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Abstract
We consider the symmetric exclusion process on suitable random grids that approximate a
compact Riemannian manifold. We prove that a class of randomwalks on these random grids
converge to Brownian motion on the manifold. We then consider the empirical density field
of the symmetric exclusion process and prove that it converges to the solution of the heat
equation on the manifold.

Keywords Symmetric exclusion process · Compact Riemannian manifold · Hydrodynamic
limit · Random grids

1 Introduction

Hydrodynamic limits of interacting particle systems is a well established subject. A large
variety of parabolic equations (such as the non-linear heat equation) and hyperbolic conser-
vation laws have been obtained from microscopic stochastic particle systems; see DeMasi
and Presutti [7], Kipnis and Landim [13], Seppäläinen [17] for overviews. Usually, the setting
here is that in the underlying particle system the particles move on the lattice Zd , and after
rescaling the limiting partial differential equation is defined on R

d , or on a subdomain of
R
d such as an interval, where then equations with boundary conditions on the ends of the

interval are derived (e.g. Dirichlet boundary conditions for the case where at the right and
left end the system is coupled to a reservoir fixing the density of particles, see Gonçalves
[10]).
Motivated e.g. by the study of the motion of proteins in a cell-membrane, or more general
motion of particles on curved interfaces, it is clear that there are many relevant physical
systems of which the macroscopic motion takes place on a Riemannian manifold rather than
on Euclidean space. It is the aim of this paper to provide first steps in this direction, by con-
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76 B. van Ginkel et al.

sidering the simplest interacting particle system on a suitable discretization of a Riemannian
manifold and proving its hydrodynamic limit. The symmetric exclusion process is a well-
known and well-studied interacting particle system for which in standard setting it is rather
straightforward to obtain the hydrodynamic limit using duality. Duality allows to translate
the one-particle scaling limit, i.e., the fact that the rescaled single particle position converges
to Brownian motion to the fact that the hydrodynamic limit of the particle system is the diffu-
sion equation. Another manifestation of duality is the fact that the microscopic equation for
the expectation of the density field is already a closed equation. We consider the symmetric
exclusion process on a suitable discretization (a notion defined more precisely below) of a
compact Riemannian manifold and prove that its empirical density field, after appropriate
rescaling, converges to the solution of the heat equation on the manifold. To obtain this
result, we start in Sect. 2 by studying the invariance principle of a class of geodesic random
walks, thereby extending earlier results of Jørgensen [12]. These random walks are shown to
converge to Brownian motion, via the technique of generator convergence. Next, in Sect. 3,
we define a notion of “uniformly approximating grids” and show that choosing uniformly
N points on the manifold, and connecting them via a kernel depending on the Riemannian
distance yields a weighted graph such that the corresponding random walk converges (as the
number of random points tends to infinity) to a geodesic random walk which in turn scales to
Brownianmotion.We also formulate abstract conditions on approximating grids ensuring the
convergence of the weighted random walk to Brownian motion. In particular, convergence
of the empirical distribution to the normalized Riemannian volume in Kantorovic distance
is shown to be sufficient, i.e. we show that in that setting weights can be chosen such that
the corresponding random walk converges to Brownian motion. We give several examples
of such suitable grids. Finally, in Sect. 4, we define the exclusion process on such suitable
grids (defined in Sect. 3) and show that its empirical density converges to the solution of the
heat equation, following the proof from Seppäläinen [17].

2 The Invariance Principle for a Class of Geodesic RandomWalks

Let M be an n-dimensional, compact and connected Riemannian manifold. Then we know
that M is complete and hence geodesically complete. The main purpose of this section is to
define the geodesic random walk and to show that it approximates Brownian motion when
appropriately rescaled (in time and space). Such random walks and this so-called invariance
principle have been studied before (Jørgensen [12] and in a special case Blum [4]). However
we will directly obtain results that are tailor-made to apply them in Sect. 3. In particular,
we will obtain general assumptions on the jumping distributions of the geodesic random
walk for it to converge to Brownian motion. In Sect. 2.1, we define the geodesic random
walk and show convergence of the generators to the generator of Brownian motion under
certain assumptions on the jumping distributions. Section 2.2 is devoted to finding out which
distributions satisfy these assumptions.

2.1 Convergence of the Generators

The process
Let {μp, p ∈ M} be a collection of positive, finite measures where each μp is a measure on
TpM . The measure μp represents the rate to jump in a particular direction of TpM . More
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Fig. 1 Left: geodesic random walk on a sphere. Right: Brownian motion on a sphere (Source https://en.
wikipedia.org/wiki/Brownian_motion)

precisely, the Markov process XN = {XN
t , t ≥ 0} associated to {μp, p ∈ M} has generator

LN f (p) =
∫
TpM

f (p(1/N , η)) − f (p)μp(dη),

where for a vector ξ ∈ TpM we denote the geodesic through p with tangent vector ξ at p by
p(·, ξ). We denote the corresponding semigroup by

SNt f (p) = Ep f (X
N
t ).

Both of these have the continuous functions on the manifold C(M) as their domain.
We interpret this process as follows. When the process XN is at a point p, it chooses a
random direction η from TpM with rates given by μp (i.e. it waits for an exponential time
with rate μp(TpM) and then independently picks a vector according to the probability dis-
tribution μp

μp(TpM)
). Then the process jumps to the position p(1/N , η) that is reached by

following the geodesic through p in the direction of η for time 1
N . This situation is sketched

in Fig. 1. We assume that choosing random directions happens independently. In this section
we will specify restrictions that the measures μp should satisfy. Later (in Sect. 2.2), we will
show that we can take μp to be for instance the uniform distribution on the unit tangent
vectors at p.

The RRRn case
Before we go into the general case, we illustrate the above inRn . InRn the exponential map is
simply addition if we identify TpR

n withRn itself. So in that case from a point p the process
moves to p(1/N , η) = p + 1

N η where η is chosen from TpR
n = R

n randomly. This means
that the discrete time jumping process when jumping as described above, can be denoted by
SNm = ∑m

i=1
1
N ηi = 1

N

∑m
i=1 ηi where η j is drawn from TSj−1R

n = R
n according to some

distribution. Now let {Nt , t ≥ 0} be a Poisson process with rate one and define XN
t = SNt .

Then X makes the same jumps as S, but after independent exponential times. We see that
XN = {XN

t , t ≥ 0} satisfies the description above. Now the invariance principle tells us that
under some conditions on the jumping rates XN

tN2 → Bt in distribution as N goes to infinity,
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78 B. van Ginkel et al.

where B is Brownian motion. We show the analogous result in the more general setting of a
manifold.

Aim
We denote the Laplace–Beltrami operator on the manifold by �M . The rest of this section
will be devoted to the proof of the following result.

Proposition 2.1 Suppose that in the situation above we have:

• supp∈M supη∈suppμp
||η|| < ∞

• supp∈M μp(TpM) < ∞
• ∫

ηiμp(dη) = 0 and
∫

ηiη jμp(dη) = gi j (p) in each coordinate system around p

Then for f ∈ C∞: N 2LN f → 1
2�M f uniformly on M.

The first assumption requires that the supports of the measures and their total masses are
bounded uniformly over all points of the manifold. We will loosely say that the measures are
uniformly compactly supported and uniformly finite. Since C∞(M) is a core for 1

2�M [20],
the Trotter-Kurtz theorem (see Kurtz [14]) implies the following corollary.

Corollary 2.2 In the situation of Proposition 2.1 the geodesic random walk converges to
Brownian motion in distribution in D([0,∞), M) (the space of cadlag maps [0,∞) → M).

Note that if we denote the randomvariable corresponding toμp by ζp , the second requirement

of Proposition 2.1 is that (in any coordinate system) Eζ ip = 0 and Cov(ζ ip, ζ
j
p ) = gi j (p).

This shows that the mean vectorm of ζp satisfiesm = 0 and the covariance matrix� satisfies

� = (gi j )(p). In R
n , this simplifies to Eζ ip = 0 and Cov(ζ ip, ζ

j
p ) = δij . This is satisfied for

instance whenμp is the uniform distribution on the sphere with radius
√
N inRn . Section 2.2

deals with the question which measures satisfy the restrictions above. Some examples will
be given at the end of that section as well.

Remark 2.3 Although we study the jumping distributions later, something that can already
be seen now, is that we do not require any relation between jumping measures at different
points of the manifold (apart from the uniform bounds on the support and the total mass).
This means that our result does not require the jumpingmeasures to be identically distributed,
so it really generalizes [12].

Choosing Suitable Charts
Let f be a fixed smooth function from now on. Since we want the convergence N 2LN f →
1
2�M f to be uniform on M , we cannot just consider this problem pointwise. To deal with
this, we will choose specific coordinate charts.
Let ρ denote the original metric of the manifold and let d denote the metric that is induced
by the Riemannian metric. Recall that these metrics induce the same topology. This means
that we do not cause confusion when we speak about open and closed sets, continuous maps
and compactness without explicitly mentioning the metric. For each p ∈ M , let (xp,Up)

be a coordinate chart for M around p. Up is open with respect to ρ and hence with respect
to d . This means that there is some εp > 0 such that Gp := Bd(p, εp) ⊂ Up . Now define
Op = Bd(p, ε/2). Since M is compact, we can find p1, . . . , pm such that M ⊂ ∪i Opi . We
have the following easy statement.

Lemma 2.4 Let (gk)∞k=1 and g be functions M → R. If gk → g uniformly on each Opi , then
gk → g uniformly on M.
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Fig. 2 The chart (x,U )with closed ballG and open ball O around p j . As is shown in lemma 2.5, pη = p(t, η)

does not leave the ball around p with radius ε/2, as long as |t | ≤ 1/N for N ≥ Nε . The importance for
uniformity is that it does not matter where we choose p (in O)

Proof Let ε > 0. For each i there is an Ni ∈ N such that for all k ≥ Ni : supOpi
|gk(q) −

g(q)| < ε. Set N = max1≤i≤m Ni and let q ∈ M . Then there is a j such that q ∈ Opj . Now
for all k ≥ N , we see k ≥ N j , so |gk(q) − g(q)| ≤ supOpi

|gk(s) − g(s)| < ε. This shows
that supM |gk(q) − g(q)| ≤ ε. Hence gk → g uniformly on M . 
�

Now let j ∈ {1, . . . ,m} be fixed. Call O := Opj , ε := εp j , x := xp j , G := Gpj and
U := Upj (this situation is shown in Fig. 2). Because of the lemma, it suffices to show that

N 2LN f → 1
2�M f uniformly on O .

Technical Considerations
To obtain good estimations later, we will need that p(s, η) is still in our coordinate system
(x,U ) and even in the set G when |s| ≤ 1

N for N large enough. Since the convergence must
be uniform, how large N must be can not depend on the point p. The following lemma tells
us how to choose such N .

Lemma 2.5 Call K = supp∈M supη∈suppμp
||η|| < ∞ (by assumption). Choose Nε ∈ N such

that 1
Nε

< ε
2K . Then for all p ∈ O and N ≥ Nε we see

∀|s| ≤ 1

N
: p(s, η) ∈ G.

Proof Let N ≥ Nε and let p ∈ O . The situation of the proof is visually represented in
Fig. 2. Fix s ∈ (− 1

N , 1
N ). Without loss of generality assume s > 0. Note that the speed of

the geodesic p(·, η) equals ||η||, so at time s, it has traveled a distance s||η|| from p. This
means that there is a path of length s||η|| from p(s, η) to p, so d(p(s, η), p) ≤ s||η|| ≤
1
N K ≤ 1

Nε
K < ε/2. Since p ∈ O , we know d(p, p j ) < ε/2. Now the triangle inequality

shows that d(p j , p(s, η)) ≤ d(p j , p) + d(p, p(s, η)) < ε/2 + ε/2 = ε. This implies that
p(s, η) ∈ Bd(p j , ε) ⊂ G. 
�

Fix Nε as in the lemma and take N larger than Nε .

Taylor Expansion
Now fix p ∈ O and η ∈ TpM . Write pη for the map R → M that takes t to p(t, η). We can
locally write f ◦ pη = ( f ◦ x−1) ◦ (x ◦ pη), which is a composition of smooth maps. This
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80 B. van Ginkel et al.

means that f ◦ pη is just a smooth mapR → R, so we can use a Taylor expansion and obtain

f (p(1/N , η)) = f (p)+ 1

N

d( f ◦ pη)

dt
(0)+ 1

2N 2

d2( f ◦ pη)

d2t
(0)+ 1

6N 3

d3( f ◦ pη)

d3t
(tN ,η,p),

where tN ,η,p ∈ (0, 1/N ) is a number depending on N , η and p. This gives us

N 2LN f (p) = N 2
∫
Mp

f (p(1/N , η)) − f (p)μp(dη)

= N 2
∫

1

N

d( f ◦ pη)

dt
(0) + 1

2N 2

d2( f ◦ pη)

d2t
(0)

+ 1

6N 3

d3( f ◦ pη)

d3t
(tN ,η,p)μp(dη)

= N
∫

d( f ◦ pη)

dt
(0)μp(dη) + 1

2

∫
d2( f ◦ pη)

dt2
(0)μp(dη)

+ 1

6N

∫
d3( f ◦ pη)

dt3
(tN ,η,p)μp(dη). (1)

We will examine these terms separately.

The First Term
Recall that p ∈ O and that O is contained in a coordinate chart (x,U ). Since N ≥ Nε ,
Lemma 2.5 guarantees us that p(s, η) stays in the coordinate chart for |s| < 1

N . Writing
η = ∑n

i=1 ηi ∂
∂xi

|p , we see for |s| < 1
N :

d( f ◦ pη)

dt
(s) = d

dt
[( f ◦ x−1) ◦ (x ◦ pη)](s)

=
n∑

i=1

Di ( f ◦ x−1)(x(pη(s))
d(xi ◦ pη)

dt
(s)

=
n∑

i=1

∂ f

∂xi
(pη(s))

d(xi ◦ pη)

dt
(s).

