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Abstract

This thesis examines the approximation capabilities of path signatures within rough path
spaces, focusing on both local and global universality. To this end, we provide a self-
contained introduction to Rough Path theory, highlighting the interplay between additive
and multiplicative functionals. This leads to the renowned Lyons’ Extension theorem and
the definition of rough path spaces. We also re-examine the concept of universality from a
kernel-theoretic perspective, culminating in the classical universal approximation result for
signatures over a compact subset of paths. To broaden the scope beyond compact domains, we
introduce the framework of weighted spaces and elaborate on the notion of global universality.
Specifically, we formally define globally universal kernels and prove sufficient conditions for
their existence. The associated reproducing kernel Hilbert space is shown to approximate
a wide range of functions over the entire domain, which may be non-(locally) compact. In
particular, we apply these theoretical tools to rough path spaces, thereby cementing the
global universality of signatures.
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Preface
This thesis grew out of my dedication to explore the expanding field of signature-based methods.
From the outset, delving into signature-based methodologies captivated me due to their
profound theoretical foundations and potential for applications, particularly in Mathematical
Finance. As this work aims to elucidate, theoretically, the signature of a path emerges as a
somewhat intricate mathematical object with both analytical and algebraic aspects. However,
in practical terms, it suffices to regard path signatures as a potent set of features offering
high expressiveness, hence their success in applications.

Yet, even within this practical perspective, questions remain. In what sense exactly are
signatures "potent features"? What does "high expressiveness" actually entail? As I continued
my study of signature-based methods, I found myself increasingly drawn to these fundamental
questions, shifting my focus from the methodologies themselves to the underlying principles
enabling their efficacy. Furthermore, upon a thorough review of the recent literature on
signature-based methods, particularly within Finance, ranging from portfolio optimisation
to pricing and hedging, I observed a common thread: these underlying principles appeared
to be pervasive across applications. Consequently, the crux of interest and a thesis-worthy
direction lay within the theoretical backdrop. And, as is often the case, once theoretical
proficiency is attained, applications become a matter of ingenuity.

Now, committed to determining a (theoretical!) thesis-worthy direction, I quickly recognised
the necessity of learning about two previously unfamiliar subjects: Rough Path theory and
kernel theory. Rough Path theory, essentially a pathwise theory of integration against highly
irregular paths like Brownian motion, offers a re-examination of Itô’s Stochastic Calculus from
a purely analytical perspective. Consequently, it has recently laid the theoretical groundwork
for many endeavours in Robust Finance, particularly within signature-based methods. Kernel
theory, a broad theory within Functional Analysis, finds applications in a remarkable number
of areas, including Machine Learning, justifying its involvement here. Additionally, it is
through kernel-theoretic lenses that we analyse the concept of universality, a central notion
in this work and a cornerstone of most, if not all, signature-based methods.

Hence, this thesis occupies a position at the intersection of these two theories — a position
that I have endeavoured to elucidate clearly and hope to have achieved. Ultimately, this thesis
follows a direction towards a deep understanding of the theory underpinning signature-based
methods, with particular emphasis on the previously alluded concept of universality. It was
this concept of universality that initially prompted me to pursue a more theoretical approach,
and personally, I believe my primary contribution lies within its context.
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Lastly, before proceeding to the actual thesis, I would like to express my gratitude to
Professor Fenghui Yu, my daily supervisor, for introducing me to path signatures during the
previous academic year and for her availability. I am indebted to Professor Christa Cuchiero,
my co-supervisor, for her invaluable insights and clarifications during our online meetings.
Above all, I am grateful for her inspiration, which has profoundly influenced my own work,
directly linked to her expertise. I also wish to thank Professor Frank Redig and Professor
Francesca Bartolucci for their careful reading of initial drafts pertaining to my contributions.
Their feedback and corrections were instrumental in shaping the final outcome of this thesis.
Additionally, I express my appreciation to Professor Andrew L. Allan for a brief yet fruitful
conversation during his visit to Delft, which provided a valuable eye-opening moment. Each
of these individuals has played a role in the development of this thesis, and their support and
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Tomás Carrondo
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Introduction
This thesis is ultimately concerned with the approximation capabilities of path signatures.
Given a path X : [0, T ]→ Rd, its signature S(X) is formally defined as the infinite collection
of all iterated integrals of its components X i against each other, i.e., S(X) comprises all
elements of the form ∫

0<t1<···<tn<T
dX i1

t1 · · · dX
in
tn ,

with i1, . . . , in ∈ {1, . . . , d} and n ≥ 1, forming a mathematically intriguing object with
remarkable algebraic properties. Yet, as discussed below, defining these integrals poses
difficulties when X is not of bounded variation. From a practical point of view, however,
the signature of a path stands as a powerful and descriptive set of features, offering high
expressiveness in the space of paths [32]. To elaborate, path signatures essentially encapsulate
two key aspects: firstly, under mild conditions, the signature of a path X uniquely identifies
its associated path. Secondly, path signatures possess the ability to approximate continuous
functions of paths. This second aspect is precisely captured by the concept of universality.

Universality, in essence, forms the crux of this thesis and fundamentally concerns the ability
to approximate functions defined over a given domain K. In the classical setting, where K
is assumed to be compact, a collection of functions from K to R is commonly said to be
universal if it is dense in the space of continuous functions with respect to the supremum
norm. Notably, under this compactness assumption, universal approximation results are
abundant, often deriving from the classical Stone-Weierstrass theorem [27]. One such result,
pertains to the use of signatures to approximate functionals of paths.

As elucidated in this work, the signature of a path S(X) yields a set of linear functionals
X 7→ L(S(X)), which uniformly approximate any continuous function defined over a fixed
compact subset K of the path space under consideration ([48], Theorem 3.1). In other
words, the set of linear functionals of the signature is universal over K. As an analogy,
just as polynomials are dense in the space of continuous functions f : [a, b] → R, where
[a, b] ⊂ R, linear functionals of the signature exhibit density in the space of continuous
functions f : K → R, where K is a compact subset of a predetermined path space. In this
context, signatures stand as a natural selection for basis functions within the space of paths
[9].

Here, it is worth noting that due to their notable properties as features, signatures have
achieved numerous empirical successes in various applications, particularly within the domain
of Mathematical Finance. Furthermore, while the origins of signatures can be traced back to
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the work of K. T. Chen [17], in today’s theoretical landscape, they fall under Lyons’ recently
established theory of rough paths [54, 37]. Lyons’ theory, alongside other contributions, offers
a streamlined pathwise framework for differential equations driven by a broad spectrum of
stochastic processes, or more precisely, rough paths. Consequently, path signatures within the
framework of rough paths furnish us with versatile and exceptionally useful tools for robust
and data-driven methodologies in Finance, a prominent area of application of Stochastic
Analysis.

At the very end, this thesis will briefly elaborate on these financial applications and present
the generic pipeline of signature-based methods. Nevertheless, even at this stage, the
ongoing discussion already offers some insight on the efficacy of signatures, especially within
Mathematical Finance. It is crucial to note that the vast majority of financial data can
be conceptualised as paths, with quantities of interest such as payoff functions or trading
strategies often seen as continuous functionals of these paths. Therefore, the capacity to extract
meaningful features from paths efficiently, alongside the ability to approximate (continuous)
functions of paths, holds immense value, both of which are provided by signatures.

For example, in [8] the authors tackle the issue of pricing American options, or more broadly,
of solving an optimal stopping problem. Briefly put, they seek to compute supτ∈S E[Yτ∧T ],
where Y represents a process adapted to the filtration generated by an underlying (rough)
path process (typically the price process), and S denotes the set of all stopping times adapted
to the same filtration. However, it is often the case that optimal stopping problems are
discontinuous when viewed as a function of the underlying (price) path. To address this,
the authors introduce randomised stopping times and reformulate the problem accordingly.
This reformulation involves taking the supremum over the set of continuous time policies T ,
representing real-valued continuous functions on the space of stopped rough paths. They
then utilise the universality of signatures to uniformly approximate continuous time policies
with linear functionals of the signature over a fixed compact subset of paths. This ultimately
leads to a linearisation of the original optimal stopping problem, thus facilitating its solution.

In another work [5], the authors present signature-payoffs, a type of path-dependent derivative
defined in terms of the signature of the underlying price path. Essentially, these signature-
payoffs are linear functionals of the signature. They then establish an appropriate path space
and utilise the universality of signatures to demonstrate that, within a compact set of (rough)
paths, signature-payoffs offer a uniform approximation to any continuous payoff function. It
is worth noting that the majority of financial derivatives, including vanilla and exotic options,
stem from continuous payoff functions. Therefore, signatures provide a versatile derivative
family capable of approximating an extensive range of derivatives effectively. The authors
further demonstrate that signature payoffs can be efficiently priced, primarily due to their
linearity, making them valuable for pricing derivatives that are computationally expensive.

These previous examples effectively demonstrate the diverse applications of path signatures
within a financial context, particularly highlighting their universal property. However, various
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other instances showcase their versatility. In [43, 25, 7], the authors utilise signatures and
their universal property to address optimal control problems. Similarly, in [6, 1, 28, 23],
the authors apply these tools to directly model the dynamics of arbitrary financial assets,
leading to the development of Sig-SDE models. Meanwhile, in [51, 52], signatures find specific
application in pricing and hedging exotic derivatives, whereas [13] employs them for deriving
optimal double-execution trading strategies. Additionally, in [38], signatures and universality
prove instrumental in solving a portfolio optimisation problem within a path-dependent
extension of the classical mean-variance framework. Lastly, in the context of Stochastic
Portfolio Theory [33, 34], the authors of [25] introduce the class of path-functional portfolios,
which can be approximated arbitrarily well by a subclass of linear path-functional portfolios,
known as signature portfolios.

Let us also remark that signature-based methodologies are often model-agnostic. This means
that there is no requirement to specify the dynamics of the market [3, 4]. Thanks to the
theory of rough paths, they frequently accommodate very general price paths, including non-
Markovian regimes and, in the realm of volatility modelling, non-semimartingale processes.

Now, setting financial applications momentarily aside, it becomes pertinent for the purposes
of this thesis to re-examine universality within the framework of kernel theory — one of
the many fields where this foundational concept is employed. In summary, a kernel on a
nonempty set Y is a mapping k : Y × Y → R such that k(y, y′) = ⟨Φ(y),Φ(y′)⟩H̃, where
Φ : Y → H̃ is a map, commonly referred to as feature map, with values in a Hilbert space H̃.
Crucially, each kernel k corresponds uniquely to a function space H, known as its reproducing
kernel Hilbert space. If Y is assumed to be compact and the function space H is "large
enough" to approximate any real-valued continuous function on Y , then, according to the
discussion above, H is considered universal and, without ambiguity, the kernel k is also
termed universal.

Ultimately, using this kernel-theoretic terminology, the signature of a path is shown to be a
feature map, thus defining a universal kernel on a compact subset of the space of paths —
the signature kernel [46]. More generally, we observe substantial work in providing sufficient
and/or necessary conditions for the existence of universal kernels [57, 69, 70, 20]. Of particular
significance to this thesis is the work of [20], where the authors provide a general technique
to construct universal kernels defined on generic compact metric spaces, a method that we
extensively discuss in the second half of the thesis.

At this juncture, however, we must underscore an assumption that has been pivotal in
supporting universality thus far. Specifically, we recall that, in the classical setting, universality
assumes a compact domain over which functions are approximated. In particular, all the
aforementioned signature-based methods operate under this assumption, requiring a compact
set of paths to invoke the universality of signatures. In other words, all the approximation
results derived in the works above, whether in optimisation or pricing contexts, are local in
nature. Recently, however, there has been a growing interest in the literature of signature-
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based methods to go beyond compact domains and establish global approximations. Notable
works in this direction include [19, 27, 41, 9].

Beyond purely theoretical motivations, there are more practical reasons that justify this
interest in global approximations, particularly in the context of signature-based methods.
Firstly, most path spaces, where signatures are defined, are not even locally compact [19].
Secondly, practical applications frequently entail data resampling. As a result, while a sample
may initially reside within a compact subset of the data space, this subset becomes invalid
after resampling, making the assumption of a fixed compact set somewhat artificial [27]. The
idea of approximating functions globally, i.e. across their entire domain, which may indeed
be non-(locally) compact, has become known as global universality, contrasting with its local
counterpart simply referred to as universality. We adhere to this terminology throughout
this work.

Regarding signatures specifically, the authors in [27] demonstrate that signatures are globally
universal, implying that linear functionals of the signature approximate a broad class of
functions across the entire space of (rough) paths, and not only a compact subset. They
achieve this by first establishing a weighted version of the classical Stone-Weierstrass theorem
([27], Theorem 3.6), a result contemplated and utilised in the present thesis. Here, the term
"weighted" refers to the setting of weighted spaces, an ingenious concept introduced in the
same work and also employed in this thesis, essentially corresponding to topological spaces
accompanied by a predetermined function that controls the growth of maps therein. On
another front, in [19], the authors also establish global universal approximation results for
linear functionals of the signature. That said, they rely on the so-called strict topology which
requires a normalised version of the signature, and not the "true" signature. Consequently,
many properties of the signature are lost, resulting in less tractability [27].

Deeply inspired by the concept of global universality and the framework of weighted spaces,
part of this thesis finds justification in the following observation: just as universality can be
understood from a kernel-theoretic perspective, there is potential for global universality to
be integrated into the realm of kernels. With this in mind, this thesis formally introduces
globally universal kernels — a global analogue to universal kernels — which detain a general
weighted space as domain rather than the typically considered compact domain. Furthermore,
as suggested by the terminology, the reproducing kernel Hilbert space associated with a
globally universal kernel approximates a large set of functions over their entire, possibly
non-compact, weighted space domain. When this weighted space is a rough path space, we
then obtain a family of Taylor signature kernels whose reproducing kernel Hilbert spaces
globally approximate a wide range of path functionals, including all bounded and continuous
functionals. Along with ([27], Theorem 5.4), this solidifies the global universality of path
signatures.

The remainder of this thesis is divided into three chapters. Chapter 1 delves into path
signatures and serves as an introduction to Rough Path theory. It is arguably the most
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intricate chapter of the thesis, and equally necessary, as it introduces the spaces of rough
paths, typically used in signature-based methods. Meanwhile, Chapter 2 offers a primer on
the general theory of reproducing kernels and acts as a bridge between Chapters 1 and 3 by
systematically examining the notion of universality and reviewing the recently developed
signature kernel. Moving forward, Chapter 3 picks up the thread on universality and presents
global universality, offering a clear comparison between local and global approximations. To
achieve this, the chapter initially explores weighted spaces and concludes by defining globally
universal kernels and proving their existence. As a side remark, this thesis aims to be as
self-contained as possible. Consequently, some sections may appear rather pedantic. For
instance, Section 1.1 includes basic results in Analysis and Algebra, while Section 2.1 covers
elementary kernel theory. Readers familiar with these topics may choose to skip these sections
or use them as a reference when needed.

Another guiding principle adhered to throughout this thesis was to consistently strive to
make pertinent observations and additions even to well-established bodies of work. Taking
this into consideration, the present work makes the following contributions:

1. Within Chapter 1, we present an under-explored pathway leading to what is arguably
the main result of Rough Path theory, Lyons’ Extension theorem. The proof presented
in this thesis deviates from the original, and heavily relies on a somewhat abstract
result known as the Sewing lemma. Towards the chapter’s end, we provide a simple
proof demonstrating that the commonly used topology, which endows the domain of the
signature map, is not initial. Although this observation builds on a technique frequently
employed in the literature of rough paths, namely the compact embedding of (α-Hölder)
rough path spaces, our formulation specifically addresses the continuity of the signature
map, warranting its emphasis.

2. In Chapter 2, following a succinct review of what has become known as the signature
kernel, we establish a basic yet significant property of this kernel. Specifically, we prove
that the signature kernel is fully interpolating, or equivalently, strictly positive definite.

3. Chapter 3, in turn, encapsulates the most substantial contribution of this thesis. Here,
we introduce the concept of globally universal kernels and outline sufficient conditions for
their existence. More precisely, we provide a technique to construct globally universal
kernels of Taylor type. We then apply the developed tools to the spaces of rough
paths and to the signature kernel introduced in Chapters 1 and 2, respectively, thus
consolidating the global universality of path signatures. Additionally, we provide a
formal argument supporting the added benefits of global approximations when compared
to local approximations.



Frequently Used Notation
Finite-dimensional objects
Rd Euclidean space with basis {e1, . . . , ed}
(Rd)⊗n n-fold tensor product of Rd

TN(Rd) Truncated tensor algebra
GN(Rd) Free nilpotent group of step N over Rd

π≤N , πN Projections onto TN(Rd) and (Rd)⊗n

W(Ad) Set of words over the alphabet Ad = {1, . . . , d}
| · | Euclidean norm on Rd or (Rd)⊗n

| · |TN (Rd) Banach space norm on TN(Rd)

∥ · ∥cc Carnot-Carathéodory norm on GN(Rd)

∆n
[s,t] n-simplex {(t1, . . . , tn) ∈ Rn : s < t1 < · · · < tn < t}, ∆2

T ≡ ∆2
[0,T ]

Path spaces and rough paths
T ((Rd)) Extended tensor algebra with elements a = (ai)i≥0
T1((Rd)) Elements of T̃ ((Rd)) with finite Euclidean norm
S(X) Signature of a path X
C([0, T ], E) Continuous paths [0, T ]→ E with norm | · |∞;[0,T ]

Co([0, T ], E) Continuous paths such that X0 = o

Cα-Höl([0, T ], E) α-Hölder continuous paths with seminorm | · |α-Höl;[0,T ]

Cp-var([0, T ], E) Continuous paths of finite p-variation with seminorm | · |p-var;[0,T ]

X Multiplicative functional ∆2
T → T n(Rd)

X An element of C
(
[0, T ], GN(Rd)

)
X̂ Rough path lift of time-augmented path, i.e., X̂(1) = X̂t = (t,Xt)

dα-Höl;[0,T ] Homogenous distance over Cα-Höl
(
[0, T ], GN(Rd)

)
ρα-Höl;[0,T ] Inhomogenous distance over Cα-Höl

(
[0, T ], GN(Rd)

)
Kernels and weighted spaces
k Real-valued kernel function k : X ×X → R
C(X) Space of real-valued continuous functions f : X → R
(X,ψ) Weighted space X with admissible weight function ψ : X → (0,∞)

Bψ(X) Weighted function space with norm | · |Bψ(X)
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Path Signatures and Rough Paths
One of the most compelling motivations behind Rough Path theory and, in particular, path
signatures, lies in the examination of controlled differential equations, represented as

dYt = f(Yt) dXt :=
d∑
i=1

fi(Yt) dX
i
t , (1.1)

where f = (f1, . . . , fd) represents a collection of continuous vector fields fi : Re → Re;
X : [0, T ]→ Rd with components X i corresponds to an input signal, typically referred to as
the control ; and Y : [0, T ]→ Re denotes the output or solution.

Conceptually, at each instant, Yt describes the state of a given system, subject to changes
governed by f and dependent on infinitesimal variations of some external parameter described
by X. In particular, there is interest in understanding the above equation for irregular signals
X, i.e., "rough paths", as irregular paths are commonplace in real-world phenomena. Take,
for instance, the field of Stochastic Analysis, where various rescaled models converge to rough
objects.

A common way to interpret the differentials in (1.1) is through the integral equation

Yt = Y0 +

∫ t

0

f(Ys) dXs, (1.2)

where Y0 denotes a given initial condition. In doing so, the challenge of making sense of a
controlled differential equation (1.1) transforms into determining how to define the integral
in (1.2). Additionally, it is desirable to achieve this in such a manner that the mapping
(Y0, X) 7→ Y , i.e. the solution map, is continuous. This continuity is valuable as it enables
us to handle complex dynamics through approximations. That said, it presents the highly
nontrivial problem of determining a suitable topology in the path space under consideration.
Rough Path theory introduces novel path spaces and topologies that are strong enough to
ensure the continuity of the solution map.

As a means to further motivate the theory of rough paths, we now recap different attempts
to assign meaning to the integral in (1.2) (see [2]) and observe how these attempts fall short
when dealing with rougher signals. For our purposes, we restrict ourselves to continuous
paths X : [0, T ] → Rd and Y : [0, T ] → L(Rd,Re), where L(Rd,Re) denotes the space of
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linear maps from Rd to Re equipped with the usual operator norm. By varying the regularity
of both X and Y , we will investigate the existence of the integral∫ T

0

Ys dXs.

A natural initial approach is given by the Riemann-Stieltjes integral. Let us consider a
sequence of partitions Pn = {0 = tn0 < tn1 < . . . < tnNn = T}, n ≥ 1, with vanishing mesh size,
i.e.

max{|tni+1 − tni | : i = 0, 1, . . . , N − 1} → 0 as n→∞.

Furthermore, for each n ≥ 1 and i ∈ {0, 1, . . . , N − 1}, let uni denote an arbitrary test point
in the interval [tni , tni+1]. Then, the Riemann-Stieltjes integral of Y with respect to X, when
it exists, is defined as ∫ T

0

Ys dXs := lim
n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

). (1.3)

To ensure existence, it suffices for X to be of bounded variation. Additionally, it is worth
noting that the limit above is independent of the sequence of partitions or the choice of test
points.

Theorem I ([37], Proposition 2.2): Let X ∈ C1-var([0, T ],Rd) be a continuous path of
bounded variation, and Y : [0, T ] → L(Rd,Re) continuous. Then, the Riemann-Stieltjes
integral

∫ T
0
Y dX exists, is linear in both X and Y , and∣∣∣∣∫ T

0

Y dX

∣∣∣∣ ≤ |Y |∞;[0,T ] |X|1-var;[0,T ].

Here, C1-var([0, T ],Rd) denotes the space of continuous paths with bounded variation from
[0, T ] to Rd, | · |1-var;[0,T ] corresponds to the 1-variation norm and | · |∞;[0,T ] denotes the usual
supremum norm. This notation will be formally introduced in the subsequent section. For
now, the main takeaway is that the integral varies continuously with both the integrand and
the integrator.

Remarkably, if the regularity of Y remains unchanged, then the following result demonstrates
that requiring bounded variation for X is not only sufficient but also necessary. We provide
a proof of this result in Appendix B, given that it serves as a captivating application of the
Banach-Steinhaus theorem (Appendix B), showcasing the efficacy of functional analytical
arguments.

Theorem II ([63], Theorem 56): If the sums in (1.3) converge for every continuous map
Y : [0, T ]→ L(Rd,Re), then X is of finite variation.
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In many situations, however, the control X exhibits low regularity and is far from being of
bounded variation. For example, X : [0, T ]→ Rd may be an α-Hölder continuous path with
α ∈ (0, 1). This implies the existence of a constant C > 0 such that

|Xt −Xs| ≤ C|t− s|α,

for all s, t ∈ [0, T ] with s < t. It is worth noting that the lower the exponent α, the "rougher"
the path can be. In such cases, Riemann-Stieltjes integration is inapplicable unless we change
the regularity of the integrand, as demonstrated by Theorem II. This leads to the introduction
of the Young integral. In essence, the idea is to offset the lower regularity of the integrator
by imposing a higher regularity on the integrand.

Theorem III ([75]): Let X : [0, T ]→ Rd be an α-Hölder continuous path and Y : [0, T ]→
L(Rd,Re) a β-Hölder continuous path, such that α, β ∈ (0, 1] and α+ β > 1. Moreover, let
Pn = {0 = tn0 < tn1 < . . . < tnNn = T}, n ≥ 1 be a sequence of partitions with vanishing mesh
size, and let uni denote an arbitrary test point in the interval [tni , tni+1]. Then, the integral∫ T

0

Ys dXs := lim
n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

)

exists and we call it the Young integral.

Similar to the Riemann-Stieltjes integral, we can establish that the Young integral is a
continuous mapping

(X, Y ) 7→
∫ ·
0

Y dX

with respect to the respective topologies over the space of α-Hölder and β-Hölder continuous
paths. This result can be proven using the Young-Lóeve estimate ([37], Proposition 6.4), or
the so-called Sewing Lemma ([74], Theorem 3.3). Considering its significance to Rough Path
theory, we explore the latter method in a subsequent section.

We note that if α = 1, then the Young integral turns into a Riemann-Stieltjes integral.
Furthermore, if α = β, then, in order to satisfy α + β > 1, α must exceed 1/2. This
observation specifically indicates that the Young integral lacks sufficient strength when
considering highly irregular paths, namely α-Hölder continuous paths with α ≤ 1/2. Under
the regime α = β, which is often the case, we arrive at the conclusion that the Young integral
cannot even be applied to Brownian motion, or, more generally, to fractional Brownian
motion with Hurst parameter H ≤ 1/2.

Theorem IV ([60]): Fractional Brownian motion BH does not have α-Hölder continuous
trajectories on [0, T ] for α ≥ H almost surely.
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With the aim of integrating against Brownian motion, we arrive at Itô Calculus and the
concept of the stochastic integral. In a nutshell, recall that the construction of the Itô integral
mirrors that of the Lebesgue integral in the sense that one defines the Itô integral as the
L2(P) limit of simple (adapted) processes [68]. Subsequently, one can extend the definition of
the stochastic integral to a broader class of processes: local martingales and semimartingales
[56]. Given a continuous semimartingale X and a left-continuous locally bounded adapted
process Y , it can be shown that the Itô integral of Y against X can be expressed as the limit
in probability: ∑

i

Ytni (Xtni+1
−Xtni

)
P−→
∫ T

0

Ys dXs.

The crucial observation here is that the stochastic integral does not have a pathwise definition,
and heavily depends on probability tools, such as martingales. Furthermore, it is a classical
exercise in Stochastic Calculus to demonstrate that for the stochastic integral to be a
martingale, we must select the left endpoint on each subinterval of the partitions as the
test point. Opting for alternative test points leads to different definitions of the stochastic
integral, such as the Stratonovich integral [45].

Overall, the regularity limitations of the integrals discussed above, combined with the non-
analytical nature of the stochastic integral, illustrate that there is room for a pathwise theory
of integration capable of handling highly irregular paths. This is Rough Path theory. In
this chapter, we begin our exploration of Rough Path theory, with Section 1.3 specifically
resuming the ongoing discussion on integration. Lastly, we note that this chapter serves
solely as an introduction to Rough Path theory and intentionally omits the study of rough
differential equations. Instead, the primary focus of Chapter 1 lies on the spaces of rough
paths, which provide an appropriate class of integrators for subsequently defining rough
integrals and rough differential equations for a suitable class of integrands.

1.1. Preliminaries to Rough Path Theory
We establish the prerequisites for path signatures and rough paths. Rather than providing
a comprehensive overview, the aim is to provide a concise presentation of the concepts
underpinning the subsequent sections, emphasising particularly useful results. All material
covered in this section is classical, and hence most proofs are omitted. In instances where
further elucidation is required, references to the appendices will be made for more detailed
explanations and brief theoretical recaps.

Concurrently, this section introduces notation that will be utilised throughout. To enhance
accessibility, a table summarising the notation is appended at the beginning of this work.
We structure the presentation into two parts - one with a more analytical focus (Sections
1.1.1 and 1.1.2) and the other with a more algebraic emphasis (Section 1.1.3).
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1.1.1. Path Spaces and Regularity
We begin by establishing the definition of a path and presenting pertinent results regarding
the space of paths. Following this, we introduce the notions of regularity that will be utilised
throughout, specifically defining spaces of finite p-variation and α-Hölder spaces. To conclude
this section, we demonstrate the compact embedding between α-Hölder spaces. References
are provided for readers interested in reviewing any of the results mentioned.

Definition 1.1: Let (E, d) be a metric space and consider some interval [0, T ] ⊂ R. We
denote by C([0, T ], E) the set of all continuous functions [0, T ]→ E. We refer to an element
X of C([0, T ], E) as a path and denote X(t) by Xt, for all t ∈ [0, T ]. The path increment
Xt−Xs is denoted by Xs,t for all s < t in [0, T ]. Additionally, we equip C([0, T ], E) with the
supremum metric given by

d∞;[0,T ](X, Y ) := sup
t∈[0,T ]

d(Xt, Yt).

Lastly, for a fixed o ∈ E, we agree that Co([0, T ], E) denotes the subset of paths that start at
o, i.e. all the X ∈ C([0, T ], E) such that X(0) = o.

Remark 1.1: The interval [0, T ] in Definition 1.1 can of course be replaced by any other
interval [a, b] ⊂ R. All the results below are readily adapted if we consider [a, b] instead of [0, T ].
Furthermore, as we shall observe, many results remain invariant under reparametrization.

It is straightforward to see that d∞;[0,T ] defines a metric on C([0, T ], E), thereby establishing
a metric space. We refer to the topology induced by d∞;[0,T ] as the uniform or supremum
topology. Moreover, we may use d∞;[0,T ] to define a norm. Indeed, given some element o ∈ E,
we may identify it with the constant path and set

|X|∞;[0,T ] := sup
t∈[0,T ]

d(Xt, o).

Whenever E has a group structure, a common choice for o is the identity element. For
instance, if E = Rd, then o is taken to be the origin and |X|∞;[0,T ] = supt∈[0,T ] |Xt|, where | · |
denotes the usual Euclidean norm. It is pertinent to recall the following topological properties
of C([0, T ], E).

Proposition 1.1 ([58], Theorem 21.6): Any continuous mapping from [0, T ] to E is uniformly
continuous.

Proposition 1.2 ([58], Theorem 43.6): If (E, d) is a complete metric space, then C([0, T ], E)

is complete under d∞.



1.1. Preliminaries to Rough Path Theory 14

Considering its significance for future results, we also include the Arzelà-Ascoli theorem ([37],
Theorem 1.4) that provides a criteria for identifying compact sets in C([0, T ], E), under mild
assumptions on E.

Definition 1.2: A subset of paths K ⊂ C([0, T ], E) is said to be equicontinuous if for all
ε > 0, there exists a δ > 0 such that |t − s| < δ implies d(Xt, Xs) < ε for all X ∈ K.
Furthermore, it is said to be uniformly bounded if supX∈K |X|∞;[0,T ] <∞.

Theorem 1.1 (Arzelà-Ascoli): Let (E, d) be a complete metric space in which bounded
subsets have compact closure. Then K ∈ C([0, T ], E) has compact closure, i.e. it is pre-
compact (or relatively compact), if and only if K is equicontinuous and uniformly bounded.

Recall that a topological space is said to have the Heine-Borel property if each closed bounded
set is compact, or, equivalently, if each bounded set is relatively compact. We now provide
an overview of the various types of path regularity that will be used.

Definition 1.3: Let [0, T ] ⊂ R be some interval. We denote by P([0, T ]) the set of partitions
of [0, T ]. A typical element (ti) ∈ P([0, T ]) consists of n adjacent intervals [ti, ti+1] that we
usually write as {0 = t0 < t1 < . . . < tn = T}. We set |(ti)| := maxi=1,...,n |ti − ti−1| and refer
to this quantity as the mesh of (ti).

Definition 1.4: Let (E, d) be a metric space. Then, X : [0, T ]→ E is said to be:

1. α-Hölder continuous with exponent α ≥ 0 if

|X|α-Höl;[0,T ] := sup
0≤s≤t≤T

d(Xs, Xt)

|t− s|α
<∞

2. of finite p-variation for a fixed p > 0 if

|X|p-var;[0,T ] :=

(
sup

(ti)∈P([0,T ])

∑
i

d(Xti , Xti+1
)p

)1/p

<∞.

We denote the set of α-Hölder continuous paths by Cα-Höl([0, T ], E), and the set of continuous
paths of finite p-variation by Cp-var([0, T ], E). The subsets of α-Hölder continuous paths and
continuous paths of finite p-variation that start at o ∈ E are denoted by Cα-Höl

o ([0, T ], E) and
Cp-var
o ([0, T ], E), respectively.

Observe that the quantities above do not correspond to norms. Indeed, we have that X = o

for some o ∈ E if and only if |X|α-Höl;[0,T ] = 0, and if and only if |X|p-var;[0,T ] = 0. Moreover,
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it is worth noting that C0-Höl([0, T ], E) ≡ C([0, T ], E), and any α > 0 can be expressed as
1/p for some p > 0, making apparent that any 1/p-Hölder continuous path is a continuous
path of finite p-variation. The next proposition shows to what extent the opposite claim is
true. In addition, we include another result that justifies the common practice of considering
α ∈ [0, 1] and p ≥ 1.

Proposition 1.3 ([37], Proposition 1.21): Consider X ∈ C([0, T ], E). Then, X is of finite
p-variation if and only if there exists a continuous increasing function h : [0, T ]→ [0, 1] and a
1/p-Hölder continuous path Y : [0, 1]→ E such that X = Y ◦ h.

Proposition 1.4 ([37], Proposition 5.2): Assume that X is α-Hölder continuous with
α ∈ (1,∞), or X is continuous of finite p−variation with p ∈ (0, 1). Then, X is a constant
path.

Next, we highlight the existence of continuous embeddings for both Hölder and finite p-
variation spaces. In the specific case of Hölder spaces, we prove the existence of compact
embeddings, meaning that, whenever 0 < β < α ≤ 1, any bounded subset with respect to
| · |α-Höl;[0,T ] yields a relatively compact subset in Cβ-Höl([0, T ], E). We conclude this section
by establishing a condition for the completeness of these spaces.

Proposition 1.5 ([37], Proposition 5.3): Consider X ∈ C([0, T ], E). If 1 ≤ p ≤ q < ∞,
then |X|q-var;[0,T ] ≤ |X|p-var;[0,T ]. In particular, we have Cp-var([0, T ], E) ⊂ Cq-var([0, T ], E).
Analogously, if 0 ≤ β ≤ α ≤ 1, then Cα-Höl([0, T ], E) ⊂ Cβ-Höl([0, T ], E).

Proposition 1.6 ([2], Lemma 2.5): Consider a Banach space (E, | · |E) in which bounded
subsets have a compact closure and 0 < β < α ≤ 1. Let (Xn)n≥1 ⊂ Cα-Höl([0, T ], E) be a
sequence of α-Hölder continuous paths such that

sup
n≥1

(
|Xn

0 |E + |Xn|α-Höl;[0,T ]
)
<∞. (1.4)

Then, there exists a path X ∈ Cα-Höl([0, T ], E) and a subsequence (Xnk)k≥1 such that
|Xnk −X|β-Höl;[0,T ] → 0 as k →∞.

Proof. From (1.4) we can directly conclude that (Xn)n≥1 is uniformly bounded and equicon-
tinuous. Therefore, by Arzelà-Ascoli (Theorem 1.1), there exists a continuous path X and a
subsequence (Xnk)k≥1 such that Xnk → X uniformly. To prove convergence with respect to
| · |β-Höl;[0,T ], we observe that

|Xs,t|E
|t− s|β

=

(
|Xs,t|E
|t− s|α

) β
α

|Xs,t|
1− β

α
E ,
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which leads to the following interpolation estimate:

|X|β-Höl;[0,T ] ≤ |X|
β
α

α-Höl;[0,T ]

(
sup

0≤s<t≤T
|Xs,t|E

)1− β
α

. (1.5)

Furthermore, for all 0 ≤ s < t ≤ T , we have

|Xs,t|E
|t− s|α

= lim inf
k→∞

|Xnk
s,t |E

|t− s|α
≤ lim inf

k→∞
|Xnk |α-Höl;[0,T ].

