendered in lower case symbols, to avoid confusion with
operators in Y.
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respectively. Subspaces H can be classified in the same way, but clearly, mixed (indefinite)
cases can also occur. Operators which leave the J-norm of all vectors invariant are J-
isometric, or J-unitary if they are also of full range (invertible). Such operators play an
important role in this and the next chapter.

We prove, in section 5.2, a theorem of the following form.

THEOREM 5.1, Let H be a locally finite left DZ-invariant subspace in £,Z, with a
bounded basis representation F whose J-Gramian A}, = Po(F J¥*) is boundedly invertible.
Then there exists a bounded J-unitary operator © € I{ such that H = H(©), the input
state space of ©.

Theorem 5.1 plays the role of a generalized Beurling-Lax theorem. It represents a shift-
invariant subspace by a J-unitary operator. Similar generalizations (for the time-invariant
setting) have been considered by Ball and Helton [1, 2, 3], and earlier in other ways by
De Branges in a reproducing kernel Hilbert space theory ([4]; ¢f. [5], theorem 4.1). They
were introduced for the purpose of factorization, interpolation and approximation. There
is a J-inner-coprime factorization theorem (corollary 5.20), and there are applications
such as J-spectral factorization of indefinite Hermitian operators and generalized Wiener-
Hopf factorizations. However, the main application of the representation theorem is
the description of the solutions of certain interpolation problems, connected with the
names of Hermite-Fejér-Carathéodory, Nevanlinna-Pick, Schur-Takagi, Nehari, as well
as others. In the generic case, one searches for contractive functions whose Fourier
coefficients or z-transforms have prescribed values at prescribed points. The generalization
of scalar functions to matrix valued functions exposed the connection of the state space of
certain J-unitary operators with the “interpolation subspace”, or reproducing kernel Hilbert
space as specitied by the interpolation data. Such generalizations were studied by many
mathematicians, such as Potapov, Sz.-Nagy, Foias, Adamjan, Arov and Krein, Sarason,
Rosenblum-Rovnyak, and others, and have been accumulated into two monographs, by
Dym [5] and Ball-Gohberg-Rodman [6]. The references in these books provide a more
detailed historical perspective. The first book emphasizes connections with functional
analysis, while the second is based on state space techniques from systems theory. The
past decade saw renewed interest in such constrained interpolation problems, fostered by
engineering applications such as stochastic prediction and estimation {7, 8, 9], robust (H..)
control [10], optimal filtering, sensitivity minimization and optimal (Hankel-norm) model
approximation. The connection of interpolation theory with approximation problem again
goes via the representation theory for shift-invariant subspaces. While for interpolation
problems, the subspace typically has to be definite (positive or negative) for solutions to
exist, it is indefinite in approximation applications: in fact, approximations are obtained
by removing the positive or negative part of the subspace.

This chapter gives preliminary and elementary results on J-unitary operators and their
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realizations, and gives a time-varying version of the representation theorem. Section 5.3
illustrates this theorem by introducing the time-varying Nevanlinna-Pick problem, and
solving a more general (“fundamental”) interpolation problem in which the interpolation
subspace is uniformly positive. The more general case of indefinite subspaces is deferred
to chapter 6, and this chapter provides in fact the reason for including any material on
J-unitary operators.

5.1 REALIZATION OF J-UNITARY OPERATORS

Signatures

Let be given a (possibly non-uniform) sequence of spaces M, and consider a partitioning
of M into two space sequences M, and M_ of lower s-dimension:

M = M xM_, M = #M, + #M_,

where “# indicates the sequence of dimensions of its argument. Such a partitioning
generates a partitioning of the Hilbert space ¢4 into two components E;”* and Eﬁ"",

ot =t x gt =gt e g,

and also
M= M xxM =M e M.

Let
I
—Ipm.
be a signature matrix corresponding to the above partitioning of M. Likewise, consider a
second space sequence N = N, X N_, with signature matrix Jor. An operator © : 65"‘ —

ﬁé‘/ has a partitioning conformably to the partitioning of M, N, as

O Op
Q= 5.2
[ 0y On ] (52)

where
@“ S &’(MH N+), @12 € rl’(M;,, N_),
@21 S X(M_, N+), @22 [S] ;1'(M_,/V_).

Such an operator © is said to be a (Jaq, Jy)-isometry if @Jy O = Jaq, a (Jaq, Jar)-co-
isometry if @ Ja4© = Jur, and (Jaq, Jar)-unitary if both ©@J 40" = Jay and @*J4 O = Jy.
If © is (Jaq, Ja)-unitary, then ©7! is bounded, and ©7! = JyO*J 4.

If © is J-unitary, then it is unitary with respect to an indefinite diagonal inner product

x yl = {xJ,y} = Po(xJy"),
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that is, with respect to the corresponding indefinite Hilbert-Schmidt inner product trace [x, y].
Actually, there are two inner products involved, one corresponding to M, the other to N
This inner product is called indefinite because [x, x] is a diagonal with entries that can be
positive, zero, and negative, depending on x. Note that [x, x] = O can occur even if x#0,
for example if x, = x_. One can show that an operator © is J-isometric if

(x©,x0] = [x x] (5.3)

for all x € X, and J-unitary if moreover it is invertible. Alternatively, J-unitarity can be
defined this way (as is done in [11]) and the properties ®*JO = J, ©JO" = J be derived
from it.

The Hilbert-Schmidt space A%, endowed with the indefinite J-inner product, is known
as a Krein space, which is a special case of a space with an indefinite metric. The
classical operator theory for such spaces goes back to a paper of Dirac on quantum field
theory in 1942 and in a more mathematical context to the work of Pontrjagin, Krein,
Yokhvidov, Bognar and many others. Standard textbooks are [12, 13, 14], which also
provide connections with many of the early papers. We use only the J—um/tary operators
in this space. In particular, the input and output state spaces H(O) and H ((©) will play
an important role.

J-unitary and unitary operators

Associated to a J-unitary operator © is a unitary operator X which defines the same
relations between signal quantities but regards different quantities as inputs and outputs.
This very useful property is stated in the following theorem.

THEOREM 5.2. Let © € XYM, N) be a (Jaq, Jy)-unitary operator with partitioning
(5.2). Then

1. ©3} exists and is bounded,
2. |0zl £ 1, [|00a] < 1, || 01203 || < L.
3. There exists an operator Ze X (M, x N_, N, x M_) such that
lar 5110 = [ B2l & [ BIZ = [a2 b]
fora; € XM, ay e XM, by e XM, by e XM, T is unitary, and given by

0 - 920310, -0,03} _ (5.4)

= Z
6202 &

PROOF The proofs are elementary and well known; see e.g., [15, lemma 5.2], [11].
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1. ©JO" =J and ©"JO = J give the relations
922@52 =/+ @21951 , @;2@22 =[l+ 912@12 .

Hence ©,; and ©;, both have closed range and empty kernel, so that ©,; is bound-
edly invertible, and both ©3]03; >> 0 and ©3;03} > 0.

2. Applying ©3} and ©3; to the above two expressions yields
1= 05,07 +(030,)(0730,)", =050 +(01,07))'(0,,03)).

Hence ©;303; < I and ©3;07] < 1, ie, ||©5}|| < L. Because ©5/03; > 0 and
03307, > 0 it follows that || ©330, || < 1 and || ©,,05} || < 1.

3. Writing out the expression [a; b(1© =[a, bs,] in full gives

@191 +510y =a o a1(011 — 0120710,2)) +h10310; =y
@O +b0yu =50 -a101,03} +0©3]  =h

as ©x is invertible. The second set of equations is [a; 53] = [aa b;]. The
fact that X is unitary can be verified by computing £*X and XX* in terms of its
block entries. )

An alternative proof of the fact that X is unitary uses equation (5.3). As © is J-unitary,
we have for all ay, by:

[lar 5110, (a1 511O]
[laz b2l [a2 byl
Po(aza3) — Po(bab3)

& Po(wad) + Po(bibY)

e  {lo bl bl

e {la blZ[a blZ}

lai b1l [ar b1

lay b1l lar b1]
Po(aia}) — Po(b b))
Po(aial) + Po(bab3)
{lai b2l lar bol}
{la1 bal[a; bal}

I

(=
=

for all ay, by, which shows that T is an isometry. The derivation can be repeated for o,
which gives that X is a co-isometry.

Z is known as the scattering operator corresponding to ©. The relation between © and
Z is drawn in figure 5.1. Note that © — X exists for any J-unitary operator ©, but the
converse X — © gives a bounded operator @ only if Z,, is invertible, in which case
Z = O3}, Hence considering only bounded operators © is in some sense ‘special’, and
indeed gives rise to certain special properties of its state space, as will be discussed later.

Note that, although ©3} exists as a bounded operator, it is not necessarily true that O e U,
even if Oy is itself upper. © is called J-inner if the corresponding scattering operator T
is inner, that is, unitary and upper. (An alternative definition avoids the use of T and uses
projections instead; see [11].) If © € I/, then © is J-inner if and only if ©3} is upper.
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Oy i
a) az a)—» ay
O
N i X hY3
3]
b by b, by
O Ty
e T
(a) {b)

Figure 5.1. The connection between © and the corresponding scattering operator X.

Linear fractional transformations

An important application of J-unitary operators is in the calculation of the transfer operator
of a X-section, terminated in a ‘load’ Sy, as in figure 5.1. If the spectral radius of Z31.5, is
smaller than 1 (which in view of theorem 5.2 will always be the case if S, is contractive:
S.|| £ 1), then S can be determined as

S=Z1+ S (-8 In. (5.5)

However, if instead of a single X operator, a cascade of such operators is placed between
the ports [@; b;] and Sg, the computation of S in terms of S, and the X’s becomes
more complicated (the resulting formula is known as a Redheffer product). But .S can
also be determined in terms of ©, which is interesting because a cascade of @-sections is
again a © operator, and is equal to the product of the individual transfer matrices of the
O-sections: @ is a ‘chain scattering operator’. It remains to specify S in terms of © and
Sr. Sy gives a relation between ay and by: by = a»S;. Let § be the transfer of ¢y to by:
by = a;5, then Sy and S are angle operators for the graphs (a; b;] and [a; b1]. They
satisfy

by=a,51 & f{aa b2l [ 2 ] =0,
s S
b1 =(113 (= [(11 b]] [ I ] =0.

Combining with the relation [a; b;]© = [a, b;] gives a relation between S and Sy as

1. s
[ ]e-el3] 5

for some operator @, given by @ = Oy — 0,,5;. If ® is invertible, then S is given by the
ratio

S = TolSL] = (©115. — ©12) (On — 0115 .
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The expression is usually written as S = Te[S.]. It remains to note that & = Oy -
95%(92151) = @5%(1 —X,18;.) so that a sufficient condition for @ to be invertible is, again,
that S; is contractive. For later use, the above remarks are collected in the following
lemma.

LEMMA 5.3. Let © be a J-unitary operator. Then

e N _ St
S =TelS] (=4 I:_[](D—@[_[],

where O = Oy (1~ @55921&) is invertible if Sy is contractive.

COROLLARY 5.4. Let © be a J-unitary operator, and let S; be contractive. Then § =
TolS1] is strictly contractive if and only if Sy is so.

PROOF This is clear from (- S*8)D = - 5,5, (see also [16], lemma 4.1). O

Subspaces

With the connection X <> © as motivation, we investigate in some more detail the impli-
cations of the use of the indefinite (diagonal) inner product [x, y] = {xJ, y}. As mentioned
before, for any x € A3, [x, x] is diagonal with entries that can have either sign, or be equal
to 0 for x#0. Also note that |[x, x]| < {x, x}, so that x € X, is also bounded in J-norm.
With regard to subspaces in X, we call a left D-invariant subspace H c &,

— J-positive if xe H = [x,x] >0,
— J-negative if xe H = [x,x] £0,
—Jneutral if xe H = [x,x]=0,
— J-uniformly positive if 3£>0: xe H = [x,x] = &{x, x}.
— J-uniformly negative if I£>0: xe H = —{xx]= e{x, x}.
The J-orthogonal complement of a D-invariant subspace H is H!Y), defined as
HY = {xe Xy :[xyl=0, allye H} = HJ.

This subspace is also D-invariant.

On J-uniformly definite subspaces, the J-inner product is equivalent to the usual inner
product: e{x, x} <[x,x] <{x, x}, which ensures that important properties (such as com-
pleteness and closedness) carry over: a J-uniformly definite subspace is a Hilbert space
subspace. We are, however, interested in more general cases than only uniformly definite
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subspaces, namely cases where a subspace H can be split into H = H, @ H_, where H,
and H_ are uniformly positive and negative subspaces, and ‘&’ denotes the J-orthogonal
direct sum:

H=ABB & H=A+B, A[l]B.

This indefinite direct sum is the analog of @, but in using B, a number of properties that
are a matter of course in Hilbert spaces no longer hold. For example, for a subspace in the
usual (definite) inner product, we always have that H nH+ =0 and H ® H! = X,. With
an indefinite metric, the analogous equations are in general not true. The intersection of
H and H!Y) need not be empty: for example, if H is a neutral subspace, then H < H M.
With neutral subspaces, one can also show that a subspace and its J-complement do not
necessarily span the whole space. Consequently, the algebraic sum % +H*! need no longer
be a direct sum: if one of the subspaces contains a neutral element, the decomposition is
not unique.

To describe the situation, we require a number of additional definitions. A full discussion
(of the case of ‘classical’ Hilbert spaces) can be found in [14]; here, we only go to the
level of detail that is required in the following sections. Throughout, we consider only
subspaces that are D-invariant.

A subspace H is said to be projectively complete if H + H!Y) = X,. In this case, each
x € X3 has at least one decomposition into x = xo + x; € H + HM. A vector x € H is
called the J-orthogonal projection of a vector y € X, if (i) x € H and (if) y—x [1] H.

Let Ho = HNHW. H is called a non-degenerate subspace if Ho = 0. It is straightforward
to show that [H + H L = HIL ~ HILL) = HI ~H = H,, so that

Xy = (H+HYY @ HyJ. (5.7)

It follows that  can be projectively complete only if it is non-degenerate: H NH 4 = 0.
In that case, decompositions are unique, so that if H is projectively complete, then X, =
HBHW,

If H is a locally finite D-invariant subspace, then it has some strong basis representation
F such that H = DBF (¢f. prop. 2.6). Here, B is the non-uniform space sequence whose
dimension #B is the sequence of dimensions of the subspace . In analogy with the
definition of the Gram operator Ay = {F, F} in chapter 2, we define the J-Gram operator
of this basis as the diagonal operator

AL = [F,F] = PyFJF) € D(B,B). (5.8)

F is J-orthonormal if A} = Jz, where Jg is some signature operator on B. We call H
regular if the J-Gram operator of any strong basis is boundedly invertible. Since strong
bases are related by invertible diagonal transformations R: F’ = RF, the invertibility
properties of the Gram operators of all these bases are the same, so that regularity is a
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property of the subspace. Note that A > 0 does not imply that Af, is boundedly invertible.
But it is readily verified that the reverse implication is true: Af boundedly invertible =
Af > 0, so that in particular a J-orthonormal basis is a strong basis.

If Ag is boundedly invertible, then it has a factorization into A% = RJ3R*, where R and
Js are diagonals in D(B, B), and Jj is the signature matrix of Af: it is a diagonal of

matrices
1
Uk = [ —I}

and defines a partitioning of B into B = B, xB_. Jg is again independent of the choice of
basis in H. We call Jg the inertia signature matrix of the subspace M, and the sequences
#(B,) and #(B-) corresponding to the number of positive and negative entries of Jz at
each point is called the inertia of . More general subspaces can also have a zero-inertia,
corresponding to singularities of A%, but if M is regular, then it has no zero-inertia. (The
zero-inertia is only well defined if the range of A{ is closed, or equivalently, if any of its
eigenvalues is either equal to zero or uniformly bounded away from zero.)

The following theorem is proved in [14, thm. 1.7.16] for classical Krein spaces. The
proof is easier for locally finite subspaces, and as these are the only ones that we will
consider later, we restrict the theorem to this case.

THEOREM 5.5.  Let H be a locally finite left D-invariant subspace in X,. The following
are equivalent:

1. 'H is projectively complete; H @ H) = X,
2. 'H is regular,
3. H=H,8H_, where H, and H_ are uniformly positive (resp. negative) subspaces,

4. Any element in Y, has at least one J-orthogonal projection onto 'H.

PROOF (1) = (2). Let H = D23F , where F is a strong basis representation with Gram
operator Ap = {F,F} = Po(FF") > 0. Assume M 8 XML = X,. Then there exists a
projection operator P;i onto M. Let xe M, y = xJ, then y = yp+y; where y, = %(y) eH
and y; € HH), We have

xt =yl =xwl ={xJyo} ={Pu(x)),y}.

The projection operator Py (-) follows from theorem 2.10 as Px(-) = Po(-F")AF'F.
Writing x = DF, yo = DoF, where D, Dy € D, we obtain Py (xJ) = DPy(FJF)AFF =
DALAF'F, and

DAgD' = {DA{AF'F, DoF} = DALD;.

As this is true for all D € D and Ag > 0, and DA{D; = DoA{D", it follows that A§ must
be boundedly invertible.
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(2) = (3). Let Af = Po(FJF") be the J-Gramian of F, which by the present assumptions
is boundedly invertible. Let Ji be the signature matrix of Aj: Af = RJgR". Js generates
a decomposition of the state space sequence B into B = B, x B_. Let Q = R™'F, then
A{2 = Ji so that Q is a J-orthonormal basis representation of H. Q splits into a basis
representation Q, corresponding to the positive entries of Jg, and a basis Q- that is J-
orthogonal to it and that corresponds to the negative entries. Hence X =H . B'H_, where
H, = ’Df’Q,, is a uniformly positive subspace and H_ = Df'Q_ is J-uniformly negative.

(3) = (4). Let H = H, BH_, and let F,, F_ be strong basis representations of H, and
H-. Because the subspaces H.,, H- are uniformly definite, Af, and Af are boundedly
invertible, and J-orthonormal projectors onto X , and H_ are

Py, = Po(-JF)(AL)'F,,
Pj, Po(- JF2) (AL YIF_.

Hence y € X, has well-defined projections y, onto M, and y_ onto H_. Then P{i(y) =
Vi + V-,

(4) = (1). Since any y € .Y, has a J-orthogonal projection yg onto H: y = yo + y|
(where yo € M,y € HY), we must have that H + H! = X3, that is, H is projectively
complete. o

COROLLARY 5.6. Let ‘H be a locally finite regular left D-invariant subspace in X,
with dimension sequence B, and let Jp be the inertia signature matrix of . Then H
has a canonical decomposition H = H, B H_ into uniformly definite subspaces, where
s-dim H, = #B, = #,(Jg) and s-dim H_ = #B_ =#_(Jp).

State space properties of J-unitary operators

We show that a bounded, block-upper J-unitary operator © has input and output state
spaces H(®) and Ho(O) that are closed, regular subspaces, so that e.g., H(©) = H, BH_
where H, and H- are uniformly definite.

PROPOSITION 5.7. Let @ € X (M, N) be a (Ja, Jar)-unitary operator. Then

L7 6 L7270 pm
Uy & UrOJp.

L2771 @ pm, H(©)
U0y, Ho(©)

K(©)
Ko(©)

PROOF Let x € K(©) = {x e £,Z! : P(x®) = 0}. Since O = JO*'J € L, it follows
that x € K(©) if and only if x € £,Z27107!. Hence K(0) = £,Z'07! = £,Z71J0"J =
L2710, and H(O) = L2727 & L,Z71 ©*J.

The results on Ko and Ho follow in a dual way. ]
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PROPOSITION 5.8.  In proposition 5.7, H and H, are closed subspaces, and

Ho(©)
H(O)

H(O®)J O
Ho(©) Iy O".

PROOF Let x € H(®). Then
{xJO, £,Z7'} = {x, £,Z770"J} = {x, K(©)} = 0.

Hence (xJ)© € U, so that HJO — Ho and H < HoJO*. In a dual way, it follows that
HyJO' < H. Combining these two expressions gives

HolJO cH c’H c HoJO",
and because JO is boundedly invertible, Ho(®) and H(O) are closed. In addition, it
tollows that HJ© = H, and HyJO" =H. a

PROPOSITION 5.9.  In proposition 5.7, H(®) and H ((©) are regular;

L£,Z7!
U

H B L7
Ho B UyrO.

PROOF H})“ = H§J = KoJ = Ur©. To prove that iy = Ho B K we show that every
y € Uy has a J-orthogonal projection onto Ho. Let y € Uy, and define yO' = u; +y;,
with u; € £,Z7' and y, € U,. Further, define uy = u1J € L£,Z7!. Then u, € H because
ur = Ppz (O = Pp oz () ©7). It follows that y = u2JO + y,©, where uJO € Ho
(because of proposition 5.8) and y;© € MY = 1,©. Hence every y € Uy has a J-
projection onto Hy, so that according to theorem 5.5 H, is regular. A dual proof holds
for H. O

COROLLARY 5.10. Let @ € UM, N) be a locally finite J-unitary operator. If F is
a Jiz-orthonormal basis representation of H(®), then Fo = JgFJy© is a J-orthonormal
basis representation of Ho(©), and in this case the canonical controller realization based
on F (theorem 3.20) and canonical observer realization based on F (theorem 3.25) are
equal.

PROOF Because H(O) is regular, there is a J-orthonormal basis representation F of H:
A, = Py(FJF") = Jg. This F defines a factorization of the Hankel operator of © as
Ho = Po(-F*)Fy where F;, = A§! P(FO) is a basis of the output state space Ho of ©.
(theorem 3.27). On the other hand, the relation Ho = HJO ensures that F;, defined
as F; = FJ,0, is upper and also a J-orthonormal basis representation of Ho. The
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connection between F; and Fy is F| = FJy© = Fiy He = Po(FIMF") Fy = JgFy, so that
Fo = JgF; = JsFJp4©. 1t is readily verified that Fy is also J-orthonormal. Theorem 3.27
claimed that the canonical observer realization based on this Fy is equal to the canonical
controller realization of F. o

J-Unitary realizations

A realization matrix @ € D(B x M, BCD x A) with signature matrices J, J,,

_[a ¢ [ s _[ 5P
o-[3 5] we[P ] [P ] @

is said to be J-unitary if
eJ,e=],, 85,0 =],.

We call Jg the state signature matrix of ©. With ‘#” indicating the sequence of dimensions
of a space sequence, we have that, for each time instant &, the total number of positive
entries of the signatures at the left-hand side of each equation is equal to the total positive
signature at the right-hand side, and similarly for the total negative signature (the inertia
theorem):

#B, + #M, #BTY + 4N,

#B_ + #M_ #BCD + #AL.
As for inner systems, J-unitary systems and J-unitary realizations go together. Proofs of
this are similar to the unitary case (theorems 4.5 and 4.6).

(5.10)

THEOREM 5.11.  Let © € L{(M, N) be a locally finite (J a1, Jar)-unitary operator. LetJg
be the inertia signature matrix of H(©), and let F be a J-orthonormal basis representation
for H(©).

Then the canonical controller realization © based on F is J-unitary, and identical to the
canonical observer realization based on Ky = JgFJx\ O.

PROOF Let © be given by the canonical controller realization (theorem 3.20). This
realization satisfies the properties (lemma 3.21):
7ZF = A'F+B,

{ L FHeED = [k
PyZ™ - FY) Po(-[F°A + B]) 5.11)

Po(-®) = Po(-[D+FC),
@ = D'+C'F.
To verify that 8" J,© = J;, we have to show that
. _ A JgA+BIuB = S5V
{Po(?fi%g - jgf = { CIgC+DIuD = Jy
AJsC+B'IuD = 0.
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Indeed,

Po(Z (ZF) Jp FT)ED
Po([A"F + B*]Ja [F°A + B])
A'JgA+ B IB,

PoFIuF)=Js = JG

Py(®' I O) = Jyr = Po([D* + C*'FlIm [D+F*C])
= D‘JMD+ C'P()(FJM F*) C
D IpuD+CIsC = Jy.

P (ZFI) =0 = Po([B* +A'FlUm[D + F'C))
= B*JMD-FA*PU(FJMF*)C
= B JuD+AJsC = 0.

Hence ©°J,0 = J,. The relation ©8J,0" = J; can be derived in the same (dual) way as
above. The equality of both realizations has been proven in corollary 5.10. o

The converse of this theorem is in general true only if, in addition, £4 < 1. If {4 = 1, then
additional assumptions on the controllability and observability of the realization must be
made.

A C
B D
©. Let Ag and Ay, be the controllability and the observability J-Gramians of the given
realization. If {4 < 1, then

THEOREM 5.12. Let® = [ ] be a state realization of a bounded transfer operator

9*J19=Jz = O*JM(_):J/V', A%:JB,

0,0 =J, =  OIyO =M, A, =Us. (5.12)

If ¢4 <1, then

6*J19=J2, AJ=JB =1 @*JM@=JA/,
9.]29*=J1, A'II;O=JB = @JN’@*=JM.

PROOF If 44 < 1, then ©°J,© = J, implies A*JzA + B"JpB = J". The J-Lyapunov
equation for the realization based on F is determined from proposition 3.9 to be A*ALA +
B*JB = (AL)TV. Since £, < 1, the equation has a unique solution, so that A% = Jg, and F
is J-orthonormal. A dual result holds for Ag, in case ©J,0" = J,.

Assume ©°J,0 = J, and Af, = Jz. We use the equations (viz. lemma 3.21)
F

Py(-©) Py [D+F*C))
® = D'+CF.
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Py(Z"FJF") JPAln} (n=0)
PyZ"F*) = BPAlr} (n>0).

To show ©*J,4© = Jy;, we show that Po(Z"©"JO) is equal to J for n =0, and equal to
zero otherwise. For n = 0:

Po(@J®) = P([D"+C'Flim[D+ F'C])
= Py(D'JmD) + Po(D*" I F C) + Py(C*FIy D) + PO(C*FJMF'C)
= D‘JMD + C'JsC = I
For n> 0,
Py(Z70*Ip®) = Po(Z[D* + C'FlJIpm [D+F°C])

= P()(Z—”D’JMD) + Po(Z—"D*JMF*C) +
+ Py(Z"C'FIpD) + Py(Z"C'FIMFC)
= 0+ 0+ DO BOAIIIC + CTOJPAC
[D*JmB + CTIgA]™AI1} C
0.

1

Taking adjoints shows that Py(Z™"0*JO) = 0 for n < 0, too. Hence ©*JO = J.
The fact [6]J,0" =], A§0 =Jg] = ©JO* =J can be shown in a dual way. 0O

Again, if 4 < 1, then a more elementary computation suffices to verify the theorem:
evaluating Ja — ©*Jy© and Jag — OJ4©" yields, for the former expression,

IN—0Jm® = Iy - [D+BZUI—-AZy CT"Im[D + BZ(I - AZY' ()
= CJsC + C'U~-Z'AY'Z'AJsC + C'UBAZ(I-AZY'C+
- C -2 A2 IG5V - AT IBAYZU - AZ)YI C

since B'"JpmD =—-A"JsC, B ImB=J3" - A'JgA and Jyr — D*JpD = C*JC, and hence

CU-Z'A YU -Z A )~ AZ) + Z°A"Js(I - AZ) +
+(U~Z'A)JBAZ — Js + Z'A*JBAZ}(I-AZ)'C
= 0.

I -0 IO

The second equality follows by an analogous procedure.

Unitary state representation for £

Let © be a J-unitary realization of a J-unitary operator © € I{, with state signature matrix
Js. We have seen (in proposition 5.9) that the input and output state spaces H(®) and
‘Ho(©) are regular: ‘H = H,B7H_, and that this partitioning corresponds to the partitioning
of the state space sequence B into B = B, x B_ conformably to Js. Because the bases
chosen for the state spaces are J-orthonormal (© is J-unitary), the basis representation
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F is partitioned into two J-orthonormal bases F, and F_, such that H, = D3'F, and
H_ =DE-F_. Hence a state x € XP is partitioned into x = [x, x]e X" x. VS, where
x, and x_ are the parts of the state that correspond to the positive and negative subspaces
in the state space H: x,F, € H, and x_F_ € H_. The decomposition of the state defines
a partitioning of © according to the equation

x, x a 510 =[xZ! 7' a bl. (5.13)

into
)C+Z_l x_Z—l az bz
X A]] A12 Cll C12
X A A C C
o = 21 2 1 o (5.14)
ar | B Bys | Dy, Dy
by | Bn By Dy Dy

We have shown, in theorem 5.2, that associated to © is a unitary operator X such that
[ap B]Z=1lax bl & [a1 £]O = [a2 ba].

The question now is whether the given realization of © gives rise to a realization of X.

A reordering of rows and columns in (5.14) with respect to their signatures converts ©
into a genuine square-block J-unitary operator, i.e., each matrix

Aqy CII'AU Ci2

By Din | By Dipp
Ay Gy | A Cp
By Dyy | By Do

k

is a square and J-unitary matrix with respect to the signature

1B M. ] _ [I(Bf)mxwf)k

—I(B_)x(M X —I(B N X

In particular, each submatrix
Apy Cxn
By Dn |,

of O is square and invertible, and because © is J-unitary, the block-diagonal operator
constructed from these submatrices is boundedly invertible as well. It follows that the
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following block-diagonal operators are well defined (¢f. equation (5.4)):

i . i s e .
Fiu Hy| _ [An Cu|_|An Cn|[An C» Ay Oy
| Gi1 Ky | | Bu Du Biz Dz _11322 Dy By Dy
Fiu Ho| _ _[An Co Ap Cn |
| Gz K12 | Biy D By Dy |
Fyy Hy | _ | An Cn Ay Gy
| G Ky | | B Dn 1 By Dy |
[ Fn Hy ] _ | A2 Cn
| G2z Ky | | B2 Dn
(5.15)
and we obtain the relation
x, xZ' a b =[Z' x a b] (5.16)
where
nZl ox a b
X+ Fii  Fo ‘ Hy Hp
zZ! F. F. H H
s & u_ Fu 2 Hp (5.17)
a Gn G ‘ K K
by Gn Gn Ky Kn

See figure 5.2. An important point which can be readily derived from the J-unitarity of

© is fact that Z is unitary:
XX =]; XX=].

Because in (5.16) state quantities with and without Z~! appear in the same argument at the
left- and right-hand sides, X is a kind of generalized or implicit realization for the transfer
operator Z, but is not computable in this form. X can be obtained from X by elimination
of x_ and x,. T can be interpreted as a realization having an “upward” state x_ and a
downward state x,, as depicted in figure 5.2. Recall that although Z is unitary, it need not
be upper. It can be contemplated that the upward state x— is instrumental in generating
the lower triangular (anti-causal) part of X. The precise details will be investigated later
(proposition 5.16), but a preliminary result is straightforward to derive.

PROPOSITION 5.13.  Let © be a (J1, Jo)-unitary realization for a J-unitary operator ©.
If Jg =1, then ©3} € U, that is, © is J-inner and the corresponding unitary operator X is
upper and hence inner.

PROOF If Jz = I, then the dimension of x_ is zero, so that the implicit state relations X
for T in (5.16) are reduced to ordinary state equations [x,Z' a b1]=I[x, a1 b]E,
which define an upper (causal) operator Z. o
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Figure 5.2. (¢) The spaces connected with a realization for a J-unitary block-upper oper-
ator © which transfers £3%* x £~ to £ x ¢}, The state transition operator
is marked as ©. (b) The corresponding scattering situation.

Past and future scattering operators

In section 3.3, we defined for a signal u € X, the decomposition u = u, + us, where
u, = Pr,z1(u) € L2Z7! is the ‘past’ part of the signal (with reference to its O-th diagonal),
and uy = P(u) € U, is its ‘future’ part. We also showed how a causal operator T with
state realization T could be split into a past operator T, which maps u, to [xqo) y,] and
a future operator Ty which maps [xjo) us] to yr. In the present context, let the signals
ay, by, ay, by and the state sequences x,, x_ be in X, and be related by © as in (5.13). With
the partitioning of the signals a |, etc., into a past and a future part, © can be split into
operators ()0, : Z'LM — [PF Z' L] and ()0;: [PE UM] - UN via

[alp blp] ep =
aif b1f] ®f

[xeo) X0y azp bopl

lay byl (5.18)

(X401 X—0)

©, and Oy can be determined once basis representations for the input and output state
spaces of © have been chosen. The following procedure is as in section 3.3. The splitting
of signals into past and future parts associates to © an ‘expanded’ operator ©, defined
such that (u, + u)® = (y, +y) & [u, 1O =[y, yl:

Ke H Ke = P‘Clz“('g)lczz—l
@:[ 0 E(‘)’] where Ho = P(-O)|., (5.19)
ko = P(-@)qu

Let F be a J-orthonormal basis in H(®), and let Fy = JFJO be the corresponding J-
orthonormal basis in Ho(©). Then ©, and Oy are given by (¢f. equation (3.36))

0, =[Py(-F") Kel, 6= [ Fo J ) (5.20)

Eo
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Figure 5.3. (a) The state transition scheme for X, (b) The decomposition of X into a past
operator T, and a future operator Zy linked by the state [xio; X-fo;). This
summarizes the figure on the left for all time.

We first show that ©, and ©y are J-unitary operators. Then, as a consequence, we can
define operators ()Z,, (1)Zf

o) a1, b1, = [xao) a2 bipl
fxvo) ay byl Zy [x0p az byl

"

which are the (non-causal) scattering operators corresponding to ©, and ©y, respectively
(see figure 5.3(b)). The J-unitarity of ©, and ©y, and hence the existence and unitarity of
T, and Xy, is asserted in the following proposition.

PROPOSITION 5.14.  Let ©® € U(M, N) be a locally finite J-unitary operator, and let ©
be a J-unitary realization for ©. Then ©, and ©y are J-unitary operators, and Z,, Zy are
well-defined unitary operators.
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PROOF Let © be given as in equation (5.19). Since © is ‘the same’ operator as ©, it is
J-unitary as well, which gives the relations

EG)JEé = J, KE)JK@ = J,
Ho JEG = 0, Hy JKe = 0, (5.21)
HyJHo+EyJEg = U, HoJHg + Ko JKg = .

Let F be a J-orthonormal basis in H(®), and let Fy = JFJO be the corresponding
J-orthonormal basis in Ho(®). Note that Fy is also given by Fo = JFJHg, so that
FoJEg = JF JHaJEg = 0. With the chosen basis, the Hankel operator has a factorization
as He = Po(-F")Fy and Hy, = Po(-F)F, so that

HZ_—,)JH@ = Pg(-Fa)Po(FJF*)F() = Po('FS)JFo. (5.22)
O as in (5.20) has adjoint ©F = [Po(- F) Egl, so that (with (5.21))

* [ F * *
©,J 67 i E; ] J [Po(-Fp)  Eg)
[ Po(FoJFy)  FoJE,
" | Po(EeJFo) EoJEg
_[Js 0

I IV

and with (5.22), also

| O

016, = () Fols | 1

] = P()(F(;)JF()-FEZDJE@ = J.
Hence ©y is J-unitary. The J-unitarity of ©, follows in a dual way. a

State dimension of Xy, = 03]

We have seen in proposition 5.13 that if the state signature sequence Jg = I, then Zp; = 03}
is upper. In chapter 6, an important role is played by J-unitary operators with non-trivial
state signature, so that ©3} is not upper. In particular, we are interested in the dimension
of the state space sequence H(©33) of O3}, determined by the lower (anti-causal) part of
©31. To this end, we use in this section a “conjugate-Hankel” operator, defined as

H = Hé’zi =Pz (- egé)luz (5.23)

The definition is such that H(®3) = ran(H’).

Let the signals a), b1, az, by and the state sequences x,, x_ be in .t and be related by ©
as in (5.13). As proven in proposition 5.14, © can be split into operators (-)©, and (-)©;
via
layy, bipl©O, = [xio) xqop a@2p byl (5.24)
[Xi0p Xxq01 @y bi] O {ay bofd,
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and the related scattering operators Z, and X are well defined by

o ap bplZy = [xeo) azp  bipl (5.25)
op ayy bod Xy [0 ay byl

and constitute the same relations as in (5.24).

Because O3 = Iy, the conjugate-Hanke! operator H' defined in (5.23) is a restriction of
the partial map Z,; : by +> by. Indeed, H' : by > by, is such that by, and by, satisty
the input-output relations detined by X under the conditions ¢ ; = 0 and b, = 0 (see also
figure 5.3(b)). H', as a Hankel operator, can be factored as H' = o7, where the operators

o: bzf = X0
7. X0 b1p

can be derived from Z; and X, by elimination of x.}, again taking a; = 0 and by, = 0.
We show, in proposition 5.15, that the operator @ is ‘onto’ while 7 is ‘one-to-one’, so that
the factorization of H' into these operators is minimal. It is even uniformly minimal: the
state x_fo; is uniformly controllable by b (i.e., the range of o spans D), and x_ as input
of zis uniformly observable. It follows, in proposition 5.16, that the dimension of x _oj at
each point in time determines the local dimension of the subspace H(©3;) at that point.

PROPOSITION 5.15. Let ® € U be a locally finite J-unitary operator, with J-unitary
realization © such that £4 < 1. Let x,, x_, a1, by, az, by satisfy (5.24) and (5.25).

1. If a1, = 0 and bap = 0, then the map ©: xjo; — by, is one-to-one and boundedly
invertible on its range, i.e.,

Je>0: ||bipll 2 &llxqoll- (5.26)

2. The map o : by — x_p) is onto, and moreover, there exists M < oo such that for
any x-(o) there is a by in its pre-image such that

| borll < Ml xa]-
PROOF

l. The map t©: x_[oy = by, is one-to-one. Put a;p = 0 and by, = 0. Equation (5.25)
gives [xo; 0 01Z, = [x,0) a2y b1p), that is, we have for some x.jo; and aap

[0 b1p]@p = [x0; Xq0p a2 O] (5.27)

Since ©, is bounded, ||b1,|| < 1 = [|xqo|l < M and hence, with £ = I/M:
[lxqoyll =1 = ||b1p|| 2 &. It follows that x_jo) +> by, is one-to-one as claimed,
and that (5.26) holds.
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2. The map o by = x_jo) is onto. Let be given any x_g). We have to show that there
is a by that via Zr can generate this state. First, with a;, = by, =0, I, associates a
unique by, and x,(o) to x_jo}. Put also ais = by = 0, then © generates a corresponding
bor as by = b1©yy. Because Xy is well defined, application of Zs to [x,0) O byl gives
again a state x/jp); but this must be equal to x—(o) because they both generate the
same by, and the map x_jo; — by, is one-to-one. Hence this by generates the given
state x-qp}. In addition, we have from || by, || < || x-j0]| and || © || <M < o that

Hoxll < 1@l byl
< Mlxqoll-
This means that the state x_go) is uniformly controllable by byf as well. o

Proposition 5.15 is instrumental in proving that the sequence of the number of states x _
of the anti-causal part of @3} is equal to the sequence of ranks of the Hankel operator H'.