Now setting s = 0, this becomes:

n∑
i=1

∂ f

∂xi
(p)ηi =

n∑
i=1

ηi
∂

∂xi
|p f = η( f ),

since pη(0) = p(0, η) = p and the tangent vector to the geodesic p(·, η) at 0 is η (so the i th

coordinate with respect x is just ηi ). Now the first term of (1) becomes:

N
∫

η( f )μp(dη) = N
∫ n∑

i=1

ηi
∂

∂xi
|p f μp(dη) = N

n∑
i=1

∂

∂xi
|p f

∫
ηiμp(dη).

By assumption these integrals are 0. This shows that the first term of (1) vanishes.
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The Second Term
Now we want to show that the remaining term equals 1

2�M f (p). Similarly to above we see
for |s| < 1

N (leaving out the arguments to keep things clear):

d2( f ◦ pη)

dt2
= d

dt

n∑
i=1

∂ f

∂xi
d(xi ◦ pη)

dt

=
n∑

i=1

{(
d

dt

∂ f

∂xi

)
d(xi ◦ pη)

dt
+ ∂ f

∂xi

(
d

dt

d(xi ◦ pη)

dt

)}

=
n∑

i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂x j∂xi
d(x j ◦ pη)

dt

d(xi ◦ pη)

dt
+ ∂ f

∂xi
d2(xi ◦ pη)

dt2

⎫⎬
⎭ .

Since pη is a geodesic, we know that it satisfies the geodesic equations. This shows that for
each i = 1, . . . , n we have

d2(xi ◦ pη)

dt2
+

n∑
k,l=1

�i
kl
d(xk ◦ pη)

dt

d(xl ◦ pη)

dt
= 0.

Using this yields the following expression for the second derivative:

n∑
i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂x j∂xi
d(x j ◦ pη)

dt

d(xi ◦ pη)

dt
− ∂ f

∂xi

n∑
k,l=1

�i
kl
d(xk ◦ pη)

dt

d(xl ◦ pη)

dt

⎫⎬
⎭ ,

so

d2( f ◦ pη)

dt2
(0) =

n∑
i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂x j∂xi
(p)η jηi − ∂ f

∂xi
(p)

n∑
k,l=1

�i
kl(p)η

kηl

⎫⎬
⎭ .

Using linearity of the integral, we obtain the following expression for the second term of (1):

1

2

n∑
i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂xi∂x j
(p)

∫
ηiη jμp(dη) − ∂ f

∂xi
(p)

n∑
k,l=1

�i
kl(p)

∫
ηkηlμp(dη)

⎫⎬
⎭ .

Note that we also changed the order of the derivatives of f , this can be done since f is
smooth. Now we want the term above to equal

1

2
�M f (p) = 1

2

{
gi j

∂2 f

∂xi x j
− gkl�i

kl
∂ f

∂xi

}

= 1

2

n∑
i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂xi∂x j
(p)gi j (p) − ∂ f

∂xi
(p)

n∑
k,l=1

�i
kl(p)g

kl(p)

⎫⎬
⎭.

This is true, since we required that for any coordinate chart around p and for all i, j :∫
Mp

ηiη jμp(dη) = gi j (p).
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The Rest Term
If the last term goes to 0 uniformly on O , we have the result. Let N still be larger then Nε .∣∣∣∣ 1

6N

∫
d3( f ◦ pη)

dt3
(tN ,η,p)μp(dη)

∣∣∣∣ ≤ 1

6N

∫ ∣∣∣∣d
3( f ◦ pη)

dt3
(tN ,η,p)

∣∣∣∣μp(dη)

≤ K ′

6N
sup

η∈suppμp

∣∣∣∣d
3( f ◦ pη)

dt3
(tN ,η,p)

∣∣∣∣
where K ′ = supp∈M μp(TpM) < ∞ (by assumption). We know that tN ,η,p ∈ [0, 1/N ] ⊂
[0, 1/Nε]. This means that the above is smaller than:

K ′

6N
sup

η∈suppμp

sup
t∈[0,1/Nε ]

∣∣∣∣d
3( f ◦ pη)

dt3
(t)

∣∣∣∣ ≤ K ′

6N
sup

η:||η||≤K
sup

t∈[0,1/Nε ]

∣∣∣∣d
3( f ◦ pη)

dt3
(t)

∣∣∣∣ .
Because of the 1/N in front of the equation, we only need to know that the rest is uniformly

bounded to obtain uniform convergence. It thus suffices to show that d3( f ◦pη)

dt3
(t) is bounded

as a function of η with ||η|| < K and t ∈ [0, 1/Nε]. Lemma 2.5 shows that p(t, η) stays in
G for all such η and t . We will use this fact multiple times.

We first express d3( f ◦pη)

dt3
in local coordinates for |t | ≤ 1/N .

d3( f ◦ pη)

dt3
= d

dt

d2( f ◦ pη)

dt2

= d

dt

n∑
i=1

⎧⎨
⎩

n∑
j=1

∂2 f

∂x j∂xi
d(x j ◦ pη)

dt

d(xi ◦ pη)

dt
+ ∂ f

∂xi
d2(xi ◦ pη)

dt2

⎫⎬
⎭ . (2)

To make notation more compact, we introduce the following notation (and fi , fi jk analo-
gously):

fi j := ∂2 f

∂x j∂xi
, pik := dk(xi ◦ pη)

dtk
.

Combining this with Einstein summation, we can write (2) as

d

dt
( fi j p

i
1 p

j
1 + fi p

i
2) = ( fi jk p

k
1)p

i
1 p

j
1 + fi j (p

i
1 p

j
2 + pi2 p

j
1 ) + ( fi j p

j
1 )p

i
2 + fi p

i
3

= fi jk p
k
1 p

i
1 p

j
1 + fi j (p

i
1 p

j
2 + 2pi2 p

j
1 ) + fi p

i
3.

Now, as before,we candealwith secondderivatives of geodesics using the geodesic equations:

pi2 = −�i
rs p

r
1 p

s
1.

We can also calculate the third derivative:

pi3 = d

dt
pi2 = d

dt
(−�i

rs p
r
1 p

s
1) = −

(
d

dt
�i
rs

)
pr1 p

s
1 − �i

rs(p
r
1 p

s
2 + pr2 p

s
1).

This shows us that d3( f ◦pη)

dt3
is a combination of products and sums of the following types

of expressions: fi , fi j , fi jk , pi1, �i
rs and d

dt �
i
rs . If we can bound all of these on the right

domains (independent of p and η), we are done.

Bounding fi , fi j and fi jk
First of all, note that f is a smooth function on U . Further, ∂i defines smooth vector field
on U . Since fi = ∂ f

∂xi
is obtained by applying ∂i on U to f , it is a smooth function on U .
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Hydrodynamic Limit of the Symmetric Exclusion... 83

Continuing in this way, we see that fi j and fi jk are also smooth functions onU . In particular,
they are smooth functions onG (since it is a subset ofU ).G is a closed subset of the compact
M and is hence compact itself. This implies that fi , fi j and fi jk are (for each choice of i, j, k)
bounded on G. Since we evaluate these functions in the points p(s, η) for 0 ≤ s ≤ 1/N ,
N ≥ Nε and ||μ|| ≤ K , our discussion above shows that we only evaluate them in points of
G. This means that we have found bounds for fi , fi j and fi jk .

Bounding pi1
We start with a technical lemma.

Lemma 2.6 Let q ∈ M and let (y, V ) be a coordinate chart around q. Let v ∈ TqM and

write v = vi∂i . Then |vi | ≤ √
gii (q)||v||.

Proof Fix some 1 ≤ i ≤ n. We see in the tangent space at q:〈
v, gi j∂ j

〉
=
〈
vk∂k, g

i j∂ j

〉
= vkgi j gk j = vkδik = vi .

Further,

||gi j∂ j ||2 =
〈
gi j∂ j , g

ik∂k

〉
= gi j gikg jk = gi jδij = gii .

Using the relations above and the Cauchy-Schwarz inequality, we obtain:

|vi | = |
〈
v, gi j∂ j

〉
| ≤ ||v|| · ||gi j∂ j || =

√
gii ||v||.


�
Now we can use this to show the following.

Lemma 2.7 |pi1(t)| =
∣∣∣ d(xi◦pη)

dt (t)
∣∣∣ ≤ √

gii (p(t, η))||η||.
Proof The first equation is just a change of notation. Further we see

d(xi ◦ pη)

dt
=
(
pη∗

d

dt

)
(xi ) = dpη

dt
(xi ) =

(
dpη

dt

)i

.

This means that d(xi◦pη)
dt is just the i th coordinate with respect to (x,U ) of the tangent vector

to pη at time t so at the point p(t, η) ∈ M . Using Lemma 2.6, we see∣∣∣∣d(x
i ◦ pη)

dt
(t)

∣∣∣∣ ≤
√
gii (p(t, η))

∣∣∣∣
∣∣∣∣dp

η

dt

∣∣∣∣
∣∣∣∣ . (3)

Since pη is a geodesic, it has constant speed. Its speed at p is ||η||, so this must be its speed
anywhere else along the trajectory. Hence || dpη

dt || = ||η||. Inserting this in (3) yields the
result. 
�
We can now easily obtain a bound for pi1. For 0 ≤ t ≤ 1/N and ||η|| ≤ K , we know p(t, η)

stays in G. gii is a smooth and hence continous function on U , so it is bounded on G (since
G is compact). This means that

√
gii (p(t, η)) is bounded by some K i for ||η|| ≤ K and

0 ≤ t ≤ 1/N . Now we see |pi1| ≤
√
gii (p(t, η))

∣∣∣
∣∣∣ dpη

dt

∣∣∣
∣∣∣ ≤ Ki K .

Bounding �i
rs and

d
dt �

i
rs

Each gi j is a smooth function on U . This means that
∂gi j
∂xk

is a smooth function on U . This

implies that �i
rs is just combination of products and sums of smooth functions, so it is
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smooth itself. Now, as before, �i
rs is bounded on G. Since we only evaluate it in p(t, η) with

0 ≤ t ≤ 1/N and ||η|| ≤ K , we only evaluate it in G, so we have bounded �i
rs .

Now d
dt �

i
rs can be written as

d

dt
�i
rs = ∂�i

rs

∂x j

d(x j ◦ pη)

dt
= (�i

rs) j p
j
1 ,

with notation as above. Since�i
rs is smooth functionU → R, this expression can be bounded

in exactly the same way as expressions like f j p
j
1 above.

2.2 Stepping Distribution

Constraints for a Stepping Distribution
The question now is which distributions μp on TpM satisfy the assumptions of Proposi-
tion 2.1. From here on we fix p ∈ M and simply write μ for μp . Being compactly supported
and finite are rather natural constraints, but the other assumptions are harder, especially since
they involve local coordinates. In this section we address the question which distributions
satisfy the other assumptions, i.e. for every coordinate system around p:

∫
ηiμ(dη) = 0 ∀i = 1, . . . , n

∫
ηiη jμ(dη) = gi j ∀i, j = 1, . . . , n.

(4)

To generalize this a bit, supposeμ satisfies the following for some c > 0 for every coordinate
system: ∫

ηiμ(dη) = 0 ∀i = 1, . . . , n
∫

ηiη jμ(dη) = cgi j ∀i, j = 1, . . . , n.

(5)

Following the proof in the previous section, one sees directly that in this case the generators
converge to the generator of Brownian motion that is speeded up by a factor c. We will look
into this generalized situation and at the end we will see how to determine c.

Independence of (5) of Coordinate Systems
The following lemma shows that if (5) holds for a single coordinate system, it holds for any
coordinate system.

Lemma 2.8 If (5) holds for some c > 0 and for some coordinate system (x,U ) around p,
then it holds for the same c for all coordinate systems around p.

Proof Let (x,U ) be a coordinate system around p for which (5) holds with c > 0 and let
(y, V ) be any other coordinate system around p. It suffices to show that (5) holds with the
same c for y. Denote the metric matrix with respect to x by g and the one with respect to y by
ĝ. For any η ∈ TpM define η1, . . . , ηn as the coefficients of η with respect to x , so such that

η = ∑
i η

i ∂
∂xi

. Analogously let η̂1, . . . , η̂n be such that η = ∑
i η̂

i ∂
∂ yi

. Let J = ∂(x1,...,xn)
∂(y1,...,yn)

.
If η ∈ TpM , then

η̂ j = η(yi ) =
∑
i

ηi
∂

∂xi
yi =

∑
i

ηi
∂ y j

∂xi
.
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This shows that for any j
∫

η̂ jμ(dη) =
∫ n∑

i=1

ηi
∂ y j

∂xi
μ(dη) =

n∑
i=1

∂ y j

∂xi

∫
ηiμ(dη) = 0,

since for any i :
∫

ηiμ(dη) = 0. Moreover, for any i, j :
∫

ηiη jμ(dη) = cgi j , so for any i, j :
∫

η̂i η̂ jμ(dη) =
∫ n∑

k=1

ηk
∂ yi

∂xk

n∑
l=1

ηl
∂ y j

∂xl
μ(dη) =

n∑
k,l=1

∂ yi

∂xk
∂ y j

∂xl

∫
ηkηlμ(dη)

=
n∑

k,l=1

∂ yi

∂xk
∂ y j

∂xl
cgkl = c(J−1G−1(J−1)T )i j .

Since J−1G−1(J−1)T = J−1G−1(J T )−1 = (J T G J )−1 = Ĝ−1, we see that
∫

η̂i η̂ jμ(dη)

= cĝi j . We conclude that (5) holds for y with the same c. 
�
Orthogonal Transformations and Canonical Measures
We now introduce a class of measures.

Definition 2.9 Let V be an inner product space and let T be a linear map V → V . We call
T an orthogonal transformation if for any u, v ∈ V : 〈Tu, T v〉 = 〈u, v〉.
We call a measure μ on TpM canonical if for any orthogonal transformation T on TpM and
for any coordinate system:∫

ηiμ(dη) =
∫

(Tη)iμ(dη) and
∫

ηiη jμ(dη) =
∫

(Tη)i (Tη) jμ(dη).