Hence, |X|α-Höl;[0,T ] ≤ lim infk→∞ |Xnk |α-Höl;[0,T ], i.e. | · |α-Höl;[0,T ] is lower semi-continuous.
Now, by (1.5), it follows that

|Xnk −X|β-Höl;[0,T ] ≤ |Xnk −X|
β
α

α-Höl;[0,T ]

(
sup

0≤s<t≤T
|Xnk

s,t −Xs,t|E
)1− β

α

. (1.6)

Additionally, by lower semi-continuity and (1.4), we conclude that

|X|α-Höl;[0,T ] ≤ lim inf
k→∞

|Xnk |α-Höl;[0,T ] ≤ sup
k≥1
|Xnk |α-Höl;[0,T ] <∞,

and hence supk≥1 |Xnk −X|α-Höl;[0,T ] <∞. Since Xnk → X uniformly, the RHS of (1.6) tends
to zero as k →∞, and the result follows.

Remark 1.2: We refer to Proposition 5.28 in [37] for the specific case E = Rd. Also, recall
that for metrizable spaces the usual notion of compactness via open coverings and the notion
of sequentially compact coincide (see [58], Theorem 28.2).

Proposition 1.7: Consider α ∈ [0, 1] and p ≥ 1. If (E, | · |E) is a Banach space, then
Cα-Höl([0, T ], E) is a complete metric space under the norm X 7→ |X0|E + |X|α-Höl;[0,T ].
Likewise, Cp-var([0, T ], E) is a complete metric space under the norm X 7→ |X0|E+ |X|p-var;[0,T ].

For instance, both Cα-Höl([a, b],Rd) and Cp-var([a, b],Rd) are Banach spaces with norms as in
Proposition 1.7. However, these Banach spaces are not separable ([37], Example 5.26).

1.1.2. Bounded Variation Paths and Differential Equations
We now specialise to the case when p = 1. These paths hold a particular significance in what
is to come. We explore the connection between Lipschitz paths (α = 1) and continuous paths
of bounded variation (p = 1). Additionally, we briefly digress into absolutely continuous
paths and recall their integral representation, which is pertinent for our purposes as it relates
closely to the length of a path. We end the section by stating a Picard-Lindelöf type result.

This section only serves a purpose in Section 1.2.2, where we establish basic properties of
path signatures. As such, it is not highly relevant to the thesis as a whole. Nonetheless, it
contributes to the self-contained nature of this work without becoming excessively pedantic.
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Definition 1.5: Let (E, d) be a metric space. If X ∈ C1-var([0, T ], E), i.e. X is continuous
and

|X|1-var;[0,T ] = sup
(ti)∈P([0,T ])

∑
i

d(Xti , Xti+1
) <∞,

then we say that X is a path of bounded variation.

As mentioned earlier, any 1/p-Hölder continuous path is a continuous path with finite p-
variation. Specifically, any Lipschitz path qualifies as a continuous bounded variation path,
owing to the estimate

|X|1-var;[s,t] ≤ |X|1-Höl;[s,t]|t− s|.

We also note that during the proof of Proposition 1.6, it was demonstrated that α-Hölder
norms exhibit lower semi-continuity. The same is true for bounded variation paths. Precisely,
if (Xn)n≥1 represents a sequence of finite 1-variation paths that converge pointwise to a path
X : [0, T ]→ E, then

|X|1-var;[0,T ] ≤ lim inf
n→∞

|Xn|1-var;[0,T ].

Indeed, it is sufficient to observe that for any partition (ti) ∈ P([0, T ]), we have∑
i

d(Xti , Xti+1
) = lim inf

n→∞

∑
i

d(Xn
ti
, Xn

ti+1
) ≤ lim inf

n→∞
|Xn|1-var;[0,T ].

Under identical assumptions, we easily establish lower semi-continuity for the 1-Hölder norm.

Proposition 1.8 ([37], Lemma 1.23): Let (Xn)n≥1 be a sequence of finite 1-variation paths
from [0, T ] to some metric space E. Assume Xn → X pointwise on [0, T ]. Then, for all s < t

in [0, T ],
|X|1-Höl;[0,T ] ≤ lim inf

n→∞
|Xn|1-Höl;[0,T ].

While not strictly essential for the present work, it is helpful to revisit the concept of absolute
continuity for a better understanding of forthcoming results, particularly those in Section
1.2.3. Additionally, absolute continuous paths are closely related to the space C1-var([0, T ], E).

Definition 1.6: Let (E, d) be a metric space. The path X : [0, T ] → E is said to be
absolutely continuous if for all ε > 0, there exists δ > 0, such that for all s1 < t1 ≤ s2 < t2 ≤
. . . ≤ sn < tn in [0, T ] with

∑
i |ti − si| < δ, we have

∑
i d(Xti , Xsi) < ε.

Proposition 1.9 ([37], Proposition 1.18): If X : [0, T ]→ E is absolutely continuous, then
X ∈ C1-var([0, T ], E).

Moreover, it is relatively straightforward to demonstrate that any Lipschitz path X is
absolutely continuous. Specifically, for any ε > 0, one can simply select δ = ε/|X|1-Höl;[0,T ].
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For the remainder of this section, we specialise to the case where E = Rd, focusing solely on
paths with state-space Rd.

Remark 1.3: Recall that the significance of absolutely continuous paths stems from their
integral representation. Specifically, if X : [0, T ]→ Rd is absolutely continuous, then

Xt = X0 +

∫ t

0

Ẋs ds,

for a unique Ẋ ∈ L1([0, T ],Rd) ([37], Proposition 1.32). This result is a basic consequence of
the Radon–Nikodym theorem in Measure theory. Moreover, if X ∈ C1-Höl([0, T ],Rd), then Ẋ
can be chosen (uniquely) from L∞([0, T ],Rd) ([37], Proposition 1.37).

By Proposition 1.3, any continuous bounded variation path is a continuous time-change
(i.e. reparametrization) of a Lipschitz path. Utilising the notation of Proposition 1.3, the
reparametrization h is typically chosen as

h(t) =
|X|1-var;[0,t]

|X|1-var;[0,T ]
,

yielding a continuous increasing function from [0, T ] to [0, 1]. This parametrization is
commonly referred to as the "arc-length parametrization", a designation that becomes
evident with the next result.

We also observe that the 1-variation of a path remains invariant under reparametrization.
Therefore, if Y is the Lipschitz path such that X = Y ◦ h, then

|X|1-var;[0,T ] = |Y |1-var;[0,1].

Furthermore, due to the additivity of | · |1-var;[s,t] as a function of s and t, we have |Y |1-Höl;[0,1] ≤
|X|1-var;[0,T ] (see [37], Remark 1.22). Since trivially |Y |1-var;[0,1] ≤ |Y |1-Höl;[0,1], we obtain that

|Y |1-Höl;[0,1] = |X|1-var;[0,T ].

This implies that the 1-variation of X, i.e. the length of X, is equivalent to the Lipschitz norm
of Y . The following proposition indicates that it is possible to reparametrize a continuous
bounded variation path into a Lipschitz path in a manner such that the reparametrized
path maintains constant speed. Moreover, this speed corresponds to the arc-length of the
reparametrized path.

Proposition 1.10 ([37], Proposition 1.38): Let X ∈ C1-var([0, T ],Rd) be a non-constant
continuous path of bounded variation. Define Y (·) by Y ◦ h = X, where

h(t) =
|X|1-var;[0,t]

|X|1-var;[0,T ]
.
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Then, Y ∈ C1-Höl([0, 1],Rd) and Y is the indefinite integral of some Ẏ ∈ L∞([0, 1],Rd).
Moreover,

|Ẏ (t)| = |X|1-var;[0,T ] = |Y |1-Höl;[0,1], for a.e. t ∈ [0, 1],

and,

|Y |1-var;[0,h(t)] =

∫ h(t)

0

|Ẏ (s)| ds.

We conclude this section by presenting a Picard-Lindelöf type result that establishes sufficient
conditions to obtain existence and uniqueness of the solution Y : [0, T ]→ Re for controlled
differential equations of the form

dYt = f(Yt) dXt, (1.7)

where X : [0, T ] → Rd is a continuous path of bounded variation and f = (f1, . . . , fd) is a
collection of continuous linear vector fields on Re, i.e. f ∈ C(Re, L(Rd,Re)).

As mentioned in the chapter’s introduction, this work primarily introduces the space of rough
paths rather than focusing extensively on solving rough differential equations. Thus, we do
not provide an exhaustive treatment of the theory of differential equations. Interested readers
are directed to Chapter 3 in [37].

Recall that, we define ∫ t

0

f(Ys) dXs :=
d∑
i=1

∫ t

0

fi(Ys) dX
i
s,

implying that f is indeed a map taking values in L(Rd,Re), which we equip with the operator
norm. Specifically, for a given y ∈ Re, we have

|f(y)|op := sup
a∈Rd
|a|≤1

∣∣∣∣∣
d∑
i=1

fi(y)a
i

∣∣∣∣∣ .
It turns out that to achieve existence of a solution for equation (1.7), we only require mild
assumptions on the (continuous) vector fields f = (f1, . . . , fd). Naturally, to obtain uniqueness
of solution, we must impose stronger constraints on the regularity of f . These constraints
are the content of the following definition.

Definition 1.7: Let f = (f1, . . . , fd) be a collection of vector fields viewed as a map
Re → L(Rd,Re). Then, f is said to be bounded if

|f |∞,op := sup
y∈Re
|f(y)|op <∞.

Additionally, for any U ⊂ Re, we define the 1-Lipschitz norm | · |Lip1(U) of f by

|f |Lip1(U) := max

{
sup

y,z∈U :y ̸=z

|f(y)− f(z)|op
|y − z|

, sup
y∈U
|f(y)|op

}
.
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If |f |Lip1 ≡ |f |Lip1(Re) < ∞, we say that f ∈ Lip1(Re). If |f |Lip1(U) < ∞ for all bounded
subsets U ⊂ Re, we say that f is locally 1-Lipschitz.

We now state an existence and uniqueness result for the solution of (1.7), including only the
strictly necessary implications for our purposes.

Theorem 1.2: Consider X ∈ C1-var([0, T ],Rd). Let f = (f1, . . . , fd) be a locally 1-Lipschitz
collection of vector fields on Re of linear growth, i.e., for all i ∈ {1, . . . , d}, there exists A > 0

such that
|fi(y)| ≤ A(1 + |y|) for all y ∈ Re.

Then, for a given initial condition y0 ∈ Re, there exists a unique solution to dYt = f(Yt) dXt

on [0, T ]. Moreover, the solution map, i.e. (y0, X) 7→ Y , is continuous with respect to the
1-variation distance over C1-var([0, T ],Rd).

Proof. See Theorems 3.7, 3.8, and 3.18 in [37].

Remark 1.4: As a consequence of uniqueness, we observe that the solution of (1.7) commutes
with time-changes. More precisely, if ϕ is a continuous non-decreasing surjection from [0, T ]

to [a, b] and Y is the unique solution to (1.7), then Y ◦ϕ coincides with the unique solution of

dYϕ(t) = Yϕ(t) dXϕ(t).

This follows from the fact that Riemann-Stieltjes integrals are invariant under reparametriza-
tion (see [37], Proposition 3.10).

1.1.3. Tensor Algebras
This section presents the concept of extended tensor algebra, which will play a prominent role
in subsequent sections, serving as the state space for various path spaces. For a concise review
of the tensor product between vector spaces and its universal property, refer to Appendix
A. For our purposes, it suffices to focus on tensor algebras over Rd. In Section 1.2, once we
delve into path signatures and grasp the ubiquity of iterated integrals, the significance of the
tensor algebra will become apparent.

Definition 1.8: We define the extended tensor algebra over Rd as the direct product

T ((Rd)) :=
∞∏
n=0

(Rd)⊗n =
{
a = (an)n≥0 : an ∈ (Rd)⊗n

}
,

where (Rd)⊗0 := R. Similarly, we define the tensor algebra over Rd as the direct sum

T (Rd) :=
∞⊕
n=0

(Rd)⊗n =
{
a = (an)n≥0 : an ∈ (Rd)⊗n and an ̸= 0 for finitely many n ∈ N

}
.
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Remark 1.5: We note that we may define the (extended) tensor algebra over a generic
vector space V . Indeed, those with some knowledge of Category theory might recognise
the tensor algebra as being functorial, i.e. the tensor algebra construction can be seen as a
functor T : VectR → R-Mod, where VectR denotes the category of real vector spaces and
R-Mod denotes the category of real modules.

It is also convenient to define the truncated tensor algebra TN(Rd) given by

TN(Rd) :=
N⊕
n=0

(Rd)⊗n.

We observe the canonical embeddings TN(Rd) ↪→ T (Rd) ↪→ T ((Rd)), and denote by π≤N
and πN the projections T ((Rd))→ TN(Rd) and T ((Rd))→ (Rd)⊗N , respectively. We endow
T ((Rd)) with the usual component-wise addition and scalar multiplication. Specifically, for
all a,b ∈ T ((Rd)),

a + b = (a0 + b0, a1 + b1, . . .) and λ · a = (λa0, λa1, . . .), for all λ ∈ R.

Moreover, given a,b ∈ T ((Rd)), we define a multiplication operation a⊗ b by setting

(a⊗ b)n =
n∑
i=0

ai ⊗ bn−i. (1.8)

Here, the product ai ⊗ bn−i is understood as an instance of the canonical isomorphism

(Rd)⊗i ⊗ (Rd)⊗(n−i) → (Rd)⊗n,

given by the usual tensor product (Appendix A). We note that the multiplication in TN (Rd)

is also given by (1.8), except that the higher-order terms with n > N are omitted. The
following straightforward result justifies the suggestive nomenclature of Definition 1.8.

Proposition 1.11 ([37], Proposition 7.4): The space (T ((Rd)),+, ·,⊗) is a real associative
algebra with unity 1 := (1, 0, 0, . . .). Similarly, for all N ≥ 1, (TN(Rd),+, ·,⊗) is a real
associative algebra with neutral element π≤N(1) and the product ⊗ truncated at level N .

We make a slight abuse of notation and denote the unity in TN(Rd) by 1 as well. Now
that we have an algebraic structure, it becomes pertinent to define a norm. To this end,
we equip (Rd)⊗n with the usual Euclidean norm. Indeed, it is a well-established result that
{ei1 ⊗ · · · ⊗ ein : i1, . . . , in ∈ {1, . . . , d}} serves as a canonical basis for (Rd)⊗n, where (ei)

d
i=1

denotes the canonical basis of Rd (Appendix A). This way, any g ∈ (Rd)⊗n can be written as

g =
∑
i1,...,in

gi1,...,inei1 ⊗ · · · ⊗ ein , and so |g|(Rd)⊗n :=

√ ∑
i1,...,in

|gi1,...,in|2
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yields a norm on (Rd)⊗n. Moreover, it becomes apparent that, for 0 ≤ i ≤ n,

(g,h) ∈ (Rd)⊗i × (Rd)⊗(n−i), |g⊗ h|(Rd)⊗n = |g|(Rd)⊗i |h|(Rd)⊗(n−i) .

This is typically referred to as "compatibility between tensor norms." Finally, for g ∈ TN (Rd),
we set

|g|TN (Rd) := max
n=0,...,n

|πn(g)|(Rd)⊗n ,

Equipped with | · |TN (Rd), TN (Rd) becomes a Banach space [37]. When no confusion is possible
we simply write |g| instead of |g|(Rd)⊗n .

Given that Rd is a Hilbert space and that the inner product naturally extends to (Rd)⊗n

(see Appendix A), we can also establish an inner product on T ((Rd)), and extract a subset
endowed with a Hilbert space structure by considering elements with finite norm.

Definition 1.9: We denote by T̃ ((Rd)) the Hilbert space

T̃ ((Rd)) :=

a ∈ T ((Rd)) : |a|T̃ (Rd) :=

(
∞∑
n=0

|an|2
)1/2

<∞

 ,

where | · |T̃ ((Rd)) is the norm induced by the inner product ⟨a,b⟩T̃ ((Rd)) :=
∑

n≥0⟨an,b
n⟩(Rd)⊗n .

Additionally, in the context of rough paths, it becomes essential to consider yet another
subset of T ((Rd)). Namely, the linear-affine subspace

T1((Rd)) :=
{
a ∈ T̃ ((Rd)) : a0 = 1

}
.

Proposition 1.12 ([37], Proposition 7.17): The space (T1((Rd)),⊗) is a Lie group, i.e.
T1((Rd)) is a group with a smooth manifold structure. Moreover, for all a ∈ T1((Rd)), we
have

a−1 =
∞∑
n=0

(1− a)⊗n.

Although the Lie group structure of T1((Rd)) will not play a major role in what follows, it
is still pertinent to be aware of it. We now identify the extended tensor algebra with the
algebra of non-commutative formal power series in d indeterminates.

Definition 1.10: Let e1, . . . , ed be d formal indeterminates. The algebra of non-commuting
formal power series in d indeterminates, denoted by R[[e1, . . . , ed]], is the vector space of all
series of the form

∞∑
n=0

∑
i1,...,in∈{1,...,d}

λi1,...,inei1 . . . ein ,



23

where the second summation is over the set of multi-indices (i1, . . . , in) ∈ {1, . . . , d}n, and
λi1,...,in are real coefficients. For n = 0 we simply consider λ0 ∈ R. The subset of formal power
series for which only a finite number of coefficients λi1,...,in are non-zero is called the algebra
of non-commuting formal polynomials, and is denoted by R[e1, . . . , ed]. The multiplication
operation is given by the usual Cauchy product of series.

Alternatively, we can express the second summation as spanning the set of words w of length
n over the alphabet {1, . . . , d}. A word of length n is essentially a string of n numbers,
denoted as w = i1 . . . in. With this perspective, we can simplify the notation by representing
the formal series as

∞∑
n=0

∑
|w|=n

λwew,

where w serves as shorthand for the multi-index (i1, . . . , in); |w| indicates the length of the
word w; |w| = n denotes the set of length n words; and ew is an abbreviation for ei1 . . . ein .
For n = 0, we assign the empty word denoted by ∅. Considering that a generic element of
(Rd)⊗n is given by ∑

i1,...,in∈{1,...,d}

αi1,...,inei1 ⊗ · · · ⊗ ein ,

with ei denoting an element of the canonical basis of Rd, and that the product ⊗ emulates
polynomial multiplication, it is apparent that we have the isomorphisms

T ((Rd)) ∼= R[[e1, . . . , ed]] and T (Rd) ∼= R[e1, . . . , ed].

These identifications are particularly useful whenever we want to "unfold" the tensor notation.
At the same time, it highlights the benefit of having a compact notation such as the tensor
notation capable of concealing all the multi-indices. With the formal series notation, we see
that

a⊗ b =

 ∞∑
n=0

∑
|w|=n

awew

⊗
 ∞∑

n=0

∑
|w|=n

bwew

 =

=a0b0 +
d∑
i=1

(a0bi + aib0)ei +
d∑

i,j=1

(a0bi,j + aibj + ai,jb0)eiej + . . . ,

for all a,b ∈ T ((Rd)).

Finally, using the word notation, we highlight the natural pairing between the extended
tensor algebra T ((Rd)) and its dual space T ((Rd)∗). Recall that (Rd)∗ ∼= Rd denotes the
(topological) dual of Rd. Additionally, we define the shuffle product operation between words,
an operation that will prove useful in the coming section.
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Definition 1.11: The natural pairing ⟨·, ·⟩ : T ((Rd)∗)× T ((Rd))→ R of the extended tensor
algebra with its dual is defined by

⟨l, a⟩ =
∑

w∈W(Ad)

lwaw,

where W(Ad) =
{
i1 . . . in : n ∈ N0, i1, . . . , in ∈ {1, . . . , d}

}
denotes the set of all words over

the alphabet {1, . . . , d}, and aw denotes a component of a|w|. Precisely, ai =
∑
|w|=i awew for

all i ∈ N0.

In line with previous considerations, we can similarly identify basis elements of the dual of
the extended tensor algebra with the space of words. Specifically, by letting {e∗1, . . . , e∗d}
denote the dual basis of (Rd)∗, we establish the following correspondence:

e∗i1 ⊗ · · · ⊗ e
∗
in ∈ T ((R

d)∗)↔ w = i1 . . . in ∈ W(Ad).

Consequently, any linear functional L : T ((Rd)) → R can be identified via (formal) linear
combinations of elements in W(Ad), a pertinent observation that will be used throughout in
the latter chapters of this work. Moreover, considering the correspondence ew ↔ e∗w for all
words w ∈ W(Ad), we denote by ⟨ew, a⟩ the component of a corresponding to w, i.e. aw. We
now endow W(Ad) with two operations: concatenation and the shuffle product.

Definition 1.12: Let w1 = i1 . . . in and w2 = j1 . . . jm be two words in W(Ad). We define
the concatenation of w1 and w2 by (w1, w2) := i1 . . . inj1 . . . jm. In addition, for words w1, w2

and letters i, j ∈ {1, . . . , d}, we define the shuffle product � : W(Ad) ×W(Ad) → W(Ad)

recursively by (w1, i) � (w2, j) := ((w1 � (w2, j)), i) + (((w1, i) � w2), j), with ∅ � w1 =

w1�∅ = w1, and ∅ denoting the empty word.

In practice, it is more convenient to think of the shuffle product w1� w2 as the formal sum
of all permutations of the letters in w1 and w2, while maintaining the order of the letters
within each word. This operation resembles shuffling a deck of cards, hence the name. For
instance, let w1 = i1i2 and w2 = j1j2. Their shuffle product is expressed as:

w1� w2 = i1i2j1j2 + i1j1i2j2 + i1j1j2i2 + j1j2i1i2 + j1i1j2i2 + j1i1i2j2.

More generally, for words w1 = i1 . . . im and w2 = j1 . . . jn, the shuffle product is given by∑
σ∈S(m,n)

rσ(1) . . . rσ(m+n),

where r1 . . . rnrn+1 . . . rm+n = (w1, w2) and S(m,n) denotes the set of all permutations σ of
{1, . . . , n +m} such that σ−1(1) < · · · < σ−1(n) and σ−1(n + 1) < · · · < σ−1(n +m). The
next section will clarify the importance of the shuffle product.
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1.2. Path Signatures
We introduce path signatures, a central object in this thesis. In essence, the signature of a path
is an infinite series composed of all its iterated integrals. Section 1.2.1 provides motivation for
signatures as a natural object in the study of controlled differential equations and presents
their definition. Subsequently, Section 1.2.2 outlines basic properties of signatures, and finally,
Section 1.2.3 introduces a commonly used notion of distance between path signatures, namely,
the Carnot-Carathéodory norm. Signatures will be used throughout in the remaining chapters
of this work.

1.2.1. Motivation and Definition
We introduce and define signatures for paths of bounded variation. As emphasised in the
chapter’s introduction, a compelling motivation for path signatures lies in the study of
controlled differential equations. In this section, we illustrate the non-commutativity of
iterated integrals, thereby justifying the utilisation of extended tensor algebras.

Recall that, in the context of Rough Path theory, we aim to make sense of differential
equations of the form

dYt = f(Yt) dXt,

where f ∈ C(Re, L(Rd,Re)), X ∈ C([0, T ],Rd) and Y ∈ C([0, T ],Re). To simplify the
problem, we can start by considering

dYt = Yt dXt :=
d∑
i=1

Yt dX
i
t , (1.9)

with some initial condition Y0 = y ∈ Re. Formally, a solution is given by

Yt = y + y
d∑
i=1

∫ t

0

dX i
s + y

n∑
i,j=1

∫ t

0

∫ s

0

dX i
u dX

j
s + . . .+ y

d∑
i1,...,in=1

∫
∆n

[0,t]

dX i1
t1 . . . dX

in
tn + . . .

Thus, we observe that provided a proper meaning to the path integrals above, the solution
of (1.9) is determined by the sequence of iterated integrals of the control (i.e. the driving
signal).

Likewise, if we consider some linear map f ∈ C(Re, L(Rd,Re)), we may employ the standard
procedure of Picard iterations to seek a solution ([18], Section 1.2.3). To begin with, note
that for x ∈ Rd, each y ∈ Re yields a map

(
x 7→ f(y)x

)
∈ L(Rd,Re). Equivalently, we may

parameterise this map by x and consider x 7→
(
y 7→ f(y)x

)
. Thus, f can be equivalently

interpreted as a linear map Rd → L(Re,Re). Denoting the identity operator in L(Re,Re) by
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Ie, the Picard iterations (Y n
t )n≥0 can be expressed as follows:

Y 0
t = y,

Y 1
t = y +

∫ t

0

f(Y 0
s ) dXs =:

(∫ t

0

f( dXs) + Ie

)
(y),

Y 2
t = y +

∫ t

0

f(Y 1
s ) dXs =

(∫ t

0

∫ s

0

f( dXu)f( dXs) +

∫ t

0

f( dXs) + Ie

)
(y),

...

Y n
t = y +

∫ t

0

f(Y n−1
s ) dXs =

(
n∑
k=1

∫
∆k

[0,t]

f( dXt1) . . . f( dXtk) + Ie

)
(y).

Defining the tensor map f⊗n( dXt1 ⊗ · · · ⊗ dXtn) := f( dXt1) . . . f( dXtn) and extending it
by linearity then yields

Y n
t = y +

∫ t

0

f(Y n−1
s ) dXs =

(
n∑
k=1

f⊗k

(∫
∆k

[0,t]

dXt1 ⊗ . . .⊗ dXtk

)
+ Ie

)
(y),

suggesting again that the solution Yt is completely determined by the iterated integrals of
the driving signal. We elaborate on the tensor notation below.

Remark 1.6: It is important to observe that iterated integrals are non-commutative. For
instance, let us consider the path X : [0, 1]→ R2 given by Xt = (t, t2). Observe that∫ 1

0

∫ s

0

dX1
u dX

2
s =

2

3
, whereas

∫ 1

0

∫ s

0

dX2
u dX

1
s =

1

3
.

Hence, the set of double-iterated integrals against X is in bijection with the set of words of
length 2 over the alphabet {1, 2}.

Recognising the prevalence of iterated integrals, one may then consider collecting all the
iterated integrals into a single object. With this objective in mind, we observe that the n-fold
iterated integral can be seen as an element of (Rd)⊗n. Indeed, owing to the non-commutativity
of iterated integrals, there is a clear correspondence between the set of n-fold iterated integrals
and elements in (Rd)⊗n of the form

d∑
i1,...,in=1

(∫
∆n

[0,t]

dX i1
t1 . . . dX

in
tn

)
(ei1 ⊗ . . .⊗ ein). (1.10)

To alleviate notation, henceforth, we denote (1.10) using the tensor notation∫
∆n

[0,t]

dXt1 ⊗ . . .⊗ dXtn ,
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which, as previously discussed, has the advantage of suppressing numerous indices. Conse-
quently, it becomes apparent that the natural space to represent the sequence of iterated
integrals is the extended tensor algebra introduced in Section 1.1.3. Given that paths of
bounded variation lead to the well-established Riemann-Stieltjes integral, we then arrive at
the following definition.

Definition 1.13: Let X ∈ C1-var([0, T ],Rd) be a continuous path of bounded variation. The
signature S(X)s,t of X is defined, for all 0 ≤ s < t ≤ T , by

S(X)s,t :=

(
1,

∫ t

s

dXt1 ,

∫
∆2

[s,t]

dXt1 ⊗ dXt2 , . . . ,

∫
∆n

[s,t]

dXt1 ⊗ . . .⊗ dXtn , . . .

)
∈ T ((Rd)).

Additionally, we denote by SN(X)s,t the projection π≤N
(
S(X)s,t

)
onto TN(Rd), and refer to

it as the level-N truncated signature. Lastly, the n-th component of S(X)s,t, i.e. πn
(
S(X)s,t

)
,

is denoted by S(X)
(n)
s,t .

We observe that the signature can be interpreted as a mapping over ∆2
T , or, if we fix the

lower bound s of the integral, as a path over [s, T ]. From now onwards, we agree that S(X)t
denotes the path t 7→ S(X)0,t, and S(X) denotes the evaluated signature S(X)0,T ∈ T ((Rd)).

Remark 1.7: As per the notation in Section 1.1.3, it follows from the definition of signature
that

∫ T
0
⟨ew, S(X)t⟩ dX i

t = ⟨ew⊗ei, S(X)⟩, where w represents a word inW(Ad). Furthermore,
ew ⊗ ei can be denoted as ew′ , where w′ = (w, i), and ⟨e∅, S(X)⟩ = 1 for all paths. Lastly, it
is worth noting that linear functionals L : T ((Rd))→ R of the signature can be expressed as
L(S(X)t) =

∑
0≤|w|≤N αw⟨ew, S(X)t⟩, where N ∈ N and αw ∈ R represent coefficients.

1.2.2. Basic Properties of Signatures
We explore the basic properties of path signatures. We begin by noting that the extended
tensor algebra fully encapsulates the algebraic properties of iterated integrals.

Recall that one basic property of the integral is additivity, i.e.
∫ t
s
=
∫ u
s
+
∫ t
u
, for all s < u < t.

For a double iterated integral, however, we observe that∫ t

s

∫ v

s

dX i
r dX

j
v =

∫ t

s

(X i
v −X i

s) dX
j
v =

∫ u

s

(X i
v −X i

s) dX
j
v +

∫ t

u

(X i
v −X i

s) dX
j
v

=

∫ u

s

(X i
v −X i

s) dX
j
v +

∫ t

u

(X i
v −X i

u) dX
j
v +

∫ t

u

(X i
u −X i

s) dX
j
v

=

∫ u

s

∫ v

s

dX i
r dX

j
v +

∫ t

u

∫ v

u

dX i
r dX

j
v +

∫ u

s

dX i
r

∫ t

u

dXj
v .
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Hence, we conclude that, for all s < u < t,

S(X)
(2)
s,t = S(X)(2)s,u + S(X)

(2)
u,t + S(X)(1)s,u ⊗ S(X)

(1)
u,t ,

illustrating that iterated integrals lack additivity. That said, iterated integrals exhibit a
multiplicative relation, which resembles the product ⊗ of the extended tensor algebra. The
following result formalises this idea.

Proposition 1.13 (Chen): Let X ∈ C1-var([0, T ],Rd) be a continuous path of bounded
variation and S(X) its signature. Then, for all 0 ≤ s < u < t ≤ T , we have

S(X)s,t = S(X)s,u ⊗ S(X)u,t. (1.11)

Proof. We need to show that, for all n ∈ N, we have

S(X)
(n)
s,t =

n∑
i=0

S(X)(i)s,u ⊗ S(X)
(n−i)
u,t .

The proof is done by induction. For n = 1, the statement trivially follows from the usual
additivity of the integral. Assuming the identity above holds for some arbitrary n ≥ 2, we
note that

S(X)
(n+1)
s,t =

∫ t

s

S(X)(n)s,v ⊗ dXv =

∫ u

s

S(X)(n)s,v ⊗ dXv +

∫ t

u

S(X)(n)s,v ⊗ dXv

=S(X)(n+1)
s,u +

n∑
i=0

∫ t

u

S(X)(i)s,u ⊗ S(X)(n−i)u,v ⊗ dXv

=S(X)(n+1)
s,u +

n∑
i=0

S(X)(i)s,u ⊗
∫ t

u

S(X)(n−i)u,v ⊗ dXv

=S(X)(n+1)
s,u +

n∑
i=0

S(X)(i)s,u ⊗ S(X)
(n−i+1)
u,t

=
n+1∑
i=0

S(X)(i)s,u ⊗ S(X)
(n+1−i)
u,t ,

thus proving the claim.

Remark 1.8: The identity presented in Proposition 1.13 is commonly known as Chen’s
identity, and it will be employed consistently throughout this work. Signatures initially
emerged within the realm of Cohomology and trace back to the 1950s in the seminal work
[17] of Chen.

Definition 1.14: A map X : ∆2
T → T ((Rd)) satisfying Chen’s identity (1.11) is said to be a

multiplicative functional.
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We note that Proposition 1.13 is equivalent to showing that the signature of the concatenation
of two paths is equal to the tensor product of the respective signatures of the original
paths. More precisely, given X ∈ C1-var([0, T ],Rd) and Y ∈ C1-var([T, 2T ],Rd) we define the
concatenation X ∗ Y of X with Y as the path

(X ∗ Y )t :=

{
Xt, t ∈ [0, T ]

Yt − Y0 +XT , t ∈ [T, 2T ]
.

Naturally, (X ∗ Y ) ∈ C1-var([0, 2T ],Rd) and we obtain the following result.

Corollary 1.1 ([37], Theorem 7.11): Given X ∈ C1-var([0, T ],Rd) and Y ∈ C1-var([T, 2T ],Rd),

S(X ∗ Y )0,2T = S(X)0,T ⊗ S(Y )T,2T .

Next, we demonstrate that polynomials of linear functionals of the signature can be represented
as a new linear functional of the signature through the use of the shuffle product, thus
elucidating its significance.

Proposition 1.14: Let X : [0, T ]→ Rd be a continuous path of bounded variation. Consider
the words w1 = i1 . . . im and w2 = j1 . . . jn. Then,

⟨ew1 , S(X)⟩⟨ew2 , S(X)⟩ = ⟨ew1 � ew2 , S(X)⟩.

Proof. This result follows by partitioning the domain of integration. Using the notation of
Section 1.1.3, we have that

⟨ew1 , S(X)⟩⟨ew2 , S(X)⟩ =
∫
∆mT

dX i1
t1 . . . dX

im
tm

∫
∆nT

dXj1
u1
. . . dXjn

un (1.12)

=
∑

σ∈S(m,n)

∫
∆m+n
T

dX
rσ(1)
v1 . . . dX

rσ(m+n)
vm+n = ⟨ew1 � ew2 , S(X)⟩.

To clarify, note that the product of integrals in (1.12) can be written as a single integral over
A = {v ∈ Rn+m : 0 < v1 < · · · < vm < T, 0 < vm+1 < · · · < vn+m < T} and

A =
⋃

σ∈S(m,n)

{
v ∈ Rm+n : 0 < vσ(1) < · · · < vσ(m+n) < T

}
.

The result then follows by setting vi = vσ(i) and r = (w1, w2).

As observed in the previous section, iterated integrals naturally appear in the solution of
certain controlled differential equations. The next result demonstrates that the level-N
truncated signature satisfies a differential equation on TN(Rd) ∼= R1+d+...+dN controlled by
a bounded variation path X : [0, T ] → Rd. Furthermore, we deduce from this result the
time-reversal property of signatures and their continuity.
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Proposition 1.15 ([37], Proposition 7.8): Let X ∈ C1-var([0, T ],Rd) be a continuous path of
bounded variation. Then, for a fixed s ∈ [0, T ),{

dSN(X)s,t = SN(X)s,t ⊗ dXt

SN(X)s,s = 1
,

where 1 denotes the identity element in TN(Rd).