PROPOSITION 5.16.  Let © € U be a locally finite J-unitary operator, with state signature
operator Ji. The s-dimension of H(©3;) is equal to #_(Jg) = #(B-), i.e., the sequence of
the number of negative entries in Jg.

PROOF

H(O3;) Pz (Uh07))

{Pr,z1(by©3)) : by € Ur}.

Put a; =0 and by, = 0 50 that by, = P z1(byrO31). The space H(O5;) = {b1, : by € Uy}
is generated by the map H' : by — by,. But this map can be splitinto o: by — x_g
and 7: x_o) —> b1p. Because [xo) 0 0], = [x40) a2, bypl, the signal x g determines
b1, completely. In proposition 5.15 we showed that x_jo) — b1, is one-to-one and that
bay — x_jo7 is onto. Hence, the state x_g) is both uniformly observable in b, and uniformly
controllable by by, i.e., its state dimension sequence for the map bos +— by, is minimal at
each point in time. Since the number of state variables in x_g) is given by #_(Jg) = #(B_),
it follows that

s-dim H(O53) = #(B.).

5.2 J-INNER COPRIME FACTORIZATION

An extension of the external (inner-coprime) factorization in chapter 4 is the case where
an operator T € U (M, N) and a signature Joq is given, and a factorization of the form

70 = A (5.28)
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(where © € I is J-unitary and A is upper) is desired. We take the above definition as
dual to the formulation of the external factorization in section 4.2, where we had T= A"V,
or VT" = A; the definition in (5.28) connects more easily to the interpolation theory in
later sections. The factorization results are also an extension of the theory in section 4.2,
although we only consider the case where £4 < 1.

A dual form of proposition 4.7 holds:

PROPOSITION 5.17.  Let be given operators T € U and © € U. Then A =T © is upper
if and only if £,Z7'©" < K(T). If © is J-unitary, then £,Z7'©"J = K(©), and A is upper
if and only if © satisfies

HUT) < H(O).

The construction of such a © is comparable to the construction for inner operators. Let
{A, B, C, D} be a realization for 7. Assume that the realization is uniformly controllable
and that £4 < 1, then F = (BZ(/ —AZ)“)* is a strong basis representation such that
H(T) c D,F. An operator © such that A € I is obtained by taking H(©) = D,FJ, and a
J-orthonormal realization of © is obtained by making FJ J-orthonormal, which is possible
if and only if A4 = Po(FJF") is boundedly invertible. Let Js be the signature of Ag,
then A} = R*JgR for some invertible state transformation R, and hence Ae and Be of a
J-unitary realization are given by

A0 ] [ R Al
FHEEIE 529

It remains to complete this realization such that

_ Ap Co
o- [ 5l

is (Jy, Jo)-unitary. This step is less obvious than for inner systems, so we first prove an
additional lemma on this before stating the main theorem.

LEMMA 5.18.  Let be given finite matrices «, , and signature matrices ji, j2, j3 such
that

o jra+ BiB=js.
Then there exist matrices ¥, & and a signature matrix j4 such that 8 = [‘5;] is a J-unitary
matrix, in the sense
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PROOF Let a be an (m, X n,)-dimensional matrix, and f: (mgX ng). It is clear that if an
extension exists, then j,4 is specified by the inertia relations:

#+ (]4)
#_(ja)

#+(jl) + #+02) - #+(j3)
(1) +#-(j2) —#-(j)

1]

Since the first block column of 8 is already J-isometric,

. j o .
[ f] [Jl : ] { ] =Jja,
J g7
it remains to show that this column can be completed to a J-unitary matrix. Because j3 is

non-singular, the n, columns of [§] are linearly independent. Choose a matrix [¢] with
mq + mg— n, independent columns such that

(@ /3*][1'1 jZHZ]=o o [;]=[§;Z]l (5.30)

a ¢

We claim that the square matrix | ; 5] is invertible. To prove this, it is enough to show
that its null space is zero. Suppose that

AN
N ERIRINEGEE!

Hence x; = 0 and [4]x, = 0. But the columns of [§] are linearly independent, so that

x; = 0. Thus
[a* ][jl ][ac]=[j3 ]
¢ d J2 B d N

where N is a square invertible matrix. By the usual inertia argument, the signature of N
is equal to j4, and hence N has a factorization N = R*j4R, where R is invertible. Thus

putting
Yo €| p _| 7
ML

ensures that 8 is j-unitary as required. ]

then

THEOREM 5.19.  Let be given a subspace H = DEFJ in Z' LM, specified by a bounded
basis representation ¥ = (BZ(I—AZ)‘I)* (£4 < 1) which is such that A{T is boundedly
invertible. Then there exists a bounded J-unitary operator © € U(M, Ng) such that



174 J-Unitary Operators

H = H(©). © is unique up to a right diagonal J-unitary factor. N'e is the space sequence
with dimension sequence given by

#(N®)+

#B, — #8BCY + #M, 20
+ ¥ + 5.31
#(No)- (5:31)

#B_ — #BCD + #M_ 20.

PROOF Since A} is boundedly invertible, there is a signature operator J3 and a boundedly
invertible operator R € D such that A} = R*JgR. The signature Jg implies a space
sequence decomposition B = B, x B_, and since A}, satisfies the J-Lyapunov equation

A'ALA + B IpB = (ADTD, (5.32)

Ao |_[R ][ A ]z
2] ]3]

form a J-isometric block column with diagonal entries. We proceed with the construction
of a realization © of the form

[Ae Co]_[R [ A RD
9‘[3(,) D@]—[ 1]_13 D@H I (5.34)

Ae, Be, given by

which is a square matrix at each point £, and where Cg (or C’) and Dg are yet to be
determined. © is to satisfy ©°J,0 =J,, 6J,0" =], for

-)
B N R A

where Jy, is still to be determined, and with it the dimensionality of the output space
sequence Ng. However, since all other signatures are known at this point, these follow
from the inertia property (equation (5.10)) as the space sequence with dimensions given
by (5.31). To obtain ©, it remains to show that [42] can be completed to form © in
(5.34), in such a way that the whole operator is J-unitary. This completion can be achieved
for each point k at the local level, and exists as was shown in lemma 5.18. Since O is
J-unitary and €4 < 1, theorem 5.12 implies that the corresponding operator © is J-unitary.
Finally, H(©)="H by construction.

The unigueness of ©, up to a left diagonal J-unitary factor, is proven in the same way as
for inner operators in the Beurling-Lax theorem (theorem 4.11). Indeed, let @, be another
J-unitary operator such that H = H(©;), then K = £,Z7' & H = L27710" = £,Z7'0y, so
that

T (5.35)

L2970, = L7
£22701J0 L7

which implies ©*J0, € D, say ©°JO, = JD, where D € D. Then ©; = 6D, and D must
be J-unitary. m|
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COROLLARY 5.20. Let T € U(M, N) be a locally finite operator with uniformly con-
trollable realization {A, B, C, D} such that £4 < 1, and let be given a signature matrix J 4.
If the solution A’ of the J-Lyapunov equation

A'NA + B Iy B = (AP (5.36)

is such that A’ is boundedly invertible, then there exists a bounded J-unitary operator
O € U(M, Np) such that
TO = Ae lU.

Ne and its signature are determined by equation (5.31).

PROOF The conditions imply that the subspace H = D,FJ = D, (BZ(I—AZ)‘I)‘J has
A} = A’ boundedly invertible. Hence theorem 5.19 asserts that there is a J-unitary
operator © such that H(©) = H. Note that a necessary condition for A’ to be invertible
is that the given realization be uniformly controllable, so that

HUT) = H(DJ < DoFJ = H = H(O).
This in turn implies that A = T*© is upper. ]

For later use, we evaluate A = T°0. Iustead of Cg, we use C' = R Cp (see equation
(5.34)), as A, will become equal to the original A in this case. We also apply the relation
JsFJs© = F,, which in case 44 < 1 reads

(I-Z'As) ' Z°By T © = Jg(I - AeZ) ' Co.

Thus
A = [D'+ C*(I—Z*A*)‘IZ*B*] S}
= D'[Do+ BoZ(I-AeZ) ' Co] + C'R(I - Z*A(*a)‘IZ*Bé JO
= D'Dg+D*BoZ(I- AeZy ' Co + C*RIs(I - AeZ) ' Co
= D'De+D*'JBZ(I-AZy'C'+ C*A(I-AZ)"'C’.
Consequently,
A=T0O = {D*D@ + C*A’C’} + {D*JB + C*A’A} Z(1-AZy'c’, (5.37)

where A’ is given by (5.36) and C’ by (5.34).

5.3 DEFINITE INTERPOLATION

As an application of the subspace representation theorem (theorem 5.19), or the J-inner
coprime factorization theorem, we consider the solution of a class of constrained interpo-
lation problems, known as the Nevanlinna-Pick interpolation problem. Starting in 1989,
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[
2
B

ap

by --
p pYs p2

Figure 5.4. Time-invariant interpolation of a function S(z). The cascade as a whole has
a structure as in figure 5.1(b).

constrained interpolation problems of increasing generality for time-varying systems have
been considered by Alpay, Dewilde and Dym {17, 15, 18, 16]. The topic was adopted
by Ball, Gohberg and Kaashoek [19, 11], who previously worked (with Woerdeman) on
the related problem of time-varying Nehari extensions [20, 21, 22, 23]; see section 6.5.
(A third school is formed by the group of Kailath, working on interpolation problems
for systems with a displacement rank, and approaching this problem using Schur and
Levinson recursions. See e.g., [24, 25, 26] and references therein.)

Nevanlinna-Pick interpolation

In its simplest form in the time-invariant setting, the Nevanlinna-Pick problem is the
following [5]:

Given n points {e;} and {s;} in the open unit disc D, does an analytic and
contractive function S(z) exist such that (@) = s (i = 1,---,n). If so,
describe all possible S.

For a single pair of points (@, s1), the answer to the existence question is of course
affirmative: take S(z) = s1. All other interpolating S(z) have the form S(z) = s1+(z—m)S'(2)
with $’(z) analytic in D, but this form is too general: the condition that S(z) must also be
contractive still has to be implemented. Splitting the problems into two steps, one looks for
a function S'/(z) which is contractive and satisfies the simpler interpolation condition that
S'(an) =0, and a way to transform this interpolation value to the required value 5. The
former function is given by 8$/(z) = U1(2)S1(z), where S)(z) is any contractive and analytic
function, and U,(z) is a (Blaschke) function which is lossless and has a zero at ;. The
transformation of the interpolated value O to s, is effected by a linear fractional transform
(which maps circles into circles and contractive functions into contractive functions), and
the result is that all contractive interpolating $(z) are given by

51— U1(2)51(2)
EAGIGK

S@) = Ui(z2) = lz _Z:,lz, (all contractive S, analytic in D).
-4
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If there are more interpolation points, then the freedom in §(z) can be used to meet each
of them without disturbing the first interpolation condition. To this end, the remaining
interpolation values {s, - - -, s, } must be translated into conditions on S(z) (the interpo-
lation points {e@y, - -+, w,} stay the same). Thus, all interpolation points can be treated
(order) recursively. The recursion breaks down if at any point in the recursion, one of
the transformed interpolation points becomes larger than one in modulus, and in this case
the interpolation problem has no solution. It remains to note that the linear fractional
transforms correspond to elementary © (or X)-sections, so that S(z) is a cascade of such
sections (see figure 5.4, which has the general structure of 5.1(b)).

In the time-varying setting, a number of things change. To start, the time-invariant z-
transform is no longer applicable, and one has to define an extended notion of such
transform, such that it has properties that are useful for describing interpolation problems.
Such an extension was done by Alpay, Dewilde and Dym in [15], who called the new
transform the W-transform. For operators T in /(M, ), the W-transform of T at point
Ve D is denoted by T(V), and is defined by

T = Z 2T, - ) = Z vilTy,
i=0 i=0

whenever the sum converges, which it does at least for ¢y < 1. In the above ex-
pression, V7 := VvV ... y#=D] 5o that the definition makes sense only for operators
Ve DM, MD), where M is the input space sequence of 7. The definition reduces to
the z-transform for Toeplitz operators T and V. We do not use many of the properties of
the W-transform, but an important one is [15]

V=0 =N T=Z-VI' (T'el). (5.38)

Hence, there is a notion of the ‘left’ zeros of T in terms of the W-transform. A second
property, useful to prove the above property and also to make a transition to a more
familiar context, is

vy = Py(U-VZ'Y'D (5.39)

This is straightforward to derive: for A, B € {{, we have

Py (A™B)

Py (Z(Aw)'Z™B)
> (Ap))" Po(Z7B)
> (Ap) By

Taking A = (I—- ZV')™", one has Ay, = V@V ... V'OV, or (A" = V7L

The Nevanlinna-Pick interpolation problem in the time-varying setting can be translated
from the above description as
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Given a set of n *points’ {v;} in D(M, MD), each with ¢,, < 1, and n ‘values’
{s,-},Aall in D(M, N), does a contractive operator S € U(M, N) exist such
that S(v;)=s; (i=1, ..., n). If so, describe all solutions.

Alternatively, using equation (5.39), the interpolation condition can be translated into

S(Vi)=si <= Py ((I—v,-Z*)'lS) S
e P (S U-zv)y') = o

& P(S'U-2Zv)'E) si-2ZviY'E, (al Ee Dy), (5.40)

where the last expression follows from the preceding by a shift-invariance property: write
A = (I-Zv} Y}, then the structure of A is such that P(AZ*) = ADy (for Dy, = Po(AZ*) € D),
and hence, the diagonals of the last expression in (5.40) are given by Po(S*AZ*) =
Po(S*P(AZ*)) = Po(S*A)Dy = 5] Dy = s;Po(AZ*). Formally, postmultiplication by E € D,
is required to obtain an expression in .V, rather than /X', so that the projection operator P
can safely be used.

It is also useful to collect the n data points into single diagonal operators. Let V €
DM, (M™D) be a diagonal operator with matrix entries Vi (k = —o, - - -, o), given by

(Vi
(V2
V, = ' ) (5.41)
(Vak
Likewise, define diagonal operators o and S by
o = [ 1 - T ]
. * 5.42
B = [0 - (k] (542)

Then the set of » interpolation conditions in equation (5.40) becomes a single condition,
and the interpolation problem can be stated as [16]

The ‘fundamental’ interpolation problem. Given operators o, §, V € D, with
£y < 1, does a contractive operator S € I{ exist such that

P(S*a(I-ZV'Y'E) = BU-ZV'Y'E,  (all Ee D). (5.43)

In fact, written this way, the interpolation problem is more general than the Nevanlinna-
Pick interpolation problem by which we started. Other classical interpolation problems,
such as the Carathéodory-Fejér problem (multiple interpolation conditions — also on
derivatives — in a single point), and mixed cases as well, can be described by the same
equation by taking V, a and B different from the structure in (5.41) and (5.42).
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Solution of the fundamental interpolation problem
In order to find solutions to the interpolation problem, we make yet another translation

from the interpolation condition. Write

[ Z ] (I-2ZV*'Y'=B(U-ZAY' =F'Z" (5.44)

for obvious choices of A and B. Then the interpolation condition on § is equal to
P(S*a(l-ZV*)'E)
e PSS -1 [ o ] (I-ZV'YE)

B
o P([S* -NF*Z°E)

BU—-ZV')Y'E
0
0, (alEe D),

so that S is an interpolant if
S
P,z (D,F [ Z ])= 0.

As usual, D,F describes some linear manifold in £,Z!. Define the signature operator
Ji conformably to the partitioning of B into @ and B, and let A = A§ = Po(FJF"). If A
is boundedly invertible, then H := D,FJ is a closed (regular) subspace, and S € ¥/ is an
interpolant if it is contractive and
S
PLzz»l(H.] _I )=0
Since A is boundedly invertible, there is, by theorem 5.19, a J-unitary operator © such
that H = H(®). The solution of the interpolation problem reduces to the construction of

©. We have thus made a (well-known) connection of interpolation problems to J-unitary
operator theory.

The following theorem concerns the case where the interpolation data is such that A > 0,
which is a sufficient condition for the existence of an interpolant S. It appears in [16] as
theorem 1.3. The proof here is however different, and does not explicitly use reproducing
kernel properties as in [16]. (It is also slightly less general, in the sense that in the current
description we only consider locally finite operators and uniformly positive A.) A third
proof is given in [11].

THEOREM 5.21.  Let be given the interpolation data (5.43), and define F as in (5.44),
A= Al’,, and H = D,FJ. If A > 0, then the fundamental interpolation problem has a
solution S € U, and § € U is a solution to the interpolation problem if and only if

S = TelS1]
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where © is any J-inner operator such that H = H(®), and S|, is some (resp. any) contractive
operator inld.

PROOF If A >> 0, then one can construct a J-unitary operator © such that H = H(©)
(theorem 5.19) and because Js = I, we have @55 € U (proposition 5.13).

(<) If 8§ = TolSL], || SL{| < 1, then equation (5.6) holds:

[_SI] = 9[51}}4)_1: D =0y - 0,3,

Since Sy, is contractive and ©3} € I because A > 0, we have &' = (1-07}0215.)7' 03}
is upper too. Hence S = To[S.] implies

H(@)J[ _‘1] - H(@)J@[ i ] o = Hg(@)[ i ] ol e U

is upper, so that
S
Prz (H(@)J[ 2 ]) =0,
that is, S is an interpolant.

(=) If § is an interpolant, then P,z (H(©)J [ _bl ] } =0, and we have to show that there

is some contractive operator S; € I/ such that S = Te[S.]. The proof consists of four
steps.

1. X = 0 [ _S[] is upper.

PROOF  Pp,z1({hX)

Posie” | i

Pr,z (Pm_l [t,0°] J[ —81 D [since S € U]
Pz (H(@)J[ M D
0.

2. Decomposing X into two upper operators G; and G,, we can write

[fl] -0 [ _%‘2 ] (G1, Gy € U). (5.45)

G, is boundedly invertible, and S = G, Gg‘ is well defined and contractive. In
addition, S = (01151 — ©12) (@ — ©,8)7) = TelS1], as required.
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PROOF © is boundedly invertible: ©~! = JO*J with ||©7!|| = ||©]|. Hence ©O° 2 ¢/
(for some £> () and

GiGi +GiG, = 5 100" | Y
> e(§°S+1)
> el

We also have from the J-unitarity of © and the contractivity of § that
GiGi £ GG, (5.46)

Together, this shows that G, 2 12 ¢I, and hence G, is boundedly invertible (but
at this point potentially not in &). With S, = G,G3', equation (5.46) shows that
S7Sc <1, and hence || Sy || £ 1. Evaluating equation (5.45) gives

G3' 02 - 0715,
S GEI = 0,5 -0,

(5.47)

and hence S = (0115, — 012)(Og — O11.5,)7L.

3. Let X € X be a strictly contractive operator. Then (I-X)' e U & Xe U.

PROOF (=) is clear. («<=): Proposition 6.11 (which can be independently read at this
point) claims that (/- X)™! is a Hilbert space isomorphism. Hence Us(I—X)™' = U>,
so that U, = U>(I - X), which implies X € U.

4. S is upper.
PROOF From (5.47), we have G202, = (I-©0310,,5,)™!, where it is known that the
left-hand side is upper. Hence, by step 3, @55@21& is upper, and since @y, € U,
0,15, is upper, and G5! = ©2;,—0,1 5, is upper, 100, so that S; = G,G;' € U. o

If we take S = 0, then we obtain the solution S = -@1295}_, which is sometimes called
the “maximum entropy” or central solution of the interpolation problem. In this case,

S =Z,, so that
g S
z= .
[ 1 In ]

X is a unitary embedding of S. Z,; and X;; contain the “interpolation transmission zeros,”
since they are such that § interpolates independently of the choice of S,. In the time-
invariant case, these transmission zeros are equal to the specified points @;. In the time-
varying setting, § = Zi13 + Z115.(7 — £318.) ' 223, and to be independent of S, it follows
that we must have 211(vi) = (. With Z known, the discussion in chapter 9 has shown how
a cascade factorization of X can be obtained. Each of the factors in the cascade has an
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encoding of one of the v;, but unlike in the time-invariant case, not only the interpolation
values but also the v; in the second and later sections are transformed by earlier sections,
because multiplications are no longer commutative. A recursive construction of X should
in principle be possible, but is problematic if the v; are not boundedly invertible because
the transformation of the v; involves v;! (similar problems have been reported by Kamen
[271). It is however possible to obtain an explicit formula for ©, see [16].

In chapter 6, we extend the above definite interpolation theorem to apply to non-definite
interpolation problems, too. Then, A is no longer required to be definite (but we still
require A to be boundedly invertible), and hence the resulting interpolant S need no
longer be in ¢/. We do not discuss cases where A is not invertible; some aspects of this
(for the case where A is positive semi-definite) are treated in [16].
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Chapter 6

HANKEL-NORM MODEL REDUCTION

6.1 INTRODUCTION

In the previous chapters, we assumed that a given upper operator or matrix T has a
computational model of a sufficiently low order to warrant the (computationally expensive)
step of deriving for it a computational model in the form of a state realization. Once a
state model is known, we showed how multiplication by T or its inverse can be done
efficiently, using the model rather than the entries of 7. We also derived some useful
factorizations, such as the external and inner-outer (~ (R) factorization. A spectral
factorization/Cholesky factorization result is given in chapter 8.

However, if the ranks of the sequence of Hankel matrices of T are not sufficiently low,
then the system order of the computational model will be large. This can already happen if
T is modified only slightly, e.g., caused by numerical imprecisions, as the rank of a matrix
is a very sensitive (ill-conditioned) parameter. Hence one wonders whether, for a given
T € U, there is an approximating system 7, close to it such that 7, has a low system order.
Such an approximation is useful also when T is known exactly, but if for analysis purposes
one would like to work with a low complexity, yet accurate approximating model.

One standard way to find an approximant of a matrix (A, say) goes via the singular value
decomposition (SVD). This decomposition yields a diagonal matrix of singular values.
Setting those singular values that are smaller than some tolerance level £ equal to zero
produces an approximant A such that || A —A|| < £ and rank(A) is equal to the remaining
number of non-zero singular values. One can show that the thus-obtained approximant
is optimal in the operator norm (matrix 2-norm), and also in the Hilbert-Schmidt norm
(matrix Frobenius norm). Since the state complexity of the operator/matrix 7T is given by
the rank sequence of Hr rather than the rank of T itself (corollary 3.14), it seems logical
to approximate each H, by some fik of lower rank. However, the Hankel matrices have
many entries in common, and approximating one of them by a matrix of low rank might
make it impossible for all other H to acquire a low rank: a local optimum might prevent
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a global one. In this respect, the approximation error norm used is also of importance:
the Hilbert-Schmidt (Frobenius) norm is rather strong:

min HA—A “HS
rank A<d

has only one (unique) solution A, obtained by setting all but the first & singular values equal
to zero, and keeping the first 4 untouched. The operator norm approximation problem

min |[A-A]|
rank A<d
has many solutions, since only the largest singular value of the difference E = A — A is
minimized, and d — 1 others are free, as long as they remain smaller. For sequences of
Hankel matrices, the extra freedom in each of the Hy can be used to reduce the rank of
the other H. The problem can be described in two ways: by

min ||He—Hel],  (for all k),
rankl’:lkédk

which is the model error reduction problem for given target ranks dy, and by
min{rank &y : || Hy— Hi || < &}, (for all k), 6.1)

the model order reduction problem for given tolerance levels &. The latter problem
description is the one which we take up in this chapter. The error criterion (6.1) leads
to the definition of the Hankel norm, which is a generalization of the Hankel norm for
time-invariant systems:

TNl = Il Hrll. (6.2)

|| T||# is the supremum over the operator norm of each individual Hankel matrix Hy. It
is a reasonably strong norm: if T is a strictly upper triangular matrix and || T||x < 1,
then each row and column of T has vector norm smaller than 1. The main approximation
theorem that we derive can be stated as follows.

THEOREM 6.1. Let T € U, and let T = diag(y) € P be a Hermitian operator. Let H;
be the Hankel operator of T\ T at stage k, and suppose that an ¢ > 0 exists such that, for
each k, none of the singular values of Hy are in the interval [1—g | + £]. Then there exists
a strictly upper triangular operator T, with system order at stage k at most equal to the
number of singular values of Hy that are larger than I, such that

TN (T -T)|w < 1. (6.3)

The error tolerance diagonal I" parametrizes the problem. As ¢ in (6.1), it can be used to
influence the local approximation error: if " = y1, then ||7-T,||x < yand the approximation
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error is uniformly distributed over 7. If one of the y; is made larger than ¥, then the error
at the i-th row of T can become larger also, which might result in an approximant 7, to
take on fewer states. Hence I" can be chosen to yield an approximant that is accurate at
certain points but less tight at others, and whose complexity is minimal.

Although we have seen that, with the same tolerance level, the operator norm allows more
freedom than the Hilbert-Schmidt norm, the computational task still seems formidable:
there is an infinity of minimization problems, all coupled to each other. It is remarkable
that the problem allows a clean and straightforward solution (as we show in this chapter),
which can even be obtained in a non-iterative way. The clue is in the fact that the
condition (6.3) translates to the computation of contractive operators E, which, as we
saw in chapter 5, are automatically obtained by ‘loading’ a J-unitary operator ® with
a contractive operator Sy. This is the way that J-unitary systems enter into the picture.
The general solution using this approach is published in [1], and specializations to finite
matrices are made in [2].

Hankel norm approximation theory originates as a special case of the solution to the
Schur-Takagi interpolation problem in the context of complex function theory. Suppose
that a number of complex values are given at a set of points in the interior of the unit
disc of the complex plane, then this problem consists in finding a complex function (a)
which interpolates these values at the given points (multiplicities counted), (b) which is
meromorphic with at most £ poles inside the unit disc, and (¢) whose restriction to the
unit circle (if necessary via a limiting procedure from inside the unit disc) belongs to
L. with minimal norm. The Schur-Takagi problem can be seen as an extension problem
whereby the “conjugate-analytic” or anti-causal part of a function is given, and it is
desired to extend it to a function which is meromorphic with at most & poles inside
the unit disc, and belongs to L.. with minimal norm. (Translated into our context, the
objective would be to determine an extension of an operator T* € L£Z™' to an operator
T" € XX, such that T” is contractive and has an upper part with state dimension sequence
smaller than a given sequence.) The solution was formulated by Adamjan, Arov and Krein
(AAK)[3], who studied properties of the SVD of infinite dimensional Hankel matrices with
Hankel structure, and associated approximation problems of bounded analytical functions
by rational functions.

It was remarked in Bultheel-Dewilde [4] and subsequently worked out by a number of
authors (Kung-Lin [5], Genin-Kung {6], Ball-Helton [7], Glover [8]) that the procedure
of AAK could be utilized to solve the problem of optimal model-order reduction of a
dynamical time-invariant system. The computational problem with the general theory is
that it involves an operator which maps a Hilbert space of input sequences to a Hilbert
space of output sequences, and which is thus intrinsically non-finite. In [4] it was shown
that the computations are finite if one assumes the context of a system of finite (but
possibly large) degree, i.e., an approximant to the original system of high order. The
resulting computations involve only the realization matrices {A, B, C, D} of the approxi-
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mating system and can be done using classical matrix calculus. They can also be done
in a recursive fashion, see Limebeer-Green [9] as a pioneering paper in this respect. The
recursive method is based on the interpolation theory of the Schur-Takagi type.

For time-invariant systems, the Hankel-norm model reduction method may be compared
with another popular method for model reduction, known as the balanced model reduction
method. In these methods, a reduced-order model is obtained by setting all small singular
values of the Hankel matrix equal to zero, and using the resulting truncated column space
and row space in the construction of a state model [5]. Alternatively, one may start from a
high-order balanced model (one for which the controllability and observability Gramians
are diagonal and equal to each other), and delete all states variables that correspond to
small entries in the Gramians [10, 11]. These methods also give good approximation
results, although no tight upper bounds on the modeling error have been derived. An
extensive study on error bounds was made by Glover [8], and by Glover-Curtain-Partington
[12] for the infinite-dimensional time-invariant case.

Connections between circuit and system theory problems and the mathematical techniques
around interpolation, reproducing kernels and the lifting of a contractive operator had been
obtained a decade earlier by Helton [13] in the pursuit of a solution to the broadband
matching problem (see also [14]). Subsequently, more connections between (definite)
interpolation problems, reproducing kernel Hilbert spaces and the global and recursive
solutions to the Lossless Inverse Scattering problem were studied in [15, 16, 17, 18], and
collected in the monograph [19] by Dym. The recursive solution of the Schur-Takagi
problem by Limebeer and Green [9] can be viewed as an extension of such results to
meromorphic (indefinite) interpolation problems. In a parallel development, the state
space theory for the interpolation problem was extensively studied in the book [20] by
Ball, Gohberg and Rodman. The wide interest in this type of problems was kindled by
one of its many applications: the robust (H.-) control problem formulated by Zames in
[21] and brought into the context of scattering and interpolation theory by Helton [221].

Numerical example

As an example of the use of theorem 6.1, we consider a matrix T and determine an
approximant 7,. Let the matrix to be approximated be

0 .800 .200.050 .013 .003
0 0 .600|.240 .09 .038
|0 0 0[.500 250 .125
0O 0 0 0 .400 240
O 0 0 0 0 .30
o 0o o 0o 0 0]
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values of the Hankel operators of [T are

The position of the Hankel matrix H4 is indicated

this chapter, we obtain

H H, H; Hy Hs Hg
8.26 6.85 631 553 4.06
0.33 029 0.23
0.01

0 .790 .183 .066 .030 .0l6
0 0 .594 .215 .098 .052
T = 0 0 0 .499 227 .121
710 0 0 0 .402 .214
0 0 0 0 0 .287
0 0 0 0 0 0
with non-zero Hankel singular values (scaled by I')
H H, Hy Hy Hs Hg
815 6.71 6.16 536 3.82

. Taking I" = 0.1/, the non-zero singular

Hence T has a state-space realization which grows from zero states (i = 1) to a maximum
of 3 states (i = 4), and then shrinks back to 0 states (i > 6). The number of Hankel
singular values of I'"'T that are larger than one is 1 (i =2, ---,6). This is to correspond
to the number of states of the approximant at each point. Using the technique detailed in

The number of non-zero singular values indeed corresponds to the number of Hankel
singular values of I'"! T that are larger than 1. The modeling error is

0 010 .017
0 0 .006
o 0 0
T-Ta=1¢9 ¢ o
o 0 0
(0 0 o

-.0l6 -.017
025 -.002
001 .023

0 -.002
0 0
0 0

and indeed, the Hankel norm of I"(T— T,) is less than I:

| T-H(T = T,) || = sup{0.334, 0.328, 0.338, 0.351, 0.347} = 0.351

-.013
-.014
.004
.026
.013
0
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The realization algorithm (algorithm 3.1) yields as realization for T

|- 246 —.041 | —.968
Tl‘_—.szﬁ‘o] Tz-_—.654 —.oo! 0]
[ 397 —044 .000‘—.917 '?;?Z _'gzz "izg
T;=|_ 910 .140 .040| 388 | Ta=| “Joo o71| a7
-573 00 .00] O : : :
- | —466 00| O
[ -.515| —.858 S
Ts=| .858|-5I5 T = “;T]

A realization of the approximant is determined via algorithm 6.2 in section 6.3 as

- 293 | —.795
Tar = =993 T] Taz = 946 0 }
410 | -629 525 | -.554
Tas = | =901 0 ] Tas = =837 0 ]
[ —651 | —480 [ -] .393
Tas = 729 0} Tas = = 0]

The corresponding computational schemes are depicted in figure 6.1, to show the effect
that a small change in T can lead to a significant reduction in the complexity of the
computations.

Hankel norm

As mentioned in the introduction, we compute approximants which are optimal in the
Hankel norm, defined as

I Tl = 1 Hrl|.

It is a norm on ¥, a semi-norm on X'. Since this is not such a familiar norm as, for
example, the operator norm of 7, we first determine its relation to this norm. The Hankel
norm can also be compared to another norm, the diagonal 2-norm. Let T; be the i-th row
of a block matrix representation of T € X, then

DeD: ||D||p2=||D|| = sup, || Dil,
Te X : ||[T|h, = || Po(IT)||lp2 = sup; || TiT; ||

For diagonals, it is equal to the operator norm, but for more general operators, it is the
supremum over the vector 2-norms of each row of 7.
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PROPOSITION 6.2.  The Hankel norm satisfies the following ordering:

Te X Tl < || T|| (6.4)
Te Zi : ||T||p2 < ”T”H (65)

PROOF The first norm inequality is proven by

ITlw = SUD e £,7-1,|| uljms<t (| PuT)||ns
S SUPue oz fulimsst | 4T llms
S SUDye vy || |l luT|las = |ITI|.

For the second norm inequality, we tirst prove [ T3, < SUppep, | pjus<t | PTTD" |[as-
Indeed,

T2 = IPo(TT) %
= SUPpep, | Djjmst || PPo(TTID" || 22
= SUDpe, || D|us<l || DP(TT")D" || s
< SUPpep, | pfgsst | PTTD [|us.

Then (6.5) follows, with use of the fact that T € Zi4, by

N T115, SUPpep,, || ofusst | PTT D" ||us

SUBpe D, || D |jus<1 | DZ"TT*ZD" || s

SUWpep, [pmst  |IPDZT) [PDOZ D] |las
SUDye £,z st || PUT) (PuD)]” ||us

I Tl

IA N

0

We see that the Hankel norm is not as strong as the operator norm, but is stronger than
the row-wise uniform least square norm.

6.2 APPROXIMATION VIA INDEFINITE INTERPOLATION

Approximation recipe

In the present section we outline a procedure to obtain a reduced-order approximant, and
put the various relevant facts in perspective. Details are proven in subsequent sections.

Let T € U be a given bounded, locally finite, strictly upper operator. The decision
to assume T strictly upper is made for the sake of convenience and is without serious
consequences: D = Py(7) has no influence on the Hankel (semi-)norm, so that there
are no conditions on the D operator of the approximant. Let I' € D be a diagonal and
Hermitian operator. As discussed in the introduction, the objective is to determine an
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operator T, € U such that ||T71(T—T,) ||z < 1. Instead of working with T, directly, we
look for a bounded operator T' € .V such that

|;rir-rj <1, (6.6)

and such that the strictly upper part of T’ has state-space dimensions of low order — as
low as possible for a given I'. Let T, be the strictly causal part of 77. Proposition 6.2
showed that

ITHT = Ta) || I THT =T ||

< I < 1, ©7)

so that T, is a Hankel-norm approximant of T (parametrized by I') whenever T’ is an
operator-norm approximant. 7’ can be viewed as an extension of 7, which is such that
TN T—T)|lu < ||ITHT—-T")||- A generalization of Nehari’s theorem to the present
setting would state that inf {| £|| over all possible extensions £ € .V of a given part E, € i/
actually equals || E, ||n (see section 6.5).

The construction of an operator 7' satisfying (6.6) consists of three steps, specitied in the
following lemma. (The definitions and notation in this lemma will be kept throughout the
rest of the section.)

LEMMA 6.3. (RECIPE FOR A HANKEL-NORM APPROXIMANT) Let T € U(M, N) be strictly
upper, and let T' € D(M, M) be a given diagonal Hermitian operator. Then, provided
the indicated factorizations exist, an operator T' € X such that [|[THT-T")|| < 1is
obtained by performing the following steps:

1. an external factorization (inner-coprime factorization; theorem 4.9):

T=A"U (U,A e U, U unitary), (6.8)

2. aJ-inner coprime factorization (corollary 5.20):

w* -7T1e =[A" -Ble U U] (@€ U, J-unitary),  (6.9)

3. with a block-decomposition of © as in (5.2),

T =B'0,;T. (6.10)

PROOF If the factorizations exist, then ©, is boundedly invertible so that £, = -0,,03}
exists and is contractive (theorem 5.2). From (6.9) we have B/ = —U"0©, + T T10y.
Substitution of (6.10) leads to
7! - U*®12(")§21
T"'r'-u'z,
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and it follows that (T* — T"")[! = —U*Z;,. Because i, is contractive and U unitary,

| - UZna |
1Z2]] < 1,

(T -1

so that T = (B’©3iI')" is indeed an approximant with an admissible modeling error.
m|

In anticipation of a proof of theorem 6.1, it remains to show that the strictly upper part
T, of T’ has at most the specified number of states, and to verify the relation with the
Hankel singular values of I'"'7. This is done in the remaining part of this section. The
definition of T’ in (6.10) can be generalized by the introduction of a contractive operator
S, that parametrizes the possible approximants, which is the subject of section 6.4. The
crucial step in the procedure is step 2. As discussed in section 5.3, the computation of @
can be viewed as the solution of an interpolation problem

Ul S1© e [ Ui, S=-UTTr!=-Ar1, (6.11)

where the interpolation subspace is determined by U. If ©3} € 4, then an exact repre-
sentation of S in © is obtained as § = —©,,03]. In this case, the interpolation problem
is definite: the relevant J-Gramian is positive definite, which happens if I'™'T is strictly
contractive. In addition, T'* = B’@3iT is upper, and the approximant T, is zero, which
matches one’s expectation in view of || ["!T|| < 1. If ™! T is not contractive then ©3} is
not upper, and this is the situation which leads to approximations and which is considered
in this chapter.

Construction of ©

We now determine sufficient conditions on a state-space realization {A, B, C,0} of T for
the existence of the two factorizations in the above lemma. Assuming ¢4 < 1, the external
factorization in the first step can he computed from the given realization if it is uniformly
observable (theorem 4.9). Without loss of generality, we can (and do) assume that such a
realization has been normalized, so that AA* + CC* = I. Then, a realization for the inner
factor U of the external factorization is given by

A C
U=
[BU DU]

where By and Dy are obtained by locally completing [A; Ci] to a square and unitary
matrix.

The second step is to derive expressions for © to satisfy the interpolation condition (6.9).
[U* —TT7!1* has a realization

ENREINENTES
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so that, according to corollary 5.20, there exists a J-unitary operator @ mapping [U* —-T°T!]
to upper if the relevant J-Gramian A := A’ (as defined in (5.8)) is boundedly invertible.
With the above realization of [U* —T'T7']*, A satisfies the J-Lyapunov equation (cf.
equation (5.36))

A" = A"AA + BBy - B'T*B.