Remark 2.10 In the same way as above, one can show that μ has the property above with
respect to some coordinate system if and only if it has the property with respect to every
coordinate system. Moreover, since −I always satisfies (−I )T G(−I ) = G, we see that∫

ηiμ(dη) = ∫
(−η)iμ(dη) = ∫ −ηiμ(dη) = − ∫

ηiμ(dη), so
∫

ηiμ(dη) is 0 for any
canonical μ.

In words, μ is canonical if orthogonal transformations do not change the mean vector and
the covariance matrix of a random variable that has distribution μ. Remark 2.10 shows that
in fact the mean vector must be 0. Note that in particular measures that are invariant under
orthogonal transformations are canonical, since then

∫
(Tη)iμ(dη) = ∫

ηi (μ ◦ T−1)(dη) =∫
ηiμ(dη) and the other equation follows analogously. However a simple example shows that

the converse is not true. LetM = R and letμ be any non-symmetric distribution on TpM = R

with mean 0. The only orthogonal transformation (apart from the identity) is t �→ −t . Under
this transformation the mean (which is 0) and the secondmoment are obviously left invariant,
but μ is not symmetric, so it is not invariant. We will give an example for Rn later.
If (x,U ) is some coordinate system around p and G = (gi j ) is the matrix of the metric in p
with respect to x , we can write a linear transformation T : TpM → TpM as a matrix (which
we will also call T ) with respect to the base ∂

∂x1
, . . . , ∂

∂xn . We see that

〈Tη, T ξ 〉 =
∑
i, j

gi j (Tη)i (T ξ) j =
∑
i, j

gi j
∑
k

Tikη
k
∑
l

Tjlξ
l =

∑
k,l

⎛
⎝∑

i, j

gi j TikTjl

⎞
⎠ ηkξ l .

If T is orthogonal, this must equal

〈η, v〉 =
∑
k,l

gklη
kξ l ,
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so we see that gkl = ∑
i, j gi j TikTjl = (T T GT )kl and hence G = T T GT .

Now for a measure μ on TpM and a coordinate system (x,U ), define the vector Aμ and the

matrix Bμ by Ai
μ = ∫

ηiμ(dη) and Bi j
μ = ∫

ηiη jμ(dη). Then we have the following.

Lemma 2.11 Let μ be a measure on TpM. Then the following are equivalent.

(i) μ is canonical.
(ii) For every linear transformation T and every coordinate system (x,U ): if G = T T GT ,

then Aμ = T Aμ and Bμ = T BμT T .

Proof (i) ⇔ (i i) because (i i) is just the definition of being canonical written in local
coordinates. Indeed, we already saw that orthogonality or T translates in local coordinates
to G = T T GT , the other expressions follow in a similar way from the following equations:

Ai
μ =

∫
(Tη)iμ(dη) =

∫ ∑
k

Tikη
kμ(dη) =

∑
k

Tik

∫
ηkμ(dη) =

∑
k

Tik A
k
μ

Bi j
μ =

∫
(Tη)i (Tη) jμ(dη)

=
∫ ∑

k

Tikη
k
∑
l

Tjlη
lμ(dη) =

∑
k,l

TikTjl

∫
ηkηlμ(dη) =

∑
k,l

TikTjl B
kl
μ .


�
Canonical Measures are Stepping Distributions
Now we have the following result.

Proposition 2.12 Let μ be a probability measure on TpM. Then μ is canonical if and only
if it satisfies (5) for some c > 0.

Proof First assume that μ is canonical and let (x,U ) be normal coordinates centered at p.
Because of Lemma 2.8 it suffices to verify (5) for x , so we need to show that Aμ = 0 and
Bμ = cG−1 = cI for some c > 0.
The fact that Aμ = 0 is just Remark 2.10. Now note that since Bμ is symmetric, it can be
diagonalized as T BμT−1 where T is an orthogonal matrix (in the usual sense). This means
that T T = T−1 and that T T GT = T T I T = T T T = I = G, so Lemma 2.11 tells us that
the diagonalization equals T BμT T = Bμ. This implies that Bμ is a diagonal matrix. Now
for i �= j let Ī i j be the n × n-identity matrix with the i th and j th column exchanged. It
is easy to see that ( Ī i j )T Ī i j = I , so we must also have Bμ = Ī i j Bμ( Ī i j )T . The latter is
Bμ with the i th and j th diagonal element exchanged. This shows that these elements must
be equal. Hence all diagonal elements are equal and Bμ = cI for some c ∈ R. Since
c = B11

μ = ∫
η1η1μ(dη) ≥ 0, we know that c ≥ 0. If c = 0, then Bμ = 0, so μ = 0, which

is not possible. We conclude that c > 0.
Conversely let (x,U ) be a coordinate systemwith correspondingmetricmatrixG and assume
that μ satisfies (5) for some c > 0. Let T be such that G = T T GT . Then Aμ = 0 = T 0 =
T Aμ. We also see: T T GT = G ⇐⇒ G = (T T )−1GT−1 ⇐⇒ G−1 = TG−1T T ⇐⇒
cG−1 = T (cG−1)T T �⇒ Bμ = T BμT T (since Bμ = cG−1), so by Lemma 2.11 μ is
canonical. 
�
Now we know that if the stepping distribution is canonical (and finite and compactly sup-
ported, uniformly on M), the generators converge to the generator of Brownian motion that
is speeded up by some factor c > 0 (depending on μ). The question remains what this c is.
The following lemma answers this question.
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Lemma 2.13 Suppose μ satisfies (5) for some c > 0. Then c =
∫ ||η||2μ(dη)

n .

Proof We calculate the following (with respect to some coordinate system (x,U )):
∫

||η||2μ(dη) =
∫

〈η, η〉μ(dη) =
∫ 〈∑

i

ηi
∂

∂xi
,
∑
j

η j ∂

∂x j

〉
μ(dη)

=
∑
i, j

〈
∂

∂xi
,

∂

∂x j

〉 ∫
ηiη jμ(dη)

=
∑
i, j

gi j cg
i j = c

∑
i

∑
j

gi j g
ji = c

∑
i

1 = cn.

Hence c =
∫ ||η||2μ(dη)

n . 
�
The nice part of this lemma is that the expression for c does not involve a coordinate system,
only the norm (and hence inner product) of TpM . In particular we see that c = 1 is equivalent
to
∫ ||η||2μ(dη) = n. We summarize our findings in the following result.

Proposition 2.14 A probability measure μ on TpM satisfies (5) for some c > 0 if and only if

it is canonical and c =
∫ ||η||2μ(dη)

n . In particular, it satisfies (4) if and only if it is canonical
and

∫ ||η||2μ(dη) = n.

Remark 2.15 Note that all we need of the jumping distributions is that their mean is 0,
their covariance matrix is invariant under orthogonal transformations, they are (uniformly)
compactly supported and they are (uniformly) finite.We don’t need themeasures to be similar
in any other way, so we do not at all require the jumps to have identical distributions in the
sense of Jørgensen [12].

Examples 1. To satisfy (4) for every coordinate system, by Lemma 2.8 it suffices to choose a
coordinate system and construct a distribution that satisfies (4) for that coordinate system.
Let (x,U ) be any coordinate system around some point in M with corresponding metric
matrix G in that point. Let X be any random variable in R

n that has mean vector 0 and
covariancematrixG−1 (for instance let X ∼ N (0,G−1)). Now letμ be the distribution of∑

i X
i ∂
∂xi

. Then by construction
∫

ηiμ(dη) = EXi = 0 and
∫

ηiη jμ(dη) = EXi X j =
EXi X j − EXi

EX j = gi j .
2. In the previous Example (4) is immediate. Let us now consider an example that illus-

trates the use of Proposition 2.14. Let μp be the uniform distribution on
√
nSpM

(the vectors with norm
√
n). By definition of such a distribution, it is invariant under

orthogonal transformations (rotations and reflections), so it is a canonical distribution.
Since also

∫ ||η||2μ(dη) = ∫ √
n2μ(dη) = n, we conclude that the uniform distri-

bution on
√
nSpM satisfies (4). Moreover, supp∈M supη∈suppμp

||η|| = √
n < ∞ and

supp∈M μp(TpM) = 1 < ∞. Together this shows that the μp’s satisfy the assumption
of proposition 2.1.

3. Let us conclude by showing for Rn that the class of canonical distributions is strictly
larger than the class of distributions that are invariant under orthogonal transformations,
even with the restriction that

∫ ||η||2μ(dη) = n. It suffices to find a distribution μ with
mean 0 and covariance matrix I (since then μ satisfies (4) and 2.14 then tells us that μ is
canonical and has

∫ ||η||2μ(dη) = n) and an orthogonal T such that μ �= μ◦T−1. Let ν
be the distribution on R given by ν = 1

5δ−2 + 4
5δ1/2. Then, using the natural coordinate
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system,
∫
tν(dt) = 1

5 (−2) + 4
5
1
2 = 0 and

∫
t2μ(dt) = 1

5 (−2)2 + 4
5 (

1
2 )

2 = 1. Now
let μ = ν × · · · × ν (n times). Then we directly see that the mean vector is 0 and the
covariancematrix is I . However T = −I is an orthogonal transformation andμ◦(−I )−1

equals the product of n times 1
5δ2 + 4

5δ−1/2, so obviously μ �= μ ◦ (−I )−1.

3 Uniformly Approximating Grids

We would like to consider interacting particle systems such as the symmetric exclusion
process on a manifold. Because the exclusion process does not make sense directly in a
continuum,we need a proper discrete grid approximation.More precisely,we need a sequence
of grids on the manifold that converges to the manifold in a suitable way. It will become clear
that the grids will need to approximate the manifold in a uniform way. We will see in Sect. 4
that a natural requirement on the grids is that we can define edge weights (or, equivalently,
random walks) on them, such that the graph Laplacians converge to the Laplace-Beltrami
operator in a suitable sense.
To be more precise, we would like to have a sequence (pn)∞n=1 in M and construct a sequence
of grids (GN )∞N=1 by setting GN = {p1, . . . , pN }. On each GN , we would like to define a
random walk XN which jumps from pi to p j with (symmetric) rate WN

i j with the property
that there exists some function a : N → [0,∞) and some constant C > 0 such that for each
smooth φ

a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) −→ C�Mφ(pi ) (N → ∞)

where the convergence is in the sense that for all smooth φ : M → R

lim
N→∞

1

N

N∑
i=1

∣∣∣∣∣∣a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) − C�Mφ(pi )

∣∣∣∣∣∣ = 0. (6)

Definition 3.1 We call a sequence of grids and corresponding weights (GN ,WN )∞N=1 uni-
formly approximating grids if they satisfy (6).

Remark 3.2 (Comparison with standard grids) To give an idea of how known grids in
Euclidean spaces can be incorporated in this framework, let S be the one-dimensional torus.
Let SN be the grid that places a grid point in k/N , k = 1, . . . , N . Now we can define a
nearest neighbour random walk by putting WN

i j = 1|pi−p j |=1/N . Also set a(N ) = N 2. Then

we see for a point pi ∈ SN for N = 2m for some m ∈ N that

a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) = N 2(φ(pi + 1/N ) + φ(pi − 1/N ) − 2φ(pi ))

= φ′′(pi ) + O(N−1).

The compactness of the torus easily implies that this rest term can be bounded uniformly.
This implies that (6) holds.

We will show in Sect. 4 that if we define the Symmetric Exclusion Process on uniformly
approximating grids we can prove that its hydrodynamic limit satisfies the heat equation on
M .
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It is not obvious how uniformly approximating grids could be defined. Most natural grids in
Euclidean settings involve some notion of equidistance, scaling or translation invariance. All
of these concepts are very hard if not intrinsically impossible to define on a manifold. The
current section is dedicated to showing that uniformly approximating grids actually exist. To
be more precise, we will show that a sequence (pn)∞n=1 can be used to define such grids if

the empirical measures 1/N
∑N

i=1 δpi converge to the uniform distribution in Kantorovich
sense. In Sect. 3.4 we will show that such sequences exist: they are obtained with probability
1 when sampling uniformly from the manifold, i.e. from the normalized Riemannian volume
measure.
For the calculations of this section, we need a result that forms the core of proving the
invariance principle, which we have proved in Sect. 2.

Remark 3.3 At first sight the requirement that the empirical measures approximate the uni-
form measure and that the grid points can be sampled uniformly seems arbitrary, but this is
actually quite natural. We want to construct a random walk with symmetric jumping rates
(we need this for instance for the Symmetric Exclusion Process later). This implies that the
invariant measure of the random walk is the counting measure, so the random walk spend on
average the same amount of time in each point of the grid. Hence the amount of time that
the random walk spends in some subset of the manifold is proportional to the amount of grid
points in that subset. Since we want the random walk to approximate Brownian motion and
the volume measure is invariant for Brownian motion, we want the amount of time that the
random walk spends in a set to be proportional to the volume of the set. This means that the
amount of grid points in a subset of M should be proportional to the volume of that subset.
This suggests that the empirical measures 1/N

∑N
i=1 δpi should in some sense approximate

the uniform measure. Moreover, a natural way to let the amount of grid points in a subset
be proportional to its volume is by sampling grid points from the uniform distribution on the
manifold.