Proof. The fact that SN(X)s,t is a solution of the differential equation above follows almost
by definition of signature. Observe that, for a fixed level n ≤ N , we have

SN(X)
(n)
s,t =

∫
∆n

[s,t]

dXt1 ⊗ · · · ⊗ dXtn

=

∫ t

s

(∫
∆n−1

[s,tn]

dXt1 ⊗ · · · ⊗ dXtn−1

)
⊗ dXtn =

∫ t

s

SN(X)(n−1)s,r ⊗ dXr

Therefore,

SN(X)s,t = 1 +

∫ t

s

SN(X)s,r ⊗ dXr,

by considering multiplication over the truncated tensor algebra TN(Rd).

Remark 1.9: Observe that we may define the linear vector fields fi : TN(Rd) → TN(Rd)

given by a 7→ a⊗ ei, for i ∈ {1, . . . , d}, and rewrite the differential equation in Proposition
1.15 in the more familiar form

dSN(X)s,t =
d∑
i=1

fi
(
SN(X)s,t

)
dX i

t .

This way, f = (f1, . . . , fd) can be viewed as a map

TN(Rd) ∼= RE ∋ a 7→

(
x = (x1, . . . , xd) 7→

d∑
i=1

fi(a)xi
)
∈ L(Rd,RE),

where E = 1 + d+ . . .+ dN (see [37], Remark 7.9). Note that the vector fields in f satisfy
the assumptions of Theorem 1.2.

Remark 1.9 together with Theorem 1.2 lead to the following result.

Corollary 1.2: The map SN : C1-var([0, T ],Rd) → TN(Rd) is continuous for all N ≥ 0.
Consequently, if (Xn)n≥1 ⊂ C1-var([0, T ],Rd) converges to some X ∈ C1-var([0, T ],Rd), then

lim
n→∞

S(Xn) = S(X).
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Proposition 1.16 ([37], Proposition 7.10): Let X : [a, b] → Rd be a continuous path of
bounded variation. Consider a continuous, non-decreasing surjection ϕ : [0, T ]→ [a, b], and
write Xϕ

t := Xϕ(t) for the reparametrization of X. Then, for all s < t in [0, T ],

S(X)ϕ(s),ϕ(t) = S(Xϕ)s,t.

The same is true for the level-N truncated signature SN .

Proof. This follows directly from the invariance under reparametrization of the Riemann-
Stieltjes integral (Remark 1.4).

Proposition 1.17 ([55], Proposition 2.14): Let X : [0, T ] → Rd be continuous path of
bounded variation. Consider the time-reversed path

←
X t := XT−t, for t ∈ [0, T ]. Then,

S(X)⊗ S(
←
X) = S(

←
X)⊗ S(X) = 1.

Proof. Parameterise
←
X allowing for the concatenation Z := X ∗

←
X : [0, 2T ]→ Rd. Consider

a collection of vector fields f : Re → L(Rd,Re) satisfying the assumptions of Theorem 1.2.
Then, by Remark 1.4, it is equivalent for a path Y : [0, T ]→ Re to satisfy

∀t ∈ [0, T ], dYt = f(Yt) dXt, Y0 = ξ, YT = η,

or to satisfy
∀t ∈ [0, T ], d

←
Y t = f(

←
Y t) d

←
X t,

←
Y 0 = η,

←
Y T = ξ.

Consequently, the solution to

dYt = f(Yt) dZt, Y0 = ξ (1.13)

satisfies Y2T = ξ. Now, take f to be given by the vector fields of Proposition 1.15 and observe
that πN (1) is a solution to (1.13) for allN ≥ 0. However, SN (Z) also satisfies (1.13). Therefore,
by uniqueness of solution, SN(Z) = πN(1) for all N ≥ 0, i.e. S(Z) = S(X ∗

←
X) = 1.

We conclude this section by establishing what is commonly known as the factorial decay
property of signatures. In essence, we demonstrate that the tensor norms of the components
of the signature decay factorially. This formalises the idea that the majority of information
within the signature of a path is concentrated in the initial components.

Proposition 1.18 ([55], Proposition 2.2): Let X : [0, T ] → Rd be a continuous path of
bounded variation. Then, for all n ≥ 0,

|S(X)(n)| ≤ 1

n!
|X|n1-var;[0,T ] and |S(X)|T̃ ((Rd)) ≤ exp

(
|X|1-var;[0,T ]

)
<∞.
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Proof. By Proposition 1.10, we may assume that X is Lipschitz continuous and hence
almost everywhere differentiable with constant speed |Ẋt|. Moreover, we can choose the
reparametrization in such a way that |Ẋt| = 1 ([37], Remark 1.39). This way, by the
compatibility of tensor norms,∣∣∣∣∣

∫
∆nT

dXt1 ⊗ · · · ⊗ dXtn

∣∣∣∣∣ =
∣∣∣∣∣
∫
∆nT

Ẋt1 ⊗ · · · ⊗ Ẋtn dt1 . . . dtn

∣∣∣∣∣ ≤
∫
∆nt

dt1 . . . dtn =
T n

n!
.

Since |X|1-var;[0,T ] = T the result follows.

1.2.3. Free Nilpotent Groups and the Carnot-Carathéodory Norm

In Section 1.1.3, we introduced several subsets of the extended tensor algebra T ((Rd)).
Specifically, we defined the subset T1((Rd)) consisting of all elements a ∈ T ((Rd)) with a0 = 1

and finite Euclidean norm. By restricting the operation ⊗ to T1((Rd)), we obtained a Lie
group (Proposition 1.12).

In this section, we narrow our focus further to a subgroup of the truncated tensor algebra
TN(Rd). This subgroup is commonly known as the free nilpotent group of step N over Rd,
and it will serve as the state-space for the paths defined in Section 1.3. Additionally, we
define a norm over this subgroup, referred to as the Carnot-Carathéodory norm.

Definition 1.15: Let 1+ tN := {a ∈ TN (Rd) : a0 = 1} denote the Lie group (equipped with
⊗) contained in TN (Rd). We denote by GN (Rd) the set of all level-N truncated signatures of
continuous paths of bounded variation, i.e.

GN(Rd) :=
{
SN(X)0,1 : X ∈ C1-var([0, 1],Rd)

}
.

Remark 1.10: The subset GN(Rd) can be shown to be a closed sub-Lie group of (1 +

tN ,⊗) ([37], Theorem 7.30). That said, proving this fact requires a significant amount of
algebraic machinery, potentially leading to a substantial digression into Lie theory. For
our predominantly analytical purposes, it suffices to acknowledge that GN(Rd) has a group
structure. A formal exploration of the algebraic intricacies behind rough paths, including an
introduction to linear Lie groups, is deferred to a future work.

We proceed to define a norm over GN(Rd), which, in turn, will lead to a metric, thereby
enabling the definition of path spaces with values in GN (Rd). Note that in Definition 1.15 we
consider paths defined on [0, 1]. We can, nevertheless, consider some other interval, owing to
the invariance of signatures under reparametrization. In what follows, we denote the length
of X ∈ C1-var([0, 1],Rd) by

∫ 1

0
| dX|, where Rd is equipped with the usual Euclidean distance.
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Definition 1.16: For every g ∈ GN(Rd), we define the Carnot-Carathéodory norm as

∥g∥cc := inf

{∫ 1

0

| dX| : X ∈ C1-var([0, 1],Rd) and SN(X)0,1 = g
}
.

The next result tells us that the Carnot-Carathéodory norm is finite and, most importantly,
achieved at some minimising path.

Theorem 1.3 ([37], Theorem 7.32): For every g ∈ GN (Rd), the Carnot-Carathéodory norm
∥g∥cc is finite and achieved. Precisely, there exists a minimising path X∗ such that

∥g∥cc =
∫ 1

0

| dX∗| and SN(X
∗)0,1 = g.

Moreover, this minimising path can be reparametrized into a Lipschitz path of constant speed,
i.e. |Ẋ∗(t)| = C > 0, for a.e. t ∈ [0, 1].

Proof. Consider g ∈ GN(Rd). By Definition 1.15, it follows that the infimum is taken over a
non-empty set. Hence, ∥g∥cc <∞. Moreover, by definition of infimum there exists a sequence
(Xn)n≥1 of continuous bounded variation paths with signature equal to g, and whose lengths
converge to ∥g∥cc. Proposition 1.10, in turn, allows us to assume (by reparametrization) that
each Xn has a.e. constant speed cn, i.e.

|Ẋn| ≡ |Xn|1-Höl;[0,1] = cn and cn ↓ ∥g∥cc.

Since the sequence of lengths is decreasing, we have that

sup
n
|Xn|1-Höl;[0,1] = sup

n
cn <∞,

and, by Arzelà-Ascoli (Theorem 1.1), there exists a subsequence (Xnk)k≥1 such that Xnk

converges to some continuous path X∗ uniformly. Additionally, by Proposition 1.8,

|X∗|1-Höl;[0,1] ≤ lim inf
k
|Xnk |1-Höl;[0,1] <∞,

showing that X∗ itself is 1-Hölder continuous, and hence, absolutely continuous with∫ 1

0

| dX∗| =
∫ 1

0

|Ẋ∗t | dt.

Now, by continuity of the signature map (Corollary 1.2), g ≡ SN(X
n)→ SN(X

∗), showing
that SN(X∗) = g. Finally, it remains to see that

∥g∥cc =
∫ 1

0

|Ẋ∗t | dt.



1.2. Path Signatures 34

The inequality ≤ is trivial, since cn ↓ ∥g∥cc. The opposite direction is obtained by observing
that ∫ 1

0

|Ẋ∗t | dt = |X∗|1-Höl;[0,1] ≤ lim inf
k

cnk = ∥g∥cc.

This finishes the proof.

Remark 1.11: This result is commonly known as "geodesic existence." This terminology
stems from the observation that GN(Rd) transforms into a geodesic space under the metric
induced by the Carnot-Carathéodory norm ∥ · ∥cc. Intuitively, a geodesic between two points
can be conceptualised as the shortest path joining these points, and a geodesic space is
characterised by the existence of a geodesic between any pair of points within it. For more
details refer to Sections 5.2 and 7.5.2 in [37].

We conclude this section by comparing the Carnot-Carathéodory norm with the norm |·|TN (Rd)

introduced in Section 1.1.3, specifically when restricted to GN(Rd). Defining path spaces
with the state-space given by GN(Rd), it becomes convenient to establish estimates between
these two norms to facilitate comparisons between the topologies induced by the respective
different metric structures.

Given g,h ∈ GN(Rd) let dcc(g,h) denote the metric defined by ∥g−1 ⊗ h∥cc, i.e. dcc denotes
the metric induced by ∥ · ∥cc. It is straightforward to see that dcc is indeed a genuine metric
([37], Proposition 7.40). Denote by ρ(g,h) the metric induced by the norm | · |TN (Rd) such
that ρ(g,h) = maxi=1,...,N |πi(g) − πi(h)|. In addition, for λ ∈ R, define the dilation map
δλ : T

N(Rd)→ TN(Rd) as πk(δλ(g)) = λkπk(g).

Lemma 1.1: Let g ∈ GN(Rd). The following statements hold:

1. For all λ ∈ R, we have that ∥δλg∥cc = |λ| ∥g∥cc. A norm on TN(Rd) that scales with
the dilation operator is said to be homogenous.

2. The Carnot-Carathéodory norm is symmetric, i.e. ∥g−1∥cc = ∥g∥cc.

3. All homogenous norms on GN(Rd) are equivalent. Precisely, given two homogenous
norms ∥ · ∥1 and ∥ · ∥2, there exists a constant C ≥ 1 such that

1

C
∥g∥1 ≤ ∥g∥2 ≤ C ∥g∥1. (1.14)

Proof. This lemma corresponds to Proposition 7.40 and Theorem 7.44 in [37]. To prove 1.
consider some λ ̸= 0, otherwise the claim is trivial. Using the notation from Theorem 1.3,
we observe that λX∗g satisfies SN(λX∗g) = δλg. Hence, ∥δλg∥cc ≤

∫ 1

0
| dλX∗g| = |λ| ∥g∥cc. To

prove the other direction, repeat the reasoning replacing λ by 1/λ, and g by δλg.
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Regarding the second claim, by Proposition 1.17 we have that SN(
←
X∗g) = g−1. Hence,

∥g−1∥cc ≤
∫ 1

0

| d
←
X∗g| =

∫ 1

0

| dX∗g| = ∥g∥cc.

The opposite inequality follows by considering g−1 instead of g. Finally, to prove the
equivalence of homogenous norms, consider ∥ · ∥1 to be |||g||| := maxi=1,...,N |πi(g)|1/i, which
is evidently homogenous.

Consider the compact set B = {g ∈ GN(Rd) : |||g||| = 1}. By continuity of norms, ∥ · ∥2
attains a minimum and a maximum in B. Specifically, there exist m,M ∈ R+

0 such that
m ≤ ∥g∥2 ≤M . Since (1.14) is clearly satisfied by g = 1, we assume that g ̸= 1. Now, define
λ = 1/|||g||| so that |||δλg||| = 1, and observe that m ≤ ∥δλg∥2 ≤M . Using the homogeneity
of ∥ · ∥2, we obtain m ≤ ∥g∥2/|||g||| ≤M and the result follows.

Proposition 1.19 ([37], Proposition 7.45): Let ||| · ||| denote any homogenous norm on
GN(Rd). Then, there exists a constant C > 0 such that, for all g ∈ GN(Rd),

1

C
min

{
|||g|||, |||g|||N

}
≤ |g− 1|TN (Rd) ≤ C max

{
|||g|||, |||g|||N

}
,

1

C
min

{
|g− 1|TN (Rd), |g− 1|1/N

TN (Rd)

}
≤ |||g||| ≤ C max

{
|g− 1|TN (Rd), |g− 1|1/N

TN (Rd)

}
.

Proof. Note that |g− 1|TN (Rd) = ρ(g,1) = maxi=1,...,N |πi(g)|. By equivalence of homogenous
norms (Lemma 1.1), it suffices to consider |||g||| = maxi=1,...,N |πi(g)|1/i, making it apparent
that

|||g||| ≤ max
{
|g− 1|TN (Rd), |g− 1|1/N

TN (Rd)

}
.

This implies that |||g|||N ≤ max
{
|g− 1|N

TN (Rd), |g− 1|TN (Rd)

}
, and, analysing case by case,

shows that
min

{
|||g|||, |||g|||N

}
≤ |g− 1|TN (Rd).

Finally, it is clear that |g− 1|TN (Rd) = maxi=1,...,N |πi(g)| ≤ max
{
|||g|||, |||g|||N

}
Proposition 1.19, in particular, provides estimates between the Carnot-Carathéodory norm
∥ · ∥cc and the non-homogenous norm | · |TN (Rd).

We now establish estimates between the metrics induced by these norms. However, before
proceeding, we state a simple lemma whose proof we omit as it only involves basic algebra.
Recall that, as per the notation in Section 1.1.3, gi denotes πi(g).
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Lemma 1.2 ([37], Lemma 7.48): Consider g,h ∈ GN(Rd). The following identities hold in
(Rd)⊗n for n = 1, . . . , N :

(g−1 ⊗ h)n =
n∑
i=1

(g−1)n−i ⊗ (hi − gi) and hn − gn =
n∑
i=1

gn−i ⊗ (g−1 ⊗ h)i. (1.15)

Proposition 1.20 ([37], Proposition 7.49): Consider g,h ∈ GN (Rd). There exists a constant
C ≡ C(N) > 0 such that

dcc(g,h) ≤ Cmax
{
ρ(g,h), ρ(g,h)1/N max

{
1, ∥g∥1−

1
N

cc

}}
, and (1.16)

ρ(g,h) ≤ Cmax
{
dcc(g,h)max

{
1, ∥g∥N−1cc

}
, dcc(g,h)N

}
. (1.17)

Particularly, we have that Id :
(
GN(Rd), dcc

)
↔
(
GN(Rd), ρ

)
is Lipschitz on bounded sets in

the (→) direction, and 1/N -Hölder continuous on bounded sets in the (←) direction.

Proof. By (1.15) and the fact that all norms in GN(Rd) are equivalent, we have that∣∣∣(g−1 ⊗ h)k
∣∣∣ ≤ k∑

i=1

∣∣(g−1)k−i∣∣ ∣∣hi − gi
∣∣ ≤ ρ(g,h)

k∑
i=1

∣∣(g−1)k−i∣∣
≤ c1 ρ(g,h)max

{
1,
∣∣π≤k−1(g−1)− 1

∣∣
Tk−1(Rd)

}
≤ c2 ρ(g,h)max

{
1, ∥g∥k−1cc

}
,

where we used the symmetry in Lemma 1.1 for the final inequality. Therefore,

max
k=1,...,N

∣∣∣(g−1 ⊗ h)k
∣∣∣1/k ≤c3 max

k=1,...,N

[
ρ(g,h)1/kmax

{
1, ∥g∥1−

1
k

cc

}]
≤c4max

{
ρ(g,h), ρ(g,h)1/N max

{
1, ∥g∥1−

1
N

cc

}}
.

Conversely, again by (1.15) and the fact that all norms in GN(Rd) are equivalent, we have

ρ(g,h) = max
k=1,...,N

|gk − hk| ≤ max
k=1,...,N

k∑
i=1

|gk−i| |(g−1 ⊗ h)i| =
N∑
i=1

|gN−i| |(g−1 ⊗ h)i|

≤
N∑
i=1

max
{
1, |π≤N−i(g)− 1|TN−i(Rd)

}
|(g−1 ⊗ h)i|

≤c5
N∑
i=1

max
{
1, ∥g∥N−icc

}
max
k=1,...,i

|(g−1 ⊗ h)k|i/k

≤c6
N∑
i=1

max
{
1, ∥g∥N−icc

}
dcc(g,h)i

≤c7max
{
dcc(g,h)max

{
1, ∥g∥N−1cc

}
, dcc(g,h)N

}
.

This concludes the proof.



1.3. Introduction to Rough Path Theory 37

1.3. Introduction to Rough Path Theory
Section 1.3 constitutes the most technical and nuanced section of this thesis. Here, we offer
a formal introduction to Rough Path theory per se, aiming to define the spaces of rough
paths. Looking back on controlled differential equations, this section expounds upon the
theory pertaining to the integrators, i.e., the controls. Further discussion of the integrands
and equations driven by rough paths is deferred to future opportunities.

As highlighted in the Introduction, our exposition follows an under-explored path leading to
the renowned Lyons’ Extension theorem. After laying out motivation and intuition in Section
1.3.1, we present the Sewing lemma (Section 1.3.2), a somewhat abstract result fundamental
to the theory of rough paths. Subsequently, in Section 1.3.3, building upon [35] and [22],
we elaborate on the interplay between additive and multiplicative functionals, essentially
presenting a deconstructed version of the original proof of the Lyons’ Extension theorem.

Section 1.3.4 then elucidates the two primary properties of Lyons’ extension, namely the
factorial decay property and continuity. Notably, the proof of the latter appears to be original.
Finally, Section 1.3.5 defines, following the style of [37], the spaces of rough paths, concluding
with the pertinent observation that the commonly employed topology in the signature map
is not initial. In what follows, we write A = O(f(x)) if there exists a constant C such that
|A| ≤ C|f(x)|. Additionally, we write A = o(f(x)) if the constant C can be made arbitrarily
small as x→ 0, i.e. A/f(x)→ 0 as x→ 0.

1.3.1. Rough Integration: Motivation and Intuition
As discussed in the chapter’s introduction, one of the primary objectives of Rough Path theory
is to develop a pathwise notion of integration that remains applicable to highly irregular
driving signals. Specifically, Rough Path theory aims to surmount the regularity threshold of
α + β > 1, or α > 1/2 in the case where α = β, which is necessary for Young integration.
Intuitively, highly irregular signals fluctuate so rapidly that simple Riemann sums fail to
adequately capture these variations. A key insight of Rough Path theory is the recognition of
a certain "lack of information." This section will elucidate this idea further.

Let’s begin our examination by considering an infinitely differentiable function f : Rd → R,
an α-Hölder continuous path X : [0, 1]→ Rd with α ∈ (0, 1], and the integral of f(X) against
X ([2], Section 1.4). Precisely, our goal is to give meaning to∫ 1

0

f(Xr) dXr. (1.18)

Through a Taylor expansion, for a sufficiently small time interval [s, t] ⊂ [0, 1] and r ∈ [s, t],
we obtain that

f(Xr) = f(Xs) +∇f(Xs)(Xr −Xs) + . . .
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Integrating with respect to X then yields∫ t

s

f(Xr) dXr = f(Xs)(Xt −Xs) +∇f(Xs)

∫ t

s

(Xr −Xs)⊗ dXr + . . . , (1.19)

or, in component form, for j ∈ {1, . . . , d},∫ t

s

f(Xr) dX
j
r = f(Xs)(X

j
t −Xj

s ) +
d∑
i=1

∂if(Xs)

∫ t

s

(X i
r −X i

s) dX
j
r + . . .

Now, consider a sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnn = 1}, such that
|Pn| = 1/n. Provided we have an adequate integral definition, this leads formally to∫ 1

0

f(Xr) dXr = lim
n→∞

n−1∑
i=0

∫ tni+1

tni

f(Xr) dXr

= lim
n→∞

n−1∑
i=0

(
f(Xti)(Xti+1

−Xti) +∇f(Xti)

∫ ti+1

ti

(Xr −Xti)⊗ dXr + . . .

)
.

Thus, we see that if α = 1, then all the terms in the RHS of (1.19) apart from the first one
vanish in the limit. Indeed, we have that

|Xti −Xti+1
| = O(|ti − ti+1|) = O

(
1

n

)
,

whereas ∣∣∣∣∫ ti+1

ti

(Xr −Xti)⊗ dXr

∣∣∣∣ = O(|ti − ti+1|2) = O

(
1

n2

)
.

Hence, by summing over i ∈ {0, . . . , n− 1}, the first term of (1.19) becomes O(1), while the
remaining terms become o(n). Likewise, if α > 1/2, we note that∣∣∣∣∫ ti+1

ti

(Xr −Xti)⊗ dXr

∣∣∣∣ = O(|ti − ti+1|2α) = O

(
1

n2α

)
,

which implies,

lim
n→∞

n−1∑
i=0

∫ ti+1

ti

(Xr −Xti)⊗ dXr = 0,

together with all higher order terms.

However, if we now consider α ≤ 1/2, the second term in (1.19) does not vanish. Formally,
we have∫ 1

0

f(Xr) dXr = lim
n→∞

n−1∑
i=0

(
f(Xti)(Xti+1

−Xti) +∇f(Xti)

∫ ti+1

ti

(Xr −Xti)⊗ dXr

)
,
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for all α ∈
(
1
3
, 1
2

]
. This suggests that the information required to compute (1.18), assuming

a regularity α ∈
(
1
3
, 1
2

]
, is contained not only in the increments (Xt −Xs), but also in the

double iterated integral
∫ t
s
(Xr −Xs)⊗ dXr. In other words, if we want to compute (1.18) in

a pathwise fashion, we must consider as input both the path increments of X and the double
iterated integral of X.

We thus arrive at perhaps the biggest conceptual leap of Rough Path theory: to achieve
pathwise integration of highly irregular paths, sufficient knowledge of higher order iterated
integrals must be a priori information, i.e. we must somehow enhance the original (highly
irregular) path with features that emulate higher order iterated integrals. A "rough path"
will then correspond to this "enhancement." Symbolically, we have

X (X(1),X(2), . . . ,X(n)),enhanced

where X(n) is to be thought of as a "candidate" to the indefinite n-fold iterated integral∫
· · ·
∫

dXt1 ⊗ · · · ⊗ dXtn .

The forthcoming sections will formalise this heuristic approach, and, by the end of this
chapter, the reader should ideally have a clear understanding of the integrators utilised in
Rough Path theory.

1.3.2. Sewing Lemma and Abstract Integration
We provide a comprehensive overview of one of the cornerstones of Rough Path theory: the
Sewing lemma. This theorem serves as a toolbox enabling the construction of an integral, or,
more precisely, a functional with the characteristics of an integral. Although it is a rather
abstract result, its interpretation will hopefully become apparent in this section. We conclude
by offering a proof for the convergence of Young integrals (see Theorem III).

We begin by discussing "some sort of abstract Riemann integration," paraphrasing the authors
in [36]. As elucidated in the previous section, our aim is to attribute meaning to

Zt :=

∫ t

0

Yr dXr. (1.20)

Under certain regularity restrictions, we have observed that the integral Zt can be constructed
via a limiting procedure. Specifically, we can define Zt as the limit of Riemann sums, given
by

Zt := lim
|P|→0

∑
[u,v]∈P([0,t])

YuXu,v.

Think of the Riemann-Stieltjes integral or the Young integral. Underlying this construction
is the idea that YsXs,t serves as a good local approximation of Zs,t. Symbolically,

Zs,t = YsXs,t + o(|t− s|),
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where Ξs,t := YsXs,t is a good approximation in the sense that it fully determines the integral
Z through the limit of Riemann sums. Consequently, we can reinterpret the integral Z as
the image of Ξ under "some abstract integration map" I, i.e., Z ≡ I(Ξ).

Furthermore, note that any reasonable notion of integral should exhibit additive increments,
i.e., Zs,t = Zs,u + Zu,t, for all s < u < t. However, Ξs,t clearly lacks additivity. Nevertheless,
again under certain regularity assumptions, the functional Ξs,t is shown to be "almost
additive."

For instance, assuming X ∈ Cα-Höl([0, T ],Rd), Y ∈ Cβ-Höl([0, T ], L(Rd,Re)), and α + β > 1

as in Theorem III, we observe that

Ξs,t − Ξs,u − Ξu,t = YsXs,t − YsXs,u − YuXu,t = −(Yu − Ys)(Xt −Xu),

and thus,
|Ξs,t − Ξs,u − Ξu,t| = O(|t− s|α+β).

Definition 1.17: Let (W, | · |W ) be some Banach space. A continuous map Ξ : ∆2
T → W is

termed an almost additive functional if there exist constants C, ε > 0 such that

|Ξs,t − Ξs,u − Ξu,t|W ≤ C|t− s|1+ε, for all 0 ≤ s < u < t ≤ T.

With the Sewing lemma, we will demonstrate that any almost additive functional corresponds
to a unique additive functional. This crucial insight was noted and demonstrated in [35], but
the approach we adopt in this work is credited to Young. First, however, we introduce some
more notation.

Definition 1.18: Let (W, | · |W ) be a Banach space. The space Cα,β
2 ([0, T ],W ) denotes the

set of functions Ξ : ∆2
T → W such that Ξt,t = 0 and

|Ξ|α,β := |Ξ|α + |δΞ|β <∞,

|Ξ|α := sup
0≤s<t≤T

|Ξs,t|
|t− s|α

, and δΞs,u,t := Ξs,t − Ξs,u − Ξu,t, |δΞ|β := sup
s<u<t

|δΞs,u,t|
|t− s|β

.

To avoid confusion, it is important to note that if X is a path, then Xs,t represents the
increment Xt −Xs. However, when dealing with two-parameter functions Ξ defined on ∆2

T ,
Ξs,t denotes the value of Ξ at the point (s, t) ∈ ∆2

T .

Theorem 1.4 ([36], Sewing Lemma): Let α and β be such that 0 < α ≤ 1 < β. Then,
there exists a unique continuous linear map I : Cα,β

2 ([0, T ],W )→ Cα-Höl([0, T ],W ) such that
(IΞ)0 = 0 and

|(IΞ)s,t − Ξs,t|W ≤ C|t− s|β, (1.21)
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where C = |δΞ|β
(
2β(ζ(β)− 1) + 1

)
and ζ denotes the Riemann zeta function. Additionally,

IΞs,t = lim
|P|→0

∑
[u,v]∈P([s,t])

Ξu,v. (1.22)

Proof. Uniqueness. We first establish uniqueness. Assume that we have another continuous
linear functional Ĩ such that (1.21) is satisfied. Then, by the triangle inequality, it holds that

|(IΞ− ĨΞ)t − (IΞ− ĨΞ)s|W ≤ C|t− s|β.

Since β > 1 and IΞ− ĨΞ is a path, we have by Proposition 1.4 that IΞ− ĨΞ is constant.
Lastly, given that (IΞ− ĨΞ)0 = 0, uniqueness follows. Moreover, from uniqueness and (1.21)
it follows that IΞs,t is necessarily given as a Riemann-type limit. Indeed, fixing a partition P
of [s, t], we have that∣∣∣IΞs,t − ∑

[u,v]∈P

Ξu,v

∣∣∣
W

=
∣∣∣ ∑
[u,v]∈P

(
IΞu,v − Ξu,v

)∣∣∣
W

= O(|P|β−1),

and so (1.22) is fulfilled.

Existence. Let [s, t] be a fixed interval and for a partition P = {s = u0 < · · · < ur = t} set∫
P
Ξ :=

∑
[u,v]∈P

Ξu,v.

Note that r ≥ 1 is the number of subintervals in P. If r ≥ 2, denote by u− and u+ the
neighbouring points of u, i.e. u− < u < u+ ∈ P . Observe that, in this case, we have

|u+ − u−| ≤
2

r − 1
|t− s|. (1.23)

Indeed, assuming otherwise yields the contradiction

2|t− s| ≥
∑

u∈P\{u0,ur}

|u+ − u−| > 2|t− s|.

Thus, still assuming r ≥ 2, we see that∣∣∣∣∫
P
Ξ−

∫
P\{u}

Ξ

∣∣∣∣ = |δΞu−,u,u+| ≤ |δΞ|β|u+ − u−|β ≤ |δΞ|β ( 2

r − 1

)β
|t− s|β,

where we used (1.23) in the final inequality. Subsequently, by successively removing points,
we get the uniform bound

sup
P

∣∣∣∣∫
P
Ξ− Ξs,t

∣∣∣∣ ≤2β|t− s|β|δΞ|β ∞∑
k=2

1

kβ
+ |t− s|β|δΞ|β (1.24)

≤|δΞ|β
(
2β(ζ(β)− 1) + 1

)
|t− s|β. (1.25)
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Note that the assumption β > 1 is essential here for the convergence of the infinite series
above. It remains to show the existence of IΞ as the limit lim|P|→0

∫
P Ξ. It suffices to show

sup
|P|∨|P ′|≤ε

∣∣∣∣∫
P
Ξ−

∫
P ′
Ξ

∣∣∣∣→ 0, as ε→ 0.

Without loss of generality, we may assume that P ⊂ P ′. Otherwise, we simply add and
subtract

∫
P∪P ′ Ξ. In this case, we see that∫

P
Ξ−

∫
P ′
Ξ =

∑
[u,v]∈P

(
Ξu,v −

∫
P ′∩[u,v]

Ξ

)
.

Lastly, we use (1.24) to conclude that

sup
|P|≤ε

∣∣∣∣∫
P
Ξ−

∫
P ′
Ξ

∣∣∣∣ ≤ |δΞ|β(2β(ζ(β)− 1) + 1
) ∑
[u,v]∈P

|v − u|β = O(|P|β−1) = O(εβ−1),

and the result follows.

Equipped with the Sewing lemma, establishing the well-definedness of the Young integral
becomes relatively straightforward. For convenience, we recall Theorem III here and augment
it with an estimate for completeness.

Theorem 1.5: Let X : [0, T ] → Rd be an α-Hölder continuous path and Y : [0, T ] →
L(Rd,Re) a β-Hölder continuous path, such that α, β ∈ (0, 1] and α+ β > 1. Moreover, let
Pn = {0 = tn0 < tn1 < . . . < tnNn = T}, n ≥ 1 be a sequence of partitions with vanishing mesh
size, and let uni denote an arbitrary test point in the interval [tni , tni+1]. Then, the integral∫ T

0

YsdXs := lim
n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

)

exists and we call it the Young integral. Moreover, we have the estimate∣∣∣∣∫ t

s

Yr dXr − YsXs,t

∣∣∣∣ ≤ C|Y |β-Höl;[0,T ]|X|α-Höl;[0,T ]|t− s|α+β,

where C > 0 depends on α + β.

Proof. Let Ξs,t := YsXs,t. Then, for all s < u < t, we have that

δΞs,u,t = YsXs,t − YsXs,u − YuXu,t = −Ys,uXu,t,

and so, |Ξ|α ≤ |Y |∞;[0,T ] · |X|α-Höl;[0,T ] < ∞ and |δΞ|α+β ≤ |Y |β-Höl;[0,T ] · |X|α-Höl;[0,T ] < ∞.
Since α + β > 1, by the Sewing lemma (Theorem 1.4), we can set∫ t

s

Yu dXu = IΞs,t,

and the result follows.
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1.3.3. Lyons’ Extension Theorem
The discussion in Section 1.3.1 shed light on the fact that the more irregular a path is, the
more information is required to define an integral against it. Moreover, it suggested that this
lack of information can be compensated for by incorporating higher-order iterated integrals.
This insight led us to a key principle of Rough Path theory: irregular paths need to be
enhanced or enriched with objects that encode the values of higher-order iterated integrals.

Subsequently, in Section 1.3.2, we explored a form of abstract integration and introduced a
tool capable of constructing functionals that behave analogously to integrals. In this section,
we delve into how the Sewing lemma can be readily applied to higher-order iterated integrals
and establish what is arguably the main result in Rough Path theory: the Lyons’ Extension
theorem. As we examine this fundamental result, we uncover the interplay between additive
and multiplicative functionals.

We start by defining the analogue of Definition 1.17 for multiplicative functionals. However,
to facilitate our discussion, it is beneficial to introduce some notation first.

Definition 1.19: A map X : ∆2
T → TN(Rd) with X = (1,X(1), . . . ,X(N)) and components

X(n) ∈ (Rd)⊗n, for n ∈ {0, . . . , N}, is said to be a multiplicative functional of degree N if, for
all 0 ≤ s ≤ u ≤ t ≤ T ,

Xs,t = Xs,u ⊗ Xu,t,

where the multiplication is taken in TN(Rd).

Put differently, a multiplicative functional of degree N corresponds to a mapping over ∆2
T

that adheres to Chen’s identity (1.11) truncated at level N (Proposition 1.13). Conceptually,
multiplicative functionals of degree N can be perceived as mappings that exhibit the algebraic
traits of a sequence of iterated integrals up to level N .

Definition 1.20: A map Y : ∆2
T → TN(Rd), with Y = (1,Y(1), . . . ,Y(N)), is said to be an

almost multiplicative functional of degree N , if there exist constants C, ε > 0 such that

|Y(n)
s,t − (Ys,u ⊗ Yu,t)

(n)| ≤ Cn|t− s|1+ε, (1.26)

for all 0 ≤ s ≤ u ≤ t ≤ T and n ∈ {0, . . . , N}.