Substituting the relation A*A + B},By = I yields I- A™Y = A*(I- A)A + B'T2B. With
the additional definition of M = I— A, it is seen that M satisfies

MY = A"MA+B'T 2B

so that M is the controllability Gramian of the given realization of I' "7, It follows that
the J-inner coprime factorization exists if / — M is boundedly invertible, that is, if | is a
regular point for the operator M [23]. With M known (and hence A), © is determined
along the lines of the proof of theorem 5.19. In particular, the input state space of © is
defined by

H(®) = DF(U-Z'AY'Z [B;, BT']. (6.12)

Let A = R*JgR be a factorization of A, then

R A
]-[" ][]
© I r's

is J-isometric, and a J-unitary realization for © is of the form

Ao Ce R A Cy Cy R
9 = [ BQ D@) ] = 1 BU [)11 D12 ! (6.13)
o e 1 I'B Dy Dy I

and is obtained by completing Ae and Be with certain diagonal operators Ce and Dg to
4 square J-unitary matrix. Corollary 5.20 claims that this is always possible under the
present conditions (A boundedly invertible), and the procedure to do so is given in lemma
5.18. Since the realization © is J-unitary, the corresponding transfer operator © is also
J-unitary and has the specified input state space. The third step in lemma 6.3 is always
possible (cf. theorem 5.2).

We have proven the following lemma:

LEMMA 6.4. Let T € UM, N) be a strictly upper locally finite operator, with output
normal realization {A, B, C, 0} such that £4 < 1, and let T be a Hermitian diagonal operator.
If the solution M of the Lyapunov equation

MY = A*MA+B'T?B (6.14)
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is such that A = - M is boundedly invertible, then the conditions mentioned in lemma
6.3 are satisfied: there exists an external factorization T = A" U, a J-unitary block upper

operator © such that
(v -rrlee[u ul,

and an operator T’ € X such that ||T-Y(T - T")|| < 1, according to the recipe in lemma
6.3.

Let M, A and B be the input, output and state space sequences of T and its realization,
and let My be the input space sequence for U: its index sequence is specified by

My = #B°D —#B +#N .

The signature Jz of A determines a decomposition of B into B = B, xB_. Let ©'J,0 = J,,
©J,0" = J,, where J; and J, are shorthand for J; = Juq, and Jo = Ja,,. The space
sequence Mg is equal to Mg = My X M, and the corresponding signature operator J;
follows this partitioning. The dimensions of the positive and negative parts of the output
sequence space of ©, and hence the signature J,, are then given by inertia rules as (cf.
corollary 5.20)

#B, —#BTD + # My

#B_—#BCD + #M

#(NE'))+
#(No)-

Algorithm 6.1 summarizes the construction in lemma 6.4 and can be used to compute ©
satisfying equation (6.9). The inner factor U of T is computed en passant.

Connection with the Hankel operator

We continue by establishing the link between the Lyapunov equation (6.14) and the Hankel
operator of ' 7.

LEMMA 6.5. Let T € i be a locally finite strictly upper operator, with strictly stable
realization {A, B, C, 0} in output normal form. Let Hy be the Hankel operator of '7rat
stage k, and suppose that an £ > 0 exists such that, for each k, none of the singular values
of Hy are in the interval [1 — & 1 + €. Let N be equal to the number of singular values
of Hy that are larger than 1. Then the solution M of the Lyapunov equation

MY = A*MA + B'T B (6.15)

is such that A = I - M is boundedly invertible and has a signature operator Jg with Ny
negative entries at point k.

PROOF The solutions of the two Lyapunov equations associated to the realization of I'-!T
(corresponding to the controllability and observability Gramians),

MED A’MA +B'T 2B

Q0 = AQVAT+CC
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In: T (model in output normal form for a strictly
upper matrix 7)
r (approximation parameters)
Out: © (realization for © satisfying (6.9))
M, [-]
R = [-]
Js, = 1]
fork=1,--,n

[ M = A MAL +B;Fk‘?‘Bk
Re B Rivt == 1= My
[Bux Duxl = [Ax Gt

RiA;
[g = Buji RI:lI
;!B
C. _ Jska *
d| = | 1p
r’hr = [c d]*[‘lBk J1:|[(Lij|
7’. — C |
HEnt
— a y
[ &= [ﬂ 5]
end

Algorithm 6.1. Indefinite interpolation: step 1 and 2 of lemma 6.3.
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may be expressed in terms of the controllability and observability operators of I''7,

(I“—IB)(H)
(ILI B)(+2)A(+l)
C:= (T B)+DAGDAGD g = [C ACCD  AACDCED ]

as M =C*C, Q0 = ©O". The Hankel operator H; of I"!T at time instant k& satisfies the
decomposition Hy = C,Oy. Hence

HH, = GO0LC; .

The state realization of T is assumed to be in output normal form, so that @y = OxO; = 1.
With the current locally finiteness assumption, the non-zero eigenvalues of H H; = C,Cy;
are the same as those of C;Cx = Mi. In particular, the number of singular values of Hy
that are larger than 1 is equal to the number of eigenvalues of M, that are larger than
1. Writing Ay = I — M,, this is in turn equal to the number of negative eigenvalues of
Ag. 0

Figure 6.2 shows a simple instance of the application of the theory developed in this
section, emphasizing the dimensions of the input, output and state space sequences related
to the © operator. We assume in the figure that one singular value of the Hankel operator
of I''!'T at time 1 is larger than 1, so that the state signature Jz of © has one negative
entry in total. We known from equation (5.16) that the negative entries of J5 determine
the number of upward arrows in the diagram of the unitary scattering operator X. We
show, in the following subsection, that this number also determines the number of states
of the Hankel-norm approximant T, of 7.

Complexity of the approximant

At this point we have proven the first part of theorem 6.1: we have constructed a J-unitary
operator © and from it an operator T’ with strictly upper part T, which is a Hankel-norm
approximant of 7. It remains to verify the complexity assertion, which stated that the
sequence of dimensions of the state space of T, is at most equal to the sequence N: the
number of Hankel singular values of I~ 7T that are larger than 1. In view of lemmas 6.4
and 6.5, N is equal to the number of negative entries in the state signature Jg of ©. We
now show that the state dimension sequence of T, is smaller than or equal to N. (Later,
we will show that equality holds.) The proof is, again, based on the determination of the
natural input state space for T,, which can be derived in terms of the realization of the
scattering operator X that is connected to ©.

Suppose that the conditions of lemma 6.3 are fulfilled so that © satisfies

wr -rrle =ia" -p']
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1
:
Il
:
.
|

:

[~ L= [ =

T U (S] z
(@) (b) (c) (@)

Figure 6.2. (u) State-space realization scheme for T and (b) for U. (c¢) State-space real-
ization scheme for a possible ©, where it is assumed that one singular value
of the Hankel operator of I'™!T at time 1 is larger than [, and (d) for the
corresponding scattering operator X,

with A’, B € . Let T”"I"' = B'©3} as in lemma 6.3. The approximating transfer
function 7, is, in principle, given by the strictly upper part of T/ (see lemma 6.3 for the
summary of the procedure). It might not be a bounded operator, since operators in ¥’ do
not necessarily have a decomposition into an upper and lower part in .X'. However, its
extension 7" is bounded, and hence its Hankel operator Hy, = Hr/ is well defined and
bounded. We have the following lemma.

LEMMA 6.6.  Under the conditions of lemma 6.4, the natural input state space of T7'T,
satisfies

HT'T,) < H(O3;). (6.16)
PROOF From the definition of H in equation (3.45) and the operators we have

HTT)

Pr,z (UL T,T)

Pe, - (UTT)

P .21 (1LB'O3))

C Pryz1(1403)) [since B’ € U]
H(O53).
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Hence the sequence of dimensions of the subspace H(©53) is of interest. According to
proposition 5.16, this dimension sequence is equal to N = #(B.), ie., the number of
negative entries in the state signature sequence Ji of ©. Combining this result with the
lemmas in this section proves the model reduction theorem, theorem 6.1, repeated below:

THEOREM 6.7. Let T € U be a locally finite strictly upper operator with a uniformly
observable strictly stable realization, and let T' = diag(%) € D be a Hermitian operator.
Let H, be the Hankel operator of T™'T at stage k, and suppose that an £ > 0 exists such
that, for each k, none of the singular values of Hy are in the interval [1 — & 1 + £]. Then
there exists a strictly upper triangular operator T, with system order at stage k at most
equal to the number of singular values of Hy that are larger than 1, such that

T HT-T)|la < 1.

PROOF Under the present conditions on 7, lemma 6.3 can be applied. Indeed, lemma
6.5 claims that the controllability Gramian M of the realization (normalized to output
normal form) is such that A = I—M is boundedly invertible, where A satisfies the same
J-Lyapunov equation as in lemma 6.4. This lemma showed that the necessary conditions
to apply the procedure in lemma 6.3 are satistied. Thus construct T’ and T, using lemma
6.3, so that || T-1(T—T,) ||u < 1. According to lemma 6.6, the state dimension sequence of
T, is less than or equal to the state dimension sequence of the causal part of ©3;, which
is equal to the number of negative entries of the state signature sequence Jg (proposition
5.16), in turn equal to N (lemma 6.5). Hence T, has the claimed state complexity, so that
it is a Hankel norm approximant of 7 for the given T'. m]

6.3 STATE REALIZATION OF THE APPROXIMANT

Theorem 6.7 shows the existence of a Hankel norm approximant T, under certain condi-
tions. The proof uses a construction of this approximant (lemma 6.3), but this construction
is at the operator level. However, it is also possible to obtain a state realization for T,
directly. We will derive this result in the present section.

Throughout this section, we take signals a, az, by, ba to be elements of Y5, generically
related by
a1 511© = [ B2l

where © is as constructed in the previous section. In particular, © is a bounded operator,
and O3} exists and is bounded. In section 6.2 we constructed © via a J-unitary realiza-
tion ©, with state signature matrix Jz. © is bounded by construction (because of the
assumption that none of the Hankel singular values of 1T are equal or ‘asymptotically
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close’ to 1), and is strictly stable because T is assumed to be so. As before, the part of
an operator u € X that is in £,Z! is denoted by u, = P,z (u), and the part in i3 is
us = P(u). Associated to the transfer operator © is the scattering operator £ which relates

[ay 511© =[a2 b)) & [ar b]Z = [a2 by].

We have derived in theorem 5.2 a representation £ = {F, G, H, K} in terms of entries
{Ae, Bo, Co, Do} in 6, according to the relation

e x a1 51O = Z' xZ' a b
[x+ X_Z—I (23] bg]z [x+T1 X~ a b]].

The above realizations act on operators in Y. Taking the k-th diagonal of each operator

yields the following state recursions on diagonals, which we use throughout the section:
-1) -1

D‘%uﬁu x(—[kil ) Ak bopd

Xoee) Xl dow bapl-

[Xop) Xy iy b ©
g X5 ag bl Z

In order to compute a realization of T,, we first determine a model for the strictly upper
part of @33 from the model E. It is given in terms of operators S and R defined as!

x_[o]S = X40) when dp = 0, bzp =0

xR = xjo when ayp=0, by =0, 6.17)

which can be obtained from X in terms of two recursive equations. § is, for example,
obtained as the input scattering matrix of a ladder network consisting of a semi-infinite
chain of contractive (i.e., lossy) scattering matrices Fj;.

LEMMA 6.8. The relations

x_[o]S = X4[0) when dip = 0, bzp =0

xR = xyg when a;; =0, by = 0, (6.18)

define bounded maps which are strictly contractive: || S|| < 1, || R|] < 1.

PROOF S exists as a partial map of Z,, taking a1, = 0, by, = 0. In this situation,
{0 b1L10, = [xio; Xqo; a2 0],

and we have
ooy 12 = ([xeqoy 2+ 1101 (1> + a2 |17

'Here, S is not the same as S in (6.11), and no connection is intended.
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z, z,
| 1 | 1
1 1 | 1
ap =0——s — —] |
— /N o — -
X4+{0] X-[0] X4+[0] w X-[0]
aio) =0 7 aje =0 P
FuZFy FuZ Py
F: F
= ooy = 0 % bajo) =0
=
- ) 1) €N
xﬂ[” X X411l *(1)
— — 0 —— 1) —
R
NG o
1 1 t |
1 1 ' I
(a) (b)

Figure 6.3. (4) The propagation of S, (b) the propagation of R.

According to proposition 5.15, there is an & 0 < £ < 1, such that || by, || 2 &2 || xqop ||,
and hence

llxgor |1 = | 2xwq0p |17 + €2l xoqop 17

Consequently, there is a constant z (0 < g < 1) such that || x401||> < £2 || %0 || (take
u=+'1~¢2). This shows that || S|| < I. A similar argument holds for R. O

PROPOSITION 6.9.  The operators S and R defined in (6.18) are determined in terms of
X (with block entries as in 5.17) by the following recursions:

S
R

" 1o 1
(Fa1 + Fao(I - SFyo) ' SF) Y

6.19
Fig+ Fiu(I-RVFy YIRSV Fy . (6.19)

A state-space model {A,, B4, C,} of the strictly upper part of ©5; is given in terms of §,
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R by
Ay = (Fzz(l—SFlz)_l)*
B, = (sz+F22(]—SF12)_]SH12)* (6.20)
C, = (=SSR [Gn+Gu(I~RTFn ) RVFy]

This model is uniformly minimal, with contractive controllability and observability Grami-
ans.

PrROOF The existence and contractivity of S € D and R € D has already been determined
(lemma 6.8). First observe that although § satisfies by definition x_[o}S = X0 (a1, =
bzp = 0), it also satisfies X_[HS = X41) (alp = bzp =0 and ajp) = bz{o] 0) etc. This is
readily obtained by applying inputs Z7'g,, etc., so that we get states Z'x, and Z7x_, If
(2—1411),, = Z—lalp +Z—1a1[o] = (), then (Z_lx_)[o]S = (Z'IL,)[()]. But (Z—lx_)[o] = x_yy), and
likewise (Z71x, )0 = xiq1)- Hence xq118 = x,q1).

To determine a state realization for the strictly upper part of X5, = ©3;, we start from the
definition of X (5.16), and specialize to the 0-th diagonal to obtain

[x:10) XSH aj) bl T = [x(:[{} X0 azo bioyl.

Taking a; = 0 throughout this proof, inserting the partitioning of Z in (5.17) gives

xim = xqFu o+ x—[f)Fm +  by)Ga
Xq0p = Xeoif1a + ll;Fzz + boGa2 (6.21)
bioy = xyqoHp2 + _“]1122 +  by01Ka1

With by, = 0 and bay; = 0, these equations yield an expression for S©V:

N | P
T = Ay

xo5F11  + x(__[})Fgl
xqo8F12  + x(__[}]Fzz

X-(0)
(=4

X-{0] _[1]F22(1 SFp)™!

RS = A {Fal = SF1) SF1y + Fa}

(6.22)

(note that (—SF,)™! is bounded because || S| < 1 and || F12|| < 1), and hence S satisfies
the indicated recursive relations (see also figure 6.3). The recursion for R is determined
likewise.

In view of proposition 5.15, we can take x_ as the state of a minimal realization of the
strictly upper part of ©33. Let {A,, B, C,} be a corresponding state realization, so that
the strictly lower part of 921 has an anti-causal state realization

-1 -
{X—[OJ = (_ui a +t byp(;

-1
bl[O] (_[1]
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The unknowns A,, B, and C, can be expressed in terms of F, G, H by substitution in
equations (6.21), and using S and R as intermediate quantities. Doing so with b, = 0, the
first equation in (6.22) yields the expression for A, in (6.20) and B, can be determined in
terms of S from the last equation in (6.21). C; is obtained as the transfer bao) = x_jo) for
ay =0 and by = byjg) € D, 50 that X g = xy0) and xj) = x{}}RD. Inserting the latter
expression into the first equation of (6.21) twice yields

) = xpFul-REVF)REY + bao)Gar (I = RV Fy Y IRED.
Inserting this in the second equation of (6.21), and using x o) = x-[}$ results in
X[ = Xq0)SF12 + x_[Q]SF11(1—R(-1)F21)-1R(_1)F22
+ byj0)Ga1(I~REVF IRV Fyy + baypiGan
=
X (oI = SR) = boyo)(Go2 + G (I RV Fuy ) 'RV Fp)

which gives the expression for C,.

We have defined, in equation (5.23), the conjugate-Hankel operator H' = P z1(- 655)‘2 "
In proposition 5.15 we showed that H’ has a factorization H' = o7, where the maps
0 : by > xqo and 7 : xjo —> by, are onto and one-to-one, respectively, and both
contractive. In particular, we can write H' = Po(- F;) F,, where 7=F, = [B,Z(/ -AZ)' 1
(if 44, < 1) and o = Po(-F;) with F, = (I - A.Z)'C, (if £a, < 1). The properties of o
and 7 imply that the derived model {A,, B,, C,} is uniformly minimal, with contractive
controllability/observability Gramians. 0O

The second step in the construction of a realization for T, is to determine a state realization
for B'. This is done by evaluating [U* —T°T"'1@ = [A’ —B’]. This has already been
done in equation (5.37), which gives, with the state model for © written as

Ao Ceo R A |G G RD
O = Bo Do | = 7 By |{Dn Dp 7|
e ve B | Dy Dn
(" -T'T10 = {[D; 0lDe+CA[C; G} +
+ {[D;, 0] [ o ] +C*AA} ZI-AZYC) G
= {[D}, 0lDg + C'A[Ci C3l} + C(A—DAZ(I-AZ)"'[C, (]

(in which we used C*A + D},By; = 0). Since this expression is equal to [A’ —B’] and
M =1I- A, we obtain a state-space model for B’ as

B = {-D}D; - C'U-M)C;} + C'MAZ(I-AZ)"C;. (6.23)

We are now in a position to determine a state realization for 7.
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THEOREM 6.10. Let T, T, U and © be as in lemma 6.3, so that [ - T'T7]1© =
[A’ -B']l. Let {A B,C,0} be an output normal strictly stable state realization for T,
let M satisfy the Lyapunov equation (6.14), and let {A, By, C, Dy} be a realization for
U. Denote the block entries of © as in (6.13), and let T corresponding to © have a
partitioning (5.17).

Then the approximant T,, defined as the strictly upper part of T' = T©33B'", has a state
realization {A,, TBa, Cq, 0}, where A, B, € D are defined by (6.20), and C, is given by

Ca = C, [-D},Dy - C3(I- M)C] + A, YTVA'MC, (6.24)
where C, is defined in (6.20), and Y € D satisfies the recursion Y = A,Y“VA" + C,C; .

PROOF The state realization for T, is obtained by multiplying the model for B’ in (6.23)
by the model {A,, B4, C,} of the strictly upper part of ©33 as obtained in proposition 6.9.
From this proposition, we have a state model of ©3} as

033 = [upper] + CF,

where F, is the selected basis representation of H(033), satisfying F, = (I-A.Z)"Z°B; €
LZ' when ¢4, < 1, and more in general the recursive equation

F, = 7B+ Z'A}F,.
The model of B’ is given in (6.23) as B’ = D'+ C*MAZF,, where

D'
Fo

-Di,Dy— C(I-M)C,
(I—AZ)—ICQ, Fo=0C, +AZF,.

Hence T, is given by

I = Pz (B'O7)
D'C:F, + C"MAP.,.(ZF,03)).

It remains to evaluate P,z (ZFo©03)). Since Pg,z1(DFo03}) € H(O33), we can write
P.71(Fo©3)) = Y'F,, for some Y € D. Consequently,

Pcz1(ZY'F,)

YUPL21(ZF,)
y*DA'F, .

Because also Pyz1(ZY'Fo) = Pz (ZPr71(Y'F,)) = P21 (ZF©3)), we obtain

T, = {D'C; + CMAY'"DAL L F,,
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which gives the expression for C, in (6.24). Finally, the indicated recursion for Y follows

via
AP,z (ZF()E‘);%) = Prm (AZFQ@E%

P71 (FoO3)) - Pz (C203))

o AY'CUA'F, = Y'F,-CGCF,
= AY'EbAY = ¥ -G,
where in the last step we used that F, is a strong basis representation (proposition 6.9).

[

A check on the dimensions of A, reveals that this state realization for T, has indeed a state
dimension sequence given by N = #(B_): at each point in time it is equal to the number
of Hankel singular values of T at that point that are larger than 1. The realization is given
in terms of four recursions: two for M and S that run forward in time, the other two for
R and Y that run backward in time and depend on S. One implication of this is that it is
not possible to compute part of an optimal approximant of 7 if the model of T is known
only partly, say up to time instant k. Algorithm 6.2 shows the computations involved in
theorem 6.10. It computes a model {A,, Ba, C,, 0} for the Hankel norm approximant T,
in terms of I" and a model {4, B, C, 0} for T.

There are a few remaining issues. T, as the strictly upper part of some operator in .t,
is possibly unbounded. This occurs if the strictly upper part of ©3; is unbounded. We
do not known whether this can occur. The realization of T, is well defined, because
03} is bounded, as well as projections of the kind P ¢,z (- ©33), so that in particular the
Hankel operator H’ which defines that realization is bounded. {In fact, one could probably
set up a realization theory for unbounded operators with bounded Hankel operators.] A
related second issue is that possibly £4, = 1. Although this seems unlikely in view of the
assumptions on £, and the singular values of Hr that we have made, we have no proof
yet that this cannot occur. Note that the proof of theorem 6.10 is not dependent on £ 4,
being strictly smailer than 1. Finally, an alternative derivation of a model for T, goes
via an inner-outer factorization of ©,,. This gives rise to different expressions but still
produces a two-directional recursive algorithm.

6.4 PARAMETRIZATION OF ALL APPROXIMANTS

Section 6.4 is devoted to the description of all possible solutions to the Hankel norm ap-
proximation problem that have order smaller than or equal to N, where N = s-dim H (O3,

is the sequence of dimensions of the input state space of ©3;. We determine all possible
bounded operators of mixed causality type T’ for which it is true that

(1 (|THT-T)H||=|S'U| <1,
and (2) the state dimension sequence of T, = (upper part of T')
is at most equal to N.
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In: T (model in output normal form for a strictly upper matrix
7
r (approximation parameters)

Out: T, {model for Hankel norm approximant 77,)
do algorithm 6.1: gives My, Oy, Jg,, Cox, Dizg, Dux (k=1,---,n)
Si=1[]

fork=1,---,n
Compute X from )y using (5.15): gives Fy;, Gy, Hyj
Ska1 = Farg + Fag(I = SkFi00)  SeF 1k

end
rz+1 = [ ]
n+l = [ ]
fork=n,.---,1
Re = Fiop+ Fiie(d— R Fag)  Ris Fagk
Cr = {Gux+Gurll— Rt Far ) Rest Froi } (1= SiRe)™
A = {Faal=SiF)™}
Bax = {Hok+ Faix(I—ScFioe) " ScHiog ) '
Y = Aa.kYkHA; + C,,kCE‘k
Cak = Cox{-DijyDPui— Gy (I-M)Ci} + AgiYinn AtMiCi
end

Algorithm 6.2. The approximation algorithm.
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(Note that we do not assume boundedness of T,.) As we show in theorem 6. 17 below, there
are no Hankel norm approximants with state dimension lower than N. The result is that all
solutions are obtained by a linear fractional transform (chain scattering transformation) of
© with an upper and contractive parameter S;. That this procedure effectively generates
all approximants of locally finite type of s-degree at most equal to the sequence N can be
seen from the fact that if || ~'(7'- 7.} ||« < 1, then an extension T* of T, must exist such
that || T-1(7—7")|] < 1. This is a consequence of a theorem on the Nehari problem (see
section 6.5).

The notation is as in the previous sections. We started out with an operator T € Z,
and we assumed it to be locally finite, with a state realization in output normal form and
related factorization T = A*U, where A € i and U € U, unitary and locally finite. Then
we proceeded to solve the interpolation problem [U * —T'r1e=[A' -B'le U U],
and we saw that the problem was solvable provided a related Lyapunov-Stein equation
had a boundedly invertible solution. The solution was given in terms of an operator
T =Tr"6;; *in X of mixed causality type, and the approximant T, of low order was
given by the strictly upper part of T’. In the present section we shall first show that a
large class of Hankel-norm approximants can be given in terms of the same J-unitary
operator © and an arbitrary upper, contractive parameter S. Our previous result is the
special case S; = 0. Then we move on to show that all approximants of s-degree at most
N are obtained in this way.

We first derive a number of preliminary facts which allow us to determine the state
dimension sequence of a product of certain matrices.

Preliminary facts

PROPOSITION 6.11. Let B = I—X, where X € X and || X|| < 1. Then P(-B)|,,
and P(- B~ 1)|Z 4, Are Hilbert space isomorphisms on U,. Likewise, Pﬁzz.l(»B)| £,z and
Pr,z( 'B_l)lczz—l are isomorphisms on L£,Z7).

PROOF B is invertible because || X || < 1. Since also
X, = PCzZ"('X)Iczzl’ Xy = P(‘X)|uz

are strictly contractive: || X, || < 1, || X¢{| < 1, it follows that B, = [-X,, = Pﬂzl“(’B_l)lczz—l
is invertible in £, and By = I - X; is invertible in ¢. In particular, for u € L£,Z7, the
decomposition uB = y, +u; (with yi € Uz, u1 = uB, € L,Z7) satisfies

[loy || =]l ul], some £> 0. (6.25)

Take y € U,, y#0. To show that P( 'B—1)|z 4 is one-to-one, we will show that the upper
part of yB~! is uniformly positive: y, := P(yB™) has || y2|| 2 &1]| y|| (with & > 0).
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Indeed, put yB = yotuy (y2 € Uy, up € L£2Z7Y). Since uyB = y—y, B, and B, is invertible,
we can apply the relation (6.25) proven above, in the form Pz (42B) 2 &|| u2 ||, to obtain

IPL,z1(12B) || = | Pe,ze(waB) || 2 &f|wa]l  (&2>0).
Because B is bounded: ||B|| <2, it follows that || y2 || > 122|| y2B|| > 12&]| uz2||, or
||y2|[>£3|[u2||, 86 =1712&>0.

Hence, at this point we have yB™! = y; + u; with || y2|| > & || u2|| (& > 0). Because B!
is boundedly invertible, there exists £4 > 0 such that || yB™' || 2 &| y||, and we have

1
Ilyzl|(1+£—3) > Iyl +lfuall > lly2+ w2l > allyll-

We finally obtain that
&

v Yl = all

ly21l >

so that P(g)!?“l)|u2 is one-to-one.

To show that P(-B“)‘u2 is onto: P(4y B™Y) = i4,, we have to show that for all y; € Ua,
there exists an y € i/, such that
PuB ™) =y,

i.e., given y; € Uy tind y € U such that yB™! = yy+up (some uz € L£,Z71), or equivalently,
v2B = y+ wB. We will use the fact that B, = P,z (-B) Loz is invertible so that
Pc,z1(u2B) = wB, uniquely determines u,. Indeed, given y, u, is computed as u; =

P71 (»B)B;', and then y € U, is given by y = (uz + y2)B.

The property on Pgz1(- B~ l)] £,z is proven in a similar manner. D
Proposition 6.11 allows us to conclude, in particular, that if 4 is a subspace in /5, then
s-dimP(AB™!) = s-dim A

and if B is another subspace in /42, then B c A < P(BB!) c P(AB™).
PROPOSITION 6.12. IfB=1-X, X€ X and || X|| < 1, and if B =P(L,Z7! B), then
P(BB™Y) = P(L,Z7' B7Y).

PROOF We show mutual inclusion.

(DP(BBY c P(L,Z'BY). Let y € P(BB™). Then there existu € £,Z and u; € L,Z7!
such that y = P ((uB+u1)B™') = P(w;B™'). Hence y € P(L,Z7'B ™).
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(2) P(L2Z7'BY) < P(BB!). Assume y = P(u;B!) for some u; € L,Z'. Since
B, = Pﬂzz_x(‘B)ILZZ_, is an isomorphism (proposition 6.11), a u € £,Z7 exists such
that P, z1(uB) = —u,. It follows that

P(ulB‘l)

P((uB+u)B")

P ((uB-P;,z:(uB)B™)
P(PuB)B') € PBB!).

y

PROPOSITION 6.13. IfAe £ and A™' € X and if A =P(L,Z7'A7Y), then
ﬂzZ_IA_] =A® CzTI.

PROOF (Note that .4, as the range of a Hankel operator, need not be closed.) The left-
to-right inclusion is obvious. To show the right-to-left inclusion, we show that £ ,Z~ 1
L£2Z7'A7'. Assume that u € £,Z'. Then u = (uA)A™!. But since A € £, we have
uA € L£,Z7', and u € LZ'A"!. The fact that A is also in the image follows by
complementation: £,Z A7 & L£,Z71 = P(L,Z71A™), ]

THEOREM 6.14. LetA e £, A' € X, and suppose that the space A = P(L,Z71 A7) is
locally finite of s-dimension N. Let B=1-X with X € X and || X|| < 1. Then

s-dimP(L2Z AT B ) =N+p =  s-dimP(L,Z7 BA) =p.

PROOF
P(LyZz'A7'BY) = P((LZ' @ A)B) [prop. 6.13]
= P(L,Z7'BYY + P(AB™) [linearity]
= PBB) + P(AB™) [prop. 6.12]

where B = P(L,Z! B).

In the sequel of the proof, we use the following two properties. The closure of a D-
invariant locally finite linear manifold H yields a locally finite D-invariant subspace ‘H
with the same s-dim. Secondly, let M be another locally finite D-invariant subspace and
let X be a bounded operator on .Y, then HX = [P (H)]1 X if MLX =0.

Since A and B are spaces in Iy, and since according to proposition 6.11, P(-B™)], 4, 18

an isomorphism mapping A and B to P(AB™!) and P(BB™!), respectively, we obtain that
s-dim(A + B) = N+ p. With A = U, & A4, it follows that P 4.(B) has s-dim equal to p,
because s-dimA4 = N. The proof terminates by showing that
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(1) P(L2Z7' BA) = P(P 4, (B)A), for

P(L,Z7! BA) = P(P(L,Z'B)A)
P(BA)
P(P4(B)A),

because AA c £,Z77).

(2) P(P4.(B)A) is isomorphic to P 4.(88), which follows from the fact that the map
P(-A) ‘Al is one-to-one, for P(xA)= 0 =>x e A® £,Z7}, and the kernel of P(-A) ,Al is
thus just {0}.

Consequently, s-dim P(£,Z7! BA) = s-dim P (P 4. (B)A) = s-dimP 4.(B) = p. m|

In the above theorem, we had A € £. A comparable result for A € I/ follows directly by
considering a duality property, and yields the corollary below.

COROLLARY 6.15. LetAeld,Xe X,B=1-X and || X|| < I, and let A be invertible
in X. Suppose that A = Ps,,1(UrA™") has s-dimension N. Then

s-dimPp 1 (UoB AT ) =N +p = s-dim P,z ((UoAB) = p.

PROOF For any bounded operator, the dimension of its range is equal to the dimension
of its co-range. Hence for T € .Y, we have that s-dim ran(Hy) = s-dim ran(H7), or

s-dimP(L2Z7'T) = s-dim P,z (U T7).

Generating new solutions of the interpolation problem

Throughout the remainder of the section we use the notion of causal state dimension
sequence of an operator T € v as the s-dimension N of the space H(T) = Pg, 7 ((LT).
N is thus a sequence of numbers {N;: i€ Z} where all N, in our case are finite. Dually,
the s-dimension of P .1 (¢ T} is described as the anti-causal state dimension sequence.
We use the following lemma, in which we must assume that © is constructed according
to the recipe given in corollary 5.20, so that its input state space H(®) is generated by
(viz. equation (6.12))

H(©) = DY (I-Z'A")'Z" [B;, BT'].
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LEMMA 6.16. Let T, T and © be as in lemma 6.4, such that T= A"U is a factorization
of T with A € I{ and U € U is inner, and © is the J-unitary operator with input state
space given by (6.12) and defined by the realization (6.13). Then

[Ur 000 e [£ L]
AT Ie € [£ L].

PROOF We prove this by brute-force calculations on the realizations of U and ©, as in
(6.13):

' 0@ = {Dj+ CU-ZAYZB,} {[Dn Dl + ByZU-AZ7C) G}
Dy[Dy1 D2l + DyByZ(I-AZ)Y'[C) Ci]+
+ C*(I-Z'A*Y'Z'B; D1y Dol +

+ C(I-Z°A*Y\Z'B,ByZ(I- AZy'[C; Cal.

non

Upon using the identities D},By + C*'A =0, B;;By+A*A =1, and
(I~Z'AYIZ (I-A'A) Z(I-AZ) " = AZU-AZ) + (I1-Z'A*)!,
it is seen that the terms with (/—AZ)~! cancel each other, so that

[(U* 01© = Dy[Dy D) + C'[C) Gl +
+C‘(1—Z*A*)_IZ*{A*[C1 C2]+BZ/[D11 Dn]}
e £ L].

In much the same way,

-A* 16 ({-DD;, - BB}, — (DC* +BA")Z' (I-A*Z")"'By;}  T1x

Dy D By Ao
x {[ by Do ] + [ ig ]Z(I AZ)[C, (,2]}
(lower) +{(-DD;,—BB})By +B}Z(I-AZ)'[C, C,]+
+ (=DC*' —BAYZ'I-A'Z') B, ByZ(I- AZY'[C) (3]
(lower) + {-DD};By — BB By + B—DC'A— BA*A} Z(I-AZY'[C, C)
(lower) + {DC'A-B+BA"A+B-DC'A—- BA*A} Z(I-AZ)Y[C; ()]
(lower) +0.

nu

THEOREM 6.17. Let T € ZI{ be a locally finite operator with strictly stable output
normal realization {A, B, C, 0}, let T" be an invertible Hermitian diagonal operator. Let Hy
be the Hankel operator of T'T at time point k, and suppose that an € > 0 exists such that,
for each k, none of the singular values of Hy are in the interval [1~¢ 1 +¢|. Let N be the
sequence of the numbers Ny of singular values of Hy that are larger than 1.
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Let U be the inner factor of an external factorization (theorem 4.9), with unitary realization
{A, By, C, Dy}, and let © be a J-unitary block-upper operator such that its input state space
H(®) is given by (6.12).

(1) If Sy € U is contractive, then Oy, — ©y18, is boundedly invertible, and
S = (0115, — ©12)(Og2 — 0, 51)!

is contractive.

(2) Let, further, T' =T+ I'S*U. Then

(@ ||ITNT-T)H]|=]|SU|<T,
(b) the causal state dimension sequence of T, = (upper part of T')
is precisely equal to N.

That is, T, is a Hankel norm approximant of 7.

PrROOF (1) By the J-unitarity of ©, @, is boundedly invertible and || 0516, || < I,
whence ©; — 0,15, = Op(/ — ©310,8,) is boundedly invertible. Hence S exists. Its
contractivity follows by the usual direct calculation (see e.g., [24]).

(2a) follows immediately since T"1(T—T7) = $*U and U is unitary.
(2b) The proof uses the following equality:

T/*l—*—l

(' -TT'] [ _SI }

wo-rr| g e ][ %] en-eusy

S ..
_? ] (02— 0318,

(A'Sp+B') (@ — 05"

A" -8B [

Since (A’Sy + B’) € U, the anti-causal state dimension sequence of T'* is at each point
in time ar most equal to the number of anti-causal states of (@,; —©7,S.)™! at that point.
Because the latter expression is equal to (/ — ©330,15.)7'05), and ||©510115.|] < 1,
application of corollary 6.15 with A = @, and B = I-©0310,,8; shows that this sequence
is equal to the anti-causal state dimension sequence of @5}, i.e., equal to N. Hence
s-dim H(T") £ N (pointwise).

The proof terminates by showing that also s-dim H(7") 2 N, so that in fact s-dim H(7T’) =
N. Define

G, = (03-035)"
G, = 5:G,
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Figure 6.4. O (or X) generates Hankel norm approximants via S and parametrized by S;.

so that
S _ G,
)=o)

Because © is J-inner: ©*J@ = J, this is equivalent to [G] G3] = [S$* I]©, and using
S =-AT"! + UT*T! we obtain

G, Gl =T[U 0]+ [-A" IO (6.26)
However, according to lemma 6.16,

[Ur 01 e [£ L[]
[-A* I'1e e [£ L].

This implies H(G3) < H(T') (same proof as in lemma 6.6). Hence s-dim™M(7") >
s-dim H(G3) = N. a

Thus, all S of the form S = (0115, — ©12)(Q22 — 021 5.)™ with S, € U, || S| £ 1 give rise
to Hankel norm approximants of 7. We encountered this expression earlier in chapter 5:
it is a chain-scattering transformation of 5, by ©. Consequently, S is the transfer of port
a1 to by if by = 457, as in figure 6.4.

The reverse question is: are all Hankel norm approximants obtained this way? That is,
given some 7’ whose strictly upper part is a Hankel norm approximant of 7, is there a
corresponding upper and contractive Sy such that 77 is given by T’ = T+ I'S"U, with § as
above. This problem is addressed in the following theorem. The main issue is to prove
that §; as defined by the equations is upper; the proof is an extension of the proof that
S: generated all interpolants in the definite interpolation problem in section 5.3 (theorem
5.21), although some of the items are now more complicated.
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Generating all approximants

THEOREM 6.18.  Let T, T, U and © be as in theorem 6.17, and let N be the number of
Hankel singular values of T™'T that are larger than 1. Let be given a bounded operator
T’ € X such that

(h |ITNT-1)| <1,
(2) the state dimension sequence of T, = (upper part of T') is at most equal to N.

Define § = U(T"™ — T )"\, Then there is an operator S; with (S; € U, |SL|| < 1) such
that
S = (01185, -012) (O ~ Oy S1)!

(i.e., © generates all Hankel-norm approximants). The state dimension of T, is precisely
equal to N.

PROOF The main line of the proof runs in parallel with [20], but differs in detail. In
particular, the ‘winding number” argument to determine state dimensions is replaced by
theorem 6.14 and its corollary 6.15. The proof consists of five steps.

1. From the definition of S, and using the factorization 7= A* U, we know that
ISl =jjua” -mr || = [THT' -1 < 1

s0 § is contractive. Since § = —AI™' + UT*T!, where A and U are upper, the
anti-causal state dimension sequence of S is at most equal to N, since it depends
exclusively on 77, for which this is given.

2. Define
([G] Gl :=(§ 1ne. (6.27)

Then H(GY) c H(T") and H(G3) < H(T").
PROOF Using § =—-Al"! + UT"* T}, equation (6.27) can be rewritten as

TG Gl =TI[U 010 + [-A" I
According to lemma 6.16,

(U 01©@ € [£ L]
A" 10 € [£ L].