3.1 Model andMotivation

Motivation
In statistical data analysis the following setting is known and used in various contexts such
as data clustering, dimension reduction, computer vision and statistical learning, see: Singer
[18], von Luxburg et al. [22], Giné et al. [9], Belkin and Niyogi [3] and Belkin [2] and refer-
ences therein for general background and various applications. Suppose we have a manifold
M that is embedded in R

m for some m and we would like to recover the manifold from
some observations of it, say an i.i.d. sample of uniform random elements of M . To do this
we can describe the observations as a graph with as weight on the edge between two points
a semi positive kernel with bandwidth ε applied to the Euclidean distance between those
points. Then it can be shown that the graph Laplacian of the graph that is obtained in this
way converges in a suitable sense to the Laplace-Beltrami operator on M as the number of
observations goes to infinity and ε goes to 0. This suggests that we could define randomwalks
on such random graphs and that the corresponding generators converge to the generator of
Brownian motion. We generalize this idea by taking a more general sequence of graphs, but
our main example (in Sect. 3.4) will be this random graph.
The main distinction between the statistical literature and our context is the following: for
our purposes it is much more natural to view the manifold M on its own instead of embedded
in a possibly high dimensional Euclidean space. This means that we have to use the distance
that is induced by the Riemannian metric instead of the Euclidean distance. The latter is more
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suitable to purposes in statistics, because in that setting the Riemannian metric on M is not
known beforehand. Also, a lot is known about the behaviour of the Euclidean distance in this
type of situation and not so much about the distance on the manifold. We will have to make
things work in M itself.
The problem of discretizing the Laplacian on a manifold (without embedding in a Euclidean
space) is also studied in the analysis literature where the main concern is the convergence of
spectra, see for instance: Burago et al. [5], Fujiwara [8] and Aubry [1], where structures like
ε-nets or triangulations are used to discretize the manifold. However, since we want to define
the exclusion process on our discrete weighted graph which approximates the manifold, it is
important that the edge weights are symmetric. Therefore these papers cannot be applied in
our context.

Model
Let M be a compact and connected Riemannian manifold. We call a function f on M
Lipschitz with Lipschitz constant L f if

sup
p,q∈M

| f (p) − f (q)|
d(p, q)

= L f < ∞.

Let (pn)n≥1 be a sequence in M such that μN := 1
N

∑N
i=1 δpi converges in the Kantorovich

sense to V̄ (the uniform distribution on M), i.e.

W1(μ
N , V̄ ) = sup

f ∈F1(M)

{∫
M

f dμN −
∫
M

f dV̄

}
→ 0,

where F1(M) denotes the set of Lipschitz functions f on M that have Lipschitz constant
L f ≤ 1. Define the N th grid VN as VN = {p1, . . . , pN }. Set

ε := ε(N ) :=
(
sup
m≥N

W1(μ
m, V̄ )

) 1
4+d

. (7)

This ε rescales the distance over which particles will jump. Naturally, ε ↓ 0 as N → ∞
(since W1(μ

N , V̄ ) → 0). Let k : [0,∞) → [0,∞) be Lipschitz and compactly supported
(for instance k(x) = (1− x)1[0,1](x)), we will call such k a kernel. Define

W ε
i j = k(d(pi , p j )/ε)

as the jumping rate from pi to p j . Here d is the Riemannian metric on M . Note that the only
dependence on N is through ε, hence the notation W ε

i j instead of WN
i j . These jumping rates

define a random walk on VN . If we regard to points pi , p j as having an edge between them
if WN

i j > 0, we want the resulting graph to be connected (to make sense of the random walk
and later of the particle systems defined on it). If we assume that there is some α such that
k(x) > 0 for x ≤ α, one can show that the resulting graph is connected for N large enough.
The main reason is that the distance between points that are close to each other goes to zero
faster than ε. The details of the proof are in the appendix (see also Remark 3.6). Finally we
define

a(N ) = ε−2−d N−1.
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To prove that the grids are uniformly approximating we have to show (6), i.e. as the number
of points N goes to infinity (and hence the bandwidth ε goes to 0)

1

N

N∑
i=1

∣∣∣∣∣∣a(N )

N∑
j=1

W ε
i j ( f (p j ) − f (pi )) − C�M f (pi )

∣∣∣∣∣∣ −→ 0 (N → ∞).

We will prove the following slightly stronger result:

sup
1≤i≤N

∣∣∣∣∣∣a(N )

N∑
j=1

W ε
i j ( f (p j ) − f (pi )) − C�M f (pi )

∣∣∣∣∣∣ −→ 0 (N → ∞). (8)

Note that since the process defined above is just a continuous-time randomwalk its generator
is given by

LN f (pi ) =
N∑
j=1

W ε
i j ( f (p j ) − f (pi )). (9)

Therefore we call (8) “convergence of the (rescaled) generators to �M uniformly in the pi ’s
for i ≤ N” or just “convergence of the generators to �M uniformly for i ≤ N”. In fact, we
will show that the rate of convergence does not depend on pi , so we might as well call it
“uniformly in the pi ’s”.

Remark 3.4 In fact, we can say more. We denote the semigroups corresponding to the gen-
erators a(N )

∑N
j=1 W

ε
i j ( f (p j ) − f (pi )) by SNt and the semigroup corresponding to C�M

by St . Then (8) implies that uniformly on compact time intervals

sup
1≤i≤N

∣∣∣SNt f |GN (pi ) − St f (pi )
∣∣∣ −→ 0 (N → ∞).

The proof is a straightforward application of (Kurtz [14], Theorem 2.1) and a small argument
that the extended limit of the generators above (as described in Kurtz [14]) equals C� since
they are equal on the smooth functions.

Remark 3.5 To see why the rescaling a(N ) is natural, we can write

a(N )LN f (pi ) = 1

ε2

N∑
j=1

k
(
d(pi ,p j )

ε

)

Nεd
( f (p j ) − f (pi )).

Since k is a kernel that is rescaled by ε inside, we need the 1/εd to make sure the integral
of the kernel stays of order 1 as ε goes to 0. Since the amount of points that the process can
jump to equals N , we also need the factor 1/N to make sure the jumping rate is of order 1 as
N goes to infinity. Also note that the typical distance that a particle jumps with these rates is
of order ε. This means that space is scaled by ε. Hence it is very natural to expect that time
should be rescaled by 1/ε2, which is exactly what we have.
Finally note that in the calculations N is the main parameter and ε an auxiliary parameter
depending on N . However, conceptually, when the scaling is concerned, the most important
parameter is ε. N is just the total amount of positions and simply has to grow fast enough as
ε goes to 0. To see why this is true, note that any sequence ε(N ) that goes to 0 more slowly
than what we use here will also do. Hence ε should go to 0 slow enough with respect to N
or, equivalently, N should go to infinity fast enough with respect to ε.
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Remark 3.6 We mentioned earlier that N must grow to infinity fast enough as ε goes to 0. In
fact, with ε as defined in (7), the number of points in a ball of radius ε goes to infinity (even
though ε shrinks to 0). In particular, this means that the number of points that a particle can
jump to, goes to infinity. This is very different from theRn case with the lattice approximation
1
N Z

d , where the number of neighbours is constant. The reason why it should be different in
the manifold case is the following. InRd , the natural grid 1

N Z
d is very symmetric. Indeed, we

can split the graph Laplacian into the contributions N 2( f (x+ei/N )+ f (x−ei/N )−2 f (x))
in each direction i , where ei it the unit vector in direction i . Now when applying Taylor we
see that the first order terms cancel perfectly, leaving us only with the second order terms,
which we want for the Laplacian. In a manifold such perfect cancellation is not possible.
Therefore the way to make the first order terms cancel is to sample more and more points
around a grid point, such that the sum over the linear order terms becomes an integral which
then vanishes in the limit. For this reason we need the number of points in a ball of size ε to
go to infinity.

Remark 3.7 It is also possible to define WN
i j as pε(pi , p j ), the heat kernel after time ε, and

rescale by ε−1 instead of ε−2−d . Then the result of Sect. 3.2 can be proven in the same
way (by obtaining some good bounds on Lipschitz constants and suprema of the heat kernel
and choosing ε = ε(N ) appropriately, see Cipriani and van Ginkel [6]) and the result of
Sect. 3.3 is a direct consequence of the fact that the Laplace-Beltrami operator generates the
heat semigroup. However, for purposes of application/simulation the weights that we have
chosen here are much easier to calculate (since only the geodesic distances need to be known,
not the heat kernel).

3.2 Replacing Empirical Measure by UniformMeasure

We would like to show that in this case there is a C independent of i such that for all
smooth f

lim
N→∞ ε−2−d N−1

N∑
j=1

k(d(p j , pi )/ε)
[
f (p j ) − f (pi )

] = C�M f (pi )

uniformly in the pi ’s.
We can write

ε−2−d N−1
N∑
j=1

k(d(p j , pi )/ε)
[
f (p j ) − f (pi )

] = ε−2−d
∫
M
gε,idμN , (10)

where
gε,i (p) = k(d(p, pi )/ε) [ f (p) − f (pi )] .

Now (10) equals

ε−2−d
∫
M
gε,idV̄ + ε−2−d

∫
M
gε,id(μN − V̄ ). (11)

We will show later that the first term converges to C�M f (pi ) (uniformly in the pi ’s) as
N → ∞. Therefore it suffices for now to show that the second term converges to 0, uniformly
in the pi ’s.

123



Hydrodynamic Limit of the Symmetric Exclusion... 93

Note that k is Lipschitz so it has some Lipschitz constant Lk < ∞. This implies that∣∣∣∣k
(
d(q1, pi )

ε

)
− k

(
d(q2, pi )

ε

)∣∣∣∣ ≤ Lk

∣∣∣∣d(q1, pi )

ε
− d(q2, pi )

ε

∣∣∣∣ ≤ Lk

ε
d(q1, q2),

by the reverse triangle inequality, so k(d(·, pi )/ε) has Lipschitz constant Lk
ε
. f is smooth,

so it is Lipschitz too with Lipschitz constant L f . Since f (pi ) is just a constant, f (·)− f (pi )
is also Lipschitz with Lipschitz constant L f . Since they are both bounded functions, we see
for the Lipschitz constant of gε, j :

Lgε, j ≤ Lk(d(·,pi )/ε)|| f (·) − f (pi )||∞ + ||k(d(·, pi )/ε)||∞L f (·)− f (pi )

≤ 2Lk

ε
|| f ||∞ + ||k||∞L f .

Note that k is bounded since it is Lipschitz and compactly supported, so ||k||∞ < ∞. This
shows that:∣∣∣∣ε−2−d

∫
M
gε,id(μN − V̄ )

∣∣∣∣ ≤ ε−2−d
(
2Lk

ε
|| f ||∞ + ||k||∞L f

)
W1(μ

N , ν)

= ε(N )−3−d (2Lk || f ||∞ + ε(N )||k||∞L f
)
W1(μ

N , ν),

where we denoted the dependence of ε on N explicitly. By (7), W1(μ
N , ν) ≤ ε(N )4+d , so

we obtain ∣∣∣∣ε−2−d
∫
M
gε,id(μN − V̄ )

∣∣∣∣ ≤ ε
(
2Lk || f ||∞ + ε||k||∞L f

)
.

Note that this bound does not depend on pi . Since ε → 0, it follows that the second term
of (11) goes to 0 uniformly in the pi ’s.

What Remains
What we have seen above basically means that we can replace the empirical distribution μN

by the uniform distribution V̄ . For convergence of the generators we still have to show that

lim
ε↓0 ε−2−d

∫
M
k(d(p, pi )/ε) [ f (p) − f (pi )] V̄ (dp) = C�M f (pi )

uniformly in the pi ’s. Note that we can replace N → ∞ by ε ↓ 0, since the expression only
depends on N via ε and ε(N ) ↓ 0 as N → ∞. Since the pi ’s are all in M we can replace pi
by q and require that the convergence is uniform in q ∈ M .
Because of these considerations it remains to show that there existsC > 0 such that uniformly
in q ∈ M :

lim
ε↓0 ε−2−d

∫
M
k(d(p, q)/ε) [ f (p) − f (q)] V̄ (dp) = C�M f (q). (12)

Note that for every ε > 0 this expression can be interpreted as the generator of a jump
process on the manifold M . The process jumps from p to a (measurable) set Q ⊂ M with
rate

∫
Q ε−2−dk(d(p, q)/ε)dV̄ .

Remark 3.8 Note that this is easy to show in R
d . Indeed, using the transformation u =

(y − x)/ε and Taylor, we see

ε−2−d
∫
Rd

k

(‖y − x‖
ε

)
( f (y) − f (x))dy = ε−2

∫
Rd

k(‖u‖)( f (x + εu) − f (x))du

= ε−1
∫
Rd

k(‖u‖)∇ f (x) · udu + 1

2

∫
Rd

k(‖u‖)uT H(x)udu + O(ε),
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where H(x) is the Hessian of f in x . Now changing coordinates to integrate over each sphere
Br of radius r with respect to the appropriate surface measure Sr and then with respect to r ,
we obtain

ε−1
∫
R

k(r)
∫
Br

∇ f (x) · wSr (dw)dr + 1

2

∫
R

k(r)
∫
Br

wT H(x)wSr (dw)dr + O(ε).

Now because of symmetry the integrals of wi and of wiw j over spheres vanish for each
i �= j . Moreover the integrals of w2

i do not depend on i , but only on r . Therefore the first
term vanishes and we are left with

1

2

∫
R

k(r)C(r)� f (x)dr + O(ε) = C ′� f (x) + O(ε).

This shows convergence (at least pointwise, for uniform convergence we have to be a little
more careful about the O(ε)).

3.3 Convergence Result

Integral Over Tangent Space
Let α > 0 be such that supp k ⊂ [0, α] (such α exists since k is compactly supported). We
denote for p ∈ M, r > 0 : Bd(p, r) = {q ∈ M : d(p, q) ≤ r}. Then we can write

∫
M
k(d(p, q)/ε)( f (q) − f (p))V̄ (dq) =

∫
Bd (p,αε)

k(d(p, q)/ε)( f (q) − f (p))V̄ (dq).

(13)
Denote for η ∈ TpM, r > 0 : Bp(η, r) = {ξ ∈ TpM : ||ξ − η|| ≤ r} (not to be confused
with Bρ , which is a ball in M with respect to the original metric ρ). For ε small enough we
know that expp : TpM ⊃ Bp(0, αε) → Bd(p, αε) ⊂ M is a diffeomorphism. We want to
use this to write the integral above as an integral over Bp(0, ε) ⊂ TpM :

∫
Bd (p,αε)

k(d(p, q)/ε)( f (q) − f (p))V̄ (dq)

=
∫
Bp(0,αε)

k(d(p, expp(η))/ε)( f (expp(η)) − f (p))V̄ ◦ exp(dη)

=
∫
Bp(0,α)

k(d(p, expp(εη))/ε)( f (expp(εη)) − f (p))V̄ ◦ exp ◦λε(dη)

=
∫
Bp(0,α)

k(||η||)( f (expp(εη)) − f (p))V̄ ◦ exp ◦λε(dη). (14)

This means we integrate with respect to the measure V̄ ◦ exp ◦λε , where λε denotes multi-
plication with ε.