Notice that a multiplicative functional inherently satisfies the conditions of being almost
multiplicative, resulting in the LHS of (1.26) equating to zero. For clarification, let us consider
the path signatures discussed in Section 1.2. Thanks to Proposition 1.13 we know that the
signature (specifically, the level-N truncated signature) is a multiplicative functional of degree
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N . Particularly, for any X ∈ Cα-Höl([0, T ],Rd), with α > 1/2, the functional

Xs,t :=

(
1,

∫ t

s

dXu,

∫ t

s

∫ u

s

dXr ⊗ dXu

)
(1.27)

is multiplicative of degree 2. It is worth noting that our selection of α > 1/2 is justified by
the well-defined nature of the Young integral, as demonstrated in the preceding section.

Now, aiming to find a concrete example of an almost multiplicative functional while still
adhering to the idea of incorporating higher-order iterated integrals, let us consider

Ys,t :=

(
1,

∫ t

s

dXu,

∫ t

s

∫ u

s

dXr ⊗ dXu,0
)
∈ T 3(Rd).

It is apparent that Y is not multiplicative of degree 3, as Chen’s identity breaks at level 3.
Nevertheless, we note that Y is almost multiplicative of degree 3. Indeed, keeping in mind
that for the Young integral we have∫ t

s

dXu = O(|t− s|α) and
∫ t

s

∫ u

s

dXr ⊗ dXu = O(|t− s|2α), (1.28)

we ascertain that∣∣(Ys,u ⊗ Yu,t)
(3)
∣∣ = ∣∣∣X(1)

s,u ⊗ X(2)
u,t + X(2)

s,u ⊗ X(1)
u.t

∣∣∣ = O(|t− s|3α), (1.29)

indicating that (1.26) holds true with ε = 3α−1. Moreover, similarly to the proof of Theorem
1.5, we define

Ξs,t := X(2)
0,s ⊗ X(1)

s,t + X(1)
0,s ⊗ X(2)

s,t ∈ (Rd)⊗3,

and observe that, through the addition and subtraction of X(2)
0,s ⊗ X(1)

u,t , and the application of
Chen’s identity, we obtain

δΞs,u,t = Ξs,t − Ξs,u − Ξu,t

= − X(1)
0,u ⊗ X(2)

u,t + X(1)
0,s ⊗

(
X(2)
s,t − X(2)

s,u

)
+
(
X(2)

0,s − X(2)
0,u

)
⊗ X(1)

u,t

= − X(1)
0,u ⊗ X(2)

u,t + X(1)
0,s ⊗

(
X(2)
u,t + X(1)

s,u ⊗ X(1)
u,t

)
−
(
X(2)
s,u + X(1)

0,s ⊗ X(1)
s,u

)
⊗ X(1)

u,t

= − X(2)
s,u ⊗ X(1)

u,t − X(1)
s,u ⊗ X(2)

u,t .

Therefore, |δΞ|3α <∞, showing Ξ to be an almost additive functional. Given that |Ξ|α <∞
by (1.28) and Proposition 1.5, we deduce from the Sewing lemma (Theorem 1.4) that

IΞs,t = lim
|P|→0

∑
[u,v]∈P([s,t])

X(2)
0,u ⊗ X(1)

u,v + X(1)
0,u ⊗ X(2)

u,v =:

∫ t

s

X(2)
0,u ⊗ dXu,

where the integral definition is justified by the fact that |X(2)
u,v| = O(|u− v|2α). Moreover,∣∣∣∣∫

s<u1<u2<u3<t

dXu1 ⊗ dXu2 ⊗ dXu3

∣∣∣∣ = O(|t− s|3α).
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Indeed, by Chen’s identity, X(2)
0,u = X(2)

0,s + X(2)
s,u + X(1)

0,s ⊗ X(1)
s,u, which implies

X(3)
s,t :=

∫ t

s

X(2)
s,u ⊗ dXu =

∫ t

s

(
X(2)

0,u − X(2)
0,s − X(1)

0,s ⊗ X(1)
s,u

)
⊗ dXu

=

∫ t

s

X(2)
0,u ⊗ dXu − X(2)

0,s ⊗ X(1)
s,t − X(1)

0,s ⊗ X(2)
s,t = IΞs,t − Ξs,t.

Several pertinent observations can now be made. Firstly, we notice that starting from a
multiplicative functional Xs,t of degree 2, we defined an almost multiplicative functional Ys,t

of degree 3. This was driven by the underlying motivation of incorporating higher-order
iterated integrals. Remarkably, from the almost multiplicative functional Ys,t, we inferred an
almost additive functional Ξs,t. Subsequently, by applying the Sewing lemma, we obtained
the additive functional IΞs,t, which allowed us to "postulate" a 3-fold iterated integral as the
limit of Riemann sums. Finally, X(3)

s,t = IΞs,t − Ξs,t leads to a multiplicative functional of
degree 3, essentially by construction.

To see this, consider the additivity of IΞ, which implies

X(3)
s,t − X(3)

s,u − X(3)
u,t = −δΞs,u,t = X(2)

s,u ⊗ X(1)
u,t + X(1)

s,u ⊗ X(2)
u,t ,

indicating that

Xs,t :=

(
1,

∫ t

s

dXu,

∫ t

s

∫ u

s

dXr ⊗ dXu,

∫ t

s

∫ u

s

∫ v

s

dXr ⊗ dXv ⊗ dXu

)
∈ T 3(Rd)

is multiplicative of degree 3. Furthermore, as noted above, the third level of Xs,t scales with
|t− s|3α. Consequently, employing the notation from Definition 1.18, we have |X(3)

s,t |3α <∞.
Here, we make a deliberate abuse of notation and denote the newly obtained multiplicative
functional of degree 3 by X, highlighting that this functional is indeed an extension of (1.27).

In summary, by iterating the above reasoning, it is suggested that given a multiplicative
functional of degree n with sufficiently strong regularity constraints on each level, we can
uniquely extend it to a well-defined multiplicative functional of degree N ≥ n while preserving
the regularity properties of the original functional. This encapsulates the essence of the Lyons’
Extension theorem. We now proceed to formalise and generalise these observations into two
auxiliary results, which ultimately lead to the Lyons’ Extension theorem.

Proposition 1.21 ([35], Theorem 2.5): Let X : ∆2
T → T n(Rd) be a continuous multiplicative

functional of degree n. Additionally, consider a continuous map Y(n+1) : ∆2
T → (Rd)⊗(n+1)

such that Y :=
(
1,X(1), . . . ,X(n),Y(n+1)

)
is an almost multiplicative functional of degree n+1.

Then, Ξ : ∆2
T → (Rd)⊗(n+1) given by

Ξs,t := Y(n+1)
s,t +

n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,t , (1.30)

is an almost additive functional.



1.3. Introduction to Rough Path Theory 46

Proof. Since Y is an almost multiplicative functional, for all 0 ≤ s < u < t ≤ T , we have

|Y(n+1)
s,t − (Ys,u ⊗ Yu,t)

(n+1)| ≤ Cn+1|t− s|1+ε.

Now, using Chen’s identity (1.11), we show that

−
n∑
i=1

X(i)
s,u ⊗ X(n+1−i)

u,t =
n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,t −
n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,u −
n∑
i=1

X(i)
0,u ⊗ X(n+1−i)

u,t .

To begin with, we notice that
n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,t −
n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,u −
n∑
i=1

X(i)
0,u ⊗ X(n+1−i)

u,t

=
n∑
i=1

(
X(i)

0,s ⊗
(
X(n+1−i)
s,t − X(n+1−i)

s,u − X(n+1−i)
u,t

)
+

+
(
X(i)

0,s − X(i)
0,u + X(i)

s,u

)
⊗ X(n+1−i)

u,t − X(i)
s,u ⊗ X(n+1−i)

u,t

)
. (1.31)

Then, by Chen’s identity,

X(n+1−i)
s,t − X(n+1−i)

s,u − X(n+1−i)
u,t =

n−i∑
j=1

X(j)
s,u ⊗ X(n+1−i−j)

u,t , (1.32)

and, likewise,

X(i)
0,s − X(i)

0,u + X(i)
s,u = −

i−1∑
j=1

X(j)
0,s ⊗ X(i−j)

s,u . (1.33)

Here, we agree that a sum over an empty set of indices is identically zero. By plugging
(1.32) and (1.33) into (1.31), changing the order of summation, and performing a change of
variables, we get that

n∑
i=1

X(i)
0,s ⊗

(
X(n+1−i)
s,t − X(n+1−i)

s,u − X(n+1−i)
u,t

)
+

n∑
i=1

(
X(i)

0,s − X(i)
0,u − X(i)

s,u

)
⊗ X(n+1−i)

u,t

=
n∑
i=1

X(i)
0,s ⊗

( n−i∑
j=1

X(j)
s,u ⊗ X(n+1−i−j)

u,t

)
−

n∑
i=1

( i−1∑
j=1

X(j)
0,s ⊗ X(i−j)

s,u

)
⊗ X(n+1−i)

u,t

=
n∑
i=1

n−i∑
j=1

X(i)
0,s ⊗ X(j)

s,u ⊗ X(n+1−i−j)
u,t −

n∑
i=1

i−1∑
j=1

X(j)
0,s ⊗ X(i−j)

s,u ⊗ X(n+1−i)
u,t = 0.

Hence, we obtain

δΞs,u,t =Y(n+1)
s,t − Y(n+1)

s,u − Y(n+1)
u,t −

n∑
i=1

X(i)
s,u ⊗ X(n+1−i)

u,t =
(
Ys,t − Ys,u ⊗ Yu,t

)(n+1)
, (1.34)

and so, |δΞs,u,t| ≤ Cn+1|t− s|1+ε, i.e. Ξ is almost additive.
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Proposition 1.22: Consider X and Y as in Proposition 1.21. Let Ξ denote the almost
additive functional given by (1.30). Then, X(n+1) := IΞ− Ξ+Y(n+1) is the unique functional
∆2
T → (Rd)⊗(n+1) such that X =

(
1,X(1), . . . ,X(n),X(n+1)

)
is a multiplicative functional of

degree n+ 1, and ∣∣∣X(n+1)
s,t − Y(n+1)

s,t

∣∣∣ = O(|t− s|1+ε) (1.35)

Proof. To begin with, by the Sewing lemma (Theorem 1.4), there exists a unique additive
functional IΞ : [0, T ]→ (Rd)⊗(n+1) such that

|IΞs,t − Ξs,t| ≤ C|t− s|1+ε.

Additionally, by setting

X(n+1)
s,t := IΞs,t −

n∑
i=1

X(i)
0,s ⊗ X(n+1−i)

s,t , (1.36)

we observe that,

X(n+1)
s,t − X(n+1)

s,u − X(n+1)
u,t =

n∑
i=1

X(i)
s,u ⊗ X(n+1−i)

u,t ,

and ∣∣∣X(n+1)
s,t − Y(n+1)

s,t

∣∣∣ = |IΞs,t − Ξs,t| ≤ C|t− s|1+ε.

Hence, the extended X is multiplicative of degree n+ 1 and (1.35) follows. Finally, to prove
uniqueness, assume there exists some other functional X̃(n+1) : ∆2

T → (Rd)⊗(n+1), turning
X̃ :=

(
1,X(1), . . . ,X(n), X̃(n+1)

)
into a degree n+ 1 multiplicative functional such that∣∣∣X̃(n+1)
s,t − Y(n+1)

s,t

∣∣∣ = O(|t− s|1+ε).

Set Ψs,t := X(n+1)
s,t − X̃(n+1)

s,t . Then, notice that

Ψs,t =πn+1(X̃s,u ⊗ X̃u,t)− πn+1(Xs,u ⊗ Xu,t)

=X̃(n+1)
s,u + X̃(n+1)

u,t − X(n+1)
s,u − X(n+1)

u,t = Ψs,u +Ψu,t.

Therefore, t 7→ Ψ0,t is a (1+ ε)-Hölder continuous path, which, by Proposition 1.4, is constant.
Since Ψ0,0 = 0, uniqueness follows.

We are now prepared to state Lyons’ Extension theorem. Assuming we begin with a
multiplicative functional of degree n that satisfies sufficient regularity constraints on its
components, the proof proceeds as follows:

1. From the degree nmultiplicative functional, we derive a degree n+1 almost multiplicative
functional.
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2. From the degree n+ 1 almost multiplicative functional, we derive an almost additive
functional (see Proposition 1.21).

3. Utilising the Sewing lemma (Theorem 1.4), we obtain a unique additive functional from
the almost additive functional.

4. From the additive functional, we obtain a unique multiplicative functional of degree
n+ 1 (see Proposition 1.22).

This reasoning underlies the original proof ([53, 54], Theorem 3.1.2 and Theorem 2.2.1,
respectively), and was initially highlighted in ([35], Example 4).

Theorem 1.6 (Lyons’ Extension): Consider α ∈ (0, 1]. Let X : ∆2
T → T n(Rd) be a

multiplicative functional of degree n such that

|X(i)| = O(|t− s|αi), for all i ∈ {1, . . . , n}. (1.37)

If α(n+ 1) > 1, then we may uniquely extend X to be a multiplicative functional X : ∆2
T →

T ((Rd)) such that (1.37) remains true for all i > n.

Proof. Let X = (1,X(1), . . . ,X(n)) denote a multiplicative functional of degree n such that
(1.37) holds. Given the identity (1.34) and the assumption that α(n+ 1) > 1, we establish
that (1,X(1), . . . ,X(n),0) ∈ T n+1(Rd) represents an almost multiplicative functional of degree
n+ 1. Consequently, according to Proposition 1.21, we derive an almost additive functional
Ξ defined by (1.30), such that |Ξ|α, |δΞ|α(n+1) < ∞. Leveraging Proposition 1.22, we then
obtain a unique functional X(n+1) : ∆2

T → (Rd)⊗(n+1) satisfying

|X(n+1)
s,t | ≤ C|t− s|α(n+1),

and making (1,X(1), . . . ,X(n),X(n+1)) multiplicative of degree n + 1. Finally, by iterating
this procedure infinitely many times, we obtain a multiplicative functional taking values in
T ((Rd)) such that (1.37) holds. This concludes the proof.

From Theorem 1.6, we conclude that a multiplicative functional X : ∆2
T → T n(Rd) satisfying

(1.37) uniquely determines all levels higher than ⌊1/α⌋ based on its components X(i) for
i ≤ ⌊1/α⌋. However, the first ⌊1/α⌋ components are not uniquely determined, highlighting
the importance of functionals whose state-space and regularity align (further elaboration in
Section 1.3.5).

In Section 1.3.1, we established that the more irregular a path is, the more iterated integrals
must be considered for integration. Now, we realise that once a sufficient number of iterated
integrals (with appropriate regularity) are known, the entire set of iterated integrals can be
determined.
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1.3.4. Factorial Decay and Continuity
We demonstrate two significant properties of Lyons’ extension. The first property indicates
that, under reasonable assumptions, the norm of the components in the extension decays
factorially ([53], Theorem 3.1.2). The second property establishes the continuity of the
extension map ([53], Theorem 3.1.3). Additionally, we introduce our first "rough path
metric," which will be further explored in the next section. We begin with the latter point.

One of the crucial assumptions of Theorem 1.6 is having the components X(i) of the multi-
plicative functional be proportional to |t− s|αi. As such, we start this section by defining a
convenient "metric" that aligns with this assumption. To do so, consider two multiplicative
functionals X and Y of degree n. Then, for a given α ∈ (0, 1], set

ρα-Höl;[0,T ](X,Y) := max
i=1,...,n

sup
0≤s<t≤T

∣∣X(i)
s,t − Y(i)

s,t

∣∣
|t− s|αi

. (1.38)

Note that assumption (1.37) is now equivalent to requiring ρα-Höl;[0,T ](X,1) < ∞, where 1
denotes the unit of T n(Rd). We observe that ρα-Höl;[0,T ] is non-negative, symmetric, and
satisfies the triangle inequality. However, ρα-Höl;[0,T ](X,Y) = 0 whenever X and Y differ by a
constant, rendering ρα-Höl;[0,T ] not a genuine metric. This issue can be addressed by restricting
our attention to paths with a fixed starting point or by adding |X0 − Y0|. Further discussion
on this matter will be provided in the next section.

In Section 1.2.2, we established that the norms of the signature components decay factorially.
Given that a multiplicative functional X of degree n represents the values of the first n
iterated integrals, it is reasonable to impose a factorial upper bound on each component,
similar to Proposition 1.18. We show that if the components of the initially considered X
decay factorially, then the components of the extension to T ((Rd)) also decay factorially.

However, to establish this result we need a generalisation of the binomial formula, commonly
known as the neo-classical inequality, which is surprisingly challenging to prove. To avoid a
lengthy and tangential discussion, we refer the reader to ([40], Theorem 1.2) for a rigorous
proof of the estimate. We simply state it here for completeness.

Theorem 1.7: Consider some α ∈ (0, 1], n ∈ N and s, t > 0. Then,

α

n∑
j=0

sαjtα(n−j)

(αj)!(α(n− j))!
≤ (t+ s)αn

(αn)!
,

where (αj)! := Γ(1 + αj), and Γ denotes the Gamma function.

Equipped with the neo-classical inequality, we now prove the factorial decay property of
Lyons’ extension ([74], Theorem 4.8).
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Theorem 1.8 (Factorial decay): Consider α ∈ (0, 1]. Let X : ∆2
T → T n(Rd) be a multiplica-

tive functional of degree n such that, for some constants β,M > 0, we have

sup
0≤s<t≤T

|X(i)
s,t|

|t− s|αi
≤ M i

β(αi)!
, for all i ∈ {1, . . . , n}. (1.39)

If α(n + 1) > 1, then the unique extension X : ∆2
T → T ((Rd)) has components X(i) that

satisfy (1.39) for all i > n.

Proof. Note that assumption (1.39) implies ρα-Höl;[0,T ](X,1) <∞. Consequently, the assump-
tions of Theorem 1.6 are satisfied, ensuring that (1,X(1), . . . ,X(n)) is uniquely extended to a
multiplicative functional taking values in T ((Rd)). We demonstrate that (1.39) leads to the
same upper bound for X(n+1), and the result then follows through an iterative argument.

Recall that X(n+1) is given by (1.36). Hence, by the Sewing lemma (Theorem 1.4), we have

|X(n+1)
s,t | ≤ (1 + 2α(n+1)(ζ(α(n+ 1))− 1))|t− s|α(n+1)|δΞ|α(n+1), (1.40)

where Ξ is the almost additive functional given by (1.30). Additionally, from (1.34) and the
neo-classical inequality (Theorem 1.7), we observe that

|δΞs,u,t| ≤
n∑
i=1

|X(i)
s,u| · |X

(n+1−i)
u,t | ≤ Mn+1

β2

n∑
i=1

(u− s)α(n+1−i)(t− u)αi

(αi)!(α(n+ 1− i))!

≤M
n+1

αβ2

(t− s)α(n+1)

(α(n+ 1))!
. (1.41)

Therefore, from (1.40) and (1.41), we conclude that

|X(n+1)
s,t | ≤ 2α(n+1)[ζ(α(n+ 1))− 1] + 1

αβ2
· Mn+1

(α(n+ 1))!
|t− s|α(n+1)

≤ 2α(⌊1/α⌋+1)[ζ(α(⌊1/α⌋+ 1))− 1] + 1

αβ2
· Mn+1

(α(n+ 1))!
|t− s|α(n+1).

For β satisfying

β ≥ 2α(⌊1/α⌋+1)[ζ(α(⌊1/α⌋+ 1))− 1] + 1

α2
,

and M > 0 satisfying (1.39) the result follows.

Theorem 1.9 (Continuity): Consider α ∈ (0, 1]. Let X and Y be multiplicative functionals
of degree n such that α(n+ 1) > 1 and, for some constants β,M > 0, we have

sup
0≤s<t≤T

|X(i)
s,t|

|t− s|αi
, sup

0≤s<t≤T

|Y(i)
s,t|

|t− s|αi
≤ M i

β(αi)!
for all i ∈ {1, . . . , n}. (1.42)
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Suppose further that, for some ε < 1, we have∣∣X(i)
s,t − Y(i)

s,t

∣∣ ≤ ε
M i

β(αi)!
|t− s|αi, for all i ∈ {1, . . . , n} and (s, t) ∈ ∆2

T . (1.43)

Then, (1.43) holds for all i ∈ N where X(i) and Y(i), for i > n, are the components of the
respective (unique) multiplicative extensions taking values in T ((Rd)).

Proof. We establish that Lyons’ extension is locally Hölder continuous, and consequently,
continuous. The key observation is that all steps in the proof of Theorem 1.6 are continuous,
ensuring the continuity of the extension. Furthermore, it is sufficient to show the continuity
of the map (

1,X(1), . . . ,X(n),0
)
7→ Ξs,t ∈ Cα,α(n+1)

2 ([0, T ], (Rd)⊗(n+1)),

where Ξ, as usual, denotes the almost additive functional given by (1.30). Indeed, the initial
augmentation by 0 ∈ (Rd)⊗(n+1) is continuous, and the operator I − Id that maps Ξs,t to
X(n+1)
s,t is linear and bounded by Theorem 1.4, hence continuous. In addition, if one wishes to

consider T ((Rd)) as the codomain of the extension, it is well-established that the evaluation
functional, which maps

(
1,X(1), . . . ,X(n+1), . . .

)
to
(
1,X(1)

0,T , . . . ,X
(n+1)
0,T , . . .

)
in T ((Rd)), is

continuous.

As such, let ΞX and ΞY denote the almost additive functionals associated to X and Y,
respectively. We first bound |δ(ΞX − ΞY)|α(n+1). Specifically, by (1.34) we have that

∣∣δ(ΞX − ΞY)s,u,t
∣∣ = ∣∣∣∣∣

n∑
i=1

(
X(i)
s,u ⊗ X(n+1−i)

u,t − Y(i)
s,u ⊗ Y(n+1−i)

u,t

)∣∣∣∣∣ . (†)

With the goal of using the estimates (1.42) and (1.43), we note that, for all 0 ≤ s < u < t ≤ T ,(
X(i)
s,u ⊗ X(n+1−i)

u,t − Y(i)
s,u ⊗ Y(n+1−i)

u,t

)
=
(
X(i)
s,u − Y(i)

s,u

)
⊗
(
X(n+1−i)
u,t − Y(n+1−i)

u,t

)
+

+
(
X(i)
s,u − Y(i)

s,u

)
⊗ Y(n+1−i)

u,t + Y(i)
s,u ⊗

(
X(n+1−i)
u,t − Y(n+1−i)

u,t

)
. (1.44)

Hence, by using the compatibility between tensor norms, we see that

(†) ≤
n∑
i=1

(∣∣X(i)
s,u − Y(i)

s,u

∣∣ · ∣∣X(n+1−i)
u,t − Y(n+1−i)

u,t

∣∣+ ∣∣X(i)
s,u − Y(i)

s,u

∣∣ · |Y(n+1−i)
u,t | +

+
∣∣Y(i)

s,u

∣∣ · ∣∣X(n+1−i)
u,t − Y(n+1−i)

u,t

∣∣)
≤

n∑
i=1

Mn+1

β2(αi)!(α(n+ 1− i))!
(ε2 + 2ε)|t− s|α(n+1) ≤ (ε2 + 2ε)

Mn+1

αβ2(α(n+ 1))!
|t− s|α(n+1),

where we used Theorem 1.7 in the final inequality. Thus, we conclude that |δ(ΞX−ΞY)|α(n+1)

can be made arbitrary small by sending ε→ 0. It remains to show that |ΞX − ΞY|α → 0 as
ε→ 0. To this end, observe that∣∣(ΞX − ΞY)s,t

∣∣ = ∣∣∣∣∣
n∑
i=1

(
X(i)

0,s ⊗ X(n+1−i)
s,t − Y(i)

0,s ⊗ Y(n+1−i)
s,t

)∣∣∣∣∣ ,
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and that (1.44) holds true for s = 0 and with u replaced by s. Hence, we may repeat the
previous reasoning and the claim follows by aplying the bound |t− s|α(n+1) ≤ Tαn|t− s|α at
the end.

1.3.5. Spaces of Rough Paths

In Section 1.3.3, we proved that a multiplicative functional X : ∆2
T → T n(Rd), exhibiting a

certain degree of regularity parameterised by α ∈ (0, 1], and defined up to a sufficiently high
level n, can be uniquely extended to any level N > n. Particularly, we observed that the
regularity of X is in relation to the dimension of its state-space T n(Rd), necessitating the
level n to be at least ⌊1/α⌋. To all effects, a rough path is then a functional that precisely
fulfils these criteria ([55], Definition 3.11).

In alignment with [37], however, we do justice to the term "path" and, in this section,
establish precise definitions of rough path spaces. These spaces consist of paths taking values
in GN(Rd), i.e. the free nilpotent group defined in Section 1.2.3, where the level N is in
direct relation to the regularity of the path. This regularity, in turn, is characterised by
imposing constraints, either through a finite α-Holder norm or finite p-variation. Alongside
the distance (1.38) introduced in the preceding section, we define new distances by modifying
the metric over the state-space GN(Rd). Ultimately, we demonstrate that these distances
induce the same topology in their respective spaces.

A few observations are now in order. Firstly, by Theorem 1.8, the Lyons lift X of an
appropriately regular multiplicative functional with factorially bounded components showcases
the factorial decay in (1.39). As such, recalling Definition 1.9, we see that

∣∣X0,T

∣∣
T̃ ((Rd)) =

√√√√ ∞∑
n=0

∣∣X(n)
0,T

∣∣2 ≤ ∞∑
n=0

(TαM)n

β(αn)!
<∞,

indicating that X0,T ∈ T̃ ((Rd)). Moreover, by definition, we have X(0)
0,T = 1, and thus

X0,T ∈ T1((Rd)), restricting the state-space of X to a subspace of T ((Rd)). In what follows,
we further confine the state-space of rough paths to GN(Rd). This restriction is justified
when recalling that, by definition, GN(Rd) corresponds to elements of TN(Rd) representing
the (evaluated) signature of some continuous 1-variation path. Additionally, as discussed in
Section 1.3.1, X(n) is to be interpreted as an n-fold iterated integral.

Secondly, once equipped with a (rough) path X : [0, T ]→ GN (Rd), a multiplicative functional
is readily obtained by considering Xs,t := X−1s ⊗ Xt with s < t in [0, T ]. Regarding the
regularity constraints on Xs,t to ensure a unique Lyons lift, these will directly follow from
the regularity of X

Thirdly, we observe that thus far we have utilised α-Hölder continuity to establish regularity
constraints on the multiplicative functionals. However, the results from the preceding sections
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are not inherently dependent on α-Hölder continuity. Alternatively, we could impose regularity
constraints using p-variation. Recall that according to Proposition 1.3, any continuous p-
variation path can be considered a 1/p-Hölder path up to a time-change.

Remark 1.12: In [53] and [37], the authors introduce regularity constraints through the
concept of controls. In essence, controls provide a broad formalisation of the idea that path
increments Xs,t scale continuously based on some function of |t − s|. For details, refer to
Section 1.2 in [37].

Finally, when considering a path X : [0, T ] → GN(Rd), irrespective of whether we employ
α-Hölder continuity or p-variation, we encounter a choice: determining the metric structure
of GN(Rd). Different metrics within GN(Rd) yield distinct notions of distance for a space
of paths taking values in GN(Rd). If the distances in the path spaces depend solely on the
metric over GN(Rd), then, according to Proposition 1.20, our expectation is that the path
spaces share, at the very least, the same topology. All the above considerations motivate the
following definitions.

Definition 1.21: Consider p ≥ 1 and α ∈ (0, 1]. Let X,Y ∈ C([0, T ], GN(Rd)) and set
Xs,t := X−1s ⊗Xt. We define the following distances:

1. The homogenous α-Hölder distance,

dα-Höl;[0,T ](X,Y) := sup
0≤s<t≤T

dcc(Xs,t,Ys,t)

|t− s|α
;

2. The homogenous p-variation distance,

dp-var;[0,T ](X,Y) :=

(
sup

(ti)∈P([0,T ])

∑
i

dcc
(
Xti,ti+1

,Yti,ti+1

)p)1/p

;

3. The inhomogenous α-Hölder distance,

ρα-Höl;[0,T ](X,Y) := max
n=1,...,N

sup
0≤s<t≤T

∣∣X(n)
s,t −Y

(n)
s,t

∣∣
|t− s|αn

;

4. The inhomogenous p-variation distance,

ρp-var;[0,T ](X,Y) := max
n=1,...,N

sup
(ti)∈P([0,T ])

(∑
i

∣∣X(n)
ti,ti+1

−Y
(n)
ti,ti+1

∣∣p/n)n/p

;

These distances are commonly encountered in the literature, particularly in the context of
signature-based methods. It is important to note that, similar to ρα-Höl;[0,T ], the distances
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mentioned above are not genuine metrics. For instance, dα-Höl;[0,T ](X,Y) = 0 if and only if
Xt = c⊗Yt, where c = X0 ⊗Y−10 .

However, genuine metrics can be obtained if we focus on paths with a fixed starting point,
as is the case with Cα-Höl

o ([0, T ], GN(Rd)) or Cp-var
o ([0, T ], GN(Rd)) (recall Definition 1.4),

or if we include the distance between the starting points and consider d̃α-Höl;[0,T ](X,Y) :=

dcc(X0,Y0) + dα-Höl;[0,T ](X,Y) instead. Similarly, following the notation of Section 1.2.3, we
define ρ̃α-Höl;[0,T ](X,Y) := ρ(X0,Y0) + ρα-Höl;[0,T ](X,Y), as well as d̃p-var;[0,T ], and ρ̃p-var;[0,T ] in
a completely analogous manner.

It is also noteworthy that all the aforementioned distances induce (semi-)norms by fix-
ing Y to some constant path. Particularly, we have that dα-Höl;[0,T ](X,1) ≡ |X|α-Höl;[0,T ]

and dp-var;[0,T ](X,1) ≡ |X|p-var;[0,T ], leading to the spaces in Definition 1.4 with (E, d) =

(GN(Rd), dcc). Moreover, since

|X|α-Höl;[0,T ] <∞ iff ρα-Höl;[0,T ](X,1) <∞ and |X|p-var;[0,T ] <∞ iff ρp-var;[0,T ](X,1) <∞,

the sets Cα-Höl([0, T ], GN(Rd)) and Cp-var([0, T ], GN(Rd)) coincide regardless of whether a
homogenous or inhomogenous distance is used.

As previously suggested, within the context of Rough Path theory, paths whose regularity is
in relation to the truncation level of the state-space are of particular significance. This forms
the basis of the following definition.

Definition 1.22: Consider p ≥ 1 and α ∈ (0, 1]. A weakly geometric α-Hölder rough
path is an α-Hölder path with values in the free nilpotent group of step ⌊1/α⌋, i.e. an
element of Cα-Höl([0, T ], G⌊1/α⌋(Rd)). A weakly geometric p-rough path is a continuous path
of finite p-variation with values in the free nilpotent group of step ⌊p⌋, i.e. an element of
Cp-var([0, T ], G⌊p⌋(Rd)).

If X : [0, T ]→ Rd is an α-Hölder path and X is a (weakly geometric) α-Hölder rough path
such that X

(1)
s,t = Xs,t, then we call X a rough path lift of X. Analogously for p-rough paths.

As a way to naturally generalise the signatures of bounded variation paths discussed in Section
1.2, it is sensible to consider the closure of the "classical signatures." The term "weakly"
serves to distinguish the paths of Definition 1.22 from those belonging to this closure.

Definition 1.23: We denote by C0,α-Höl
o ([0, T ], G⌊1/α⌋(Rd)) the set of continuous paths

X : [0, T ]→ G⌊1/α⌋(Rd) for which there exists a sequence of smooth Rd-valued paths Xn such
that

dα-Höl;[0,T ](X, S⌊ 1
α
⌋(Xn))→ 0, as n→∞,

and define C0,α-Höl([0, T ], G⌊1/α⌋(Rd)) as the set of paths X such that

X0,· := X−10 ⊗X· ∈ C0,α-Höl
o ([0, T ], G⌊1/α⌋(Rd)).
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The elements of C0,α-Höl([0, T ], G⌊1/α⌋(Rd)) are referred to as geometric α-Hölder rough paths.
Analogously, C0,p-var

o ([0, T ], G⌊p⌋(Rd)) denotes the set of continuous paths X : [0, T ]→ G⌊p⌋(Rd)

for which there exists a sequence of smooth Rd-valued paths Xn such that

dp-var;[0,T ](X, S⌊p⌋(Xn))→ 0, as n→∞,

and C0,p-var([0, T ], G⌊p⌋(Rd)) is defined as the set of paths with X0,· ∈ C0,p-var
o ([0, T ], G⌊p⌋(Rd)).

The elements of C0,p-var([0, T ], G⌊p⌋(Rd)) are referred to as geometric p-rough paths.

Remark 1.13: The term "geometric" signifies that solutions of differential equations driven
by geometric rough paths satisfy the usual chain rule. As a result, the solution of a differential
equation with values in a manifold transforms as expected under a change of coordinates,
thus preserving the geometry of the underlying manifold. This remark simply underscores
the rationale behind the terminology.

Clearly, C0,α-Höl([0, T ], G⌊1/α⌋(Rd)) ⊂ Cα-Höl([0, T ], G⌊1/α⌋(Rd)), and the same holds true for
p-rough paths. This inclusion can be shown to be strict, and the spaces of geometric rough
paths are Polish concerning the appropriate distances, either homogenous or inhomogenous
([37], Proposition 8.25). We now show that homogenous and inhomogenous distances induce
the same topology.

Theorem 1.10 ([37], Theorem 8.10): Consider p ≥ 1 and α ∈ (0, 1]. Each identity map:

Id :
(
Cα-Höl([0, T ], GN(Rd)), d̃α-Höl;[0,T ]

)
↔
(
Cα-Höl([0, T ], GN(Rd)), ρ̃α-Höl;[0,T ]

)
Id :

(
Cp-var([0, T ], GN(Rd)), d̃p-var;[0,T ]

)
↔
(
Cp-var([0, T ], GN(Rd)), ρ̃p-var;[0,T ]

)
is Lipschitz on bounded sets in the → direction, and α-Hölder continuous on bounded sets
in the ← direction. In particular, this is true for α-Hölder rough paths (N = ⌊1/α⌋), and
p-rough paths (N = ⌊p⌋).