As in the proof of theorem 6.17, this implies H(G}) < H(T”) and H(G3) < H(T).
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3. Equation (6.27) can be rewritten using ©~! = J@"J as

S _ Gy
5] 0[] -
G, is boundedly invertible, and §; defined by S, = G,G;' is well defined and
contractive: || S || < 1. In addition, § satisfies S = (0115, — ©12)(O2 — ©,.5.)7! as

required.
PROOF As in the proof of theorem 5.21, step 2, we have, for some £> 0,

GG +GGr2el, GG <GG;. (6.29)

Together, this shows that G, 2 1/2 €], and hence G; is boundedly invertible (but
not necessarily in /). With §; = Gngl, equation (6.29) shows that SiS. <1, and
hence || S || € 1. Evaluating equation (6.28) gives

G5! 02— 075,
SGEI O115.-9y2

(6.30)

and hence S = (@11SL — @12)(@22 - e?,[SL)_l .

. G5! € U, the space H(T") has the same dimension as H(033), and H(G]) < H(G)).

PROOF According to equation (6.30), G3' satisfies

O, (1-0310,.51)
I- 95% 6)21SL)‘1 95% .

G
G

Let p be the dimension sequence of anti-causal states of G;‘, and N, < N be the
number of anti-causal states of G, with N the number of anti-causal states of ©3.
Application of corollary 6.15 with A = @y and B = (/- @5%@21.51) shows that
Ny =N+p, and hence N, = N and p = 0: G3' € U, and H(G3) has dimension N.
Step 2 claimed H(G3) < H(T'), and because T’ has at most N anti-causal states,
we must have that in fact H(G3) = H(T’), and hence H(G]) H(GS).

. SL e .

PrOOF This can be inferred from G3' € U, and H(G}) < H(G)), as follows.
S, € U is equivalent to P,z (U,S5.) =0, and

Pr,z(S)) = Prza(UhGIGYY)
Pz (P (GG

since G5! € U. Using H(G}) € H(G3), or Pp,z1(UaG1) © Pr,z:1(H2G2) we obtain
that

Przi(hS) < Przi(Prz(UhGr)GT)
P21 (G2 G3Y) (since G5! € U)
0. a
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6.5 THE NEHARI PROBLEM

The theorems given in section 6.2 contain an implicit proof of an equivalent of Nehari’s
theorem in the present setting, for operators 7 which have a strictly stable, uniformly
observable realization. If I" in (6.7) is chosen such that all local Hankel singular values
are uniformly smaller than one, then 77 = (B’©3iI")" obtained through lemma 6.3 is a
lower (€ £) operator and the state sequence x- is of dimension zero: #(B_) = 0 and
Js = 1. Such a T’ is known as the Nehari extension of 7% it is such that || T-}(T-T")|| < 1
so that, when || T} T ||y < 1, there exists an extension E € .t such that the upper part of E
is equal to ™! T and E is contractive. The Nehari problem is to find E or, equivalently, 7”.
This problem can also be viewed as a distance problem: given T € ZI{, tind an operator
T' € L that is closest to it, in the sense that || 7—-T'|| is minimized.

THEOREM 6.19.  If T is a bounded upper operator which has a locally finite strictly
stable and uniformly observable realization, then

I Tllw = inf [[T-T7. (6.31)

PROOF Let d = || T||y and consider the operator (d + £)~'T for some & > 0. Then, with
[T =d+e ri=||(d+ey'T7'T||y < | and lemma 6.4 applies. Since the largest singular value
of any local Hankel operator of (d+ £)™' T is majorized by r, we have that the sequence
of singular values larger than one is zero, so that @5} € i/ and T’ = (B'O}(d+¢) isa
lower operator. Lemma 6.4 ensures that

fd+e(T-T)| < 1

by construction, and hence
| T-T"] < d+e.

Letting £ | O achieves (6.31). The reverse inequality is obvious from proposition 6.2.
0O

Again, one can show that all possible Nehari extensions are parameterized by the set of
contractive upper operators Sy.

For time-invariant systems, the Nehari problem is one of the classical extension problems
with well-known solutions [25, 31, which are derived using interpolation or Beurling-Lax
representation theory. For time-varying systems, an early statement and proof appears in
the work of Arveson [26, thm. 1.1] on operators in a nest algebra. A comparable result has
been obtained by Gohberg, Kaashoek and Woerdeman [27, 28, 29] in the context of block
matrix and operator matrix extensions. Their solutions are recursive on the entries of the
block matrix: it is possible to work from top to bottom, adding rows to the extension
found so far, in such a way that the resulting matrices remain contractive. The recursion
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scheme is a generalized Schur recursion, similar to the recursive solution to the indefinite
interpolation problem to be described in section 6.6 below, but specialized to apply to the
definite case.

A state-space realization of the ‘maximum entropy’ or ‘central’ Nehari extension T’ can
be obtained as a special instance of the method presented in section 6.3, and does not need
the upward recursions because the dimension of x_ is zero. The result is a closed-form
solution: it is specified solely in terms of the given state realization operators of T.

THEOREM 6.20. Let T € U be a strictly upper locally finite operator with realization
{A, B, C, 0} in output normal form. If ||T||x < 1 then T has a Nehari extension E =
T—-T' e X such that E is contractive and the strictly upper part of E is equal to T (i.e.,
T'" € U. A realization of T", i.e., the upper part of —E", is given by

A = A(I- (I- A"MA)™'B*B)
B. = —-C'MA(I-(I-A"MAY'B"B)
C, = A(I- A"MAY' B* (6.32)
D, = —C*MA(I-A*MAY' B*

where M satisfies M1 = A*MA + B*B.

PrOOF The existence of the Nehari extension has already been proven: it suffices to take
T'* = B'©3}, where B’ and © are as in lemma 6.3 and 6.4. Let By and Dy be such that

| A C
o4 5
is a unitary realization of the inner factor U of the external factorization of 7. The
realization © has the general form of equation (6.13) (with I' = I), but since Jg = I, all
negative signature is associated with Dy, which implies that D3} exists and is bounded,

and also that D, can be chosen equal to zero (as in [24, thm, 3.1]). Hence we consider
O of the form

R D

where the first column of the operator matrix in the middle is specified, and an extension
by a second and third column is to be determined, as well as a state transformation R,
such that © is J-unitary. We use the fact that U is unitary to derive expressions for entries
in ©. Let, as before, A = R*R (recall that Jz = ). The remainder of the proof consists of
6 steps.

1. C A_IC(Z,
Dy, = Dya, where o = (C*A_1C+D;JDU)1/2.
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PROOF The J-unitarity relations between the first and second block column of ©

lead to
A‘AC1 + BZ/D“ = 0
CIAC1+D11D11 = 1.
The first equation shows that, for some scaling «,
AC Al _T¢c],
Dy By Dy

The scaling « follows from the second equation.
2. CG3C+ DDy =0.

PROOF The J-unitarity conditions between the second and third column lead to

CIACg + DIlDl2 = 0
= odCC+aD;Dy 0.

3. B =C'M(I-AZ)"'C,.
PROOF A state-space model of B’ was given in equation (6.23) as
B' = {-D;D, - C'U-M)C2} + C"MAZ(1 - AZ)' C;.
Using the result of step 2 gives the intended simplification.
4. T" =B'03) = C"M(I-[A- C2DABIZy™ C,D3).
PROOF Let A, = A — C,D51B. Then

T'* = B'9;) [C*M(I- AZ)™ C,] (D3} — DIABZ(I - A.Z)' C,D5)]
C"M(I-AZy™ [I- CD3ABZ(I- A.Z)]| C.D3)
C*M(I-AZ)™ [I-A.Z) - CD33BZ) (1- A.Z)™ C, D3}

C*M(I-AZ)y ' U-AZ)I-A.Z2) ' CoD3) .

5. CoDy) = A(I- A"MAY'B".
PROOF The J-unitarity conditions imply

*

A ] [A Cy ]
By Dy I D | =0
B 0 | -1 Dy |

A ¢ 1 [A G| _ [B
= [BU Du]_ IHDn]"_O]D”
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DDy ] ! By Di 0
[ AT ] [ A  Ca ] [ (ACY + B*B)! ] [
L I BU Dua I

[ A(ATY + B*B)!B*
| Bu(A“" +B'B)'B"

o=
—d

where we have used the fact that

A* By 1[A Cal _ [AV+BB
C} Dj By Dya I
Finally, using M = I—- A, where M satisties M) = A*"MA + B*B gives A“D + B*B =
I-A"MA.
6. T" =D, + B.Z(I - A.Z)"'C,, where {A,, B., C., D,} are as in equation (6.32).

PROOF From step 4,

™" C'M(I-A.Zy'C,D3}

C*MCyD3) + C*MAZ(I - A.Z)™ C,D3)

where A, = A — (;D3}B. It remains to make the substitution C,;D3} = A(I -
A*MAY'B*. ]

Numerical example

We illustrate theorem 6.20 with a numerical example. Let T be given by

0 .326 .566 .334 .078 -.008 -.012 -.003
0 .326 .566 .334 .078 -.008 -.012
0 0 .326 .566 .334 .078 -.008

0
0

T= 0 0 0 0 .326 .566 .334 .078
0 0 0 0 0 326 .566 334
0 0 0 0 0 0 326 .566
0 0 0 0 0 0 0 .326
0 0 0 0 0 0 0 0

The norm of T is computed as || T|| = 1.215, and T has Hankel singular values equal to

H, H; H; Hy Hs Hg H7 Hg
7385 9463 9856 .9866 .9856 .9463 .7385
2980 .3605 .3661 .3605 .2980
L0256 .0284 .0256
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so that || T||n =.9866 < 1. A realization for T is obtained via algorithm 3.1 as
T, = [ : : T, = [ 733 517 | —442
"7 =7397.000 27 |7=738 000 .000
F 133 —517 000 | —.442 733 —517 —.000 | —.442
.508 —.012 —.084| .857
T;=| .508 -012 -084| .857| T4=
— AT 000000 000 430 836 -212|-.265
' ' ‘ =738 —.000 .000| .000
738 —.509  .000 | —.442 [ 780 441 | —444
Too | 509 —005 .076| 857 | . _ | .506 -.026| .862
ST 424 845 192 | -264 T 1 —369 897 | .244
| =734 .000 .000| .000 | =654 —.000| .000
[ —.867 | —.499
T = | 499 | -867 To= |- 1'888]
| 326 .000 Lo
Theorem 6.20 gives a realization of T'* as
el : 1o [ 021 =517 | —.965
'™ | .000].000 27 =005 125| 233
(124 —517  .000 | -L.161 130 ~517 ~000) ~1.168
, , 023 -.012 -.084| -657
T;=| .025 —012 —084| —654 T, =
~ 38T —oIs 293 296 .836 -212| -.183
L : O18] | 084 306 —.024| 519
[ —.121 -509 -.000|-1.171 [ 062 441 | —1.098
| 027 =005 .076| —656 | ., | .ll4 -026| —60
ST 295 845 192 -.176 6~ | -289 .897| .122
| 080 303 .021] .519 | =006 —272| 4%
[ 702 | -.504
; _ . [ -1.000
T)=| .404 .290] Tg_[%_ _000]

and the resulting Nehari extension follows as

0 326 .566 .334 078 -.008 -.012 -.003
0 -233 326 .566 334 .078 -.008 -.0l2
0 .076 —-494 326 566 .334 .078 -.008
0 .003 267 -519 326 566 .334 078
0 -0l =050 .295 -519 326 .566 .334
0 .003 -013 -050 .267 -494 326 .566
0 .000 .003 -.011 .003 .076 -233 .326
0 0 0 0 0 0 0 0

£ is indeed contractive: || E |} =.9932.

E=T-T =
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Figure 6.5. Trivial external factorization of T.

6.6 ORDER-RECURSIVE INTERPOLATION

The global state-space procedure of the previous sections constructs, for a given T € X,
an inner factor U and an interpolating operator ©. The procedure can be specialized
and applied to the case where T is a general upper triangular matrix without an a priori
known state structure. The specialization produces a generalized Schur recursion, which
we derive for an example T.

Consider a 4 x 4 strictly upper triangular matrix 7,

@ ha L3 ha

0 1t ita

T= 0
0 13
0

where the (1, 1) entry is indicated by a square and the main diagonal by underscores. For
convenience of notation, and without loss of generality, we may take I' = /, and thus seek
for T, (a 4x4 matrix) such that || 7-T, || < 1. A trivial (but non-minimal) state realization
for T that has AA* + CC* = I is obtained by selecting {[0 0 1], [0 1 0], [1 O 0]} as
a basis for the row space of the second Hankel matrix Hy = [tz 13 f14], and likewise
we select trivial bases for A3 and Hy. Omitting the details, the realizations for T and an



6.6 Order-recursive interpolation 223

inner factor U that result from this choice turn out to be

ool U
e s 2 [0 ] :
1
1
T, = 1 U, =
Ia 123 |0
1 [ 1
T3 = l U3 =
t34 | O i
-1 !
o] ek

(*-” stands for an entry with zero dimensions). The corresponding matrices U and A = UT*
are
I

0
5, 0

with input space sequence C* x @ x @ x @, and output space sequence C' xC! xC! xC!.
All inputs of U and A are concentrated at point 1, and hence the causality requirement is
always satisfied: U e U and A € {{. The structure of A and U is clarified by figure 6.5.

The global realization procedure would continue by computing a sequence M
My = ALMiA + BBy, M =[]

and using this to derive © as demonstrated in section 6.2. Note that it is not necessary
to have a minimal realization for T (or U). The extra states correspond to eigenvalues of
M that are zero, and hence are of no influence on the negative signature of A = /- M
(independently of I'). Hence our non-minimal choice of the realization for T does not
influence the complexity of the resulting approximant T,. For a recursive derivation of an
interpolating matrix ©, however, we proceed as follows. The (trivial) state realizations T
and U are not needed, but the resulting U is used. The interpolation problem is to deter-
mine a J-unitary and causal © (whose signature will be determined by the construction)



224 Hankel-Norm Model Reduction

such that
[Ur -T10 e U U].

Assume that © € {(Me, No). The signature matrix J; := Ja, is known from the outset
and is according to the decomposition [U* —T']. Although the signature J; := Juj, is
not yet known at this point, the number of outputs of © (i.e., the space sequence Ng)
is already determined by the condition that each ©y is a square matrix. With the above
(trivial) realizations of T and U, it follows that © has a constant number of two outputs
at each point in time. The signature of each output (+1 or —1) is determined in the
process of constructing @, which is done in two steps: © = ©'Il. Here, ©’ is such that
(U —T160’ e [ U], where the dimension sequences of each I/ are constant and
equal to 1 at each point; for example

+ + + + - - - - + + - - + + - -~
1 —lfl * kK * k%
! ~h o= | xoxxl xoes

1 ~1, by £ * * %
Vbt By s * %

where the first upper triangular matrix at the right-hand side corresponds to the first output
of each section of ©’, and the second to the second output. At this point, the signature
of each column at the right-hand side can be positive of negative: the output signature
matrix of @' is J§, which is an unsorted signature matrix such that ©'J;0" = J; (the
signature of the right-hand side in the equation above is just an example). See also figure
6.6. The second step is to sort the columns according to their signature, by introducing
a permutation matrix IT € D, such that J, = IT"J3IT is a conventional (sorted) signature
matrix. The permutation does not change the fact that [U* -T*]© € [U U], but the
output dimension sequences of each i are different now, and are in general no longer
constant. For the above example signature, [A’ —B’] has the form

+ o+ 4+ + - - - - + 4+ + - -
1 -t} ok ok k.. I] Lok ok K
l —t, Iy o = xx Lok ok ok
1 —fy, hy Iy = x Xk
1V =ty s 14 iy = X %

=[A" -B']

where A’ has as output sequence C* x C?x @ x @, and B’ has as output sequence
@ x @ xC2 xC2. We now consider these operations in more detail.
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Figure 6.6. Computational structure of @', with example signature at the outputs.

Computational structure

©’ can be determined recursively in 2n steps: ©' = 011,012 - OO - - - B 1)@y, in
the following way. The columns of ©/ act on the columns of U* and —T". Its operations
on U™ are always causal because all columns of U™ correspond to the first point of the
recursion (k£ = 1). However, for © to be causal, the k-th column of @ can act only on the
first & columns of 7*. Taking this into consideration, we are led to a recursive algorithm
of the form [A(k) B(k)]e(kl)G(kz) = [A(k+1] B(k+1)], initialized by A(]) = U*, B(l) = —T‘, and
where Ou1)Owy) involves two actions:

a. Using columns k + 1, ---,n of Ag, make the last (n— k) entries of the k-th column
of Ay equal to 0. In particular, the (k + i)-th column of A, is used to make the
(k + i)-th entry of the k-th column of Ay equal to zero.

b. Make the last (n— k) entries of the k-th column of B equal to 0, again using columns
k+ l, R /4 OfA(k).

The operations required to carry out each of these steps are elementary unitary (Givens)
or J-unitary rotations that act on two columns at a time and make a selected entry of the
second column equal to zero. The precise nature of a rotation depends on the correspond-
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ing signature and is in turn dependent on the data — this will be detailed later. We first
verify that this recursion leads to a solution of the interpolation problem.

k=1 a. no action is needed: the first column of U* has already the required form.

b. using 3 elementary rotations, the entries ¢7,, {5, }, are subsequently ze-
roed. This produces

[1 % % = )
0 * 0 _IEZ
0 = 0 -1y -3
[ 0 * | 0 s By i
k=2 a
( 1 % * % ]
[0 0 * *] 0 -1, Gy —fi |
b.
[ 1 * *x % * )
0 * =x x* 0 *
00 * 00 0 -
k=3 a
[1 * x x * 7
0 = *x x| 0 =
00 x x| 0 0 -
(000 «|0 0 - 1|
b.
1 * * % * ok
0 * *x x% 0 k%
00 x *x, 0 0 *
000 *| 0 00 -1

k = 4: no rotations are required.

The resulting matrices are upper triangular. The signal flow corresponding to this compu-
tational scheme is outlined in figure 6.7(a). Note that the computations have introduced an
implicit notion of state, formed by the arrows that cross a dotted line between two stages,
so that a (non-minimal) realization of © can be inferred from the elementary operations.
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Figure 6.7. Computational structure of a recursive solution to the interpolating problem.
() ©’, with elementary rotations of mixed type (both circular and hyper-
bolic); (b) one possible corresponding £/, with circular elementary rotations.
The type of sections in (¢) and the signal flow in (b) depend on the data
of the interpolation problem. The rotations which cause an upward arrow
(ultimately: a state for T,) are shaded.
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Elementary rotations: keeping track of signatures

We now consider the elementary operations in the above recursions. An elementary
rotation 8 such that 8°j;8=j, (j; and j, are 2 x 2 signature matrices) is defined by

[u t]e=[* O],

where u, t are scalars, and where ‘*” stands for some resulting scalar. Initially, one would
consider 8 of a traditional J-unitary form:

—8 1 c* ’

' ]ee[ o)

However, since |s| < 1, a rotation of this form is appropriate only if |u| > |£]. In the
recursive algorithm, this is the case only if 77 < I which corresponds to a ‘definite’
interpolation problem and leads to an approximant 7, = 0. Our situation is more general.
If |u| <|t|, we require a rotational section of the form

-5 1 1
92“[ l _sx]:‘;y

resulting in [u ¢]18;, = [* 0]. 6 has signature pairs determined by

sl ][0

This shows that the signature of the ‘energy’ of the output vector of such a section is
reversed: if [a, 5,16 = [ay b3), then aya] — b1b] = —aza; + byb;. Because this signature
can be reversed at each elementary step, we have to keep track of it to ensure that the
resulting global ©-matrix is J-unitary with respect to a certain signature. Thus assign to
each column in [U” —T7] a signature (+1 or —1), which is updated after each elementary
operation, in accordance to the type of rotation. Initially, the signature of the columns of
U is chosen +1, and those of —T™ are chosen —1. Because ©’ = 01102 - - - ©u1)O ),
where ©; is an embedding of the i-th elementary rotation 8, into one of full size, it is
seen that keeping track of the signature at each intermediate step ensures that

91=[ 1* _s]—l— et +ss" =1, ¢#0

which satisfies

@.[1 —1]9=J£’

where J§ is the unsorted signature matrix given by the signatures of the columns of the
final resulting upper triangular matrices. The types of signatures that can occur, and the
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appropriate elementary rotations to use, are listed below. These form the processors in
figure 6.7(a).

T s -

LoLw 1 . f;=i* 01, iflul>]t
LAt S B -+

2 Lw 0107 . < =[x 00, iflul<l
-+ L 11 + -

O R | B = = [* 01, iflul>]
RN B R I -t

4o Lu 01| . 1SC—*=[* 01, iflul<lt
M +-c N *

Sobw 0] . =[* 0]

6 Lu 1| L =0+ 0]

We can associate, as usual, with each J-unitary rotation a corresponding unitary rotation,
which is obtained by rewriting the corresponding equations such that the ‘+ quantities
appear on the left-hand side and the ‘-’ quantities on the right-hand side. The last two
sections are already circular rotation matrices. By replacing each of the sections of © by
the corresponding unitary section, a unitary X matrix that corresponds to © is obtained.
A signal flow scheme of a possible Z in our 4 X4 example is depicted in figure 6.7(b).
The matching of signatures at each elementary rotation in the algorithm effects in figure
6.7(b) that the signal flow is well defined: an arrow leaving some section will not bounce
into a signal flow arrow that leaves a neighboring section.

Finally, a solution to the interpolation problem [U* -T7]1© = [A’ - B’] is obtained
by sorting the columns of the resulting upper triangular matrices obtained by the above
procedure according to their signature, such that all positive signs correspond to A’ and
all negative signs to B’. The columns of @ are sorted likewise. The solution that is
obtained this way is reminiscent of the state-space solution in the previous section, and
in fact can be derived from it by factoring © into elementary operations as above. Again,
the network of Z is not computable since it contains loops.

To give an example of the foregoing, suppose that T is a band matrix. It may be verified
that computations on entries off the band reduce to identity operations and can therefore
be omitted. The corresponding computational scheme is, for a typical example, depicted
in figure 6.8. A number of ‘0’ entries that are needed to match the sequences in the
correct way have been suppressed in the figure: a sequence that is introduced at level &
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(k=7)

Figure 6.8. Computational network of an interpolating Z-matrix of a band-matrix (7 X7
matrix, band width 3).
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must in fact be delayed by £ — 1 delays (equivalent to prepending k — 1 ‘0’s), while as
many trailing ‘0’s as needed must be postpended to make each sequence have length 7.
The recursive procedure can be specialized even further to handle staircase matrices as
well, for which even more of the elementary computations are rendered trivial and can be
omitted. The structure of the diagram will reflect the structure of the staircase.

The recursion and the resulting computational network is a further generalization (to
include indefinite interpolation) of the generalized Schur algorithm introduced in [30].
However, the formalism by which the matrices are set up to initiate the algorithm is new.

Computation of the approximant

With © and B’ available, there are various ways to obtain the Hankel norm approximant
T,. The basic relations are given in terms of 7’ (the upper triangular part of which is
equal 10 T,) and the operator X associated to ©:

"
T

T+ UZy
RO}, 7 = L.

Ideally, one would want to use the computational network of  to derive either U X,
or B’©;;. However, the network that has been constructed in the previous step of the
algorithm is not computable: it contains delay-free loops, and hence it cannot be used
directly. A straightforward alternative is to extract @, from the network of @ (by applying
an input of the form [0 7]), and subsequently use any technique to invert this matrix and
apply it to B’. A second alternative is to compute a (non-causal) state realization for X
from its network. This is a local operation: it can be done independently for each stage.
From this realization, one can derive a realization for the upper triangular part of 035, by
using the recursions given in section 6.3.

The first solution can be made more or less ‘in style’ with the way © has been constructed,
to the level that only elementary, unitary operations are used. However, the overall
solution is a bit crude: after extracting the matrix ©,,, the computational network of © is
discarded, although it reveals the structure of ©y, and @5}, and the algorithm continues
with a matrix inversion technique that is not very specific to its current application. The
state-space technique, on the other hand, uses half of the computational network structure
of © (the ‘vertical’ segmentation into stages), but does not use the structure within a stage.
The algorithm operates on (state-space) matrices, rather than at the elementary level, and
is in this respect ‘out of style’ with the recursive computation of ©. It is as yet unclear
whether an algorithm can be devised that acts directly on the computational network of
© using elementary operations.
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6.7 CONCLUSIONS

In this chapter, we have presented an approximation scheme to derive, for a given upper
triangular matrix 7, a Hankel-norm approximant T, of lower complexity. A model of T,
can be computed starting from a high-order model of T (obtained e.g., by algorithm 3.1)
by applying algorithm 6.2. However, the derivation of a model for T can be computa-
tionally intensive: it involves a sequence of SVDs to compute the relevant subspaces.
An alternative approach is via the algorithm discussed in section 6.6, which acts directly
on the entries of 7. Only local computations are needed to obtain © and B’. However,
further research is required to efficiently compute T, as the upper part of (B’67})": a
direct computation is not really satisfactory in view of the fact that © is obtained in a
factored form.

A second open problem is the selection of a suitable error tolerance matrix I'. At present,
one has to select some I', which then results in an approximant with a certain complexity.
It is, as yet, unclear how to obtain the reverse, ie., how to derive, for a given desired
complexity of the approximant, the tolerance I that will achieve this complexity.
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Chapter 7

ORTHOGONAL EMBEDDING

In chapter 3, we saw how a state realization of a time-varying transfer operator T can be
computed. The realizations which we obtained were in principle either in input normal
form (A"A + B'B = I) or in output normal form (AA* + CC™ = [). In chapter 4, we
considered unitary systems V with unitary realizations. Such realizations are both in input
normal form and in output normal form, and satisfy the additional property that both
|| V]| =1and || V|| = 1, while for T in either normal form, we have || T|| > 1, whether
{| T|| is small or not. Since || T|| tells something about the sensitivity of the realization,
i.e., the transfer of errors in either the input or the current state to the output and the next
state, it is interesting to know whether it is possible to have a realization of T for which
[|T{ <1 when||T|<1. This issue can directly be phrased in terms of the problem which
is the topic in this chapter: the orthogonal embedding problem. This problem is, given
a transfer operator T € U4, to extend this system by adding more inputs and outputs to it
such that the resulting system Z, a 2 x 2 block operator with entries in i,

X X
T = :
[ T Ip ]

is inner and has T as its partial transfer when the extra inputs are forced to zero: T= ;.
See figure 7.1. Since the unitarity of Z implies 7°T+T.T, = I, (where T, = Zy;), it will be
possible to tind solutions to the embedding problem only if T is contractive: /-T*T 20,
so that || T|| < 1. Since X is inner, it has a unitary realization X, and a possible realization
T of T is at each point k in time a submatrix of X, (with the same A, and smaller
dimensional By, Ci, D), and hence T is a contractive realization.

The orthogonal embedding problem, and algorithms to solve it, are the central issues in
this chapter. The orthogonal embedding problem is known in other fields as well: it
is called the unitary extension problem in operator theory, and the equations governing
its solution (in a state-space context) are known in control theory as the discrete-time
bounded real lemma.
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Figure 7.1. Embedding of a contractive time-varying operator 7.

7.1 INTRODUCTION AND CONNECTIONS

In this chapter, we present a constructive solution to the embedding problem, under the
assumption that the number of states of T is finite at any point in time (locally finite
systems). The construction is done in a state-space context and gives rise to (again) a
time-varying Riccati equation. While it is clear that the contractivity of T is a necessary
condition for the existence of an embedding, we show in the sequel that contractivity
of T is, also in the time-varying context, sufficient to construct a solution when T is
locally finite. (It is known that not all contractive transfer operators have an orthogonal
embedding, see Dewilde [1].) We first derive such a solution for the case where T is
strictly contractive. This result has been reported in condensed form in [2, 3]. The
extension to the boundary case invokes some mathematical complications but in the end,
almost the same algorithm is obtained [4].

Besides the above application, the orthogonal embedding problem is typically the first step
in digital filter synthesis problems in which filters (contractive operators) are realized as
the partial transfer operator of a lossless multi-port filter Z. Once such a X is obtained, it
can be factored into various kinds of “ladder” or “lattice” cascade realizations consisting
of elementary lossless degree-1 sections. Such a factorization is known in classical (time-
invariant) circuit theory as a Darlington synthesis [S, 6], and provides a structured way to
realize a given operator (‘filter’) in elementary components (in the circuit case, gyrators
and a single resistor). In our case, each section is constructed with two elementary
(Givens) rotors which have time-varying rotation angles, and the network that is obtained
can, for example, be of the form depicted in figure 1.4. In this figure, the transfer function
T is from (block) input u; to output y; if the secondary input uy is made equal to zero
(the secondary output y, is not used). The structural factorization is the topic of chapter
9.

An application of the embedding problem in an operator or linear algebra context is the
(Cholesky or spectral) factorization of a positive definite operator €2 into factors Q = W*W,
where W is an upper operator. The transition to the embedding problem is obtained by a
Cayley transformation, which transforms €2 > 0 to an upper strictly contractive operator
T: a scattering operator. From the orthogonal embedding X, a factor W can be derived
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via a few straightforward manipulations. This subsumes the generalized Schur method
[7] that has also been used for this application, and in which an embedding ¥ is obtained
in cascaded form. However, the Schur method is order recursive, and can indeed give
rise to a fairly large order, whereas the embedding procedure in this chapter can be used
to obtain an embedding X and a factor W of minimal order. This connection is described
in chapter 8.

The time-invariant orthogonal embedding problem in its simplest form acts on transfer
functions 7(z) and uses a spectral factorization: with

- h(@) _ 8@)
I(z) = D)’ T.(2)= m (7.1)
where f, g, h are polynomials of finite degree, it is derived that g(z) (and hence T.(z)) can
be determined from a spectral factorization of

£(2)8+(2) = AD)f+(2) — h(Dh+(2)

where f.(z) = fiz"!) [8]. The solution of the spectral factorization problem involves finding
the zeros of g(z)g«(z). Note that in equation (7.1) we use the knowledge that 7. can have
the same poles as 7.

Polynomial spectral factorization for multi-input/multi-output systems is rather compli-
cated, see e.g., [1]. A solution strategy that is easier to handle (and that carries over to
the time-varying case too) is obtained when the problem is cast into a state space context.
Such an approach is discussed in [6] for continuous-time systems, and implies what is
called the bounded real lemma. This lemma states that 7(s) is contractive if and only if
certain conditions on the state-space matrices are fulfilled. If this is the case, the condi-
tions are such that they imply a realization for T.(s) such that [T(s) T.(s)] is lossless and
has the same A and C matrices as the realization of 7. To determine this solution, a Riccati
equation has to be solved. The hounded real lemma can without much effort be stated in
the discrete-time context by means of a bilinear transformation [9]. A derivation based on
the conservation of energy appears in [10], and a proof independent of a continuous-time
equivalent is given in [11]. A Riccati equation which describes the problem is stated
in [12], which forms the basis of a cascade factorization. Control applications of the
hounded real lemma include H..-optimal state regulation and state estimation [13].

In the present chapter, the aim is to extend the above classical time-invariant theory to the
time-varying context. To introduce the strategy for solving the time-varying embedding
problem in a state-space context, consider the following simplified problem. Let T be a
single-input, single-output system, with state-space realization T of constant dimensions.
The objective is to determine a lossless embedding system Z, having two inputs and two



238 Orthogonal Embedding

outputs, and with state-space realization X of the form

R A C|G [R)™
T = 1 B D |Dp 1 ,
1 B, Dy Dp I

(all entries in this expression are diagonals). X contains the given realization T, suitably
state-space transformed by some boundedly invertible R = diag(R;), which does not alter
the input-output characteristics, hence Xy, is equal to the given 7. X is extended by matrix
operators B,, C, D2y, D13, Dy corresponding to the second input and output. Because
T is inner, it has a unitary realization X (theorem 4.5). Conversely, if Z is unitary, then
the corresponding transfer operator X is inner (if £4 < 1, anyway; see theorem 4.6), and
hence a way to solve the embedding problem using state-space methods is to require X
to be unitary.

The embedding problem is thus reduced to finding the state transformation R, and the
embedding matrices B; etc., such that ¥ is unitary. The problem can be split into two
parts:

1. Determine R, B,, D, to make the columns of X, isometric and orthogonal to each

other, with
R A C 1
()
5, = I B D [ [R] 1] .
1 Bz D21

That is, (£,)'Z, = 1.

2. Add one orthonormal column X, to X, to make E=[%, X,] unitary. The realiza-
tion X that is obtained consists of a diagonal sequence of square finite-dimensional
matrices, hence this can always be done.

The key step in the above construction is step 1. With the proper attention as to the
dimensions of the embedding, it is always possible to find solutions to step 2 since in
general, X, is just the orthogonal complement of the columns of Z,.

The orthonormality conditions of step 1 translate to a set of equations whose solution
depends at each time instant { on the (strict) positivity of a matrix M; = RR;, which, as
we will show, can be computed recursively from the given state-space realization as

My = A;‘M,'A,' + B:B, + (7.2)
[A;M.C; + B!D;] (I-D;D;— C;MC))™! [D;Bi+ C;MiA|] . '

This recursion is again a Riccati-type recursion. The problem with such recursions is
the term (/- D}D; - C!M;C;), which can potentially become negative and cause M, to
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become negative (or indefinite) too. The main contribution of the theory given in the rest
of the chapter is to show that the recursion does not break down (i.e., all M; are uniformly
positive, hence we can tind a sequence of invertible state-space transformations R;), under
the condition that T is strictly contractive and the given realization for T is uniformly
controllable. Subsequently, we show in section 7.5 that a slightly altered recursion also
does not break down if T is contractive (but not necessarily in the strict sense), but then
we have to impose more requirements on T, for example that it be uniformly observable.
These requirements are sufficient but possibly too restrictive.

Preliminary relations

We recall some notations and definitions from chapter 2 and 3, and define some additional
ones as well. Let T € /. We will use the following partial transfer operators on a restricted
domain and range (¢f. equation (3.22)):

HT N £22“ - 1/2 , uHr= P(uT)
KT . ,ng—l — ﬁle y uKy = Pﬁzz—l(un
VT . [:22—1 - T)g R uVT = Po(uT).

For ue £,Z7' we have that uT = uKr+ uHr. Vy is a further restriction of Hy.

We have already used the fact that Hr is a left D-invariant operator, and hence has
‘snapshots’ H; (equation (2.44)), which can be viewed as a sequence of time-varying
matrices that would have a Hankel structure in the time-invariant case. In the same way,
matrix representations are obtained for K; and vector representations for V;:

[ Ty T T2
Tiai Tigim
Hi = | T,
T Ty, 0
T, Tini1 Tiai2
Vi= | T, Ki= | T3y Tz Tisia

Again because Hy, Ky and Vy are D invariant, they also have diagonal expansions ﬁT, I?T
and VT. The general definition of this notion appeared in (2.43), but as in chapter 3, it can
be specialized because the domains and ranges are one-sided rather than .¥;. Define the
diagonal expansions of signals u in £,Z7! and y in 4, as in equations (3.25) and (3.26):

u = Z‘lu[_1]+Z‘2u[_2]+-.. = u}j}fﬁ +uEt§?Z—2+...

=~ (+1) (+2)
i uly iy oo € GD).
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[Ty 0
To-1 T2
Ko= T3 ,T32T 33

A n

T = NN [T 0T-11T-12 - T o
""""""""""""" \ = T20T-21 T22 T-z‘o
~ T Ho= | T30T31 T32 Vo=117,
= Ty i '
T[o].

Figure 7.2. K;, H; and V; are submatrices of 7.

y = yo+Zy+Zyg+o = Yo N 2y B+
o= o Ay v | € BD).
Induced by this isomorphy, the definitions
y=uHr € U & yo= ﬁ'fzr
yo=uKr € L7 o y, = ikr
D=uVT (S 'Dz = D = ITVr.
lead to i b 2
T ﬁg}l) 7<[3l
- Ty Ty,
By =
T3
[ (1.3)
[ Ty ﬁ&:; LD 0
~ T . T
Vr = Kr = ]1) +2) +3)
g Ti3) T 7}151 7%11 7{[01

As discussed in chapter 3, the connection of Hy with H; is obtained by selecting the i-th
entry of each diagonal in Hy and constructing a matrix from it. Similarly, the sequence
K; forms a matrix representation of the operator Kr and likewise V; is the vector repre-
sentation of the operator Vy, obtained by selecting the i-th entry of each diagonal in the
representation of Vr.

In chapter 3, we frequently made use of the fact that Hr and H; have decompositions
Hr = CO and H; = C;O;. C and O are the controllability and observability operators as
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defined in (3.28):

B
BAAM
C:= | BOA@AD 0 = [C ACY AATDCED ]

Since VT is the first column of ﬁr, we have that V’T has a decomposition

Vr=C-C. (7.4)
Finally, it is clear from equation (7.3) that I?T satisfies the relation
-~ Tog O
K(T'l) = N ~ . (7.5)
Vr Kr
This relation is seen to correspond to a recursive relation: it specifies that
T; 00...
K =
Vi K;

for all time instants i. K; ‘grows’ when i increases as the history of the system grows —
in particular, K., is just a mirrored version of T.

7.2 STRICTLY CONTRACTIVE SYSTEMS

As indicated in the introduction, an orthogonal embedding of a transfer operator T e U/ is
possible only if 7 is at least contractive. In this section, we explore the consequences of
assuming the strict contractivity of 7, to determine sufficient conditions for an embedding
to exist if T is strictly contractive. This is done in two steps. Lemma 7.3 derives a general
relation in terms of VT and I?T which is a direct consequence of the strict contractivity
of T. Theorem 7.4 uses this relation to show that some quantity M € D, defined by
M=C( —I?TI?*T)‘IC, is strictly positive definite, and gives a recursion for this M in terms
of state-space quantities of 7. The point is that this recursion is precisely the same as the
recursion for M in the embedding problem (viz. equation (7.2)). This proves the essential
step in the embedding problem for strictly contractive operators (section 7.3). The case
where T is contractive, but not necessarily strictly contractive, is deferred to section 7.5.

Contractivity of a transfer operator
Recall proposition 2.3 on the positivity, respectively the strict positivity of a Hermitian
operator A € X';

A20 o {uAu}20, (Alue dy)
A>0 & Fe>0: {uAu}2e{uu}, @lue ).
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Let T be a transfer operator in /. We have defined, in section 2.3, to call T contractive,
respectively strictly contractive, if

-1T" 20, resp. I-TT" > 0.

In the latter case, I—TT" is boundedly invertible. In this section, our focus is on the case
that T is strictly contractive. The more general case is treated in section 7.5. [-TT" > 0
implies that /— T*T > 0, because of the identity / + T*(/—TT*)'T=(I-T'T)".

LEMMA 7.1.  If T is strictly contractive, then K and Kr are strictly contractive.