Determining the Measure V̄ ◦ exp ◦λε

Since Bp(0, αε) is a star-shaped open neighbourhood of 0, we see that for ε small enough
Vε := Bd(p, αε) = expp(Bp(0, αε)) is a normal neighbourhood of p, so there exists a
normal coordinate system (x, Vε) that is centered at p.We interpret, for v ∈ R

n , vp ∈ TpM as∑
i vi

∂
∂xi

. Consequently, when we write Ap for some subset A ofRn , we mean {vp : v ∈ A}.
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Since the basisW =
(

∂
∂x1

. . . , ∂
∂xn

)
is orthogonal in TpM , it is easy to see that φ := vp �→ v

preserves the inner product and is an isomorphism of inner product spaces. Indeed,

||vp||2 = 〈
vp, vp

〉 = (vp)
i (vp)

j gi j =
∑
i j

viv jδij =
∑
i

(vi )2 = ||v||2.

In particular BRn (0, αε)p = Bp(0, αε) (where BRn denotes a ball in R
n with respect to

the Euclidean metric). We can use this in the following lemma, which tells us more about
V̄ ◦ exp ◦λε .

Lemma 3.9 There exist ε′ > 0 and a function h : BRn (0, ε′) → R such that for t tending

to 0 h(t) = O(||t ||2) and for all 0 < ε < ε′: V̄ ◦ exp ◦λε = εn
(
1+h(εt)
V (M)

dt1 . . . dtn
)
◦ φ on

Bp(0, α).

Proof Let ε′ be small enough such that the considerations above the lemma hold and let
ε < ε′. For clarity of the proof, we first separately prove the following statement.

Claim: x ◦ exp = φ on BRn (0, αε)p .

Proof The geodesics through p are straight lines with respect to x , so they are of the form
x(γ (t)) = ta+ b with a, b ∈ R

n . For η = ∑
i η

i ∂
∂xi

, the geodesic starting at p with tangent

vector η at p should satisfy b = x(p) = 0 and ai = ηi for all i , so we see γ k = tηk . For
q ∈ Bd(p, αε), we see xk(exp(x(q)p)) = 1 ∗ xk(q) = xk(q), so exp(x(q)p) = q . This
also shows that x ◦ exp(vp) = v for v ∈ BRn (0, αε) (since x is invertible), which gives an
identification

x ◦ exp : TpM ⊃ BRn (0, αε)p → BRn (0, αε) ⊂ R
n

which is the restriction of φ to BRn (0, αε)p . This situation is sketched in Fig. 3. 
�
Now we will first use the definition of integration to see what the measure is in coordinates
(so it becomes a measure on a subset of Rn). Then we will use the claim above: we will pull
the measure on Rn back to TpM using φ.
On (x, Vε) the volume measure is given by

√
detGdx1 ∧ . . . ∧ dxn . According to (Wang

[23], Cor 2.3),
√
detG can be expanded (in normal coordinates) as 1+ h(x) where h is such

that h(x) = O(||x ||2). Now the measure can be written in local coordinates on BRn (αε′) as
(1 + h(x))dx1 ∧ . . . ∧ dxn , so the uniform measure is 1+h(x)

V (M)
dx1 ∧ . . . ∧ dxn . This yields

the measure V̄ ◦ x−1 = 1+h(t)
V (M)

dt1 . . . dtn on x(Vε′) = BRn (0, αε′). We have on BRn (0, α)p:

V̄ ◦ exp ◦λε = (V̄ ◦ x−1) ◦ (x ◦ exp) ◦ λε.

According to the claim above, x ◦ exp is a restriction of φ, so we can replace it by φ. Since
this map is linear, it can be interchanged with λε , which yields (inserting what we found
before and since ε < ε′):

(
1+ h(t)

V (M)
dt1 . . . dtn

)
◦ λε ◦ φ =

(
εn(1+ h(εt))

V (M)
dt1 . . . dtn

)
◦ φ.

In the last step we interpret εn(1+h(εt))
V (M)

dt1 . . . dtn as a measure on BRn (0, α) and this last
step is then just a transformation of measures on R

n . This yields the expression that we
want. 
�
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p

00

TpM

M

R
n

expp
x

φ

Bd(p, αε)

Bp(0, αε) BRn(0, αε)

Fig. 3 The situation in Lemma 3.9. On Bp(0, αε): x ◦ exp = φ. The uniform measure on Bd (p, αε) is moved
via x to BRn (0, αε) using the formula

√
detGt1 . . . tn . This measure can then be pulled back to Bp(0, αε)

using φ. Since φ is an inner product space isomorphism, it will be easy to deal with orthogonal transformations
later, in Lemma 3.12

Remark 3.10 We used [23, Cor 2.3] in the proof above. In these notes the expansion of√
detG(p, x) is calculated around a point p in normal coordinates x centered around p:

√
detG(p, x) = 1− 1

6
Ric(p)kl x

k xl + O
(|x |3) . (15)

As can be seen, there are no linear terms in the expansion. The coefficients for the quadratic
terms are coefficients of the Ricci curvature of M in p. This implies that the way that the
uniform distribution on a ball around p in M is pulled back to the tangent space via the
exponential map depends on the curvature of M in p. In particular, if there is no curvature,
M is locally isomorphic to a neighbourhood in Rn so the same thing happens as in Rn . This
means that we get a uniform distribution on a ball around 0 in the tangent space.

Remark 3.11 We will need in Proposition 3.13 that the statement of Lemma 3.9 holds uni-
formly in all points of the manifold. This means that the difference between the uniform
measure on a ball in the tangent space and the pulled back uniform measure on a geodesic
ball in the manifold decays quadratically with ε uniformly in the manifold. Note that this
uniform convergence is intuitively clear, since the difference between the two measures is
caused by curvature and curvature is bounded in a compact manifold. As in the proof of
Lemma 3.9, one needs to write

√
detG(expp(x)) = 1+ h p(x)

for some function h p that is O(|x |2) independent of p. Here G(q) is the metric matrix at
q expressed in (fixed) normal coordinates centered at p. Since √ and det are uniformly
continuous in the right domains, it suffices to show that

G(expp(x)) = I + O(|x |2), (16)

where the O(|x |2) is independent of p. In other words,

||G(expp(x)) − I || ≤ C ||x ||2, (17)
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where C does not depend on p. For all p ∈ M (and for any system of normal coordinates
centered at p) we have the following Taylor expansion (note that for fixed p G(expp(·))i j is
a map from a (subset of) Rd to R):

G(expp(x))i j = δi j + 1

3
Ri jkl x

k xl +
∑
|β|=3

3

β!
∫ 1

0
(1− t)2DβG(expp(·))i j (t x)dt · xβ . (18)

From this we get (17) directly for fixed p, i.e. we have

||G(expp(x)) − I || ≤ Cp||x ||2.
In order to obtain uniformity of Cp in p, we note that the functions of p and x appearing in
the r.h.s. of (18) can be made smooth both in p and x . Smoothness in x is obvious (within the
injectivity radius) and smoothness in p follows from a special choice of normal coordinates
in such a way that they vary smoothly with p. A choice of normal coordinates is equivalent to
a choice of an orthonormal basis, so one can construct smoothly varying normal coordinates
by taking a smooth section of the orthonormal frame bundle (this can only be done locally,
but it is enough to have the uniformity result locally, since then by compactness one has it
globally). By compactness, the injectivity radius is bounded from below by some δ > 0.
Now for all p ∈ M and ||x || < δ, (18) holds and (locally) the quantities on the r.h.s. vary
smoothly and therefore (again by compactness) one can show that C := supp Cp is finite.

A Canonical Part Plus a Rest Term
Now define

μ =
(

1

V (M)
dt1 . . . dtn

)
◦ φ and μR =

(
h(εt)

V (M)
dt1 . . . dtn

)
◦ φ

on Bp(0, α) and 0 everywhere else. Then the lemma implies that (14) equals∫
Bp(0,α)

k(||η||)( f (expp(εη)) − f (p))εn(μ + μR)(dη)

= εn
∫
TpM

( f (p(ε, η)) − f (p))k(||η||)(μ + μR)(dη).

Recall that p(ε, η) is just notation for following the geodesic from p in the direction of η

for time ε. Now we define μk = k(|| · ||)μ (so the measure which has density k(|| · ||) with
respect to μ) and analogously μk

R = k(|| · ||)μR . Then we can write the integral above as

εn
∫
TpM

( f (p(ε, η)) − f (p))(μk + μk
R)(dη).

In this way we transformed the integral to one that we worked with in Sect. 2.1 since we
wrote it as the generator of a geodesic random walk (see LN on page 2). To use the theory
that we obtained in that section, we need the following lemma. It tells us that μk can be used
as a stepping distribution for a geodesic random walk and it gives us the constant speed of
the Brownian motion to which it converges (see Sect. 2.2).

Lemma 3.12 μk is canonical. Moreover
∫
TpM

||η||2μk(dη) = 2πn/2

V (M)�(n/2)

∫∞
0 k(r)rn+1dr .

Proof First of all recall that k is continuous and compactly supported, so the integral over k
above makes sense and is finite. Define ν = 1

V (M)
dt1 . . . dtn on BRn (0, α) and 0 everywhere

else. Thenwe canwriteμ = ν◦φ. Sinceφ preserves the norm,we see that k(||·||TpM )◦φ−1 =
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k(|| · ||Rn ). This means that μk = νk ◦ φ, where νk := k(|| · ||)ν. Since φ preserves the inner
product, the measure μk behaves the same with respect to orthogonal transformations in
TpM as νk with respect to orthogonal transformations in R

n . Since νk is clearly preserved
under such transformations, so is μk . This shows that μk is canonical.
Now we calculate the corresponding constant.∫

TpM
||η||2TpMμk(dη) =

∫
TpM

||vp||2TpMμk(dvp) =
∫
Rn

||φ−1(v)||2TpMνk(dv)

=
∫
Rn

||v||2
Rnν

k(dv) = 1

V (M)

∫
BRn (0,α)

||v||2
Rn k(||v||Rn )dv

= 1

V (M)

∫ α

0
r2k(r)

2πn/2

�(n/2)
rn−1dr

= 2πn/2

V (M)�(n/2)

∫ ∞

0
k(r)rn+1dr

The first stepwas just writing the integral with respect to the coordinates for whichwe defined
μ. The second step holds because μk = νk ◦ φ. The third uses the fact that φ preserves the
norm. The penultimate step is a change of coordinates inRn using the fact that ||v|| is constant
on spheres around the origin. Here 2πn/2

�(n/2)r
n−1 is the area of r Sn−1. In the last step we used

that supp(k) ⊂ [0, α]. 
�
Conclusion
We use everything above to obtain the statement that we aim for.

Proposition 3.13 Set

C = πn/2

V (M)n�(n/2)

∫ ∞

0
k(r)rn+1dr .

Then as ε → 0 we have uniformly in p ∈ M:

ε−2−n
∫
M
k(d(p, q)/ε) [ f (q) − f (p)] V̄ (dq) −→ C�M f (p).

Proof Let p ∈ M . We can write∫
M
k(d(p, q)/ε)( f (q) − f (p))V̄ (dq) = εn

∫
TpM

( f (p(ε, η)) − f (p))(μk + μk
R)(dη)

= εn
∫
TpM

( f (p(ε, η)) − f (p))μk(dη)

+ εn
∫
TpM

( f (p(ε, η)) − f (p))2μk
R(dη).

From the results in Sects. 2.1 and 2.2 (Proposition 2.14) and Lemma 3.12, we see for the
first term uniformly in p

lim
ε↓0

1

ε2+n
εn

∫
TpM

( f (p(ε, η)) − f (p))μk(dη)

= lim
ε↓0

1

ε2

∫
TpM

( f (p(ε, η)) − f (p))μk(dη)

= 1

n

2πn/2

V (M)�(n/2)

∫ ∞

0
k(r)rn+1dr · 1

2
�M f (p) = C�M f (p).
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Now it suffices to show that the second term goes to zero at a rate independent of p. Let
ε′′, K > 0 such that ε′′ < ε′ and |h(s)| < K ||s||2 for s ∈ BRn (0, ε′′) (where both ε′ and h
are from Lemma 3.9). We need Remark 3.11 to make sure that K and ε′′ do not depend on
p. Now note that for ε < ε′′:

|μR | ≤
(

sup
t∈BRn (0,1)

|h(εt)|
)

μ ≤
(

sup
t∈BRn (0,1)

K ||εt ||2
)

μ =
(

sup
t∈BRn (0,1)

K ε2||t ||2
)

μ

= K ε2μ.

Now we see:

lim
ε↓0

1

ε2+n
εn

∣∣∣∣∣
∫
TpM

f (p(ε, η)) − f (p)μk
R(dη)

∣∣∣∣∣
≤ lim

ε↓0
1

ε2

∫
TpM

| f (p(ε, η)) − f (p)| k(||η||)|μR |(dη)

≤ lim
ε↓0

1

ε2

∫
TpM

d(p(ε, η), p)L f k(||η||)K ε2μ(dη) ≤ L f K lim
ε↓0

∫
TpM

ε||η||k(||η||)μ(dη)

= L f K
∫
TpM

||η||k(||η||)μ(dη) lim
ε↓0 ε = 0,

where we used that the integral is finite since k is bounded and has support in [0, α]. Com-
bining everything above gives what we wanted. 
�

3.4 Example Grid

So far, we have seen that a sequence of grids is suitable for the hydrodynamic limit problem if
the empirical distributions converge to the uniform distribution in the Kantorovich topology.
We conclude by giving examples of such grids. To be more precise, we show that if one
constructs a grid by adding uniformly sampled points from the manifold, this grid is suitable
with probability 1.