Proof. We remain consistent with our preference to work primarily with α-Hölder spaces and
establish the assertion for the first identity map. Note that the estimates between dcc(X0,Y0)

and ρ(X0,Y0) are directly derived from Proposition 1.20. Therefore, it suffices to analyse the
distances in the path space without the tilde notation. Recall that, for λ ∈ R, we denote by
δλ the dilation operator. Additionally, observe that δλa⊗ δλb = δλ(a⊗b), for a,b ∈ TN (Rd).
Hence, we see that

dα-Höl;[0,T ](X,Y) = sup
0≤s<t≤T

dcc

(
δ 1

|t−s|α
Xs,t, δ 1

|t−s|α
Ys,t

)
, and

ρα-Höl;[0,T ](X,Y) = sup
0≤s<t≤T

∣∣∣δ 1
|t−s|α

Xs,t − δ 1
|t−s|α

Ys,t

∣∣∣ .
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This implies that these distances depend solely on the metric over GN(Rd), for which
Proposition 1.20 provides estimates. Therefore,

dα-Höl;[0,T ](X,Y) ≤ Cmax
{
ρα-Höl;[0,T ](X,Y), ρα-Höl;[0,T ](X,Y)1/N max

{
1, |X|1−

1
N

α-Höl;[0,T ]

}}
,

ρα-Höl;[0,T ](X,Y) ≤ Cmax
{
dα-Höl;[0,T ](X,Y)max

{
1, |X|N−1α-Höl;[0,T ]

}
, dα-Höl;[0,T ](X,Y)N

}
,

and since it suffices to examine the unit ball case, the result follows.

Recall that for a given topological space Z, the identity map Id : (Z, τ1)→ (Z, τ2) is continuous
if and only if τ2 ⊂ τ1. Hence, according to Theorem 1.10, we can equip Cα-Höl([0, T ], GN (Rd))

with either the homogenous or the inhomogenous distance, and the induced topologies are
identical. Utilising the rough path spaces in Definition 1.22, we thus obtain, by Theorems 1.6
and 1.9, a continuous map

Sα : Cα-Höl
o ([0, T ], G⌊1/α⌋(Rd))→ T1((Rd)),

regardless of whether dα-Höl;[0,T ] or ρα-Höl;[0,T ] is chosen as the path distance. We deliberately
denote this map by Sα to emphasise not only that the topology is the α-topology induced by
the chosen metric, but also to underscore that this map is an analogue for lower regularity
paths to the path signatures discussed in Section 1.2.1.

Definition 1.24: Consider Cα-Höl
o ([0, T ], G⌊1/α⌋(Rd)) equipped with the α-topology induced

by either dα-Höl;[0,T ] or ρα-Höl;[0,T ]. Let X be a weakly geometric α-Hölder rough path. We
denote the mapping X 7→ (1,X

(1)
0,T , . . . ,X

(⌊1/α⌋)
0,T , . . . ,X

(N)
0,T , . . .) by Sα. In other words, Sα

maps X to its (evaluated) Lyons’ extension X0,T ∈ T1((Rd)). We refer to Sα(X) as the
signature of X.

We conclude this chapter with a rather trivial, but nonetheless pertinent observation that
seems to be overlooked in the literature: the rough path space topology is not initial with
respect to Sα. While the compact embedding of rough path spaces is a well-known technique
in the literature, it is worth noting that the next result pertains specifically to the continuity
of the signature map. This distinction is crucial for our subsequent discussions in Chapter 3.

Proposition 1.23: For any α ∈ (0, 1], there exists β < α such that Cα-Höl
o ([0, T ], G⌊

1
α
⌋(Rd))

equipped with the β-topology induced by either dβ-Höl;[0,T ] or ρβ-Höl;[0,T ] makes the signature
map Cα-Höl

o ([0, T ], G⌊1/α⌋(Rd))→ T1((Rd)) continuous.

Proof. For all α ∈ (0, 1] there exists ε > 0 such that ⌊1/(α − ε)⌋ = ⌊1/α⌋. Set β = α − ε.
Then, by Theorem 1.9, we know that Sβ : Cβ-Höl

o ([0, T ], G⌊1/β⌋(Rd))→ T1((Rd)) is continuous,
and, by Proposition 1.5, we have that Cα-Höl

o ([0, T ], G⌊1/α⌋(Rd)) is continuously embedded in
Cβ-Höl
o ([0, T ], G⌊1/β⌋(Rd)). Hence, the result follows.



2
Kernel Theory

The general theory of reproducing kernels is vast, and, to paraphrase the authors in [66],
"as important as the concept of Hilbert spaces." What is more, the theory plays a role in
a remarkable number of areas, which include: Complex Analysis, operator theory, group
representation theory, approximation theory, Statistics, Probability, and Machine Learning.
It is within the context of the latter, or more broadly, within the realm of learning methods,
that kernel theory assumes importance in the present work.

As is often the case in Mathematics, statistical and Machine Learning methods have been
well-developed for the linear case, when there are linear dependencies in the data or when the
data is linearly separable. However, in real-world applications, nonlinear methods are often
necessary to effectively detect dependencies in the data that enable, for example, accurate
predictions. With this in mind, kernels can be viewed as a means to address nonlinearities in
a linear manner.

More precisely, the idea is to implicitly handle the nonlinearities by mapping our data/input
space into a feature space, typically a high-dimensional space that furnishes us with more
expressive features. This mapping is achieved via a feature map, and a kernel then corresponds
to the inner product in the feature space. Remarkably, the kernel can often be computed
without explicitly computing, or even knowing, the feature map. Thus, any learning method
that we define is linear, as long as we formulate it in terms of kernel evaluations.

This chapter provides an elementary introduction to kernel theory, assuming only a basic
understanding of Functional Analysis. The selection of topics is based on their relevance to
kernel theory, as well as their common occurrence in the literature of signature-based methods.
Section 2.1 outlines the fundamental concepts of kernel theory, while Section 2.2 explores the
application of kernel theory tools to approximation problems. Additionally, Section 2.3 offers
an interpretation of the signature as a feature map and reviews a specific kernel, the signature
kernel, along with its key properties. Notably, within the discussion of the signature kernel,
we highlight a property, albeit basic, that seems to have been overlooked in the literature.

It is worth noting that this chapter serves as a literal bridge between Chapters 1 and 3. Indeed,
Section 2.3 utilises the tools introduced in Chapter 1 to define a kernel, while Section 2.2
introduces a central concept to this thesis: universality. Path signatures embody this notion
of universality, explaining why they have found considerable success in various applications.
Moreover, universality motivates much of the discussion in the upcoming Chapter 3.
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2.1. Basics of Kernel Theory
We present the fundamentals of kernel theory, starting with key concepts like kernels, feature
maps, and feature spaces. During our exploration, we emphasise that kernels can be defined
in various equivalent ways. Additionally, we introduce reproducing kernel Hilbert spaces
(RKHS) and elucidate their connection to kernels. We conclude this section by presenting
some useful properties of RKHSs.

2.1.1. Kernels and Reproducing Kernel Hilbert Spaces
We begin by introducing a kernel definition that closely aligns with the motivation provided in
the chapter’s introduction. This definition will be used consistently throughout our discussion.
As previously noted, there is often interest in mapping a given input or data space into a
higher dimensional space equipped with an inner product. In this context, kernels can be
viewed as functions that realise this inner product in the higher dimensional space. Keeping
upcoming sections in view, we also introduce a specific type of kernels known as Taylor
kernels. We focus solely on real-valued kernels.

Definition 2.1: Let X be a non-empty set. A function k : X ×X → R is said to be a kernel
if there exists a (real) Hilbert space H0 and a map Φ : X → H0 such that, for all x, x′ ∈ X,

k(x, x′) = ⟨Φ(x),Φ(x′)⟩H0 .

We say that Φ is a feature map and H0 is a feature space of k.

A straightforward example of a kernel is the inner product of any real Hilbert space H.
Specifically, for h, h′ ∈ H, the inner product map (h, h′) 7→ ⟨h, h′⟩H is a kernel, with the
identity function Id : H → H as the feature map. It is noteworthy to observe that feature
maps and feature spaces are not unique. For instance, the kernel (h, h′) 7→ ⟨h, h′⟩H also
admits the function Φ′ : H → H×H defined by Φ′(h) := (h/

√
2, h/
√
2) as a feature map.

This can be verified by observing that

⟨Φ′(h),Φ′(h′)⟩H×H =
1

2
⟨h, h′⟩H +

1

2
⟨h, h′⟩H = k(h, h′),

where ⟨(h1, h2), (h′1, h′2)⟩H×H := ⟨h1, h′1⟩H + ⟨h2, h′2⟩H is the inner product in H × H. For
additional examples of kernels, refer to Section 1.2 in [61] and Section 4.1 in [71]. We now
specialise in Taylor type kernels, which will allow us to construct several kernels and will
play a prominent role in the next chapter.

Proposition 2.1 ([71], Lemma 4.8): Consider some r ∈ (0,∞] and let
√
rBRd denote the

closed ball of radius
√
r in Rd. Moreover, consider a function f : [−r, r] → R that can be
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expressed by its Taylor series, that is

f(t) =
∞∑
n=0

ant
n, for all t ∈ [−r, r].

If the Taylor coefficients an are non-negative, i.e. an ≥ 0 for all n ∈ N0, then

k(x, x′) := f(⟨x, x′⟩Rd) =
∞∑
n=0

an⟨x, x′⟩nRd

defines a kernel on
√
rBRd . We say that k is a Taylor type kernel.

Proof. For x, x′ ∈
√
rBRd , we have by Cauchy-Schwarz that |⟨x, x′⟩Rd | ≤ |x|·|x′| ≤ r, ensuring

that k is well-defined. Let xi denote the i-th component of x ∈ Rd. The claim follows by the
multinomial formula. Note that

k(x, x′) =
∞∑
n=0

an

(
d∑
i=1

xix
′
i

)n

=
∞∑
n=0

an
∑

i1,...,id≥0
i1+···+id=n

n!

i1!i2! · · · id!

d∏
k=1

(xix
′
i)
ik

=
∑

i1,...,id≥0

ai1+···+id
(i1 + · · ·+ id)!

i1!i2! · · · id!

d∏
k=1

(xix
′
i)
ik .

Now, set ci1,...,id := ai1+···+id
n!∏d
k=1 ik!

with n = i1 + · · ·+ id, and consider the space of square
summable sequences indexed by Nd

0, denoted by l2(Nd
0). The map Φ :

√
rBRd → l2(Nd

0) defined
by

Φ(x) :=

(
√
ci1,...,id

d∏
k=1

xiki

)
i1,...,id≥0

,

constitutes a feature map, i.e. k(x, x′) = ⟨Φ(x),Φ(x′)⟩l2(Nd0), and hence, k is a kernel.

We proceed to examine the more functional analytical aspects of kernels. In the next definition,
F(X,R) denotes the set of functions from X to R. The set F(X,R) is evidently a real
vector space with the operations of addition defined as (f + g)(x) := f(x) + g(x), and scalar
multiplication given by (λf)(x) := λf(x).

Definition 2.2: Let X be a non-empty set. Consider H to be a Hilbert function space over
X, i.e. H is a Hilbert space and H ⊂ F(X,R).

1. The space H is said to be a reproducing kernel Hilbert space (RKHS) over X if for all
x ∈ X the evaluation functional δx : H → R defined by δx(f) := f(x) is bounded.

2. A map K : X ×X → R is said to be a reproducing kernel for H if for all x ∈ X we
have K(·, x) ∈ H, and the so-called reproducing property,

⟨f,K(·, x)⟩H = f(x),

holds for all f ∈ H and x ∈ X. We shall often denote K(·, x) by Kx(·), or simply Kx.
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Remark 2.1: It directly follows from Definition 2.2 that within a given RKHSH, convergence
in norm implies pointwise convergence. Specifically, if (fn) ⊂ H is a sequence such that
|f − fn|H → 0 as n→∞ for some f ∈ H, then owing to the assumed continuity of evaluation
functionals, we have that, for all x ∈ X,

lim
n→∞

fn(x) = lim
n→∞

δx(fn) = δx(f) = f(x).

Observe that if H represents a RKHS, then we can derive a reproducing kernel for H using
the Riesz representation theorem. Indeed, if δx : H → R is a bounded (and consequently
continuous) linear functional, then the Riesz representation theorem (see Appendix B)
guarantees the existence of a unique vector Kx ∈ H such that f(x) = δx(f) = ⟨f,Kx⟩H. By
defining K : X ×X → R as K(x, x′) := Kx′(x), we establish a reproducing kernel for H. The
subsequent result shows that K is in reality the unique reproducing kernel for H.

Proposition 2.2 ([71], Theorem 4.20): LetH denote a RKHS over X. Then, K : X×X → R
defined by

K(x, x′) := ⟨Kx′ , Kx⟩H = ⟨Kx, Kx′⟩H, for all x, x′ ∈ X,

where Kx denotes the Riesz representer of the evaluation functional δx ∈ H∗, is the only
reproducing kernel for H.

Proof. The fact that K is a reproducing kernel for H follows essentially by construction. As
discussed above, Kx denotes the unique Riesz representer of δx : H → R. Consequently,

K(x, x′) = ⟨Kx′ , Kx⟩H = δx(Kx′) = Kx′(x)

which shows that, for all f ∈ H and x′ ∈ X,

f(x′) = δx′(f) = ⟨f,Kx′⟩H = ⟨f,K(·, x′)⟩H,

i.e., K has the reproducing property. To show the symmetry of K, let H∗ denote the dual of
H and recall that the map corresponding each dual element in H∗ to its Riesz representer is
an isometry (Appendix B). Hence, ⟨Kx′ , Kx⟩H = ⟨δx′ , δx⟩H∗ = ⟨δx, δx′⟩H∗ = ⟨Kx, Kx′⟩H.

Lastly, assume that K̃ is another reproducing kernel for H. Then, for all x ∈ X,

|Kx − K̃x|2H =⟨Kx, Kx⟩H + ⟨K̃x, K̃x⟩H − ⟨Kx, K̃x⟩H − ⟨K̃x, Kx⟩H
=K(x, x) + K̃(x, x)−Kx(x)− K̃x(x) = 0,

and uniqueness follows.

The following two results demonstrate the relationship between reproducing kernels (as
defined in Definition 2.2) and kernels (as defined in Definition 2.1). First, we show that
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reproducing kernels are kernels in the sense of Definition 2.1. Subsequently, we show that
every kernel has a unique RKHS. The latter result, as inferred from Proposition 2.2, implies
that each kernel corresponds to a unique reproducing kernel. Ultimately, this shows the
existence of a one-to-one correspondence between kernels and RKHSs.

Proposition 2.3 ([71], Lemma 4.19): Let H be a Hilbert function space with reproducing
kernel K. Then, H is a RKHS and a feature space of K. Specifically, the map Φc : X → H
given by

Φc(x) := K(·, x), for all x ∈ X,

is a feature map, rendering K a kernel. We call Φc the canonical feature map.

Proof. By the reproducing property, every evaluation functional can be represented by K(·, x).
Thus, by Cauchy-Schwarz, we obtain

|δx(f)| = |f(x)| = |⟨f,K(·, x)⟩H| ≤ |K(·, x)|H · |f |H,

for all x ∈ X and f ∈ H, implying that all evaluation functionals are bounded. Lastly, to
show that Φc is a feature map, simply notice that

⟨Φc(x
′),Φc(x)⟩H = ⟨K(·, x′), K(·, x)⟩H = Kx′(x) = K(x, x′),

by the reproducing property. This concludes the proof.

Theorem 2.1 ([71], Theorem 4.21): Consider a non-empty set X. Let k be a kernel over X
with feature space H0 and feature map Φ0 : X → H0. Then,

H :=
{
f : X → R : ∃h ∈ H0 with f(x) = ⟨h,Φ0(x)⟩H0 , for all x ∈ X

}
, (2.1)

equipped with the norm

|f |H := inf
{
|h|H0 : h ∈ H0 with f = ⟨h,Φ0(·)⟩H0

}
is the only RKHS for which k is a reproducing kernel.

Proof. We commence by showing that H is a Hilbert function space over X. The fact that
H is a vector space of functions from X to R is clear from (2.1). Consider the operator
V : H0 → H defined by V (h) := ⟨h,Φ0(·)⟩H0 . By definition, V is a surjective linear operator,
and we have that

|f |H ≡ inf
h∈V −1(f)

|h|H0 .

We will show that | · |H is a Hilbert space norm on H by showing that H is isometrically
isomorphic to a Hilbert space. To this end, let (hn)n≥1 ⊂ kerV be a convergent sequence in
the null space of V . Denote its limit by h. Given that 0 = ⟨hn,Φ(x)⟩H0 → ⟨h,Φ(x)⟩H0 for
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all x ∈ X and n ∈ N, we conclude that h ∈ kerV , and hence, the null space of V is closed.
Subsequently, this allows us to have the orthogonal decomposition H0 = kerV ⊕ (kerV )⊥,
where (kerV )⊥ denotes the orthogonal complement of kerV (Appendix B). By construction,
V |(kerV )⊥ is injective. We show that V |(kerV )⊥ is also surjective. Consider f ∈ H and h ∈ H0

such that V (h) = f . Note that f = V (h) = V (h0 + h⊥0 ) = V (h⊥0 ) = V |(kerV )⊥(h
⊥
0 ). This

proves surjectivity. Similarly,

|f |2H = inf
h0+h⊥0 ∈V −1(f)

∣∣h0 + h⊥0
∣∣2
H0

= inf
h0+h⊥0 ∈V −1(f)

∣∣h0∣∣2H0
+
∣∣h⊥0 ∣∣2H0

=
∣∣∣V |−1(kerV )⊥

(f)
∣∣∣2
(kerV )⊥

,

showing that V |(kerV )⊥ : (kerV )⊥ → H is an isometric isomorphism. Given that (kerV )⊥ is
a Hilbert space, it follows that | · |H is a Hilbert space norm on H.

Now, let us show that k is a reproducing kernel for H. Since k has feature map Φ0, we
observe that k(·, x) = ⟨Φ0(x),Φ0(·)⟩H0 = V (Φ0(x)) ∈ H. Moreover, for all h0 ∈ kerV ,
⟨h0,Φ0(x)⟩H0 = 0, hence Φ0(x) ∈ (kerV )⊥ and

f(x) =
〈
V |−1

(kerV )⊥
(f),Φ0(x)

〉
H0

=
〈
f, V |(kerV )⊥Φ0(x)

〉
H
= ⟨f, k(·, x)⟩H.

Therefore, k has the reproducing property, and by Proposition 2.3 H is a RKHS. It remains
only to show uniqueness. To this end, consider the set

Hpre :=

{
n∑
i=1

αik(·, xi) : n ∈ N, α1, . . . , αn ∈ R, and x1, . . . , xn ∈ X

}
. (2.2)

It is evident that Hpre ⊂ H. We show that Hpre is dense in H. Assume otherwise. This
assumption implies that (Hpre)

⊥ ̸= {0}, and hence, there exists an f ∈ (Hpre)
⊥ and an x ∈ X

such that f(x) ̸= 0. Consequently,

0 = ⟨f, k(·, x)⟩H = f(x) ̸= 0,

which yields a contradiction. Thus, Hpre is dense in H. From the density of Hpre and Remark
2.1, uniqueness follows.

We conclude this section with a complete characterisation of kernel functions. Recall that
a map k : X ×X → R is said to be positive definite if, for all n ∈ N, α1, . . . , αn ∈ R, and
x1, . . . , xn ∈ X, we have

n∑
i=1

n∑
j=1

αiαjk(xj, xi) ≥ 0.

Additionally, we say that k is strictly positive definite if the inequality above is strict, unless
α1 = · · · = αn = 0. Lastly, k is said to be symmetric if k(x, x′) = k(x′, x) for all x, x′ ∈ X.

Theorem 2.2 ([71], Theorem 4.16): A map k : X ×X → R is a kernel if and only if it is
symmetric and positive definite.
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Proof. The direction (→) is relatively straightforward, so we omit its proof. Conversely, we
show that any symmetric and positive definite map k is a kernel. As in Theorem 2.1, let us
consider the set Hpre given by (2.2). Consider f, g ∈ Hpre such that

f :=
n∑
i=1

αik(·, xi) and g :=
m∑
j=1

βjk(·, x′j).

Define ⟨·, ·⟩ as

⟨f, g⟩ :=
n∑
i=1

m∑
j=1

αiβjk(x
′
j, xi).

Since k is symmetric and positive definite, it follows that ⟨·, ·⟩ is symmetric and ⟨f, f⟩ ≥ 0.
Additionally, ⟨·, ·⟩ is clearly bilinear. Now, let us assume that ⟨f, f⟩ = 0. Then, by the
Cauchy-Schwarz inequality, we have that

|f(x)|2 =

∣∣∣∣∣
n∑
i=1

αik(x, xi)

∣∣∣∣∣
2

=
∣∣∣⟨f, k(·, x)⟩∣∣∣2 ≤ ⟨k(·, x), k(·, x)⟩ · ⟨f, f⟩ = 0,

for all x ∈ X. Hence, f = 0 and we conclude that ⟨·, ·⟩ denotes an actual inner product. The
result now follows by considering the completion of Hpre. Specifically, let H be the completion
of Hpre and let I : Hpre → H denote the corresponding isometric embedding (Appendix B).
Then, H is a Hilbert space and

⟨Ik(·, x′), Ik(·, x)⟩H = ⟨k(·, x′), k(·, x)⟩Hpre = k(x, x′),

for all x, x′ ∈ X. In other words, x 7→ Ik(·, x) defines a feature map and k is a kernel.

2.1.2. Basic Properties of RKHSs
In this concise section, we compile a few properties of RKHSs that are relevant for what
follows. The first result has already been proven.

Lemma 2.1: Let H be a RKHS over X with kernel k. Then, the linear span of functions
kx(·) ≡ k(·, x) is dense in H.

Proof. See the proof of Theorem 2.1.

Lemma 2.2 ([71], Lemma 4.29): Let (X, τ) be some topological space and k a kernel on X
with feature space H and feature map Φ : X → H. Then, the following claims are equivalent:

1. k is continuous.
2. k is continuous on each variable and x 7→ k(x, x) is continuous.
3. Φ is continuous.
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Proof. Note that a feature map induces a pseudo-metric on X. Specifically, for all x, x′ ∈ X,
we set dk(x, x′) := |Φ(x)− Φ(x′)|H. This pseudo-metric is commonly known as kernel metric.
Remarkably, dk is actually independent of Φ. Indeed,

dk(x, x
′) =

√
k(x, x)− 2k(x, x′) + k(x′, x′).

Now, to begin with, the implication 1→ 2 is trivial. Subsequently, assuming 2), we conclude
that dk(x, ·) : (X, τ) → R is continuous for every x ∈ X. Hence, id : (X, τ) → (X, dk)

is continuous. Given that Φ : (X, dk) → H is clearly continuous, Φ ◦ id : (X, τ) → H is
continuous and 3) follows, thus establishing 2→ 3. Lastly, 3→ 1 follows by noticing that

|k(x1, x′1)−k(x2, x′2)|
=|⟨Φ(x1),Φ(x′1)⟩H − ⟨Φ(x′1),Φ(x2)⟩H + ⟨Φ(x′1),Φ(x2)⟩H − ⟨Φ(x2),Φ(x′2)⟩H|
≤|Φ(x′1)|H|Φ(x1)− Φ(x2)|H + |Φ(x2)|H|Φ(x′1)− Φ(x′2)|H,

for all x1, x′1, x2, x′2 ∈ X. This concludes the proof.

Lemma 2.3 ([61], Theorem 2.17): Let X be a topological space and k a kernel on X with
RKHS H. If k is continuous with respect to the product topology, then every function in H
is continuous.

Proof. See [61] for an "ε− δ" proof. That said, the result follows directly from Lemma 2.2
and (2.1).

Lemma 2.4 ([71], Lemma 4.33): Let X be a separable topological space and k a continuous
kernel on X. Then, the RKHS of k is separable.

Proof. By Lemma 2.2 the canonical feature map Φc is continuous. Since the continuous
image of a separable set is again separable, Φc(X) is separable. Consequently, the set Hpre is
separable and the result follows by Lemma 2.1.

2.2. Approximations and RKHSs
This section delves into the approximation capabilities of reproducing kernel Hilbert spaces
H over X. It is divided into two parts based on the problem at hand. The first part focuses
on interpolation: Given a finite set of coordinates {(x1, λ1), . . . , (xn, λn)}, where xi ∈ X and
λi ∈ R for all i ∈ {1, . . . , n}, we explore whether there exists a function in H that interpolates
all these points. The second part examines the approximation of real-valued continuous
functions over X. Specifically, let C(X) denote the space of continuous functions from X to
R. We aim to determine whether H is sufficiently expressive to provide arbitrarily accurate
approximations of any function in C(X). Naturally, such a problem is greatly dependent on
the domain X and its topological properties.
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2.2.1. Interpolation
This section begins by presenting the interpolation problem. Following that, we establish
the uniqueness of the interpolating function in H with minimal norm and offer necessary
and sufficient conditions for the existence of interpolating functions. Finally, we explore the
relationship between strictly positive kernels and the interpolation problem.

Definition 2.3: Let X and Y be arbitrary non-empty sets. Let {x1, . . . , xn} ⊂ X be a
set of distinct points, and let {λ1, . . . , λn} ⊂ Y be some subset. We say that a function
g : X → Y interpolates the given set of points if g(xi) = λi, for all i ∈ {1, . . . , n}. We call g
the interpolating function.

In what follows, we consider a RKHSH over a non-empty set X with reproducing kernel k. We
take a finite set of distinct points F = {x1, . . . , xn} ⊂ X, and a set of values {λ1, . . . , λn} ⊂ R.
We denote by HF ⊂ H the subspace spanned by the maps {kx1 , . . . , kxn}.

Observe that dim(HF ) ≤ n. Additionally, note that dim(HF ) < n if and only if there exists a
linear dependence for every f ∈ H evaluated at the points in F . More precisely, for arbitrary
αi ∈ R, if

∑n
i=1 αikxi = 0, then, for every f ∈ H,

⟨f,
n∑
i=1

αikxi⟩H =
n∑
i=1

αif(xi) = 0.

In this scenario, certain sets of values {λ1, . . . , λn} cannot be interpolated by a function in H.
The subsequent result shows that whenever an interpolating function for a set of coordinates
exists, the interpolating function of minimal norm is unique.

Proposition 2.4 ([61], Proposition 3.2): Let PF denote the projection of H onto HF . If
there exists an interpolating function g in H for a given set of coordinates, then PF (g) is the
unique function of minimal norm that interpolates these values.

Proof. For a brief recap of orthogonal projections in Hilbert space refer to Appendix B.
Consider a fixed set of coordinates {(x1, λ1), . . . , (xn, λn)} and let H⊥F denote the orthogonal
complement ofHF . Note that h ∈ H⊥F if and only if h(xi) = ⟨h, kxi⟩H = 0 for all i ∈ {1, . . . , n}.
Hence, for any h ∈ H, we have that

h(xi) = PF (h)(xi) for all i ∈ {1, . . . , n},

i.e., if h is an interpolating function, then its projection onto HF is also interpolating.
Furthermore, if we have two interpolating functions g1 and g2, then by the aforementioned
equivalence we have that g1 − g2 ∈ H⊥F , implying that any solution of the interpolation
problem is of the form g + h with h ∈ H⊥F . Finally, observe that, for any h ∈ H⊥F ,

|PF (g)|H = |PF (g + h)|H ≤ |g + h|H,
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meaning that PF (g) is the unique interpolating function of minimal norm.

We now provide sufficient and necessary conditions for the existence of an interpolating
function.

Theorem 2.3 ([61], Theorem 3.4): Let F = {x1, . . . , xn} ⊂ X be a set of distinct points
and consider {λ1, . . . , λn} ⊂ R. Then, there exists an interpolating function g ∈ H for
this set of points if and only if the vector λ := (λ1, . . . , λn)

T is in the range of the matrix
K := [k(xi, xj)]i,j. Additionally, in case α := (α1, . . . , αn)

T is a vector whose image is λ, i.e.
Kα = λ, then the function h :=

∑
i αikxi is the unique interpolating function of minimal

norm in H. Lastly, we have that |h|2H = ⟨α, λ⟩.

Proof. We start with (→). Assume that there exists an interpolating function g ∈ H. Then,
by Proposition 2.4, the (unique) solution of minimal norm is PF (g) =

∑
i βikxi , for some

scalars β1, . . . , βn. Now, simply notice that

g(xj) = PF (g)(xj) =
∑
i

βikxi(xj) = λj,

is equivalent to having Kβ = λ, where β := (β1, . . . , βn)
T . Hence, λ is in the range of K. To

prove (←), assume that α satisfies Kα = λ and set h =
∑

i αikxi . Then, h is interpolating.
Finally, to see that h is the unique interpolating function of minimal norm, we show that h
coincides with PF (g). Note that α− β is in the nullspace of K. Hence,

|PF (g)− h|2H =
n∑
i=1

n∑
j=1

(αi − βi)(αj − βj)k(xi, xj) = ⟨K(α− β), α− β⟩Rn = 0,

which means that PF (g)− h is identically zero and uniqueness follows.

Theorem 2.3 has the following immediate corollary.

Corollary 2.1: Let F = {x1, . . . , xn} ⊂ X be a set of distinct points. If the matrix
K = [k(xi, xj)]i,j is invertible, then, for any set of values {λ1, . . . , λn} ⊂ R, there exists an
interpolating function in H. Moreover, the unique interpolating function of minimal norm is
given by g =

∑
i αikxi , where α = K−1λ.

We conclude this section by establishing a connection between strictly positive definite kernels
and interpolation. As per the preceding results, having an invertible matrix K = [k(xi, xj)]i,j
is both necessary and sufficient to ensure the existence of an interpolating function. Drawing
from Linear Algebra, we recall that positive definite matrices are invertible if and only if they
are strictly positive definite. Hence, the relation between the two concepts should not come
as a surprise.
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Theorem 2.4 ([61], Theorem 3.6): Let X be a non-empty set, k : X ×X → R a kernel and
H the respective RKHS. Then, the following claims are equivalent:

1. The kernel k is strictly positive definite.

2. For n ∈ N and any set of distinct points {x1, . . . , xn} ⊂ X, the functions kx1 , . . . , kxn
are linearly independent.

3. For n ∈ N, any set of distinct points {x1, . . . , xn} ⊂ X, and any set of values
{α1, . . . , αn} ⊂ R that are not all 0, there exists f ∈ H such that

α1f(x1) + · · ·αnf(xn) ̸= 0.

4. For n ∈ N and any set of distinct points {x1, . . . , xn} ⊂ X, there exist functions
g1, . . . , gn ∈ H such that

gi(xj) =

{
1, i = j

0, i ̸= j
. (2.3)

Proof. The equivalence (1)⇔ (2) is easily obtained by recalling that
∑n

i,j=1 αiαjk(xi, xj) =

|
∑n

i=1 αikxi |
2

H . To get (2)⇔ (3), notice that
∑

i αikxi = 0, if and only if ⟨f,
∑

i αikxi⟩H = 0

for all f ∈ H, if and only if α1f(x1) + · · ·+ αnf(xn) = 0 for all f ∈ H. Lastly, (4) =⇒ (3)

since if αi ≠ 0, then we can simply take f = gi. And the implication (1) =⇒ (4) follows by
Corollary 2.1.

Definition 2.4: A RKHS H satisfying any of the equivalent conditions above is said to be
fully interpolating.

2.2.2. Universal Kernels
We introduce one of the central themes of this thesis: universality. In essence, universality
relates to the capability of approximating continuous (real-valued) functions over a given
domain X, i.e. elements of C(X). As discussed in Section 2.1, a kernel function k corresponds
uniquely to a RKHS H. Furthermore, Lemma 2.3 demonstrates that when k is continuous,
every function in H is continuous as well. Consequently, it raises the question of whether H
possesses sufficient expressiveness to approximate elements of C(X) with arbitrary accuracy.
This inquiry leads us to the concept of a universal kernel.

Unsurprisingly, the density of H in C(X) hinges significantly on the topological characteristics
of the domain X. Particularly, in the classical setting under examination, X is assumed to
be a compact metric space. In hindsight, we observe that this compactness assumption stems
from the Stone-Weierstrass theorem (Appendix C), which offers sufficient conditions for the
existence of universal kernels, necessitating a compact domain. In Chapter 3, we will delve



2.2. Approximations and RKHSs 68

deeper into the implications of the compactness assumption on X, and explore ways to relax
it. As mentioned in the Introduction, this will culminate in the notion of global universality.

Definition 2.5: Let X be a compact metric space. A continuous kernel k : X ×X → R is
said to be universal if the corresponding RKHS H is dense in C(X), i.e., for every g ∈ C(X)

and ε > 0, there exists f ∈ H such that

|f − g|∞ := sup
x∈X
|f(x)− g(x)| ≤ ε.

Remark 2.2: One can modify the definition of universal kernel and consider an arbitrary
feature space H0 of k. Indeed, if Φ0 : X → H0 denotes the corresponding feature map, then
by (2.1) we observe that k is universal if and only if, for every ε > 0, there exists h ∈ H0

such that |⟨h,Φ0(·)⟩H0 − g|∞ ≤ ε.

We now prove that universal kernels do indeed exist and state what is commonly referred
to as a "test for universality." The idea behind the following result is to simply restate the
assumptions of the Stone-Weierstrass theorem (Appendix C) in the context of kernels. For
convenience, we recall here the required terminology in order to apply the Stone-Weierstrass
theorem.

Definition 2.6: Given some topological space X, we say that A ⊂ C(X) is a subalgebra if A
is a vector subspace and is closed under multiplication, i.e. if f, g ∈ A then fg ∈ A. Moreover,
a subset of functions C ⊂ C(X) is said to be point-separating if, for any two distinct points
x1, x2 ∈ X, there exists f ∈ C such that f(x1) ̸= f(x2). Lastly, we say C ⊂ C(X) vanishes
nowhere if, for all x ∈ X, there exists at least one f ∈ C such that f(x) ̸= 0.

Theorem 2.5 ([71], Theorem 4.56): Let X be a compact metric space and k : X ×X → R
a continuous kernel such that k(x, x) > 0 for all x ∈ X. Suppose there is an injective
feature map Φ : X → l2(N) of k. We denote by Φn : X → R the components of Φ, i.e.
Φ(x) ≡ (Φn(x))n∈N. If A := span{Φn : n ∈ N} is a subalgebra, then k is universal.

Proof. We just need to verify the assumptions of the Stone-Weierstrass theorem. Firstly, the
algebra A vanishes nowhere since |Φ(x)|2l2(N) = k(x, x) > 0 by assumption. Moreover, given
that k is continuous, it follows by Lemma 2.2 that every Φn is continuous. Hence, A ⊂ C(X).
Additionally, since Φ is injective, A is point-separating. As such, by Stone-Weierstrass we
conclude that A is dense in C(X), i.e. for all ε > 0 and g ∈ C(X) there exists an f ∈ A such
that |f − g|∞ < ε. Since f is necessarily a linear combination of functions Φn, it follows that
f = ⟨w,Φ(·)⟩l2(N) for some w ∈ l2(N), and, by (2.1) and Remark 2.2, we conclude that k is
universal.
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The Stone-Weierstrass theorem can be interpreted as a generalisation of the Weierstrass
theorem (Appendix C), given that polynomials are a particular example of an algebra.
Proposition 2.1, in turn, establishes the existence of Taylor-type kernels by constructing an
explicit feature map composed of polynomial functions. Consequently, we readily deduce
that Taylor-type kernels are universal, in the sense of Definition 2.5.