PROOF Let u € £,Z7!, and y = uKr. Since T is strictly contractive, we have from the
above definition that

Po(uu™) — Po(yy") P [u(I- KiK7) ')
P [u(I-TT")u’)

ePo(uu™) (some £>0).

vV IV Il

Since, by definition of the diagonal expansion, Po(uu™) = it and Po(yy*) = ¥, and by
definition of K7, ¥ = #iKr, we obtain that

F(I-KKDia = i -y
= Po(uu”)—Po(yy")
> ePo(uw®) = ean’ (some £>0),

which shows that we also have that IZT is strictly contractive: I— I?;rl?} >0, I—I?}I?T > 0.
a

The fact that K7 is strictly contractive implies in turn that all K; are strictly contractive.

Strict contractivity in terms of a state-space realization

The purpose of this section is to find conditions in state-space quantities on the contrac-
tivity of a transfer operator 7. To this end, we use Kr rather than 7, and in particular
the fact that I — K7K7 is boundedly invertible and strictly positive when T is contractive.
Since KV can be specified in terms of Kr and an extra column of diagonals (equation
(7.5)), it is possible to derive a (recursive) formula for (/ — KTKT)(‘ in terms of KT and
the newly introduced column. The following lemma is standard and will be instrumental.

LEMMA 7.2. (SCHUR COMPLEMENTS/INVERSION FORMULA) Let X be a block-partitioned

A B
X_[B c]'

operator,
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where A, B and C are bounded operators on Hilbert spaces, and let A and C be self-adjoint.
Then
Iy ¢»0

x>0 < { (2) A-B'C B> 0.

If X > 0, then

A B I 0][(A=-BCiBY' 0 I -BCl
B C - | -C'B 1 0 c! 0 I
= [8 Cgl]+ -C’IIB] (A-BC'BY'[I -BC].

PROOF X > 0 implies that C > 0. If C > 0, then C~! exists, and

A B _[I BC'][A-BC'B 1
B C |~ I cl|lCB 1

Because the first and third factors in this decomposition are invertible,

[A B [A—B*C“B ]
C

>0

BC]>>0 P

o {(1) C>0

(2) A-B*C'B>0.

This proves the first part of the lemma. The second part is immediate from the above
factorization of X. m]

LEMMA 7.3.  Let be given a transfer operator T € U. If T is strictly contractive, then
1= Tio Ty = Vy (I~ KeKp)™ Vr > 0.

ProOOF Since T is strictly contractive, lemma 7.1 ensures that Ky and 12({ D are also strictly
contractive. Using equation (7.5), we have that

I-Tiy T - ViVr - ~Viky

I— KEDRED e oo (7.6)
T T —K*TVT I—K} .

Now apply lemma 7.2. It is seen that this expression is positive definite if and only if

() I-Kkr>0

2) 1=TT0— ViVr — Vi Ke(I - KiKp) ™ KpVr > 0.
The first condition is satisfied because T is strictly contractive. The second condition is
equal to the result, because of the equality / + Kr(I — K;K7)™ K5 = (I - KrK7)™L. 0
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THEOREM 7.4. Let T € U be a locally finite transfer operator with state realization
{A, B, C, D}, where A € D(B, B™V) is strictly stable (€4 < 1). If T is strictly contractive,
then M € D(B, B), defined by

M=cCU-KK)'c, (1.7
satisfies the relations [ - D*D - C*"MC > 0, and
M) = A'MA+B'B + [A'MC+B'D| (I-D'D-C'MC)™ [D"B+ C'MA] .
If in addition the state-space realization is uniformly controllable, then M >> 0.

PROOF M is well defined if T is strictly contractive, which also implies that M = 0. If in
addition the state-space realization is uniformly controllable, C*C > 0, then M >> 0 and
hence M is invertible.

With the definition of M and using the fact that D = To; and Vr = C - C (equation (7.4)),
the positivity of /- D*D - C*MC follows directly from lemma 7.3.

The recursive relation for M is obtained hy an application of Schur’s inversion formula
(lemma 7.2) to equation (7.6), which gives

~ w1yt 0
_gevepen]T o
1 REREY) [ (- B3Ry ] *
1 27 TR R
Rk R Vr] &2 I ViKr(I-K7Kp)™!|
with o o
O = [-TpyTio - ViVr— ViKe(I - KiKr) "' K3 Vr
= I-D'D-C"MC.
The invertibility of ®2 was already shown. Inserting this expression into the definition of
M©Y, and using the relations that have been summarized above, M©D is obtained as

M = v [k ,g(r-n']’l o
> > * > - *
cevr [1+ eV (1-REDRED) R ] ey

* * % B * * 7% 7:10] - .
(B Ac][CA] + [B A(,][VT KT]

0 , o
| ([ (- KKy ] * [(I‘E;ET)-IE}VT] &2 (1 ViK(I-KiK7) 11) '

1 _1[B
Vr Kr CA
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B'B+A'C'CA + A CKr(U-KKr)y ' KpCcA +

+ (B'D+A'C" [I+ Kr (I-K3K7) ' K] ¢C) - @72
A(D*B+ C*C" [1+ Ky (I-K7Kr) ™ K] CA)

B'B+A'MA + (A"MC+B'D)®2(D'B+ C*MA).

0

The above theorem gives sufficient conditions for the existence of an orthogonal embed-
ding for the case of strictly contractive operators (theorem 7.5): M plays a crucial role in
the construction of such an embedding. It also furnishes part of the proof of the bounded
real lemma, which appears in section 7.5.

7.3 STRICTLY CONTRACTIVE SYSTEMS

In this section, we solve the embedding problem as defined in the introduction: given a
bounded causal transfer operator of a locally finite system 7, the objective is to determine
a lossless system Z such that X;; = 7. The strategy is as outlined in the introduction:
the prime quantity to be determined is a state transformation operator R such that the
transformed realization of 7T is part of the realization of X. We consider the case where T’
is strictly contractive in this section. The more general case appears at the end of section
7.5 (theorem 7.15).

THEOREM 7.5. (EMBEDDING THEOREM, 1) Let T € U (M), N}) be a locally finite trans-
fer operator with state realization T = {A, B, C, D} such that A € D(B, B™V) is strictly
stable: 4 < L. If T is strictly contractive and T is uniformly controllable, then the or-
thogonal embedding problem has a solution T € U(M | X My, N1 X A3) such that T is
inner and Xy = T. The newly introduced dimension sequences of T are specified by

#Ma) = #M),
#(N2) #(B) — #(BD) + #(My).

2 has a unitary realization £ = {Agy, By, Cy, Dy} where Ay is state equivalent to A by a
boundedly invertible state transformation.

PROOF The proof is by construction, and follows the outline in two steps as presented in
section 7.1, but suitably adapted for the general case. Let X be of the form

R A C Cy R
Y = 1 B D | Dy 1
1 By, Dy Dn 1 (7:8)

(za zb]
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in which R € D(B, B) is a boundedly invertible state transformation, and R, B2, Dy, D3y,
Dy, are to be determined such that X is unitary: £'EX=/1, ZX = I.

The first step is to determine R, B, and Dy, such that (£,)'E, = I, where

R A C
(1)
X = I B D [ K / ] .
I B, Dy
Putting M = R*R, the orthogonality conditions become
A'MA+B'B+ BB, = M©D
CMC+D'D+D5 Dy = 1 (7.9)
A‘MC+B‘D+B;D21 = 0.

The previous section has provided the material necessary to prove that there is a strictly
positive M such that the above equations have a solution, for the case where T is strictly
contractive.

Step 1. If T is strictly contractive and T is uniformly controllable, then a solution of the
equations (7.9) is given by M in equation (7.7). M satisfies the recursion

M) = A*MA+B'B +

+ [A'MC+B'D|(I-D'D-C*MCy™ [D*B+ C"MA] . (7.10)

and is strictly positive definite. B, € DN, BTV) and Dy € D(N), M) are given by

{ Dy (I-D*D-C"M()1 2.11)
B, = —(I-D'D-C"MC): [D'B+ C'MA] ’

Proof of step 1. PutM = C*(I- I?TI?‘T‘)‘IC. Then theorem 7.4 ensures that M > O,
I-D'D—-CMC > 0, and that M satisfies (7.10). Hence D,; and B, as defined in
equations (7.11) are well defined. It remains to verify that this M, D,; and By satisfy
equations (7.9). But this is immediate.

Step 2. Augment T, with X, such that the resulting X is a diagonal operator whose
diagonal entries are square matrices. This is always possible, and can be done indepen-
dently for each time instant. The index sequence of the number of columns that must be
added is equal to

#(N) = #(B) - #(BV) + #(M). (7.12)
Proof of step 2. The extension of a rectangular isometric matrix to a unitary matrix by
adding columns is a standard linear algebra procedure that always has a solution. The
‘target size’ of X is given by [#(B) + #(M ) + #(N1)], and the number of columns of
X, is [#(B(“))+#(/\/1)], hence the number of columns to be added is equal to #(N>)
as given in (7.12). This number is non-negative because the columns of X, are linearly
independent. a
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7.4 NUMERICAL ISSUES

Initial point for the recursion

Suppose that we are given a realization of a system 7 that meets the requirements of the
embedding theorem. How do we go about determining a realization of £? The embedding
theorem is constructive, and X; (the realization of X at time instant {) can be determined
from knowledge of T; and both M; and M,,,. In addition, equation (7.10) can be used to
determine M;,; from M;:

M = AIMA;+B}B; + [AIMC; + B D;] (I-D;D;— CiM;C))™ [D;B; + C!MiA] , (7.13)

and this is the only recursive aspect of the procedure. The single missing item is the
initial point of this recursion: the value of M _., or rather My, where ko is the point in
time at which the solution of the embedding problem starts to be of interest.

It is possible to find an initial value for the recursion for certain specific time-varying
systems. The first (and simplest) class is the case where the state dimension of 7 is
zero at a certain point in time ky. Consider, for example, a finite n X n upper triangular
(block)-matrix 7, then the input space sequence is

M= XDXDX[C]XC x ... XCXDXDX - -
N e’

n

and output space sequence AN; = M;. A controllable realization of T obviously has a
state-space sequence B also with B; = @ for (i < 0,i 2 n), and hence an initial value of
the recursion for M is My =[-1.

A second example is the case where T is time invariant before a certain point in time (i = 0
say). T has a time-invariant realization {q, b, ¢, d} for i <0, and there is a time-invariant
solution for M also: M) = M; =2 m (i <0). The recursion (7.13) becomes an eigenvalue
(Riccati) equation

m=a'ma+b’b + [a'mc+bd](I-d'd—c'mey [db+c"'ma] . (7.14)

This equation has exact solutions m which can be obtained in a number of ways: ei-
ther analytically from the eigenvectors of a corresponding (Hamiltonian) matrix (¢f [61),
or numerically by using a Newton-Raphson iteration. An overview of these and other
methods can be found in the collection [14]. It is well known that the solution via a
Hamiltonian equation usually gives more than one solution that satisfies the Riccati equa-
tion; the solution M =C~(J —I?TI?})“C corresponds to the ‘stable’ solution (corresponding
to eigenvalues of the Hamiltonian matrix that are smaller than 1). The stable solution is
also the only solution of the Riccati equation that is stable to a small perturbation when
it is plugged in the Riccati recursion (7.13). In fact, one way to solve (7.14) is to use
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the recursion (7.13) for an initial value of M_. = 0, and to iterate till convergence. It
is known that this occurs if the eigenvalues of a are strictly smaller than 1, and that the
recursion will monotonically converge to the ‘stable’ solution of the Riccati equation.

We can do the same for time-varying systems, which will then apply to other specitic
sitnations as well, such as periodic systems. The claim is that if M = O is taken as the
initial value of the recursion (7.13) which gives a sequence M/, then M — M; as i — oo,
An elegant proof is possible, not based on numerical properties of the Riccati equation but
rather on the knowledge that M = C*(1— I?TI?;)C is the solution of the recursion that we
are looking. Details of this proof are however cumbersome because many time indices
will appear, but we give an outline of it below. (A formal proof of convergence of a
related Riccati equation appears in section 8.4.

PROPOSITION 7.6.  Let {A, B, C, D} be a strictly stable realization (€4 < 1) of a locally
finite strictly contractive transfer operator T € U. Let M; = C!(I - K;K})C; be the exact
solution of the Riccati equation (7.13), and let M! be the solution, obtained by starting
the recursion with M| = 0. Then M| — M; for i — oo (strong convergence).

PROOF (outline). The initial value M{ = 0 is the exact initial point of a recursion for M’
of a system T’ which is related to T: T, = 0 for i < 0, and Tj; = T}; for i 2 0. The sequence

M; corresponds to T and is at each point i in time given by M; = C/(/ - K;K?)'C;. For
i >0, we can define a partitioning of K; and C; as

K' 0 . c!

where K/ is an (ix i) matrix, C/ is equal to the first i rows of C;,
AP = AgAy - Ap,

and HY is related to the Hankel operator Hy, but has a finite number (i) of columns, which
are in reversed order in comparison with Hy. In terms of these quantities, M’ is given at
time i > 0 by M/ = C/*(I- K!K/*)"C/. Using this decomposition of X;, and a variant of
Schur’s inversion lemma (lemma 7.2), one can derive that, for i >0,

(U-KiK!)"

(I-KK;)! +

0
—K/'K"YIK! *
+ [(1 K; Kl ; K; (H(r)) ] &2 [H(’)Kl/*(I—K!KII*)_I 1]

where
O = I-KoKy— Hy(I-K’K!)\(H)" > 0
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In: {T} (a controllable realization of T, ||T]| < 1)
Out:  {%;} (a unitary realization of embedding X)
Ry =[]
fork=1,---,n
[ R A Gy
Tx = I By Dy
L I 0 I
ok = Tk, O such that T, (22)=T.,(1,2)=T,,(2,1)=0
Riep O
ok = 0 0
| Bok D2y
i Rk Ak Ck
g = 1 By Dy [ R ! }
L ! Byx Do
% = [Eu zik]
end )

Algorithm 7.1. The embedding algorithm for finite n X n matrices.

and hence its inverse is bounded. Inserting the expression for C; and defining Hj = CoO}
yields

M= M{+[C/" U~ KIK[ Y K(Op)" +(A71Y] ¢ 072C, [OfK] (- K{K['Y'¢! + A1)

An examination of the term O5K/*(I—K!K!*)™'C/ that is more detailed than we wish to
include at this point reveals that it consists of a summation of i terms, each of which has
a factor Al0-#=11 and A+L-=11 (for 0 < k < §). The stability condition £, < | implies that
£ > 0 exists such that, in the limit, products of the form A ¥#1 are hounded in norm by
(1 — &) which goes to O strongly and uniformly in k as n — e. Since @2 is bounded,
this equation gives M/ — M; as i — oo, o

“Square-root” solution of the Riccati equation

The embedding algorithm can be implemented along the lines of the proof of the embed-
ding theorem. However, as was the case with the solution of the inner-outer factorization
problem in chapter 4, the Riccati recursions on M; can be replaced by more efficient
algorithms that recursively compute the square root of M;, i.e., R;, instead of M; itself.
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These square-root algorithms have been known for a long time; see e.g., Morf [15] for
a list of pre-1975 references. The square-root algorithm is given in algorithm 7.1. The
algorithm acts on data known at the k-th step: the state matrices Ak, Bk, Cx, Dk, and the
state transformation R, obtained at the previous step. This data is collected in a matrix
Tg’kl

A C
T, = I B D (7.15)
1 0 I

The key of the algorithm is the construction of a J-unitary operator © € D 33 satisfying
©*JO = J, where

O O O I
O=| O 06Oy Oy J= 1 ,
O3 O O -/

such that certain entries of T, := ©T, are zero. (We will be brief on the properties of J-
unitary operators at this point; more general J-unitary operators are the subject of chapter
5.) It turns out that, because © is J-unitarity, we have that T["JT, = T,JT.; writing
these equations out, it follows that the remaining non-zero entries of T ! are precisely the
unknowns RCY, B, and Dy;.

PROPOSITION 7.7. Let T € U be a strictly contractive operator, and let {A, B, C, D} be
a uniformly controllable realization of T. Define T, as in equation (7.15).

Then there is a J-unitary operator ® € D> such that T] := ©T, has zeros at the entries
(2,2), (1,2) and (2, 1). T/ is of the form

RD 0
T/ =0T,=| 0 0
B, Dy

where M = R*R, B,, D, satisfy the embedding equations (7.9).

PROOF Assume first that such an operator © exists. A direct computation reveals that
(with M = R*R)
TJT = A'"MA+B'B A'MC+B'D
| (A*'MC+B'D) —-(I-D'D-C"MC)
T"JT' = [ M) - BB,  -DjiBy ]
—B3D»; —D3\Dy;
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Since © is J-unitary, we must have T*JT = T*'JT’, which produces the relations (7.9):

A'MA+ BB + BB, = MtD
C*MC+ D*D+D5]D21 = I
A'MC+B'D+BiDyy, = 0

i.e., the equations that constituted the Riccati equations. It remains to verify the existence
of a J-unitary © such that T/ has zeros at the entries (2,2), (1,2) and (2, 1). Choose ©
of the form
e} e, o e, 0 64 I 0 0
0= 63@2@1 = @%1 @%2 0 0 { 0 0 83122 @53
0 0 I Q3 0 e 0 o, e,

where the submatrix {©}}?_, is unitary, while the submatrices {©}} and {©}} are J-

ij=1
unitary with with signature matrix J; = [} ]. The submatrices are determined by the
requirements
e, e, ][Dp] _ | 0
o, e, || 1] = |u-pD
03, o RC ] _ [ 0
@, oL || u-pp2 | T | u-DD-Cc'MOP
I 0 - -
e, o, | [en 0 o 0 el RA - *
el o, 0 1 0 2 || B ol
O @32 - -

Hence necessary requirements are / —D*D > 0 and I - D*D — C"MC 2 0, respectively.
In the present case, because T is strictly contractive, we know that /— DD > 0 and
I-D'D—C*MC > 0, and these conditions ensure that the J-unitary submatrices {© }J
and { @?j are well defined, and for example, of the form of a Halmos extension [16]

[ u-kg 0 I K
H(K) = [ 0 (I-K*Ky2 K I
The unitary submatrix {©]} is always well defined. a

It is also a standard technique to factor © even further down into elementary (J)-unitary
operations that each act on only two scalar entries of T, and zero one of them by applying
an elementary J-unitary rotation of the form

1|1 . *

9=—[ s]’ ce+s5s=1.

ci s 1
With B, and D, known, it is conjectured that it is not really necessary to apply the state
transformation by R and to determine the orthogonal complement of X, if, in the end,
only a cascade factorization of T is required, much as in [17]. Cascade factorizations are
the subject of chapter 9.
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7.5 THE BOUNDARY CASE

We now derive an equivalent of theorem 7.4 and 7.5 for the case where T is contractive
but not necessarily strictly contractive: /—7T* > 0. While the mathematical motivation is
more complicated now, the resulting theorem is only shghtly altered. In the present case,
K7 is not strictly contractive, so that, instead of (/- KTK* )1, we have to use the pseudo-
inverse of (I — K"‘TKT) Mathematical complications arise because the range of (/— K KT)
is not necessarily closed, so that its pseudo-inverse is defined only on a dense domain,
and is possibly unbounded. However, the application of an unbounded pseudo-inverse
can yield a bounded result if its operand is in the domain on which the pseudo-inverse is
bounded, and the main thrust of this section is to make sure that we are in this situation
and hence obtain results that are meaningful (i.e., bounded).

Schur inversion formulas for positive semi-definite operators

Let be given some operator A on a Hilbert space H. For better correspondence with
results from other papers, as well as for historical reasons, we work in this section with
operators written from the right to the left, and thus denote the ‘left’ range of A as
R(A) = {Ax : x € H}, and its null space as N'(A) = {x : Ax = 0}, which is a closed
subspace. An orthogonal complement is denoted by L. The operator pseudo-inverse of A
is defined as follows (following Beutler and Root [181).

DEFINITION 7.8.  Let H be a Hilbert space, and A be a bounded linear operator defined
on M. The linear operator A' : H — H is a pseudo-inverse of A if and only if it is defined
on R(A) ® R(A)! (which is dense in H) and satisfies the following conditions:

()  N@AH = RA?
2) RAN) = N@AY (=R@A%))
(3) AAtx = x  for all x € R(A).

It is proven in [18] that (AD) = A, (AT)* = (A", (A"A)f = ATA™, and that At is bounded
if and only if R(A) is closed.

We apply the following result by Douglas [19] on the majorization of operators on Hilbert
spaces:

THEOREM 7.9. Let A and B be bounded operators on a Hilbert space H. The following
are equivalent:

A2BB* (some 2>0),
R(B),
BC for some bounded operator C on 'H .

(hH AA*
2 R@A)
3) A

N iIA
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If (1)-(3) are valid, then a unique operator C exists such that

(a) || C inf{ # : AA* <uBB"},
b NA = N(©),
() R < R(BY).

The ‘unique operator C’ in this theorem is in fact C = BYA, since also B' is uniquely
defined and BYA qualifies for C. Consequently, if AA* < BB*, then this C satisfies ||C|| < 1.

The lemma on Schur complements, and on the existence of a pseudo-inverse of a block
partitioned operator which is based on Schur complements is more complicated now,
because a range condition enters. (We show that in our case the range condition is
automatically fulfilled.) The following lemmas replace lemma 7.2 and are suitable for our

purpose.

LEMMA 7.10.  With ‘H, and H, Hilbert spaces, let A : Hy — Hy, B : H; — Ha,
C : Ha — Hy be bounded operators, and let A and C be self-adjoint. Consider the block
operator X : Hi xHy — Hy x Ha,

Then X 20 if and only if

(D) c =2 0,
(2) R(B) < R(CY?); or, equivalently, By = C?B is bounded,
3) A-BB > 0.

LEMMA 7.11. Let A, B, C, X be as in lemma 7.10. Let X = 0 and write B, = C'”B.
Define the operator W*:

[ a-BB)»” I -B 11
W I I c

Then Wt is well defined and bounded on R(XV?). If v is some bounded operator with
range in R(XY2), and if
v o= Xy, vy, = Why

then vy and v, are bounded, and vivi = vyvs.

The proof of both lemmas appears as an appendix. Note that WX, but rather W# =
UX2 on R(XY?), where U is some Hilbert space isometry such that U*U = I. The point
is that W* is specified in terms of A, B, C, whereas it is hard to do so for X2,
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Contractivity in terms of a state-space realization

We are now ready to derive a solution to the embedding problem along the lines of section

7.2 for the case where T is contractive, but not necessarily strictly contractive. Recall the

definition of Hy and K7 of section 7.1.

LEMMA 7.12.  Let T be a system transfer operator in . If T is contractive, then
[-KrKy > HrHy 2 0 (7.16)

and hence Ky and Kr are contractive.

PROOF Let u € £,Z7', and put y = uT = uKy + uHy. The contractivity of T implies

Po(uu™)=Po(yy") 2 0
& Po(u[l-TTw) 2 0
& Po(ull-KiKy—HrHpu') 2 0
(= Po(u[I—KTK;—]M*) = Po(uHTH}u*) > 0

Hence I— K7K; >0 on £,Z7). Kr represents Ky and is hence also contractive. 0

COROLLARY 7.13. If Hy = CQ is a decompgsig’on of Hr such that OO* > 0 (T is
uniformly observable), then R(K3C) < R(I— K3K7)V? and hence C; defined by

C=(U-KRpP K C (7.17)
is bounded.
PROOF  Apply theorem 7.9 to (7.16). From I - KrK} 2 HyH7 it follows that
Hr = (- K7Kp)'"N,

for some operator N with ||N]| < 1. Taking diagonal expansions, we have that Hr =
(I - KrK3)2N, and with Hr = CO such that OO" >> 0, we obtain

K¢ = K;co0(00%)!
= K000
= KiI-KKpVANO*(00")!
= (I-KiKp“2 G
where C; = K3N - O*(00O*)™! is bounded. o

For C; defined in (7.17), define the operator M € D by
M = C'C + C[(C. (7.18)
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M is bounded, and M > 0if C*C > 0, i.e., if the realization is uniformly controllable. This
definition of M is compatible with the definition of M in (7.7) if T8 strictly contractive, viz.
M = C*(I-KrK})™ ¢, because then C;Cy = C* Kr(I-KpKr) K3 C, and I+ K (I-K3Kr) ' K =
1- I?TI?})‘I. The latter relation is however not necessarily valid if a pseudo-inverse is
used.

The following theorem subsumes theorem 7.4.

THEOREM 7.14.  LetT € I be a system transfer operator with a strictly stable state-space
realization {A, B, C,D}. If T is contractive and the realization is uniformly observable,
then M defined by

L = (I-KKp)\”»2
G = L'KC (7.19)

M = CC+(CiC
is bounded and satisfies the relation
M = A'MA+B'B + ([A"MC+ B'D]®') - (®'[D'B + C'MA]) (7.20)

with ® = (I-D*D - C*"MC)Y2. If, in addition, the state-space realization is uniformly
controllable (hence uniformly minimal), then M > Q.

PROOF The proof uses equations (7.4), (7.5):
gen = | T - | B Vr=CC -
Ky _[VT Kr]’ C [CA}, Vr=CC, Ty =D.
To find an expression for MED, put

S I

~K3Vy 1- KKy

According to lemma 7.12, X > 0. Lemma 7.10 then implies that R(K;Vr) < R(I-K3Kr)\?
so that (/— K}KT)‘L’2 K7Vr = C1C is bounded. (This result would also follow from corollary
7.13 because R(K7Vr) = R(K;CC) « R(K;C).) Let

® 172

[1- T3y Tio - V3 Vr - C'CiCy clll
[I-D"D - C(C*C + C;C)C]
(I-D'D-CMC)”

Hence the third item of lemma 7.10 implies that /-D*D - C*"MC 2 0. Put

Ol 1 cer 1 o
! I (I - KK

_ S 01D _ =) B _ DB+ C'C*CA
R FA N

wh
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Then lemma 7.11 yields that the operator v; = X2y = C{"" is bounded, and v, = W#v is
such that viv; = vjv,. Evaluation of v, gives

=Wty = | ¥ rce s o ] [ D‘BtC*C*CA]
! I (- Ry Rr)i” KicA
(ot 1 cc [ pB+ccea ]
I 1 CiA
_ [ ®{(D'B+ C'MA)
- CiA
Hence

[cre)) Y = viv = vivs =
= A'C{CIA + ([B'D + A"MC)®?) - (DI[D*B + C'MA])

and with €0V = [ 2] we finally obtain

MD = e ]+ [cre]
B'B+A'C'CA+A'C;CiA + ([B'D + A"MC1®?) - (®1[D*B + C*'MA])
A'MA+B'B+ ([B'D + A"MC]®1) - (DI[D*B + C"MA]) .

0

The result of this section is thus a relatively simple extension of theorem 7.4: in the case
that T is not strictly contractive, we can use the recursion

P (I-D*'D-C*MC)\2
MY = A'MA+B'B + [A'MC+B'D| @' - @' [D'B+ C"MA|

although we required the given realization to be uniformly minimal this time to have
M > 0. This condition is sufficient, but too strong (for time-invariant systems, the usual
condition is that the realization should be ‘stabilizable’), which is a bit worrying because
we know from chapter 3 that not every time-varying system admits a uniformly minimal
realization, not even if it has a finite state dimension. (The condition is that the operator
must have closed state spaces M and Mo, i.e., the range of Hr must be closed. See
proposition 3.13.) The recursion for M is very close to (and encompasses) the expression
that we have obtained before in the strictly contractive case. Note that we know only that
&t (D*B+C* MA) is bounded, but not necessarily ®®T(D*B+C*MA): we have to evaluate
&t (D*B + C*MA), and then square this expression in order to get a correct answer.

With the above theorem, an extension of the step 1. of the embedding theorem 7.5, to
include contractive systems that need not be strictly contractive, is straightforward. The
results are the same.
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THEOREM 7.15. (EMBEDDING THEOREM, II) LetT € U( M, N1) be alocally finite trans-
fer operator with state realization T = {A, B, C, D} such that A € D(B, BV) is strictly
stable: £, < 1. If T is strictly contractive and T is uniformly controllable or if T is contrac-
tive and T is both uniformly controllable and uniformly observable, then the orthogonal
embedding problem has a solution T € U(M | X My, N1 X N2) such that T is inner and
211 =T. The dimension sequences of X are

#My) = #N),
#(N2) #(B) = #(BY) + #(M,).

2 has a unitary realization £ = {As, By, Cs, Dy} where Ay is state equivalent to A by a
boundedly invertible state transformation R.

PROOF The proof is the same as the proof of theorem 7.5, except that step 1. is now
reformulated as follows:
A solution to step 1. of the embedding procedure (theorem 7.5, equation (7.9)) is given
by M in (7.19). M satisfies the recursion

M =A"MA+B'B + ([A'MC+ B*D)®') - (®I[D*B + C'MA)) .

with @ = (1 -D*D - C*MC)V2, A bounded solution M exists under the conditions [T
is contractive] and [T is uniformly observable] and is strictly positive definite if [T is
uniformly controllable]. B, € DN, BEY) and D,; € D(N;, V)) are determined as

Dy = @
B, -®t [D*B + C'MA|

The proof of step 1. is as before, but now uses theorem 7.14. o

Bounded real lemma

The embedding problem is intimately connected to the bounded real lemma [6, 11] which
is of some interest in system and control theory. For discrete time systems, it can be
formulated as follows.

THEOREM 7.16. (BOUNDED REAL LEMMA) Let T € U (M, N1) be a bounded causal
locally finite transfer operator, with state-space realization T = {A, B, C, D}. Suppose
A € D(B, BY) is strictly stable: £4 < 1, and that T is uniformly controllable.

(i) If T is uniformly observable, then T is contractive if and only if the set of equations

A'MA + B'B + BB, = MY
CMC + D'D + DyDy = [ (7.21)
A*MC + B'D + BEIJZI = 0
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has a solution M € D(B, B), B, € D(N,, BEY), Dyy € DN, N}) such that M > 0.

(i) If T is strictly contractive, then there exists a uniformly positive M and operators B ,,
Dy, such that the equations (7.21) are satisfied.

PROOF (i) and the ‘only if” part of (i) are corollaries of theorems 7.4 and 7.14, if we take M
as given by equation (7.19). M satisfies the recursion (7.20) with ® = (I-D *D-C*MCO)V2.
Taking B, € D(N), BTV) and Dy € DN, M) to be

Dy = @
B, ~®t [D'B + C"MA]

then it is immediately verified that equations (7.21) are satistied.

It remains to prove the ‘if’ part of (i), which is in fact a corollary to the embedding
theorem. With M, B, and D, satisfying (7.21), we can construct a lossless realization
T of the form (7.8), and it has been proven that a system X corresponding to a lossless
realization ¥ is inner. Because T is equal to X, and hence is a partial transfer of Z, it
must be contractive. 0

Appendix: derivation of lemmas 7.10 and 7.11

The contents of lemmas 7.10 and 7.11 are well known for tinite matrices (see e.g., [20, 21])
for generalized inverse formulas involving Schur complements). The matrix case is readily
extended to operators if the operators are assumed to have closed range. Without this con-
dition, complications arise because the pseudo-inverses that are involved are unbounded
operators.

We will repeatedly use theorem 7.9 in the following form. Let X > 0 be a bounded
operator on a Hilbert space H. If v is a bounded operator whose range is in R(X), then
v = Xv;, for some bounded v; € R(X*) for which we can take v| = Xty

A second fact that is used in the proof of lemma 7.11 is that X' X = Py.: the orthogonal
projector onto R(X*), with domain H [18].

Proof of lemma 7.10

Suppose first that X > 0; we show that (1), (2), (3) hold. It is immediate that A >0, C 20.

R(B) € R(C"?) is proven by showing that there exists A such that BB* < AC; Douglas’
theorem then implies the result. The proof is by contradiction. Suppose that there is not
such a A. Then there exists a sequence {x,:n€ N } such that

(BB Xp, Xn) = n(CXp,Xn) > 0. (7.22)
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where (-, -) denotes the inner product in 4. In particular, || B*x, || > 0 (all n). For any

u,, X 2 0 implies
A B Uy Up
[oelle][a)=

i.e., (Aly, Up)+ (B Xy, ty)+ (Buy, Xp) +(Cxp, X,) 2 0. Choose u, = —71;B'x,,. Using (7.22),
we obtain

A 2 I
Bl == +—3Bx5, %) 2 0.
( {n \/E+n} Xn, Xn) = 0

Butifn > || I+A||%, the term in braces is smaller than —~1/,/n, which gives a contradiction.
Hence R(B) < R(C?).

Define L = C2 (although L = L*, we will not use this), and let B, = L'B. Then B is
bounded, and B = LB with R(B;) < R(L*), which implies

N(B) > N(I). (7.23)

To prove A— B]B; 20, we will show that

A BL A B
= > >
X [LBI : ]_0 = [Bl f ] 20 (7.24)

from which A —B}B; > 0 follows directly by applying vectors of the form [_gl] a.
Thus for x € H1 @ H, take x of the form

= u c H,
X+ X2 NL)®RL)

where x; € ML) and x, € R(L*). Note that N(L) ® R(L*) is dense in H,. Then
N(B]) o N(L) implies Bix; = 0, while x, € R(L") implies that x, = L"x;, for some
bounded xj. Using these observations, it follows that

( A B u u )
B, I x1+x |’ x1+x

(Au, u)+ (Bixy, w) + (Bru, 1) + (x1, x1) + (Byxo, w) + (Bru, xp) + (X2, 1)
(Au, u) + (Bixz, ) + (Biu, x2) + (x2, x2)

(Au, u) + (B* x5, u) + (Bru, x3) + (x4, x5)

B u u

T

X

v i

Hence relation (7.24) holds on a dense subset of H; @ H,. By continuity, it holds
everywhere, and consequently A—B]B; 0.
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It remains to prove the reverse implication: X > 0 if the three conditions are satistied.
Because C > 0 a decomposition of C as C = LL" is defined. Using this decomposition
and B = LBy,

x| A BL)_[1 B ][A-BiB 1
Sl L | T L 1| B L |-

Under the stated conditions, the operator

_[1 I B |[ a-B;B)”?
o Y| K DI G I
is well defined, and is a factor of X such that X = WW”. Hence X > 0. 0

Proof of lemma 7.11

Let X >0 have a factorization X = WW”, then R(XY2) = R(W) (again by theorem 7.9). It
can be inferred from Beutler and Root [18] that

xt = wtwt = x¥2x12,
hence if R(v) c R(X2) = R(W), then v; and v, defined by

Vi X2y, Rv) c R(X'2)

voa = Wy, R(v) c R(W")

are bounded, and! viv; = v;v,.
Let L= C"2, B) = LB and put W as in (7.25), so that X = WW*. Define the operator W?

by
Wh = (A— BB I -B] 1
- 1 1] [ 11 ] [ Lt ] '

We prove that Wt = Wt on R(W). The result will be, for a hounded operator v with
R¥) € R(X2) = R(W), that Wiy = Wty, so that v := X2y and v, := Wty are bounded
and satisfy viv) = vjn,.
For any v with range in R(W) we have that the operator v; = W'v is bounded and such
that v = Wv,. Hence Wiv = WiWy, = WIWy, = Wiy, so that Wt = Wt on R(W) if and
only if

WiW = WIw  on R(W").

'We are careful here not to write X!v. Although R(X) = R(X2), we only have that R(X) = R(X"?), and
hence Xtv can be unbounded with R(v) € R(X 2).
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To analyze W*W, we first prove that B] —B]L'L = 0. Indeed, if x € N(L) then x € N(B})
(by equation (7.23)), and hence both B}x = 0 and Lx = 0. If, on the other hand, x € N(L)%,
then L'ZLx = x since LtL is the projector onto V(L)' and hence BjL'Lx = Bx.

With the definition of W} and the above result,

A-BB)? 1[I -B; 1
Wiw = 1 1 I Lt }
I I B ][ (A-BB)”
L I 1
_ [@a-BB)? 1 B;—B;LiL] (A-B;B)"? }
- 1 L'L I

[ (‘l E*lil) (‘l -B*-Bl)l . [ 1
1 1 —
L L : Pz

P; and P, are projectors onto R(A— BjB;)'2 and R(L*), respectively. Now, using

_ [ (A-BiB)\2 I
e ]

and R(B,) <« R(L*), we have that
_prRpal2
R(W*)cﬁ[ (A=B1B1) I ]

Since WIW is the projector onto R(W*), and WW is the projector onto the range at the
right-hand side of the expression, this proves that WiW = WtW on R(W*), as required.
Hence W# = Wt on R(W), which also implies that Wt is well defined on R(W). O
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Chapter 8

SPECTRAL FACTORIZATION

It is known that positive operators €2 on a Hilbert space admit a factorization of the
form Q = W'W, where W is an outer operator. This Hilbert space result also proves
the existence of a spectral factorization for time-varying systems. In this chapter, we
translate the above mathematical theorem into system theory language by deriving how
such a factorization can be actually computed if a state realization of the upper part of
is known. The crucial step in this algorithm is again the solution of a Riccati recursion
with time-varying coefticients. We show that, under certain conditions, a positive solution
exists, which produces a factor which is outer. The same can also be formulated in terms
of a time-varying positive real lemma. Finally, we provide some connections with related
problems in which Riccati equations occurred such as inner-outer factorization, orthogonal
embedding and the time-varying bounded-real lemma.!

8.1 INTRODUCTION

In the discussion on the inner-outer factorization problem and the embedding problem, we
have obtained solutions governed by Riccati equations. In many other problems in time-
invariant system and (H..) control theory, for example linear quadratic optimal control,
optimal filtering and sensitivity minimization, Riccati equations play an important role.
There is a family of related forms of this equation, and the precise form depends on the
application. Underlying these problems is typically a spectral factorization problem, and
the discrete-time Riccati equation corresponding to this problem was originally studied
in [2, 3]. The equation usually has more than one solution, and important issues are
the existence and computation of Hermitian solutions which are maximally positive or
negative, as these conditions imply minimal-phase properties of spectral factors, or the
stability of (closed-loop) transfer operators constructed from the solution. Such solutions

I'The contents of this chapter has been submitted as a paper [1 ].
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are, for time-invariant systems, obtained by an analysis of the eigenvalues and invariant
subspaces of an associated (Hamiltonian) matrix. A recent overview of solution methods,
as well as many references to older literature, can be found in the collection [4].