Remark 3.14 (Comparison with standard grids) Recall the grids SN on the one-dimensional
torus S from Remark 3.2. We can show that the empirical measures corresponding to these
grids along the subsequence N = 2m,m = 0, 1, 2, . . . converge to the uniform measure on
S with respect to the Kantorovich distance. To this end let N = 2m be fixed, call the corre-
sponding empirical measureμN and call the uniform measure λ. Recall that the Kantorovich
distance between these measures is alternatively given by

W1(μ
N , λ) = inf

γ∈�(μN ,λ)

∫
S×S

d(x, y)γ (dx, dy),

where �(μN , λ) is the set of all couplings of μN and λ. Now let Y be a uniform random
variable on S and define

X = k/N ⇐⇒ Y ∈
[
k − 1/2

N
,
k + 1/2

N

)
.
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Denote the joint distribution of (X , Y ) by ν. Then it is easy to see that ν ∈ �(μN , λ). This
implies that

W1(μ
N , λ) ≤

∫
S×S

d(x, y)ν(dx, dy) = Eν(d(X , Y )) ≤ 1

2N
.

This implies convergence with respect to the Kantorovich metric along the subsequence
N = 2m,m = 0, 1, 2, . . .. Note, however, that the corresponding edge weights as described
in this section are not the same as those in Remark 3.2.

Convergence of a Random Grid
Now we move back to the general case of a compact and connected n-dimensional Rieman-
nian manifold M . Let (Pn)∞n=1 be a sequence of iid uniformly random points of M . Define

μN = 1
N

∑N
i=1 δPi .We follow [21, Example 5.15] to show thatW1(μ

N , V̄ ) → 0 as N → ∞.
First we will show that the expectation goes to 0, then we will derive that it goes to 0 almost
surely.
For now, let N be fixed. LetF1 be the set of Lipschitz function on M with Lipschitz constant
≤ 1. Then we define for f ∈ F1 the random variable X f = μN f − V̄ f . Note that both μN

and V̄ are probability distributions, so X f (ω) is Lipschitz in f for each ω:

|X f − Xg| = |μN f − V̄ f − (μN g − V̄ g)| ≤ |μN ( f − g)| + |V̄ ( f − g)| ≤ 2|| f − g||∞.

Now note that since f has Lipschitz constant ≤ 1:

sup
p∈M

f (p) − inf
q∈M f (q) = sup

p,q∈M
| f (p) − f (q)| ≤ sup

p,q∈M
d(p, q) =: K .

M is compact, so K < ∞. Since adding constants to f does not change X f , it suffices to
consider f ∈ F1,K = {g ∈ F1 : 0 ≤ g ≤ K }. It follows that for each f ∈ F1,K by writing

X f =
N∑
i=1

f (Xi ) − V̄ f

n
,

we see that it is a sum of iid random variables taking values in [− K
N , K

N ]. By the Azuma-

Hoeffding inequality, this implies that X f is K 2

N -subgaussian for each f ∈ F1,K . Now [21,
Lemma 5.7] shows that

E[W1(μ
N , V̄ )] ≤ inf

ε>0

⎧⎨
⎩2ε +

√
2K 2

N
log N (W , || · ||∞, ε)

⎫⎬
⎭ ,

where N (F1,K , || · ||∞, ε) is the minimal number of points in some space containing F1,K

such that the balls of radius ε with respect to the uniform distance around those points cover
F1,K .

Estimating the Covering Number N (F1,K , || · ||∞, ε)

We now need to estimate this covering number. To do this we need an upper bound of the
covering number N (M, d, ε) of M . Since M is compact there exist a, δ > 0 such that for
all 0 < ε < δ: N (M, d, ε) ≤ aε−d (see for instance [16, Lemma 4.2]). Using this we can
prove the following.

Lemma 3.15 There is a c > 0 such that for all 0 < ε < δ: N (F1,K , || · ||∞, ε) ≤ exp c/εd .
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Proof Fix ε > 0 and call m = N (M, d, ε/4). By definition of this number, we can find
points p1, . . . , pm ∈ M such that ∪m

i=1B(pi , ε/4) ⊃ M . Now define V1 = B(p1, ε/4) and
for i ≥ 2: Vi = B(pi , ε/4) \ ∪i−1

j=1Vj . Now for f ∈ F1,K , define π f : M → R by

π f : Vi � p �→ ε

(⌊
f (pi )

ε

⌋
+ 1

2

)
.

Since each p ∈ M is contained in exactly one Vi (by construction), this map is well-defined.
Note that if kε ≤ f (pi ) < (k + 1)ε, then π f = (k + 1/2)ε on Vi . In particular clearly
| f (pi ) − π f (pi )| ≤ ε/2. Now denote Y = {π f | f ∈ F1,K }.
Now fix f ∈ F1,K and p ∈ M . Let i be such that p ∈ Vi . Then we see:

|π f (p) − f (p)| = |π f (pi ) − f (p)| ≤ |π f (pi ) − f (pi )| + | f (pi ) − f (p)|
≤ ε/2+ L f d(pi , p)

≤ ε/2+ ε/4 < ε.

This shows that ||π f − f ||∞ ≤ ε, which implies that Y is an ε-net for F1,K . Hence
N (F1,K , || · ||∞, ε) ≤ #Y .
All we have to do now is estimate #Y .
First of all let π f ∈ Y . Note that if d(pi , p j ) ≤ ε/2, we see

|π f (pi ) − π f (p j )| ≤ |π f (pi ) − f (pi )| + | f (pi ) − f (p j )| + | f (p j ) − π f (p j )|
≤ ε/2+ L f d(pi , p j ) + ε/2 = 3ε/2.

Since |π f (pi )−π f (p j )| = kε for some k ∈ Z,we conclude |π f (pi )−π f (p j )| ∈ {−ε, 0, ε},
so π f (pi ) ∈ {π f (p j ) − ε, π f (p j ), π

f (p j ) + ε}.
Now define a graph G with vertices p1, . . . , pm by putting an edge between pi and p j

whenever d(pi , p j ) ≤ ε/2. Any π f is uniquely specified by its values on the nodes of
G. Note further that whenever we know π f for some point of the graph, there are only 3
possible values left for each of its neighbours (since neighbours are at distance at most ε/2).
Now #Y is dominated by the amount of ways in which we can assign values of the type
(k + 1/2)ε to nodes of G while keeping this restriction into account. Define, for i ≤ 0,
Si = {p ∈ G : dG(p1, p) = i}, where dG(p, q) denotes the minimum amount of edges that
need to be followed to walk from p to q in G. Now we can start counting.
For p1, there are at most  K/ε" possible values (recall that any f ∈ F1,K has 0 ≤ f ≤ K ).
Each node in S1 is a distance at most ε/2 from p1, so each node can take at most 3 values. This
brings the possible amount of value assignments to (less than)  K/ε" 3#S1 . Now each node
in S2 is at distance at most ε/2 of a node in S1, so each of these can take at most 3 different
values. This brings the number of options so far to at most  K/ε" 3#S13#S2 . Continuing in
this way, we obtain that the number of ways to assign values is at most

⌈
K

ε

⌉ ∞∏
i=1

3#Si =
⌈
K

ε

⌉
3
∑∞

i=1 #Si =
⌈
K

ε

⌉
3m−1 =

⌈
K

ε

⌉
3N (M,d,ε/4)−1.

Recall that m is the total amount of balls as we defined at the beginning of the proof, which
we chose equal to N (M, d, ε/4). Now we know that for 0 < ε < δ

N (F1,K , || · ||∞, ε) ≤
⌈
K

ε

⌉
3a/(ε/4)d−1 =

⌈
K

ε

⌉
3a4

d/εd−1.

This implies that there exists c > 0 such that for all 0 < ε < δ, N (F1,K , || · ||∞, ε) ≤ ec/ε
d
.


�
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Now we see that for any 0 < ε < δ :

E[W1(μ
N , V̄ )] ≤ 2ε +

√
2K 2

N
log exp c/εd = 2ε +

√
2cK 2

N
ε−d/2.

Elementary methods show that this value takes a minimum at ε = c0N
−1
d+2 where c0 is some

constant (take N large enough such that c0N
−1
d+2 < δ). This shows that the optimal bound

that we get is

2c0N
−1
d+2 +

√
2cK 2

N

(
c0N

−1
d+2

)−d/2 = 2c0N
−1
d+2 + c1N

−1
d+2

where c1 is the product of some constants that don’t depend on N . This shows that

E[W1(μ
N , V̄ )] ≤ (2c0 + c1)N

−1
d+2 → 0

as n → ∞.

Convergence a.s.
It remains to show that W1(μ

N , V̄ ) goes to zero almost surely. For a function f : MN → R

define

Di f (p1, . . . , pN ) = sup
z∈M

f (p1, . . . , pi−1, z, pi+1, . . . , pN )

− inf
z∈M f (p1, . . . , pi−1, z, pi+1, . . . , pN ).

Further, define the function H : MN → R by

(p1, . . . , pN ) �→ sup
g∈F1

{
1

N

N∑
i=1

g(pi ) −
∫
M
gdV̄

}
.

Note that H(p1, . . . , pN ) = W1(μ
N , V̄ ).

Lemma 3.16 Set (as before) K = supp,q∈M d(p, q). Then for each 1 ≤ j ≤ N: ||Dj H ||∞ ≤
K/N.

Proof Let 1 ≤ j ≤ N and fix p1, . . . , pN . Denote for p ∈ M and g ∈ F1

J j (g, p) = 1

N

⎛
⎝ N∑

i=1,i �= j

g(pi ) + g(p)

⎞
⎠−

∫
M
gdV̄ .

Now let p, q ∈ M . Then for any g ∈ F1:

|J j (g, p) − J j (g, q)| = 1

N
|g(p) − g(q)| ≤ 1

N
d(p, q) ≤ K

N
.

This shows that g �→ J j (g, p) and g �→ J j (g, q) are always at most K/N apart from each
other, which implies that

∣∣∣∣∣ supg∈F1

J j (g, p) − sup
g∈F1

J j (g, q)

∣∣∣∣∣ ≤
K

N
.
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Now

Di H(p1, . . . , pN ) = sup
p∈M

H(p1, . . . , pi−1, p, pi+1, . . . , pN )

− inf
q∈M H(p1, . . . , pi−1, q, pi+1, . . . , pN )

= sup
p,q∈M

|H(p1, . . . , pi−1, p, pi+1, . . . , pN )

−H(p1, . . . , pi−1, q, pi+1, . . . , pN )|

= sup
p,q∈M

∣∣∣∣∣ supg∈F1

J j (g, p) − sup
g∈F1

J j (g, q)

∣∣∣∣∣ ≤
K

N
.

Since P1, . . . , PN were arbitrary, we conclude that ||Dj H ||∞ ≤ K
N . 
�

Now we are in position to prove the main result.

Proposition 3.17 W1(μ
N , V̄ ) → 0 almost surely as N → ∞.

Proof Since P1, . . . , PN are independent, (van Handel [21], Theorem 3.11) gives us that for
any t > 0

P(W1(μ
N , V̄ ) − EW1(μ

N , V̄ ) > t) = P (H(P1, . . . , PN ) − EH(P1, . . . , PN ) > t)

≤ exp

(
−2t2∑N

k=1 ||DkH ||2∞

)
≤ exp

(−2t2N

K 2

)
,

where the last inequality follows from Lemma 3.16. For reasons of symmetry we obtain

P

(∣∣∣W1(μ
N , V̄ ) − EW1(μ

N , V̄ )

∣∣∣ > t
)
≤ 2 exp

(−2t2N

K 2

)
.

By a standard application of the Borel-Cantelli lemma, this implies that W1(μ
N , V̄ ) −

EW1(μ
N , V̄ ) → 0 a.s. Since we have already seen that EW1(μ

N , V̄ ) → 0, we conclude
that a.s. as N → ∞

W1(μ
N , V̄ ) → 0.


�
We conclude that sampling uniformly from the manifold yields a suitable grid with proba-
bility 1.

4 Hydrodynamic Limit of the SEP

In Sect. 3 we showed the existence of uniformly approximating grids. In this section we will
apply such grids. We will use it to define an interacting particle system on the manifold. Then
we will show that this interacting particle system has a hydrodynamic limit and that this limit
satisfies the heat equation (the precise formulation is given in Theorem 4.2). We follow a
standard method that is used in (Seppäläinen [17], Chap. 8) for the Euclidean case.
Now let (GN ,WN )∞N=1 be a sequence of uniformly approximating grids with corresponding
weights. Recall that this means the following. There is a sequence (pn)∞n=1 in M such that
GN = {p1, . . . , pN }. On each GN , there is a random walk XN which jumps from pi to p j
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with (symmetric) rate WN
i j . We assume that there exists some function a : N → [0,∞) and

some constant C > 0 such that for each smooth φ

a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) −→ C�Mφ(pi ) (N → ∞)

where the convergence is in the sense that for all smooth φ1

lim
N→∞

1

N

N∑
i=1

∣∣∣∣∣∣a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) − C�Mφ(pi )

∣∣∣∣∣∣ = 0. (19)

By dividing a(N ) by C if necessary, we can assume that C = 1.

Remark 4.1 Note that for the result of this section it is not necessary to construct grids from a
sequence. Any sequence of finite grids such that (19) holds would do. However, since the grid
that we constructed in Sect. 3 is of this form and this section partially serves as an example
of the application of that grid, we formulate our results in this section in the same way.