Corollary 2.2 ([71], Corollary 4.57): Consider r ∈ (0,∞] and let f : [−r, r] → R be a
continuous function that can be expressed by its Taylor series, i.e.

f(t) =
∞∑
n=0

ant
n, for all t ∈ [−r, r].

If the Taylor coefficients are such that an > 0 for all n ∈ N0, then the kernel k given by
k(x, x′) := f(⟨x, x′⟩Rd) is universal on every compact subset of the closed ball

√
rBRd .

Corollary 2.2 demonstrates the universality of certain classical examples of kernels. Readers
interested in further exploration can refer to Corollary 4.58 in [71].

2.3. Signature as a Feature Map
As discussed earlier, kernels serve as means to map a low-dimensional data space X into
a higher-dimensional feature space H. This mapping allows for increased expressivity,
potentially enabling the approximation of a wide range of functions using the associated
RKHS. This was demonstrated with the Taylor kernels in Section 2.1.1, which were proven to
be universal (Corollary 2.2) under the conditions of X ⊂ Rd being compact and the Taylor
coefficients being strictly positive.

Here, we note that developing kernels suited for sequential data is of great interest, given its
prevalence in various applications such as time series analysis. Instead of considering data in
Euclidean space like X ⊂ Rd, it becomes relevant to explore X ⊂ Rd

seq, where Rd
seq represents

the set of sequences of arbitrary length in Rd. That said, this poses some challenges. Note
that Rd

seq is not even a linear space due to the absence of a natural addition operation between
sequences of different lengths. One approach, however, is to consider the piecewise linear
interpolation of the data points, embedding Rd

seq into the class of bounded variation paths
[46, 50].

Recognising that streams of data can often be viewed as paths suggests seeing the signature of
a path as a feature map. This section elaborates on this idea. Specifically, Section 2.3.1 defines
the so-called signature kernel and establishes some of its relevant properties. Subsequently,
further exploration in Section 2.3.2 establishes the signature kernel as being universal in the
sense of Definition 2.5.
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2.3.1. The Signature Kernel
We briefly review the signature kernel and demonstrate that it satisfies a hyperbolic PDE
belonging to a class of differential equations known as Goursat problems [67], thus providing
a "kernel trick."

To start, let us recall that the signature of a path takes values in T1((Rd)), a subset of the
extended tensor algebra with a Hilbert space structure (Section 1.1.3 and Appendix A). Given
a,b ∈ T1((Rd)), the inner product is defined by

⟨a,b⟩T1((Rd)) :=
∞∑
n=0

⟨an,bn⟩(Rd)⊗n ≡
∞∑
n=0

∑
|w|=n

awbw.

Consequently, viewed as a mapping from C1-var([0, T ],Rd) to T1((Rd)), the signature is indeed
a feature map. It is worth noting that, due to the discrete nature of data in applications, it
is usually sufficient to consider paths of bounded variation, or even restrict our attention to
piecewise linear paths.

Definition 2.7: Let I = [u, u′] and J = [v, v′] be two compact intervals, and consider two
paths x and y with values on Rd, continuously differentiable over I and J , respectively. The
signature kernel kx,y : I × J → R is defined as

kx,y(s, t) := ⟨S(x)u,s, S(y)v,t⟩T1((Rd)).

Lemma 2.5 ([44], Lemma 4.3): The signature kernel is well-defined, i.e. kx,y is a kernel and
kx,y <∞.

Proof. The fact that kx,y is a kernel follows immediately by definition. The finiteness of the
inner product follows by Proposition 1.18 and the Cauchy-Schwarz inequality.

Now, we demonstrate that the signature kernel constitutes the solution to a Goursat PDE.
This observation is particularly significant as it presents a "kernel trick." Typically, the term
"kernel trick" refers to any method that bypasses the computation of the inner product in
the feature space. In other words, a kernel trick allows us to avoid the explicit calculation of
embeddings and directly compute inner products in potentially infinite-dimensional spaces.
In the context of the signature kernel, rather than computing an inner product in T1((Rd)),
we instead address a relatively simple hyperbolic PDE.

Remark 2.3: For our purposes of establishing the signature as a feature map and showing
that the signature kernel solves a Goursat PDE, it is convenient to consider continuously
differentiable paths x and y. We note, however, that one can lower this regularity assumption
to paths of bounded variation, and even extend it to a class of rough paths. We refer to the
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original work [67, 15] for details. Additionally, it is worth mentioning that by fixing s and t,
the signature kernel can be interpreted as a kernel over a path space.

Theorem 2.6 ([67], Theorem 2.5): Let I = [u, u′] and J = [v, v′] be two compact intervals,
and consider two paths x and y continuously differentiable over I and J , respectively. The
signature kernel kx,y : I×J → R is a solution of the following linear, second order, hyperbolic
PDE

∂2kx,y
∂s∂t

= ⟨ẋs, ẏt⟩Rdkx,y(s, t), kx,y(u, ·) = kx,y(·, v) = 1,

where ẋs and ẏt denote dxp
dp

∣∣∣
s

and dyq
dq

∣∣∣
t
, respectively.

Proof. Since S(x)u,u = S(y)v,v = 1, the initial conditions are clearly satisfied. To derive the
PDE, recall that, by Proposition 1.15,

S(x)u,s = 1 +

∫ s

p=u

S(x)p ⊗ dxp,

which also holds true for S(y)v,t. Hence, we note that

kx,y(s, t) = ⟨S(x)u,s, S(y)v,t⟩T1

=
〈
1 +

∫ s

p=u

S(x)p ⊗ dxp,1 +

∫ t

q=v

S(x)q ⊗ dyq

〉
T1

= 1 +
〈∫ s

p=u

S(x)p ⊗ ẋp dp,
∫ t

q=v

S(x)q ⊗ ẏq dq
〉
T1

= 1 +

∫ s

p=u

∫ t

q=v

⟨S(x)p ⊗ ẋp, S(x)q ⊗ ẏq⟩T1 dq dp

= 1 +

∫ s

p=u

∫ t

q=v

⟨S(x)p, S(x)q⟩T1⟨ẋp, ẏq⟩Rd dq dp

= 1 +

∫ s

p=u

∫ t

q=v

kx,y(p, q)⟨ẋp, ẏq⟩Rd dq dp.

Observe that the exchange between the integrals and the inner product is justified by linearity
and continuity. Additionally, the second-last equality follows from the coproduct property of
the inner product in T1((Rd)) (Appendix A). Finally, by applying the fundamental theorem
of calculus twice, we obtain the desired PDE.

2.3.2. Universality of Signatures

We establish the universality of the signature kernel on the space Ĉ1-var([0, T ],Rd+1) of
continuous time-augmented bounded variation paths. Specifically, within a compact set
K ⊂ Ĉ1-var([0, T ],Rd+1), we demonstrate that the set of linear functionals of the signature can
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uniformly and accurately approximate any real-valued continuous map over K. Extending
this universality property to rough paths is then fairly straightforward. We note that the
effectiveness of path signatures as features in various applications largely stems from this
property of universality.

Furthermore, while demonstrating universality, we establish the uniqueness of the signature
for time-augmented paths. This serves as a sufficient condition for uniqueness, although it is
not necessary. The topic of signature uniqueness is notably complex, and we intentionally
deferred its exploration until now. Indeed, fully characterising the uniqueness of signatures
extends beyond the scope of this work and delves into sophisticated territory. We provide
some remarks on uniqueness at the end of the section and conclude the chapter by establishing
that the signature kernel is fully interpolating according to Definition 2.4. This shows that the
signature kernel is strictly positive definite, a basic but fundamental property that appears
to have been overlooked in previous literature.

Definition 2.8: Let x ∈ C1-var([0, T ],Rd) be a continuous path of bounded variation. We
define the time-augmented path x̂ : [0, T ]→ Rd+1 by x̂t = (t, xt), for all t ∈ [0, T ]. We denote
by Ĉ1-var([0, T ],Rd+1) the subspace of time-augmented paths in C1-var([0, T ],Rd+1).

In what follows, the components of xt are still denoted by xit for i ∈ {1, . . . , d}, and we
introduce a 0-th component to x̂t such that x̂0t = t. Employing the natural pairing notation,
we find that ⟨ei, S(x̂)t⟩ = x̂it = xit for i ∈ {1, . . . , d}, and ⟨e0, S(x̂)t⟩ = x̂0t = t. It is worth
recalling that ⟨e∅, S(x̂)t⟩ = 1 for any path.

Theorem 2.7 ([26], Theorem 3.6): Let K be a compact subset of Ĉ1-var([0, T ],Rd+1). Con-
sider a continuous function f : K → R, i.e. an element of C(K). Then, for every ε > 0,
there exists a linear functional x̂ 7→ L(S(x̂)) :=

∑
0≤|w|≤N αw⟨ew, S(x̂)⟩, for some N ∈ N0 and

αw ∈ R, such that
sup
x̂∈K

∣∣f(x̂)− L(S(x̂))∣∣ < ε.

Proof. The result follows by the Stone-Weierstrass theorem (Appendix C) applied to the set

A := span
{
x̂ 7→ ⟨ew, S(x̂)⟩ : w ∈ {0, 1, . . . , d}N , N ∈ N0

}
.

Hence, we must prove that A satisfies the following conditions:

1) It is a linear subspace of continuous functions from K to R;

2) It is a subalgebra that vanishes nowhere (Definition 2.6);

3) It is point-separating;
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Point 1) follows directly from Corollary 1.2 and the fact that the linear functionals ⟨ew, ·⟩ :
T ((Rd))→ R are bounded. Point 2), in turn, is established by Proposition 1.14 and the fact
that ⟨e∅, S(x̂)⟩ = 1, for all x̂ ∈ K. It remains to show that A is point-separating. To this
end, consider functionals of the form

x̂ 7→ ⟨(ei� e⊗k0 )⊗ e0, S(x̂)⟩, (2.4)

for k ∈ N0 and i ∈ {0, 1, . . . , d}. Observe that, by Proposition 1.14 and Remark 1.7,

⟨(ei� e⊗k0 )⊗ e0, S(x̂)⟩ =
∫ T

0

⟨ei� e⊗k0 , S(x̂)t⟩ dt

=

∫ T

0

⟨ei, S(x̂)t⟩⟨e⊗k0 , S(x̂)t⟩ dt =
∫ T

0

x̂it
tk

k!
dt. (2.5)

Now, let x̂, ŷ ∈ Ĉ1-var([0, T ],Rd+1) be distinct time-augmented paths. Assuming that, for all
k ∈ N0 and i ∈ {0, 1, . . . , d} it holds ⟨(ei � e⊗k0 ) ⊗ e0, S(x̂)⟩ = ⟨(ei � e⊗k0 ) ⊗ e0, S(ŷ)⟩, then
we have ∫ T

0

(
x̂it − ŷit

) tk
k!

dt = 0.

However, by Theorem C.10 in Appendix C, this implies x̂it − ŷit = 0, contradicting the
assumption that x̂ and ŷ are distinct paths. Hence, A is point-separating, and, in particular,
functionals of the form (2.4) are enough to separate paths. By Stone-Weierstrass we thus
conclude that A is dense in C(K).

Corollary 2.3: Let K be a compact subset of Ĉ1-var([0, T ],Rd+1). The signature kernel is
universal on K.

Proof. By the Riesz representation theorem (Appendix B), linear functionals of the signature
x̂ 7→ L(S(x̂)) can be written as x̂ 7→ ⟨a, S(x̂)⟩T1((Rd)) for some a ∈ T1((Rd)). Additionally, it
follows from (2.1) that maps of the form x̂ 7→ ⟨a, S(x̂)⟩T1((Rd)) belong to the RKHS of the
signature kernel. Hence, by Theorem 2.7, the signature kernel is universal in the sense of
Definition 2.5.

We observe that (2.5) implies that S(x̂) uniquely determines x̂t for every t ∈ [0, T ]. Therefore,
we have inadvertently established the following uniqueness result.

Proposition 2.5 ([24], Lemma 2.6): Consider x̂, ŷ ∈ Ĉ1-var([0, T ],Rd+1). Then, S(x̂) = S(ŷ)

if and only if x̂t = ŷt for every t ∈ [0, T ].

Proposition 2.5 is typically stated under the assumption of continuous bounded variation
paths in Rd, where at least one component is monotone. In our scenario, this monotone
component is represented by time. This of course aligns precisely with the condition of having
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at least one monotone component, and hence, there is no loss of generality in considering
time-augmented paths.

Remark 2.4: We observe that Proposition 2.5 holds for rough paths. In a completely
analogous way, we can consider the subset of paths x̂ ∈ Cα-Höl([0, T ], G⌊1/α⌋(Rd+1)) such
that x̂(1)

t = (t, xt) for some x ∈ Cα-Höl([0, T ],Rd). Then, the point separation argument in
the proof of Theorem 2.7 can be replicated entirely ([27], Theorem 5.4), showing that the
signature map of Definition 1.24 is injective for time-augmented rough paths.

To gain additional insight into why paths with a monotone component are uniquely identified
by their signature, let us recall Proposition 1.17. This proposition states that the signature of
a path, when concatenated with its time-reversal, results in a trivial signature. Consequently,
this suggests that the signature map fails to distinguish paths that retract back onto themselves.
Now, by assuming that at least one component of the path is monotone, we necessarily
exclude the possibility of having such a retracting path.

In [39], the authors introduce the concept of tree-like paths, formalising the notion of paths
retracting back onto themselves. They prove, for bounded variation paths, that S(x) = 1
if and only if x is tree-like. In other words, the signature S(x) is unique up to tree-like
equivalence. Furthermore, this result indicates that the space of bounded variation paths,
quotiented by the space of tree-like paths, forms a group under the concatenation operation.
Subsequently, in [11], the authors extend the concept of tree-like paths and generalise the
uniqueness result for weakly geometric rough paths.

We end this chapter by proving that the signature kernel over Ĉ1-var([0, T ],Rd+1) is fully
interpolating and, consequently, strictly positive definite.

Proposition 2.6: The signature kernel over Ĉ1-var([0, T ],Rd+1) is a fully interpolating kernel.
Consequently, the signature kernel is strictly positive definite.

Proof. The result follows by the last point in Theorem 2.4. Specifically, consider n distinct
paths {x̂1, . . . , x̂n} ⊂ Ĉ1-var([0, T ],Rd+1) and a set of non-empty words wi,j ∈ W(Ad) such
that ⟨ewi,j , S(x̂j)⟩T1 ̸= ⟨ewi,j , S(x̂i)⟩T1 for i ̸= j. Note that the existence of such a set of words
wi,j is guaranteed by Proposition 2.5. Define the following Lagrange signature polynomials,

Lj(x̂) :=
∏

1≤i≤n
i ̸=j

⟨ewi,j , S(x̂)⟩T1 − ⟨ewi,j , S(x̂i)⟩T1
⟨ewi,j , S(x̂j)⟩T1 − ⟨ewi,j , S(x̂i)⟩T1

,

for j ∈ {1, . . . , n}. Observe that ⟨ewi,j , S(x̂j)⟩T1 − ⟨ewi,j , S(x̂i)⟩T1 ̸= 0 for i ≠ j, hence the
Lagrange polynomials are well-defined. Moreover, it is clear that Lj(x̂j) = 1 and Lj(x̂i) = 0

for i ̸= j.
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It remains to show that Lj(x̂) belongs to the RKHS of the signature kernel. However, this
follows directly from Proposition 1.14, which guarantees that any polynomial function of
⟨ewi,j , S(x̂)⟩T1 is again a linear functional of S(x̂). This concludes the proof.

To write Lj(x̂) in the form of a linear functional of the signature explicitly, let ci denote
the constant ⟨ewi,j , S(x̂i)⟩T1 and Cnk be the set of k-combinations in An = {1, . . . , n}, e.g.,
C32 = {{1, 2}, {1, 3}, {2, 3}}. Additionally, for Bk = {i1, . . . , ik} ⊂ An, let cBk denote the
product ci1 · · · cik and, similarly, define eBk as ewi1,n � . . .� ewik,n . Using this notation,

Lj(x̂) =
∏

1≤i≤n
i ̸=j

⟨ewi,j , S(x̂)⟩T1 − ci
cj − ci

= Cn
∏

1≤i≤n
i ̸=j

(
⟨ewi,j , S(x̂)⟩T1 − ci

)
,

where Cn :=
∏

i ̸=j(cj − ci)−1. By relabelling the paths {x̂1, . . . , x̂n} if necessary, we assume
without loss of generality that j = n and derive the following explicit linear form:

Ln(x̂)

Cn
≡

∏
1≤i≤n−1

(
⟨ewi,n , S(x̂)⟩T1 − ci

)
=

n−1∑
k=0

(−1)k
∑

Bk∈Cn−1
k

cBk⟨eAn−1\Bk , S(x̂)⟩T1 .

We proceed by induction. For n = 1, there is nothing to prove. For n = 2, we see that

L2(x̂)

(c2 − c1)−1
≡
(
⟨ew1,2 , S(x̂)⟩T1 − c1

)
= (−1)0c∅

〈
eA1\∅, S(x̂)

〉
T1

+ (−1)1cA1

〈
e∅, S(x̂)

〉
T1
,

where we agree that c∅ = 1 and e∅ = e∅. Assuming the expression above holds for n− 1 ≥ 2,
we deduce that:

Ln+1(x̂)

Cn+1

≡
∏

1≤i≤n

(
⟨ewi,n+1

, S(x̂)⟩T1 − ci
)
=
Ln(x̂)

Cn
·
(
⟨ewn,n+1 , S(x̂)⟩T1 − cn

)
=

n−1∑
k=0

(−1)k
∑

Bk∈Cn−1
k

cBk⟨eAn−1\Bk , S(x̂)⟩T1 ·
(
⟨ewn,n+1 , S(x̂)⟩T1 − cn

)
=

n−1∑
k=0

(−1)k
∑

Bk∈Cn−1
k

cBk⟨eAn−1\Bk , S(x̂)⟩T1⟨ewn,n+1 , S(x̂)⟩T1+

+
n−1∑
k=0

(−1)k+1
∑

Bk∈Cn−1
k

cBkcn⟨eAn−1\Bk , S(x̂)⟩T1

=
n−1∑
k=0

(−1)k
∑

Bk∈Cn−1
k

(
cBk
〈
eAn−1\Bk∪{n}, S(x̂)

〉
T1
− cBkcn

〈
eAn−1\Bk , S(x̂)

〉
T1

)
,

where ⟨eAn−1\Bk , S(x̂)⟩T1⟨ewn,n+1 , S(x̂)⟩T1 =
〈
eAn−1\Bk∪{n}, S(x̂)

〉
T1

by Proposition 1.14. Lastly,
note that cBkcn = cBk∪{n} and(

n−1⋃
k=0

Cn−1k

)
∪

n−1⋃
k=0

⋃
Bk∈Cn−1

k

(Bk ∪ {n})

 =
n⋃
k=0

Cnk .
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Moreover, Bk ∪ (An−1 \Bk) ∪ {n} = An for all k ∈ {0, . . . , n− 1}. Hence, by reordering the
terms

n−1∑
k=0

(−1)k
∑

Bk∈Cn−1
k

(
cBk
〈
eAn−1\Bk∪{n}, S(x̂)

〉
T1
− cBkcn

〈
eAn−1\Bk , S(x̂)

〉
T1

)

=
n∑
k=0

(−1)k
∑
Bk∈Cnk

cBk⟨eAn\Bk , S(x̂)⟩T1 ,

and the claim follows.

Remark 2.5: In [69], the authors extend the definitions of universal and strictly positive
kernels and show that these are essentially equivalent. Specifically, Theorem 6 in [69] demon-
strates that universal kernels, in the sense of Definition 2.5, are equivalent to strictly positive
kernels, as defined in Section 2.1.1. This seems to clash with Proposition 2.6. Indeed, we have
proved that the signature kernel is strictly positive definite over Ĉ1-var([0, T ],Rd+1). Therefore,
Theorem 6 in [69] would imply that the signature kernel is universal over Ĉ1-var([0, T ],Rd+1),
a dubious proposition considering the non-compactness of Ĉ1-var([0, T ],Rd+1). However, we
note that all results in [69] are only applicable to kernels defined over locally compact domains
X, and Ĉ1-var([0, T ],Rd+1) is not locally compact ([64], Theorem 1.22). Additionally, we
note that the authors in [69] examine characteristic kernels, a concept deeply related to
universality which we defer to future investigation.1

1Theorem 6 in [69] was only noticed when, almost at the conclusion of the present work, the lecture notes
[16] were published.



3
Weighted Spaces and Global

Universal Approximations
Chapter 3 is ultimately concerned with global approximations. For a given compact Hausdorff
space X, the classical Stone-Weierstrass theorem offers necessary and sufficient conditions
for the uniform approximation of real-valued continuous functions over X, thereby yielding
several universal approximation results. Notably, in Chapter 2, we leveraged this theorem
to demonstrate that linear functionals of the signature have the capacity to uniformly
approximate continuous functions over a fixed compact subset of paths (Theorem 2.7).

That said, as previously noted in the Introduction, assuming a fixed compact subset of paths
may be unreasonable due to the lack of local compactness in most path spaces. Additionally, in
practical applications, data resampling is often necessary, further complicating the requirement
of a fixed compact domain. Hence, there is a considerable interest in establishing global
(universal) approximation results, capable of going beyond compact sets.

Not considering a compact domain, however, poses a challenge. Indeed, the compactness
assumption ultimately serves as a means to control the growth of continuous functions.
Without it, one may encounter continuous functions that grow uncontrollably, making
approximation difficult, if not impossible. It is in response to this issue that weighted spaces
are introduced. In essence, a weighted space comprises a possibly non-compact topological
space X, satisfying certain separation axioms, alongside with an admissible weight function
that regulates the growth of functions outside of compact sets in X.

This chapter draws heavily from [27], where weighted spaces and the concept of global
universality are extensively explored. Section 3.1 introduces the framework of weighted
spaces and defines the global analogue of continuous functions, i.e., those admitting a global
approximation. Moving forward, Section 3.2 presents the weighted version of the Stone-
Weierstrass theorem ([27], Theorem 3.6) and provides a clear comparison between local and
global approximations. Finally, Section 3.3 introduces globally universal kernels, which are
the global counterpart of universal kernels and represent a significant contribution in this
thesis. The chapter concludes by presenting a family of globally universal kernels termed as
Taylor signature kernels.
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3.1. Weighted Spaces and Weighted Function Spaces
We present the concept of a weighted space and define the function space for which we
approximate functions across the entire domain. Specifically, given a completely regular
Hausdorff space X and a Banach space (Y, | · |Y ), our aim, as previously discussed, is to
approximate functions f : X → Y over the entire domain X, rather than solely within
compact subsets as in the classical Stone-Weierstrass theorem. The fundamental concept
involves introducing a new function ψ : X → (0,∞) and considering functions f satisfying

sup
x∈X

|f(x)|Y
ψ(x)

<∞.

In other words, we examine maps f : X → Y whose growth is controlled by a fixed auxiliary
function ψ. Additionally, we require ψ to identify compact subsets of X, thus materialising
the idea of approximating functions beyond compact sets. This section formalises these
concepts.

3.1.1. Weighted Spaces: Definition and Examples
Throughout this section, (X, τX) denotes a completely regular Hausdorff space, which is also
known as a Tychonoff space or a T31/2 space. These conditions are related to the separation
axioms and are not essential for the subsequent discussion. For our purposes, it suffices to
remember that any metric space is Tychonoff ([58], Theorem 32.2).

Definition 3.1: A function ψ : X → (0,∞) is said to be an admissible weight function if, for
all R > 0, the pre-image KR := ψ−1((0, R]) is compact with respect to τX . The pair (X,ψ)
is called a weighted space.

By definition, we observe that any weighted space (X,ψ) is σ-compact, in the sense that

X =
⋃
R∈N

KR =
⋃
R∈N

{x ∈ X : ψ(x) ≤ R}.

We also note that to establish a weighted space, constructing an admissible weight function
is essential, and the choice of topology for X significantly influences this process. It is worth
noting that a weaker topology increases the likelihood of having compact pre-images KR.
Therefore, defining a weighted space frequently involves considering a weaker topology.

Remark 3.1: The realisation that a weaker topology might be necessary raises an interesting
point. Suppose we are dealing with a space X and, with some application in mind, we define
a continuous map f over X, such as a feature map (see Definition 2.1). If we require X to be
a weighted space, we will likely need to weaken its topology to accommodate an admissible
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weight function. However, this adjustment may disrupt the continuity of our previously
defined map f . Therefore, working with weighted spaces often demands some finesse: the
chosen topology must be weak enough to yield compact sets, yet strong enough to preserve
the continuity of the maps we require to be continuous.

To ascertain the compactness of the subsets KR, we must employ a suitable criterion, such
as the Banach-Alaoglu theorem (see Appendix B) or the Arzelà-Ascoli theorem (Theorem
1.1). For clarification, we now present a series of examples. Following [27], we consider
examples where (X, | · |X) is a normed space and ψ : X → (0,∞) is a function of the form
ψ(x) = η(|x|X), where η : [0,∞)→ (0,∞) denotes a continuous increasing function.

Example 3.1 ([27], Example 2.3 (i)): Consider X = Rd equipped with the usual Euclidean
norm. By the Heine-Borel theorem (Appendix C), the pre-image KR = ψ−1((0, R]) is compact,
as it is closed and bounded. Therefore, (Rd, ψ) constitutes a weighted space. It is worth
noting that the same rationale applies to any space with the Heine-Borel property, i.e., any
space where closed and bounded sets are compact. Additionally, in this scenario, the topology
considered is the one induced by the norm, removing the need for a weaker alternative.

Example 3.2 ([27], Example 2.3 (ii)): Let (X, | · |X) denote a dual space endowed with the
weak-∗-topology (Appendix B). Specifically, we mean that there exists some other Banach
space (V, | · |V ) and an isometric isomorphism X → V ∗, where V ∗ denotes the dual of V .
As before, we consider the function ψ(x) = η(|x|X). Then, it follows immediately by the
Banach-Alaoglu theorem (Appendix B) that the pre-images KR are compact with respect to
the weak-∗-topology, for all R > 0. Hence, (X, η(| · |X)) is a weighted space.

Example 3.3 ([27], Example 2.3 (iv)): Consider some α ∈ (0, 1] and X = Cα-Höl
o ([0, T ], E)

(Definition 1.4), where (E, | · |E) denotes a Banach space with the Heine-Borel property.
Moreover, equip X with the β-Hölder norm | · |β-Höl;[0,T ], for β < α. In other words, consider
Cα-Höl
o ([0, T ], E) endowed with some β-Hölder topology for β < α. Set ψ(x) = η(|x|α-Höl;[0,T ]).

Observe that, for all R > 0, the pre-image KR is bounded with respect to | · |α-Höl;[0,T ]. Hence,
by Proposition 1.6, KR is compact. This shows (Cα-Höl

o ([0, T ], E), ψ) to be a weighted space.

Example 3.4 ([27], Example 2.3 (v)): Take α ∈ (0, 1] and, for x ∈ Cα-Höl
o ([0, T ],Rd), let xt

denote the stopped path [0, T ] ∋ s 7→ xs∧t. Consider X = ΛαT to be the space of stopped
α-Hölder continuous paths, i.e.

ΛαT :=
{
(t, xt) : t ∈ [0, T ], x ∈ Cα-Höl

o ([0, T ],Rd)
} ∼= [0, T ]× Cα-Höl

o ([0, T ],Rd)/ ∼,

where ∼ is defined as (t, x) ∼ (s, y) if and only if t = s and xt = ys.
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Equip ΛαT with the metric

dΛ((t, x), (s, y)) := |t− s|+ sup
u∈[0,T ]

|xt(u)− ys(u)|.

Observe that the set AR :=
{
x ∈ Cα-Höl

o ([0, T ],Rd) : (t, x) ∈ KR

}
is equicontinuous and

uniformly bounded. Hence, by Arzelà-Ascoli (Theorem 1.1), AR is compact with respect to
| · |∞;[0,T ]. Subsequently, by Tychonoff’s theorem (Appendix C), [0, T ]×AR is compact in the
product space [0, T ]× Cα-Höl

o ([0, T ],Rd). Since quotient maps are continuous, KR is compact
with respect to the quotient topology. Finally, by recalling that the quotient topology is a
final topology, and noting that the pre-image of open balls in ΛαT with respect to dΛ are open
in [0, T ]× Cα-Höl

o ([0, T ],Rd), we conclude that KR is compact with respect to the topology
induced by dΛ.

Example 3.5 ([27], Example 2.3 (viii)): As a final example, consider a σ-finite measure
space (Ω,F , µ) and, for p ∈ (1,∞), let X = Lp(Ω,F , µ) be the usual space of F -measurable
functions x : Ω → R such that |x|Lp(Ω) =

(∫
Ω
|x(ω)|pdµ(ω)

)1/p
< ∞. Then, for q such that

1/p+ 1/q = 1, we have Lp(Ω) ∼= Lq(Ω)∗ with Lq(Ω)∗ equipped with the weak-∗-topology. By
the Banach-Alaoglu theorem, we conclude that ψ(x) = η(|x|Lp(Ω)) is an admissible weight
function, making Lp(Ω) a weighted space.

3.1.2. Weighted Function Spaces
In this section, given a weighted space (X,ψ), our objective is to define an appropriate
function space where global approximation becomes feasible. This entails establishing a space
of (real-valued) functions defined over X, allowing for approximation throughout the entire
domain. Following the approach outlined in the section’s introduction, we consider a Banach
space (Y, | · |Y ) as co-domain, and define the vector space

Bψ(X, Y ) =

{
f : X → Y : sup

x∈X

|f(x)|Y
ψ(x)

<∞
}
,

which we equip with the norm

|f |Bψ(X,Y ) := sup
x∈X

|f(x)|Y
ψ(x)

.

Subsequently, we note that the space of continuous bounded functions from X to Y , denoted
by Cb(X, Y ), is continuously embedded in Bψ(X, Y ). This observation leads to the following
definition.

Definition 3.2: Given a weighted space (X,ψ) and a Banach space (Y, | · |Y ), we define
the weighted function space Bψ(X, Y ) as the | · |Bψ(X,Y )-closure of Cb(X, Y ) in Bψ(X, Y ).
Whenever Y = R, we simply write Bψ(X).
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As mentioned earlier, the space Bψ(X, Y ) intuitively represents functions whose growth
is controlled by an auxiliary admissible weight function ψ : X → (0,∞). In particular,
this set can include numerous unbounded functions. The following result offers a complete
characterisation of Bψ(X), which will be extensively used in the upcoming sections.

Theorem 3.1 (Theorem 2.7, [29]): Let (X,ψ) be a weighted space. Then, f : X → R is in
Bψ(X) if and only if f |KR ∈ C(KR,R) for all R > 0, and

lim
R→∞

sup
x∈X\KR

|f(x)|
ψ(x)

= 0. (3.1)

Proof. We start with the direction (→). Let f ∈ Bψ(X). By definition of weighted function
space, there exists a g ∈ Cb(X,R) such that |f − g|Bψ(X) <

ε
2
. Equivalently, we have that

|f(x)|
ψ(x)

≤ ε

2
+
|g(x)|
ψ(x)

for all x ∈ X,

the last term being bounded by ε
2

for all x ∈ X \KR with R := 2ε−1|g|∞. Hence,

sup
x∈X\KR

|f(x)|
ψ(x)

≤ ε,

and (3.1) follows. Regarding the continuity of f |KR , for all R > 0, we observe that

sup
x∈KR

|f(x)− g(x)| ≤ R sup
x∈KR

|f(x)− g(x)|
ψ(x)

≤ ε

2
R.

This implies that f |KR is the uniform limit of continuous functions, and hence continuous
([58], Theorem 21.6).

To prove (←), assume that f satisfies (3.1) and f |KR ∈ C(KR,R) for all R > 0. For n ∈ N,
set fn := min(max(f(·),−n), n). Note that f ∈ C(KR,R) implies fn ∈ C(KR,R). We would
like to show that fn ∈ Bψ(X) for all n ∈ N and R > 0. The idea is to find a sequence of
continuous bounded functions over X that converge to fn with respect to | · |Bψ(X). We note,
however, that the ambient space X is only assumed to be a Hausdorff completely regular
space. Hence, X is not necessarily compact and continuous functions are not immediately
bounded.

To address this issue we use the fact that all completely regular spaces can be embedded
into a compact space Z. Specifically, X is homeomorphic to a subspace of [0, 1]J for some
indexing set J (Appendix C). This way, we observe that KR is a compact, and hence closed,
subset of [0, 1]J . Subsequently, by Tietze Extension theorem (Appendix C), we obtain the
existence of gn,R ∈ Cb(X,R) such that gn,R|KR ≡ fn|KR and supx∈X |gn,R| ≤ n for all x ∈ X.
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By (3.1), we then obtain

|fn − gn,R|Bψ(X) ≤ sup
x∈X\KR

|fn(x)− gn,R(x)|
ψ(x)

≤ 2n

R
,

showing that fn ∈ Bψ(X). Lastly, choose R > 0 such that supx∈X\KR ψ(x)
−1|f(x)| < ε and

pick n > supx∈KR |f(x)| so that f(x) = fn(x) on KR. This way we see that,

|f − fn|Bψ(X) ≤ sup
x∈X\KR

|f(x)− fn(x)|
ψ(x)

≤ ε+
n

R
.

Since n/R can be made arbitrarily small, we conclude that f ∈ Bψ(X).

3.2. Weighted Stone-Weierstrass
The classical Stone-Weierstrass theorem provides sufficient and necessary conditions for the
existence of a dense subset of functions in the space of real-valued continuous functions over
a compact domain. Since we are now interested in achieving global approximations, it is
pertinent to establish a more general version of the Stone-Weierstrass theorem. This is the
purpose of this section.

Section 3.2.1 presents the weighted analogue of the Stone-Weierstrass theorem, while Section
3.2.2 provides a comparison between local and global approximations. In particular, we
prove under mild assumptions that global approximations can achieve everything that local
approximations allowed for and more.

3.2.1. Weighted Real-valued Stone-Weierstrass Theorem
We formulate and analyse the proof of the weighted variant of the Stone-Weierstrass theorem.
This section draws heavily from Section 3 of [27], where the proof of the weighted Stone-
Weierstrass theorem can be found. We include it here for the sake of self-containment. This
result is at the core of the present work, as it is the theorem that enables the approximation
of functions beyond compact domains. Additionally, we revisit the classical Stone-Weierstrass
theorem, which was previously employed in Section 2.2, to facilitate the comparison with the
weighted variant. We introduce some supplementary terminology.

Theorem 3.2 (Stone-Weierstrass on C(X)): Let X denote a compact Hausdorff space and
assume that A ⊂ C(X) is a subalgebra. Then, A is dense in C(X) if and only if A is
point-separating and vanishes nowhere.