For general time-varying systems, the Riccati equation becomes a recursion with time-
varying coefficients that can also have time-varying dimensions. For such equations,
much less is known on the structure of solutions. One reason for this is that the usual
eigenvalue analysis to classify stable and unstable systems is no longer applicable, e.g.,
because A, need not be square. Some results, e.g., on the convergence of solutions
starting from an approximate initial point, had already been obtained in the solution of the
embedding problem (chapter 7). Rather than directly analyzing the recursion, a relatively
simple derivation in that chapter used the ‘physical” properties of the problem underlying
the recursion (i.c. the embedding problem). However, the time-invariant equation has
a number of other interesting and important features that could not yet be generalized
along the lines of chapter 7. For example, it is known that the result of the embedding
(or actually, of the spectral factorization of I — T*T underlying the embedding) yields
extensions which are actually outer, a property which we use later in chapter 9.

In this chapter, we approach the time-varying Riccati equation from a different angle,
by starting from the spectral factorization problem. The same approach is followed in
[5] although, in that paper, the starting point is the existence of the Cholesky factor
of a positive definite, finite size matrix. The Riccati recursion in these factorization
problems emerges once a state realization for the operator is assumed. Solutions of the
spectral factorization and inner-outer factorization problems are known also in the more
general case of Hilbert space nest algebras (see the work of Arveson [6]), and this context
applies to time-varying systems, too. For example, a bounded positive operator £ has a
factorization into
Q=ww

where W can be chosen to be outer. We show how, from this property of W, properties
on the related time-varying Riccati equation can be derived. In particular, the fact that an
outer factor W exists implies the existence of a ‘maximal positive solution’ of the Riccati
equation, provided certain additional conditions with respect to stability and controllability
are satisfied.

In this chapter, we consider only the ‘casy’ case where the inverted term in the Riccati
equation exists and is bounded, and in particular where this term is definite. Generaliza-
tions are still possible but are analytically more difficult to treat as they lead to generalized
inverses with range conditions. The spectral factorization problem is treated in section
8.2, where also a (related) time-varying version of the positive real lemma is formulated.
Some computational issues are discussed in section 8.3. It is argued in section 8.4 that
under certain conditions the Riccati recursion converges to the exact solution even if the
recursion is started from an approximate initial point. This allows us to compute spectral
factors of more general time-varying positive operators, even if they are not constant or
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periodically varying before some point in time. Finally, in section 8.5, we discuss some
connections of the spectral factorization theory with related problems in which a Riccati
equation occurs, in particular the orthogonal embedding problem of contractive operators
and the inner-outer factorization problem.

8.2 SPECTRAL FACTORIZATION

We recall the definitions of outer operators from chapter 4. An operator Wo € U(M, N)
is defined to be (left) outer if

UMW, = U .

Wo ts (right) outer if
L7t

ﬁzZ_l Wa

Arveson [6] has shown, in the general context of nest algebras which also applies to our
model of time-varying systems, that if {2 € X" is a positive operator, an operator W € U
exists such that

Q= Ww.

W can be chosen to be outer, in which case the factorization is called a spectral factoriza-
tion. Related to this fact is another theorem by Arveson in the same paper, which claims
that operators in a Hilbert space have an inner-outer factorization

W = UW,

where U is a co-isometry (U*U = I) and W, is (right) outer.2 Moreover, if Q is uniformly
positive definite, then €2 has a factorization £ = Wy W, where W, is (left and right) outer
and invertible, and hence £,Z'W; = £,Z' (no closure is needed) and W' € . Any
other invertible factor W can be written as W= UW,, where U is now invertible and hence
inner.

In this section, we derive an algorithm to compute a time-varying spectral factorization
of operators with a state-space realization. The computation amounts to the (recursive)
solution of a Riccati equation. Such equations have in general a collection of solutions.
We show that in order to obtain an outer spectral factor, one must select a uniformly
positive solution of the Riccati equation, and that this solution is unique. We need a
number of preliminary results.

2Actually, Arveson uses a slightly different definition of outerness (not requiring ker (- W) =0), sothat
y q 2 L2271

U can be chosen inner. The resulting inner-outer factorizations are the same when W is invertible. See chapter
4)
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Realization for 7°T

We first derive a formula to compute a realization of the upper part of the operator 77,
when a realization of T € I/ is given.

LEMMA 8.1. Let T € U be given by the state realization T = D + BZ({ —AZ)"'C, where
24 < 1. Then a state realization of the upper part of T"T is

A C
D'B+C'AA D'D+ C'AC
where A € D is the (unique) operator satisfying the Lyapunov equation A" = A*AA+B"B.
PrROOF Evaluation of T°T gives

T'T = [D'+C(-Z'A"Y'ZB'] [D+BZ(I-AZy'C]
D'D + C*(I-Z'A*Y'\Z'B'D + D*BZ(I- AZ)"'C +
+C'(I-Z"A"Y'Z'B*BZ(I - AZ)™'C.

The expression (I— Z°A*)"Z"B*BZ(I- AZ)™! evaluates as
(I-Z'A"Y'\Z'B*BZ(I-AZy"' = (I-Z'A"Y'Z’X + A(I - AZ)"!
where X = A*A, and A is given by the Lyapunov equation A®Y = A"AA +B'B. A is
unique if £4 < 1, and
T'T = [D'D+CAC] + [D'B+ C'AA] ZU-AZ)'C + C'(-Z'A")'Z" [A'AC+B°D] .

D

Properties of outer factors

The outer factor in a spectral factorization of a positive operator has certain characteristic
properties of its input and output state spaces. This is formulated in proposition 8.3.
The recursive version of these properties then produces a Riccati recursive equation, and
the existence of the outer factor implies the existence of a (positive) solution to this
equation. Other properties of the equation can be derived from the link with outer factors
as well. Recall the definitions of input and output state spaces of T as H(T) = P, (6 T),
Ho(T) = P(LLZ7'T), viz. equations (3.45), (3.47).

LEMMA 8.2. Let We i be boundedly invertible (in X'), with inner-outer factorization
W = UW,. Then U is inner, and

H(W) = H(Wo)U" ® H(U).
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PROOF According to theorem 4.17, U is inner if and only if ker(- W*) = 0, which is the
case here since W is invertible. Because W is boundedly invertible, Y, W, = X3, and
because it is outer, L,Z71Wy = £,Z7'. Hence Uy Wy, = H(Wo) @ Uy: all of U, is reached.
Applying this result gives

LW = WU

HW)U @ U U
= HW)U @& HU)® U, [prop. 4.1]

= H(W) HWo)U" @ H(U).

a

The following proposition is of crucial importance in proving that there is a solution to
the Riccati equation associated to the time-varying spectral factorization problem which
gives an outer factor W, and in characterizing this solution.

PROPOSITION 8.3. Let T € (M, M) be such that T* + T > 0. In addition, let W €
UM, M) be an invertible factor of T* + T= W'W. Then Ho(T) c Ho(W), and

Wouter <& Ho(T)=Ho(W)
< Ho(T) =Ho(W).

If T has a realization {A, B, C,D} (with £, < 1) that is controllable, then W has a con-
trollable realization with the same A and C, if and only if W is outer. Moreover, if the
realization of T is uniformly controllable, then this realization of W is also uniformly
controllable.

PROOF According to Arveson [6], an invertible operator W e {{ exists such that
T+T = WW.
In general, £2Z7'W* < £,Z7), and £2Z7'W* = £,Z7! if and only if W is outer. Thus

Ho(T) = P(L2Z7'T)
= PL,Z7NT+T) [since T* € £LZ7]
= PL,Z'WW)
< PULLZ'W) = HoW).

If W is outer, then £,Z7'W* = £,Z7! and the inclusion in the above derivation becomes
an identity: W outer = Ho(T) = Ho(W). In this case, it is clear that W is locally finite if
T is locally finite.

Suppose that W is a boundedly invertible factor of T+ T*, but is not outer. Then let W =
UW,, where U is inner and W, is outer. Lemma 8.2 applies: H(W) = H(Wo)U* @ H(U).
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Note that s-dimH(Wo)U* = s-dimH (W) since U is unitary. Hence if W is not outer, that
is, if H(U)#0, then

s-dimH(W) > s-dim H(Wy) = s-dimHo(Wy) = s-dimHo(D),

so that if W is not outer, Ho(T) < Ho(W) (strict inclusion), i.e., Ho(T) = Ho(W) =
W outer.,

If T has a realization {A, B, C, D} such that £, < | and the realization is controllable, then
Ho(T) = Do(I- AZ)y1C (proposition 3.12). If W is outer, then Ho(W) = Ho(T), so that W
has a controllable realization with the same A, C as well. If W is not outer, then Ho(T) <
Ho(W) (strict inclusion), and W cannot have a controllable realization with the same A, C.
If the realization of T is uniformly controllable, then W outer = Ho(T) = Ho(W) and

Ho(T) = D(I-AZ)"'C implies that the realization of W is uniformly controllable as well.
a

Note that we do not require a minimal realization of T; controllability is sufficient. The
proposition assures that an outer factor W of T+ T > 0 is obtained by forcing W to
have the same output state space as T, that is, the same (A, C) pair if the realization is
controllable. This observation forms the main part of the proof of the following theorem,
which can be used to actually compute the realization of the outer factor if a realization
of T is given.

THEOREM 8.4. Let T € {(M, M) be a locally finite operator with an observable and
{uniformly] controllable state realization {A, B, C, D} such that {4 <1. Then T +T > 0
if and only if a solution A € D exists of

ATV = A'AA + [B*-A'AC| (D+ D" - C'AC)™ [B- C"AA]
such that D+ D* — C'AC > 0 and A > 0 [A > 0]. Such a solution A is unique.
IfFT+T> 0, let We UM, M) be an invertible factor of T* + T = W*W. A realization
{A, Bw, C, Dw} for W such that W is outer is then given by the solution A > 0 [A > 0]
of the above equation, and solutions Dy, By of
DDy = D+D'—C'AC
By = Dy [B-C'A4].

PROOF Let the realization of T satisfy the given requirements, and let W = Dy + BwZ(I -
AZ)™' C be an operator with some [uniformly] controllable realization and the same (A, C)-
pair as the realization of T, and with conirollability Gramian denoted by A. Then, with
aid of lemma 8.1, proposition 8.3 ensures that

D+D' = DyDwy+C'AC,  DyDy >0
&  BZ(I-AZy''C [DyBw + C*AA] Z(1-AZ)' C
ATV = A'AA+ByBy, A>0[A>0].

]

W outer, invertible

{ T+T =WW>0
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Here, we used in particular the fact that a realization of W can have the same (4, C) pair
as the (minimal) realization of T if and only if W is outer. We also used that W invertible
with W~!' again upper implies that Dy has an inverse D3}, so that Dy, Dy > 0. Because
the realization of T is observable, the operator - (I — AZ)"'C is one-to-one (by definition
3.5), and the above set of equations reduce to

) = * S Wa * .

T+T =WW>0 D+ DyDy +C'AC, DDy >0
W outer, invertible B = DyBw+C'AA

) A(—l) = A*AA"‘B;VBw, A>O [A>>O]'

Let T+ T >» 0, and let W be an invertible outer operator such that T+ 7* = W*W. Then
Dy is invertible, and Bw can be determined from the above equations as

DyDy = D+D" - C'AC
By Dy [B— C A4]
AT = A'AA + [B—A'AC] (D+D" - C*'ACY [B- C'A4],

so that A satisfies the given Riccati equation. In fact, we showed that if T+ T* > O,
the existence of an outer factor implies that there is a solution A of the Riccati equation
which is [uniformly] positive, and such that also D+ D* — C*AC > 0. The converse, to
show that 7+ T™ >> 0 if these quantities are positive, respectively uniformly positive, is
obvious at this point, since such a solution directly specifies a realization of an outer and
invertible factor Wof T+ T°.

Finally, a solution A > 0 must be unique, because it is the controllability Gramian of the
realization of the outer factor W, which is unique up to a left diagonal unitary factor [6 ].
Such a factor has no influence on the controllability Gramian. o

The above theorem can be extended to observable realizations without controllability
constraint.

THEOREM 8.5.  Let T € U{M, M) be a locally finite operator with an observable state
realization {A, B, C, D} such that {4 < 1. Then T*+T > 0 if and only if a solution A € D
exists of

ATV = A'AA + [B'—A'AC] (D + D" - C'ACY [B—C"A4] (8.1)

such that D+ D™= C'AC > 0 and A 2 0. Such a solution A is unique.

IfT+T > 0, let W € U(M, M) be a factor of T"+T = W*W. A realization {A, Bw, C, Dy}
for W such that W is outer is then given by the solution A > 0 of the above equation, and
solutions Dw, Bw of

DyDy = D+D'—CAC
By Dy [B—C'AA] .
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PROOF Let Ar be the controllability Gramian of the given realization of T. Since Ar 20,

it has a factorization
« | Anl Xi
=X =

where A;; > 0 and X is an invertible operator (e.g., X can be chosen unitary). X has
the indicated block decomposition, satisfying ran( - X,) = ker( - Ag), ran( - X;) = fan( - Ar).
Applying X as state transformation to T leads to a realization T' = {A’, B’, C’, D} given

by

A ¢ [x A C][xeD

B D |~ I1|{|B D I
Ags = [M1 ] is the controllability Gramian of T, and satisfies the Lyapunov equation
A}‘,” = A" Ap/A’ + B"*B’. Partition A/, B, C’ conformably to the partitioning of X. Then

A 0 . C
A’=[A; A;ZJ’ B'=[B, 0], c'=[ci}, (8.2)

because the above Lyapunov equation leads, in particular, to 0 = B3B; + A},AnAr, SO
that, since A;; > 0, we must have that B, =0 and Ay, = 0.

It follows that {A;y, By, C), D} is a realization of T which is both observable and control-
lable. By theorem 8.4, T+ T* > 0 if and only if an operator P € D, P > 0 exists such
that

PED = A7 PAy; + [B] - A} PC] (D + D" = CiPCy)™ [By — CTPAY]

D+D" —CIPCl > 0.

The solution P is unique given the realization {A;, Bj, C;,D}. Define P' = [© ],
A = X'P'X = X{PX;, then A > 0. Because of the structure of A’,B’ in (8.2), P’
satisties

P'™D = A"P'A" + [B" ~A"P'C'| (D+D"~C"P'C')y! [B' - C"P'A']
D+D - C"P'/C' >0,

so that A satisties (8.1). The uniqueness of P implies the uniqueness of A, given the
state transformation X. Moreover, A is independent of the actual choice of the state
transformation X: if any other X{ such that ran(- X{) = fan(- Ar) is given by X{ = RX),
where R € D is some invertible operator, and the corresponding A’ = X]R*-R~*PR™}-RX, =
A. Hence the solution A >0 to (8.1) is unique. The first part of the corollary is proven.

By the second part of theorem 8.4, the outer factor W of 7" + T'= W"W has a realization
{AllyBlW; C],Dw} with Dw and BIW given by

DDy = D+D'—CPC,
w [B1-CiPAL] ,

Biw
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so that, in terms of P/,

DDy = D+D -C"P'C'
[Byw 01 = Dy (B —C"P'A").

With A = X*P’X and Bw := [Byw 01XV, we obtain a realization of W as {A, Bw, C, Dw},
where
wDw = D+D' - C'AC
By = Dy [B-C'A4].
0

Theorems 8.4 and 8.5 can also be specified in two alternate forms, familiar from the
time-invariant context [7, 8]:

COROLLARY 8.6.  (POSITIVE REAL LEMMA) Let T € i be a locally finite operator such
that T= D+ BZ(I- AZ)™' C, where {4 < | and {A, B, C, D} is an observable realization of
T.

Then T + T >> 0 if and only if there exist diagonal operators A, Q, By, with A > 0 and
Q > 0 satisfying the following relationships:

ACD = ATAA+BL OB}
ByQ = B —A'AC

Q = D+D'-C'AC.

If the given realization of T is controllable, respectively uniformly controllable, then the
above condition on A narrows down to A > 0, respectively A >> 0.

PROOF In view of theorem 8.4, it suffices to make the connection 0 = DyDy and
BW = I)WB{V ]

COROLLARY 8.7. (SPECTRAL FACTORIZATION) Let £ € .Y be a Hermitian operator with
locally finite upper part, and given by
Q=D+ BZU-AZY'C + C'U-ZAY'Z'B",

where {A, B, C, D} is an observable realization with €4 < 1. Then £ >> 0 if and only if a
solution A € D exists of

AT) = A"AA + [B—A'AC](D-C'ACY! [B-C'AA], (8.3)

such that A 2 0 and D— C*AC > 0. A solution A 20 is unique.
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If Q> 0 and A is such a solution, then a realization {A, Bw, C, Dy} for an outer factor
W of £ is given by solutions D w, By of

DyDy = D- C'AC
By = Dy [B-CAA4].

If the realization {A, B, C, D} is controllable, respectively uniformly controllable, then
A > 0, respectively A >> Q: the realization for W is [uniformly] controllable.

8.3 COMPUTATIONAL ISSUES

In this section, we consider some computational issues that play a role in actually com-
puting a spectral factorization of a uniformly positive operator £ with a locally finite
observable realization given as in (8.3). First, note that taking the k-th entry along each
diagonal of (8.3) leads to the Riccati recursion

At = AjAAL + [Bp — AAAC] (D — GIAKC)™ [Bi— CGiAvAY] (8.4)

and with Az known, (Bw)k, (Dw)r also follow locally:

(Dw) (Dw)e
(Bw

Hence all that is needed in practical computations is an initial point for the recursion of
Ay. Special cases where such an initial point can indeed be obtained are familiar from
previous chapters.

Dy — CoAGe
(D% )k [Br — CiAvAL] -

Finite matrices

One case in which exact initial conditions can be obtained is the case where Q €
XY (M, M) is actually a finite matrix, i.e., where

M= XPXBXM{XMaX o XMyXDBX--,

In this case, Q is a finite n X n (block) matrix, and a realization for €2 can start off with
no states at point [ in time. Since the dimension of A follows that of A, an exact initial
point for the recursion is A} = [-] (a 0x 0 matrix). The spectral factorization reduces for
finite matrices to a Cholesky factorization, and the resulting algorithm is an efficient way
to compute Cholesky factorizations for (large) matrices with a sparse state space.

Initial time-invariance

A second class of systems are systems which are time invariant before some point in
time, say k = 1. Then, before point k= 1, all A, are equal to each other, and in particular
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Ay = A;. Hence the recursion for A reduces to an algebraic equation
Ao = AjAAg + [By—AGACs] (Do — CoAoCo)™ [Bo — CoAoAo]

which is the classical time-invariant Riccati equation. A solution to this equation can be
obtained in one of the classical ways, e.g., as the solution of a Hamiltonian equation.
Multiple solutions exist, and in order to obtain an outer spectral factor W, the ‘maximal
positive’ solution of the above equation must be chosen: Ag > 0. Because the A; (k> 0)
are determined by Ao via the recursion (8.4), and because the solution A is unique, it
follows that the requirement to choose this Ay is also sufficient to have A positive.

Periodic systems

If € is periodically time varying, with period n say, then one can apply the usual time-
invariance transformation, by considering a block system counsisting of n consecutive state
realization sections. Since the block-system is time invariant, one can compute A; from
the resulting block-Riccati equation with the classical techniques, and A is an exact initial
condition to compute the realization of the spectral factor for time points 2,--.,n. As
usual, such a technique may not be attractive if the period is large.

Unknown initial conditions

Finally, we consider the more general case where €2 is not completely specified but only,
say, the submatrix [£2;;]7 is known. The ‘past’ of Q is assumed to be such that £ > 0.
In this case, the exact initial point for the recursion of Ay is unknown. It is possible to
start the recursion (8.4) from an approximate initial point, for which typically Ay = 0
is chosen. The convergence of this choice is investigated in the following section, It
is shown in proposition 8.9 that when the realization {4, B, C, D} is observable and has
{4 <1, then Ay (corresponding to the recursion (8.4) with initial point Ao=0) converges
to Ag, the exact solution obtained with the correct initial point A .

8.4 CONVERGENCE OF THE RICCATI RECURSION

In this section, we study the convergence of an approximate solution Ax (k = 0) to the
Riccati recursion (8.4), if the recursion is started with f\o = () rather than the exact initial
point Ay. It is shown that Ae > Ay for k — o, when Q> 0, £, < | and the given
realization is observable. Similar results are well known for the time-invariant case,
and for the time-varying case some results are known from the connection of the Riccati
recursion with Kalman filtering (¢f. [9, 10]). However, the derivation given below is more
general because state dimensions are allowed to vary, and hence A, cannot be assumed to
be square and invertible, as required in [9].
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Consider the following block decomposition of the matrix representation of = W*W,
and a related operator Q=Www

[Q) | Q1 Qi ] Wi | Wia Wi
Q=] Q5[ Qyn Qy |, W= Wy Wi
Q| Q3 Wi
L 2213 | =223 =333 L . 8.5
n Q“ 0 O R Wl] O 0 ( )
2= 0 1Qp By |, W= Wy Wi
[ 0 £ Q| L Wss |

In these decompositions,® €, corresponds to [€2;;]7L, £y, = [ S is a finite nx n
matrix (where n is some integer to be specified later), and €233 corresponds to [£2;;].
The point of introducing the operator ) is that Ao is the exact initial point of the Riccati
recursion (8.4) for a spectral factorization of the lower right part of Q, and leads to a
spectral factor W such that & = W*W, of which only the lower right part is computed.
This is seen by putting A_; = 0, B_; = 0 in the Riccati recursion for A, which leads to
Ao = 0. The convergence of A, to Ay is studied from this observation.

As a preliminary step, the following lemma considers a special case of the above L.

LEMMA 8.8.  Let be given an operator Q € X, 2> 0, with block decomposition

Q, Q, 0
Q= Q Qn Qn
0 £ Ly

where €, is an n X n matrix. Let the upper triangular part of L be locally finite and
strictly stable. Then

Q33 —> Q33 — Q5303 03)™" asn—> oo
(strong convergence). Hence (€1)33 — (C¥1)33, where Q is equal to €, but with Q,, = 0.

PROOF Let {4, B, C, D} be a realization of the upper triangular part of € with £, < 1.
Let ), = €0, L3 = £,0,, where

BoA; - - -Apy
€ = | BsAaha 2= | Bi3AnsAnmr |-
B_,A_,
B—l Bn—ZAn—]
Bn—l
O,=[Co AC1 AAICy -+ Ao ApaCp ]

Qz =[Cy ApCpa ApAni1Crz -1,

3The underscore is used in this section to denote that we take block submatrices rather than entries of Q.
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Then O,C, is a summation of n terms, each containing a product Ag - - - A;—; and a product
A1 -+ A, Because 44 < | implies that products of the form Ay - - - A, —> 0 as n — oo
strongly and uniformly in k, we obtain Q,C, — 0 if n — oo,

Write X3 = (€"')33. By repeated use of Schur’s inversion formula (lemma 7.2), X3 is
given by the recursion

X =8, Xeot = (et — a1 X Q) (8.6)

We first consider a special case, where €4, = I (k = 1,2,3). In the derivation below,
we, for ease of discussion, assume that also QkQ; = [, i.e., the realization is uniformly
observable and in output normal form, although this is not an essential requirement. The
recursion (8.6) becomes

Yk = CXiCy
X = (U-QYO) ' =1+0; [Yi+Yi+--] O,

so that, in particular,
Y2 = G50, + G307 (M=) 0,C,.
For large n, Y2 — C5C, and becomes independent of ¥, and C;, and
X3 = (1= 0305,0,)7" = (33— 5,053,Q5)
independently of C,. The expression on the right-hand side is the same as the value
obtained for C; =0, ie., £, =0.
The general case reduces to the above special case by a pre- and post-multiplication by

s 2— 12
o
03y

This maps £, , to 1, C; to g;‘kﬂgk, and O, to O£ ,ff‘k,,l. The latter two mappings lead
to realizations with different B; and C;, but the A; remain the same, and in particular
the convergence properties of C,, remain unchanged. It follows that (271)33 — (£254 —

Q5. 510,.)7! also in the general case. o

We now return to the spectral tactorization problem, with £ given as in (8.5).

PROPOSITION 8.9.  Let Q € X, Q >> 0 have an upper triangular part which is locally
finite and given by an observable realization {A, B, C,D} where ¢4 < 1. Let A € D be
the unique solution of (8.3) so that its entries A, satisfy the recursive Riccati equation
(8 4). Let A (n=20) be the sequence obtained from the same recursion, but starting from
Ao =0.

Then A, — A, as n — oo (strong convergence).
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PROOF Let €, sz have block decomposmons as in (8.5), where 2y, is an nXxn matrix.
Let Q = WW, 0 = W'W, where W, W are outer spectral factors, then A, A are the
controllability Gramians of the realization of W, W given in corollary 8.7. Denote

Wi, = Qw,l.Ql
W3 Cw20,
Wiz = Qw,leAl - Ag Oy

Because £4 < 1, we have that Wiz — 0 as n — oo (strongly), so that for large enough n,
A, = Cy»Cyy and hence

W33 Was + W3 Wos + WisWis
= W3 Wi+ O5A,0,.

o

Consequently, O5(As—An)0, = W33 Wis— W3, Wis. The next step is to show that W33 Was—
W3, Wss — 0O for large n, so that, if the realization is observable, A, = A,

Let X3 = (W3, Wa3)™!, and X3 = (W3, Was)™. Since ' = W-LW, and W is outer so that
Wlel, it follows that X3 = ()33 and X3 = ((2“)33 Lemma 8.8 proves that, if £4 < 1,
then ()33 — (V)33 as n — oo, s0 that X3 — X3, and hence A, — A,. ]

Note that in the premisses of the above convergence proposition, we required the given
realization to be observable. This condition was not present in the convergence proof of
the Riccati equation that occurred in the solution of the embedding problem (cf. proposition
7.6). It is conjectured that the observability condition is not necessary for convergence,
but is only necessary to obtain outer factors.

Finally, we remark that always A« <€ Ay This is a consequence of the fact that
MA<A = Al <A, ‘ 8.7

which can be proven directly from the Riccati recursion (8.4) in a way similar to [10, ch.
9]. Indeed, let the matrix Gy a, be given by

- _ X—A;AkAk B, — C;AkAk _ X B B A; ]
(’X’Ak - [ B; —A;Akck Dy — C;Aka - B; Dy C; Ak [Ak Ci ] y

parameterized by some matrix X=X. Using Schur’s complements, it follows that, if
Dk — C;Aka > 0, then

Gxa 20 = X—AjAeAc — [By — AAACK] (D — CGIALC)™ [Bi — CiAvAL] 2 0.

Hence Ay = min{X : Gxa, 2 0}. But if Ax € Ay, then Ga,, A, = Gagoa, 2 0. Tt follows
that Age = AM, since Ay, is the smallest matrix X for which Gxa, > 0.
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8.5 CONNECTIONS

In this section, we point out some of the connections between the spectral factorization
results of the preceding sections, and the incarnations of the time-varying Riccati equation
that we encountered earlier in the solution of the orthogonal embedding problem (chapter
7) and inner-outer factorizations (chapter 4).

Orthogonal embedding

Recall the orthogonal embedding problem: given a transfer operator T of a causal bounded
discrete-time linear system, extend this system by adding more inputs and outputs to it
such that the resulting system X,

) Iy

is inner and has 7 = X;;. The embedding problem can be viewed as a spectral factorization
problem of £i,Z;5 = I - T"T, which gives X;;. Via this connection, the solution of the
embedding problem can also be obtained starting from the spectral factorization theorems
8.4 and 8.5. This leads to a variant of the embedding theorem 7.5 which is more general,
as it also follows that Z; is in fact an outer operator,

Z:[E” 212}’

THEOREM 8.10.  Let T € U(M,, Ny) be a locally finite operator with an observable
state realization {A, B, C, D} such that £4 < 1. Then I—T"T > 0 if and only if a solution
M e D(B, B) exists of

M = A"MA+B'B + [A"MC+B'D]| (I-D'D- C'MCY [D'B+C"MA] . (8.8)

such that I-D*D—C*"MC > 0 and M > 0. This M is unique. If in addition the realization
of T is [uniformly] controllable, then M is [uniformly] positive.

IfI-TT > 0, let We UWN,N,) be a factor of I -T°T = W'W. A realization
{A, Bw, C, Dy} for W such that W is outer is then given by the solution M of the above
equation, and solutions Dy, Bw of

(8.9)

DDy = I-D'D-C'MC
By -Dy [D'B+ C"MA] .
PROOF Since ¢4 < 1, the Lyapunov equation
ATD =A"AA +B*B
has a unique solution A > 0. By lemma 8.1, an expression for /— 7T is

I-T'T=(-D'D-C'AC)~ [D"B+ C'AA| Z(I-AZ) ' C-C"(I-Z'A")'Z" [B°'D + A*AC] .
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The implied realization for the upper part of I— T"T need not be controllable. Theorem
8.5 claims that I— T*T >> 0 if and only if a solution P € D exists of

PCU = A'PA+ [B'D+A'(A+P)C] I-D'D~C'(A+ P)C)™" [D'B+ C'(A+ P)A|

such that /-D*D - C*(A+ P)C > 0 and P> 0. This P is unique. As a consequence, the
operator M = A + P is positive semi-definite, unique and satisfies equation (8.8). If the
realization of T is [uniformly] controllable, then A > 0 [A >> 0], and the same holds for
M.

Theorem 8.5 in addition shows that the realization {A, By, C, Dy}, with Dy, By as given
in (8.9), defines an outer factor Wof I-T"T = W'W. O

COROLLARY 8.11. If, in theorem 7.5, the realization of T is observable, then X, is an
outer operator.

Inner-outer factorization

A realization of the outer factor Ty in an inner-outer factorization of 7 can also be computed
via a Riccati equation, as was shown in theorem 4.19. A realization of the outer factor
followed from a observable realization {A, B, C,D} of T as

I A C
To = [ R ] [ C*MA+D*B C'MC+D*D (8.10)

where M 2 0 is the solution of maximal rank of
M) = A"MA+B'B — [A"MC+B'D] (D'D + C'MC)! [D'B + C"MA]

and R is a minimal (full range) factor of RR* = (D*D+C*MC)!. Let Tj be invertible, so
that the pseudo-inverse becomes an ordinary inverse. Using lemma 8.1, one can verify
that, indeed, T*T = T3Ty, by deriving that the realizations of the upper parts are equal.
With lemma 8.1, the realization of the upper part of T;7y is obtained from (4.19) as

A ¢ &.11)
DB+ C*MA)+C*A'A (D'D+C*'MQ)+ C'A'C )

where A’ is the unique operator satisfying the Lyapunov equation
A = A'NA+ [B'D+A'MC](D'D+C'MC)™ [D'B+ C'MA] .

Consequently, (A’ + M) = A*(A'+M)A+B*B, so that A = A’ +M satisties the Lyapunov
equation AV = A*AA + B*B. With A, the realization (8.11) becomes

A C
B'D+C'AA D'D+C'AC |’
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which is the same realization as that of 7°7 in lemma 8.1. Conversely, one can try to
derive theorem 4.19 from the spectral factorization theorem in this manner, for the special
case where T°T is invertible (theorem 4.19 is more general).

Cholesky factorization

As noted before, spectral factorization of a finite positive matrix reduces to Cholesky
factorization. For time-invariant systems (Toeplitz operators), one efficient technique
to compute a Cholesky factorization makes use of Schur recursions [11, 12]. The Schur
algorithm can be generalized in various ways to apply to triangular factorizations of general
matrices [13], structured operators which have a displacement structure [14, 15, 16, 17],
and approximate factorizations on a staircase band [18]. See [19] for an overview.

The key step in the traditional and also generalized Schur and Levinson algorithms is the
translation of the original context (€2, with > 0) to a scattering context (contractive
operators). A standard transition to the scattering context is obtained by finding upper
triangular operators I, A, such that £ = I'T* — AA*. Using P(€2), the upper triangular part
of £2, possible I" and A are defined by

Q = 2PQ)-1
r = Y +n P(Q)
A = l@-n = P)-1

It is readily verified that, indeed, €2 = TT* — AA*, and because > 0, I is boundedly
invertible and S := ' A = (Q + )"1(; - /) is a well-defined and contractive operator:
[|S]| < 1. The definition of S may be recognized as a Cayley transformation of €. It has
a direct relation with €:

PQ)=1I-95"; S=I1-[PE)]" .

Since S is strictly contractive and P(€2) is upper triangular, the first expression ensures
that S is upper triangular. S is even strictly upper triangular because A is so. Also the
state structure is preserved: S has the same number of states as P(Q), and its model can
be directly derived from the model of P(Q) using equation (1.3).

The standard way to obtain a Cholesky factorization of €2 continues as follows. Compute
any J-unitary matrix @ such that
" Ale=[4; 0], (8.12)

A consequence of the J-unitarity of © is that

r*

AA =T A]@JG)[ A } =TT" - AN = Q.
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Hence A, is a factor of Q: Q = A;A]. With ©, a factor of 7! is obtained by computing
I N0=[A B, (8.13)

as it is readily verified using (8.12) and the J-unitarity of © that Q™' = AyA; = B,B;.
Hence knowledge of © provides both a factorization of £ and of its inverse. © can
be computed recursively using a generalized Schur algorithm (as e.g., in [18]) which
amounts to a repetition of (i) shifting the rows of I one position to the right to align with
A (i.e., postmultiplication by Z}), and (i) using an elementary © ‘section’ to cancel the
front diagonal of A against the corresponding diagonal of I". It is thus an order-recursive
algorithm. For finite upper triangular matrices of size n X n, the algorithm can be carried
out in a finite number of steps and yields a ©-matrix having at most n— 1 states. It is
possible to obtain an approximate factor by making A zero only on a staircase band. This
leads to approximate factors A5 of Q7! that are zero outside the staircase band, and whose
inverse matches the factor A; of  on the band [18, 20].

The above algorithm is just one way to compute a Cholesky factorization of a given
positive matrix Q. Efficient (‘fast’) algorithms are based on exploiting knowledge on
the structure of €. For example, if € is a Toeplitz matrix, then ® can be computed
using the same algorithm but now acting only on the top row of I and the top row of
A (the ‘generators’ of I' and A). This yields the traditional Schur method. More general
displacement structures obeying a relation as in (1.1) are treated in much the same way
[19, 17].

Using the embedding technique given in chapter 7, one other possibility to compute the
Cholesky factor via © is the following. Assume that a computational model for P (£2),
the upper triangular part of €2, is known. We have already noted that, since S is also
upper triangular, a computational model for the associated scattering operator S follows
without special effort. The next step is to do an embedding: using theorem 7.5, construct
a lossless embedding matrix X for S, which is a unitary (2 X 2) block matrix computed
such that £y, = §. The J-unitary ©®-matrix associated to X is defined as usual by

Q=] 21~ ZnIpZy  —Inii
Tn D%
Because of corollary 8.11, it is known at this point that £, is outer, so that £} and hence
© are again upper. X and © satisfy by construction the relations (for some A{ € i)
[ 01Z =[A] ] < (1 S1© = [A] 0]
and since § = I""!A, multiplication by I" shows that © indeed satisties
(' Al@ = [A; 0].

From the model of ©, factors B, and W = B;! of Q7! and £, respectively, follow using
equation (8.13). The whole algorithm can be put into a single recursion. Not surprisingly,
the resulting recursion for W is precisely the Riccati equation in corollary 8.7.
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Chapter 9

LOSSLESS CASCADE
FACTORIZATIONS

In chapter 7, we showed how a contractive transfer operator T can be embedded into an
inner operator £. We now derive minimal structural factorizations of locally finite inner
transfer operators into elementary inner operators of degree one. The resulting lossless
cascade networks provide a canonical realization of T into a network of minimal degree
and with a minimal number of coefficients. For a better understanding of the problem,
we will first review some aspects of cascade factorizations for time-invariant systems.

9.1 TIME-INVARIANT CASCADE FACTORIZATIONS

Overview

An important and recurring subject in network theory concerns the synthesis (implementa-
tion, or actual realization) of a desired transfer function using elementary components. For
continuous-time systems, these components would be resistors, capacitances, inductors and
transformers. In the discrete-time context, the elementary operator is the basic processor
which performs the actual calculations on the digital signals: typically a multiplier-adder,
but other elementary processors are certainly possible. While one can directly use the
given {A, B, C, D} realization as the actual realization of the transfer operator, doing so
is often unsatisfactory. The number of multiplications in an arbitrary state realization of
the given system is not minimal: a single-input single output system with r states would
require (n+ 1)*> multiplications. Typically, such an implementation is also rather sensitive
to small changes in the values of the coefficients: a small change (e.g., because of finite
word length effects) can sometimes even make the modified systemn unstable. For digital
filters, a third issue is the occurrence of limit cycles and register overflow. The above-
mentioned effects are mitigated by a deliberate use of the freedom of state transformations
on the given state realization. By selecting certain canonical forms of the A matrix, such
as a companion form or a diagonal form (which is not always possible), filters specified
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by a minimal number of coefficients are obtained [1].

The coefficient sensitivity issue is a more complicated matter. The central idea is that one
of the few ways to make the locations of poles and zeros of the resulting system well
defined is to factor the given transfer operator into a cascade of elementary (degree one)
transfer operators:

T(2)=Ti(2) - T2(2) - - - TH(2). O.1)

Each elementary transfer operator realizes a pole and a zero of T(z). For an n-th order
system T(z), the factorization is minimal if it consists of n degree one sections. In this
case, the factorization into n elementary factors is canonical and leads to a minimum of
coefficients, for SISO systems 2n+ 1, i.e., n coefticients for the poles, n for the zeros, and
one coefficient for the overall scaling.

The synthesis of passive transfer operators via cascade factorizations has a long history
in classical network theory. The first results were concerned with the factorization of a
lossless (inner) transfer operator of degree n into a product of n degree-1 lossless transfer
operators, by recursively extracting a degree-1 subnetwork. This procedure is known
as Darlington synthesis of lossless multiports [2], and produces ladder filters with well-
known properties [3]. The use of a lossless (unitary) state realization of the inner operator
gave the synthesis procedures by Youla and Tissi [4], while the synthesis of more general
J-unitary operators was considered by Fettweis [5] in connection with wave-digital filters.

The cascade realization of inner operators leads to a realization procedure of any passive
(contractive) rational transfer function, via a lossless embedding of the contractive transfer
function T(z). Thus, one obtains a realization of T(z) in which either the poles or the zeros
of T{z) are localized in the elementary sections. State-space versions of this procedure
are discussed in Roberts and Mullis’ book [6].