4.1 Symmetric Exclusion Process

The Symmetric Exclusion Process (SEP) is an interacting particle system that was introduced
in Spitzer [19] and studied in detail in (Liggett [15], Chap. 8). The idea is that there is some
(possibly countably infinite) amount of particles on a (possibly countably infinite) graph G.
The particles are considered identical. Each particle jumps after independent exponential
times with parameter 1 from x to y with probability p(x, y), provided that the place that it
wants to jump to is not already occupied. Otherwise, the jump is suppressed. We assume that
p(x, y) = p(y, x). Let ηt ∈ {0, 1}G denote the configuration of the particles at time t , i.e.
ηt (x) = 1 if there is a particle at place x ∈ G at time t and 0 else. We will sometimes write
η(p, t) = ηt (p). For any configuration η and points x, y define ηxy by

ηxy(z) =

⎧⎪⎨
⎪⎩

η(x) if z = y

η(y) if z = x

η(z) if z �= x, y

An equivalent description of this process is the following. All edges (xy) have independent
exponential clocks with rate p(x, y) = p(y, x). Whenever a clock rings, the particles that
are at either side of the corresponding edge jump along the edge. This means that if there are
no particles, nothing happens. If there is one particle, it jumps. If there are two particle, they
switch places. Since we are not interested in individual particles, the configuration stays the
same in the latter case. Note that in this way there can never be more than two particles at the
same place. Using the notation introduced above, we see that the generator of this process is
defined on the core of local functions as

L f (η) = 1

2

∑
x,y

p(x, y)( f (ηxy) − f (η)).

The factor 1
2 is there since we count every edge twice.

1 Recall from Remark 3.4 that if we replace the average in this expression by a supremum, this condition
implies convergence of the corresponding semigroups.

123



Hydrodynamic Limit of the Symmetric Exclusion... 105

The Process
We now define the SEP ηN = (ηN

t )t≥0 on GN through the generator

LNh(η) = a(N )

2

N∑
i, j=1

WN
i j (h(ηi j ) − h(η)), h : {0, 1}GN → R.

Here ηi j := ηpi p j . It follows from our considerations above that this process describes
particles that perform independent random walks according to XN with the restriction that
jumps to occupied sites are suppressed.
Let (Xi )

∞
i=1 be some sequence of (possibly degenerate) random variables taking values in

{0, 1}. Set as the initial configuration ηN
0 (pi ) = Xi .

4.2 Hydrodynamic Limit

We will use this subsection to give the basic definitions that describe the idea of a hydro-
dynamic limit. At a microscopic scale, the particles are just random walkers with some
interaction, but at the macroscopic scale (where limits are taken in space and time), the
behaviour is deterministic: it is described by a partial differential equation (in our case the
heat equation).

Path Space
Now write R(M) for the space of Radon measures on M with the vague topology and let
D = D([0,∞), R(M)) denote the space of all paths γ : [0,∞) → R(M) such that γ is
right continuous and has left limits. On this space we can define the Skohorod metric (see
for instance [17, Appendix A.2.2]). Since R(M) is a Polish space, it can be shown that D
with the Skohorod metric is a Polish space too.

Initial Conditions and Trajectories of Particle Configurations
Define

μN
t = 1

N

N∑
i=1

δpi η
N
t (pi ),

where δp is the Dirac measure which places mass 1 at p ∈ M . It puts a point mass at each
particle and rescales it by the amount of possible positions, which represents the particle
configuration ηN

t at time t . In particular μN
t is a sub-probability measure and is in R(M).

Instead of dealing with this problem pointwise for each t , we will look at trajectories. As the
particles move according to the SEP, γ N : [0,∞) → R(M) defined by t �→ μN

t is a random
trajectory and hence a random element of D. It represents the positions of the particles
over time. The initial configuration X1, . . . , XN and the dynamics of the SEP determine a
distribution QN on D. In this way we obtain a sequence (QN )∞N=0 of measures on D.

Assumption on the Initial Configuration
We assume that there exists a measurable function ρ0 : M → R such that 0 ≤ ρ0 ≤ 1 and
μN
0 converges vaguely to ρ0dV̄ in probability, i.e. for any continuous φ as N → ∞:

∫
M

φdμN
0 →

∫
M

ρ0φdV̄ in probability. (20)

If this is the case, we say that ρ0dV is the density profile corresponding to the configura-
tions ηN

0 . Note that using measures here to represent the particles provides a bridge between
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separate particles (discrete measures) and density profiles (measures that are absolutely con-
tinuous with respect to V ). We would like to show that if this initial condition is given, then
at any time t the configurations ηN

t have a corresponding density profile ρtdV̄ . Moreover,
we want to show that t �→ ρt solves the heat equation with initial condition ρ0.

Example of Initial Distribution
Suppose for now that the pi ’s are such that for any continuous f : 1

N

∑N
i=1 f (pi ) →∫

M f dV̄ .2 Define the random variables (Xi )
∞
i=1 to be independent Bernoulli random vari-

ables with EXi = ρ0(pi ) for some continuous function ρ0 : M → Rwith 0 ≤ ρ0 ≤ 1. Then
we see as N → ∞:

E

[∫
φdμN

0

]
= E

[
1

N

N∑
i=1

φ(pi )η
N
0 (pi )

]
= 1

N

N∑
i=1

φ(pi )EηN
0 (pi )

= 1

N

N∑
i=1

φ(pi )ρ0(pi ) →
∫

φρ0dV̄ ,

since φ and ρ0 are continuous. Further,

var

[∫
φdμN

0

]
= var

[
1

N

N∑
i=1

φ(pi )η
N
0 (pi )

]
= 1

N 2

N∑
i=1

φ(pi )var(η
N
0 (pi ))

= 1

N 2

N∑
i=1

φ(pi )ρ0(pi )(1− ρ0(pi )) → 0.

Together this implies that (20) holds here for any continuous φ.

Main Result
After all these definitions, we can state the main result of this section.

Theorem 4.2 Let M be a complete, n-dimensional, connected Riemannian manifold and let
(GN ,WN )∞N=1 be a sequence of uniformly approximating grids with corresponding weights.
Let ηN

t be particle configurations that behave according to the SEP on (GN ,WN ) and let
μN
t be its measure valued representation. Suppose that μN

0 has density profile ρ0dV for
some measurable function ρ0. Then the trajectory t �→ μN

t converges in probability to the
trajectory t �→ ρtdV in the Skohorod topology, where t �→ ρt satisfies the heat equation on
M with initial condition ρ0.

4.3 Convergence Result

Dynkin Martingale
The proof of the hydrodynamic limit follows the line of (Seppäläinen [17], Chap. 8) which
is a canonical method that is also discussed in Kipnis and Landim [13]. However, in our
context, there are several new technical difficulties along the way which we have to tackle.
Its core calculations are based on the following Dynkin martingale result. It is a standard
result and it is also proved in Seppäläinen [17]. We will formulate it in terms of our situation
on a compact Riemannian manifold.

2 Since Kantorovich convergence is stronger than convergence in distribution, this is in particular true for the
grids that we consider in Sect. 3.
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Proposition 4.3 Let {ηt , t ≥ 0} be a Feller process on a compact Riemannian manifold with
generator L and semigroup St . For any function f such that both f and f 2 are in D(L),
define

Mt = f (ηt ) − f (η0) −
∫ t

0
L f (ηs)ds.

Then Mt is a martingale with respect to the filtration Ft = σ {ηr , r ≤ t}. Moreover, its
quadratic variation 〈M, M〉t equals

∫ t
0 γ (s)ds, where γ (s) = (L( f 2) − 2 f L f )(ηs).

Application of the Proposition
First of all fix a smooth function φ on M . Define for η ∈ {0, 1}GN

: f N (η) =
1
N

∑N
i=1 η(pi )φ(pi ) = μ(φ), whereμ = 1

N

∑n
i=1 δiη(pi ). Note that since LN is the genera-

tor of a randomwalk on a the finite space of configurations, its domain consists of all functions
on those configurations, so in particular f N and ( f N )2 are in it. Applying Theorem 4.3 in
this situation shows that MN defined by

MN
t = f N (ηN

t ) − f N (ηN
0 ) −

∫ t

0
LN f (ηN

s )ds (21)

is a martingale with quadratic variation
〈
MN , MN

〉
t = ∫ t

0 γ (s)ds, where γ (s) =
(LN ( f N )2 − 2 f N LN f N )(ηs). Some basic manipulations show that

f N (ηi j ) − f N (η) = − 1

N
(φ(p j ) − φ(pi ))(η(p j ) − η(pi ). (22)

Inserting definitions and leaving out some indexes (to keep everything clear) shows that the
right hand side of (21) equals

1

N

N∑
i=1

φ(pi )(ηt (pi )) − 1

N

N∑
i=1

φ(pi )(η0(pi ))

−
⎛
⎝−

∫ t

0

a(N )

2N

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))(ηs(p j ) − ηs(pi ))ds

⎞
⎠

= μN
t (φ) − μN

0 (φ) −
∫ t

0

a(N )

N

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))ηs(pi )ds

= μN
t (φ) − μN

0 (φ) −
∫ t

0

1

N

N∑
i=1

ηs(pi )

⎛
⎝a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi ))

⎞
⎠ ds. (23)

Using Convergence of the Generators
By (19), we can write for any pi :

a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi )) = �Mφ(pi ) + Epi (N ), (24)

where

E(N ) := 1

N

N∑
i=1

|Epi (N )| → 0 (N → ∞). (25)
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This shows that

∫ t

0

1

N

N∑
i=1

ηs(pi )

⎛
⎝a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi ))

⎞
⎠ ds

=
∫ t

0

1

N

N∑
i=1

ηs(pi )
(
�Mφ(pi ) + Epi (N )

)
ds

=
∫ t

0

1

N

N∑
i=1

ηs(pi )�Mφ(pi )ds +
∫ t

0

1

N

N∑
i=1

ηs(pi )Epi (N )ds

=
∫ t

0
μs(�Mφ)ds +

∫ t

0

1

N

N∑
i=1

ηs(pi )Epi (N )ds.

Plugging this into (23) and (21), we obtain:

μN
t (φ) − μN

0 (φ) −
∫ t

0
μN
s (�Mφ)ds = MN

t +
∫ t

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds, (26)

so for any T > 0:

sup
0≤t≤T

∣∣∣∣μN
t (φ) − μN

0 (φ) −
∫ t

0
μN
s (�Mφ)ds

∣∣∣∣ ≤ sup
0≤t≤T

∣∣∣MN
t

∣∣∣

+ sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds

∣∣∣∣∣ . (27)

We want to show that this expression converges to 0 in probability. We will deal with the
terms on the right hand side separately.

The Error Term
First of all∣∣∣∣∣

∫ t

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds

∣∣∣∣∣ ≤
∫ t

0

1

N

N∑
i=1

|ηN
s (pi )||Epi (N )|ds ≤

∫ t

0
E(N )ds

= t E(N ),

so

sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηs(pi )Epi (N )ds

∣∣∣∣∣ ≤ T E(N ) → 0 (by (25)).

Convergence of the Martingale to 0
Now for the other term. Since the trajectory t �→ μN

t is cadlag, so is MN . Hence by Doob’s
inequality we see:

P

(
sup

0≤t≤T

∣∣∣MN
t

∣∣∣ > δ

)
≤ E|MN

T |
δ

. (28)

To show that E|MN
T | goes to 0, it suffices to show that E

〈
MN , MN

〉
T goes to 0 (since then

E
[
(MN

T )2
] = E

〈
MN , MN

〉
T → 0 and hence E|MN

T | → 0). This is what the following
lemma tells us.
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Lemma 4.4 For any T > 0:

lim
N→∞E

〈
MN , MN

〉
T
= 0.

Proof Recall that
〈
MN , MN

〉
T = ∫ T

0 (LN ( f N )2 − 2 f N LN f N )(ηs)ds. By writing out, one
simply obtains

(LN ( f N )2 − 2 f N LN f N )(η) =
N∑

i, j=1

a(N )

2
WN

i j ( f (η
i j ) − f (η))2.

Using (22), we see

( f (ηi j ) − f (η))2 ≤
(
1

N
(φ(p j ) − φ(pi ))(η(p j ) − η(pi ))

)2

≤ 1

N 2 (φ(p j ) − φ(pi ))
2,

since η(pi ) ∈ {0, 1} for all i . This shows that

0 ≤
〈
MN , MN

〉
T
=
∫ T

0
(LN ( f N )2 − 2 f N LN f N )(ηs)ds

≤
∫ T

0

a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2ds = T
a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2.

This implies that also

0 ≤ E

〈
MN , MN

〉
T
≤ T

a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2. (29)

We can estimate this term by using (25). Some basic manipulations show that

a(N )

2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2 = −
N∑
i=1

φ(pi )a(N )

N∑
j=1

WN
i j (φ(p j ) − φ(pi ))

= −
N∑
i=1

φ(pi )
(
�Mφ(pi ) + Epi (N )

) = −
N∑
i=1

φ(pi )�Mφ(pi ) −
N∑
i=1

φ(pi )Epi (N ),

where the Epi ’s are as before. This implies that

lim sup
N→∞

∣∣∣∣∣∣
a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2

∣∣∣∣∣∣

≤ lim sup
N→∞

{
1

N 2

N∑
i=1

|φ(pi )||�Mφ(pi )| + 1

N 2

N∑
i=1

|φ(pi )||Epi (N )|
}

≤ lim sup
N→∞

1

N
||φ||∞||�Mφ||∞ + lim sup

N→∞
1

N
||φ||∞E(N ) = 0,

where in the last step we used (25). So we obtain

lim
N→∞

a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2 = 0.

Together with (29) this gives the result. 
�
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We conclude from the lemma that the right hand side of (28) goes to zero as N goes to infinity
and ε goes to zero, so

lim
ε↓0 lim

N→∞ sup
0≤t≤T

∣∣∣MN
t

∣∣∣ = 0 in probability.

Convergence of (27) to 0 in Probability
Combining everything above and using (27), we conclude that

lim
N→∞ sup

0≤t≤T

∣∣∣∣μN
t (φ) − μN

0 (φ) −
∫ t

0
μN
s (�Mφ)ds

∣∣∣∣ = 0 in probability.

In particular, for any δ ≥ 0, define

H δ =
{

α ∈ D : sup
0≤t<T

∣∣∣∣αt (φ) − α0(φ) −
∫ t

0
αs(�Mφ)ds

∣∣∣∣ ≤ δ

}
.