This is a classical result in Analysis, and we refer to [73] for the original proof. Hereafter,
let (X,ψ) denote a weighted space. We proceed to present the weighted variant of Theorem
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3.2, necessitating the definition of the weighted analogue of a point-separating subalgebra of
functions.

Definition 3.3: A subalgebraA ⊂ Bψ(X) is said to be point-separating of ψ-moderate growth
if there exists a point-separating vector subspace Ã ⊂ A such that x 7→ exp(|ã(x)|) ∈ Bψ(X),
for all ã ∈ Ã.

Theorem 3.3 ([27], Theorem 3.6): Let A ⊂ Bψ(X) be a point-separating subalgebra of
ψ-moderate growth that vanishes nowhere. Then, A is dense in Bψ(X).

Proof. Note that it suffices to show that A can approximate any element of Cb(X) to arbitrary
precision. By definition, Cb(X) is dense in Bψ(X), hence the final assertion can be established
through a triangle inequality argument. Firstly, let us assume that A consists only of bounded
maps. In this setting, the requirement for A to be point-separating of ψ-moderate growth
simplifies to A being point-separating. Consider f ∈ Cb(X), some ε > 0, and define the
following constants:

M := ( inf
x∈X

ψ(x))−1 > 0, and b := sup
x∈X
|f(x)|+ ε

4M
.

Note thatA|KR , referring to the set of functions inA restricted toKR, forms a point-separating
subalgebra of C(KR) that vanishes nowhere. Therefore, by the classical Stone-Weierstrass
(Theorem 3.2), there exists a ∈ A such that

sup
x∈KR

|f(x)− a(x)| ≤ ε

4M
and so, |a(x)| ≤ ε

4M
+ sup

x∈X
|f(x)| = b,

for all x ∈ KR. Moreover, to control the growth of a outside KR, let g ∈ Cb(R) be the
function defined as g(s) = max(min(s, b),−b) for s ∈ R, and consider g(a(x)). Note that
g(a(x)) = a(x) for all x ∈ KR. Therefore,

|f − g ◦ a|Bψ(X) ≤M sup
x∈KR

|f(x)− a(x)|+ sup
x∈X\KR

|f(x)|
ψ(x)

+ sup
x∈X\KR

g(a(x))

ψ(x)

<M
ε

4M
+
b

R
+
b

R
≤ 3ε

4
, for R ≥ 4b

ε
. (3.2)

Next, let us set c = supx∈X |a(x)|, and utilise the Weierstrass theorem (Appendix C) to
acquire a polynomial p such that sup|s|≤c |g(s)− p(s)| < ε/(4M). Observe that c <∞, since
a is assumed to be bounded. It follows that,

|g ◦ a− p ◦ a|Bψ(X) ≤M sup
x∈X
|g(a(x))− p(a(x))| ≤ sup

|s|≤c
|g(s)− p(s)| ≤ ε

4
. (3.3)

Hence, by combining (3.2) and (3.3), we conclude that

|f − p ◦ a|Bψ(X) ≤ |f − g ◦ a|Bψ(X) + |g ◦ a− p ◦ a|Bψ(X) ≤ ε.
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Given that A is a subalgebra, we have that p ◦ a ∈ A. Moreover, ε > 0 and f ∈ Cb(X) were
chosen arbitrarily, hence A ⊂ Cb(X) is dense in Bψ(X).

Now, we consider the general case of a point-separating subalgebra A ⊂ Bψ(X) of ψ-moderate
growth with a point-separating vector subspace Ã ⊂ A such that x 7→ exp(|ã(x)|) ∈ Bψ(X),
for all ã ∈ Ã. We begin by showing that the maps x 7→ cos(ã(x)) and x 7→ sin(ã(x)), with
ã ∈ Ã, belong to the | · |Bψ(X)-closure of A. Fix ε > 0. Then, by Theorem 3.1, there exists
R > 4/ε such that

sup
x∈X\KR

exp(|ã(x)|)
ψ(x)

<
ε

4
.

Set c = supx∈KR |ã(x)|, and consider the Taylor polynomial pn(s) =
∑n

k=0
(−1)k
(2k)!

s2k of the
cosine, which satisfies sup|s|≤c | cos(s) − pn(s)| ≤ c2n+1

(2n+1)!
. Choose n ∈ N large enough such

that c2n+1

(2n+1)!
≤ ε

2M
. Then, by using that |pn(s)| ≤ exp(|s|) for any s ∈ R, we obtain that

| cos ◦ ã−pn ◦ ã|Bψ(X)

≤M sup
x∈KR

| cos(ã(x))− pn(ã(x))|+ sup
x∈X\KR

| cos(ã(x))|
ψ(x)

+ sup
x∈X\KR

|pn(ã(x))|
ψ(x)

<M sup
|s|≤c
| cos(s)− pn(s)|+

1

R
+ sup

x∈X\KR

exp(|ã(x)|)
ψ(x)

<M
ε

2M
+

1

R
+
ε

4
< ε.

Since ε > 0 was chosen arbitrarily, we conclude that x 7→ cos(ã(x)) is in the | · |Bψ(X)-closure
of A. Analogously, the same claim holds true for x 7→ sin(ã(x)). Hence, the subalgebra

Atrig :=
{
x 7→ λ1 cos(ã1(x)) + λ2 sin(ã2(x)) : λ1, λ2 ∈ R, ã1, ã2 ∈ Ã

}
of Bψ(X) is contained in the | · |Bψ(X)-closure of A. Thus, by applying the previous reasoning
to the point-separating subalgebra Atrig ⊂ Bψ(X), which vanishes nowhere and is composed
of bounded maps, we conclude that Atrig is dense in Bψ(X). Since Atrig ⊂ A, it follows that
A is dense in Bψ(x).

3.2.2. Local and Global Approximations
We provide a comparison between local and global approximations, highlighting the advantages
of the latter. In particular, building on [27], we prove under mild assumptions that global
approximations lead to uniform approximations across all compact subsets that could be
considered in the classical setting. We conclude by presenting a global universal approximation
result over the space of (time-augmented) rough paths, thereby establishing the global
universality of signatures.
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Global approximations, as the term implies, have the advantage of approximating functions
f : X → R across their entire domain, extending beyond compact sets. This capability is
particularly significant when X is not locally compact, as is often the case with path spaces.

Furthermore, achieving density in Bψ(X), regardless of the chosen admissible weight function
ψ, provides a notion of closeness for a broad set of real-valued functions defined over X.
As elucidated in Section 3.1.2, the weighted function space Bψ(X) encompasses not only
all continuous and bounded functions X → R, but also many unbounded functions whose
growth is controlled by ψ. Note that the faster ψ grows, the easier it gets to control the
growth of unbounded functions. More precisely, we note that if ψ1 and ψ2 are two admissible
functions such that ψ2(x) ≥ ψ1(x) for all x ∈ X, then Bψ1(X) ⊂ Bψ2(X).

However, one might object that the admissible weight function interferes with the actual
approximation between two functions. Specifically, having |f−g|Bψ(X) ≤ ε does not necessarily
imply that f and g are close in a pointwise sense. Indeed, the uniform approximation offered by
| · |Bψ(X) has |f(x)− g(x)| scaled by a factor of 1/ψ(x), which may be significant if x is outside
a sufficiently large compact set KR. That said, we argue that the effect of the admissible
weight function is often innocuous, especially when we consider local approximations.

To clarify, let us revisit the examples in Section 3.1.1 and consider a normed space (X, | · |X).
This setting already covers many cases of interest. Typically, X is endowed with the norm
topology, and hence, given a continuous increasing function η : [0,∞) → (0,∞), the map
ψ(x) = η(|x|X) is usually not admissible. Instead, as previously discussed, to make ψ

admissible and turn X into a weighted space we must weaken its topology.

Remark 3.2: Recall that two topologies are not necessarily comparable. However, in the
present context, whenever we weaken a topology, it is implied that the weaker topology is
coarser than the original one. Consequently, if we consider a compact subset K ⊂ X before
weakening the topology, then K retains its status as a compact subset once X is turned into
a weighted space.

The next result demonstrates that for a fixed compact subset K ⊂ X with respect to the
norm topology — the usual setting of (local) universal approximation results — we obtain the
same uniform approximation over K without the factor 1/ψ(x) if we view X as a weighted
space and approximate functions in Bψ(X) instead.

Proposition 3.1: Let (X, | · |X) be a normed space, and consider any compact subset
K ⊂ X with respect to the usual norm topology. Additionally, set ψ(x) = η(|x|X), where
η : [0,∞)→ (0,∞) is a continuous increasing function. Provided we can turn (X,ψ) into a
weighted space and assuming A to be a dense subset of Bψ(X), then for every f ∈ Bψ(X)

and ε > 0, there exists a g ∈ A such that supx∈K |f(x)− g(x)| ≤ ε.



3.2. Weighted Stone-Weierstrass 86

Proof. Let K ⊂ X be a compact subset with respect to the norm topology. Note that K is
necessarily bounded with respect to | · |X . Indeed, for every x ∈ K, let U1(x) denote the open
ball of radius 1 centred at x. Then, K ⊂

⋃
x∈K U1(x) and, by compactness, there exists a

finite subcovering {U1(xi)}ni=1 such that K ⊂
⋃n
i=1 U1(xi). Hence, K is bounded.

Now, by considering a coarser topology if needed, let (X,ψ) be a weighted space. Since K
is bounded with respect to | · |X , there exists an R > 0 such that K ⊂ KR = ψ−1((0, R]).
Moreover, for every f ∈ Bψ(X) and ε > 0, there exists g ∈ A such that |f − g|Bψ(X) ≤ ε/R.
Hence, we see that

sup
x∈K
|f(x)− g(x)| ≤ sup

x∈KR
|f(x)− g(x)| ≤ R sup

x∈KR

|f(x)− g(x)|
ψ(x)

≤ R|f − g|Bψ(X) ≤ ε.

Under the assumptions of Proposition 3.1, the advantage of global approximations becomes
clear: not only can we consider the entire space X as the domain of approximation, but
we can also achieve uniform approximations across all the compact sets considered in the
local classical setting, resulting in a more streamlined framework. Note that for a fixed
precision ε > 0, the choice of g is dependent on K, implying that the uniform approximation
occurs inside a given compact K, and not across all compacts simultaneously. However,
this is also the case in local approximations: whenever we change the compact domain, the
approximating function changes as well. In this sense, global approximations encapsulate
local approximations entirely.

We conclude this section by stating a global approximation result for signatures, which
also serves as an example of application of Proposition 3.1. First, however, we define the
rough analogue of the time-augmented paths in Definition 2.8. As in Theorem 2.7, time
augmentation guarantees that the set of linear functionals of the signature is point-separating.
We will also make use of time-augmented rough paths in the upcoming section.

Definition 3.4: We define the subset Ĉα
T of time-augmented α-Hölder rough paths by

Ĉα
T :=

{
X̂ ∈ Cα-Höl

o ([0, T ], G⌊1/α⌋(Rd+1)) : X̂t = (t,Xt), for all t ∈ [0, T ]
}
,

where X ∈ Cα-Höl
o ([0, T ],Rd) and time corresponds to the 0-th coordinate.

Following [27], we turn Ĉα
T into a weighted space by equipping Cα-Höl

o ([0, T ], G⌊1/α⌋(Rd+1))

with a β-topology for β < α, i.e., the topology induced by the homogenous β-Hölder distance
dβ-Höl;[0,T ], for instance (see Definition 1.21 and Theorem 1.10). By doing so, any function of
the form ψ(X̂) = η(|X̂|α-Höl;[0,T ]) becomes admissible.
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Remark 3.3: In [27], the authors show that endowing Ĉα
T with a topology induced by

dβ-Höl;[0,T ] for 0 ≤ β < α, or even with the weak-∗-topology, leads to the same weighted
function space Bψ(Ĉα

T ). We refer to the original work for more details.

Theorem 3.4 ([27], Theorem 5.4): Consider the weighed space (Ĉα
T , ψ) with admissible

weight function ψ(X̂) = exp
(
λ|X̂|κα-Höl;[0,T ]

)
for λ > 0 and κ > ⌊1/α⌋. Then, the set

span
{
X̂ 7→

〈
ew, S(X̂)

〉
: w ∈ {0, 1, . . . , d}N , N ∈ N0

}
is dense in Bψ(Ĉα

T ). Precisely, for every function f ∈ Bψ(Ĉα
T ) and ε > 0, there exists a linear

functional of the form L(S(X̂)) =
∑

0≤|w|≤N aw
〈
ew, S(X̂)

〉
, with N ∈ N0 and aw ∈ R, such

that

sup
X∈ĈαT

∣∣f(X̂)− L(S(X̂))
∣∣

ψ(X̂)
≤ ε.

We refrain from including the proof as it would deviate from the current discussion. However,
the result above ultimately follows from a direct application of Theorem 3.3. More importantly
for our purposes is to note that (Ĉα

T , | · |α-Höl;[0,T ]) is a normed space which we can turn
into a weighted space by replacing the topology induced by | · |α-Höl;[0,T ] with the topology
induced by | · |β-Höl;[0,T ] for some β < α, and considering the usual admissible function
ψ(X̂) = η(|X̂|α-Höl;[0,t]). Thanks to Proposition 1.5, the β-topology is coarser than the α-
topology, and the conditions of Proposition 3.1 are met, showing that Theorem 3.4 encapsulates
most local approximation results in the literature of signature-based methods.

3.3. Globally Universal Kernels
As discussed in Section 2.2.2, a continuous kernel k defined on a compact metric space X is
deemed universal if its RKHS is dense in C(X). In addition, the assessment of universality,
as inferred from Theorem 2.5, involves an application of the Stone-Weierstrass theorem
(Appendix C). Now, equipped with the weighted Stone-Weierstrass result (Theorem 3.3), one
may contemplate how this resonates with the notion of universal kernels. This prompts the
introduction of what we term globally universal kernels.

Section 3.3.1 delves into the definition and existence of these kernels. In particular, it offers a
method to construct globally universal kernels on weighted spaces. Section 3.3.2 provides
examples of globally universal kernels. Both sections draw inspiration from [20], where
a method for constructing universal (Taylor) kernels defined on compact metric spaces is
presented.
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3.3.1. Globally Universal Kernels on Weighted Spaces
In [20], the authors begin by constructing an explicit universal (Taylor) kernel defined on
a compact set of l2(N), thus extending Corollary 2.2. Subsequently, by leveraging the fact
that every separable Hilbert space is isometrically isomorphic to l2(N) (Appendix B), the
authors proceed to devise universal kernels (in the sense of Definition 2.5) defined on a generic
compact metric space X, provided there exists a separable Hilbert space H and a continuous
injective map ρ : X → H. This prompts the question of whether a similar endeavour is
conceivable in the realm of weighted spaces. We begin this exploration by defining the
analogue of universal kernels within the context of weighted spaces.

Definition 3.5: Let (X,ψ) be a weighted space. A kernel k : X ×X → R is called globally
universal if the RKHS H of k is dense in Bψ(X), i.e. for all f ∈ Bψ(X) and ε > 0 there exists
a g ∈ H such that

sup
x∈X

|f(x)− g(x)|
ψ(x)

≤ ε.

Remark 3.4: According to Definition 2.5, for a kernel k to be universal it has to be
continuous. In our context, however, we refrain from making this assumption. Briefly put,
the justification lies in the observation that the topology accompanying the weighted space is
frequently too weak to permit k to be jointly continuous.

We now move forward to establish a test for global universality, which serves as a method
to ascertain whether a kernel k is globally universal. As discussed in Section 2.2.2, the
typical approach to proving the universality of a kernel involves the utilisation of the classical
version of the Stone-Weierstrass theorem. However, for our specific objectives, we require the
weighted version of this theorem (Theorem 3.3).

Let J denote a non-empty countable set. We keep denoting the space of square summable
sequences indexed by J by l2(J), but we abbreviate l2(N) to l2. Furthermore, we use NN

0

to represent the set of all sequences j = (ji)i∈N with values in N0, and define |j| to be
|j| :=

∑∞
i=1 ji. It is worth noting that |j| <∞ if and only if j has only finitely many nonzero

components. The next result is an analogue to Theorem 2.5.

Theorem 3.5: Let (X,ψ) be a weighted space and k be a kernel on X with k(x, x) > 0 for
all x ∈ X. Assume that we have an injective feature map Φ : X → l2(J) of k, where J is
some countable set. Denote by Φj its j-th component, i.e. Φ(x) = (Φj(x))j∈J , for all x ∈ X.
If A := span{Φj : j ∈ J} is a ψ−moderate growth subalgebra of Bψ(X), then k is globally
universal.



3.3. Globally Universal Kernels 89

Proof. We apply Theorem 3.3. First, observe that A necessarily does not vanish. Indeed, for
any x ∈ X we have |Φ(x)|2l2(J) = k(x, x) > 0. Moreover, the injectivity of Φ implies that A is
point separating. Hence, by the weighted Stone-Weierstrass theorem, A is dense in Bψ(X),
i.e. for all f ∈ Bψ(X) and ε > 0, there exists g ∈ A of the form

g(x) =
m∑
i=1

αiΦji(x),

such that |f − g|Bψ(X) ≤ ε. Moreover, there exists h ∈ l2(J) such that g = ⟨h,Φ(·)⟩l2(J).
Simply take hj = αi if j = ji for i ∈ {1, ...,m}, and hj = 0 otherwise. Since the RKHS of k
is composed precisely of maps of the form ⟨h,Φ(·)⟩l2(J) for some h (see (2.1)), we conclude
that k is globally universal.

With a test for global universality in hand, we can now begin to investigate methods for
constructing globally universal kernels, thereby establishing their existence. Following [20],
we initially define a kernel over l2. The significance of l2 arises from its status as the archetype
of separable Hilbert spaces: every separable Hilbert space is homeomorphic to l2 (Appendix
B). Subsequently, we leverage this property to endeavour a construction of globally universal
kernels on a generic weighted space. The next proposition generalises Proposition 2.1.

Lemma 3.1 ([20], Lemma 4.2): Assume that n ∈ N is fixed. Then, for all j ∈ NN
0 with |j| = n,

there exists a constant cj ∈ (0,∞) such that for all summable sequences (bi)i∈N ⊂ [0,∞) we
have (

∞∑
i=1

bi

)n

=
∑

j∈NN
0 :|j|=n

cj

∞∏
i=1

bjii .

Proposition 3.2 ([20], Proposition 4.3): Let f : R→ R be a function globally expressible
by its Taylor series expanded at zero, i.e. f(t) =

∑
n≥0 ant

n for all t ∈ R. Consider
J := {j ∈ NN

0 : |j| <∞}. If an ≥ 0 for all n ≥ 0, then k : l2 × l2 → R defined by

k(z, z′) = f
(
⟨z, z′⟩l2

)
=
∞∑
n=0

an⟨z, z′⟩nl2 ,

is a kernel. Moreover, for all j ∈ J there exits a cj ∈ (0,∞) such that Φ : l2 → l2(J) given by

Φ(z) =

(
cj

∞∏
i=1

zjii

)
j∈J

,

is a feature map of k, where we use the convention 00 = 1.
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Proof. Since f is defined over R, the kernel k is well-defined. As f(t) is absolutely convergent,
Lemma 3.1 shows that, for all j ∈ J , there exists a constant c̃j ∈ (0,∞) such that

k(z, z′) =
∞∑
n=0

an⟨z, z′⟩nl2 =
∞∑
n=0

an

(
∞∑
i=1

ziz
′
i

)n

=
∞∑
n=0

an
∑

j∈NN
0 :|j|=n

c̃j

∞∏
i=1

(ziz
′
i)
ji =

=
∑
j∈J

a|j|c̃j

∞∏
i=1

zjii

∞∏
i=1

z′jii .

Thus, by setting cj =
√
a|j|c̃j we obtain that Φ is a feature map of k, i.e. k(z, z′) =

⟨Φ(z),Φ(z′)⟩l2 . This proves that k is a kernel.

With a kernel defined on l2, our expectation is that by demonstrating its global universality,
we can exploit the isomorphism between l2 and some feature space H to construct a kernel
on a given weighted space X, assuming X can be embedded into H. We now proceed to
establish the main result of this section. However, before doing so, we state two auxiliary
lemmas.

Lemma 3.2: Let (X,ψX) be a weighted space and consider a completely regular Hausdorff
space (Z, τZ). Assume that there exists a continuous bijection h : X → Z. Then, the map
ψZ := ψX ◦ h−1 is an admissible weight function, rendering Z a weighted space.

Proof. Consider an arbitrary R > 0. We need to show that the pre-image KZ
R := ψ−1Z ((0, R])

is a compact subset with respect to τZ . By assumption, we know that KX
R := ψ−1X ((0, R]) is

compact. Now, simply observe that KZ
R = h ◦ ψ−1X ((0, R]) = h(KX

R ). Given the continuity of
h, it follows that KZ

R is compact (Appendix C).

Lemma 3.3: Let kZ denote a kernel defined on a non-empty set Z. Assume there exists
a continuous bijection h : X → Z. Then kZ induces a kernel kX on X such that there is a
one-to-one correspondence between the respective RKHSs HZ and HX . Precisely, we have
that HX =

{
f ◦ h : f ∈ HZ

}
.

Proof. Let Φc
Z : Z → HZ denote the canonical feature map of kZ . Define kX : X ×X → R

by setting
kX(x, x

′) := kZ(h(x), h(x
′)) = ⟨Φc

Z ◦ h(x),Φc
Z ◦ h(x′)⟩HZ .

Then, it is apparent that kX is a kernel with feature map ΦX := Φc
Z ◦ h. Furthermore, by

(2.1), we have that HX = {⟨f,Φc
Z ◦ h(·)⟩HZ : f ∈ HZ} and, by the reproducing property, we

note that ⟨f,Φc
Z ◦ h(x)⟩HZ = f ◦ h(x). Hence,

HX = {f ◦ h : f ∈ HZ},

and f ∈ HZ if and only if f ◦ h ∈ HX , i.e. there exists a bijection between HX and HZ .
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Remark 3.5: The construction described in Lemma 3.3 can be applied to a generic map
h : X → Z, and HX is commonly known as the pull-back of HZ ([61], Section 5.4).

Theorem 3.6: Let (X,ψX) be a weighted space and H be a separable infinite-dimensional
Hilbert space such that there exists a continuous injective map ρ : X → H. Set Z := I(ρ(X)),
where I denotes the homeomorphism between H and l2. Let f : R→ R be a function globally
expressible by its Taylor series expanded at zero, i.e. f(t) =

∑
n≥0 ant

n for all t ∈ R. Lastly,
define ψZ := ψX ◦ ρ−1 ◦ I−1 over Z and assume that ψZ(z) ≥ exp(|z|γl2), with γ > 1. Then,
the following statements hold:

• If an ≥ 0 for all n ∈ N0, then k : X ×X → R given by

k(x, x′) := f(⟨ρ(x), ρ(x′)⟩H) =
∞∑
n=0

an⟨ρ(x), ρ(x′)⟩nH (3.4)

defines a kernel on X.

• If an ≥ 0 for all n ≥ 1, and a0 > 0, then k is globally universal.

Proof. Step 1: Z is a weighted space. First, recall that I is not only a homeomorphism,
but an isometric isomorphism. Set Y := ρ(X) so that Z = I(Y ) . Observe that I ◦ρ, as a map
from X to Z, is a continuous bijection. Hence, by Lemma 3.2, ψZ constitutes an admissible
weight function on Z, and there is a bijection between the compact sets KZ

R := ψ−1Z ((0, R])

and KX
R := ψ−1X ((0, R]). Note that l2 needs to have the norm topology, otherwise l2 would

not be homeomorphic to H. Consequently, Z has the norm topology inherited from l2.
Nevertheless, we are able to define an admissible weight function on Z, which yields the
weighted space (Z, ψZ). Schematically,

(X,ψX) (R, | · |) KX
R R

H ⊃ (Y, | · |H) (Z, ψZ) ⊂ l2 ρ(KX
R ) KZ

R

ψX

ρ ρρ−1

I

ψZ

I−1

ρ−1

I

I−1

Step 2: Bijection between BψX (X) and BψZ (Z). We show that there exists a bijection
between the weighted function spaces BψX (X) and BψZ (Z). Given that (Y, |·|H) is a Hausdorff
space, and that ρ restricted to KX

R is a continuous bijection onto ρ(KX
R ), we have that both

I and ρ are homeomorphisms in the right diagram. Consequently, for all R > 0, g ∈ C(KZ
R)

if and only if g ◦ I ◦ ρ ∈ C(KX
R ). Additionally,

lim
R→∞

sup
z∈Z\KZ

R

|g(z)|
ψZ(z)

= 0 if and only if lim
R→∞

sup
x∈X\KX

R

|g(I(ρ(x)))|
ψX(x)

= 0,
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since
lim
R→∞

sup
x∈X\KX

R

|g(I(ρ(x)))|
ψZ(I(ρ(x)))

= lim
R→∞

sup
z∈Z\KZ

R

|g(z)|
ψZ(z)

.

Therefore, by Theorem 3.1, g ∈ BψZ (Z) if and only if g ◦ I ◦ ρ ∈ BψX (X).

Step 3: Globally universal kernel on Z. Using the test for global universality in Theorem
3.5, we prove that the kernel of Proposition 3.2 restricted to Z is globally universal under an
additional mild assumption. Precisely, let kZ : Z × Z → R denote the kernel defined by

kZ(z, z
′) =

∞∑
n=0

an⟨z, z′⟩nl2 ,

assuming that an ≥ 0 for all n ≥ 1, and a0 > 0. As inferred from Proposition 3.2, kZ has a
feature map Φ : l2 → l2(J) given by

Φ(z) =

(
cj

∞∏
i=1

zjii

)
j∈J

,

where J = {j ∈ NN
0 : |j| < ∞} and cj > 0 for all j ∈ J . We equip Z with the admissible

weight function ψZ , and consider the weighted space of Step 1. We proceed to verify the
assumptions of Theorem 3.5. First, note that

kZ(z, z) =
∞∑
n=0

an|z|2nl2 ≥ a0 > 0.

Regarding the feature map, if z ̸= z′, then there exists an i ∈ N such that zi ̸= z′i. Thus,
for the multi-index j ∈ J such that ji = 1 and vanishes everywhere else, we have that
Φj(z) = cjzi ≠ cjz

′
i = Φj(z

′). Hence, Φ is injective. We are only left with proving the
conditions for the weighted Stone-Weierstrass (Theorem 3.3).

Following the notation of Theorem 3.5, we have that

A := span

{
cj

∞∏
i=1

zjii : j ∈ J

}
,

is an algebra. Note that since |j| < ∞, we have for all j ∈ J that Φj(z) = cjz
ji1
i1
. . . z

jin
in

,
where n corresponds to the number of nonzero components of j.

Additionally, each Φj ∈ A is continuous over l2 with respect to the norm topology, and hence
continuous over KZ

R , for all R > 0. This follows from the fact that the projection mapping
πi(z) = zi is norm continuous.
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Moreover, by the assumption that ψZ(z) ≥ exp(|z|γl2) with γ > 1, we observe that

lim
R→∞

sup
z∈Z\KZ

R

|Φj(z)|
ψZ(z)

≤ lim
R→∞

sup
z∈Z\KZ

R

∣∣∣∣∣cj
n∏
i=1

zjii

∣∣∣∣∣/ exp
(
|z|γl2

)
≤ lim

R→∞
sup

z∈Z\KZ
R

cj

(
max
1≤k≤n

|zik |
)|j|/

exp
(
|z|γl2

)
≤ lim

R→∞
sup

z∈Z\KZ
R

cj

(
n∑
k=1

z2ik

)|j|/2/
exp

(
|z|γl2

)
≤ lim

R→∞
sup

z∈Z\KZ
R

cj |z||j|l2
exp

(
|z|γl2

) = 0

Therefore, A ⊂ BψZ (Z) by Theorem 3.1. Now, set J1 = {j ∈ J | ∃i ∈ N : ji = 1 and jk =

0 for k ̸= i} and consider Ã ⊂ A given by

Ã := span

{
cj

∞∏
i=1

zjii : j ∈ J1

}
= span {cjzi : i ∈ N, j ∈ J1} ,

which is a point separating vector subspace. Note that, for Φ̃ ∈ Ã,

lim
R→∞

sup
z∈Z\KZ

R

exp |Φ̃(z)|
ψZ(z)

≤ lim
R→∞

sup
z∈Z\KZ

R

exp

(∣∣∣∣∣
n∑
k=1

αkzik

∣∣∣∣∣− |z|γl2
)

≤ lim
R→∞

sup
z∈Z\KZ

R

exp

(
max
1≤k≤n

|αk|
n∑
k=1

|zik | − |z|
γ
l2

)

≤ lim
R→∞

sup
z∈Z\KZ

R

exp

(
max
1≤k≤n

|αk|
√
n · |z|l2 − |z|

γ
l2

)
= 0,

since γ > 1 by assumption. Note that max1≤k≤n |αk|
√
n depends only on Φ̃ and not on z,

hence the constants are not affected by the supremum. Moreover, the exponential function
preserves the continuity over KZ

R . Therefore, A is a ψ−moderate growth subalgebra and we
conclude, by Theorem 3.5, that kZ is globally universal.

Step 4: kZ induces a globally universal kernel in X. By Lemma 3.3, kZ induces a
kernel kX on X, with h ≡ I ◦ ρ and HX = {g ◦ I ◦ ρ : g ∈ HZ}. Furthermore, considering
that I is an isometry, we have that

kX(x, x
′) = kZ(I ◦ ρ(x), I ◦ ρ(x′)) =

∞∑
n=0

an⟨I(ρ(x)), I(ρ(x′))⟩nl2 =
∞∑
n=0

an⟨ρ(x), ρ(x′)⟩nH,

which is precisely the kernel in (3.4). Finally, we show that kX is globally universal. Specifically,
consider some g ∈ BψX (X). Then g̃ := g ◦ ρ−1 ◦ I−1 ∈ BψZ (Z) can be approximated by some
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h ∈ HZ , i.e. |g̃ − h|BψZ (Z) ≤ ε, for an arbitrary ε > 0. Now, simply note that

sup
z∈Z

|g̃(z)− h(z)|
ψZ(z)

= sup
z∈Z

|g ◦ ρ−1 ◦ I−1(z)− h(z)|
ψX ◦ ρ−1 ◦ I−1(z)

≤ ε =⇒ sup
x∈X

|g(x)− h ◦ I ◦ ρ(x)|
ψX(x)

≤ ε.

Since h ◦ I ◦ ρ ∈ HX , we conclude that kX is globally universal, thus finishing the proof.

Remark 3.6: We observe that although we assume ρ to be continuous, it suffices to assume
continuity over all compact sets KR := ψ−1X ((0, R]), where R > 0. Additionally, it is worth
highlighting once again that the map ψZ will inherently have compact pre-images whenever
Z is equipped with the subspace topology, which aligns with the topology induced by the
norm in l2. This may come as a surprise considering our discussion in Section 3.1.1, where
we pointed out that typically one needs to consider a weaker topology to obtain a weighted
space. That said, Z being a weighted space with respect to the norm topology does not come
for free, and relies on the additional structure provided by Lemma 3.2.

Remark 3.7: Initially, fulfilling the final assumption of Theorem 3.6, i.e., ψZ(z) ≥ exp(|z|γl2)
with γ > 1, might appear somewhat complicated. However, it is worth noting that there is
typically considerable flexibility in selecting ψX . Consequently, to meet this criterion, one
can opt for an admissible weight function ψX over X, ensuring that ψX(ρ−1(y)) dominates
exp(|y|γH) for all y ∈ I−1(Z). It is important to recall that I represents an isometry.

3.3.2. Examples of Globally Universal Kernels
We provide examples of globally universal kernels. In particular, we consider the weighted
rough path space in Definition 3.4 (see [27] for details) and define a family of globally universal
kernels that we refer to as Taylor signature kernels. These kernels provide a collection of
functionals of the signature capable of approximating functions over the entire space of rough
paths.

Let X = Rd. Various (Taylor) kernels can be defined over Rd, including:

• The exponential kernel: k1(x, x
′) = exp(⟨x, x′⟩Rd)

• The polynomial kernel: k2(x, x
′) =

(
b+ c⟨x, x′⟩Rd

)d
, with b, c, d > 0

• The hyperbolic cosine kernel: k3(x, x
′) = cosh

(
⟨x, x′⟩Rd

)
All kernels can be shown to be universal in the classical sense when the domain is restricted
to a fixed compact set K ⊂ Rd ([20], Theorem 2.2). Next, we demonstrate that these kernels
are globally universal in the sense of Definition 3.5. It is important to emphasise once again
that we now consider the entire domain of any of the kernels mentioned above, rather than
being limited to a compact subset. The domain of a given Taylor kernel is determined by the
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radius of convergence of its Taylor expansion. The series for the kernels above all converge in
R, hence all kernels have Rd as their domain.

Example 3.6: We begin with the exponential kernel. Consider the function ψX(x) = η(|x|),
where η : [0,∞) → (0,∞) is a continuous, increasing function. Recall that (Rd, ψX) is a
weighted space (Example 3.1). We need to verify the assumptions of Theorem 3.6. To this
end, consider ρ : Rd → l2 defined by x 7→ (x1, x2, . . . , xd, 0, 0, . . .). Clearly, l2 is a separable
infinite-dimensional Hilbert space, and ρ is continuous and injective since it is an isometry
onto ρ(Rd). It remains to verify that ψZ(z) := ψX ◦ ρ−1 ◦ I−1(z) ≥ exp(|z|γl2), for γ > 1 and
an appropriate choice of ψX . Note that I : l2 → l2 is taken to be the identity map. Set
η(t) = exp(tγ) and observe that, for all z ∈ Z ≡ I(ρ(Rd)),

ψZ(z) = ψX
(
ρ−1 ◦ I−1(z)

)
= exp

(
|ρ−1 ◦ I−1(z)|γ

)
= exp(|z|γl2),

since both ρ and I are isometries over Rd and ρ(Rd), respectively. Hence, by Theorem 3.6,
the exponential kernel k1 is globally universal.

Example 3.7: The remaining kernels k2 and k3 follow easily from the previous example.
Indeed, using the notation of Theorem 3.6 only the function f changes. For k2, we have

f(t) = (b+ ct)d =
d∑

k=0

(
d

k

)
bd−kcktk,

for all t ∈ R, whereas for k3,

f(t) =
∞∑
k=0

t2k

(2k)!
= 1 +

t2

2!
+
t4

4!
+ · · ·

Given that both expansions have strictly positive coefficients, it follows by Theorem 3.6 that
k2 and k3 are globally universal kernels.

We now consider a more intricate example that utilises the tools from the previous chapters.
This example will lead to a family of globally universal kernels on a space of rough paths.
Following [27], we consider a subset of Ĉα

T (Definition 3.4), which we now define.