Although it is more general, the Darlington synthesis procedure is closely connected to
the Levinson algorithm, used in estimation filter theory of stationary stochastic processes
[7]. The estimation filters are prediction (AR) filters with their transmission zeros at in-
finity, but the filter structure that is obtained is also a ladder filter which can be derived
recursively from the covariance matrix of the stochastic process. The synthesis proce-
dure thus constitutes a recursive Cholesky factorization of positive Toeplitz matrices. The
Toeplitz matrices can be generalized to include the covariance matrices of more general a-
stationary processes [8, 9], and leads to a generalized Schur parametrization of structured
(erstationary) matrices, i.e., matrices with a low displacement rank [10]. The paper by
Genin et al.[11] explored the relation between lossless state realizations and the character-
ization of structured matrices via a cascade of elementary lossless sections. Finally, there
are many parallel results in operator theory: Potapov [12] obtained a complete description
of (not necessarily rational) J-unitary and J-contractive matrix functions in terms of gen-
eral cascade decompositions, while the lossless embedding and subsequent factorization of
contractive functions in the setting of colligations was considered by Livsic and Brodskii
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{13, 14]. The Darlington synthesis procedure is also closely connected, via the Lossless
Inverse Scattering problem, to classical interpolation problems of the Nevanlinna-Pick
type; see [7, 15, 16, 17].

Rather than a factorization of a lossless embedding of 7, it is also possible to determine
a direct factorization (9.1) [18, 19, 20, 21, 22]. Such factorizations realize both a zero
and a pole of T in each elementary section, which makes them attractive in some ap-
plications, but they are also more complicated to derive. One can act directly on the
transfer function 7(z), and in this case the complication is that non-square factors can
occur [19], giving rise to a plethora of possible elementary sections. The situation is
easier to describe in state-space terms. Let 7(z) be a bounded system, and suppose that
it has a factorization 7' = TT,, where T}, T, are again bounded systems, with minimal
realizations T; = {A;, By, C1, D1}, T2 = {Ay, By, C3, D2}, A realization for T is thus given
by

Al C ! A; CiBy | CGiDy
T= 1 Ay | C | = 0 Ar Cs . (9.2)
B l Dy B, | Dy B, DB | DD,

Note that A = A7 is block upper triangular. If D| and D, are both invertible, then 77! has
a realization given by the product of the realizations of 77! and 75!, which turns out to

have
% _ _ AT 0
AT=Ar. = [ ~CoD3'DY'By A ] ’

(where A* := A—BD7'C is the A-matrix of the inverse system, whose eigenvalues are the
zeros of 7). This matrix is block lower triangular. It can be shown, see e.g., [23, 21]
that T can be factorized minimally into factors 7', 75 if and only if it has a minimal
realization T in which Ay is block upper triangular and A% is block lower triangular. The
factorization problem is thus reduced to finding a state-space transformation acting on a
given realization of T and a partitioning into 2 x 2 blocks such that A r and A% have the
required forms. To this end, one has either to determine the solutions of a certain Riccati
equation (this replaces the Riccati equation that occurs in the embedding step), or to
compute eigenvalue decompositions (Schur decompositions) of both A and A*, describing
the poles and zeros of the given transfer function. However, in the subsequent factorization
procedure, the conditioning of certain inverses can be problematic [23]. Such problems
do not occur with the factorization of inner or J-inner functions, as in this case the poles
of the system also determine the zeros: for inner functions X with unitary realizations, £
is a realization of Z7! = £*, and hence A* = A*. We only consider the cascade realization
of inner functions £ from now on.

Repetition of the above factorization into two systems leads to a factorization of a degree-n
system into n systems of degree 1: the elementary sections. A particular realization of the
elementary sections produces orthogonal digital filters. Here, the elementary operator is
not a multiplication, but a plane rotation, where the rotation angle is the coefficient of the
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section. The advantage that such filters have is that (with ideal rotors) they are inherently
lossless and stable, even if the coefficients are imprecise, and that no limit cycles or
overflow oscillations can occur. Another advantage is that the filters are typically cascade
arrays of identical processors with only nearest neighbor connections, which allows for
VLSI implementation. Some other issues to be considered are the pipelinability and
computability of the array, which are not always guaranteed. A number of orthogonal
filter structures are possible, depending on the precise factorization of the inner transfer
operator, and on whether a factorization of Z, or its associated J-unitary operator © is
performed. The factorization can also be done directly on the transfer function 7(z), if it
is specified as a ratio of two polynomials, or on the state-space matrices. In both cases, a
preliminary embedding step is necessary. The main reference papers on orthogonal filter
realizations are by Deprettere, Dewilde, P. Rao and Nouta [24, 25, 26, 27], S.K. Rao and
Kailath 28], Vaidyanathan [29], Regalia, Mitra and Vaidyanathan [30], and Roberts and
Mullis’ book [6]. More recent references are [31, 32].

Givens rotations

We say that £ is an elementary orthogonal rotation if $isa2x2 unitary matrix (with
scalar entries) of the form

a ¢t s
z= . , 9.3
[ T ] (9.3)
with ¢*c+s*s = 1. An important property of elementary rotations is that they can be used
to zero a selected entry of a given operator: for given ¢ and b, an elementary orthogonal

rotation £ exists such that
e |la)| _a

i.e., such that s*a + ¢*b = 0 and a’ = (¢*a + b*b)2. In this case, % is called a Givens
rotation, and we write £ = givens[q; b] in algorithms. Givens rotations are used to factor
a given state realization into elementary rotations, or certain generic groups of rotations
called elementary sections. Acting on state realizations, the 2 X 2 elementary rotation
matrix is typically extended by identity matrices, say

I
T = % . 1, 9.5)

X X

where the four ‘X’-s together form the 2x2 unitary matrix. We use a hat symbol to denote
this elementary 2 X 2-matrix, i.e.,, we write it as X;.

An elementary J-unitary rotation © can be obtained from £ in (9.3) if ¢20 as

A I -5 |1
6_[—5* I]Z
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It can be used to zero entries of vectors:

Ay lal _[d
o []-[5)
only if a*a—b"b = a’*a’ > 0, by setting s* = —b/a.

Orthogonal digital filter synthesis

Assume that Z is known, along with a unitary realization X. As was shown in equation
(9.2), a necessary condition for factorization of ¥ is that Ay is upper triangular. From the
given realization, this can be ensured via a unitary state-space transformation Q obtained
from a Schur decomposition of the given A-matrix:

QAL Q" = R,

where R is upper triangular. This decomposition always exists, and amounts to a com-
putation of the poles of the system. With Ay upper triangular, the second phase of the
factorization procedure is the factoring of X into a minimal number of elementary (degree-
1) factors. Here, one makes use of the fact that the product of two unitary matrices is
again unitary. A consequence of this fact is that, in equation (9.2) (where all matrices are
unitary now), any Z; such that Z{Z has zero block entries (2, 1) and (3, 1) leads to X, of
the required form. Since the (2, 1) entry is already equal to zero, it follows that Z; can be
of the form indicated in (9.2): using Zj, one only has to cancel entry (3, 1) using entry
(1, 1). The unitarity of the product i E ensures that also its entries (1,2) and (1, 3) are
zero. Upon factoring T down to the scalar level, it follows that the elementary unitary
factors have the form X; in (9.5). If T is of degree n, then the factorization consists of n
degree-1 factors and is of the form E =X, ... X,, where

(238 X X | X
y = an X | X
Upp | X
X X X [x
[ d) X 1 1 (96)
J— 1 u22 X o s 1
B 1 1 U | X%
| X \ X X | X x | x

The g; are the diagonal entries of As, which are the poles of the system. Hence, each
elementary section realizes a pole of Z. In (9.6), we assumed that X is a SISO system. For
multi-input multi-output systems, the procedure is an extension of the above, and gives
(for an example of a system with two inputs and two outputs)

L = [ZZ (20X [ZiEe] B 9.7)
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{b)

Figure 9.1. (1) Z-based cascade factorization, based on a Schur decomposition of Ay. X
is a unitary embedding of 7': u — y which is the transfer of u; to y; if uz = 0.
(b) ©-based cascade factorization, based on a Schur decomposition of Ag,
where @ is the J-unitary chain scattering operator associated to X.

x X X X 1 1
1 1 X x x X
= 1 1 1 1
X X 1 X X 1
1 x ’ X 1 X ' X
1 1 1
1 1 1
X | x X X 1
X | x 1 X X
1 X X X X

¥’ is the terminating section of degree 0. It is in general a unitary matrix itself, which
can also be factored into elementary Givens rotations, and finally a unit-norm scaling.
The network structure that is obtained is drawn in figure 9.1, which is straightforwardly
derived from (9.7) by considering how a vector [x; x; ---X, u; up] is transformed in
elementary steps to [x{ x5 ---x, y1 y2l. The network is pipelinable: the signal flow is
strictly unidirectional (from the left to the right). It is also computable: given the current
values of the inputs and of the states, the outputs and the next states can be computed.
The network is specified by a minimal number of 2n + 1 coefficients (rotation angles).
Any strictly contractive LTI system T can be realized in this way, by embedding T into
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an inner system X such that 7= Z;;. As a matter of fact, it is not necessary to compute
the embedding completely: if X has a realization as in (7.8), viz.

R A C Cy R
z: I B D D]Q [ ’
1 By Dy Dp /

where {A, B, C, D} is the given realization of 7, and R, B,, D, are computed via a Riccati
equation, then only A, B and B, determine the factors Zi; (i=1,---,n, j=1,2), and Cy,
Dy, and Dy, are not needed. As far as the cascade factorization is concerned, it is even
possible to omit the state transformation by R [33], although this is at the expense of
a number of other matrix inversions, and we still have to compute R to determine the
extension by B,, D,; anyway. As an alternative to the above factorization of X, one can
convert ¥ to a J-unitary © operator with realization © (cf theorem 5.2), factor © in a
comparable way as done for E, and convert the factors back to the scattering domain.
This gives network structures as depicted in figure 9.1(b).

In the above two solutions to the factorization problem, the trick to determine a minimal
factorization was to compute a Schur decomposition of Ay (or Ag), which introduced as
many zero entries in X as possible. The remaining 2n + | non-zero entries below the
main diagonal of X induced a factorization of Z into 2n+ 1 elementary factors. There are
other structures of X, not requiring an (expensive) Schur decomposition step, which still
result in a factorization of X into 2n+ 1 elementary factors. However, this time we do not
ohtain a factorization of X itself into a product £, - - - Z,, so that the individual elementary
sections do not realize poles and zeros of Z, and the implementation is not truly a cascade
factorization in the sense used before. One possible structure that can be obtained via a
unitary state transformation is a Hessenberg structure of A and the first row of B, which
can be computed non-recursively:

X X
X X X
X X X X

X XX X X X
X XX X X X
X XX X X X

X X X

Z can be factored for example by acting on its columas, zeroing entries of rows n+ 1 till
row | in turn, In that case, the first two steps are

X X X 0f{x x 1 1
X X X 0[x x 1 1
X X 0[x X 1 1
Z= x 0]x x X | x X X
110 O X | X 1
X X X 0]x X 1 X X |
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Figure 9.2. Hessenberg lossless filter structure.

The factorization continues in a similar fashion, and the resulting network structure is as

depicted in figure 9.2 (viz. [28; 27, 32]). The network is again pipelinable., With more
work one can also act on realizations that are not normalized to be unitary, and again,
only a partial solution of the embedding has to be computed, since the last row of X is
not used in the factorization. In particular, if 7(z) is given as a ratio

_B(x) _bo+biz+- - +b,t!
T AR ltaiz+ - +a,zt

T(z)

and an extension 7,(z) = B.(z/A(z) is computed such that [T T,] is an isometry, then
a non-unitary realization of £ in Hessenberg form can directly be determined as the
companion form

( —d4 | ba—asby  boa—asb,p
1 0 —a3 | b3—abo b3 —aszbep

¥ = 1 0 (' %) b2 - tlzbo be,z - uzbe,o
Il —ay | by—aiby b1 —aib.o
1 bo beo
X X X X X X

L -

The cascade factorization can be computed from a factorization of . This yields the
same network as obtained earlier by S.K. Rao and Kailath [28], who derived a simple
and straightforward method for computing the factorization, based on the application of
Schur’s algorithm to an array containing the coefficients of the polynomials A(z), B(z) and
B.(2).

9.2 TIME-VARYING Z-BASED CASCADE FACTORIZATION
In this section, we extend the cascade factorization results based on realizations of ¥ in

Schur form to the context of time-varying systems. The network synthesis procedure is
roughly the same two-stage algorithm as for the time-invariant case:
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I. Using unitary state transformations, bring X into a form that allows a minimal
factorization (i.e., a minimal number of degree-1 factors). We choose to make the
A matrix of X upper triangular. This leads to a (R iteration on the {A,} and is the
equivalent of the Schur decomposition (eigenvalue computations) of A that would
be required for time-invariant systems.

2. Using Givens rotations extended by 7 to the correct size, factor Z into a product
of such elementary sections. From this factorization, the lossless cascade network
follows directly.

For time-invariant systems, cascade factorizations based on a state transformation to Hes-
senberg form have heen considered to avoid eigenvalue computations. In the time-varying
setting, eigenvalue computations are in a natural way replaced by recursions consisting of
QR factorizations, so this seems no longer to be an issue. The actual factorization (step 2)
is similar to the time-invariant procedure, and can be carried out locally. The main differ-
ence is that for time-varying systems, the dimensions of the state-space matrices need not
be constant, and a distinction has to be made between shrinking and growing state-space
dimensions. We first derive a global procedure for factorization into two lossless factors,
then look at the stages that are produced, and finally consider the factorization into ele-
mentary sections of local degree at most equal to 1. It is shown that it is still possible to
obtain a factorization X=X - - - Z,X’, where n is the maximal local state dimension over
all stages, and each Z; is a section of local degree at most equal to 1. In a sense, the result
is evident: by adding extra inputs and outputs, it is possible to expand the realization of
2 to a non-minimal realization which has # states at each point. However, the theorem is
more specific: the local state dimensions of the factors add up to the local degree of Z,
and we obtain a cascade network with a minimal number of coefficients as well.

Time-varying ‘Schur decomposition’

Let be given a unitary realization £ of a locally finite inner operator £. Let A = Ay €
D(B, BV) be the A operator of E. The first step in the factorization algorithm is to find
a locally square unitary state transformation Q) € D(B, B) such that

QAQTY" = R, 9.8)

where R € D(B, BC) has Ry upper triangular. If A, is not square, say of size d X dis1,
then R, will be of the same size and also be rectangular. In this case, ‘upper triangular’
is to be made more precise: it means (R);; = O for i > j+ (d — di+1) (figure 9.3). In
the case where dy, > di (figure 9.3(¢)), and if the increase in the number of states is 2
or more, it is possible to introduce extra zero entries in B too, as indicated in the figure.
These play a role later in this chapter. In the time-invariant case, expression (9.8) would
read QAQ" = R, and the solution is then precisely the Schur decomposition of A. In this
context, the main diagonal of A consists of its eigenvalues, which are the (inverses of the)
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poles of the system. In the present context, relation (9.8) is effectively the (unshifted)
(R iteration algorithm that is sometimes used to compute the eigenvalues of A = Ay, if
all A, are the same [34]. The iteration (or rather recursion) is obtained by expanding the
diagonal relation into its entries: QzAx(y,, = R, Or

1A = R - O Ry
hAy = R(s ) (9.9)
(343 = R34

Each step in the computation amounts to a multiplication by the previously computed ()¢,
followed by a QR factorization of the result, yielding Q44 and Ry. Given an initial Qg,,
e.g., Ok = I, the above recursion can be carried out in two directions, both forward and
backward in time. For example, take ko = 1, then the forward recursion is given by (9.9),
while the backward decomposition is

Ag Q; = QBRO — (o, Ro
A0y = QLR = (1, Ry
A—Z Q:l = Q:ZR—'Z

Since we can start at any kp with any unitary Qy,, the decomposition (9.8) is not unique,
although it always exists. For later reference, we formulate this result in the following
proposition.

PROPOSITION 9.1.  Let A € D(B, B™") be locally finite. Then a unitary state transfor-
mation ( € D(B, B) exist such that QAQCY* = R is a diagonal operator with all Ry is
upper triangular: if Ay has size d X di.1, then (Ry);j =0 for i > j+ (dp — din1).

PROOF The proof has been given in the text preceding the proposition. 0O

In the context of finite upper triangular matrices whose state realization starts with O states
at instant k = 1, we can take as initial transformation Q; = [ - ]. If the A, are equal to each
other, then the above recursion is precisely the (unshifted) QR iteration for computing
the eigenvalues (or Schur decomposition) of A. It is known (see [34]) that the unshifted
(R iteration will converge if the absolute values of the eigenvalues of A are unequal to
each other, and that the rate of convergence is dependent on the smallest ratio between
those absolute eigenvalues. For periodically time-varying systems, with period n say, an
initial state transformation Q, such that Oy = Q4 is also periodical can be computed
by considering the conjunction of n consecutive stages. Writing A, = AjA; ---A,, the
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(a) (b) ()

Figure 9.3. Schur forms of X;. (a) Constant state dimension, (b) shrinking state dimen-
sion, (c) growing state dimension.

Schur decomposition of A, ((hA,Q] = R,) gives Qy, while (9.8) gives (1, - - -, 0, in turn.
Recent investigations show that one can compute the Schur decomposition of a product of
matrices without ever explicitly evaluating the product [35]. The procedure is called the
periodic QR algorithm, and consists basically of an implicit shifted QR algorithm acting
over a sequence of matrices, rather than just one matrix. It starts with a preliminary
step, in which Ay, - - -, A, are made upper triangular, and A, is put in Hessenberg form
(upper triangular, plus one diagonal below the main diagonal). This step consists of QR
factorizations only. In subsequent steps, a shifted QR technique is applied, where the shift
is computed from the product of the lower right 2 x 2 submatrices of the A;, which is an
approximation of one of the eigenvalues of A,. The use of a shift greatly increases the
convergence rate of the algorithm, and after some iterations one of the below-diagonal
entries of A, is reduced to zero. At this point, the problem deflates to one of lower
dimensions.

Factorization into two factors

The factorization result (equation (9.2)), which stated that a time-invariant rational transfer
operator T has a factorization T = T, T3 if and only if its realization has a certain structure,
admits a straightforward generalization to time-varying inner systems.

PROPOSITION 9.2.  Let £ € D(Bx M, B=D x N) be unitary, with locally finite dimen-
sions, and have a block partitioning as

Ay Ap | G

T = (9.10)

By

where A, € D(BI,BY”) for some state-space sequence B, — B. Define the space
sequences N and B, by the relations By X M = Bf‘“ x N, and B = By X 5,.
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1. Then unitary operators £, %, exist, with £, = {A11, B\, C|, D1} € DB xM, BV
Nl )7 22 - {A22) Bz, CZ) D2} € D(BQ XNl, B(_l) XN), SULh thﬂl

A11 Cll I
= I An | G | = Ei%,. ©.11)
Bi | Di B} | Ds

2. If X is an inner operator with unitary realization I of the form (9.10), with £a; < 1,
then X = 2, 1,, where %, I, are inner operators with unitary realizations given by
z, $,, with La,, < 1, s, < 1. The sequence of state dimensions of I, X, add up
to the sequence of state dimensions of X: the factorization is minimal.

PROOF

1. Consider [A], B}]". It is an isometry in D because Aj;A1; + B{B; = I. Choose
C!{, D, € D such that, for each point k,

Ak (Ck ]

(B0 = { B (D)

is a unitary matrix. Then X, is a unitary operator in D as required, and the number
of added outputs is #(N) = #(B)) — #(B{™") + #(M). Because [A], 0 B]]" is also
the first column of X, it directly follows that /X = X, has the form speciﬁed in
9.10).

2. The fact €4, < 1 = fa, < 1, 4a, < 1 is straightforward to show. With £4, <
1, 4a,, < 1, the unitary realizations . $, define inner operators Xj, 2, (theorem
4.6). The cascade X, X, has a realization £, Z, = X as in (9 10), and hence £ = 2.
The factorization is minimal because (with £, < 1) Zl, Zz are minimal realizations,
whose degrees add up to the degree of Z. a

Some remarks are apposite here. First note that if £4; = 1, and Z is a unitary realization
with controllability and observability Gramians equal to the identity, then %, inherits the
fact that the controllability Gramian is 7, but if £4,, = 1, then nothing can be said, at first
sight, of its observability Gramian, and hence the fact that X is inner is not proven in this
case. Second, note that all computations can be carried out locally (separately) for each
stage k. The state dimension sequence By determines the degree of the factors, and also
the number of outputs (inputs) of £; (£;). The choice of By is restricted by the required
form of (9.10), i.e., the fact that Ay; =0.

The above proposition can be formulated in a different way that provides some additional
(more fundamental) insight.
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PROPOSITION 9.3, Let T be a locally finite inner operator. Then
I=%% = HE)=HEZ)®HE)Z,
where X, and X, are inner operators. Conversely, let X, be an inner operator, then
HE)CHE) = =L,
where X, is an inner operator.

PROOF For an inner operator Z,, we have that ILX5 = Uy @ H(Z,) (proposition 4.1).
Consequently, M2 X" =l Z] ® H(Z,)Z], and because X} € L,

HE) = Prz(hE)
H(E) © Pryi(HED)E])
H(E) ® HE)E;.

Conversely, the fact that £, = Z1Z is a unitary operator is clear, and we have to show that
it is in fact upper. Indeed, since £ € U,

P (hT) = Prgi(hEiE)

Pr,z1(H(Z1)Z)
c Prr2HEZ) =0 [prop. 4.1]

so that the lower triangular part of X, is zero. O

Hence, in order to obtain a factorization of Z, we can select any inner X; such that
H(Z1) © 'H(Z). A suitable X is again obtained from equation (9.10): a minimal realization
based on Aj; and By has H(Z)) = Py [B1Z(I-AnZ)y™"|" = [P 01 [[B1 Bylz(i-AZy ")
because Az; = 0, so that indeed H(Z;) < H(X). I, is obtained, as in the proof of
proposition 9.2, by extending [A], B7]" to a unitary state-space operator. Special cases
occur if (By ) = 0 for some &, although the propositions remains valid. The following two
situations are typical.

o If #(B1)s1 =0, with #(B,), =d >0, then (A} ) is a (dx0)-matrix. In this case, X
has the form

(as before, ‘- stands for an entry of zero dimensions) so that

1o 0l ©
E e = [ 5 1], (S k= 110 0
0[]0 1

X, is a trivial state-space operator mapping its first d states to d outputs. If d = 0,
then (Zy) =1.
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X1,k
Uk fl\ Yk
Uik Yik J\\r
Uk Y2.k U Y2,k
(@) (c) X1ke1
X1k Uk —j
I——— Yik U,k Yik
Wk Y2k
U2k Yk
() (d) X1 k+l

Figure 9.4. Elementary sections in a stage. (a) C(0) constant section with zero states, (b)
S section, going from 1 state to 0, (¢) C(1) section with a constant number of
1 states, (d) G section, going from O to 1 state. The number of inputs/outputs
have arbitrarily been set to 2.

o If #(B ) =0, #( Bt =d 20, then (f:l )k is obtained as the extension of (B{) to a

unitary matrix:
F0e = [(Bl)k Dx ] '

Note that this case can only happen if (As); has its first d columns equal to zero:

(Axh = [ 0 (A2‘2)k ] ,

that is, in view of figure 9.3, this can only happen at points where the state dimension
of X grows with at least d states.

Elementary lossless stage sections

We apply proposition 9.2 to the most elementary type of state dimension sequence Bi:
B, with entries having dimensions #(B,), € {0, 1}. In a later section, we discuss the
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choice of By; here, we consider the factorization of a single stage of X, and pay detailed
attention to the fact that input/output and state dimensions can be time varying. With a
partitioning of X as before in (9.10), a factor £, of ¥ is determined by finding a unitary
extension of the matrices (A1), and (B ). The purpose of this section is to show how
an extension can be obtained in factored form using elementary Givens rotations. With
#(B1) € {0, 1} and #(B\ )k € {0, 1}, the submatrix (A;;), can have only the following

sizes:
C0): 0x0, S 1x0,
C(l) . Ixti, G: Oxl1.

The cases C(0) and C(1) describe sections with a constant state dimension, while G, S
stand for sections with growing and shrinking state dimensions, respectively. We discuss
these sections in turn.

C0): (ﬁl)k has the form (ﬁ; W = [—}TJ See figure 9.4(«). Obviously, a C(0) section

can always be extracted, but doing so does not lead to a degree reduction. Nonethe-
less, it plays a role as padding section in the description of a global factorization
of Z into a constant number of sections, later in this chapter.

S: (Er) has the form (£)), = [ : é (1) J See tigure 9.4(b).
C(1): Let a = (A1), and suppose that T has # inputs at point &, so that b = (B ) is an
nx 1 vector. Then (), is a unitary extension of the vector [a* by - byl Of

the many possible extensions, one that results in a minimal number of coefficients
is obtained using Givens rotations, which gives the extension directly in factored

form:
Ee = Eue- - Es (9.12)
¢ | - IO —8) ¢ | —S$p
_ S; C1 1 o 1
- 1 S; [89) 1
1 1 sy Cn

where ()4 is used to zero the (i + 1)-st entry of the vector ()A.Tl)f_l)k . -(ﬁll)‘[’k [¢]
against the first entry. The computational structure (for n = 2) is shown in figure
9.4(c).

G:  In this case, (A1) =[], and (ﬁl )k 1s a unitary extension of the vector b = (B ).
Again, the extension can be found in factored form, now requiring n — 1 Givens
rotations. See figure 9.4(d).

The four types of elementary stage sections in figure 9.4 form the building blocks of the
cascade network realizations based on the Schur form. General structures are obtained
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by connecting these sections horizontally (realizing a single stage in factored form) and
vertically (realizing an elementary degree-1 factor of Z). These are discussed in turn.

Structure of a factored lossless stage

A single stage X; of T has, after transformation to Schur form, one of the three struc-
tures displayed in figure 9.3, depending on whether the state dimension of X is constant,
shrinking or growing at point k. The factorization procedure is to recursively extract
elementary factors of one of the above types. If the state dimension of Z; is constant,
then its factorization is precisely the same as in the time-invariant case (equation (9.7)):
suppose

C g X X X|x x
X X X|[x x
X X|[x X
L = x| x x
by X X X|X X
| by x X X|Xx X
then factoring of a C(1) section (X)), leads to
[1 0 0 0]0 0]
X X X|[x X
. _ X X|x X
EnE = < | x x
0 X X xX|x X
| 0 x x X|X X |

Continuing recursively, we obtain a factorization as X, = k- T X, where each
degree-1 elementary section X;x is of C(1)-type and has a factorization as in (9.12). X, is

the residue [L*T] where D is a unitary matrix. X; plays the role of a constant (non-
k

dynamic) termination section, and can also be factored into elementary operations (using
G-like sections, which result in a Gentleman-Kung triangular array). The corresponding
network structure of a single stage is depicted in figure 9.5(a).

In the case of a shrinking state dimension, we have for example

B 1

X X X|x x x
X X X|x X X
X X|xX X X

¥ =
k x| x x X
X X X|X X X
|- x X X|x x X
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X1k X2,k X3k X4,k

Wk

U2,k Y2.k

— Yk

(a)
X1,k X2,k X3k
|
o /iL /'|\
Utk \ : Y3k
(b) X2,k+1
X2,k X3k X4,k
| | |
- /l\
Y....r ”
) X3kl X4+

Figure 9.5, Lossless cascade realizations of a contractive system 7, stage k. (a) Constant
state dimension, (b) shrinking state dimension, (¢) growing state dimension.
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Of necessity, the state dimension of the first factor has to be #(Bi) = 0, for else

#(B1)x > 1. With an elementary section of S-type as the first factor, we obtain

['x x ]
X

ENE= |

X X
X X

X X X|X X X

X X X|X X X
X X X|X X X
X X X[X X X

d

so that, effectively, the first state has become an input of the subsequent factors. At this
point, the factorization contintues with the factorization of a realization with constant state
dimension, which case has been covered above. The resulting network structure of the
lossless stage is shown in figure 9.5(b). If the state dimension of X, shrinks by d states,
then a number of d § sections can (and have to) be extracted.

Finally, if the state dimension of Z; grows, for example

0 X X Xx|x
X X|x
Zk = X | X )
b X X X|X
by X X XxX|X

then the first section is necessarily a G section. It cancels b, against b, after which

1 0 0 0|0

X X X|x

E ey = X XX
X | X

0 X X X ] X

The first input u;; has effectively been mapped to a new state xjx1 by (Ej). The
first column and the first row of B do not play a role in the subsequent factorization,
which again is reduced to a factorization of a realization with constant state dimension,
as above. The corresponding network is depicted in figure 9.5(c). If, more in general, the
first d columns of A would have been zero, then the first d sections of the factorization
would have been G sections. For minimality of the factorization, we must require that
the top left d xd submatrix of By has been made upper triangular by suitable unitary state
transtormations, in the process of the transformation to Schur form.

Algorithm 9.1 summarizes the procedure for the general case where A is of size di Xdiy1.
When the state dimension shrinks, i.e., di > di41, then the first dy — dy,; states are treated
as inputs rather than as states, but the actual factorization algorithm remains the same.
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In: X={AB (D} (Ag : di X dis1, My inputs, N; outputs)
Out:  {(Zjh}), {(Eh} (elementary rotations: factors of X;)

=[]

fork=1,---,n

zk:=[Qk I]Zk

—if di > diyq (“shrink’), move first dy — diy1 rows of [Ax Ci] to [Bx Dg].

— il di < dpyy (grow’), move first dy,; — dy rows of [By Di] to [Ax Cil.
Ar = Ris1 Ora1 R(Q)-decomposition of A

Zk :=zk [ Qk+l I :,

fori=1,---,dx
forj=1,---, N
[ Ee = givens'[Au, ); Bi(j, )]
Z = Eyh
end
end

3 =Dy, (also factor termination section)
fori=1,---,Ng
forj=1,---, Ny
S = givens[E'(, i TG, )]
x = (B WEy
end

L end
end

T givens{a; b]: see equation (9.4).

Algorithm 9.1. The factorization algorithm.
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Figure 9.6. (a) Lossless embedding and cascaded network structure of 7': u — y, a 10x10
upper triangular matrix with local state dimension < 3. Outputs marked by
“*> are ignored. (b) Same as (a), but now displayed as a factorization of X
into three degree-1 sections and a ‘constant’ termination section.
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However, if the state dimension grows (dx < di+1), then some inputs are treated as extra
states in the factorization algorithm.

With the three types of stages given in figure 9.5, we can describe all possible stages
that occur in locally finite unitary realizations that are in Schur form. It has already
been mentioned that the stages can be factored independently of each other. The cascade
network structure of the complete state realization X then follows by piecing together the
results of the individual stages. An example network is shown in figure 9.6(a). In the
example, we consider a 10X 10 strictly contractive upper triangular matrix 7, with 1 input
and 1 output at each point, and a state dimension sequence B given by

#8 =100,1,2,3,3,3,23,2,1,0].

T has an embedding into an inner operator X, with block decomposition

_ Zi T
2‘[221 z‘/zz]'

Hence T is the partial transfer operator of X from the first input to the second output when
the secondary input is put to zero.

Factorization into degree-1 lossless sections

At this point, we have described a global cascade factorization procedure (proposition
9.2) of a locally finite inner operator X into two factors £, and Z,, and we have derived
some of its implications with respect to the factorization at the local (stage) level. It now
remains to make precise the remark at the end of the previous subsection that the local
stages can he ‘pieced together’ to yield a global cascade factorization.

Let he given a locally finite inner operator ¥, with state dimension sequence B. The
objective is to compute a factorization £ = X, -.-X,X’ into a minimal number of n
degree-1 sections, and a terminating diagonal unitary operator £’ (a ‘constant’ section).
A related question is: what is the minimal value of n? It is clear that n is at least equal
to the maximal number maxy #(B), of states of X that are present at any stage. We show
that n can in fact be equal to this number.

In view of proposition 9.2, there remains to determine a possible state sequence B of
the first factor £;. The other factors are then obtained recursively, by factoring Z1Z, until
the state dimension has been reduced to zero. The remainder X - - - X} is then equal to
the constant section X’. The number of states #(B)), of the first factor is allowed to
be at most equal to 1 at each stage k, in order to obtain a degree-1 section. The other
constraint on B is the fact that (4;,) in (9.10) must be equal to zero (or have vanishing
dimensions) for each k. The discussions in the previous paragraph have shown that, as a
consequence, within a stage it is not possible to extract a C(1) section before an S section

or a G section. A trivial C(0) section can always be extracted.
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The following choice of B, satisfies the constraints. Let n = max, #(B),. Then B is given
by
I, it#By=n,

#B1) ={ 0, otherwise. ©.13)

Indeed, with this B, we extract as many stages with C(0) sections as possible (which do
not have constraints), and only extract other sections where factors X, till £, must have
states anyway. At the same time, B) is such that it reduces the degree of Z: XX has a
maximal state dimension n— 1. Acting recursively, we obtain a factorization of X into n
sections, each of which has local degree at most 1. The results are summarized in the
following theorem.

THEOREM 9.4.  Let Z be an inner operator which is locally finite with state dimension
sequence B, and strictly stable. Let n = maxg#(B),. Then X has a factorization

=3 5%,

where each X; is a strictly stable inner section of local degree at most 1 (maxg#(B;), = 1),
and whose local degrees add up to the local degree of L (3, #(Biy = #(B)). T’ is a
unitary diagonal operator.

PROOF According to theorem 4.5, Z has a unitary realization £. The realization can be
put into Schur form by unitary state transformations (proposition 9.1). Next, choose B
according to equation (9.13). We first show that B, generates a partitioning of A = Ay
such that, for all &, (A21)¢ = 0 or has vanishing dimensions. Indeed, as long as #(B), <n
and #(B)e < n, we have #(B)), = 0 and #(By )1 = 0 so that (A1), = [-]. At a certain
point k, #(B); < n and #(B)i = n, and tigure 9.3(c) shows that in this case we can put
#(B) k1 = 1, which makes (Az1), equal to the first column, consisting only of zero entries.
While #(B), = n and #(B)k.1 = n, Ay is an upper triangular matrix, so that we can put
#Bi) = 1, #(B1)ks1 = | to obtain (A1) = 0. Finally, when #(B), = n and #(B), < n,
Ay has the form shown in figure 9.3(b), so that we have to put #(5 ;)1 = 0, which gives
(A21)¢ = [-]. Hence B, satisfies the requirements, so that, according to proposition 9.2, we
can extract a factor ;. We can continue in the same way with Z1X, which has a maximal
state dimension equal to n— 1. This degree reduction is because we had #(B;)}; = |
whenever #(B); = n. Acting recursively, we end with £’ = X .. - Z1Z having 0 states, and
hence X’ is a unitary diagonal constant. O

We can write the 10 X 10 example in figure 9.6(a) in factored form, as obtained by the
above theorem. The resulting cascade factorization is displayed in figure 9.6(b). The
actual structure is the same as given in figure 9.6(a), but the elementary stage sections
are now grouped vertically into sections, rather than horizontally into stages.
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Computational complexity

The computational complexity of the cascade network is, at each stage, linear in the
number of elementary operations. This is in contrast to a direct network realization of
a given state realization {A, B, C, D}, which would have quadratical complexity. If the
network consists of NV stages and if the average number of states in a stage is d, then
the number of elementary operations required for a vector-matrix multiplication using
the cascade network is of order O(2dN) rotations, rather than O( %Nz) multiplications
for a direct vector-matrix multiplication. (The complexity of a rotation operation is 4
multiplications for a direct implementation, but less if a special hardware implementation
(CORDIC)is used.) Hence, if d < N, a considerable reduction in the number of operations
is achieved. In addition, the network is numerically stable. All elementary operations are
rotations, which means that the network is lossless and does not amplify numerical errors
introduced at any point in the computation.

9.3 TIME-VARYING ©-BASED CASCADE FACTORIZATION

In the previous section, we embedded the given contractive operator T in a unitary operator
%, and subsequently factored this operator into elementary sections. The result was a
computational network consisting of unitary Givens rotations, with a data flow strictly from
the left to the right, and from the top to the bottom. An alternative cascade factorization
is obtained by computing the J-unitary operator © associated with Z,! factoring © into
elementary J-unitary sections ©;, and converting each of the sections to their unitary
equivalent. The result is again a minimal factorization of the unitary realization X of T
into degree-1 realizations, although the factorization is different from the one we obtained
earlier. The order of the computations in this factorization is such that the corresponding
cascade factorization of X can no longer be written as a product of elementary unitary
sections.

The reason for studying ©@-based factorizations is at least twofold. Firstly, they lead
to different realizations of unitary operators X, also specified by a minimal number of
parameters. These realizations may have different numerical properties with respect to
parameter sensitivity (although we do not go to that level of detail). Secondly, the same
type of networks are obtained in the solution of a number of other problems. For example,
the solution of certain constrained interpolation problems, such as the Nevanlinna-Pick
interpolation problem [36], or the solution of the Nehari problem and (more in general) the
model approximation problem in chapter 6, leads to ©-based cascade networks. This is of
course not coincidental: the description of the solution of these interpolation problems also
gives rise to J-unitary operators ©. Upon factorization of @, each factor contains a single
interpolation constraint of the original problem. Other problems where networks of the

!In this section, we assume that the reader has knowledge of the contents of section 5.1.
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same type occur are in the Generalized Schur algorithm for inverse Cholesky factorization
[37, 38], and (time-varying) prediction-error filters and RLS adaptive filters [39].

We will first derive some factorization results for J-unitary upper operators, and then
specialize to the case where the state signature sequence equals Jg = I. Subsequently,
we derive the corresponding factorization of X, and the computational network that this
factorization of X represents.

Factorization into J-unitary elementary sections

The J-unitary factorization into elementary sections is again straightforward once a general
factorization into two J-unitary factors has been derived. The latter is formulated in the
following proposition, comparable to proposition 9.2.

PROPOSITION 9.5. Let © € D(B x M, BED x N) be J-unitary, and and have a block
partitioning as

Cy (9.14)

B, B

where A € D(BI,BE_“) for some state-space sequence B, < B. Define the space
sequences Ny and B, by the relations By x M = B}'l) XN, and B = B X B.

1. Then J-unitary operators ©,,0, exist, with €, = {A;;, B, C|,D1} € DB x
M, BED XA, 6, = {An, B, Cy, D2} € D(By x Ny, BSY X N), such that

A11 Cl’ I
9 = 1 A22 C2 =9162. (915)
B, | Di B} | D,

2. If ® € U is a J-unitary operator with a J-unitary realization © of the form (9.14),
and if £aq < 1, then © = ©,0,, where ©,, ©, are J-unitary operators with J-unitary
realizations given by ©1, Oy, with £, < 1, £4,, < 1. The factorization is minimal.

PROOF The proof is the same as in proposition 9.2, except that now a J-unitary extension
of [A}, Bj]" must be found. The existence of such an extension was proven in lemma
5.18. The extension yields ©;, and ©, then follows from ©7'© = @,, which has the
form specitied in (9.14). wi

In order to obtain a factorization into elementary sections of local degree < 1, we choose
B, as in equation (9.13), viz.

1 if#Bx=n
0 otherwise.