It can be shown, as in (Seppäläinen [17], Chap. 8), that H δ is closed for any δ > 0. Recall
from page 26 that we write the distribution of t �→ μN

t as QN . Then the convergence result
above implies that for any δ > 0:

lim
N→∞ QN (H δ) = 1.

Tightness of (QN )∞N=1
We will need that the sequence of distributions (QN )∞N=1 is tight. This can be shown in
exactly the same way as (Kipnis and Landim [13], p.55-56). In fact all the most crucial
calculations have already been performed above.

Lemma 4.5 The sequence of distributions (QN )∞N=1 is tight.

Proof It needs to be shown that the two conditions of (Kipnis andLandim [13], Chapt. 4, Thm.
1.3) are satisfied. Note that for any continuous f we can map a path ν ∈ D([0, T ], R(M)) to
the path in D([0, T ],R)givenby t �→ νt ( f ). This induces a sequenceof distributionsQN f −1

on D([0, T ],R). By (Kipnis and Landim [13], Chap. 4, Prop. 1.7) and the fact that the smooth
functions are uniformly dense in the set of continuous functions on a manifold, it suffices to
prove the conditions of (Kipnis and Landim [13], Chapt. 4, Thm. 1.3) for {QN f −1, N ≥ 0}
for all smooth f . Fix such f . Since each path stays in the set of sub-probability measures,
the first condition is easily satisfied. For the second condition, it suffices to prove Aldous’
tightness criterion, i.e. that

lim
γ→0

lim sup
N→∞

sup
τ∈IT ,θ≤γ

QN f −1
[∣∣∣μN

τ ( f ) − μN
τ+θ ( f )

∣∣∣ > ε
]
= 0, (30)

where IT denotes the set of all stopping times bounded by T . We know from equation (26)
that there exists a martingale M (depending on f ) such that

μN
t ( f ) − μN

0 ( f ) −
∫ t

0
μN
s (�M f )ds

︸ ︷︷ ︸
(I)

= MN
t︸︷︷︸

(II)

+
∫ t

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds

︸ ︷︷ ︸
(III)

.

It therefore suffices to check the tightness criterion for the RHS of this equation and for the
integral on the LHS (since the only other term is constant). Now we can make the following
estimations.
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(I). First of all, since μN
s is a sub-probability measure and �M f is bounded:

∣∣∣∣
∫ τ+θ

0
μN
s (�M f )ds −

∫ τ

0
μN
s (�M f )ds

∣∣∣∣ ≤ θ ||�M f ||∞.

This implies that

sup
τ∈IT ,θ≤γ

QN f −1
[∣∣∣∣
∫ τ+θ

0
μN
s (�M f )ds −

∫ τ

0
μN
s (�M f )ds

∣∣∣∣ > ε

]

≤ QN f −1

[
sup

τ∈IT ,θ≤γ

∣∣∣∣
∫ τ+θ

0
μN
s (�M f )ds −

∫ τ

0
μN
s (�M f )ds

∣∣∣∣ > ε

]

≤ QN f −1

[
sup

τ∈IT ,θ≤γ

θ ||�M f ||∞ > ε

]
≤ QN f −1 [γ ||�M f ||∞ > ε

] = 1γ ||�M f ||∞>ε.

This implies that the limit in (30) is smaller than

lim
γ→0

lim sup
N→∞

1γ ||�M f ||∞>ε = lim
γ→0

1γ ||�M f ||∞>ε = 0,

so (I) satisfies the tightness criterion.
(II). Further, the calculations above show that∣∣∣∣∣

∫ τ+θ

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds −

∫ τ

0

1

N

N∑
i=1

ηN
s (pi )Epi (N )ds

∣∣∣∣∣ ≤ θE(N ) ≤ θK .

Here K is some positive number which exists, because of (25). This part satisfies (30) in the
same way as the previous part.
(III). Now for the last term, we first estimate E

[
(MN

τ+θ − MN
τ )2

]
(as is done in (Kipnis and

Landim [13], p.56)). Naturally, the expectation is taken with respect to QN f −1. Note that
because of the martingale property:

0 ≤ E

[
(MN

τ+θ − MN
τ )2

]
= E(MN

τ+θ )
2 − E(MN

τ )2 = E

〈
MN , MN

〉
τ+θ

− E

〈
MN , MN

〉
τ
.

We see from the calculations in the proof of Lemma 4.4 that

E

〈
MN , MN

〉
τ+θ

− E

〈
MN , MN

〉
τ
≤ θ

a(N )

2N 2

N∑
i, j=1

WN
i j (φ(p j ) − φ(pi ))

2.

Since the term after θ converges to 0, we see that it is bounded by some constant α. By
Chebyshev’s inequality we obtain:

QN f −1
(
|MN

τ+θ − MN
τ | > ε

)
≤ E

[
(MN

τ+θ − MN
τ )2

]
ε2

≤ θα

ε2
.

Since

lim
γ→0

lim sup
N→∞

sup
τ∈IT ,θ≤γ

θα

ε2
= lim

γ→0
lim sup
N→∞

γα

ε2
= lim

γ→0

γα

ε2
= 0,

this part satisfies (30) too.

Limit Distribution
We have just shown that (QN )∞N=1 is a tight sequence of measures on D. This implies that
every one of its subsequences is also tight and therefore has aweakly convergent subsequence.
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If these all have the same limit, then it follows from a basic result in metric spaces that the
sequence itself converges weakly to that limit. It therefore suffices for weak convergence
of (QN )∞N=1 to show that every weakly convergent subsequence of (QN )∞N=1 has the same
limit. Let (QNk )∞k=1 be any weakly convergent subsequence and denote its limit by Q. Since
H is closed, we know for any δ > 0 that

Q(H δ) ≥ lim sup
k→∞

QNk (H δ) = 1,

so Q(H δ) = 1. Since this holds for any δ > 0, we see

Q(H0) = Q

( ∞⋂
m=1

H
1
m

)
= 1− Q

( ∞⋃
m=1

(H
1
m )C

)
≥ 1−

∞∑
m=1

Q

((
H

1
m

)C) = 1.

This means that

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt (φ) − α0(φ) −
∫ t

0
αs(�Mφ)ds

∣∣∣∣ = 0

)
= 1.

By doing this for a countable set of functions φ that is dense in C∞ with respect to || · ||∞ +
||�M · ||∞ and arguing that this implies the same for any smooth function we see:

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt (φ) − α0(φ) −
∫ t

0
αs(�Mφ)ds

∣∣∣∣ = 0 ∀φ ∈ C∞
)

= 1.

Since this holds for any T > 0, we see that Q−a.s. for every t ≥ 0 and for all smooth φ:

αt (φ) − α0(φ) =
∫ t

0
αs(�Mφ)ds. (31)

Note that (31) is a weak, measure-valued formulation of the heat equation. We will argue
and use shortly that this equation uniquely determines the trajectory t �→ αt given the initial
conditions.

Continuity
To obtain uniqueness, we first need to know that the trajectory is continuous. For theRn case
this is shown in (Seppäläinen [17], Lemma 8.6). The result can be shown in exactly the same
way in our case, so we will not provide all the details. The topology on the space of measures
is generated by the following metric:

dM (μ, ν) =
∞∑
j=1

2− j (1 ∧ ∣∣μ(φ j ) − ν(φ j )
∣∣) ,

for some sequence φ j ∈ C∞(M). It suffices to control

sup
t≥0

e−t dM (μN
t , μN

t−).

Doing that can be reduced to showing that for any T > 0 and ψ ∈ C∞(M):

lim
δ→0

lim sup
n→∞

E

[
sup

0≤s,t≤T ,|s−t |<δ

∣∣∣μN
s (φ) − μN

t (φ)

∣∣∣2
]

.
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This can be done by using the Dynkin martingale representation (26) and bounding all
the differences as in the proof of tightness. The only term that needs some attention is
(MN

t − MN
s )2, but it can be controlled using Doob’s maximal inequality:

E

[
sup

0≤s,t≤T ,|s−t |<δ

(MN
t − MN

s )2

]
≤ E

[
sup

0≤t≤T
4(MN

t )2

]

≤ 16E(MN
T )2 = 16E

〈
MN , MN

〉
T

,

which goes to zero according to Lemma 4.4.

Uniqueness
To obtain uniqueness of limits of subsequences of QN , we need to know that there is a unique
continuous solution to (31) that has initial condition ρ0dV̄ . We know that t �→ ρtdV̄ is a
continuous solution to (31) with the right initial condition if t �→ ρt satisfies the heat equation
with initial condition ρ0. Therefore it suffices to show that this solution is unique. This result
is proven with a boundedness condition in (Seppäläinen [17], Thm A.28). The main idea
of the proof is that the measure valued path αt is smoothed by taking its convolution with
some smooth kernel with bandwidth ε > 0. Then it is shown that this trajectory of functions
satisfies the heat equation with initial condition ρ0 in the strong sense (by interchanging
integral and derivatives and using that these identities are known for sufficiently many φ),
so it must equal t �→ ρt . Then by letting ε go to zero, it is shown that the original trajectory
t �→ αt must equal t �→ ρtdλ, where λ is the Lebesgue measure.
To obtain the analogous result in our setting, we cannot use convolution, since this is not
well-defined on a manifold. However, we can smooth the measures by integrating the heat
kernel at time ε with respect to the measures. Using this smoothing, we can follow exactly the
same approach, i.e. showing that the smoothed trajectory satisfies the heat equation in a strong
sense and then letting ε go to 0. The boundedness condition is a bound on volumes, which is
needed for some estimations in Seppäläinen [17] and for the uniqueness of the strong solution
to the heat equation. Since we work in a compact setting and with probability measures, such
a bound is not necessary. The uniqueness of the strong solution to the heat equation is a
standard result in our case (so for a compact and connected Riemannian manifold). See for
instance [11, Thm. 8.18]. Results on the heat kernel on a manifold can also be found in
Grigoryan [11].

Conclusion
Now let t �→ ρt be the solution to the heat equation on M with initial condition ρ0 and
call β := (t �→ ρtdV̄ ). Recall that (31) holds Q−a.s. By the uniqueness result above, this
implies that Q is a Dirac distribution with β as its support. Since this does not depend on
QNk , it must be the same for any convergent subsequence, so with arguments given above,
we conclude that QN → Q weakly. Let γ N denote the random trajectory t �→ μN

t . Since
Q is degenerate, the weak convergence implies convergence in probability, so γ N → β in
probability. This is what we wanted to show.
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Appendix

Lemma Let (pi )∞i=1 be a sequence for which the empirical measures converge to the volume
measure in the Kantorovich sense. Define ε(N ), W N

i j and k as in section 3.1. Additionally
suppose that there exists some α > 0 such that k(x) > 0 for all x ≤ α. Say that there is an
edge between pi and p j whenever W N

i j > 0. Then the corresponding graphs are eventually
connected (in other words: there is some N0 such that for all N ≤ N0, VN with edges as just
defined is connected).

Proof Define

GN (β) := the graph that is obtained from VN by putting an edge

between vertices at distance ≤ β

βN := inf{β ≥ 0 : GN (β) is connected}.
SinceGN (0) is not connected (for N > 1),GN (supp,q∈M d(p, q)) is connected andGN (β1)

contains all edges of GN (β2) for β1 ≥ β2 it is clear that βN is a finite number strictly larger
than 0. Further note that GN (βN ) is connected (so the infimum is actually a minimum).
Now note that there must be two points p′, q ′ ∈ VN such that p, q have an edge between
them for β = βN and are not connected for β < βN (we call p and q connected if there is a
path from p to q). Indeed if any pair p, q ∈ VN that has an edge between them for β = βN is
still connected by some path for some βpq < βN , we see that for β ′ = supp,q βpq < βN the
graph GN (β ′) is connected, which contradicts the definition of βN (note that the supremum
ranges over a finite amount of numbers, since VN is finite). Fix such p′, q ′ ∈ VN .
Now let sN be a point on M such that d(p′, sN ) = d(q ′, sN ) = βN /2. Then B(sN , βN /4)
does not contain any point of VN (since by the triangle inequality such point would have
distance ≤ 3βN /4 to both p′ and q ′ so p′ and q ′ would be connected to each other via this
point in GN (3βN /4), which contradicts the choice of p′ and q ′).
Now we define the following function lN : M → R

lN (p) =
{
d(p, sN ) − βN

4 p ∈ B
(
sN ,

βN
4

)
0 otherwise

It is easy to see that |lN (p)− lN (q)| ≤ d(p, q), so lN is Lipschitz with LlN ≤ 1. This implies
that

W1(μ
N , V ) ≥

∫
lNdμN −

∫
lNdV .

Since lN is only non-zero on B(sN , βN /4) and this set does not contain points of VN , we see
that ∫

lNdμN = 0.

Further, since lN is non-positive and lN ≤ −βN /8 on B(sN , βN /8, we see that

∫
lNdV ≤ −V

(
B

(
sN ,

βN

8

))
βN

8
,

so we conclude that W1(μ
N , V ) ≥ V (B(sN , βN /8))βN /8. Since W1(μ

N , V ) goes to zero,
it is easy to deduce from this inequality that βN → 0. Hence there are constants C ′,C ′′ > 0
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(not depending on sN ), such that for N large enough

W1(μ
N , V ) ≥ V

(
B

(
sN ,

βN

8

))
βN

8
≥ C ′′

(
βN

8

)d
βN

8
= C ′βd+1

N .

Now we see there is a C > 0 such that for N large enough

εN =
(
sup
m≥N

W1(μ
m, V̄ )

) 1
4+d

≥ W1(μ
N , V )

1
4+d ≥ Cβ

d+1
d+4
N .

This implies that there is some N0 such that for all N ≥ N0 αεN ≥ βN . By our choice of k,
all points at distance αεN or less are joined by an edge, so this inequality combined with the
definition of βN shows that for all N ≥ N0 VN with edges as defined in the lemma statement
is connected. 
�
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