Definition 3.6: Consider p ≥ 1 and α ∈ (0, 1] such that pα < 1. We say X : [0, T ] →
G⌊1/α⌋(Rd) with X0 = 1 ∈ G⌊1/α⌋(Rd) is a weakly geometric (p, α)-rough path if the (p, α)-
norm

|X|cc,p,α := sup
0≤s<t≤T

dcc(Xs,Xt)

|s− t|α
+

(
sup

(ti)∈P([0,T ])

∑
i

dcc(Xti ,Xti+1
)p

) 1
p
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is finite. We denote by Cp,α
o

(
[0, T ], G⌊1/α⌋(Rd)

)
the space of weakly geometric (p, α)-rough

paths that preserve the origin. Lastly, we endow this space with a metric given by

dcc,q,β(X,Y) := sup
0≤s<t≤T

dcc(Xs,t,Ys,t)

|s− t|β
+

(
sup

(ti)∈P([0,T ])

∑
i

dcc(Xti,ti+1
,Yti,ti+1

)q

) 1
q

,

for X,Y ∈ Cp,α
o

(
[0, T ], G⌊1/α⌋(Rd)

)
and (q, β) ∈ [p,∞)× (0, α] with qβ < 1.

Similarly to Cα-Höl
o

(
[0, T ], G⌊1/α⌋(Rd)

)
, by equipping Cp,α

o

(
[0, T ], G⌊1/α⌋(Rd)

)
with the metric

dcc,q,β such that (q, β) ∈ (p,∞)× (0, α) and qβ < 1, we obtain a weighted space due to the
compact embedding

Cp,α
o

(
[0, T ], G⌊1/α⌋(Rd)

)
↪→ Cq,β

o

(
[0, T ], G⌊1/α⌋(Rd)

)
.

This embedding follows essentially from Proposition 1.5 and a reasoning analogous to the
one in Proposition 1.6. We refer to ([27], Theorem A.8) for a precise statement. In the spirit
of Definition 3.4, we consider the subset of time-augmented (p, α)-rough paths

Ĉp,α
T :=

{
X̂ ∈ Cp,α

o

(
[0, T ], G⌊1/α⌋(Rd+1)

)
: X̂t = (t,Xt), for all t ∈ [0, T ]

}
.

Observe that Ĉp,α
T ⊂ Ĉα

T .

Example 3.8: Consider X = Ĉp,α
T . We equip Cp,α

o

(
[0, T ], G⌊1/α⌋(Rd+1)

)
with a metric dcc,q,β

such that (q, β) ∈ (p,∞)× (0, α), qβ < 1 and ⌊1/β⌋ = ⌊1/α⌋. Then, we have that:

1. For any continuous increasing function η, the map ψX(X̂) = η(|X̂|cc,p,α) is admissible,
turning (Ĉp,α

T , ψX) into a weighted space ([27], Example 2.3 (vii)).

2. Since ⌊1/β⌋ = ⌊1/α⌋, it follows by Proposition 1.23 that the signature map, i.e., the
Lyons’ extension map, S : Ĉp,α

T → T1((Rd)), is continuous when Ĉp,α
T is endowed with

the metric dβ-Höl;[0,T ]. Additionally, it is clear that dβ-Höl;[0,T ] ≤ dcc,q,β, and hence S is
continuous with respect to the topology induced by dcc,q,β, as the larger metric always
induces a stronger topology.

Moreover, in Section 2.3.2, we proved that time-augmented paths ensure point separation.
Therefore, ρ := S is a continuous injective map into a separable infinite-dimensional Hilbert
space (Appendix A). It remains to choose a suitable function η such that ψZ(z) ≥ exp(|z|γl2),
for all z ∈ I(ρ(Ĉp,α

T )) and γ > 1. To this end, we observe that

|S(X̂)|T1 =

√√√√ ∞∑
n=0

|X̂(n)
T |2 ≤

∞∑
n=0

|X̂(n)
T | ≤ Cp

∞∑
n=0

|X̂|ncc,p,α
n!

= Cp exp
(
|X̂|cc,p,α

)
,
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where the last inequality follows from the estimate |X̂(n)
T | ≤ Cp|X̂|np-var;[0,T ]/n! in Theorem 3.7

of [55].1 Finally, by setting η(t) = exp(Cγ
p exp(γt)) and X̂z := ρ−1 ◦ I−1(z), we see that

ψZ(z) = ψX(X̂z) = exp
(
Cγ
p exp(γ|X̂z|cc,p,α)

)
≥ exp

(
|S(X̂z)|γT1

)
= exp(|z|γl2).

And so, by Theorem 3.6, any Taylor kernel over Ĉp,α
T , with non-negative coefficients (an)n≥1

and a0 > 0, is globally universal.

Definition 3.7: Consider the weighted space Ĉp,α
T as in Example 3.8. We refer to kernels

k : Ĉp,α
T × Ĉ

p,α
T → R of the form k(X̂, X̂′) =

∑
n≥0 an

〈
S(X̂, X̂′)

〉n
T1

, with an ≥ 0 for all n ≥ 1

and a0 > 0, as Taylor signature kernels.

1This inequality holds for paths of finite p-variation, which is why we consider Ĉp,α
T instead of Ĉα

T .



Conclusion and Future Research
In conclusion, this thesis provided a comprehensive examination of the approximation capabil-
ities of path signatures within rough path spaces. It addressed both the classical universality
setting, rigorously demonstrating that linear functionals of the signature approximate continu-
ous functions over compact sets of paths, and the more recent framework of global universality,
showing that this approximating capacity extends beyond compact sets to the entire path
space. For completeness, the thesis offered a thorough introduction to Rough Path theory,
emphasising the interplay between additive and multiplicative functionals, and highlighting
relevant topological considerations for signature-based methodologies.

In a subsequent stage, the thesis delved into kernel theory and re-examined the concept of
universality from this perspective. This approach is particularly relevant since the signature
map can be interpreted as a feature map, thereby defining a universal kernel. As a tangential
contribution, this thesis proved that the signature kernel is strictly positive definite, or,
equivalently, fully interpolating. The final part of the thesis focused on the setting of weighted
spaces, which underpin global universality. In this context, it was demonstrated, under mild
assumptions, that global approximations formally encompass local approximations over fixed
compact sets, even when the domain’s topology is weakened to form a weighted space. Lastly,
this thesis projected the concept of global universality into the realm of kernels by defining
globally universal kernels and establishing their existence.

Having explored the universality of signatures within rough path spaces in detail, this thesis
reaches a fitting conclusion. That said, the completion of this study solely paves the way
for further research in related directions. Indeed, various research paths naturally extend
and build upon the concepts presented here. For example, the theoretical frameworks
established in this thesis underpin many recent signature-based methods in Mathematical
Finance. This highlights the inherent complexity of signature-based methodologies, even
within highly specific real-world contexts, necessitating a solid theoretical foundation. By
providing a comprehensive account of said foundation, the present work now facilitates
practical applications, especially within Finance.

In summary, most financial applications that rely on signatures can be encapsulated in the
following pipeline:

1. Many quantities of interest — such as payoff functions or trading strategies — can be
understood as continuous functionals of some price path. More precisely, given some
price path X : [0, T ]→ Rd, potentially augmented, we are interested in quantities of the
form θ(X|[0,t]), where θ is a continuous function defined over some (rough) path space

98
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Ω and X|[0,t] denotes the lift of X restricted to [0, t], signalling the non-anticipative
nature of the problem, i.e., we can only price or trade based on past information.

2. Taking advantage of the universality of signatures, we may approximate θ(X|[0,t]) by
linear functionals of the signature, i.e., θ(X|[0,t]) ≈ L(S(X|[0,t])). At this step, it is
usually essential to assume a fixed compact subset of paths K as the working domain;
otherwise, universality, at least in the classical sense, is not applicable.

3. Inevitably, the market contains a random component, which is usually captured by
equipping the space of (market) paths Ω with a probability space (Ω,B(Ω),P). With this
in mind, the problem at hand is typically formulated as the expected value of our quantity
of interest. For instance, if θ is a payoff function, then ultimately we wish to compute
the price of some derivative, that is EQ[θ(X|[0,t])], where Q denotes the risk-neutral
measure. Based on the previous point, we then have EQ[θ(X|[0,t])] ≈ EQ[L(S(X|[0,t]))].

4. By linearity, E[L(S(X|[0,t]))] = L(E[S(X|[0,t])]), which reduces the problem to the
computation of the expected signature with respect to an appropriate measure. Here,
it is important to note that the linear functional L can be precomputed, as it only
depends on θ and not on market conditions. Moreover, if one assumes a model for the
price dynamics, then E[S(X|[0,t])] may be computed explicitly.

This general philosophy underlies most signature-based methods in Finance and can be
adapted to one’s needs depending on the specific application — pricing, hedging, portfolio
optimisation, and others.

As noted several times in this work, there is a growing interest in replacing the local
approximation in Step 2 with a global approximation across the entire path space. Notable
contributions in this direction include [41] and [9], both addressing optimal stopping problems.
However, these works focus exclusively on approximating continuous and bounded functions
of paths. As a result, they cannot utilise standard path signatures and must rely instead on
a normalised version of the signature [19]. This normalisation leads to a loss in tractability;
for example, the expected signature, which has a known explicit form in many cases, is not
available for normalised signatures.

In contrast, the global universality of signatures discussed in this thesis and introduced in [27]
enables the approximation of a potentially larger set of functions — the weighted function
space (Definition 3.2) — while using standard signatures. This approach preserves the
tractability of the expected signature, offering a significant advantage in practical applications
and presenting opportunities for future exploration.

To integrate global universality into the pipeline, we need to ensure in Step 1 that Ω is a
weighted space. Subsequently, in Step 2, we can drop the assumption of a fixed compact
domain K and instead establish density over functions θ in Bψ(Ω). Depending on the
application, we can use Theorem 3.4 or Theorem 3.6 to achieve density.
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Table 1 below presents a simple numerical exercise designed to stimulate further inquiry and
raise questions. Inspired by the work in [9], this table addresses the task of optimally stopping
a fractional Brownian motion — a non-Markovian optimal stopping problem. The method
involves solving a (discrete) optimal stopping problem through backward induction [62] and
approximating the continuation values [49] using kernel ridge regression. This approach allows
for the use of the linear signature kernel (Definition 2.7) as well as other signature-based
kernels, such as those in Definition 3.7.

As is often the case, obtaining sensible empirical results is easier than rigorously justifying
why such results are possible. We emphasise that the numerical results presented below do
not constitute a formal experiment; rather, they are intended to instigate future research.

For instance, the main result in [9] (Theorem 2.6) demonstrates that Lp-functionals over the
space of stopped rough paths — a rough analogue of Example 3.4 — can be approximated in
the Lp-norm by linear functionals of the signature. Functionals over a space of stopped paths
are known in the literature of functional Itô calculus as non-anticipative functionals [31, 21],
and they frequently appear in signature-based applications [43, 27]. Notably, [25] endows
the space of stopped rough paths with a weighted space structure and shows that linear
functionals of the signature are globally universal for (weighted) non-anticipative functionals
([25], Theorem 2.18). This suggests that a density result for Lp-functionals, similar to the one
in [9], can be established within the framework of weighted spaces and global universality.

On another front, working with Lp spaces and weighted spaces points towards the integrability
of admissible weight functions. Concretely, by considering (Λ, ψ) to be a space of stopped
rough paths with a weighted space structure (see, for instance, [25], Lemma 2.17), working
with non-anticipative functionals f ∈ Lp(Λ, µ) inevitably leads to questioning the finiteness of∫
Λ
ψp dµ. In particular, with applications in mind, one may wonder whether it is reasonable

to only consider measures µ that guarantee the integrability of ψp.

Additionally, this inquiry indicates yet another potential research direction. In [29] the
authors prove that, for any weighted space (Ω, ψω), we have the isomorphism BψΩ

(Ω)∗ ∼=
MψΩ

(Ω), where MψΩ
(Ω) denotes the Banach space of signed Radon measures µ fulfill-

ing
∫
Ω
ψΩ(ω) dµ(ω) < ∞. This, in turn, suggests the formalisation of a weighted/global

counterpart of characteristic kernels ([27], Remark 5.5).

In the classical setting, assuming X to be a compact metric space, a continuous kernel
k : X × X → R is said to be characteristic if the map P 7→

∫
X
k(·, x) dP(x) is injective

over the set of Borel probability measures — see [20, 69, 70] for further details and several
generalisations. Remarkably, it can be shown that a kernel is universal if and only if it is
characteristic [69]. There appears to be margin for a similar result specialised to globally
universal kernels. More interestingly, this discussion may lead to methods that leverage kernel
scoring rules [72], which are essentially a way to assess the quality of a probability forecast.
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We conclude our exposition with two final proposals. First, while substantial work has been
done regarding the signature kernel [14, 44, 46, 67], there remains significant scope for a
comprehensive study of its RKHS ([27], Section 6). Second, given the expanding interest in
rough paths and signature-based methods, it is pertinent to formalise their mathematics within
a proof assistant, such as Lean. Although this proposal may seem unorthodox, the importance
of computer-assisted proofs is undeniable, especially when sophisticated mathematics is being
used in applications.

H Linear Polynomial [9], J=100 [9], J=500 [10]

0.9 0.333 0.338 0.331 0.337 0.335
0.8 0.274 0.274 0.275 0.281 0.276
0.7 0.201 0.203 0.203 0.205 0.206
0.6 0.112 0.113 0.112 0.112 0.115
0.5 0.001 -0.001 -0.001 -0.002 0
0.4 0.153 0.151 0.153 0.155 0.154
0.3 0.362 0.363 0.363 0.371 0.368
0.2 0.651 0.649 0.654 0.662 0.657
0.1 1.044 1.041 1.045 1.065 1.048

Table 1: Optimal stopping of fractional Brownian motion.

Table 1 contains the estimated lower bounds for the optimal stopping values yH0 of a fractional
Brownian motion with varying Hurst parameter H. Specifically, it addresses the task of
solving the optimal stopping problem yH0 = supτ∈S0 E[X

H
τ ], where (XH

t )t∈[0,T ] denotes the
fractional Brownian motion with Hurst parameter H ∈ (0, 1) and S0 the set of (F X̂H

t )-adapted
stopping times.

As mentioned above, to estimate yH0 we first discretise the problem and then apply the
Longstaff-Schwartz algorithm, using kernel ridge regression to approximate the continuation
values, similar to the approach in [42]. This allows us to choose from different kernels,
contrasting with [9], where solely the standard signature kernel is used. Particularly, for Table
1 we use the (linear) signature kernel ksig (Definition 2.7) and the polynomial signature kernel,
corresponding to the composition f ◦ ksig, where f(t) = (b + ct)d, b, c, d > 0. We observe
that the exponential signature kernel, with f(t) = et, also produced reasonable results, but
frequently led to ill-conditioned matrices during the kernel ridge regression step, especially
for more irregular paths, i.e., when H < 0.5.

We compare our results with [9], which approximates the continuation values with signature-
based linear regression, and with [10], which approximates the optimal stopping deci-
sions using neural networks. In our experiments, we truncate the signature at level 5,
discretise the interval [0, 1] with J = 100 grid points, and consider a ridge parameter
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α ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}. We note that the influence of the ridge parameter α is
more pronounced for the lowest values of H, namely H = 0.2 and H = 0.1. For higher values
of H, different choices of α produce similar results. For further details, we refer to [9], as this
experiment is largely based on the methodology presented therein. We also provide the code
below for interested readers.2 This experiment was performed for the sake of curiosity and
Table 1 solely serves as an addendum to the conclusion of this work.

2Table code

https://www.kaggle.com/code/tomscarrondo/table
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Appendix A
We briefly recall the definition of the tensor product between two vector spaces and outline
some basic properties, including its characteristic property. Additionally, we clarify the Hilbert
space structure on the tensor algebra. This appendix provides an overview of the tensor
product between vector spaces. Readers who are completely unfamiliar with tensor products
are referred to Chapter 12 in [47] or Chapter 10 in [30] for more detailed explanations.

A.I. Tensor products and the characteristic property. Let V and W denote finite-
dimensional real vector spaces. The tensor product V ⊗W is typically defined in a constructive
way as the quotient space of the free vector space on V ×W that makes the equivalence
class of (v, w) depend bilinearly on v and w. Specifically, let R⟨V ×W ⟩ denote the set of all
formal linear combinations of elements in V ×W , i.e.,

R⟨V ×W ⟩ ≡ {f : V ×W → R : f(v, w) = 0 for all but finitely many (v, w) ∈ V ×W} .

Under pointwise addition and scalar multiplication, R⟨V ×W ⟩ becomes a real vector space,
known as the free vector space on V × W . Observe that R⟨V × W ⟩ corresponds to an
infinite-dimensional vector space with basis given by the set {(v, w) : v ∈ V and w ∈ W}.
Subsequently, consider the subspace R ⊂ R⟨V ×W ⟩ spanned by all elements of the following
forms:

α(v, w)− (αv, w),

α(v, w)− (v, αw),

(v, w) + (v′, w)− (v + v′, w),

(v, w) + (v, w′)− (v, w + w′),

with α ∈ R, v, v′ ∈ V and w,w′ ∈ W . Then, the tensor product of V and W is defined as the
quotient space V ⊗W := R⟨V ×W ⟩/R. Furthermore, we denote by v ⊗ w the equivalence
class associated with (v, w) and observe that by definition the elementary tensors v ⊗ w
satisfy

α(v ⊗ w) = αv ⊗ w = v ⊗ αw,
v ⊗ w + v′ ⊗ w = (v + v′)⊗ w,
v ⊗ w + v ⊗ w′ = v ⊗ (w + w′).

To better understand the tensor product, it is beneficial to examine its characteristic property.
Considering a third vector space Z, the characteristic property of the tensor product establishes
a one-to-one correspondence between bilinear maps V ×W → Z and linear maps V ⊗W → Z.
In other words, any bilinear map V ×W → Z factors uniquely through V ×W → V ⊗W .
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The same holds true for multilinear maps, for which we provide the precise statement below.
Moreover, we note that the characteristic property of the tensor product is universal in the
categorical sense, i.e., any space satisfying the characteristic property of the tensor product
is isomorphic to the tensor product itself ([47], Exercise 12.3).

Theorem A.1 ([47], Proposition 12.7): Let V1, . . . , Vn be finite-dimensional real vector
spaces. Additionally, let π : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn denote the quotient map
(v1, . . . , vn) 7→ v1⊗ · · · ⊗ vn. For any vector space Z, if F : V1× · · · × Vn → Z is a multilinear
map, then there exists a unique linear map F̃ : V1 ⊗ · · · ⊗ Vn → Z such that the following
diagram commutes:

V1 × · · · × Vn Z

V1 ⊗ · · · ⊗ Vn

F

π
F̃

We compile some useful properties of the tensor product that may provide further clarification
to Section 1.1.3. These correspond to Propositions 12.8, 12.9 and 12.10 in [47].

Theorem A.2: Let V1, . . . , Vn be real vector spaces of dimensions d1, . . . , dn, respectively.
Then, the following properties hold:

1. For each i ∈ {1, . . . , n}, let {e(i)1 , . . . , e
(i)
di
} be a basis for Vi. Then, the set{

e
(1)
i1
⊗ · · · ⊗ e(n)in

: 1 ≤ i1 ≤ d1, . . . , 1 ≤ in ≤ dn
}

forms a basis for V1 ⊗ · · · ⊗ Vn. Moreover, it becomes apparent that V1 ⊗ · · · ⊗ Vn has
dimension d1 · · · dn.

2. The tensor product construction is associative, i.e., there are unique isomorphisms

V1 ⊗ (V2 ⊗ V3) ∼= V1 ⊗ V2 ⊗ V3 ∼= (V1 ⊗ V2)⊗ V3,

under which elements of the form v1 ⊗ (v2 ⊗ v3), v1 ⊗ v2 ⊗ v3 and (v1 ⊗ v2)⊗ v3 are all
identified. The same holds true for n-fold tensor products.

3. Let L(V1, . . . , Vn;R) denote the set of multilinear maps V1×· · ·×Vn → R. There exists
a canonical isomorphism V ∗1 ⊗ · · · ⊗ V ∗n ∼= L(V1, . . . , Vn;R).

As per the notation in Section 1.1.3, Theorem A.2 clarifies the canonical isomorphism
(Rd)⊗k⊗ (Rd)⊗(n−k) ∼= (Rd)⊗n, which maps (ei1⊗· · ·⊗eik)⊗ (eik+1

⊗· · ·⊗ein) to ei1⊗· · ·⊗ein ,
where {e1, . . . , ed} denotes the canonical basis of Rd. Additionally, Theorem A.2 justifies why
we write a generic element g ∈ (Rd)⊗n as

∑
i1,...,in

gi1,...,inei1 ⊗ · · · ⊗ ein .
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A.II. Hilbert space structure on the extended tensor algebra. The construction of
the tensor product as a quotient space is not restricted to finite-dimensional vector spaces.
We may consider arbitrary vector spaces, or, more generally, modules over a ring. With this
in mind, let H1, . . . ,HN denote arbitrary Hilbert spaces and consider their tensor product
H1 ⊗ · · · ⊗ HN . The Hilbert space tensor product of H1, . . . ,HN is defined as the completion
of the (algebraic) tensor product H1 ⊗ · · · ⊗ HN with respect to the norm induced by the
inner product〈 k∑

i=1

h
(i)
1 ⊗ · · · ⊗ h

(i)
N ,

l∑
j=1

h̃
(j)
1 ⊗ · · · ⊗ h̃

(j)
N

〉
:=

k∑
i=1

l∑
j=1

N∏
n=1

⟨h(i)n , h(j)n ⟩Hn .

It is common to use a slight abuse of notation by denoting the Hilbert space tensor product
as H1 ⊗ · · · ⊗ HN again. If the spaces H1, . . . ,HN are separable with orthonormal basis
(h

(n)
j )j≥1 for n = 1, . . . , N , then the tensors h(1)i1 ⊗ · · · ⊗ h

(N)
iN

form an orthonormal basis for
H1 ⊗ · · · ⊗ HN ([59], Section 14.4), rendering it separable as well.

As a specific example, we may consider H1 = · · · = HN = Rd, which yields (Rd)⊗N . This
is the only Hilbert space tensor product used in the present work. In this case, the inner
product on elementary tensors is given by

〈
a1 ⊗ · · · ⊗ aN , b1 ⊗ · · · ⊗ bN

〉
(Rd)⊗N =

N∏
n=1

⟨an, bn⟩Rd ,

and extended by linearity to (Rd)⊗N . In particular, using the basis representation of (Rd)⊗N ,
we observe that〈 ∑

i1,...,iN

ai1,...,iN ei1 ⊗ · · · ⊗ eiN ,
∑

j1,...,jN

bj1,...,jN ej1 ⊗ · · · ⊗ ejN
〉
(Rd)⊗N

=
∑

i1,...,iN

∑
j1,...,jN

ai1,...,iN bj1,...,jN
N∏
n=1

⟨ein , ejn⟩Rd =
∑

i1,...,iN

ai1,...,iN bi1,...,iN ,

where we used the fact that
∏N

n=1⟨ein , ejn⟩Rd ≠ 0 if and only if in = jn for all n ∈ {1, . . . , N}.
Put differently, the inner product on (Rd)⊗N is equivalent to summing over the set of words of
length N . Lastly, by considering the elements a = (a0, a1, . . .) of the extended tensor algebra
T ((Rd)) with finite Euclidean norm, i.e., the set

T̃ ((Rd)) :=

a ∈ T ((Rd)) : |a|T̃ ((Rd)) =

(
∞∑
n=0

|an|2
)1/2

<∞

 ,

we define an inner product therein by setting ⟨a,b⟩T̃ ((Rd)) :=
∑

n≥0⟨an,bn⟩(Rd)⊗n . Using the
word notation, this inner product can be perceived as a summation over all words, that is

⟨a,b⟩T̃ ((Rd)) =
∞∑
n=0

∑
|w|=n

awbw.



Appendix B
This appendix collects some basic results from Functional Analysis used throughout the
thesis. For a thorough exposition of these facts, refer to [59].

B.I. Hilbert spaces. With the additional structure provided by an inner product, Hilbert
spaces acquire two essential aspects when compared to Banach spaces: a geometric structure
derived from the orthogonal complementation of closed subspaces and the property of self-
duality.

Theorem B.1 (Completion) ([59], Theorem 1.5, Proposition 3.9): Let X be a normed
space. Then,

1. There exists a Banach space X that contains X isometrically as a dense subspace.
Moreover, the space X is unique up to isometry.

2. If X is equipped with an inner product, then its completion X as a normed space has
a well-defined inner product given by

⟨x, x′⟩X := lim
n→∞
⟨xn, x′n⟩X , x, x′ ∈ X,

whenever xn, x′n ∈ X satisfy xn → x and x′n → x′. Additionally, the norm induced by
⟨·, ·⟩X coincides with the norm of X obtained by completion.

In a Hilbert space H, two elements h, h′ ∈ H are said to be orthogonal if ⟨h, h′⟩H = 0.
Furthermore, given some subset A ⊂ H, its orthogonal complement is defined by the set

A⊥ := {h ∈ H : ⟨h, a⟩H = 0 for all a ∈ A} .

Remarkably, a Hilbert space can always be decomposed into the direct sum of a fixed linear
subspace and its orthogonal complement.

Theorem B.2 (Orthogonal complement) ([59], Theorem 3.13): Let H be a Hilbert space.
If Y is closed (linear) subspace of H, then we have an orthogonal direct sum decomposition,
i.e.,

H = Y ⊕ Y ⊥.

More precisely, this implies that Y ∩ Y ⊥ = {0} and for every h ∈ H there exist y ∈ Y and
y⊥ ∈ Y ⊥ such that h = y + y⊥.
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With this decomposition, we may refer to orthogonal projections onto closed subspaces
unambiguously. Specifically, the projection πY onto Y along Y ⊥ is defined by πY (y+y⊥) := y.

One of the most notable properties of Hilbert spaces is that they are isomorphic to their own
duals. In this sense, Hilbert spaces are sometimes referred to as self-dual.

Theorem B.3 (Riesz Representation theorem) ([59], Theorem 3.15): If ϕ : H → R is a
bounded linear functional, there exists a unique element hϕ ∈ H such that ϕ(h) = ⟨h, hϕ⟩H
for all h ∈ H. The element hϕ is said to be the Riesz representer of ϕ. In addition, the
map ϕ 7→ hϕ that associates each linear bounded functional with its Riesz representer is an
isometric isomorphism.

A final relevant property specific to separable Hilbert spaces is that they are all isometrically
isomorphic to l2(N).

Theorem B.4 ([59], Corollary 3.23): Any two infinite-dimensional separable Hilbert spaces
are isometrically isomorphic.

B.II. Duality and bounded operators. At the core of Functional Analysis is the concept
of duality. The dual of a Banach space X is defined as the set of all bounded linear functionals
from X to R, and denoted by X∗. Furthermore, recall that for any two vector spaces V
and W , and any bilinear mapping f : V ×W → R, the weak topology of V induced by W is
the smallest topology on V such that the linear mapping v 7→ f(v, w) is continuous for all
w ∈ W . In particular, if V = X∗ is set to be the dual of W = X, then the weak topology
induced by X is referred to as the weak-∗-topology.

Theorem B.5 (Banach-Alaoglu theorem) ([59], Theorem 4.51): The closed unit ball of
every dual Banach space is compact with respect to the weak-∗-topology.

We conclude this appendix by stating the Uniform boundedness theorem, also known as
the Banach-Steinhaus theorem. We showcase how this theorem may be applied by proving
Theorem II.

Theorem B.6 ([59], Theorem 5.2): Consider a Banach space V and a normed space W . Let
(Ti)i∈I be an arbitrary family of bounded linear operators from V to W . If for every v ∈ V ,

sup
i∈I
|Ti(v)|W <∞,

then
sup
i∈I
|Ti|op ≡ sup

i∈I
sup
|v|V ≤1

|Ti(v)|W <∞.
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In other words, pointwise boundedness for all operators Ti implies uniform boundedness with
respect to the usual operator norm. Although Banach spaces are typically denoted by the
letter X, in the theorem above we use V to reserve X for paths, as in Theorem II.

proof of Theorem II. To begin with, observe that it suffices to consider R-valued paths, since
the integral of Y against X is defined component-wise.

Taking this into account, let V be the Banach space of continuous functions C([0, T ],R)
equipped with the supremum norm, and let W be R equipped with the usual absolute value
norm. Consider a sequence of partitions Pn = {0 < tn0 < tn1 < · · · < tnNn = T} with vanishing
mesh size and, for Y ∈ V , define the operators

Tn(Y ) :=
Nn−1∑
i=0

Ytni
(
Xtni+1

−Xtni

)
,

where X is some R-valued path. For a fixed n, note that we may construct a map Y ∈ V
such that Ytni = sign

{
Xtni+1

−Xtni

}
and |Y |∞;[0,T ] = 1. For such a path Y we have that

Tn(Y ) =
Nn−1∑
i=0

|Xtni+1
−Xtni

|,

and hence,

|Tn|op ≥
Nn−1∑
i=0

|Xtni+1
−Xtni

|,

for all n ∈ N. Consequently, supn∈N |Tn|op ≥ |X|1-var;[0,T ]. On the other hand, by assumption
we know that limn→∞ Tn(Y ) exists. Therefore, supn |Tn(Y )| <∞ and, by Theorem B.6, we
conclude that supn |Tn|op is finite, implying |X|1-var;[0,T ] <∞.



Appendix C
This appendix compiles some relevant results from Topology used in this work.

C.I. Basic topological results. We recall certain topological properties for the reader’s
convenience. Most of these results pertain to compact spaces and can be found in any
topology textbook. We refer to [58] for more details.

Theorem C.1 (Basic properties of compact sets) ([58], Theorems 26.2, 26.3 and 26.5):

1. Every closed subset of a compact space is compact.

2. Every compact subset of a Hausdorff space is closed.

3. The image of a compact set under a continuous map is compact.

Theorem C.2 (Tychonoff’s theorem) ([58], Theorem 37.3): An arbitrary product of
compact spaces is compact in the product topology.

Theorem C.3 ([58], Theorem 26.6): Let X be a compact space and Y Hausdorff. If
f : X → Y is a continuous bijection, then f is a homeomorphism. More precisely, f−1 is a
continuous bijection as well.

Recall that a space X is said to be sequentially compact if every sequence of points in X

has a convergent subsequence. Under the assumption that X is metrizable, all notions of
compactness coincide.

Theorem C.4 ([58], Theorem 28.2): If X is a metrizable space, then X is compact if and
only if X is sequentially compact.

Theorem C.5 (Heine-Borel theorem) ([58], Theorem 27.3): A subset A of Rd is compact
if and only if A is closed and bounded.

We also use the following two well-established results related to the separation axioms.

Theorem C.6 ([58], Theorem 34.3): A space X is completely regular if and only if it is
homeomorphic to a subset of [0, 1]J for some indexing set J .
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Theorem C.7 (Tietze Extension theorem) ([58], Theorem 35.1): Consider a normal
space X and let A be a closed subset of X. Then, any continuous function from A to R can
be extended to a continuous map from X to R.

C.II. Function spaces. We list some classical results pertaining to spaces of functions,
starting with the Stone-Weierstrass theorem, which underpins much of the discussion in the
second half of the thesis.

Theorem C.8 (Stone-Weierstrass theorem) ([65], Theorem 7.32): Let X denote a
compact Hausdorff space and assume that A ⊂ C(X) is a subalgebra. Then, A is dense in
C(X) if and only if A is point-separating and vanishes nowhere.

Theorem C.9 (Weierstrass theorem) ([65], Theorem 7.26): Consider f ∈ C([a, b],R).
For every ε > 0 there exists a polynomial p such that |f − p|∞;[0,T ] ≤ ε.

Finally, the following result is used to guarantee that linear functionals of the signature are
point-separating over the space of time-augmented paths. In what follows, the space C∞c (Ω)

denotes the set of all infinitely differentiable functions φ : Ω → R with compact support
contained in Ω.

Theorem C.10 ([12], Corollary 4.24): Let Ω ⊂ Rd be an open set and consider f ∈ L1
loc(Ω),

i.e., f is integrable on all compact subsets of Ω. If∫
Ω

fφ dµ, for all φ ∈ C∞c (Ω),

then f = 0 almost everywhere on Ω.


	Preface
	Introduction
	Notation
	Path Signatures and Rough Paths
	Preliminaries to Rough Path Theory
	Path Spaces and Regularity
	Bounded Variation Paths and Differential Equations
	Tensor Algebras

	Path Signatures
	Motivation and Definition
	Basic Properties of Signatures
	Free Nilpotent Groups and the Carnot-Carathéodory Norm

	Introduction to Rough Path Theory
	Rough Integration: Motivation and Intuition
	Sewing Lemma and Abstract Integration
	Lyons' Extension Theorem
	Factorial Decay and Continuity
	Spaces of Rough Paths


	Kernel Theory
	Basics of Kernel Theory
	Kernels and Reproducing Kernel Hilbert Spaces
	Basic Properties of RKHSs

	Approximations and RKHSs
	Interpolation
	Universal Kernels

	Signature as a Feature Map
	The Signature Kernel
	Universality of Signatures


	Weighted Spaces and Global Universal Approximations
	Weighted Spaces and Weighted Function Spaces
	Weighted Spaces: Definition and Examples
	Weighted Function Spaces

	Weighted Stone-Weierstrass
	Weighted Real-valued Stone-Weierstrass Theorem
	Local and Global Approximations

	Globally Universal Kernels
	Globally Universal Kernels on Weighted Spaces
	Examples of Globally Universal Kernels 


	Conclusion and Future Research
	References
	Appendix A
	Appendix B
	Appendix C

	Página em branco
	Página em branco
	Página em branco
	Thesis (9).pdf
	Preface
	Introduction
	Notation
	Path Signatures and Rough Paths
	Preliminaries to Rough Path Theory
	Path Spaces and Regularity
	Bounded Variation Paths and Differential Equations
	Tensor Algebras

	Path Signatures
	Motivation and Definition
	Basic Properties of Signatures
	Free Nilpotent Groups and the Carnot-Carathéodory Norm

	Introduction to Rough Path Theory
	Rough Integration: Motivation and Intuition
	Sewing Lemma and Abstract Integration
	Lyons' Extension Theorem
	Factorial Decay and Continuity
	Spaces of Rough Paths


	Kernel Theory
	Basics of Kernel Theory
	Kernels and Reproducing Kernel Hilbert Spaces
	Basic Properties of RKHSs

	Approximations and RKHSs
	Interpolation
	Universal Kernels

	Signature as a Feature Map
	The Signature Kernel
	Universality of Signatures


	Weighted Spaces and Global Universal Approximations
	Weighted Spaces and Weighted Function Spaces
	Weighted Spaces: Definition and Examples
	Weighted Function Spaces

	Weighted Stone-Weierstrass
	Weighted Real-valued Stone-Weierstrass Theorem
	Local and Global Approximations

	Globally Universal Kernels
	Globally Universal Kernels on Weighted Spaces
	Examples of Globally Universal Kernels 


	Conclusion and Future Research
	References
	Appendix A
	Appendix B
	Appendix C