#Biy = {
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With this choice, theorem 9.4 can be adapted to J-unitary operators:

THEOREM 9.6.  Let © € U be a J-unitary operator which is locally finite with state
dimension sequence I3, and strictly stable. Let n = maxy #(B)x. Then © has a factorization

© =000,

where each ©; is a strictly stable J-unitary section of local degree < 1 (max; #(Bi) = 1),
and the local degrees of the ©; add up to the local degree of © (_, #(Bi) = #(B)). ©’
is a J-unitary diagonal operator.

PROOF The proof is the same as that of theorem 9.4, but now refers to proposition 9.5.
0

There remains to investigate the structure of an elementary J-unitary section.

Elementary © sections

We now describe the factorization of an elementary J-unitary section of local degree at
most equal to 1 into (J-unitary) Givens rotations. The resulting structure of the factored
section is the same as in the unitary case, because the same sequence of operations is used
to do the factorization. However, the type of each elementary operation is now either a
unitary or a J-unitary Givens rotation. To keep the discussion manageable, we assume
from now on that all state signatures are positive, as this will be the case in our future
application.
As in the unitary case, we assume that a J-isometric column [A], B}]" € D is given,
where each matrix (A;1); of the diagonal has dimensions at most equal to 1. This column
is extended to a J-unitary realization ©,, to be obtained in factored form. It is sufficient
at this point to look only at the factorization of a single stage of the degree-1 section.
With #(B) ), € {0, 1} and #(B) w1 € {0, 1}, the four possible sections in a stage are again
described by the dimension of (A )x as
C(0): 0x0, S: 1x0,
{C(l): Ix1, G: OxI.

The cases C(0) and § result in the same (trivial) sections as before:

A n A 10
(91)k=[—_,7} resp. (91)k=[. 0 []

(see tigure 9.7(a),(h)). The case C(1) is more interesting and follows from a factorization
with Givens rotations of vectors of the form

ba+ _ [ ((f;u)k } ’
b 1k
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X1,k

wik
Uk + + YLk
Uk — — Y2 sk — % = Y2k
+
(a) {c) X1 k41
X1,k Uik
.
e ik uok — YLk
Uk + Y2k
T —— Y3k
() (d X1k}

Figure 9.7. Elementary J-unitary sections in a stage. (¢) C(0) constant section with zero
states, (b) S section, going from 1 state to 0, (¢) C(1) section with a constant
number of 1 states, (d) G section, going from O to 1 state. The number of
inputs/outputs have arbitrarily been set to 2: one with positive signature, the
other with negative signature. The shaded circles represent J-unitary Givens
rotations.

where « is a scalar and b = [ bﬁ] is partitioned according to the signature of the inputs at
that point. The factorization is obtained in two steps,

! / 1"

a a a a
O |5 |=] 0|, |0 |=]|0
b b_ b_ 0

Here, (61 1)x consists solely of unitary Givens rotations, used to cancel the entries of b
against g, while (91 2)« consists only of J-unitary Givens rotations. See figure 9.7(c). Note
that the unitary scattermg operator (Zl 1 )% corresponding to (91 1 )¢ is the same because
it is already unitary: (21 e = (61 1) The factorization of a G section results in a
comparable structure, and can also be described as CAE (91 De(O12) = &, [)k(el 2k
As the same can obviously be done for the C(0)- and the § sections, the overall result is
as follows.
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LEMMA 9.7.  Let [A], B]" € D(B) xM, Bﬁ'”) be {I, Ja }-isometric:

.ol A
[A”Bl][ JMHBlll]zl’

and assume that its state dimension sequence I3; has dimension at most equal to 1 at each
point. Then this column has a J-unitary extension to ©; € D(B) X M, B§'” x N') such
that

A

6 = 6,0,=-%,08,

X | X X | X
X | X 1

X

I X
(where partitionings are according to J a4 ).

With theorem 9.6, the result is that if © is a J-unitary operator which has a J-unitary
realization © with state signature sequence Jz =/, then © has a factorization into unitary
and J-unitary factors as

O0=1[Z,01] [Z,:022] - [£,10,2] O (9.16)

LEMMA 9.8.  If © has factorization (9.16), then the corresponding X has factorization
=212 Z ] B [0 - 290X 0] (5.17)
in which ;3 <> X5, 8’ < ',
PROOF We first argue that © in (9.16) can be written as
O=[Z1,%) - Z,1] [0126,;--6,,] -6’ (9.18)

Indeed, because X;; and ©;,, for i#j, act on different state variables and on differ-
ent inputs, their order of application may be reversed: ©;,X;; = X;10;,. This allows
to transform (9.16) into (9.18). Omitting the details, we mention that the transition
from a ©-representation to a Z-representation is obtained by reversing the computational
direction of the secondary inputs and outputs. This does not affect [Z;,Zy---Z1]
as only the primary inputs and outputs are involved, while [©,,60,,---6,,] - 8’ <>
2" [Z,2---Z;2%),]. This leads to equation (9.17). 0

The structure of © according to the above factorization of @ is depicted in figure 9.8(a).
It is the same as the structure of the network of X given in figure 9.6(b), but contains
both unitary and J-unitary rotations (represented by shaded circles). The structure of X
corresponding to this factorization of O (figure 9.8(b)) is again the same, but the order
in which computations are done is not only from left to right, but partially also from
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right to left. Within a single stage, suppose that the inputs and the current state variables
are known. In order to compute the next states and the outputs, first all rotations going
from left to right have to be performed, and only then the next state variables and the
output at the left can be computed. The network is said to be non-pipelinable, and the
computational dependency, going from the left to the right and back to the left again, is
said to be the computational bottleneck. This bottleneck is not present in the network
in figure 9.6, and hence, from a computational point of view, a direct factorization of T
yields a more attractive network.

Note that this network of T is a special case of the type of networks that has been obtained
in the model reduction problem (cf. figure 6.8). In chapter 6, more general networks were
obtained because the state signature of @ was allowed to contain negative entries too.

®-based cascade factorization of 7

Let T € U be a given strictly contractive locally finite transfer operator. The process of
realizing T via a ©-based cascade starts with the orthogonal embedding of T in a unitary

operator Z, such that
E[l T
= 9.19
[ Iy In; ] (4.19)

where we have set £, = T. The next step is to convert X to ©, which requires the
invertibility of X,,:
o= Tu-ZpZaia -Znin
27328 b2y

© is an upper operator only if £5} is upper. As the factorization of @ in the previous
subsection required © to be upper (so that it has a causal realization), we see that Xy,
should be outer and invertible in order to obtain a ©-based cascade factorization of X. If
this requirement is satistied, then a J-unitary realization © of © is obtained in terms of a
unitary realization X of X as

A- C2D5%B2 | C, - CzDE%Dgl -—CgDE%
Dy, = ©O=| B -DnD3B, [ Dy —DinD3Dy —-DiaDy)
By | D3y Dy DEéBz DE%DZI DE%
(9.20)
Note that if 3} would not be upper, then we would by necessity obtain £,, > 1 at
this point. The factorization proceeds with a state transformation to make Ae upper
triangular at each stage, which requires the time-varying Schur decomposition discussed
in section 9.2. © is subsequently factored into elementary sections, and conversion to
scattering operators finally produces a factorization of X as in equation (9.17), and in a
computational network as in tigure 9.8(b). In this figure, T is the transfer operator u — y
if the inputs at the right are put to zero.
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However, the above is only possible when I3} is outer and invertible. With Z given as
(9.19), when is this the case? A necessary condition for invertibility is that £3,%p, > 0,
and since X3,%,; = I-T"T, it follows that T must be strictly contractive. In this case, and if
in addition the realization of T is observable, corollary 8.11 has shown that the embedding
algorithm (theorem 7.5) yields Z,; as an outer spectral factor of /— 77T, Hence, if T is
strictly coniractive, Zy; is outer and invertible automatically, and T has a ©-based cascade
realization. This is the reason why we have put £i, = T in equation (9.19).

The ©-based cascade network of I represents a filter structure which is well known
in its time-invariant incarnation. In this context, one typically chooses Zi(z) = T(z),
because then the transmission zeros of Z(z), the zeros of X;i(z), are equal to those of
T(z). Simultaneously, the zeros of Zx(z) are directly related to those of Zy;(z) (they
are ‘reflected’ in the unit circle). The point of using this filter structure is that these
zeros appear as the zeros of the individual sections of the cascade, and hence they are
individually determined directly by the parameters of the corresponding section, rather
than by the combined effect of all parameters. It follows that the zeros of 7(z) are highly
insensitive to parameter changes of the cascade, which makes the construction of filters
with a well-defined stopband possible, even if approximate parameters (finite word-length
implementations) are used.

However, note that in the time-varying case, using the above-described procedure, it is not
possible to choose Z;; = 7, because Zp; will in general not be outer and in this case Ae in
(9.20) is not stable: £4, > 1. In the time-invariant case, this does not pose real problems:
even with the eigenvalues of Ag larger than 1, it is possible to factor © in the same way
as before, which ultimately results in a stable cascade filter back in the scattering domain.
There is no apparent reason why the same would not work in the time-varying domain:
currently, the limitation seems to lie in the fact that we always require our realizations
to be stable, in order to associate a transfer operator to it via (/ — AZ)™'. The foregoing
factors provide reason to investigate (in other research) cases where the A-matrix contains
both a stable and an anti-stable part. Because of state transformations, these parts can
hecome mixed, and one of the first issues to address would be, given an A operator, to
decouple it into stable and anti-stable parts.
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Chapter 10

CONCLUSION

At the end of this thesis, we have reached the point to reflect on what has been achieved.
We indicate some potential applications and point out directions in which additional re-
search is required. Once more, the application of computational linear algebra is consid-
ered, and in particular how the theory for upper triangular matrices can be generalized to
apply to the usual type of matrices that are ‘mixed’ upper and lower. A second application
area concerns the control of time-varying systems. We discuss the generalization of the
H.. control problem of time-invariant systems to the time-varying context. Although the
control of such systems in practice is still out of reach, with the theory in this thesis the
operator-theoretic results of Feintuch and Francis [1] can now be put into a computable
algorithm acting on state-space matrices.

10.1 APPLICATIONS TO COMPUTATIONAL LINEAR ALGEBRA

Most of the algorithms derived in the previous chapters were specified in terms of ‘upper’
matrices or operators. Because dimensions are permitted to be non-uniform, it is perhaps
best to stress again that upper in this context really refers to matrices that are block upper,
as shown in figure 10.1(¢), and it may well be that such generalized matrices are not truly
upper triangular in the ordinary linear algebra sense. Computations on these matrices can
be done more efficiently if the ranks of the Hankel matrices, the top-left submatrices, are
all relatively small compared to the size of the full matrix. If this is the case, several orders
of magnitude of computational effort may be saved if a state realization of the matrix is
used instead of the matrix itself: for N X N matrices with less than d states at each stage,
algorithms that require O(N?) (for some p) operations are typically replaced by algorithms
of order O(dPN). This is because all information in the matrix is condensed in N matrices
whose size is of the order of dxd rather than NXN. Because a realization is unique only up
to a state transformation, this transformation can be used to derive ‘sparse’ realizations,
which permits us to reduce the number of operations even further. For example, the
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Figure 10.1. (a) Block-upper matrix, (b) mixed upper-lower matrix.

cascade factorization in chapter 9 reduces the multiplication of a vector by a contractive
matrix to O(2dN) rotations, which is comparable to O(4dN) multiplications if specialized
rotation modules are used.

However, the computational advantages are not limited to block-upper matrices. Matrices
which are of mixed upper-lower type (that is, ordinary block-matrices, such as depicted
in figure 10.1(»)) can also be considered, by converting them to block-upper matrices.
This may be done in several ways. For example, such a matrix X can be decomposed
as the sum of an upper and a lower matrix: X = Ty + Tz, in which both Ty and 77 are
required to have a sparse state structure. X can also be factored as the product of a lower
and an upper matrix: e.g., X = U'T, where U is inner (upper and unitary) and 7 is upper.
Such a matrix U can be computed from a coprime factorization of 77: Let 7; = A*U be
a factorization as in section 4.2, where U is inner and A is upper, then UT; = A € ¥, and
hence UX =: T is upper. A construction as in equation (4.12) provides a state realization
of U in terms of one of T}, and a realization of T is computed by composing a realization
of A (as in equation (4.13)) with one of UTy.

Using these decompositions, one immediately obtains efficient ways to do calculations
with the general block-matrices, by reducing them to calculations on upper (or lower)
matrices with sparse realizations.

1. Multiplication of a vector u by X can be done in two ways: uX = uT y+uT}, (parallel),
or uX = (uU")T (cascade). Both computations involve a forward recursion and a
backward recursion. The first way is to be preferred because the recursions are
decoupled, and because the total number of operations is lower than in the second
case.

2. A OR factorization of X can be obtained in two steps. The first is, again, a fac-
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torization X = U*T. Using the observation made in section 4.2 that an inner-outer
factorization of a block-upper matrix is in fact a QR factorization of this matrix,
an inner-outer factorization T = VTy is computed using algorithm 4.1, so that a
(IR factorization of X is obtained as X = (U*V)Ty. Note that X = UT is not yet a
(R factorization of X, because T is a block-upper matrix rather than a ‘truly’ upper
triangular matrix: if the number of states in the lower part of X is time-varying, then
the dimension sequences of 7 are non-uniform even if X has uniform dimensions,
so that the inner-outer factorization of T is required in order to obtain a T which
is ‘truly’ upper triangular.

3. If X is invertible, then X! is obtained from the above QR factorization as X =
T,' V" U. The role played by the factorization into inner and outer factors is essential
in cases where T is a matrix with non-uniform dimension sequences, as the inverse
of T need not be upper in this case (as exemplified in equation (2.16)). Since Ty is
outer, its inverse is known to be upper and hence there is an easy formula for its
state realization in terms of the realization of T, see equation (1.3).

4. A spectral factorization can be used to obtain the Cholesky factor of a positive
Hermitian matrix. This has already been described in chapter 8.

Generalizations are obtained by considering ‘infinite’ matrices, or operators. As with up-
per matrices, one can consider infinite matrices with borders that are constant along the
diagonals (this corresponds to systems which are time varying only on a finite interval),
periodical cases, and, more in general, infinite matrices which have strictly stable realiza-
tions, so that the associated Riccati recursions converge from approximate initial points.
In the latter case, the matrix is ‘diagonally dominant’ at the borders, and only the interval
in which the matrix is of interest needs to be considered in the computations.

One application in which such general matrices of very large dimensions arise occurs in
the modeling of parasitic capacitances of a VLSI circuit [2, 3, 4, 5]. A discretization of
the physical relations lead to a finite element matrix, where the (i, j)-th entry describes
the potential induced at a point in space labeled j, caused by a point charge at position
i. The matrix is positive definite, and has a banded structure. If the circuit consists of
a repetition of a certain cell (e.g., a memory cell), then the matrix is periodical, and if
the substrate is much larger than the circuit (‘infinitely’ large), then the matrix is constant
outside a finite region. The objective is to compute the inverse of the matrix, as the
entries of the inverse are the capacitances between points in the circuit. It is sufficient
to ohtain an approximation of the inverse, as only the larger capacitances are of interest.
The technique described in [2, 3] consists essentially of the Generalized Schur method
as discussed in section 8.5, and will determine a spectral factor of an approximant of the
inverse which has zero entries outside a band of interest. To determine this factor, only
the entries of the original matrix on the same band need to be known. Matrices specified
on multiple bands are considered in [5].
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There are several issues in the above computational schemes which require further atten-
tion. For example, given some matrix, efficient algorithms are possible if it has a sparse
state structure, that is, if the sequence of Hankel matrices of X and X* have low rank.
Since we allow non-uniform dimension sequences, these ranks can be different for differ-
ent matrix partitionings, and the first problem is to determine a suitable block-partitioning
of the matrix such that all Hankel matrices have low rank (assuming this is possible).
A second, related, step is to capture the structure, i.e., to determine a realization for X.
Algorithm 3.1 can be used to this end, but the SVD occurring in the inner loop of this
algorithm might make the algorithm computationally prohibitive. Since the Hankel ma-
trices differ only by one (block) column and row from each other, their SVDs are related.
Which SVD updating schemes are effective in this case? As a start, some possibilities
are mentioned at the end of chapter 3, but for large matrices, a combination with some
approximation scheme is also required, e.g., by only taking a band of the matrix into
account. (In the system theory context, this approach is connected to what is known as
the partial realization problem.)

With the high-order realization obtained in one way or the other, the subsequent step is
typically a Hankel-norm approximation to obtain an ‘optimal’ low-order approximating
system. Here, an open problem is to determine an appropriate tolerance (scaling matrix)
I', which should be such that the required number of states is obtained. Unlike the time-
invariant case (where I is a scalar), how to do this is, as yet, unknown. The approximation
step may be combined with the realization scheme. For example, a subspace decompo-
sition algorithm with ‘cheap’ rank estimation (a (R factorization ?) might be used to
estimate the state spaces, which would overdetermine the rank and yield realizations that
are too large. The extra states can subsequently be removed by the approximation step.

The realization and approximation step can be combined into a single algorithm, utilizing
the ‘order-recursive interpolation’ step detailed in section 6.6 to compute the required
O-matrix. Again, for large matrices the attention has to be restricted to a band. The
embedding of this step into an overall satisfactory algorithm is still to be investigated.
For mixed upper-lower matrices, the upper and lower part can be approximated separately,
leading to some kind of ‘double Hankel-norm’ approximant. The question arises as to
how optimal this approximant is, considering that alternative approximation schemes are
possible. For example, one may first factor X into X = U*7, and subsequently approximate
U and T separately.

Concluding, we might say that the system approach to computational linear algebra yields
promising techniques in which first principles have become clear but several details still
need to be sorted out. On a higher level, the techniques can probably be combined with
other sparse matrix computational methods as well. It will, in particular, be interesting to
consider links with o-stationary techniques.
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10.2 APPLICATION TO AN H..-CONTROL PROBLEM

In the context of control of time-varying systems, a number of the standard tools that are
typically required have been described in the previous chapters. The main results in this
area are the availability of state-space algorithms for a number of factorization problems
(coprime factorization, inner-outer factorization and spectral factorization), the solution
of the Nehari problem in state-space terms, and the computation of optimal Hankel-norm
approximants. One control application in which a number of these results are instrumental
is given by the standard optimal control problem, known as the H. control problem.
This problem was introduced by Zames [6] and has received considerable interest in the
past decade (see e.g., Francis [7]). For time-varying systems, the problem of uniformly
optimal control of time-varying systems was discussed by Feintuch and Francis [8, 1].
In this problem, a plant G is given, and a causal regulator K is to be designed such that
the closed-loop system is stable and the noise terms v and w, acting on the inputs of the
plant and the regulator, have minimal effect on the outputs u, y of the closed-loop system.
See figure 10.2. A mathematical formulation of the latter problem is obtained by defining
[|[ [« y1|| as the cost function, to be minimized by design of K and subject to the worst
possible noise input with joint energy bounded by 1:

min {J| 1 [l wil[<1)

One thus wants to minimize the norm of a certain transfer operator, at the same time satis-
fying a stability requirement (this is also known as the sensitivity minimization problem).
By introducing a Youla reparametrization [9, 10], the problem can be reformulated as

i -S5O .
mig [|R - SQT| (10.1)

where R, S, T are known causal bounded linear operators, and () is a causal operator to
be designed. The above problem formulation is known as the model matching problem.
Another control problem which reduces to the same formulation is robust stabilization:
given a set of plants, specified as a nominal plant and a ‘radius’ (upper bound on the
deviation of the actual plant from the nominal plant), find a stable feedback operator
K that stabilizes all plants in the set [7]. Time-varying sensitivity minimization is also
discussed by Ball, Gohberg and Kaashoek [11]. Their solution required the inverse of an
operator T € U, which calls for an inner-outer factorization.

The solution of the minimization problem (10.1) is readily described using inner-outer
factorizations § = S;8,, T = T,7;. For the sake of exposition, first assume that S, T are
boundedly invertible. Because || R - SQT|| = || S;(R-SQDT; S;RT; - S,0T, ||, the
problem reduces to a Nehari problem: with R’ = S]RT; € X, Q' = 5,07, € U, Q' is
determined from

M Rl_ ')I
in [[R"- 0],
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Figure 10.2. The ‘standard’ control configuration.

and Q follows as Q = S;'Q'T,'. Note that Q is causal as required because S, and 7, are
outer. Hence all that is required in the simplified case is two inner-outer factorizations
and the solution of a Nehari problem.

In the real control application, however, § and 7T are not invertible. The solution to
the general problem was formulated by Feintuch and Francis [1], and involves, besides
the inner-outer factorizations and the solution to the Nehari problem, also two spectral
factorizations. Their solution was described at the operator level, and it was remarked
that “at present, computation of uniformly optimal controllers for time-varying systems
is not feasible”. Currently however, with algorithms for the factorizations and the Nehari
problem available at the state-space level, computation of the optimal controller is certainly
possible once a state realization of the plant is known.

It should be remarked, however, that the optimal controller can only be obtained as the
solution of the above (theoretical) problem formulation, and that application of the time-
varying system theory to practical problems in control is largely an open research area.
Problems already arise at the first step: the identification of the system. The input and
output state spaces H and M, can only be determined from a large (in theory infinite)
collection of pairs of input sequences with their corresponding output sequences, which
this is not feasible. For time-varying systems of which only one copy is available and
which can be exited only once, it is even impossible to obtain more than one input-
output pair, and hence an exact realization cannot be obtained without making further
assumptions. Standard techniques use parametric models (‘templates’) of possible system
responses, or assume that the system is only slowly time-varying.

With a realization available, the next obstacle is that, in the solution of the optimal
control problem, recursions are required which go both forward and backward in time. For
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example, the inner-outer factorization required for 7 is actually an outer-inner factorization:
T=T,T;, which in the state-space algorithm results in a backward recursion, going from
k = 400 t0 k = —eo, Hence, the optimal controller can only be computed if the realization
matrix of the plant is available for all points in time. One way out is to apply windowing
techniques: with the assumption that the system is adequately damped, it is sufficient, for
the computation of variables at time point &, to start backward recursions at point k + N
for some finite integer N (the window size). However, the computational overhead in
this scheme can be quite high (it is increased by a factor N), and one still has to know
realization matrices N time-steps in advance. Note that no backward recursions occur if T
is not present in the optimization problem, or if T is already outer. Hence, in an attempt to
match theory with practise, it might be useful to derive a modified optimization problem
in which 7 is already of this form.
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SAMENVATTING

Tijdvariérende systeemtheorie en rekenschema’s:
toestandsmodellen, benaderingen, en factorisaties

Tijdvariérende lineaire systemen vormen een belangrijke veralgemenisering van het tijds-
invariante geval, waar veel meer over bekend is. In dit proefschrift worden tijddiscrete
tijdvariérende systemen beschreven aan de hand van hun overdrachts-operatoren, waarbij
signalen voorgesteld worden als oneindige reeksen (vectoren) met begrensde energie, de
zogenaamde {>-reeksen. Operatoren op zulke reeksen hebben matrixrepresentaties, en in
de gebruikte notatie zullen causale systemen overeenkomen met bovendriehoeks-matrices.
Het aantal in- en uitgangen van een systeem hoeft niet noodzakelijk constant te zijn, met
als gevolg dat de operator in feite een blok-matrixrepresentatie heeft, waarbij de matrix-
elementen op hun beurt weer matrices kunnen zijn, mogelijk met onderling verschillende
dimensies.

Als speciaal geval beschouwen we de situatie waarbij alle behalve een eindig aantal van
deze dimensies nul zijn, zodat de operator reduceert tot een eindige matrix. Het toepassen
van het systeem op een signaal correspondeert met een matrix-vector vermenigvuldiging,
zodat op deze manier een verband gelegd kan worden tussen tijdvariérende systeemtheorie
en lineaire algebra. Het blijkt dat, voor een bepaalde klasse van gestructureerde matrices,
dit verband met de systeemtheorie leidt tot efficiénte rekenmethoden voor problemen uit
de lineaire algebra.

Tijdvariérende lineaire systemen kunnen gewoonlijk beschreven worden door een toe-
standsmodel. Dit model kan gezien worden als een rekenschema waarmee het systeem uit
een gegeven ingangssignaal het bijbehorende uitgangssignaal bepaalt; de interne tussen-
resultaten in de berekening van het matrix-vector produkt worden bewaard in de toe-
standsvariabelen van het systeem. Efficiénte rekenmethoden worden verkregen als het
aantal toestandsvariabelen klein is in vergelijking met de afmetingen van de matrix zelf.

De volgende aspecten komen aan de orde.
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— Realisatie-theorie: gegeven een begrensd en causaal systeem, bepaal een toestands-
model van zo klein mogelijke dimensies dat dit systeem representeert. Een belangrijke
rol wordt gespeeld door een veralgemenisering van de Hankel-operator.

— Optimale modelreductie: als de toestandsdimensie van het systeem te groot is, dient
een goede benadering gevonden te worden die wel een klein aantal toestandsvariabelen
toelaat. De norm waarin dit probleem wordt opgelost is een veralgemenisering van
de Hankel-norm zoals ingevoerd door Adamjan, Arov en Krein. Het is mogelijk om
een parametrisatie te geven van alle systemen die dichter dan een gegeven tolerantie
van de originele matrix afliggen, en om van een bepaalde benadering met minimale
toestandsdimensies een expliciet toestandsmodel te vinden.

— Inner-outer factorisatie, spectrale factorisatie, en embedding in een verliesvrij sys-
teem spelen een belangrijke rol in de tijdsinvariante systeemtheorie bij het oplossen
van allerhande problemen, zoals bijvoorbeeld het ‘robust-control’ probleem. Het is
mogelijk om (onder condities) deze factorisaties ook te bepalen voor tijdvarierende
systemen, en diverse algoritmen om dit daadwerkelijk te doen worden afgeleid. De al-
goritmen werken met toestandsmodellen en geven aanleiding tot Riccati-vergelijkingen
met tijdvariérende coéfficiénten. Over deze vergelijkingen is nog niet veel bekend (in
tegenstelling tot het tijdsinvariante geval); enige eigenschappen worden aangetoond.

~ Cascade-factorisaties van inner systemen. Een numeriek stabiele implementatie van
een tijdvariérend toestandsmodel wordt verkregen door een cascade-factorisatie in
elementaire (eerste-graads) overdrachts-operatoren.

Eindige (blok-)matrices zijn speciale gevallen van tijdvariérende overdrachtsoperatoren,
en de bovenstaande resultaten geven aanleiding tot nieuwe rekenschema’s voor problemen
uit de lineaire algebra. Zoals hierboven al is opgemerkt, levert een toestandsmodel een
efficiént rekenschema voor het bepalen van matrix-vector vermenigvuldigingen. De inner-
outer factorisatie blijkt te reduceren tot een (R-factorisatie, en spectrale factorisatie is
gerelateerd aan Cholesky decomposities. Tenslotte levert de theorie voor optimale Hankel-
norm modelreductie nieuwe matrixbenaderingen op die geschikt zijn voor deze efficiénte
rekenschema’s.
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GLOSSARY OF NOTATION

Diagonal algebra

N =CV space of (non-uniform) sequences with i-th entry in ch (p. 28).

N=#N: the sequence of dimensions of A (p. 28).

iﬁ‘r: space of bounded (non-uniform) sequences in A (p. 29).

X (M, N): space of bounded operators £ — £ and XM — LN (p. 30).

U, L, D:  upper/lower/diagonal bounded operators in X' (p. 30).

X, U, L2, Dy: (Hilbert) spaces of operators in X, U, £, D with bounded HS-norm (p. 32).

I sequence constructor. A € X" has entries A;; = mAnj‘-‘ (p. 28).

Z bilateral causal shift operator (p. 34).

ALN diagonal shift of T € .V over k positions into south-west direction (p. 35).
r(X): spectral radius of X (p. 32).

Py: projection onto a subspace H < A7 (p. 33).

P, Py projection onto i3, D, (p. 33).

{A, B} = Py(AB): diagonal inner product (p. 38).

(A, B] = Py(AJB"): indefinite diagonal inner product (p. 153).

A>0: A is uniformly strictly positive definite (p. 39).

Alk = AWAKD . AD (p, 35).

AlK] = AAD .. AGD (p. 34).

T = Py(Z*T): the k-th diagonal above the main (0-th) diagonal of T (p. 36).
AF = Py(FF"): the Gram operator associated to a basis representation F (p. 45).

s-dim(-): the sequence of dimensions of a left D-invariant subspace (p. 41).
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r: the space of bounded sequences with entries in D (p. 48).

U: the diagonal expansion of U to a sequence in £P. For operators: the associated
operator, via UT=Y < UT =Y (p. 48).

()t the pseudo-inverse (Moore-Penrose generalized inverse) (p. 252).

System theory
T: realization matrix. T = {A, B, C, D} stands for the matrix T = [4 5] (p. 56).
L the spectral radius of AZ (p. 57).

H(T), Ho(T), K(T), Ko(T): input state space, output state space, input null space, output
null space of an operator T € X' (p. 79).

Q. F, G, Fy: typically, Q and G are orthonormal basis representations of the input and
output state space. F, Fy are strong basis representations of these spaces
(p. 86 ).

C,0: controllability, observability operators (diagonal expansions of F and Fy)
(p. 72).

Hr, K7, Er: the operator T on restricted domains and ranges. Hr : £,Z7' — U, is the
Hankel operator. Kr: L2Z7' — L,Z7), Er : Uy — Uz (p. 69).

TolS:] = (0115, — ©12) (O — O215)™! (p. 156).
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Adjoint, 26, 44
Admissible subspace, 151
Algorithins
approximation, 207
cascade factorization, 303
external (inner-coprime) factorization, 130
indefinite interpolation, 197
mner-outer factorization, 142
orthogonal embedding, 249
realization, 67
Approximation in Hankel norm, see Hankel-
norm model reduction

Band matrix, 2, 5, 229, 322
Basis
boundedness issue, 43
J-orthonormal, 158, 161
of a subspace, 22-25, 41-46
representation, 41
strong, 45
Beurling-Lax theorem, 131-135
Block matrix, 12, 30, 60, 320
Bounded
basis representation, 43
boundedly invertible, 26
operator, 25, 30
realization, 57
Bounded real lemma, 257

Canonical realizations,
see also state realization, 83—101

Cascade factorization, 9, 285-317
elementary stage, 298-305, 309-311
theorems, 306, 309

Causality, 54

Cholesky factorization, 2, 236, 274, 281-282

Closed range, 27

Closed set, 20, 22

Column of an operator, 30

Companion form, 292

Complement
J-orthogonal, 157
orthogonal, 21, 41

Complete set, 20, 22

Computational linear algebra
approximation, 185, 188-190
Cholesky factorization, 274, 281-282
concepts, 1-13, 319-322
inversion, 5, 149, 321
issues, 107-110, 232, 321
multiplication, 2-4, 320
QR factorization, 146, 149, 320

Computational model, see state realization

Computational network, 2

Conjugate-Hankel operator, 169, 204

Contractive operator, 39, 242, 254

Controllability operator, 72

Controllable, 75

Convergence
of Lyapunov recursion, 61
of Riccati recursion, 248-249, 275-278
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Coprime
inner-coprime factorization, 126
J-inner-coprime factorization, 175

Darlington synthesis, 236, 286
Definite interpolation, 175-182
Dense set, 20
Diagonal
algebra, 37-51
expansion, 48, 239
inner product, 38
operator, 31
representation (decomposition), 36
shift, 35
Dichotomy, 32, 117
Direct sum, 19
Domain, 25

Embedding, 9, 235-263
algorithm, 249
connection with spectral factorization, 279—
280
finite matrix, 247
theorems, 245, 257
External factorization, 126-131

Factorization
cascade, 9, 285-317
external, inner-coprime, 126-131
inner-outer, 135-149
J-inner-coprime, 171-175
spectral, 273
Filter
based on Hessenberg, 291
based on X, 292-307
based on ©, 307-314
LTI orthogonal filter synthesis, 289292
Finite-dimensional operator, 26
Finiteness
finite matrix computations, see computa-
tional linear algebra
locally finite state dimensions, 58
locally finite subspace, 40
subspace dimension, 19
Frobenius norm, 32

Fundamental interpolation problem, 178, 179
Future operator, 74, 167
Future part of signal, 54, 69

Generalized inverse, 252

Givens rotation, 9, 228-229, 251, 288-289
Gram operator (Gramian), 23, 44, 45
Graph, 151

Halmos extension, 251
Hankel operator, 69-81
definition, 69
diagonal expansion, 70, 239
factorization, 74
matrix, 6, 65
snapshot, 70
Hankel-norm, 186
Hankel-norm model reduction, 10, 185-234
order-recursive algorithm, 222-23]
parametrization, 214
realization of approximant, 205
recipe, 193
theorem, 200
Hessenberg form, 291
Hilbert space, 20
Hilbert-Schmidt operators, 32
Ho-Kalman realization algorithm, 106

Indefinite
interpolation, 192-216
metnic, 153
signature, 153
subspaces, 157-160
Index sequence, 28
Inertia signature, 159, 160
Injective operator (one-to-one), 26
Inner operator, 115-150
factorization
external, inner-coprime, 126-131
inner-outer, 135-149, 280, 324
realization, 117-124
Inner product, 19
diagonal, 38
Hilbert-Schmidt, 33
non-uniform, 29
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Inner product space, 19
Input
normal form, 78
null space, 79
sequence, 27, 38, 53
state space, 79
Input-output map, see transfer operator
Interpolation
definite, 175-182
indefinite, 192-216
Intertwiing, operator, 102
Invariance
left D) nvariance, 40
shift invariance, 65
Invariant manifold, 27
Inverse,
computational linear algebra, g.v.
generahized (Moore-Penrose/pseudo), 252
of general matrix, 149, 321
of upper operator, 31, 116
Isometry, 27, 115
Isomorphy, 27

J-Gram operator, 158

J-isometry, 153

J-unitary operator
connection with unitary operator, 154, 164
J-inner-coprime factorization, 171-175
realization, 160-164

J-unitary operator, 151-184

Kernel, 26
Krein space, 154
Kronecker’s theorem, 65, 81, 98

left D-invanant subspace, 40
Levinson recursion, 2, 286
Linear fractional transformation, 156, 208
Linearly independent, 18
Locally finite
basis, 41
realization, 58
subspace, 40
Lower operator, 30
Lyapunov equation, 76

connection with Hankel operator, 196
convergence, 61

Manifold, 18

Matrix representation, 30, 47

Metric space, 20

Minimal realization/system order, 81, 105
Mixed causality, 149, 206, 320

Nehari problem, 217-221, 323
Nerode equivalence, 78
Nevanlinna-Pick mnterpolation problem, 176
Non-uniform sequence, 27
Norm, 19
diagonal 2-norm, 190
Hankel-norm, 186
Hilbert-Schmidt (Frobenius) norm, 32
J-norm, 151
of non-uniform sequence, 29
of operator, 25, 30, 38

Observability operator, 72
QObservable, 75
QOne-to-one, 26
Onto, 26
Operator
adjoint, 26, 44
bounded, 25, 30
contractive, 39, 242, 254
domain, 25
kernel, 26
positive, 39
range, 25
shift, 34
upper, lower, diagonal, 30
Order of a system, 58
Orthogonal complement, 21, 41, 157
Orthogonal projection, 21, 26, 33, 46, 158
Orthogonality, 19
Outer operator or matrix, 5, 135, 267
factorization algorithm, 143
properties, 268-273
Output
normal form, 78
null space, 79
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sequence, 27, 38, 53
state space, 63, 79
Overbar, 19, 20

Past operator, 74, 167
Past part of signal, 54, 69
Positive operator, 39
Positive real lemma, 273
Projection, 21, 26, 33, 46
diagonal expansion, 50
formula, 47
J-orthogonal, 158, 160
Projectively complete, 158
Pseudo-inverse, 252

QR factorization, 2, 146, 149, 320
QR iteration, 294

Range, 25
Realization
theory, 53-114
Recursion
Lyapunov, 60-61, 77
Riccati, 144, 247, 274
state, 55
Regular subspace, 158
Representation
basis, 41
matrix, 30, 47
state, 164
Riccati equation, 143, 244, 270, 271, 273
convergence, 248-249, 275-278
initial point, 247-248, 274-275
square-root algorithms, 145-147,249-251
Riesz basis, 24, 45
Robust control, 323-325
Roomy system, 133
Rotation, elementary (Givens), 9, 228-229,
251, 288-289
Row of an operator, 30

Scattering operator, 155

Schur complement, 242, 253

Schur decomposition, 293-295

Schur recursion, 2, 222-231, 281-282, 286
Schur-Takagi interpolation problem, 187

s-dim (sequence of dimensions), 41
Section
elementary cascadesection, 305-306, 308,
311-312
elementary lossless stage section, 298-305,
309-311
Sensitivity minimization, 323
Separable space, 20
Sequence
index, 28
non-uniform, 27
of diagonals, 48
of dimensions, 41
of spaces, 28
Shift invariance, 65
Shift operator, 34
Signal, 27, 53
Signature matrix, 153
Similarity of realizations, 58, 102-105
Slice, 40, 41
Snapshot, 50, 70
Spectral factorization, 265-284
application, 324
theorem, 273
Spectral radius, 32, 57
Square-root algorithm, 145147, 249-251
Stability, 57
Stage, 3
State realization
algorithm, 67
anomalies, 99
bounded, 57
canonical
connections, 98
controller realization, 85
observer realization, 94
operator realization, 83, 92
properties, 89, 92, 95, 97
definition, 55-58
historical notes, 106-107
input normal form, 78
Kronecker’s theorem, 65, 81, 98
locally finite, 58
of finite matrices, 60
of inner operators, 118, 120
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of J-unitary operators, 162-164 Unitary realization, 120
output normal form, 78 Upper operator, 30
stmilarity/equivalence, 58, 102-105 URV decomposition, 68, 109
stable, 57
SVD-based, 66, 98, 99 W-transform, 177
State transformation, 58
Strict Zero of a transfer operator, 177, 181

contractivity, 39, 242
positivity, 39
stability, 57
Strong basis, 45
Strong convergence, 20
Subspace, 21
J-positive, negative, neutral, 157
left D-invariant, 40
locally finite, 40
projectively complete, 158
regular, 158
Surjective operator (onto), 26
SVD, singular value decomposition, 67, 185,
322
SVD-based realization, 66
System
causal (upper), 54
wnner, 115
order, 58
outer, 135
properties
controllability, 75
observability, 75
stability, 57
realization, 56
transfer operator, 29, 53

Tableau (block matrix), 12
Toeplitz operator, 30
Transfer operator, 29. 53

Uniform
controllability, 75
observability, 75
sequence, 27
Unilateral shift operator, 82
Unitary extension, see embedding
Unitary operator, 115



